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MODEL DIFFUSE ATTENUATION COEFFICIENT PROFILES

L. Estep
Naval Research Laboratory

Stennis Space Center,

INTRODUCTION

Light transport through water is
controlled by the properties of dissolved
substances, particulate matter, and water
itself. The rate at which the light field
decays can be measured by optical
instrumentation and parameterized by an
apparent optical property of the water, the
diffuse attenuation coefficient, k'. The

diffuse attenuation coefficent is known to
vary with depth near the surface’. However, as
the light field penetrates to greater depths,
the value of k approaches an asymptotic value

which can be treated as a quasi-inherent
property of the water mass’. Generally, the
actual depth at which k approaches an

asymptotic value is the bottom of the euphotic

zone (1% level) for all but the clearest
waters.

The primary optical parameter of interest
in this study is the downwelling diffuse

attenuation coefficient, k,, which we will
designate simply as "“k". The objective of
this work is to develop methods or algorithms
for computing vertical, or depth, profiles of
k given a surface k value.

BACKGROUND AND METHODS

In Case I waters‘, a strong correlation
has been shown to exist® between chlorophyll

(Chl) concentration and water optics.
Algorithms have been developed to allow
transformations from chlorophyll

concentrations in the surface ocean waters to

k surface water optics. Using these
algorithms in conjunction with satellite
imagery, a synoptic view of the surface water

optics of the world's oceans is passible. Case
I surface waters comprise, on average, the top
15 to 20 meters of the ocean. The chlorophyll
distribution with depth must be considered
since it has been shown that values of surface
water optics do not correlate with the water
optical state with depth®. The focus of the
present work has been to develop k profile
algorithms that are locale specific.

Using results from several Scripps
Institute of Oceanography cruises, Austin and
McGlamery’ developed relations between surface
k wvalues and the average k value over 100
roters and 200 meters depth. The relations
IRl

(1)

L107%,+0.031, X ,0=0.212k,+0.031

Using this information, a set of equations

utilizing the diffuse optical depths invoked
by the Austin and McGlamery results were
derived. Figure 1 shows the profile

development scenario.

The ocean from the surface to 200 meters
depth is divided into three layers. These are
termed the surface layer, the intermediate
layer, and the bottom layer. Caution is
advised in attempting to tie these layers to
any actual oceanic layering in some given
region. These layers are derived from purely
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Figure 1. Austin-McGlamery
model scenario.

statistical considerations over many different
regions or sites. The surface layer has a
satellite given kK value of k, and a thickness
of 1/k, m. The second, intermediate, layer is
100~1/k, m thick and it's k, value is given by
the relation

(2)

The thickness of the bottom layer is 100 m and
it's k, value given by the formula

 200K50,-

200” (100-17k) k-1

100

k, (3)

Thus, the surface-intermediate layer depth sum
and bottom depth, are fixed in the model
scenario. The k values of all three layers may
vary depending on the surface X value given.

The second algorithm relies on some
recent work by Platt et al.® that partitions
the North Atlantic into a matrix based upon
region, season, and water depth. These
partitions provide specific Gaussian profile
models for each element of the matrix to give
the Chl distribution with depth. The Gaussian
model used in this work has the form

\Z-C
Clzy =GB appp- VTR (4)
o/{2n) 20
where C(z) represents the variation of ch!
with depth, h/(a*(2%7) - *hee ek T
Chl maximum, C, is the bacxground biomascs [SESTI

which is superimposed the Gaussian prcfile,
and o is the width of the peak. The algorithn
employed in the present work uses the Gaussian
profile model above as well as the data tor
the width, peak value, and ratio of the peak
to the background biomass, given by Platt et
al.®, to drive a local and surface specific Chl
profile, which, in turn, is transformed back
to a k value using results due to Morel®. The
model takes as input a CZCS surface k value at

490 nm. This is transformed to a surface Chl
value. Next, this surface Chl value is
transformed using results due to Smith and

Baker!?,

Log(C,)=0.7888 [.ag(C,)-0.02 (5)




is the column averaged concentration,
in mg/m’, and C, is the s:irface concentration.
In Equation (1), the water depth over which
the water column is taken 1s the euphotic
depth, z,. Thus, Smith and Baker's results
provide us with a column average Chl value.
The euphotic depth can be found from Mcrel® and
is given by the relation

Z,,=38.0Ch] o

Where CS

(6}

where Chl
~hlorophyll

is,
from

here, the
the surtace

column average
to the 1% light

level. The product of the column averaged Chl
over the euphotic depth and the euphotic depth
gives an integrated Chl over the euphotic
depth.

The next step is to calculate the
background biomass, C,. Integrating Equation
{4) over the euphotic depth, using the peak to
background biomass ratio, with C, constant over
the range of integration, we arrive at the

form
C - IntegratedChl
N z., (z-z.0% ., (7)
f {1+p exp (- —- 2 .}]da
° 2a
where "Integrated Chl" is the product of the
column averaged Chl and euphotic depth

aforementioned.
Given the values of the particular Platt

partition, the algorithm determines the
gaussian curve parameters. The algorithm then
generates a profile which adjusts the

parameters of the Gaussian profile peak to
conserve total chlorophyll over the euphotic
zone (or, in other words, bring Platt's
results in line with references 9 and 10).

DATA COMPARISON RESULTS

Using field datasets obtained from the
Sargasso Sea and the AUTEC range, comparisons
were made with the algorithms mentioned above.
Figures 2-5 give some comparisons of the k
profile models of Austin-McGlamery, Platt, and
the field data profiles.

Figure 2 exhibits 1line plots of the

results of the Austin-McGlamery and Platt
algorithms compared to AUTEC range data.
The stair-step line shown above represents the
downwelling k profile from field data. The
legend 1labels the 1lines due to the two
algorithms discussed above. Both the Austin-
McGlamery and Platt results trend fairly close
to the data line. However, the Platt results
nearly lie on the data-line.

Figure 3 provides a tield dataset where a
deep chlorophyll maximum peak presents itself.
The Platt and Austin-Morel models exhibit a
peak, as does the data, but the peak phasing
and amplitude are off. However, when one
considers in all these cases that semi-
empirical results from limited datasets are
built into the models, it is not surprising
that for some selected field dataset there

will exist the sort of mismatch seen in Figure
3. In fact, it is rather surprizing that one

can obtain the fairly close match seen in
Figure 2.

Figure 4 and 5 provide further
comparisons of the k profile model results

compared to the field data.

Y]

MODE!ILL K PROFILES

- m
'

. . ]

.- -
-rn . aaie mas amme

rare

Figure 2. Autec field data k
values plotted against
algorithm results.

MOLCEL K PROFILES

-t amTie mar s

Figure 3. Sargasso Sea data
owing a deep Chl maximum.

sh

MODEL K PROFILES

ALTPC waANIF

t1/m)

DEPTH (m)

o LATA o AUSTIN MOOLANENY

a PLATT
Pigqure 4. AUTEC range field
results. Note scatter 1in k
data.
MODEIL K PROFILES

SARGAINS 9PA

[, O UG VU R
|
H
i

> 8 > o
=
3

1/mb

4 e - 180

HE 232 TRRPRY

IATA AL STIN MM ol AMe¥Y
o PILATT
Figure 5. Sargasso Sea low,
broad, and deep Chl peak.

Table 1 provides average error values for
the deep water models versus the field data
for the datasets shown above. The average
error was calculated by computing the percent
difference
error of the relevant model and associated
field _data results point by point and
averaging over all points.




TABLE 1.
L {RROR CALCULATION 1OR DAEP walt® WODELS

AUSHN-MCOLAMERY  PLalf

un 20%
$3% (3

9% .
18 1%

AYG [RROR=13% AVGC {RROA= 148

Pigure 6. Table of
algorithm errors.

As seen in Table 1, their is 1little
difference in the k profile algorithms in
their relative accuracy of predicting real
world profiles for the field data used.

CONCLUSIONS

Algorithms for the profiles of Chl or k
with depth have been developed. These
algorithms allow one to take surface values of
downwelling X from satellite imagery and,
without actual coeval supporting in situ
measurements, derive a profile of k for a
given pixel. These algorithms are confronted
by field data. The algorithm that reproduces
the deep water field data represented by the
Sargasso Sea and AUTEC areas most closely is
the Platt based model.

Caveats need to be made. First, the
above work assumes Case I water scenarios.
Second, the results are based upon work
performed by extracting empirical
relationships from real world datasets. If we
can assume the datasets are generally
representative of the world's oceans, then the
profiles generated should provide
representative estimates of the k profiles for
areas of interest.
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