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A. STATEMENT OF THE PROBLEM STUDIED

We started out with the goal of understanding approximation order in a multivariate
context, including the approximation of surfaces. In addition, we wanted to understand
better the use and analysis of our approach to multivariate polynomial interpolation.

We ended up concentrating on approximation from shift-invariant spaces of functions
on RY. Here, S is shift-invariant if f € S implies that also f(- — a) € S for any integer
vector a. The simple, yet widely applicable, model we considered concerns the behavior,
as h — 0, of the distance dist(f, S?) of a (suitably smooth) f from the scaled space
SP = {f(-/h) : f € Sk}, with each S a shift-invariant space. Examples of such spaces
are provided by finite elements on a regular grid, in particular, box spline spaces; also
the spaces which make up the multiresolution analysis generated by wavelets are (scaled
versions of) shift-invariant spaces, as are the related spaces generated by hierarchical bases
(of use in the efficient numerical solution of elliptic PDEs); in the latter two examples,
h =2-% k =0.1,2,.... Finally, shift-invariant spaces had been recently invoked (in a
quite unexpected way) for the construction of approximation schemes to scattered data (in
2-, 3-, and higher dimensions) by translates of radial basis functions.

B. SUMMARY OF THE MOST IMPORTANT RESULTS

This bricf outline relies on the fact that more details can be found in the semi-annual
reports submitted during the grant period, and, if need be, in the manuscripts filed with
ARO as required. All boldfaced numbers refer to items in the list of publications given in
C.

The highlight of the research done under this grant concerns approximation from
shift-invariant spaces of functions on IR?. In joint work with Ronald A. DeVore (whose
semester-long visit was partially supported by this grant), we were able to obtain a com-
plete characterization of the approximation order (in the Ly(IR%)-norm) from a sequence
(S,’:) in case each Sy, is a principal shift-invariant space, i.e., the Ly-closure S(¢p) of
the finite linear combinations of shifts (= integer translates) of one function, ¢,. This
characterization contains the socalled Strang-Fix conditions, which have dominated such
considerations for the last twenty years, as a very special case. But, in contrast to the
Strang-Fix conditions, our characterization is derived under no assumptions on the gen-
erating functions ¢y other than the obvious one that each should be an L,-function. It is
quite surprising that it was possible to solve this problem in this complete generality.

The solution (in 5 ) is based on a new formula for the orthogonal projection onto
a closed principal shift-invariant subspace of L, and on the resulting characterization
of the elements of such a space. Both are in terms of the Fourier transform, as is the
characterization of approximation order. Moreover, we found that the approximation
order associated with a sequence (Sy,) of arbitrary shift-invariant spaces is already realised
by some sequence (S},) of principal shift-invariant spaces with §; C Sy. This settles (sce
6 ) a discussion which started when Strang and Fix asserted such a theorem for finitely
generated shift-invariant spaces (in a certain restricted context) which was subsequently
proven to be false (by Jia, while a student of de Boor) as stated, and whose correct
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formulation has been the subject of several papers over the years. We know this result to
be also of interest in the current attempts to construct ‘short’ wavelets.

The results (in 6 ) on the structure of finitely generated shift-invariant spaces provide
a very convenient platform on which Amos Ron and Zuowei Shen are presently completing
a (mathematical) machine for the analysis of frames and Riesz bases for the space L,(IR?).
That work focuses on the following practically important special cases: Weyl-Heisenberg
frames (also known as Gabor frames, and which contain the short-window Fourier trans-
form as a special case), and affine (i.e., wavelet) frames. One of the main achievements in
this on-going work is a new and efficient way for computing the frame bounds of such sets.
Also, new ways for calculating the dual frame are obtained. (To recall, efficient calculation
of the dual frame is essential for any practical use of a frame.)

Shift-invariant spaces play a fundamental role in wavelet theory. particularly in the
decomposition of L-)_(IR.d) via multiresolution analysis. Such a multiresolution analysis
is given by a nested sequence (S¥)iez. with S* generated by the 27%Z% shifts of some
function k. provided certain conditions are satisfied. Among these are (i) the density
of the union of the S* and (ii) the triviality of their intersection. Simple necessary and
sufficient conditions for (i) and for (ii) are derived in 7 . In addition, 7 provides a new
way to construct such multiresolution analysis and the corresponding wavelet spaces in the
full multidimensional setting. In particular, we are able to deal with the situation when
the spaces 8 are not all given in terms of the scales of just one function.

We arc also very pleased about our results about approximation order from shift-
invariant spaces when the error is measured in the max-norm. These results are all based
on the observation in 15 that the approximation )~ ¢z« (- — @) exp(ifa) from S(o) to
exp(i6-) 3 ez4 ©Xp(ifa) is. within a f-independent factor, as small as the best-possible
error (as measured in the max-norm). This leads to the easy use of such bounded expo-
nentials where traditionally polynomials were used for judging approximation order, thus
permitting consideration (see 10 ) of ‘basic’ functions ¢ which are not compactly sup-
ported or decay fast at infinity. In particular, surprising results concerning approximation
with radial basis functions are obtained.

The basic results of 5 and 10 have already been invoked by several different groups
for the study of certain special cases. As far as our own work is concerned, we made
applications of the results of 5 to non-stationary multiresolution analysis in 13 and to
radial basis functions in 17 . Also, the scheme of 10 was studied in norms other than
the max-norm in 19 .

While the book 9 ,“Box Splines”, by C. de Boor, K. Hollig, and S. Riemenschneider,
was described as close to completion in the Final Report for a previous grant, the actual
finishing turned out to take considerably more time. This was not only due to difficulties
with the publishers (who decided to change the agreed-upon format after delivery of the
final, camera-ready manuscript on 1 September 1992). Rather, it seemed opportune to in-
clude in the book recent results on the use of box splines in the construction of multivariate
wavelets. Also, the Notes at the end of each chapter, concerning the existing literature,
turned out to require much more time and carc than anticipated. Finally, it seemed good
to carry out an investigation, see 4, into the computational aspects of box splines before
publishing the book. Here is one of the 57 illustrations in the book.
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(1)Figure. Part of a bivariate cardinal spline (based on the ZP element)
and the relevant box spline coefficients, i.e., those coefficients
for which the support of the corresponding shifted box spline
overlaps the domain on which the spline is plotted.
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