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ABSTRACT

Based on a unique experimental technique, measurement results

are presented on the passive, remote sensing of the optical

modulation transfer function of desert atmospheres (MTFA),

including the DC, low and high spatial cutoff frequency components

which are attributed to contrast, aerosol, and turbulence,

respectively. In particular, use of this technique has made it

possible, for the first time, to directly measure the low spatial

frequency cutoff of the aerosol component. This technique is based

on utilizing digital image processing of remote video scenes which

include two, optically identical, castellated targets which are

located at different distances and are contrasted against the

horizon sky. Ratios of apparent contrast and FFT calculations are

used to determine the MTFA components, including the spatial cutoff

frequencies of the aerosol and turbulence components, independent

of the imaging system and actual properties of the targets. The

experimental technique is described along with current MTFA

component measurements.
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targets; (b) normalized, line FFTs of both targets
based on the corresponding pixel values shown; (c)
normalized aerosol MTFp, derived from the ratio of
far target FFT to the near target FFT. Values for
fo, x, and MTFb, are included.

22. Data from 11:27 AM of June 12, 1993: (a) line 67
pixel values of castellated black-white stripes for
both targets; (b) normalized spatial frequency
response of both targets based on the corresponding
pixel values shown; (c) turbulence, MTFt, derived
from the ratio of the far to near target frequency
response. Cutoff frequency, fc, for MTFt is
included.

23. Data from 10:00 AM of April 17, 1993: (a) line 68
pixel values of the black-white steps for both
targets; (b) normalized, line FFTs of both targets
based on the corresponding pixel values shown; (c)
normalized aerosol MTFp, derived from the ratio of
far target FFT to the near target FFT. Values for
f,, T, and MTFb, are included.

24. Data from 10:00 AM of April 17, 1993: (a) line 69
pixel values of castellated black-white stripes for
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targets; (b) normalized, line FFTs of both targets
based on the corresponding pixel values shown; (c)
normalized aerosol MTFp, derived from the ratio of
far target FFT to the near target FFT. Values for
f,, r, and MTFb, are included.
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26. Data from 11:30 AM of April 17, 1993: (a) line 71
pixel values of castellated black-white stripes for
both targets; (b) normalized spatial frequency
response of both targets based on the corresponding
pixel values shown; (c) turbulence, MTFt, derived
from the ratio of the far to near target frequency
response. Cutoff frequency, fc, for MTF, is
included.

27. Data from 11:15 AM of April 17, 1993: (a) line 72
pixel values of the black-white steps for both
targets; (b) normalized, line FFTs of both targets
based on the corresponding pixel values shown; (c)
normalized aerosol MTFp, derived from the ratio of
far target FFT to the near target FFT. Values for
f,, T, and MTFb, are included. Focus on near
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response of both targets based on the corresponding
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from the ratio of the far to near target frequency
response. Cutoff frequency, frt, for MTF, i3
included. Focus on near target.

29. Data from 11:20 AM of April 17, 1993: (a) line 74
pixel values of the black-white steps for both
targets; (b) normalized, line FFTs of both targets
based on the corresponding pixel values shown; (c)
normalized aerosol MTFp, derived from the ratio of
far target FFT to the near target FFT. Values for
fc, r, and MTFb, are included. Focus beyond near
target.

30. Data from 11:20 AM of April 17, 1993: (a) line 75
pixel values of castellated black-white stripes for
both targets; (b) normalized spatial frequency
response of both targets based on the corresponding
pixel values shown; (c) turbulence, MTFt, derived
from the ratio of the far to near target frequency
response. Cutoff frequency, fct, for MTFt is
included. Focus beyond near target.
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31. Data from 11:40 AM of April 17, 1993: (a) line 76
pixel values of the black-white steps for both
targets; (b) normalized, line FFTs of both targets
based on the corresponding pixel values shown; (c)
normalized aerosol MTFp, derived from the ratio of
far target FFT to the near target FFT. Values for
re, T, and MTFb, are included. Focus closer than
near target.

32. Data from 11:40 AM of April 17, 1993: (a) line 77
pixel values of castellated black-white stripes for
both targets; (b) normalized spatial frequency
response of both targets based on the corresponding
pixel values shown; (c) turbulence, MTF,, derived
from the ratio of the far to near target frequency
response. Cutoff frequency, fCt, for MTFt is
included. Focus closer than near target.

33. Data from 10:00 AM of February 27, 1993: (a) line 78
pixel values of the black-white steps for both
targets; (b) normalized, line FFTs of both targets
based on the corresponding pixel values shown; (c)
normalized aerosol MTFp, derived from the ratio of
far target FFT to the near target FFT. Values for
fc, r, and MTFb, are included.

34. Data from 10:00 AM of February 27, 1993: (a) line 79
pixel values of castellated black-white stripes for
both targets; (b) normalized spatial frequency
response of both targets based on the corresponding
pixel values shown; (c) turbulence, MTF,, derived
from the ratio of the far to near target frequency
response. Cutoff frequency, fct, for MTF, is
included.

35. Data from 12:00 PM of February 27, 1993: (a) line 80
pixel values of the black-white steps for both
targets; (b) normalized, line FFTs of both targets
based on the corresponding pixel values shown; (c)
normalized aerosol MTFp, derived from the ratio of
far target FFT to the near target FFT. Values for
f,, c, and MTrFb, are included.

xiv



Figure Page

36. Data from 12:00 PM of February 27, 1993: (a) line 81
pixel values of castellated black-white stripes for
both targets; (b) normalized spatial frequency
response of both targets based on the corresponding
pixel values shown; (c) turbulence, MTFt, derived
from the ratio of the far to near target frequency
response. Cutoff frequency, f, for MTF, is
included.

37. Data from 9:00 AM of December 22, 1992: (a) line 82
pixel values of the black-white steps for both
targets; (b) normalized, line FFTs of both targets
based on the corresponding pixel values shown; (c)
normalized aerosol MTFp, derived from the ratio of
far target FFT to the near target FFT. Values for
fc, T, and MTFb, are included.

38. Data from 9:00 AM of December 22, 1992: (a) line 83
pixel values of castellated black-white stripes for
both targets; (b) normalized spatial frequency
response of both targets based on the corresponding
pixel values shown; (c) turbulence, MTFt, derived
from the ratio of the far to near target frequency
response. Cutoff frequency, f.., for MTF, is
included.

39. Data from 9:57 AM of December 22, 1992: (a) line 84
pixel values of the black-white steps for both
targets; (b) normalized, line FFT, of both targets
based on the corresponding pixel values shown; (c)
normalized aerosol MTFp, derived from the ratio of
far target FFT to the near target FFT. Values for
f-, T, and MTFb, are included.

40. Data from 9:57 AM of December 22, 1992: (a) line 85
pixel values of castellated black-white stripes for
both targets; (b) normalized spatial frequency
response of both targets based on the corresponding
pixel values shown; (c) turbulence, MTFt, derived
from the ratio of the far to near target frequency
response. Cutoff frequency, fet, for MTFt is
included.
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41. Data from 11:00 AM of December 22, 1992: (a) line 86
pixel values of the black-white steps for both
targets; (b) normalized, line FFTs of both targets
based on the corresponding pixel values shown; (c)
normalized aerosol MTFp, derived from the ratio of
far target FFT to the near target FFT. Values for
f,, T, and MTFb, are included.

42. Data from 11:00 AM of December 22, 1992: (a) line 87
pixel values of castellated black-white stripes for
both targets; (b) normalized spatial frequency
response of both targets based on the corresponding
pixel values shown; (c) turbulence, MTFt, derived
from the ratio of the far to near target frequency
response. Cutoff frequency, fct, for MTF, is
included.

43. Data from 7:00 AM of November 21, 1992: (a) line 88
pixel values of the black-white steps for both
targets; (b) normalized, line FFTs of both targets
based on the corresponding pixel values shown; (c)
normalized aerosol MTFp, derived from the ratio of
far target FFT to the near target FFT. Values for
f,, T, and MTFb, are included.

44. Data from 7:00 AM of November 21, 1992: (a) line 89
pixel values of castellated black-white stripes for
both targets; (b) normalized spatial frequency
response of both targets based on the corresponding
pixel values shown; (c) turbulence, MTFt, derived
from the ratio of the far to near target frequency
response. Cutoff frequency, fct, for MTF, is
included.

45. Data from 12:00 PM of November 21, 1992: (a) line 90
pixel values of the black-white steps for both
targets; (b) normalized, line FFTs of both targets
based on the corresponding pixel values shown; (c)
normalized aerosol MTFp, derived from the ratio of
far target FFT to the near target FFT. Values for
fc, t, and MTFb, are included.
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46. Data from 12:00 PM of November 21, 1992: (a) line 91
pixel values of castellated black-white stripes for
both targets; (b) normalized spatial frequency
response of both targets based on the corresponding
pixel values shown; (c) turbulence, MTFt, derived
from the ratio of the far to near target frequency
response. Cutoff frequency, f, for MTFt is
included.

47. Data from 8:00 AM of October 31, 1992: (a) line 92
pixel values of the black-white steps for both
targets; (b) normalized, line FFTs of both targets
based on the corresponding pixel values shown; (c)
normalized aerosol MTFp, derived from the ratio of
far target FFT to the near target FFT. Values for
f,, T, and MTFb, are included.

48. Data from 8:00 AM of October 31, 1992: (a) line 93
pixel values of castellated black-white stripes for
both targets; (b) normalized spatial frequency
response of both targets based on the corresponding
pixel values shown; (c) turbulence, MTFt, derived
from the ratio of the far to near target frequency
response. Cutoff frequency, fct, for MTFt is
included.

49. Data from 9:30 AM of October 31, 1992: (a) line 94
pixel values of the black-white steps for both
targets; (b) normalized, line FFTs of both targets
based on the corresponding pixel values shown; (c)
normalized aerosol MTFp, derived from the ratio of
far target FFT to the near target FFT. Values for
fc, T, and MTFb, are included.

50. Data from 9:30 AM of October 31, 1992: (a) line 95
pixel values of castellated black-white stripes for
both targets; (b) normalized spatial frequency
response of both targets based on the corresponding
pixel values shown; (c) turbulence, MTF., derived
from the ratio of the far to near target frequency
response. Cutoff frequency, fct, for MTFt is
included.
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51. Data from 7:00 AM of October 17, 1992: (a) line 96
pixel values of the black-white steps for both
targets; (b) normalized, line FFTs of both targets
based on the corresponding pixel values shown; (c)
normalized aerosol MTFp, derived from the ratio of
far target FFT to the near target FFT. Values for
fc, r, and MTFb, are included.

52. Data from 7:00 AM of October 17, 1992: (a) line 97
pixel values of castellated black-white stripes for
both targets; (b) normalized spatial frequency
response of both targets based on the corresponding
pixel values shown; (c) turbulence, MTFt, derived
from the ratio of the far to near target frequency
response. Cutoff frequency, fct, for MTFt is
included.

53. Data from 9:00 AM of October 17, 1992: (a) line 98
pixel values of the black-white steps for both
targets; (b) normalized, line FFTs of both targets
based on the corresponding pixel values shown; (c)
normalized aerosol MTFp, derived from the ratio of
far target FFT to the near target FFT. Values for
fc, x, and MTFb, are included.

54. Data from 9:00 AM of October 17, 1992: (a) line 99
pixel values of castellated black-white stripes for
both targets; (b) normalized spatial frequency
response of both targets based on the corresponding
pixel values shown; (c) turbulence, MTFt, derived
from the ratio of the far to near target frequency
response. Cutoff frequency, fc, for MTF, is
included.

55. Data from 7:00 AM of September 5, 1992: (a) line 100
pixel values of the black-white L _eps for both
targets; (b) normalized, line FFTs of both targets
based on the corresponding pixel values shown; (c)
normalized aerosol MTFp, derived from the ratio of
far target FFT to the near target FFT. Values for
f,, t, and MTFb, are included.
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56. Data from 7:00 AM of September 5, 1992: (a) line 101
pixel values of castellated black-white stripes for
both targets; (b) normalized spatial frequency
response of both targets based on the corresponding
pixel values shown; (c) turbulence, MTFt, derived
from the ratio of the far to near target frequency
response. Cutoff frequency, fct, for MTF, is
included.

57. Data from 9:30 AM of September 5, 1992: (a) line 102
pixel values of the black-white steps for both
targets; (b) normalized, line FFTs of both targets
based on the corresponding pixel values shown; (c)
normalized aerosol MTFp, derived from the ratio of
far target FFT to the near target FFT. Values for
fc, T, and MTFb, are included.

58. Data from 9:20 AM of September 5, 1992: (a) line 103
pixel values of castellated black-white stripes for
both targets; (b) normalized spatial frequency
response of both targets based on the corresponding
pixel values shown; (c) turbulence, MTFt, derived
from the ratio of the far to near target frequency
response. Cutoff frequency, fet, for MTFt is
included.

59. Data from 2:00 PM of September 5, 1992: (a) line 104
pixel values of the black-white steps for both
targets; (b) normalized, line FFTs of both targets
based on the corresponding pixel values shown; (c)
normalized aerosol MTFp, derived from the ratio of
far target FFT to the near target FFT. Values for
f:, T, and MTFb, are included.

60. Data from 11:00 AM of September 5, 1992: (a) line 105
pixel values of castellated black-white stripes for
both targets; (b) normalized spatial frequency
response of both targets based on the corresponding
pixel values shown; (c) turbulence, MTFt, derived
from the ratio of the far to near target frequency
response. Cutoff frequency, fct, for MTFt is
included.
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61. Data from 7:00 AM of August 26, 1992: (a) line 106
pixel values of the black-white steps for both
targets; (b) normalized, line FFTs of both targets
based on the corresponding pixel values shown; (c)
normalized aerosol MTFp, derived from the ratio of
far target FFT to the near target FFT. Values for
f,, x, and MTFb, are included.

62. Data from 7:00 AM of August 26, 1992: (a) line 107
pixel values of castellated black-white stripes for
both targets; (b) normalized spatial frequency
response of both targets based on the corresponding
pixel values shown; (c) turbulence, MTFt, derived
from the ratio of the far to near target frequency
response. Cutoff frequency, f,;, for MTFt is
included.

63. Data from 9:30 AM of August 26, 1992: (a) line 108
pixel values of the black-white steps for both
targets; (b) normalized, line FFTs of both targets
based on the corresponding pixel values shown; (c)
normalized aerosol MTFp, derived from the ratio of
far target FFT to the near target FFT. Values for
f,, T, and MTFb, are included.

64. Data from 9:30 AM of August 26, 1992: (a) line 109
pixel values of castellated black-white stripes for
both targets; (b) normalized spatial frequency
response of both targets based on the corresponding
pixel values shown; (c) turbulence, MTFt, derived
from the ratio of the far to near target frequency
response. Cutoff frequency, fct, for MTFt is
included.

65. Data from 12:00 PM of August 26, 1992: (a) line 110
pixel values of the black-white steps for both
targets; (b) normalized, line FFTs of both targets
based on the corresponding pixel values shown; (c)
normalized aerosol MTFp, derived from the ratio of
far target FFT to the near target FFT. Values for
f,, T, and MTFb, are included.
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66. Data from 12:00 PM of August 26, 1992: (a) line 111
pixel values of castellated black-white stripes for
both targets; (b) normalized spatial frequency
response of both targets based on the corresponding
pixel values shown; (c) turbulence, MTFt, derived
from the ratio of the far to near target frequency
response. Cutoff frequency, fct, for MTFt is
included.

67. Data from 7:00 AM of August 25, 1992: (a) line 112
pixel values of the black-white steps for both
targets; (b) normalized, line FFTs of both targets
based on the corresponding pixel values shown; (c)
normalized aerosol MTFp, derived from the ratio of
far target FFT to the near target FFT. Values for
re, T, and MTFb, are included.

68. Data from 7:00 AM of August 25, 1992: (a) line 113
pixel values of castellated black-white stripes for
both targets; (b) normalized spatial frequency
response of both targets based on the corresponding
pixel values shown; (c) turbulence, MTFt, derived
from the ratio of the far to near target frequency
response. Cutoff frequency, fc, for MTFt is
included.

69. Data from 9:30 AM of August 25, 1992: (a) line 114
pixel values of the black-white steps for both
targets; (b) normalized, line FFTs of both targets
based on the corresponding pixel values shown; (c)
normalized aerosol MTFp, derived from the ratio of
far target FFT to the near target FFT. Values for
f,, T, and MTFb, are included.

70. Data from 9:30 AM of August 25, 1992: (a) line 115
pixel values of castellated black-white stripes for
both targets; (b) normalized spatial frequency
response of both targets based on the corresponding
pixel values shown; (c) turbulence, MTFt, derived
from the ratio of the far to near target frequency
response. Cutoff frequency, fct, for MTFt is
included.

xxi
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71. Data from 12:00 PM of August 25, 1992: (a) line 116
pixel values of the black-white steps for both
targets; (b) normalized, line FFTs of both targets
based on the corresponding pixel values shown; (c)
normalized aerosol MTFp, derived from the ratio of
far target FFT to the near target FFT. Values for
fc, T, and MTFb, are included.

72. Data from 12:00 PM of August 25, 1992: (a) line 117
pixel values of castellated black-white stripes for
both targets; (b) normalized spatial frequency
response of both targets based on the corresponding
pixel values shown; (c) turbulence, MTFt, derived
from the ratio of the far to near target frequency
response. Cutoff frequency, fct, for MTFt is
included.

73. Data from 7:00 AM of August 21, 1992: (a) line 118
pixel values of the black-white steps for both
targets; (b) normalized, line FFTs of both targets
based on the corresponding pixel values shown; (c)
normalized aerosol MTFp, derived from the ratio of
far target FFT to the near target FFT. Values for
fc, t, and MTFb, are included.

74. Data from 7:00 AM of August 21, 1992: (a) line 119
pixel values of castellated black-white stripes for
both targets; (b) normalized spatial frequency
response of both targets based on the corresponding
pixel values shown; (c) turbulence, MTFt, derived
from the ratio of the far to near target frequency
response. Cutoff frequency, fc, for MTFt is
included.

75. Data from 12:00 PM of August 21, 1992: (a) line 120
pixel values of the black-white steps for both
targets; (b) normalized, line FFTs of both targets
based on the corresponding pixel values shown; (c)
normalized aerosol MTFp, derived from the ratio of
far target FFT to the near target FFT. Values for
f,, c, and MTFb, are included.
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76. Data from 12:00 PM of August 21, 1992: (a) line 121
pixel values of castellated black-white stripes for
both targets; (b) normalized spatial frequency
response of both targets based on the corresponding
pixel values shown; (c) turbulence, MTFt, derived
from the ratio of the far to near target frequency
response. Cutoff frequency, fct, for MTFt is
included.
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1. SUMMARY OF RESEARCH STUDY

An experimental research study was conducted for the purpose

of measuring the overall optical modulation transfer function of

desert atmospheres (MTFA), including, for the first time, the low

spatial frequency component of the MTFA attributed to aerosols,

MTFP; the high frequency component due to turbulence, MTWt; and the

DC component of the MTFA which is related to contrast, MTFb.

MTFA measurements were performed with a unique, passive,

remote sensing system. This unique system is based on digital

image processing of remote video scenes which ideally include two,

optically identical, castellated targets, located along a

horizontal direction at different distances from a high resolution

CCD video camera, and which are contrasted against the horizon sky.

The basic theory of the MTFA is summarized in section 2, the

experimental approach and measuring system is described in section

3, a summary of the most important results are included in section

4, conclusions and recommendations for future research are included

in section 5, and lists of all related grant publications and

participants are included in sections 6 and 7, respectively. A

summary of the MTFA data, obtained over a two year period, and

analysis results are included in appendix A.
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2. THEORY

The atmospheric modulation transfer function, MTFA., is a

quality measure of optical imaging or "seeing" through the

atmosphere. It corresponds to a low pass filter and may be

expressed approximately by the following product of independent

components,'

MTFA = (MTFb) (MTFt) '(MTFP) (MTF,) (1)

where,

MTFb = modulation transfer due to contrast,

MTFt = modulation transfer function due to atmospheric

turbulence,

MTFP = modulation transter function due to scattering and

absorption by aerosols and particulates, and

MTF, = modulation transfer function due to molecular absorp-

tion and scattering.

MTFb, the contrast component, is independent of spatial

frequency and has a DC component related to extinction; MTFt, the

turbulence component, exhibits a high spatial frequency component

measuring thousands of cycles/radian; MTFP, the aerosol component,
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has a very low spatial frequency varying from tens to hundreds of

cycles/radian and MTF., the molecular scattering component,

primarily due to isotropic, Raleigh scattering, is independent of

spatial frequency and is negligible compared to scattering, having

a value of approximately one, i.e., MTF- 1.

This report describes a unique experiment which has been used

to measure the MTFA components of contrast, turbulence, and for the

first time, the direct measurement of the low spatial cutoff

frequency of the aerosol component. 2,3-2' Current results of the

measurements of MTFA components are presented.

2.1 Background

Consider a video scene recording of a two dimensional object

viewed through the atmosphere. Neglecting electronic noise

contributed to the imaging system, the observed image, f "(x,y) may

be expressed by the following relation,'

ff'(x,y) = f(x,y) *PSF(x,y) , (2)

where,

f '(x,y) = Brightness distribution of image observed

through the imaging system and the atmosphere,
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f(x,y) = Inherent object brightness free of imaging

system and atmospheric degradation,

PSF(x,y) = Optical point spread function which is a mea-

sure of the camera's imaging performance and

of atmospheric degradation, and

Convolution operator.

The optical transfer function, OTF(fx,fy), of the imaging

system/atmosphere is given by the two-dimensional spatial Fourier

transform of PSF(x,y), Y[PSF(x,y)], and is related to the Fourier

transforms of the image and object brightness distributions as

follows:

OTF (f, fy) 1PSF (X,) A .9(c f (x,y) 1 (3)
O9=[f(x,y) ]

Generally, the atmosphere behaves like a spatial low pass

filter, attenuating the high spatial frequencies and resulting in

the degradation or blurring of the image. The MTFA magnitudes and

spatial cutoff frequencies are related to scattering, turbulence,

and path and background radiance.

The modulus of the OTF is defined as the total modulation

transfer function of the imaging system and atmosphere, MTF?, and

is given by,
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MTFT I OTF(f, fy) i = (MTFZ)'((MTFA) (4)

where,

MTF1 = Modulation Transfer Function of Imaging System, and

MTFA = Modulation Transfer Function of the Atmosphere.

As given by equation (1), the MTFA may be expressed as the

product of the MTFA components due to contrast, turbulence,

aerosols, and molecular scattering.

Consider a camera that is simultaneously focused on two,

optically identical target images which are located at different

distances from a camera. If MTFTP and MTFT represent the MTF of the

imaging system/atmosphere of the far and near target, respective-

ly, it follows from equation (4) that this ratio is given the

following expression,

MTFTF MTFA) (5)
MTF7W MTFAN

From the above expression , it follows that the ratio of the

MTF's is independent of the optical transfer function of the

imaging system, and is only a function of the ratio of the

atmosphere modulation transfer function of the two targets.
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2.2 Aerosol MTP

Light scattering by aerosols is a function of the relative

particle size compared to the optical wavelength.s If the size of

the particle is small compared to the wavelength, the scattering of

light will be at large angles with respect to the direction of

propagation, and the effect of the scattering is primarily

attenuation. If the particle size is comparable or larger than the

incident wavelength, more of the light is diffracted primarily in

the forward direction. This results in multiple random forward

scattering of light to be incident on the receiver, causing

degradation and blurring of the image, similar to the effect of

atmospheric turbulence.

The MTF for forward scattering, MTFp, is given theoretically

by the following expressions,"', 8,9,20

- 2,r P -- , < fc,

MTF, =eo, f > fC (7)

where,

f = spatial frequency (cycles/radian),
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fc - a/k, spatial frequency cutoff (cycles/radian),

X = optical wavelength (m),

a = effective particle radius (m),

= ar (optical depth),

aY = scattering coefficient (m-n), and

r = horizontal path length (m).

The above expressions strictly hold for small angle scattering

for the case when the particle radius is comparable or greater than

the optical wavelength. It should be noted that there is quite a

variation in the models by the various authors, depending on what

assumptions are made. Also, the scattering coefficient, a.,

approximately corresponds to extinction, and may be estimated from

contrast transmittance measurements. 1

The asymptotic cutoff spatial frequency, f, where the MTFP

approaches exp(-Ts), was experimentally determined for polystyrene

microspheres and is given by the following expression, 9

fc = 24.4(-) cycles/radian, (8)

where D is the particle diameter.

Assuming dusty desert conditions so that D/k - 10, in the

visible range,
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f,= 137 cycles/radian. (9)

For approximately clear desert conditions, D = k, giving a value of

fc as follows,

f, - 24.4 cycles/radian. (10)

The cutoff frequency given by equation (8) also applies when

D/X<l, resulting in anisotropic multiple scattering."89

From the above expressions, it can be concluded that the

cutoff spatial frequency is observable in windy desert environments

when the particulate size is comparable or greater than the optical

wavelength. As the spatial frequency approaches zero, the aerosol

MTF approaches one.

A relation between the spatial frequency in cycles per radian,

fe, and the spatial frequency, f., in cycles/length is established

from the relation between the distances of the image and object

planes of the imaging system:

e_ AX AX' (11)
S S '

where S and S' correspond to the distances to object and image

planes, respectively. The displacements, AX and AX', correspond to
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the displacements subtended by the view angle 0 at the object and

image planes, respectively. If AX corresponds to one spatial

wavelength period, it follows that:

1= - - S/ cycles/radian, (12)
e a X EX'

AX f. 1  cycles/radian, (13)

i = f. = fýS' cycles/length. (14)

2.3 Turbulence MTF

The modulation transfer function component of the atmosphere

due to turbulence, MTFT, is caused by random fluctuations of the

atmospheric refractive index which result from random changes in

temperature and pressure along the propagation path. As a result,

the high spatial frequencies are attenuated, resulting in the
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blurring of the observed image. The MTFv has been studied exten-

sively as it is the primary degradation of imaging in astronomy.

The MTF for atmospheric turbulence, MTFT, for a horizontal

path may be described by the following expression.10,11.12,13

_5 i

MTFT = exp[-57.44fe3 A 3Cr] , (15)

where,

% optical wavelength (cm),

r = horizontal path length (cm),

Cn2 = refractive index structure function cm221 , and

fe = spatial frequency (cycles/radian) of angular

field of view.

C,2 may be expressed in terms of atmospheric pressure P and the

temperature structure function, C' 2, as described below14 :

C,' = (7 9 X10 -6 -P ) 2C72 (1,(7XO- 2~'(16)

where P is the pressure in millibars and T is the temperature in

degrees Kelvin. Near the surface, C.2 is a function of the air

temperature vertical gradient.

10



At low spatial frequencies, MTFT-4 1. The MTFT behaves like a

low pass spatial filter and decreases with increasing spatial

frequency. The high cutoff frequency, flt, where MTFT decreases to

e", follows from Equation (15):

I -! (17)
S= 

[57 .44A - c r] 5 
(

For a typical summer noon day in the local desert, Cn 2 10*1

cm 2 / 3 .' 4 Assuming a horizontal path with r = 1000 m and X = 5.5 x

10" cm (visible), the cutoff frequency is

fct = 3,250 cycles/radian (18)

The turbulence MTF has the highest cutoff frequency of the MTF

components.

2.4 Contrast NTF
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The atmospheric MTF is also degraded by radiance from the

target background as well as from the intervening atmosphere,

resulting in contrast reduction between the target and background.

This effect can be expressed in terms of the MTFb, the modulation

transfer function due to contrast, and is given by the following

expression"3 :

Mb=Bt - EB (BtC-Bb) T1J(9

TBe +/ Eb (B~ +Bb) T, + 2 Bh (9

where B't and B'b are the apparent target and background brightness

measured at a horizontal range r,; B, and Bb are the inherent

target and background brightness; Bh is the measured horizon sky

brightness corresponding to the scattered radiation along the path;

Finally, Tr, is the contrast transmittance measured at r,.

The contrast transmittance and the target and background

brightness are expressed by the following fundamental

relationships",":

T - - - eeri (20)
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B BtTry + Bh (21)

Bb' BbTr I + Bh (22)

The contrast MTF is independent of spatial frequency and corre-

sponds to the atmospheric MTF at zero spatial frequency, where all

other MTF components have a value of one. It should be noted that

the above target brightness values correspond to the average target

brightness.

The contrast MTF may be determined from contrast transmittance

measurements of multiple targets. Based on the ratio of contrast

transmittance of two targets with identical inherent optical

properties and located at horizontal ranges r, and rj., with a common

background, it follows that the ratio of contrast transmittances to

the two targets is given by the following expression",":

I - buj) -T , BtU41) BI -Zj)(.1-1) = . I -- / -_ W e (23)
T Be - Bj,
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From the above expression, the extinction, 0, may be determined

from only the apparent average target and background brightness of

the targets located at the known ranges r, and rj.1 , respectively,

and appearing on the same video image. Once the extinction is

calculated from Equation (23), Equation (20) is used to determine

the contrast transmittance Tr, at rj. The horizon sky brightness B,

can be measured from the same video scene. Equations (21) and (22)

may then be used to remotely determine the values of the inherent

brightness of the targets and background, B, and Bb, respectively.

The values corresponding to Bh, Bb, B,, and Tr, may be used in

Equation (19) to determine the contrast MTF at zero spatial

frequency.

The background may correspond to the white strips of a

castellated target, or it may correspond to the horizon sky

brightness. For the latter case, B'bj = B'bIJ÷11 = Bh.

3. EXPERIMENTAL APPROACH

Two black and white castellated targets are horizontally

located at one and two km from a digital video camera (see Figures

1 and 2). The targets were constructed so that their castellations

generate identical spatial frequencies ranging from DC to approxi-

mately 80,000 cycles/radian. Both targets are contrasted against
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the sky and positioned so that they are both digitally recorded on

the same video scene, as shown in Figure 2.

Horizontal line FFT's are generated at corresponding target

locations, as explained below. The ratios of the corresponding

spectral components of the far target to the near target yields the

MTFA. The MTFA components due to contrast, aerosols, and turbulence

will then be determined from contrast measurements and from the low

and high spatial frequency responses, respectively. For validation

of theoretical or laboratory models, ancillary measurements were

taken of atmosphere scattering and vertical temperature gradient.

3.1 Target Configuration

Figure 1 shows the target configuration. It consists of two

castellated targets located at radial distances of 1 and 2 Km. from

the video camera. The radial distances to the targets are

displaced by a small view angle, 0, in order to allow both targets

to be viewed by the video camera in the same scene. Ideally the

center of both targets is located at the same height from the

horizontal ground. Both targets are assured to have identical

inherent optical properties as viewed by the camera by constructing

the targets of the same material and by having equal solid angles

subtended by both targets when viewed by the camera. This requires

that the area of the target be in proportion to the square of the
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Figure I. Two target emplacement for MTF, measurements.

Target B Tre

Figur 2. Canme view of the targets W oAte Oft on0a two kft reSPectively.
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radial distance to the target. In order to insure that the

corresponding black and white strips of both castellated targets

generate the same spatial frequencies in cycles/radian at the

camera location, the area of the corresponding strips on both of

these targets is also proportional to the square of the radial

distances to the camera.

Based on the above construction, both castellated targets were

of identical size as viewed from the camera, as shown in Figure 2.

Referring to Figure 2, the targets consist of castellated black and

white strips for generation of identical spatial frequencies from

both targets. The target at 1000 meters measures about 1.22 x 1.22

meters2 , forcing the target at 2000 meters to measure 2.44 x 2.44

meters2.

3.2 Spatial Frequency Generation

Referring to Figure 2, the lower halves of both targets consist

of castellated black and white strips of variable widths. These

strips vary from 0.4 meter to 0.6 cm in width for the target

located at 1000 meters and 0.8 meter to 1.2 cm for the correspond-

ing strip widths of the target located at 2000 meters, generating

identical spatial frequencies varying from 1200 to 80,000 cy-

cles/radian at the camera location. This spatial frequency range
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will adequately cover the high spatial frequency cutoff range of

the turbulence MTFA component.

The low and DC spatial frequencies are generated by the outer

dimensions of the targets which measure 1.22 x 1.22 meters2 and

2.44 x 2.44 meters2 , respectively. This fact may be shown by

taking the one-dimensional, spatial Fourier transform along th.

horizontal path of the target. At the target, there is no

atmospheric filtering, and the target is ideally in sharp contrast

to the sky background. For this case, the spatial Fourier

transform corresponds to a pulse and is easily calculated,19

G(fx) = Bt - W" sinWfx)A Wfx '(4

where,

Bt target brightness,

w = width of target (m), and

fx = spatial frequency (cycles/meter).

The corresponding frequency, f 0 , in cycles/radian is related to

fx by equation (12), where S is the radial distance from the camera

to the target.

From equation (24), it follows that the amplitude of the

spectrum varies as (sin x)/x, generating a continuous spatial
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frequency spectrum with a maximum at zero (DC) spatial frequency

and decreasing to the first minimum at a spatial frequency given by

4 =S cycles/radian. (25)

For the target at 1000 meters which measures 1.22 x 1.22

meters 2 ,

1000 820 cycles/radian. (26)
1.22

Similarly, spatial frequencies ranging from DC and higher are

also generated by the black/white, black/sky, and white/sky step

transitions. It follows from the above analysis that identical

spatial frequencies ranging from DC to 80,000 cycles/radian are

generated by both targets described in Figures 1 and 2.

3.3 MTFA Spatial Frequency Response

As described in the previous section, the castellated targets

described in Figures 1 and 2 ideally generate identical spatial

frequency components in the range from DC to 80,000 cycles/radian.

However, the radial distances rA and r. from the video camera to the
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targets A and B are 1000 meters and 2000 meters, respectively.

Therefore, the spatial frequency components received by the camera

from target B are filtered by an additional amount over those

received by the camera from target A, located closer to the camera.

This additional filtering corresponds to the intervening atmosphere

in the region between the targets, rB-rA. Since both targets are

observed and recorded on the same video scene, additional blurring

will be obs-rved on target B due to the spatial filtering of the

atmosphere in the region between the targets.

From the brightness distributions of the solid/castellated

target images recorded by the video camera, the spatial frequency

response of the atmospheric MTFA can be calculated for the atmo-

spheric region between the targets. The spatial frequency response

of the MTFA between targets A and B may be expressed from equation

(4) as follows:

MTF(O-A) =MMTFI'MTFA(O-A) , (27)

MTF(O-B) =MTFI'MTFA(O-B) = MTFz'MTFA(O-A) 'MTFA(A-B) , (28)

where,

MTF(O-A) = apparent MTF of target A,

20



MTFA (0-A) = MTFA of atmosphere between camera and target A,

MTF1  = MTF of video camera imaging system,

MTF(O-B) = apparent MTF of target ,

MTFA(O-B) = MTFA of atmosphere between camera and target B,

and

MTFA(A-B) MTFA of atmosphere between targets A and B.

From the above equations, and equation (2), it follows that

since targets A and B have the same inherent properties, MTFA(A-B),

which is the MTFA for the atmospheric region between targets A and

B is given by

MTFA(A-B) = MTF(O-B) = I 7[fB(x,Y)] (29)
MTF(OA) I (Xy)]

where f,' (x,y) and f,' (x,y) are the apparent brightness distribu-

tions of targets A and B recorded by the video camera, respective-

ly.

From the above expression, it is concluded that the MTFA of the

intervening atmosphere between targets A and B, MTFA(A-B), Is given

by the ratio of the apparent MTF's of target B to target A, or by
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the ratios of the corresponding Fourier frequency components of

targets A and B, respectively. This conclusion is very significant

as this ratio is independent of the imaging system characteristics

and the actual optical properties of the targets.

3.4 Instrumentation

The video scenes were recorded with a high resolution, 12-bit

CCD camera with 512 X 1024 pixels. The CCD camera (Patterson

Electronics, Tustin, CA) was cooled to -35"C in order to minimize

electronic noise. An 8 inch telescope with 2 meter focal length was

used to observe both targets on the same scene at high magnifica-

tion. A 4 inch telescope with one meter focal length was used for

visual sighting. Equal density filters were used to attenuate the

brightness. For a given filter, the integration time may be

increased in multiples of 10 ms until the maximum dynamic range

4095 is reached. The digital camera was interfaced with a PC-AT

where the digitized images are stored and operations are performed.

FFT operations were performed with an attached array floating

point processor (Eighteen-Eight Labs, Boulder City, Nev.) to the PC

and with MATHCAD software. (See Figure 3)

An integrating nephelometer was used to measure the local

scattering coefficient. Thermocouples were used to measure the

vertical temperature gradient.
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Figure 3. The top photo (a) shows the CCD digital video, cameim with telescopes Photo
(b) shows the PC-AT used to control tha camer and to record and analyze th digitized imag.
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Recording of the target video scenes was initially severely

limited by wind-induced vibrations of the digital camera platform.

In order to overcome this limitation, a portable wind resistant

cage, measuring approximately 3x3x5 m2, was designed and fabricated

to house the CCD camera which rested on a tripod mounted on top of

a six foot high platform. In addition, the pc-based monitoring and

recording equipment was also housed inside the wind cage. In order

to minimize its weight, the wind cage was constructed with 2"x4a

wooden frame, covered with tarp, and lined inside with black

plastic. Guy wires were used to secure the wind cage to ground.

Since summer temperatures varied up to 110 degrees F, two evapora-

tive air conditioners were installed to cool the air and equipment

inside the cage.

The near and far targets were mounted on towers measuring 8 and

13 meters in height, respectively. The height between the towers

was necessary due to the hilly terrain existing between the targets

and physical constraint of maximum height of the camera. As a

result, the line of sight from the camera to the targets was

approximately 0.2 degrees with respect to the horizontal. The near

tower was constructed with 4"x4" lumber, while the far target was

constructed of 3 in 2 , light structural, square tubing. Guy wires

were used to secure the towers to ground. In order to clean and

align the targets along the desired line of sight, the targets were

mounted on rails which were attached to the towers. This allowed
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the targets to be raised or lowered with winches which were

operated by an electric drill. (See Figure 4)

4.0 EXPERIMENTAL RESULTS

MTFA measurements were performed with the digital video

camera/dual target system described in the previous section. Video

scenes were obtained from early morning to early afternoon in order

to record the relative imaging effects of aerosol and turbulence.

Integration times varied from 10 ms to one second, depending on the

attenuation of the equal density filter used and on the desired

dynamic range.

To measure the aerosol MTFA component, MTFP, the low frequency

component of the MTFA, horizontal and vertical line FFT's of each

target were computed from the digitized pixel data of the video

scenes. These pixels were located across the portions of both

targets where there are single step changes between the white Mid

black portions of the target (see dashed lines of Figure (2)).

These step changes generate a low frequency (sin x)/x spectrum,

similar to equation (24). Based on equation (29), the ratio between

the corresponding PFT components of the targets yields the low

frequency spatial response of the aerosol component of the MTF,

between the two targets.
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The results of MTFh measurements are summarized in Appendix A,

corresponding to typical measurements obtained early morning, mid-

morning, and noon, from August 1992 through August 1993. Figures 5-

8 summarize typical results of the MTFp aerosol component measure-

ments. Referring to Figures 5-8, (a) corresponds to the pixel

values in the line path through the white/black step for the near

and far targets, F1 and B1 , respectively; (b) corresponds to the

normalized low frequency magnitude of the FFT's computed from the

pixel values shown in (a) where IFfftjl and lBfft 1 l are the FFT's

of the near and far targets, respectively, and IFfft 0I and IBfft 0 I

are their corresponding DC components; and (c) corresponds to the

normalized low frequency MTFp, given by the ratio of magnitude of

the FFT's between the far and near targets, respectively. FFT

analysis yielded a maximum spatial frequency resolution of abcut

0.12 cycles/mrad.

Referring to (c) of Figures 5-8, the low frequency dependence

of the MTFp, below the cutoff frequency, conforms closely, within

0.5%, to the model of the aerosol component given by equation (6).

However, the transition given by equation (7) was not observed, as

the frequency response continued to drop for fe greater than fc.

This phenomena is explained below.

The estimated aerosol cutoff frequencies, fC, and the DC

components of the MTFA, MTFb, are also included in (c) of Figures

5-8. The cutoff frequencies were estimated from the aerosol MTFP

frequency response, equation (6), and estimates of the optical
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Figurz 5 .atau from the morning of August 21. 1992: (a) line pixel valoes of the black-whit steps for both targets;
(b) normalized, line FFTs of both targets based on the corresponding pixel values shown; (c) normalized aerosol
MIFAI WMTFp , derived from the ratio of far target FFT to the near target FFT. Values for f., % and M'TF are
included. The pixel (a) and FFT (b) data on the left and right corresponds to the near and far target, respectively.
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Figure 6. Data from noon of August 21, 1992: (a) line pixel values of the black-white steps for both targets, (b)

normalized, line FFTs of both targets based on the corresponding pixel values shown; (c) normalized aerosol MTFA

, MTFp , derived from the ratio of far target FF1 to the near target FFM. Values for f. % and MTFb are included.

The pixel (a) and FFT (b) data on the left and right corresponds to the near and far target, respectively.
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Figure 7 .Data from the morning of November 21, 1992: (a) line pixel values of the black-white steps for both
targets; (b) normalized, line FFTs of both targets based on the corresponding pixel values shown; (c) normalized
aerosol MTFA,M TFp, derived from the ratio of far target FFT to the near target FFT. Values for f. ,. and MTF,
are included. The pixel (a) and FFT (b) data on the left and right corresponds to the near and far target, respectively.
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Figure 8. Data from noon of November 21, 1992: (a) line pixel values of the black-white steps for both targets;

(b) normalized, line FFrs of both targets based on the corresponding pixel values shown; (c) normalized aerosol

MT-FA I MTF , derived from the ratio of far target FFT to the near target FFT. Values for f. %, and MT7F are

included. The pixel (a) and FFr (b) data on the left and right corresponds to the near and far target, respectively.
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depth based on extinction or scattering coefficient values obtained

from contrast, nephelometer and visibility measurements. The DC

components of the MTFA, MTFb, were estimated from equation (19)using

the pixel values of the same black to white steps shown in (a) of

Figures 3-6, and calculating the ratio between the far and near

target values.

The turbulence MTFA components are summarized in Figures 9-12.

These measurements were based on the amplitude variation of the

castellated black and white strips (Figure 2), measured as a

function of their spatial frequency. Referring to Figures 9-12,

(a) corresponds to the pixel values in the line paths through the

the center of the castellated black and white, variable width

strips for the near and far targets; (b) corresponds to the

normalized, spatial frequency response of the near and far targets

as measured from the pixel values shown; and (c) corresponds to

the normalized, spatial frequency response of the MTFA turbulence

component, MTFt, calculated from the ratio of spatial response of

the far to near targets, respectively. Estimates of the turbulence

cutoff frequencies, fc,, are included in (c). Spatial frequencies

ranging from 2.5 to 80 cycles/mrad were observed.

From comparisons between the morning and noon data of the

aerosols and turbulence MTFA components summarized in Figures 5-12,

the following observations may be noted:
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Figure 9 .Data from the morning of August 21, 1992: (a) line pixel values of castellated black/white sripes for

both targets; (b) normalized spatial fequency response of both targets based on the oaorresponding pixel values

shown; (c) turbulence MrFA, MrFt. derived from the ratio of the far to near target frequmy respome. The pixel

values (a) and frequency data (b) on the left and right corresponds to the near and far target. respectively.
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(a) For the aerosol MTFA components, (Figures 5-8) , the cutoff

frequencies, f , were lower in the morning than at noon,

indicting that finer particulates predominated early

morning than at noon. This was most likely due to the

greater stability of the desert air in the morning.

(b) For the turbulence MTFA components, (Figures 9-12), the

cutoff frequencies, fct , decrease from morning to noon,

indicating a greater turbulence at noon, than in the

morning, as expected.

(c) The aerosol MTFA component agrees closely with equation

(6) but not equation (7). This is due to the interaction

of turbulence with the aerosols. This is evidenced by the

fact that the turbulence cutoff frequencies, fct , were

close to the aerosol cutoff frequencies, fr , particularly

at noon of August 21, 1992.

(d) As indicated in Figure 7(c), the calculated MTFb, the

contrast component of the MTFA, was greater than one.

This is due to the effect of reflection from the flat

white paint used on the targets and from the slight non-

parallelism between the targets. Use of non-reflective

paints should yield more accurate results on the calcula-

tion of the MTFb. Also, positioning of the targets along

a line off East-West will minimize reflection. In

Addition, precaution has to be taken to insure that both

targets have a similar background. However, this does not
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affect the FFT analysis since the DC components are

removed.

Based on the above analysis procedure, Appendix A, Figures i-

76, summarize the MTFA component measurements obtained from

throughout the year from August 1992 to August 1993. Generally,

the results are typical of those described above. Digitized data

is available upon request from the Electrical Engineering Depart-

ment.

Field experiments on the effect of defocusing were found to

have a minimal effect on the MTFA component determination. Extreme

defocusing effects can be observed by comparing figures 27 and 28

with Figures 29 and 30, respectively, of Appendix A. The resullts

agree with theory, equation (30), which indicates that in determin-

ing the MTFA components by taking ratios of the corresponding MTFA

components between the near and far targets, the effect of the MTF

of the imaging system is ideally cancelled.

5. CONCLUSIONS AND RECOMMENDATIONS

The digital video camera/dual target passive optical system

described above makes possible the measurement of all MTFA compo-

nents. In particular, for the first time, the low frequency

component of the optical MTFA due to the aerosol has been measured,

including estimates of the aerosol low frequency cutoff.
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Refinement of the FFT analysis should make it possible to increase

the aerosol spatial frequency resolution from about 0.12 to less

than 0.01 cycles/mrad.

As indicated in (c) of Figures 5-8 and the results shown in

Appendix A, measurement of MTFp, the aerosol component of the MTFA,

provides an accurate technique for characterizing atmospheric

aerosols. The basic MTFP relation, given by equation (6), was

verified within 0.5% below fc , the aerosol cutoff frequency.

Additional studies are suggested to determine the actual

relation between the aerosol cutoff frequency, the aerosol

distribution, and the interaction between aerosol scattering and

turbulence.
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MTFp , derived from the ratio of the far target FFT to the near target FFT. Values for fc % and hT'b arm included.
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lgumre 6. Data from 12.00 PM o(Augus 2S, I993: (a) line pixl values aIcstelged bl•ck.-Wite amip. far
both targets; (b) normalized spatial fE*mquec resonse olbod& target boned oan h mrcawspd pixmvalues shown; (c) turbulence, MITF. d.ived from die raeo of the far to nama tret fr equec esm
Cutoff &equency. •, for MIjTt is included. 51
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Figure 7. Data fr-om 7:50 AM ofJuly *10,1993: (a) line pixel values oithe black-white steps for bod target•
(b) normalized, line FFTs of both targets based on the cofresponding pixel values dtma; (c) normalized aerosol
MTFp , derived from the ratio of the far target FFT to the near target FFT. Values for f t, and MTFb we kided
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Figure 8. Data frim 7:50 AM of July 10, 1993: (a) line pixel values o(castellated black-white aripes for
both targets, (b) normalized spatial frequency response otboth targets based on &e aonesponding pixel

values shown; (c) tubulenke, MTF, derived from the ratio ofthe ft to near targe fequency reon

Cutoff lkequency, f4 . for Iff is include&
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Figure 9. Data from 8:30 AM ofJuly 10. 1993: (a) line pix- values of" black-white eps fr bo•h target
(b) nonnalized, line FFTs of both targets based on the corresponding pixel values shown; (e) nornmlized aersol

MI'Fp, deived from the ratio of the far target FFT to the near targt FFT. Values for f6 and MTFb fm included.
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Figure 10. Data from 8:30 AMR o(July 10.193: () line pixel values ofcastelated blak-white *ipesf
both targets; (b) normalized spatial frequency response ofbotb targets based on die corresponding pixel
values sown; (c) turbulen MTF,. derived from the ratio o the far to nea target fivquenc reVem
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Figum 11. Data from i1:30AMf(July 10.1993: (a)ipixed valuesoftheblack-hiate psfor bo&taroes;
(b) normalized, line FFrs of both targets based on the oouespoodinS pixel values shown; (c) normalized wosol
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Figure 12. Data from 11:30 AM. c uly 10, 1993: (a) ine pix values ofeastellused black-wite stripes for
both targets; (b) normalized spatial fiquncy response o(both targets based on the corresponding pixel
values shown; (c) turbulence, MIF, ,derived from die rafto ofthe far to near target frequeny respm

Cutoff frequency. fe, ,for MTFt is included.
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Figure 13. Data from 7:35 AM ofJune 26 ,1993: (a) line pixel values othe blaek-whitc seps for both targets;
(b) normalized. line FFTs of both targets based on the corresponding pixel values down- (c) normalized aerosol
MTFp. cerived frem dth ratio ofthe for target FFT to the near target FFT. Vaues for fc, 1ad MTFb are include&
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Figure 14. Data from 7:35 A.M of June 26, 1993: (a) line pixel values of castellated bla'ck.white stripes for
both targets; (b) normalized spatial f•quency respns of both targets based on the comresponding pixel

values shown. (c) xtublence. MFIT. derved from the ratio of the far to near target freqiuc resoe
Cuto frequec. ft,. fo NTFt is incWued.
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Fgure IS. Date him 8:45 AM diime 26 ,1993: (a) line pixel values od the black-while steps for both targets;
(b) normalized, line FFIs ofboth targets based on the correspoing pixel values shown; (c) normalized erosol

M PTFp, denved fiom the ratio o(fte far target Ffl to 6t ar target FT• . Values for r •, and MTFb are included.
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Figure 16. Data from 8:45 A.M. of June 26. 1993: (a) line pixel values of castellated black-white stripes for
both targets; (b) normalized spatial frequency response of both targets based on the corTeponding pixel
values sbown; (c) turbulence, MTF3, derived from the ratio of the far to near target frequenq respone.

Cofffiaquency, fg, for MTFt is included. 61
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FIgure 17. Data from 12:00 PM of June 26,1993: (a) line pixel values oftbe black-while seps for bot tarege
(b) normalized, line FFTs of both targets based on the coresponding pixel values shown; (c) normalized wood

M'Fp .derived from the ratio of the far targe FFT to the near target FFT. Values for fi t. and M'Fb we iUded.
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Figure 18. Data from 12:00 PM of June 26. 1993: (a) line pixel values of cste(llut black-wiate stripes for

both targets; (b) normalized spatial frequency response of both targets based on the corresponding pixel

values dwn; (c) turbulence. .TF,. derived frm the rabo of dhe far to am target frequency req o

cuwf frequency. ft, for 1F 1 is includ.
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Figure 19. Dae from 10:30 AMo(June 12,1993: (a) line pixel values oftheblack-white stepsor both tagets

(b) normalized, line FFTs of both targets based on the corresponding pixel values shown; c() nornalized erneol

MTFp , derived fivm the ratio odthe far target FFT to the eam target FF. Values for fe, %. and mTFb are inchaled
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Figure 20. Data from 10:30 AM of June 12.1993: (a) line pixd values ocastellated black-white stripes for
both targdt. (b) nonualized spatial frequency response of both targets based on the corresponding pixel
values shown; (c) twbuleme, MTF,. derived from the ratio of the far to nWar target frequency respos.

Cutoff fuency. td for MITt is included.
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Figure 21. Data from 11:27 AM of June 12 1993: (a) line pixel values of the black-white steps for both tare
(b) normalized, line FFTs of both targets based on the corresponding pixel values sAmwn; (c) normalized aerosol

Tffp. derived from the ratio of the far target FFT to the near target FFT. Values for f- t, and MTFb are included.
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Figure 22. Data from 11:27 A.M. ofJune 12. 1993: (a) line pixel vaues ofcastellated black-whice stripes for
both targets; (b) normalized spatial frequency response of both targets based on the orresponding pixel
values shown; (c) turbulence. MTF,. derived from the ratio of the far to ae target fequecy respons.

Cutoff frequei y, f(, f Ml( t is 67udedL
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Figure 23. Data from 100.0 AM o(Apu 17.1993: (a) ine pixel values elime black-white eps for both targets;
(b) normalized, line FFrs of both targeus based on th ocwreq g pixel vaWes dmow; (c) ommalized aerosl

MTNF , de•ived om tbe ratio ofthe far target FFr to the ner target FF. Values for f0A, and MTFb we includedL
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Figure 24. Data from 10:00 A.M o(April 17, 1993: (a) line pixel values ofcastellated black-iwitc stripes for
both targets; (b) normudized spatial frequenq respcns of both targets based on the corresponding pixe
values shown; (c) tur ,lence. MTF1.derived from the ratio ofthe far to mer target frequeny respon

Cutoff frequency. f, for I rFF is included.
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FIgure 25. Data firm 12'00 PM o( April 17. 1993: (a)linepixdvalueso(heblak-weshiteA" forbda4fiktgvt.
(b) normalized. 1ine •ETs o'both targets based on the coresponding pixel values shown; (c).normalized aecosol

MTFp , deived from the ratio of the far target FFF to the ne d target FFT. Values for Cc- % IA rFb are included.
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Figure 26. DeIs from 11:30 PM o(April 17,1993: (a) line pixel values of cs•tellated black-white stripes for
both targems, (b) normalized spatial frequency response of both targets based on dte corresoAnding pixld
values shown; (c) tubulence. M'TF,. derived from the ratio ofthe for to new £uet fequec response.
Cutoff frequency. ft. f•,r MTFt is icluded.
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Figure 27. Data from 11:15 AM o(April 17.1993: (a) line pixd value= ofthe black-white seps for both tar^et
(b) normalized, line FFTs of both targets based on the corresponding pixel values shown; (c) normalized aerosol

MTFp . derived from the ratio of the far target FFT to the near target FFT. Values for f .%- and MT'b am included.

Focus on near targh
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Flgure 28. Data from 11:15 A.4 otApril 27, 1993: (a) fine pixd values otcaLeUMe blak.whbie ,pe frboth targets. (b) nomalized spatial frequency response of both targets based on te correodig pixel or
values shown; (c) turbulence, MTF1 , derived foiom the ratio of the far to nar tget frequency
Cutoff frequency, (to, for MtF1 is iancluded, Focus on nea tarlmet.
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Figure 29. Data fiom il:20 AM ofApril 17,1993: (a) fine pixel values oAfb block-white meps for both tarwg

(b) normaliztd, line FFTs ofboth targets based on the coresponding pixl values sbown; (c) normalized aeroso
MTFp , derived from the ratio of the far target FFr to the near target FFT. Values ftr fe,, and MTFb are included.
Focus beyond new toat.
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Figure 30. Data from 11:20 A.M of April 17, 1993: (a) line pixel values ofcastellated black-white stipes for

both trgetr, (b) normalized spatial frequency respoaac o(both targets band on tie correspoding, pixel
values diown; (c) urbuleone, MTh1 . derived foe the ratio ofthe far to near target fiequency respeo•

Cutoff frequency, C .for MTFt is included Focus bcood near taj'e.
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Figure 31. Data from 1:40 AM o(April 17,1993: (a) line pixel values otbe black-white ps fora both rges;
(b) normalized, line FFms of both targets based on the corresponding pixel values Aown; (c) normalized aerosol

MTFp, derived from ft ratio ofthe far target FFT to the am target FFT. Vaues f t md MTFb n incude&

Focus clor than am targeL
76



NEAR FAR3000 3000:

PIXEL PIXEL
VALUE VALUE

1500 1500

0
0 200 400 0

0 200 400
PIXEL LOCATION PIXEL LOCATION

NEAR t FAR 1.1 1 1 1 1
FREQ FREQ. -
RFSP RESP.

(b)

0 2.5 2822,5 45 CYCLES/mRAD o 2S 2.3 22.5 45

(c) f,, = 3.61 CYCLES/mRAD

I I I

"MTFt

3 55

0 I I I ... tt I

02. CYCLES/AAD 2.8 s 1 a.as n.

Figure 32. Data from 11:40 A.M. of April 17, 1993: (a) line pixel values ofcasellated black-white stripes fo
both targets; (b) normalized spatial frequency response o both targets based o the axrspondln pixel
values shown; (c) tubulence, MTF,. derived from the ratio ofd&e fi"r to mew targ frequency feRmw

Cutoff fiequenc. fct. for MTFt is include& Focused closer dm neh taga.
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FIgure33. Data from 10:.0 AM oFebnary 27,1993: (a) line pixel vaueso(&cblack-whit. depsfrWbhtarges;
(b) nornalized, line FFTs of both targets based on the corresponding pixel values shown- (c) normalized Aerosol

MTFp,. derived from the ratio of the far target FFT to the near target FFT. Values for f6 %. and M'Fb we icluded.
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Figure 34. Data from 10:00 M.K of febwiau 27. IM9: (a) line pixel valtmsofcastellawedblack-wbite *ipes for
both txgets; (b) normalized spatial fivequec ,m~mspons bolb targes b~wasd wth orreqooding -
values Alown; (c) twuleouece. W~IF 1. derived from doe rdio of the far to new targe frequency husoma
Cuwofrequescy. fa. for MatW is heludod.
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Figure 33. Data from I 200 PM of February 27.1993: (a) line pixel values oite blak-white ep for bodt tuwlei
(b) normalized, line FFTs of both targets based on the co pmsg pixel values dhoww (c) nonnalined re@a

MTFp , derived from the ratio of the far target FFT to the newarg Uet FFT. Values for f and MTb am included.
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FIgure 36. Data from 12-00 P.. o(Fcbruay 27. 1993: (a) line pixd values ofcia•ftd black-while atpes for
both targets; (b) normalized spatial fremquec res~ope o(bodh tr~abased ondie cresoding pixe
values shvo; (c) t•uence, W'lFWI, derived from de ratio crtbe far to ow trga frequecy

Ct*frequemwy. fd . for mug is hmdwlsd
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Figure 37. Dau from 9:00 AM of December 22, 1992: (8) lipe Pixel values o(thi black-white iqp for bodh tapt
(b) normalized, line FFTs of both targets based on the oresponding pixel values shown; (c) nomalized -e-olI
MTFp. denved from dw ratio of the far target FFT to the new target FF. Values for f.. %. d MTFb we iWuded.
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Figure 38. Data from 9-00 M.R of December 22, 1992: (a) line pixel values of esieflals black-white stripes for
both wa^tr (t) normislized spatial frequency responase of both gats bassed on the ca"osOS poing
values alwow; (c) turbulence, MWF1.derived from the ratio of befa two maw target frequnc reepomaL

Cusoff frsquecy. let, h r MRF, is inch"ed
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Figure 39. Data frm 9:57 AM o(December 22, 1992: (a) line pb value o(&d bla•k-white • qS Lr both trgeas;
(b) normalized, line FFTs of both targets baend on the correspooding pixel values shown; (c) wno lind
MTFp. derived frm the ratio of the far target FFT to the new tagt FF. Values for fc t, ad M rb am include&.
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F1gu m 40. Data from 9:57 A.M. o December 22. 1992: (a) line pixd values fcageflated black-white sripes for
both targets; (b) normalized spatial requency response * both targets based on on ocqwng pixd
values showy; (c) twuleme. MF•,. deived from &e ratio ofe, far to newr target equency reponm.
Cutoff efeiqcn. fa. fo MTFt is inuded.
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Figure41. Datafrom ll00AMof wecibw22,1992: (a) line pix values o(be black-~wite Ws tefor botagfet
(b) normalized, line FFrs of both targts based on the couresponding pixd values showA ; (c) nomalized erosd
MTFp , derived from the ratio of the far get FFT to the newar targt FFT. Values for f6 t, md fTWb we ibcuded.
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F1gure 42. Data from I Ii0 Ak- of Deenber 22, 1992: (a) line pixel values o(castellaod blck-White sipes for
both target, (b) nomlized spatial rcqeny response otboth targets based on the d opodg pixel
values da.; (c) aubulec. MIT, derived fom the ratio of the far to near trga &eyj
ctofff equency. fl. for MFt is ilud,
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Figure 43. Data ftom 7:00 AM of November 2 1. (99: (a) line pixel vulues oIhe black-wAdil Mips for boah tarpts
(b) rsormalize& line FFTs of both targets based on the cowesponding pixel values Aiwwn (c) nonmalized saveroo

MTff . derived from the ratio of the far target FFT to the near target FFT. Values for f. t. ox ?fl MTb we finclded
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Figure 44. Data from 7:00 AM. ofNovwmber 21,1992: (a) line pixel values otcustelhted blak-whihe stipes fox

both targdts. (b) noimalized spatial frquency response cC both txsrr basd an die correqSomb -
values down.. (c) tgbulerce, MrF? ,derived fivm th ratioo de far to mew urd bequoy f

Cukff teopency. fg , for 991F~ is Uk8
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FIgurc45. Datafom 12.00 PMc Novembei, 1992: (a) run pW values ofibd e black-wite site fer bd targiets

(b) nona•hal line FFTs ofboth targets based on die c m$ pwd values sbAwn (c) nomalizda
MFp , derived from the ratio of the far target FFr to th near target FFT. Values ft fe" i" and MTFb are include&
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Figure 46. Data from 12:00 PM of November 21,1992: (a) Gioe pixel values ofcascllated bl5ck-white stripes for

both tarets, (b) normalized spatial feqmuxyespo ofbods tagets based on the correspooding pixel

values shown; (c) turbuenc. MW, derived fom fth ratio ofe far to new tarwo frequenc respo

Cutff iewncv. fct for MIFt is inuded. 91
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Figure 47. Data from 8:00 AM d Ocober 31.1992: (a) line pixd values of de black-whit. steps for botargets
(b) normalized, line FFTs ofboth targets based on the corresponding pixel value shown; (a) omnalized arosol

MTFp .derived from the rawo of the far target FFT to the near target FFT. Values for fl t. md MTFb are includi.
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Figure 48. Data from 8:00 AM of Ociobe 31,1992: (a) line pixel values of aellated black.whiie wlripes for

bob taor. 0)) nomalized spatial frequency respomae oflboth targs based onm he c oTmg pbW
values dmvu (c) ubulewe, I7TF, derived from he raio of de fa to am 1Wg frequmq oyrM

cwOff fcqucy. fg , fo rFt isWaded.
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Figure 49. Data from 9:30 AM of October 31 1992: (a) lin pixl va o(dtbie black-white As" Sfori bcituwlr
(b) normnalized line FFTs of both targets based on the corresponding pixel values shown; (c) nomalized wwmol

NfrFp , derived frm the ratio ofthe far target FF to the near target FFF. Values for 16t and M b amMade&
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FIgure 50. Dais from 9:30 A.? of Oclober 31. 1992: (a) line pixd values of( catWl black-white dripes for
both targets; (b) nomalized spatial fhelc response of both targe•sm based on dke correVoding -id
values shown (e) trbuklenw MTg .deived from dke ratio odbe far to oew tarpgttey r

Cutoff(iqueuacy. fE for MTr is icl• L 95
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Figure 51. Data frton7-O0 AM o October 17, 1992: (a)linepixdvalusc(dblack-whie. s fpwbodi twpm.t
(b) normalizd, line FFis of both targets based on the coriTeoading pixel values dhown (c) nomalized -i-oI,

M''Fp,. derived from the ratio ofthe far target FFT to the new target m. Values for L, s.d MTb am uded
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Figufe 52. Data from 7.:00 A-M o(Ocber 17. 1992: (a) line pixel values dGcatelgld bac .IWke 0aoes fr
oth targew. (b) omnnad satial fi,• =7 reqwq ofboM ttarpu based cf %pinxe Am a

values down; (c) avbkom MTF,. derived Am 6e rulio dwf to new t to" A- - Piel
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Figure 53. Data from 9-00 AM of(Octbr 17. 1992: (a) line pixel valua o black-wbje a"eps frbodi twgers
(b) nomalized, line FFTs of both targets based on the corresponding pixel valum gbown; (C) notmn d weroeod
MTFp .derived frim the ratio of he far target FFT to the wear target FFT. Valut io for t, tm MTFb we includedi

98



NEAR FAR
3 0 0 0 1 1 3 0 0 0 I

PIXEL PIXEL
VALUE VALUE

I 500 1500

a (a)

S 200 400 02 400

PIXEL LOCATION PIXEL LOCATION

NEAR 1.1 FAR 1. 1FREQ • FREQ.

RESP. RESP.

om 0

o 21 22211 4S CYCLES/mRAD o 21 225 4S

(c) f= 4.87 CYCLES/mRAL

,•..--------T

MTFt

0 2 CYCLES/DRAD 22 11.21 2L

Flgun 54. Data from 9.00 AM o(Octobr I1. 1992: (a) fie pixel vahs otcageai bt-whiie iipes fa
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Figure SS. Data from 7.00 AM d SeptemeS. 1992: (a) line pix values of he black.wbile Msp for both taets;
(b) normalized line FFTs of both targets based on the cosesponding pixel values dmown; (c) normalized acroeo
MTFp . derived from the ratio od(te far trgel FFT to te nearm w1 FFm. Vu h fr t. god b am Wui&ded
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Figure 56. Data fivm 7:00 AM of Septenber 5.9IM: (a) line pixel values c(coastiled black-white utipes for
both targe.; (b) nonnaized spafial frequency P-~respoaebo~ trgetshudocm&e coxe~m diag piled
values dowwu (c) usbuleoo, Nfl,. derived hafivon ratio oCdw Car tomw targe hiwpmq l P 1 OW
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Figure 57. Data fian 9:30 AM a( Septemner S. I M: (a) fine pixel values afdhe black-wAje Meps for boda argew;
(b) normalized, line FErs c(bo(h targets based an d~e correspooding pixel values shown; (c) normalizedaroo
MTF,, derived from the ruio of the far targat FT to the near targd EFT. Values for f,,t Uwd MyIb am MU&&ed
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Figure So. Data from 9:20 A)& d Septembe S. IM9: (a) line pixd values ofcasktefltd black-white atuipes for
bo~th agess(b) omnaizcd spa"a frequency ru moo o(both tarps basedooc diecasgoodingp-
values sbowit- (c) bmubuleno. MIT ,derived fto die ratio atlb hr loo mewl eagathquy remmom
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Figure 59. Data fim 2.00 PM •,SeptembS. 1992: (a) line pix values c dt black.wbile Mpl lfor bh trelas;
(b) normalized line FFrs of both targes b•aed on the cmsepodng pixd values dshwn; (c) normalized arool

MnFp,. denved from the ratiof the for tet FFT to the oew tr FFT. Vaue for 46, , d MTFb am chued.
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