
* UNCLASSIFIED copy 38 g..
AD-A275 992 3 8 s

.llhmAlll 99

IDA DOCUMENT D- 1439

A COMPARISON OF
PRODUCT REALIZATION FRAMEWORKS

Harlow Freitag, Task Leader C) T I
Brian S. Cohen ELECTE•
Earl Ecklund

Michael Frame FEB 2 5119
Michael W. Marean

Stephen Yencho

October 1993 94-06049

Prepaird for

Advanced Research Projects Agency

94 010

Approved for pubi~c raisin; aulldftd d1~ 6* IIIUII 11M I11a

INSTITUTE FOR DEFENSE ANALYSES
t i ll ~1801 .N. Beauregard Street. Alexandria, Virginia 22311-1772 -

UNCLASSIFIED ID Log No. HG 01-044110



Best
Available

Copy



DEFINIONS
IDA pabfishes the fllowing aum to reped he reuns of its wok.

Reports
Reparts are the most auhlrtitofie and most carefully cosdered • roducts IDA publishes.
They normally embody results of =ajor projects which (a) have a direct bearing en
decisions affecting major programs. (b) Address uses of signiflcant concern to the
Executive Iranch, the Congress and/or the public. or (c) address isme that have
significant economic implications. IDA Reports ae reviewed by outside panels of experts
to onsure their high qoulity and relevance to the problems stedled, and thy are released 0
by the President of IDA.

Group Reports
Group Reports record the findings and results of IDA established working groups and
panels compoend 01 senior individuals addreosing major issues which otherwise would be
the subject of an IDA Report. IDA Group Reports are reviewed by the senior Individuals
responsible for the project and others as selected by IDA to ensure their high quality and
relevance to 11e problems studied, and are released by the President of IDA.

Papers
Papeors, lso authoritative and carefully considered products of IDA. address studies that
are narrower in scope than thse covered in Reports. IDA Papers are reviewed to emnre
that they meet the high standards expected of refereed papers in professional journals or
formal Agency reports.

Documenbt
IDA Documents are used for the convenience of the sponsors or the analysts (a) to record
substantive work done In qvick reaction studies, (b) to record the procen"•,gs of
conferences and meetings, (c) to make available preliminary and tentative results of
analyses. (d) to record data developed in tMe course of an Investigation, or (s) to forward
information that is essentially unanalyzed and uonevaluated. The review of IDA Documents
Is suited to their content and intended use.

The work reported in this document was conducted under contract MDA 903 89 C 00-3 for
the Department of Dofense. The publication of this IDA document does not indicate
endorsement by the Department of Defense, nor should the contents be construed as
reflecting the official position of that Agency.

© 1i93 Institute for Defense Analyses

The Government of the United States is granted an unlimited license to reprnduco this
document.



REPORT DOCUMENTATION PAGE oI M

- ~ ~ mi mass use mi 0wima = =uts Iaudg bden umm r myaftimym of d

DWW Hoas. &4Ws 1 ,A a 22202.4302an to d~o 02c a -m~du fpopWal b~SuPo~~O1U).hAdmyagM.DC 2053.

1. AGENCY USE ONLY (LAMv blik) 12. REPORT DATE 13. REPORT TYPE AND DATI5 COVERED
1 October 1993 Final

4. TIrtE AND SUBTITIE 5. FUNDING NUMBERS

A Comparison of Product Realization Frameworks MDA 903 89 C 0003

ARPA Task Number A-163

(L AUTHOR(S)
Brian S. Cohen, Earl Ecklund, Michael Frame, Michael W. Marean,
Stephen Yencho

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZAION REPORT

NUMBER

Institute for Defense Analyses (IDA) IDA Document D-1439
1801 N. Beauregard SL
Alexandria, VA 22311-1772

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Advanced Research Projects Agency REPORT NUMBER

Software and Intelligent Systems Technology Office
3701 N. Fairfax Drive
Arlington, VA 22203-1714

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; unlimited distribution: '" .9. " "" 2A

13. ABSTRACT (Maximum 20 words)

In 1991 DoD established seven key science and technology thrust areas to assist in planning for investment in
defense technology. The goals of Thrust 7 are to develop new industrial capabilities that will lower product
unit costs and life-cycle costs, shorten the lead time in design and manufacture of products, and increase
product quality. This document reviews a set of software products, applications and standards which are
potential components of a DoD Thrust 7 product realization infrastructure to support design and manufacturing
activities for the Advanced Technology Demonstrations (ATDs). This study is a quick sampling of software
products and "frameworks" and is not intended to be either complete or comprehensive. The reviewed

eworks were each designed to meet the needs of a specific engineering discipline. No final
recommendations orjudgements about particular frameworks were made since a rigorous and detailed analysis
of requirements has not been performed. None of the reviewed frameworks met all of the perceived needs for
a Thrust 7 and ATD framework, such as the need to design and analyze ATD products both within and across
engineering disciplines. The best option for obtaining a product realization framework to accommodate the
Thrust 7 needs appears to be the federation of multiple existing framework technologies to achieve the needed
capabilities. Future work should ihclude the extension of this study to cover all relevant frameworks and
associated technology. The Thrust 7 ATD requirements should be analyzed in order to properly recommend a
framework that meets those requirements.

14. SUBJECT TERM 15. NUMBER OF PAGES
Product Realization; Frameworks; Computer-Aided Design; Manufacturing. 78

16. PRICE CODE

.. SECURITY CLASSIFICATION 18. CU Ass AioN 19.SECURITYCLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified SAR
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Preibed by ANSI St Z39-18
298-102



UNCLASSIFIED

IDA DOCUMENT D-1439

A COMPARISON OF
PRODUCT REALIZATION FRAMEWORKS

Harlow Freitag, Task Leader

Brian S. Cohen
Earl Ecklund

Michael Frame
Michael W. Marean

Stephen Yencho

October 1993

#*Prom udr pubis Comam; mihutaMd iImrbatiI:Wh.sb~

I DA
INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 89 C 0003
ARPA Assignment A-163

UNCLASSIFIED



PREFACE

This document was prepared by the Institute for Defense Analyses (IDA) for the

Advanced Research Projects Agency under the Task Order, Technology for Affordability,

and fulfills an objective of the task, "to develop and recommend common approaches and

metrics for the infrastructure support of Thrust 7 pilot projects." This document was writ-

ten in response to a request from the sponsor to examine a selected set of product realization

frameworks for application to Advanced Technology Demonstrations.

The following IDA research staff members were reviewers of this document: Dr.

Dennis W Fife, Ms. Deborah Heystek, Dr. Asghar I. Noor, Dr. Karen J. Richter and Dr.

Robert M. Rolfe. Dr. Robert I. Winner of the Center for High Performance Computing

provided additional review comments.

9

[ Aeee3sion lor
51IS GRA&I G
DTIC TAB 13

SUnanno-nced [
3ustifriation

By

AvmlifibilityQ04es
/ --. /or

lot 1.5f~rA,4_



EXECUTIVE SUMMARY

DoD has established seven key science and technology thrust areas to assist in plan-
ning for technology investments related to defense. The Thrust 7 goals are to develop new
industrial capabilities that will lower product unit and life-cycle costs, shorten the lead time
in design and manufacture of products, and increase product quality. This document
describes and compares a number of computer frameworks used to design and manufacture
products in the context of the Thrust 7 goals.

These frameworks consist of standards and software which allow computer-aided
design systems, analysis tools, and modeling and manufacturing tools to cooperate and
appropriately exchange information. The development of frameworks has the potential to
significantly improve the cost effectiveness of computer tools by allowing tools to be devel-
oped and distributed independently, allowing interoperation of tools from different sources.
SThis study initially examined a small set of frameworks at the request of the sponsor, but
was expanded to a wider range of frameworks from three primary domains: electrical,
mechanical and software engineering.

The frameworks examined varied in maturity from research efforts to commercial
products that have been on the market for several years. The frameworks were historically
developed to address issues within specific disciplines, such as electrical engineering, and
frameworks strongly clustered around these disciplines. Modern product realization needs
the ability to span all of these disciplines and this appeared to be a major problem facing

all of these frameworks.

Some industrial trends in the area of framework technology are becoming apparent
One of these trends is standardization on intropeability issues. The CAD Framework Ini-
dative (CIR) is an industrial cooperative effort to standardize on interoperability areas for

primarily electrical engineering. Most electrical engineering framework developers are tak-
ing part and adhering to the CH directions. The mechanical Computer-Aided Design
(CAD) community has progressed toward standards in the last few years, with the ACIS
and PriDEVELOP products being adopted by many of the MCAD vendors as supported

v



rameoks. Ova-all capabilities of mechanical CAD frameworks lag behind the capabili-
des of the electical CAD frameworks.

No single framework appears to meet all the perceived Thrust 7 needs, which
include interdisciplinary design and analysis capabilities. There are three possible options

for obtaining a framework:

1. Develop a new framework

2. Extend an existing framework

3. Federate several existing frameworks

It appears that based on current information, the best option will be the third, to fed-
crate several existing frameworks. The development of a new framework will likely be
inordinately expensive and time-consuming. Extension of an existing framework to cover
multiple engineering disciplines may be difficult since existing frameworks are heavily ori-
ented towards a specific discipline (in particular due to the exchange of data between dis- 0
cipline specific software), and most are proprietary.

The product realization support found in this study has been limited. Although
many of the frameworks address the design phases of product realization, only limited
capabilities were shown in conceptualization or manufacturing. To a great degree the sup-
port found in this area tended to be tools such as virtual manufacturing simulation rather

than support for data exchange with Computer Integrated Manufacturing (CIM).

Further study is needed to identify a frameworks strategy that can effectively meet

the Thrust 7 ATD needs, while remaining a cost effective alternative. The unification of the 0

electrical, mechanical and software engineering areas will be a central problem. Innova-
tions in framework technology in the areas of conceptualization and manufacturing will

also be important.

A



Table of Contents

1. INTRODUCTION ....................................................................................................... 1

1.1 PURPOSE .............................................................................................................. 1
1.2 APPROACH .......................................................................................................... 2

1.2.1 Scope ............................................................................................................ 3
1.3 BACKGROUND ............................................................................................. 3

1.3.1 Thrust 7 and ATD Context ....................................................................... 3
1.3.2 Product Realization ................................................................................ 4
1.3.3 Design Automation Evolution ............................................................... 6

1.4 FRAMEW ORK CONCEPTS ............................................................................ 8
1.4.1 Motivation for Using Frameworks .......................................................... 9
1.4.2 Framework Goals ................................................................................... 10
1.4.3 Definition of Terms .............................................................................. 11
1.4.4 Supporting Cooperative W ork ............................................................... 12
1.4.5 Functions of a Framework .............................................................. . 13

2. FRAMEW ORK DESCRIPTIONS ...................................................................... 17

2.1 OVERVIEW ........................................................................................................ 17
2.1.1 Falcon Framework (Mentor Graphics) ................................................... 18
2.1.2 Design Framework HI (Cadence) .......................................................... 20
2.1.3 OpenFrame (ViewLogic) ...................................................................... 22
2.1.4 CFI (CAD Framework Initiative) .......................................................... 23
2.1.5 PowerFrame (DEC) .............................................................................. 25
2.1.6 GE/AE DICE (GE) ................................................................................. 26
2.1.7 VEHICLES (Aerospace Corp) ............................................................... 27
2.1.8 CV-DORS (Computer Vision) ............................................................. 29
2.1.9 ACIS Geometric Modeler (Spatial Technology, Inc.) .......................... 31
2.1.10 Pro/DEVELOP (Parametric Technology Corporation) ....................... 34
2.1.11 Arcardia (The Arcadia consortium) ..................................................... 35
2.1.12 ECMA/PCTE (The European Computer Manufacturer's Associa-

tion) ....................................................................................................... 36
2.1.13 CORBA/IDL (The Object Management Group (OMG)) .................... 37

3. ANALYSES ......................................................................................................... 41

3.1 COMPARISON METHODOLOGY ............................................................. 41
3.1.1 Feature Comparison ............................................................................. 41
3.1.2 Discipline Comparison ......................................................................... 41
3.1.3 Market/Maturity Comparison ............................................................... 42

3.2 DETAILED COMPARISONS ...................................................................... 43
3.2.1 Feature Comparison ............................................................................. 44
3.2.2 Discipline Comparison ......................................................................... 48

vii



Table of Contents

3.2.3 M arket/M aturity Comparison ............................................................... 50

4. qUM M ARY .......................................................................................................... 53

4.1 FRAMEWORK COMPARISON SUMMARY .............................................. 53
4.2 CONCLUSIONS ........................................................................................... 54
4.3 FUTURE EFFORTS ..................................................................................... 56

viii



List of Figures

Figure 1. Product Realization Process .......................................................................... 5

Figure 2. Structural View of a Framework .................................................................. 9

Figure 3. Current-State-of-Practice for Use of a Framework ...................................... 12

Figure 4. Framework Function Architecture ............................................................. 13

Figure 5. Levels of Data Exchange ............................................................................. 15

Figure 6. OpenFrame Architecture ............................................................................ 23

Figure 7. CFI Framework Architecture Reference ...................................................... 24

Figure 8. ACIS System Architecture .......................................................................... 32

Figure 9. CORBA Architecture ................................................................................. 38

ix



7

List of Tables

Table 1. CV-DORS Application Tools ........................................................................ 31

Table 2. ACIS-Based Commercially-Available Frameworks .................................... 33

Table 3. Feature Comparison ....................................................................................... 44

Table 4. Discipline Comparison ................................................................................. 48

Table 5. Market/Maturity Comparison ....................................................................... 50

Table 6. Framework Comparison Summary .............................................................. 53

xi



1. INTRODUCTION

1.1 PURPOSE

The purpose of this study is to provide initial evaluations of a set of software prod-
ucts, applications and standards as potential components of a DoD Thrust 7 product real-
ization infrastructure to support design and manufacturing activities for Advanced
Technology Demonstrations (ATDs). This study is a quick sampling of software products
and "frameworks," and is not intended to be either complete or comprehensive. No final
recommendations or judgements about particular frameworks are made since a rigorous
and detailed analysis of requirements has not been performed. The study draws some initial
conclusions about promising applications and frameworks, and recommendations about
additional research that should be performed to support decisions about useful components
of a Thrust 7 infrastructure.

This document has been prepared in response to a request for a comparison of a spe-
cific set of frameworks. The original list of comparison subjects included the GE/AE DICE
framework employed in the GE Aircraft Engines pilot study, the framework described in
the Aerospace VEHICLES proposal to ARPA, the CAD Framework Initiative (CFI), the
Falcon framework, CV-DORS, the Rapid Response Manufacturing (RRM) framework, and
Arcadia. The study team was unable to obtain sufficient information on the RRM frame-
work to support any evaluation.

The study team expanded the initial list of frameworks for review based on a
request from the sponsor for increased breadth of the study. The additions appear in the list
shown below. The list below does not encompass all of the currently available frameworks.
Rather, this list was compiled as a preliminary survey. The following frameworks and sets
of specifications are reviewed:

a. Electronic Design Frameworks

4. Falcon (Mentor Graphics)

5. Design Framework II (Cadence)

Ii I 1



6. Operame (ViewLogic)

7. CF (CAD Framework Initiative)

8. PowerFrame (DEC)

b. Mechanical Design Frameworks

1. GE/AE DICE (GE)

2. VEHICLE (Aerospace Corp.)

3. ACIS (Spatial Technologies)

4. CV-DORS (Computer Vision)

5. Pro/DEVELOP (Parametric Technologies Corp.)

c. Software Design Frameworks

I. Arcardia (The Arcadia Consortium)

2. ECMA/PCTE

3. CORBA/IDL (Object Management Group)

1.2 APPROACH

This study examines the infrastructure needed to support the automation of the
product realization process. The use of a framework to at least partially fulfill the infrastruc-

ture requirements is examined. It should be understood that currently the development of

advanced products in many areas requires extensive use of design automation tools. The

infrastructure allows an automation environment to be created in a manner that is modular,

extensible and particular to specific needs while taking advantage of shared resources.

The reviews of frameworks in this document are broad, and made without the ben-

efit of a detailed review of Thrust 7 ATD requirements. This review is not complete; only 0
a representative sample of frameworks was chosen due to time constraints. The authors

have not seen actual demonstrations of the software described. Rather, this document was

compiled from product information, product reviews, and personal communications with
the developers. Additional sources of information include journal articles and product man-

uals.

2



1.2.1 Scope

This study is a short survey of the available frameworks. It examines the frame-

works from several different points of view. The Engineering Information System (EIS)

document [Winner 1986a] is used as a guide to assess the basic features of the frameworks.

These EIS concepts are discussed in the context of the product realization process. A corn-

* parison of the frameworks based on the analysis of features is performed.

The application of the selected frameworks to various engineering disciplines is
examined. The traditional Electrical Design Automation (EDA) frameworks are compared
to other frameworks developed for software and mechanical engineering. Finally, a basic
market and maturity analysis is performed. This will help in understanding how ready a

framework is for immediate use.

A more detailed discussion of the comparison method is given in Section 4.1.

1.3 BACKGROUND

1.3.1 Thrust 7 and ATD Context

The "Strategic Framework for Defense Science and Technology" was enunciated
by the Deputy Secretary of Defense in December 1991 as a means of DoD planning for
investment in technology related to defense needs. The strategy document establishes 7

thrust areas. Five of these thrust areas are defined to deal with technology directly related
to war fighting capabilities. They are global surveillance and communications, precision
strike, air superiority and defense, sea control and undersea superiority, and advanced land
combat vehicles. Two additional infrastructure thrusts are defined to support these five war
fighting thrusts. Thrust 6 focuses on synthetic environments. Thrust 7 addresses technology

for affordability.

Thrust 7 addresses the application of technology to increase hardware and software

system-life-cycle affordability. The goals of Thrust 7 are to develop new industrial capabil-

ities that will lower product unit costs and life-cycle costs, shorten the lead time in design
and manufacture of products, and increase product quality. The goals are being pursued by
promoting the expanded use of integrated product/process development (IPPD) methods in

design and manufacturing of products for DoD and by efforts to demonstrate flexible dual-
use manufacturing that permit production of defense products by factories that concurrently

produce commercial products or utilize new design manufacturing techniques. In addition,

3



the development of information integration both within and among companies will pro-

mote effective teaming and reduce overhead expenses [McGrath 1993].

A set of Advanced Technology Demonstrations (ATDs) are planned as part of

Thrust 7 to begin to implement these objectives. Several ATDs focus on missile seekers and

their components. The Flexible Design and Assembly of Missile and Munitions Seekers

(FDAMMS) ATD is focused on mechanical engineering and system integration issues
involving seeker components including gimbals, optics and motors, IR sensors and signal
processors. The Rapid Prototyping of Application Specific Signal Processors (RASSP)

ATD is focused on improved design and manufacture of signal processors employed in
seekers. The Infrared Focal Plane Array Flexible Manufacture (IRFPA-FM) ATD addresses

design and manufacture of Detector/Dew& r :ujuired for seekers. The Interferometric Fiber

Optic Gyro (IFOG) ATD covers production of IFOG rate sensors that are used in stabiliza-
tion of the seeker. The Active Electronically Scanned Arrays (AESA) ATD addresses elec-

tronic components used in applications such as fire-control radar.

These ATDs are addressing the development of automated tools and work environ-
ments as part of their strategy to achieve new efficiencies in design and production of these

specific target products and to achieve "first-pass" successes.

The target products of the ATDs involve engineering disciplines of many types,
including, at the highest level, mechanical, electrical, optical and software disciplines, with
many sub-disciplines at lower levels. Tool and software development to serve these design

environments will need to address the ATD-specific requirements stemming from the
diverse engineering and product assembly problems. 0

In the context of the set of ATDs described above, and of the ATDs position as both
customer and suppliers of products, the question of shared infrastructure naturally arises.

The sharing of resources, tools and standards increases opportunities for efficient exchange

of product requirements, design and performance information that will contribute to the
improvement of product quality, reduction of product cost and reduction of schedule. Such

sharing will also reduce costs incurred as a result of unnecessary duplication of analogous

or identical capabilities.

1.3.2 Product Realization

Product realization has developed significantly over the last few decades allowing

an engineer to design and manufacture a product by using a computer to create the design,
predict its behavior and plan and control its production. In the last decade computer-aided 0

4



design tools have become a necessary part of the capabilities used to develop advanced

products in fields such as digital electronics and structural design. The number of tools

available to the engineer is large and the interaction of all of these tools used together is

problematical. A shift in the use of these tools is occurring. That shift is away from design-

ing for a fixed process towards designing processes concurrently as part of the product real-

ization process.

A theme has been developing over the decades as products are designed conceptu-

ally rather than experimentally. It is now common practice to have an engineer design cer-

tain kinds of electronic products using simulation effectively to achieve "first-pass" success

producing the desired product without tuning or adjustment of the fixed manufacturing pro-

cess. The expansion of this idea into wider application offers significant opportunities for

affordable, timely, higher quality and more maintainable products. The challenge is to

achieve similar dramatic "first-pass" success in the context of products containing mechan-

ical, optical, and software components in addition to electrical components.

One concept of a product realization process [McGrath 1993] is shown below:

RequirementsPuaandeic Physic l Pre-Profctw

Designnfineration

Figure 1. Product Realization Process

This view of the product realization process explicitly recognizes the interactions
among product conceptualization, design and manufacturing activities. These activities

have traditionally been totally separate. Significant effort has been expended in transition-

5



ing between them. Major product development costs have been incurred from inabilities to
understand the effects of early design decisions on "downstream" engineering and manu-

facturing operations.

1.3.3 Design Automation Evolution

Cooperation of the separate processes involved with conceptualization, design and

manufacture of a product through effective exchange and management of product informa-
tion is the goal of a successful framework.

One means for achieving the needed sharing of product information is to create a
monolithic piece of software that shares its product information data structures with all the
algorithms required for each of the engineering disciplines involved with product realiza-
tion. The difficulties of implementing such a piece of software during a time when product
and process representations are evolving and when new software functions are being cre-
ated have led to an alternative approach: the use of a set of distinct design and analysis tools
that can interact efficiently, evolve smoothly over time, and together provide all the needed
functions. Once the assumption is made that multiple vendors will write software that must
cooperate, the need for standard interfaces and for a common operating environment for
their products is established.

This argument for standards and a common operating environment is supported by
the history of the earlier evolution that occurred in the Electronic Computer-Aided Design
(ECAD) community which has been struggling with many of these issues. Product com-
plexity, the expense of manual design techniques, and shrinking time-to-market windows
drove the need for design automation for integrated circuit design. In the mid 1980s strong
couplings of particular design automation tools were developed, in particular linking sche-
matic editors, simulation tools and layout tools. These integrations used proprietary trans-
fer formats such as netlists, GDS-II, and Gerber formats. Further developments also sought
to encode strict methodologies into the tools so that correctness could be checked with
respect to the manufacturing process.

A decade ago integrated electronic design automation systems were constructed by
individual vendors. Mechanical design automation systems were created in the same way.
These initial integrated systems were monolithic. In the last decade, a number of propri-
etary ECAD frameworks were developed that used tool and data integration techniques to
allow different software tools to interoperate. These systems were generally closed and new
tools could only be effectively integrated by the original vendor, or by using special

6

S• • • • • • ras mmmm um mm0



translators. In the last few years a number of efforts have led to the emergence of both

ECAD and MCAD frameworks which are open and extensible.

Initial framework concepts originated in the late 1970s and early 1980s. In the mid

1980s, a group of DoD, government, commercial and academic interests met to focus these
framework ideas. This effort resulted in the publishing of a report giving a vision of a

* framework [Winner 1986a/b], much of which still holds very true. Some of what was envi-

sioned at that time has actually come to fruition and is available commercially. Other parts
of the framework vision still lack implementation.

Several of the Electronic Design Automation (EDA) vendors have made significant
progress in developing open frameworks. These frameworks generally address the question
of how to integrate the vendors' suite of design automation tools, and how to integrate the
customer's in-house tools and third party tools into the mainline vendor's environment.
Many of these framework products do not address other product realization problems such
as process modelling and policy enforcement. Frameworks which support Mechanical
Computer-Aided Design (MCAD) have lagged EDA systems partially due to the greater
difficulty in representing three dimensions, lack of effective representation abstractions and
the problem that there are many more mechanical manufacturing processes than there are

0 electronic manufacturing processes.

A measure of the motivation behind frameworks in the EDA community is the for-
mation of the CAD Framework Initiative (CFI) in 1988. This alliance of commercial inter-
ests seeks to develop open common framework standards and interfaces, allowing vendors
to develop frameworks and design automation tools that are interchangeable. This effort is
a strong influence in the EDA framework community, but is clearly driven by the commer-

cial interests of its participants.

The development of effective data exchange standards has been beneficial beyond
the focused application in frameworks. The development of VHSIC Hardware Description
Language (VHDL) in the 1980s has recently begun to change the way the products are real-
ized. The success of VHDL has led to a growth in the number of standards efforts. An ever
increasing number of data exchange standards are being developed with a better under-
standing of how a data exchange standard should be developed and managed. The informa-

tion modelling language Express and Express-G are being used in a number of efforts
(specifically CFI and EDIF respectively) to understand the information model and eventu-
ally to understand how different languages and formats are related. Despite the deficiencies

7



of these first efforts, the piecing together of languages and formats to achieve a particular

data exchange between applications is still an art today.

MCAD systems historically were developed by vendors implementing the entire

software system as a tightly integrated set of proprietary modules. Some vendors even

developed their own operating system software, as the only means of obtaining acceptable

performance and complete functionality in such areas as file management and display inter-

action. In recent years, hardware and software vendors have significantly improved the

general capabilities of platforms, so no support in these areas is needed. This trend has pro-

gressed through uniform operating systems to a wide range of common standards and ser-

vices that are available today.

Both ECAD and MCAD have benefited by a plethora of independent tools that have

been developed to solve specialized application specific problems.

Complementing this improvement by the hardware vendors is a growing number of

firms that provide specialized component software packages. Heavy users of design auto- S

mation began to identify that monolithic design automation environments were too expen-

sive to develop and maintain, and that the availability of modular design automation

capabilities was an opportunity. The concept of a framework as a general software archi-

tectures needed to support the automation of the product realization process has matured

over the last ten years.

1.4 FRAMEWORK CONCEPTS

A framework may be viewed as an architecture for integrating an enterprise. It con-

sists of several major components which are visible from different views of the architec-

ture. One view is the structural view of a framework, showing the relationship between

tools and the framework which is shown in Figure 2.

8



1.4.1~~~Syw Motvaio fr sig raewrk

~Desip Ru•,om

a Constr unicaTion

Figure 2. Structural View of a FoimeworkI

1 h.1 Motivatio for Using Frameworks

The DoD Science and Technology (S&T) Thrust h is an effort to make systems

affordable, primarily by reducing the cost over the life cycle of systems. The application of
affordability concepts to the Advanced Technology Demonstrations (ATDs) is the focus of

this paper and the focus of this motivation.

Ile motivation behind frameworks is described very effectively in [Winner 1986a].

The goal is to create a product with the least cost, the highest quality and in the shortest

time. Costs can be reduced by globally reducing the costs over all of the processes involved

with the creation and maintenance of that product Referring back to the product realiza-

tion, it should be noted that there are a number of basic cooperating processes involved with

the product realization. There are several ways to reduce costs; for example:

1. Improve the process yield.

2. Make a single process more efficient.

3. Improve the cooperation of processes.

4. Simplify the product through improved design technology.

n This view of a framework backplme wu developed by George Thtge of HP, and figures of tis type have
appeared in fmnework documents from EDA Systems, MCC and odhr& In particular this figure is found
in ealy CFI FAR documents and in [Brown 1992].

9



5. Streamline the manufacturing process.

By allowing more and better tools to be utilized, a single process can be made better.

If the cost of obtaining and using tools is reduced to improve a process then this will reduce

the cost of the process. A successful framework will be reduce the costs for obtaining and

using tools.

Processes cooperate better through improved coordination and communication.

Frameworks can help by supporting the information exchange between processes. The

coordination of processes can be assisted by having uniform mechanisms for data exchange

and sequencing. A framework can provide mechanisms for this coordination.

There may be some disadvantages to using frameworks, such as the performance

and storage overhead associated with them, or not allowing arbitrary tools to be used for a
process without integration. These disadvantages are greatly outweighed by the effective

gains through tool portability and integration, and the coordination and communication that

can be achieved through the product realization process.

IA2 Framework Goals

The original goals developed as part of the EIS effort [Winner 1986a] are still true

today. These goals were defined as:

1. Integrate design tools in a cost effective manner.

2. Encourage the portability of tools.

3. Encourage a uniform design environment.

4. Facilitate the exchange of design information.

5. Provide support for design management and the reuse of previous designs.

6. Be adaptable to future changes in engineering methods.

While in more recent years another goal has emerged [Heystek 1987] that is just as

much a driving force in the IPPD community, which is:

7. Monitor and control the engineering processes used for product realization.

The recent CAD Framework Initiative (CFI), which is a commercial cooperative

effort to develop framework standards, as recently as 1990 affinned a very similar list of

goals [CFI 1990].

Here, for comparison, are the seven top level CFI goals: 0

10



1. Facilitate design-in-the-large.

2. Facilitate cost effective, efficient, seamless incorporation of tools into
design systems.

3. Facilitate the management, sharing, reuse, and exchange of engineering
information.

4. Facilitate tool and framework portability across multiple platforms.

5. Facilitate consistency across user-interfaces in the framework.

6. Facilitate capture and application of local design procedures and practices.

7. Facilitate extension of the framework.

It is important to note that achievement of all of these goals should reduce the cost
of product realization. Each of these goals ties very effectively into the features that are
evaluated in this paper. For more details on how each of these goals relate to comparison
features see section 3.1.1.

1.4.3 Definition of Terms

For purposes of this analysis, the following terms are defined.

A software framework is a template set of standards which define how tools and
services should interoperate and how information should be represented. 2

An infrastructure is a set of networks, frameworks, and services that enable the
flow of information in support of enterprise integration.

A product realization framework is software framework designed to provide an
operating environment for tools supporting the product realization process.

A product realization framework supports the product development and manu-
facturing process by enabling the interoperation of the processes involved with
product realization. In particular a product realization framework supports the
data and execution interoperability for computer tools and provides a core set
of services that are needed across the product realization processes.

2 This definition is a generalization of that used in the CAD Framework Initiative [CFI 19931. Their defini-
tion of a CAD system is: "A CAD framework is a software infrasruture which provides a common oper-
ating enviroment for CAD tools."

11



The term "framework" is used throughout the remainder of the document to refer

to a Product Realization Framework.

1.4.4 Supporting Cooperative Work

A framework should simultaneously support both an individual as well as a team in
a coordinated effort for product realization. An individual may use a framework to support
consistent look and feel for tools, allowing them to operate on the same platform. Tools
may operate within a framework to describe and execute a given task. The framework also
provides a mechanism for personalizing the environment for the individual while support-
ing appropriate interfaces for communication with the rest of the work group.

A framework also allows different groups to cooperatively work together, sharing 0
resources which include tools, information and policies. A framework that supports a small

set of groups can provide much tighter integration by only supporting the cooperative needs
of those groups. A framework that must support a large organization involved with a variety
of activities has many more requirements and is much more difficult to implement. In par- •
ticular it is important to note that the framework embodies the infrastructure necessary to
support all the groups. Figure 3 shows a simplified organization hierarchy. The reader
should consider what a framework must support in order that cooperation can occur at the

different levels.

SEn~gine " Avionics

7PW Cý ec ... Mf

IMEech M ec . f Elec ... S/W

Individual Framework

SDiscipline Framework Organization Wide
4 ~Activity Framr ework Framework

Figure 3. Current-State-of-Practice for Use of a Framework

12



One would clearly expect that a framework at a department level would only need

to support the processes and policies of the department, while a framework at the organi-

zation level would need to support all of the processes and policies of the enterprise. The

definition of what groups are to use the framework drives the definition of what services

the framework provides. Since a framework provides a common set of services, a frame-

work may also contain services that are common to the supported groups, even though that

service may not generally support outside groups.

The framework has some core services which provide the central resources, such as

the basic operating system facilities. The core services allow the framework to be indepen-

dent of the underlying hardware and software and to handle problems of communications

and distributed systems.

1.4.5 Functions of a Framework

Another view of the framework examines the different classes of functions that are

expected in a framework. Figure 4 shows the basic features:

Engineering Information
Management Control Management

(e.g., configuration (e.g., design object
management) management)

Tool Integration Data Exchange External System

(e.g., Tool Encapsula- (e.g., VHDL) Interface

tion) (e.g., Data to External
Systems)

Figure 4. Framework Function Architecture

A framework is expected to allow applications and tools to be integrated. This gen-

erally means that they can be executed in the same environment and operated in a concur-

rent manner. Over the years this execution interoperability idea has grown into a spectrum

of capabilities. The most basic ability, sometimes called launch capability supports a com-

mon mechanism for setting parameters and executing an application. Only the starting of

the application is controlled through the launch capability. The basic mechanism used by

most frameworks for providing launch capability is tool encapsulation. This puts a wrapper

13



around the tool to control the inputs and outputs so that the tool appears uniform (i.e., just

like any other tool) to the framework.

More advanced execution interoperability support concurrency and control of the

application during execution. Typically these are standards for communication between

applications. Capabilities in current frameworks vary, but most allow basic launch facili-

ties. Some support additional concurrent facilities like the "highlight net" inter-tool com-

munication supported in CFI 1.0 standard. The support of actual concurrent operation of

tools through advanced inter-tool cooperation is still a future vision.

The other important aspect of tool execution is the support for the user interface.

Most typically a standard user interface look and feel is chosen to assure that the user sees

a consistent interface. A consistent user interface on multiple platforms is clearly impor-
tant, and becomes possible through platform independent display standards.

The exchange of information plays a crucial role in allowing design automation

tools to interoperate. Data can be exchanged by simply passing the entire set of data as a S
raw set of numbers or characters, where the meaning of the data is agreed upon between
tools. Data which is exchanged in this way is very difficult to use for other purposes or

tools. In more advanced data exchange, the data is exchanged as information where the way

to interpret meaning from the data is a part of the standard (such as in VHDL). This allows

new applications to understand what the meaning of the numbers and characters are inde-

pendent of the available tools. This distinction is the motivation for the development of
standards for data exchange.There are several levels of data exchange, which correspond

to different levels of meaning that are attached to the data as shown in Figure 5. 0

1

14



CFI Procedural Interface Shared Meaning

Design & Modeling
Languages (e.g. VHDL)

Information Formats
(e.g. EDIF)

Data Formats
(e.g. ASCII)

Communication Physical Exchange
Protocols (e.g. TCP/IP)

Figure 5. Levels of Data Exchange

A product realization process effectively uses cooperative work and communica-

tion between teams to couple the concurrent activities involved with conceptualization,
design and manufacturing development. The ability to describe, control, execute and com-
municate between these processes is crucial. A framework needs to facilitate the control
and management of the process of product realization. A framework also needs the facili-
ties to enforce access controls and policy on the process. Some of the basic forms of this
include change control, version control and security. More advanced forms actually encode
the organizational policies that ensure the integrity of the product being realized. For
instance, a design engineer may make a modification to a drawing. An organizational pol-
icy may require that a product must be simulated by a solid modelling tool to assure that it
meets requrements, and then that certain people in the organization be notified of the
change. These policies should be expressed as rules and automatically inserted and
enforced by an advanced framework.

Information management is used to organize &AU X.fc;i se the vast quantities
of information that are generated and applied during the product realization process. Basic
information management supports product realization by storing the information and pro-
viding access and update to it as required. Design information is managed as design objects
rather than simple files. Design information includes additional information (meta data)
that describes the information itself. Additional areas of support include the handling of the

15



naturally distributed information and the differences in platforms, which include hardware

and software incompatibilities as well as the mix of machine readable information and
paper information. Information management supports library functions to manage compo-
nents of a product and the reusable assets of an organization. The ability to store and main-
tain reliable information which has accessible versions of information as it evolves, is
critical to a realization process.

The framework is also called on to provide external interfaces. The framework
needs to be able to let the user access the resources in a manner that makes the location of
the information and computation resources transparent to the user. In many instances large
resources are tied into central computation facilities, such as parts libraries, and the user
needs to be able to effectively access that information. In general, effective interfaces for
obtaining and sharing data from various sources is critical to the effectiveness of an inte-
grated design automation system. A framework is expected to make this external interface
transparent and effective. The framework is also expected to support the control and man-
agement functions needed for information that is imported or exported from the framework.

0

16



0

2. FRAMEWORK DESCRIPTIONS

2.1 OVERVIEW

This section provides overviews of the sampled framework products. These over-
views are based on information collected from a variety of sources including marketing lit-

* erature. published papers, framework documentation, as well as developers involved with
these products. While care has been taken to obtain the best information possible within the
limited time available, the presented information should be considered in the context
reviewed, since some of the available information was limited to somewhat vague market-

• ing literature.

The overviews discuss each of the products in the terms used by the individual
framework vendor. At times this may be confusing since quite a number of terms are intro-
duced, and vendors name the components of the framework without regard to any standard

0 conventions. The overview attempts to discuss the goal of the framework, the approach
used in its construction, it architecture, application domain, maturity and the application of
the framework to the product realization process.

This overview considers frameworks of several types. Some of the frameworks
reviewed are software packages, others are software toolkits or suites with which to devel-
op frameworks, and others consist of a set of standards to be used by framework develop-
ers. The frameworks reviewed range in maturity from proposals and pilot studies to
commercially available software packages. The frameworks reviewed fall into three prima-
ry disciplines: ECAD frameworks, MCAD frameworks, and software design frameworks.

The ECAD frameworks reviewed are: Falcon by Mentor Graphics, Design Frame-
work U by Cadence, OpenFrame by ViewLogic, CFI, and PowerFrame by DEC. Falcon
and Design Framework II are commercially available software packages. CH Release 1.0
is a set of framework development specifications from the CAD Framework Initiative, a
non-profit group which develops specifications primarily for ECAD frameworks. Open-
Frame and PowerFrame are designed to be used together.

17



f0

The MCAD frameworks reviewed are: GE/AE DICE framework, VEHICLE by the

Aerospace Corp., ACIS by Spatial Technology, Inc., CV-DORS by Computer Vision, and

Pro/DEVELOP by Parametric Technologies Corp. GE/AE DICE is the result of a pilot 0

study on developing a framework for the design of hollow airfoils. VEHICLE is a software

prototype and development proposal by the Aerospace Corp to build an MCAD framework

using the technologies of wrappings and weaves. ACIS is a toolkit for developitig MCAD

frameworks using geometric modelers. Pro/DEVELOP is a library of C functions for 0

extending the functionality of the Pro/ENGINEER MCAD system.

The software engineering frameworks reviewed are: Arcardia by the Arcadia Con-

sortium, ECMA/PCTE, and CORBA/IDL by the Object ManagemnenL Group. Arcadia is an

effort funded by ARPA to develop a framework to assist in the development of software

applications. ECMA/PCTE is an operational standard developed to provide tool portability

across a wide range of platforms. Although originally started as a European effort, NIST

now has adopted the ECMA/PCTE model. CORBA/IDL is an object oriented request

mechanism that supports general messaging, and has gained some acceptance as a common

means of comnmunication between tools.

The following sections address each of the frameworks described above in more

detail.

2.1.1 Falcon Framework (Mentor Graphics)

Mentor Graphics, founded in 198 1, is an electronic design automation vendor offer-

ing tools for digital and analog design, focusing on PCB, MCM, ASIC, custom IC, and sys- 0

tems. Mentor Graphics 1992 annual sales were $350.7 million, and Mentor employs

approximately 2200 people worldwide.

The goal of the Falcon Framework is to provide a superior, open electronic design

environment. Falcon's integration technology enables users to seanmlessly integrate internal 0

and multi-vendor tool and design data suites into the Mentor Graphics environment.

Enhanced with productivity tools, the Falcon Framework helps users achieve increased

productivity and decreased time to market.

The components of Falcon Framework are: Advanced Multi-Purpose Language 0

(AMPLE), Common User Interface (CUI), Design Management Environment (DME),

Decision Support System (DSS), and documentation software (integrated FrameMaker).

Also included are BOLD for on-line documentation delivery, printer/plotter support, and

18



network licensing support. AMPLE, CUI, and DME are used to integrate tools into the Fal-

con environment. AMPLE, DSS, and the documentation tools enhance user productivity.

AMPLE is the extension language provided with the Falcon Framework. AMPLE,

which has a syntax resembling C, is used to implement wrappers for tool launch, to access

CUI, DME and DSS services of the framework, and to implement extensions to the design

environment, such as writing functions or macros to tailor the EDA environment to a user's

unique requirements. An integrated tool can link C functions to an AMPLE API, as well as

allowing integrators access to Falcon Framework services through the AMPLE APIs.

The CUI services provide an OSF/Motif compliant user interface. The AMPLE API

enables third party tools to manage windows, menus, dialog boxes, prompt bars, and popup

command lines, and achieve an appearance and functionality consistent with Mentor's

tools.

DME offers a common desktop for consistent management of tools and data in the

Falcon environment. The point-and-click iconic desktop is used for tool invocation, as well

as performing design object management. Design object management includes creating,

browsing and editing references (associations between design objects) and properties, con-

figuration management, and design release and version control. The Registrar is a DME

tool used to encapsulate tools within the framework. The integrated Design Manager (iDM)

is used by integrated tools for design object browse/navigation, to move, copy, delete and

change references, and to browse design hierarchies.

DSS is a preeminent productivity tool, combining a spreadsheet user interface, links

to external data, and a visual control panel building-block toolkit. DSS allows users to build

real-time applications that can monitor design data, monitor events, and present the results

of complex data analysis. DSS "watchers," an integrated piece of the Falcon Framework,

provide the capability to monitor and analyze design data, and then take actions based on

status or calculated results. Numerical results of analysis can be presented as text, or visu-

ally using meters, gauges, or other gadgets in the DSS control-panel interface. Multi-user

applications built with DSS typically consist of C code, AMPLE code, and DSS, which ties

everything together. DSS is the most visible of the three since the user interface control

panels are built with DSS.

Documentation tools include an on-line information system (BOLD), text editing

(Notepad), word processing (integrated FrameMaker), and support for many printing and

plotting options. Notepad is an ascii editor that allows access to a consistent, mouse-based

19



text editor from within an application. FrameMaker is fully integrated with the Falcon

Framework to provide consistent documentation capabilities within engineering environ-

ments. Mentor Graphic's External Rendering Interface enables text and graphics from

Mentor's design tools to be imported into FrameMaker by external reference capabilities.

BOLD delivers searching, viewing and printing of on-line documentation, includ-

ing full text search, hyperlinks (predefined or user defined) to view across cross-references

among related documents, printing hard copy pages of the information viewed on-line, and

cut-and-paste text from on-line documentation into various applications. Mentor Graphics

now delivers their product documentation via BOLD using a CD-ROM as media.

Mentor Graphics is very active in CFI, and is committed to adopting the CH stan-

dards as they emerge. AMPLE will provide an alternative syntax for Scheme, the CH

extension language. Encapsulated tool launch will be supported using the CFI Tool Encap-

sulation Standard, and schematic (netlist) data will available through an API that conforms

to the CFI Design Representation PI. The latter two products are expected to be available,
following CFI certification, in 1994.

Falcon Framework is a two-year old product, yet it continues to evolve. The Qn-
Door program offers other vendors access to the Falcon Framework's integration toolkits.
The 1993 OpenDoor catalog lists more than 100 tools that are integrated (or encapsulated)

into the Falcon Framework. In the product realization spectrum from conceptualization to
manufacturing, Mentor Graphic's products primarily focus on design activities, but several
OpenDoor partners integrate tools into the Mentor environment that provide links to con-

ceptualization and manufacturing. Examples include, Ascent Logic (product require-

ments), Fabmaster and Mitron (links to PCB manufacturing), and Metaphase (enterprise
product data management).

2.1.2 Design Framework H (Cadence)

Cadence Design Systems, formed by the merger of ECAD Inc. and SDA Systems

in 1988, is an electronic design automation vendor, focusing on digital, analog and micro-

wave design. Cadence's 1992 annual sales were $434.5 million.

The goal of Design Fr-:.Tiework II is to enable users and third-party vendors to easily

connect their tools into the Cadence Design environment, ensuring that data flows smoothly

between tools, all within a single environment. Design Framework I1 supports both encap-

sulation and integration to connect tools into the framework.

20



Four components of Design Framework II support tool integration: Communica-

tions Manager (CMAN), User Interface Manager (ULl), Teamwork Data Manager (DM),

and Integrator's Toolkit (ITK). These components provide C language application program

interfaces (APIs) to be used by integrated tools. SKILL, the extension language for Design

Framework II, can be used to export services of an integrated tool to a SKILL API as well

as allowing integrators access to Design Framework 11 services through the SKILL APIs.

Three components of Design Framework II support tool encapsulation: SKILL, the

Open Simulation System (OSS), and the Physical Interface Environment (PIE). SKILL is

used to implement wrappers for tool launch, to access CMAN, UI and DM services of the
framework, and to implement extensions to the design environment, such as design flows.

OSS allows transfer of netlist data to encapsulated tools. PIE allows transfer of physical
netlist data and back annotating properties into the design. SKILL language APIs also pro-
vide read and write access to the Cadence databases.

CMAN uses a "data bus" architecture. Tools (and the Design Framework I1) use

CMAN commands to: Epjjtrj in a specific message or action, No& others that

an event has occurred, Epgg data, or hnort data. Tools can use CMAN to efficiently send

and receive small amounts of data. The UI services allow a tool to adopt the Design Frame-
work i1 look and feel, to achieve consistency with other tools in the Cadence Design Frame-
work II environment.

The requirements for managing individual work-in-progress and enterprise data
management are so different that one product cannot satisfy both needs. Cadence provides
a data management capability that satisfies this range of requirements of an individual engi-
neer to the enterprise. Design Framework 11's TeamworkDM provides the work group solu-
tion, while partners (such as Sherpa's PIMS or Control Data Systems' EDL) provide the

enterprise level data management.

TeamworkDM is targeted at coordinating the data-sharing and notification needs of
the design team. Teamwork Design Manager provides project setup and administration,
versioning, configuration management, library management, release control, process man-

agement and archiving for multi-user project teams. Designers work within the context of
a workarea running tools and creating, accessing and modifying designs. Promotion is the
operation used to move (release) a file from a work-in-progress workarea to a release or
integration workarea.

21



Since different enterprises adopt differing policies for data sharing and project man-

agement, TeamworkDM provides the building blocks to implement the required data shar-

ing model for each framework installation. As a starting point, TeamworkDM is configured

with several workarea use models to support the following project data-sharing models:

Dynamic Model, Isolation Model, Formal Release Model and Flexible Release Model.

Data exchange is supported by the 1TK. Data can be obtained in netlist, EDIF,

VHDL, and Verilog HDL ascii formats, or through the ITK's C language API.

Cadence is very active in CFI, and is committed to adopting the CFI standards as

they emerge. SKILL (a LISP dialect) will evolve to Scheme, the CFI extension language.
Encapsulated tool launch will be supported using the CFI Tool Encapsulation Standard, and

schematic (netlist) data will available through an API that conforms to the CFI Design Rep-
resentation PI. The latter two products are expected to be available, following CFI certifi-

cation, in fourth quarter of 1993.

Design Framework II is a mature product, yet it continues to evolve (e.g., Team-
work DM is new this summer). Other vendors can acquire access to Cadence's integration

products through the Connections Partners program. The 1993 Connections Partners cata-
log lists more than 100 tools that are connected (integrated or encapsulated) into Design

Framework n.

2.1.3 OpenFrame (ViewLogic)

OpenFrame is the name given to the Viewlogic Framework, which is also referred

to as Powerview. It is primarily oriented towards providing a design environment for elec-
trical design automation. Viewlogic is an electrical design automation company focusing

on digital and analog design. Viewlogic, established in 1984 had $65 million in annual sales
in 1992 and employes approximately 210 people.

OpenFrame links several components for framework technology together. Digital

Equipment Corporation PowerDM is used to provide data management, CR technology is

used to provide tool launch integration, and a number of other standards are employed to
support a wider range of data integration. A number of additional facilities have been devel-

oped by Viewlogic to round out the framework capabilities, such as ViewDoc which pro-

vides on line documentation. The conceptual view of OpenFrame is shown below:

22



(OpenFram e Cockpit
Tod Ecaploutlo I • kwscrlpt Viewplow

Inter'Pwr VewwBm
Cor. EA E ViewAreeem
Si.*u CFI DR PI

PC nk. Tool Tool EDIF/VHDL
Ic Iteg.VIewNav

V~kWDRC

I-OpenFrame Cockpit
ViewScript MotlOpeaLook/Wlindows UNIX/DOS

Instaflldton NaY tiomEa'r Handft NFS/TCP-IP ViewDoc

Figure 6. OpenFrame Architecture

OpenFrame currently supports both digital and analog electrical design automation.

A wide range of facilities are supported for digital system design, including simulation, lay-

out, design rule check and high level design using VHDL. Some support for analog is avail-

able with basic digital like facilities for design, and simulation using variants of SPICE.

Limited enterprise wide support is available through PowerDM, but basic version control

is provided.

OpenFrame is currently available commercially. It is a new product from Viewlogic

0 and should be extended in coming years to be more CH compliant and provide a stronger

platform for integration of the users environment. OpenFrame currently distinguishes itself

by the tools that are available from Viewlogic on the framework. Tools such as ViewDa-

tabook allow corporate parts information to be integrated.

0 OpenFrame concentrates on the integration of the design environment for the elec-

trical engineer. Limited support is made to integration with manufacturing. Some support

is available for conceptualizing through simulation.

SA2.1. CFI (CAD Framework Initiative)

The CAD Framework Initiative (CFI) is an international non-profit consortium of

CAD tool users, tool vendors, and research institutions. The CAD Framework Initiative

(CFI) started in 1988 followed earlier conceptual work from the Engineering Information

9 System project [Winner 1986a/b, Heystek 1987, Rolfe 19901 in the formation of an indus-

23



trial non-profit consortium. The CFI mission is to define standards that facilitate the inte-

gration and interoperability of design automation tools and design data for the benefit of

end users and vendors worldwide.

CFI has been primarily influenced by the commercial vendors who have participat-
ed, who themselves are interested in adding value to their markets. As such the products
from CFR have focused on the issues of tool integration and data exchange for the sets of
tools that currently exist in the largest markets, namely digital electronics. Other frame-
work issues have not in general been addressed, in particular the areas of engineering man-
agement control, information management and external system interfaces.

CH has defined a plan for phased release of standards, the first standard, release 1.0,
which is available now, includes the Design Representation, Tool Encapsulation, Inter-Tool

Communication, and Computing Environment Services. The second phase will release new
versions of the phase one standards and be extended to include Data Management, Simu-
lator Backplane, User-Level Extension Language, and Session Management Support. The

third phase will extend to library support and electronic databooks. The future directions in
the third phase also include front-end tools with physical design implementation and man-

ufacturing and technology management. The basic architecture proposed by CFI is shown
below:

BSrowser ) /1'Syn0ýi) (Synthesis-)

(A T~y lJ •••(•Joki) Tool j
S0

/`ýg /Ma rr-k-p" t' W

Design Data Methodology Session
Information _. anagemen . Management Manager

S. System Environment

viagure 7. CFI Framework Architecture Reference

24



There is a subgroup of CFR that is looking at electronic semiconductor manufactur-

ing. Subcommittees are examining two potential standards: the Semiconductor Wafer Rep-
resentation [CFR 91a] and the Semiconductor Process Representation [CF1 1991b]. The

efforts in this area are of particular interest to the product realization area since they support

the basic data exchange with manufacturing as well as the necessary information for virtual

process simulation.

2.1.5 PowerFrame (DEC)

PowerFrame is an open software framework that supports the creation of a design
environment for concurrent engineering [DEC 1991]. It provides the capability to integrate

third party tools and to manage design files, processes, and tools. It allows an organization

to automate its engineering design guidelines. In addition to providing built-in tools, Pow-

erFrame permits the encapsulation of third party or proprietary tools. PowerFrame is built
around the concepts of the CF "toaster model" (also known as the CH Backplane Frame-
work Model). DEC is one of the founding members of CFI, continues to be active, and is

committed to implementing appropriate CH standards in PowerFrame.

PowerFrame is built around the concepts of the CH "toaster model" (also known as

the CH Backplane Framework Model). DEC is one of the founding members of CFI and

continues to be active.

PowerFrame is composed of a Design Manager Server which maintains an active
meta data database. The meta data keeps track of information about design, library, and tool
data. The PowerFrame Executive is an X based GUI for invocation and interaction with
tools, and for displaying data maintained by the Design Manager Server. The Frame
Administrator utility supports framework administrators in defining which tools, data, and

libraries will be used. Each tool integrated into PowerFrame is encapsulated. A definition
file, or an optional Tool Agent Program (specially written), or modifications to the source

code of the tool provide different levels of "tightness" of tool integration. A Transfer Man-

ager tool is built into PowerFrame to allow data to be moved from one PowerFrame frame-
work to another or even within a framework. PowerFrame provides built-in version control

and configuration control.

Generally, PowerFrame is built around the concept of using meta data to track the

activities within a project. Since there is no built-in object base, there is no requirement for

tools to cooperate by adhering to standard data formats or interface protocols. Therefore,

even though many types of tools may be supported by PowerFrame, it is possible that data

25



0

from one tool cannot be easily used by another. However, as standards emerge and tools

adopt them, PowerFrame users will benefit from the added cooperation of tools that are

already integrated. S

PowerFrame is called a "design management framework" and emphasizes manag-

ing the design process. The development process itself is programmable. Since it supports

such a wide variety of tools, there does not seem to be any technical obstacle to Power-

Frame supporting the entire product realization process. However, DEC does not use this

terminology in describing PowerFrame.

PowerFrame is intended to support electronic and mechanical engineering design.

It has been a commercially available framework since at least 1991 and has a number of

commercial users. In addition, DEC has established a "PowerFrame Synergy Program"

with corporate members representing users, tool vendors, and others.

2.1.6 GE/AE DICE (GE)

This section reviews the framework used at GE Aircraft Engines during the DICE

Hollow Airfoil Pilot Project, which sought to apply selected DICE technology to the design

of hollow airfoils such as fan blades. The study was consistent with the DICE charter "to

develop and field-test a methodology and accompanying integrated information manage-

ment technology and tools offering a systematic approach to the concurrent engineering

development process for design and manufacture, in both mechanical and electronics

industries" [Czechowski 1989].

The GE/AE DICE software architecture was intended to be domain-independent. It 0

consists of three major functional layers. The application layer is the highest layer. It

includes the GE/AE DICE interface and applications. The management layer allows for

management of concurrency, communication, and cooperation. The data layer is the lowest

layer. It includes the representation and implementation languages and the Product, Pro- •

cess-activity, and Organizational resource (PPO) database, which is described below.

The GE/AE DICE pilot study had three primary goals:

"• Integration of software tools through the use of wrappers

"* Controlled sharing of product information through the use of configuration

management tools and a product model

"* Capture of design intent and product history

26



The GE/AE DICE architecture used at GE centered on the use of wrappers to inte-

grate applications and data of various design groups involved within product development.

[Czechowski 1989]. Wrappers encapsulate non-DICE applications to run within a DICE

system. The Application Interface Wrapper tool creates wrappers around pre-existing engi-

neering applications to permit them to read their data directly from the distributed or shared

engineering data base, and/or other wrapped applications.

In the GE/AE DICE Pilot Study, software wrappers were used to create the Aster*x

Parametric Design framework that was based on a spreadsheet (Aster*x). That framework

contained wrapped functions of a CAD/CAM system (Unigraphics), a finite element mod-

eling program (PATRAN), and a finite element analysis program (ANSYS) [Czechowski

1989]. This use of wrappers provided an effective union of multiple software products in

order to support rapid iteration in parametric modeling. The efficiencies gained in paramet-

ric modeling were the single largest source of cycle time improvement in the concurrent

engineering pilot study [Czechowski 1989].

Sharing of design information and coordination of product design activity is sup-

ported by use of a Product-Process-Organization (PPO) Model. The model contains prod-

uct representation information in a number of forms. It contains process models of

development activities and manufacturing processes. The capability of modeling organiza-

tions was not used in the GE/AE DICE Pilot. In this environment the PPO model contained

multiple representations of the air foil product, including spread-sheets data containing
parameters that specify the master-model, 2-dimensional CAD representations, 3-D dimen-

sional models, finite element mesh models and numerical control (NC) models. The Test-

bed Configuration Management System (TCMS) was employed to provide control over

multiple versions of designs contained in the master model.

2.1.7 VEHICLES (Aerospace Corp)

The Aerospace Corporation has developed an experimental prototype design envi-

ronment named VEHICLES over the last six years to support the conceptual and parametric

design stages of space-based systems [Bellman 1993]. VEHICLES integrates distributed

models and analyses, solves equations symbolically, and automates parametric and trade-

off analyses. Its proponents believe this environment has application in industrial design

and manufacturing, and that it is a precursor to a new industrial process that they name

"information manufacturing." The Aerospace Corp. defines information manufacturing as

the process of collecting, ordering, and integrating information materials into information

27



products. Their proposal seeks to move the Vehicles environment into industry and to high-

light two software engineering technologies: wrappings and weaves. The VEHICLES envi-

ronment is not now in deliverable form and is not supported by any organization. 0

VEHICLES is composed of:

"* A flexible user interface;

" An information base containing models of subsystem characterization; of data,
constraints, requirements, and conditions on use of data; containing context sen-

sitive rules for use of algorithms, variables and sets of equations; and containing
knowledge of proper context for use of software packages on distributed plat-

forms;

" Tools for evaluation of designs; and trade-off analysis, including an indepen-

dent variable sensitivity analysis tool, parametric study analysis tool, design

alternatives comparison tool; and

" Report generators covering design comparison, dependencies among design
parameters, input-output reports for subsystems, queries allowing for searches
of parameter values across multiple designs, and a series of status reports on the
state of design analysis.

The VEHICLES framework development employed the software engineering
methodologies of wrapping and weaving. Wrapping is an automated process concept for
deciding which software resources should be assembled to build a software system, such

as a robust version of VEHICLES. A wrapping is an expert interface that describe a •
resource, such as a parametric design module, in a complex software system. A wrapping
contains an explicit description of the resource, used for management of the system archi-
tecture. Wrappings are used by the "Study Manager" and planning programs to provide
"intelligent user support functions." The Study Manager organizes the problem solving •

process into a sequence of steps, which are: posing the problem, interpreting the problem,
applying resources, and assessing results. The wrapping functions include: selection of
resources, assembly and integration of resources to exchange data, adoption of resources to
a problem and explanation of how resources were used. No specific wrapping products are 0
planned, though the wrapping approach is intended to penmeate the VEHICLES system
design. Wrappings are intended eventually to be used to automatically generate weaves.

[Bellman 1991].

28



Aerospace contrasts their experimental wrappings technology from DICE wrapper

technology. DICE wrappers are viewed as "code-level encapsulations" as compared to

"knowledge-level encapsulations" provided by wrappings. Wrapper resource descriptions

are processed off-line by programs to produce wrappers. They also disagree with the wis-

dom of an architecture that includes a single Product-Process-Organization (PPO) model,

stating that the architecture must be able to handle multiple models and modeling para-

digms.

Weaves are interconnected networks of concurrently executing tools, which com-

municate by passing data objects [Gorlick 19911. Weaves are designed to support rapid and

flexible construction of software systems. Weaves are composed of components that are

arbitrary deterministic programs and may be written in any common sequential program-

ming language. Components are sent objects, perform a series of functions, and then emit
objects. The objects may be complex and may have methods that perform substantial com-

putation. Weave components communicate blindly, that is, they are unaware of the identify

of other components with whom they exchange objects. Weave components are supported
by threads or light weight processes. Their encapsulation and self-sufficiency permit
weaves to be dynamically reconfigured as they are executing. The insertion of new compo-

nents can be tested without disturbing the proper functioning of existing weave compo-

nents.

Standard weave objects are defined to permit legacy systems to be incorporated into

a weave. Weaves are thus potentially useful as an integrating technology for multiple leg-

acy systems.

2.1.8 CV-DORS (Computer Vision)

CV-DORS is the Computer Vision Developers Open Resource Software. It is a set

of object-oriented interfaces which allow third-party software tools to interface with the

underlying database, graphics, and geometry of a product model. CV-DORS allows para-
metric design, feature-based modeling, and has support for assemblies.

CV-DORS is based on four major architectural components: a database, a user

interface, graphics, and geometry.

CV-DORS uses the ObjectStore distributed database by Object Design, Inc (ODI).

The ObjectStore database is object oriented, and is written in C++. The ObjectStore data-

base is graphically oriented. ODI currently supports several workstation vendors whose
systems operate under the Unix operating system, and Microsoft Windows.

29



The CV-DORS user interface will be available by January 1994. The Computer
Vision CADDS 5 Mechanical CAD system currently serves as a user interface for creating
part geometries.

CV-DORS uses Ithaca Software's Hoops Graphics system. Graphics are integrated
into the CV-DORS kernel, allowing application programs to access the geometric database

of the product without the need to use a CAD application program.

CV-DORS/3D Modeler is a geometric modeler which provides integrated wire-
frame, surface, and solid modeling using one common data structure. It supports geometric
objects including Non-Uniform Rational B-Splines (NURBS) curves and surfaces, and sol-
id primitives. CV-DORS/3D Modeler is double-precision and uses boundary representation
to represent topology and geometry. Programmatic access to the modeler is through C++,

C, or FORTRAN.

Models may be constructed with these objects through standard modeling opera-
tions such as filleting and sculpting. NURBS is an mathematical generalization of the B- 0
spline. It can describe both two-dimensional curves and three-dimensional surfaces.
NURBS assists in maintaining data homogeneity throughout the design-to-manufacture
cycle. NURBS can represent shapes to arbitrary precision limited only by storage. It there-
fore facilitates data transfer between dissimilar systems. S

CV-DORS uses the UIMX Application Programmer's Interface. This API is a com-
mercially available toolkit which develops Motif-based interfaces. Model information is
directly shared between applications, and is maintained intact. Using UIMX, the product
geometry may be read from and written to without CADDS being active. As a result, users
are able to describe a 3D shape in CADDS, and then transfer this underlying geometry and
database between application tools. CV-DORS does not allow programmatic access to the
underlying direct object interface for the system, though it does allow access at the object

level.

Tool Integration with other systems is not based on the concept of a "wrapper" in
which the application tool is simply encapsulated in a layer of system interface code. The

disadvantage of wrappers is that they are often not as efficiently written as if the tool itself
were re-written. With CV-DORS, application tools need to be re-written to be integrated
with the framework. lypically, this rewrite would be done during a major release revision.
Computer Vision's expectation is that the rewrite would add an additional layer for the

framework interface.

30



0

CV-DORS has large potential for integrating third-party application tools. Approx-
* imately 100 third-party developers are planning to produce tools for the CV-DORS frame-

work. Table I lists vendors of application tools for CV-DORS which will be available by

early next year.

Table 1. CV-DORS Application Tools

* Vendor Tool Name Functionality Product Status

International available by 1/94
Technegroup, Inc.

PDA PATRAN Ill Finite element analysis. available

• SILMA CimStation Simulation and off-line pro- available
CADDS gramming of automated
Interface 2.2 manufacturing equipment

such as robots and CMMs.
Also performs verification
of NC par programs.

* Pointcontrol available by 1/94
Wisdom Systems Concept Modeler Represents relationships available

between components of
the product model, allows
flexibility.

ICAD available by 1/94

Rasna available by 1/94

2.1.9 ACIS Geometric Modeler (Spatial Technology, Inc.)

ACIS is an object-oriented 3D modeling kernel consisting of over 300 geometric
modeling functions for building geometric modeling systems. It is a toolkit of software
around which applications and frameworks can be built according to a data format which
is compatible with PDES/Step. ACIS is available for license by application developers to

* use as a mechanical engineering framework kernel. ARIES Technology's Geometry Bus is
an example of a commercially available framework based on ACIS. ACIS is entirely writ-
ten in C++ and it is produced by Spatial Technology, Inc. Figure 8 shows the ACIS system

architecture.

ACIS is a high-performance framework kernel. 1Tpical speeds are approximately
five times as fast as CV-DORS. It offers platform support for all major workstations and
PC's. ACIS has its own memory manager.

31



E Application Procedural Interface (API)

Classes
Objects ACIS
Methods KERNEL

Parametr"ic Curve & Surface Interface

Parametric Curve &
Surface Subsystem

Figure & ACIS System Architecture

Several implementation strategies are available for using ACIS. The first of these is
to re-write the application code to take advantage of ACIS. A second strategy is to build a
wrapper around an existing application in order to make it ACIS-compatible. FEGS, a finite
analysis program, is .an example of the latter approach. Application software developers
can choose to use only a portion of ACIS; an example of this is Hewlett-Packard's 3D mod-
elling system which does not use the surface modeling capabilities of ACIS, but rather uses
HP's own surface modeler. Most ACIS applications are developed with Hoops Graphics.

Applications are attached to the ACIS kernel via the Application Procedural Inter-
face (API). ACIS toolkits are available for Microsoft Windows, Windows/NT, and Visual
Basic. ACIS uses the SAT format for data exchange between applications. This format is
translatable to IGES, PDES/Step, DXF, and other formats. There are three different levels
to access ACIS: the first is the API level, where functions are called; the second is the

32



Object level; the third is the lowest level, at the data structure level, where the application

developer can build in their own data structures.

ACIS has no user interface; the application tools which are based on ACIS contain

the user interfaces. The development of a user interface is the responsibility of the applica-

tion developers. A "test harness" is available in ACIS as a user interface for application

developers.

Framework developers using ACIS have responsibility for creating the engineering

management control. This is an example of the value added by ARIES with their Geome-

tryBus product. Documentation control is also the responsibility of application developers.

An object-oriented database, ACIS/DB, is available for use with ACIS. It is sold by Spatial

Technology, Inc.

Table 2 lists twelve commercially-available frameworks which are based on ACIS.

The ACIS kernel is currently in wide usage, with over 200 licensees outstanding, and 90

application tools being developed for it.

Table 2. ACIS-Based Commercially-Available Frameworks

Company Product Ship Date

Advanced Graphics Systems Visionael 3D June '92

Aries Technology Concept Station June '93

Cognition Mechanical Advantage August '93

Concurrent Technologies Rapidcast June '92

Control Data ICEM DDN January '92

Control Data ICEM PART September '92

Grafrek GMS/SMART July '93

Hewlett-Packard Solid Designer March '93

Hitachi-Zosen Info. Systems GRADE/Shape June '93 (in Japan)

Lujuustekniikka Oy (Finland) ARGOS September '92

Strassle Infosystemes GmbH KONCAD June '93

Strassle Infosystemes GmbH RWT 2000 June '93

33



UI.10 PreoDEVELOP (Paammetric Tecbnology Corporation)

Pro/DEVELOP is a library of C language functions which may be used by devel-

opers to creates application programs to modify or interface with Parametric Technology's

Pro/ENGINEER MCAD system. Pro/DEVELOP has three major purposes:

1. Customize the standard Pro/ENGINEER user interface by adding new

menus, new prompts, etc.

2. Automate simple or mundane tasks for the user, or automate complex design

tasks for which the company has a knowledge base.

3. Integrate Pro/ENGINEER with other existing tools such as MRP schedulers

or inventory control programs.

The C language functions which comprise Pro/DEVELOP primarily consist of data

extraction and modification functions. Applications developers can extract geometry, fea-
tures and parametric information from Pro/ENGINEER models and input this information
into application tools using the C functions in Pro/DEVELOP. Application tools are made

compatible with Pro/ENGINEER by using the C functions in Pro/DEVELOP. The separate
application programs created by using Pro/DEVELOP are automatically started when Pro/
ENGINEER is started up. Exampies of application programs would be to customize the
Pro/ENGINEER interface, extract data from Pro/ENGINEER, or modify objects from the
Pro/ENGINEER system. Pro/DEVELOP has access to notes, symbols and 2 dimensional
graphic entities in drawings. Pro/DEVELOP allows the developer to create a help file to go
with new menu items which are added to Pro/ENGINEER.

The Pro/ENGINEER system outputs data in IGES, VDA, SET, or a neutral format

file, or the user may write their own format for data exchange.

The user is not aware of the presence of application programs created with Pro/

DEVELOP. The user is only aware of the Pro/ENGINEER interface, and the menus which

may have been modified with Pro/DEVELOP.

Parametric Technology has a group of software development companies many of
whom have used Pro/DEVELOP to make their complimentary software products compat-
ible with the Pro/ENGINEER MCAD system. To date, a total of 50 companies have inter-
faced their products. The interfaced software products are in the following categories:

1. Document and Image Management

2. Electronic Design Automation

34



3. Engineering Analysis

4. Industrial Design, and Rendering

5. Information Management

6. Manufacturing

7. Translators / Migration Tools

8. Vertical Applications

There is no engineering management control built into Pro/DEVELOP. However, a

separate product from PTC, Pro/PDM (Parametric Data Manager) is designed for engineer-

ing management and control capabilities. Pro/PDM uses a state-of-the-art user interface

and database for data management. Although a separate application, it is tightly integrated

with Pro/ENGINEER, and is supplied with a C library to allow developers to access the

Pro/PDM database. Document control is also accomplished through Pro/PDM. Pro/ENGI-

NEER is available for most Unix based workstations, the VMS operating system, and Win-

dows/NT.

2.1.U Arcardia (The Arcadia consortium)

Arcadia is the name of an ARPA-sponsored research project being conducted by a

consortium of the University of Massachusetts, the University of California at Irvine, and

Colorado University. The goal of the project is, in general, to carry out validated research

on software development environments, and to establish an open architecture for process-

centered software environments.

The approach taken in the Arcadia project is to develop prototypes to demonstrate

the feasibility of concepts and to integrate these prototypes. A major result of the research

includes the lessons learned from the effort to maintain an integrated environment.

The principle components of Arcadia are:

"* Capabilities for process definition and execution

"• Object management

"* User interface development and management

"* Measurement and evaluation

"* Language processing

35



* Analysis and testing

* Component composition

Arcadia is intended to support the software development and maintenance. There is
no restriction on the type of application it can support. In fact, a number of the capabilities
are specifically to support the development of complex concurrent applications. Thus, it
could be used to support real-time applications, for example an embedded control system.

Arcadia is a research project and is constantly undergoing revision in order to eval-
uate new alternatives. The research has been going on since the middle 1980s and many of
the original researchers are still actively involved. There does not seem to be any effort to
commercialize any of the components of Arcadia at this time.

A major thrust of Arcadia is the development of a process-oriented software devel-
opment environment. The development process itself is programmable. The environment
is primarily built around an event-driven operation. An important aspect of Arcadia is sup-
port for measurement and analysis of processes and support for management of the devel-
opment process.

2.1.12 ECMA/PCTE (The European Computer Manufacturer's Association)

ECMA PCTE (Portable Common Tool Environment) is an application program
interface (API) standard. It has been developed by the European Computer Manufacturer's
Association (ECMA). The goal of ECMA PCTE is to define a standard interface for a num-
ber of services required to support software development and maintenance. It is expected
that ECMA PCTE will be used in conjunction with other standards and services to com-
pletely support software development.

The approach taken in ECMA PCTE is to define sets of procedure calls and to
define the semantics of the services to be provided. There is an interface for an abstract lan-
guage, a set of C bindings, and a set of Ada bindings. ECMA PCTE is not an implementa-
tion and generally does not make any assumptions about how the various services will be
implemented.

ECMA PCTE is defined as having four levels of conformance as follows:

a. Level 1 (Core Module) conformance

1. object management

2. schema management

36



3. files, pipes, and devices

4. volumes and archives

5. process execution

6. messaging

7. notification

8. concurrency and integrity control

9. replication

10. networking and distribution

11. discretionary access control (DAC security)

b. Level 2 is Core Module Conformance plus mandatory access control (MAC)

c. Level 3 is level 2 Conformance plus Auditing Services

d. Level 4 is level 3 Conformance plus Accounting Services

The application domain of ECMA PC-E is software development and mainte-
nance. There is no assumption regarding types of applications that may be developed with-
in the environment. However, there are no services specifically intended to support
complex types of applications. It is expected that special analysis tools will be integrated
by third parties in order to support various types of applications.

ECMA PCTE development was begun in 1990 and, at this time, there are no imple-
mentations of the standard. IBM has announced an implementation that partially meets
Core Module conformance requirements. The NIST reference model is the same as the
ECMA/PCTE reference model. The implementation is in beta testing and is expected to be
released for general use in September of 1993. It should be noted, however, that ECMA
PCTE is an evolutionary development of earlier PCTE standardLs. PCTE 1.5 and PCTE+
were developed in 1988 and implementations of PCTE 1.5 exist.

2.1.13 CORBA/IDL (The Object Management Group (OMG)1)

The Common Object Request Broker Architecture and Specification [CORBA
1991] defines CORBA, the Common Request Broker Architecture, a framework to allow

1 The OMG is composed of Digital Equipment Corporation, Hewlett-Packard Company,
HyperDesk Corporation, NCR Corporation, Object Design, Inc., and SunSoft, Inc.

37



differing implementations of Object Request Brokers (ORB) to provide common ORB ser-
vices to clients. CORBA supports portable clients and the implementation of objects. COR-
BA is structured to allow the integration of a wide variety of object systems running in a
distributed, heterogeneous environment.The architecture of CORBA is shown in Figure 9.

A goal of CORBA is to provide interface standards and architectural guidelines to

allow implementors of client and object server software to cooperate. In particular, a client
should be able to request object services without regard to the number or placement of
object servers. In fact, over time objects could move from one server to another without any
effect on clients. CORBA is intended to support development of object oriented systems
regardless of their application domain.

The approach taken in CORBA is to establish a standard and protocols that partic-
ipants in an object oriented system would adhere to in order to work cooperatively. CORBA
interfaces are defined in terms of an Interface Definition Language (IDL) which can be used
to describe the syntax and the semantics of the interface between a client or server and the
ORB. A syntax of IDL that is compatible with the C++ language has been developed and
will be maintained along with the C++ standard.

Client ObjectlmDlementatioS~~(Objet't server) •

I L
Dynamic IDL ORB Skeleton Object

Invocation Stubs Interface Adapter 0

ORB

Figure 9. CORBA Architecture

CORBA is built around the concept of clients, object implementations (servers),

and the ORB. The ORB provides an interface to clients and servers, IDL stubs, and a •

dynamic invocation capability for clients, and an IDL skeleton and object adapter for serv-
ers. A client may make an object request by using an IDL stub or by dynamically construct-
ing the request and passing it through the dynamic invocation interface. The request is
processed by the ORB which determines which server is responsible for the object, then •

38



passes the request to the server through the IDL skeleton. The server may use the object
adapter to convert the object to a form that is more usable.

As mentioned above, CORBA is not intended for any particular problem domain,
but to provide a way to allow any object oriented systems to work cooperatively. It can con-
ceivably be used to support database applications, design frameworks, or any other appli-
cation that requires a number of users of different types to work together.

CORBA is not an implementation and, at this time, no implementation has been
built. The designers of CORBA argue that many of the concepts upon which CORBA is

built are common techniques in computing; in particular, communications protocols.

39



3. ANALYSES

3.1 COMPARISON METHODOLOGY

3.1.1 Feature Comparison

The features of frameworks will be compared using the concepts developed by the
EIS study [Winner 1986a]. The major features discussed are:

"* Tool Integration

"• Data Exchange

"* Engineering Management Control

"• Luformation Management

"• External System Interface

"° Conformance to Standards

3.1.2 Discipline Comparison

The discipline comparison looks at the way that engineers have been trained to
organize their activities. Traditional disciplines include electrical engineering and mechan-
ical engineering. In each of these areas sub disciplines are active such as digital electronics
or IR sensor engineering. Each of these disciplines is distinguished by the development of
techniques for engineering solutions. These techniques frequently overlap with other disci-
plines, however in many cases the disciplines have unique problems that are addressed by
specific techniques.

For the purposes of this comparison the frameworks are compared against the fol-
lowing major disciplines to determine what general areas of engineering techniques are
supported:

a. Electrical Engineering

1. Digital

2. Analog

41



0

3. Microwave and Millimeter wave

4. Electromagnetics (Antennas)

5. Manufacturing

b. Electro-optics

1. Sensor Engineering

2. Communications

3. Cryogenics

4. Manufacturing

c. Mechanical Design

1. Mechanical CAD 2D/3D

2. Tolerance Analysis

3. Parametric Design

4. Physical Simulation

d. Manufacturing Engineering

1. Manufacturing Process Simulation

2. Statistical Process Control

3. Tachuchi /DOE Analysis

4. Cost Analysis

e. Software Engineering

1. Embedded Systems
0

2. MIS Applications

3. Testing/Verification/Validation

3.1.3 Market/Maturity Comparison 0

This comparison examines the current state of the frameworks. The frameworks
was analyzed for maturity categorizing each of the frameworks according to whether they

are in research, under development of actually available on the market. Where appropriate

individual parts of a framework may be in different stages of maturity.

42



The uMk for each of the fimeworks will be shown in Table 6 with a basic anal-

ysis of how widely the framework is applicable. Some frameworks may be so specific as to

have little general use.

3.2 DETAILED COMPARISONS

This section compares the frameworks following the methodology given in

Section 3.1

43



ail 0

in A2omG) 0

00

22
r~*

q2 u

a I. U w 4
s I 0 ý1-

tCC
M.~ .Li

U 44



*E 1
% ,1 .9 au•.•

* _ _ ___ • o ,_ __ i _...

Oa

~~its

..)

45



ý20

00

~0

* 46



S'

•i t

oB o

•g

47/



'Cc

WLU,

A
02 §

~Ca PA

01 ~ L~I
~c

for5 U

n ~ Sou= I
ca cn

U ;o

0~~ ____ IO48



* .s _ _ -, _ C.)+
E e! so e

[,.,

JA•

5 Cj

449

0 'A

** -~in

* S ~.C u

* - -0

.49



3.3 Market/Maturity Comparison

Table 5. Market/Maturity Comparison

Framework Maturity Market Tools Integrated

Falcon Commercially Available Not available More than 100 tools inte-
for two years ated

Design Commercially Available Not available More than 100 tools inte-
Framework UI (mature product) grated or encapsulated

OpenFrame Commercially Available Not Available Unknown

CFI Version 1 Standards 29 US members, 8 Euro- A number of tools are inte-
released Jan 1993. pean members and 12 grated into frameworks
Includes Design Repre- Japanese members. 8 of which are claiming CFI
sentations, Inter-Tool the US members are compliance. In general
Communication and sponsoring corporations. this means tool encapsu-
Tool Encapsulation and Some frameworks are lation rather than inter-
Computing Environment CFI compliant in a loose tool communication.
Services standards. manner, no separate

product.

PowerFrame Since Jan 1990 Had some difficulty mar- ECAD oriented
EDA Systems originally, keting framework. Pro/DEVELOP integrated

had on market for a few Cannot bundle tools as MCAD
years. EDA companies have SCRC Ideas tools

been able. Thermal Analysis

DICE Research Not Available In pilot study, wrappers
integrate spreadsheet.
CAD systems, finite ele-
ment modeling, finite
element analysis, CNC
tool path and Superplas-
tic Forming Analysis
Code applications for
particular design applica-
don.

VEHCILES Research, for past 6 years; Not available Weaves technology used in
proposal pending to sup- industrial setting to test
port additional work to alternative algorithms
permit transition to for target tracking;
industry, weaves used to simulate

avionics systems.

CV-DORS Commercially Available 120 Development Systems By 1/94, application tools
Release 3.0 shipping now Shipped will be available from:

Intelligroup,PDA, SILMA,
Pointcontrol, Wisdom 0
Systems, ICAD, and
RASNA.

50

50@



Table 5. Market/Maturity Comparison (Continued)

Framework Maturity Market Tools Integrated

ACIS Commercially available for 12 frameworks based on 3D MCAD (solid models)
past three years ACIS are now commer- FEA, FEM

cially available. Thermal analysis
200 development systems Surface modeling

shipped 90 applications Design rule processor
currently under develop- Parametric Design
ment Kinematic Analysis

Material Properties Mgr
Inertial & Mass Properties

Pro/ Commercially available Not available Pro/PDM, Pro/ENGINEER
DEVELOP

Arcadia Research Not Applicable A few for particular appli-
cations. In addition,
alternative tools have
been developed to evalu-
ate problems related to
tool integration.

ECMA PCTE A published standard. It is Software development ECMA PCTE does not
an evolutionary develop- environments are being specify or provide any
ment based on earlier actively marketed. There particular tools. IBM says
versions. An implementa- are three major compet- they are working with
tion is nearing release ing approaches: PCTE tool vendors to integrate
from IBM. based, systems based tools that support each

upon the Atherton Soft- phase of the software
ware-Backplane, and development lifecycle
message based systems. and that these tools will
Large development be delivered with the
groups in the US and release in September
Europe believe environ- 1993.
ments can have a
significant positive effect
on the delivery of soft-
ware products.

CORBA/ The CORBA specification It is conceivable that Not Applicable
IDL was published in 1991. CORBA could be used in

At this time there is no any situation where
commercially available applications, tools, serv-
implementation of ers, etc. need to cooperate
CORBA. Some vendors, by communicating via
such as DEC, are using objects. CORBA could
CORBA in the design of be integrated into many
integrated environments, of the other frameworks
The status of these mentioned here.
projects is not known.

51

0



4. SUMMARY

4.1 FRAMEWORK COMPARISON SUMMARY

The products that were examined varied in their type. Some of the frameworks
reviewed are software packages, others are software toolkits or suites with which to devel-
op frameworks, and others consist of a set of specifications to be used by framework devel-
opers. The frameworks reviewed range in maturity from proposals and pilot studies to
commercially available software packages. The VEHICLES system, for example, was an
early prototype system that was primarily a proposal for further developmenL

The frameworks reviewed were separable into distinct engineering disciplines.
They fell into three primary disciplines: ECAD frameworks, MCAD frameworks, and soft-
ware design frameworks. No frameworks were reviewed that spanned multiple disciplines
effectively. The comparisons between frameworks that were examined are given in Section
3, which provides detailed tables. There are a number of observations that we can make

about these frameworks. Some of these comparisons are summarized in Table 6.

Table 6. Framework Comparison Summary

* Type Maturity Discipline

Framework
*0

Falcon X X X X X

Design Framework I X X X X X

0OpenFrame XXX X XOpn~ x x x
CFI X X X

PowerFrame X X X

DICE X X X X X

53



Table 6. Framework Comparison Summary (Continued)

Type Maturity Discipline

Framework A

00

VEHICLE X X X

CV-DORS X X X

ACIS X X X X

Pro/DEVELOP X X X

Arcardia X X X

ECMA/PCTE X X X X

CORBA/IDL X X X X

4.2 CONCLUSIONS

Based on the authors' understanding of the Thrust 7 and ATD requirements, none
of the reviewed frameworks meet all of the perceived needs for a Thrust 7 and ATD frame-
work. These perceived needs include the need to design and analyze ATD products both

within and across engineering disciplines. 0

Several of the reviewed frameworks meet a subset of the perceived Thrust 7 needs.
The reviewed frameworks were each designed to meet the needs of a specific engineering
discipline. None of these frameworks were designed with the needs of Thrust 7 such as
product realization taken into consideration. 0

Since no single framework appears to meet all the perceived Thrust 7 needs, there
are three possible options for obtaining a framework:

1. Develop a new framework 0

2. Extend an existing framework

3. Federate several existing frameworks

54



It appears that based on current information, the best option will be the third, to fed-

erate several existing frameworks. The development of a new framework will likely be

inordinately expensive and time-consuming. Extension of an existing framework to cover

multiple engineering disciplines may be difficult since existing frameworks are heavily ori-

ented towards a specific discipline (in particular due to the data exchange), and most are

proprietary.

There were a number of trends that were observed in the reviewed frameworks. In

the ECAD community, the CFI standards are being readily adopted by all of the major

framework vendors. The CFI standards, however, address only a narrow range of the elec-

trical discipline. Future development of CFI standards appear to be forthcoming, but

progress is slow.

The MCAD community has progressed toward standards in the last few years, with

the ACIS and Pro/DEVELOP products being adopted by many of the MCAD vendors as

supported frameworks. Overall capabilities in the MCAD area still lag behind the capabil-

ities of the ECAD frameworks.

During this study no framework was found which supports the electro-optical dis-

cipline. It appeared as though no specific frameworks activity supporting that discipline has

been done. The authors suspect that existing ECAD frameworks are able to support much

of the needs for Electro-Optics, but this has not been verified. Frameworks are configured

to an engineering discipline mostly by the choice of data exchange standards. The data

exchange standards tend to be applications specific. This has tended to limit the range of

applications that specific framework products address.

Software engineering frameworks tend to support an engineering methodology that

is very different from frameworks which cover other disciplines. No couplings of software

engineering frameworks into other disciplines was found. Weak couplings of electrical and

mechanical frameworks occur in thermal analysis, electronic circuit packaging analysis

and some simple electromagnetic support (such as interconnect analysis). Some concern is

warranted about the coupling of software engineering frameworks with electrical, electro-

optic and mechanical frameworks.

No frameworks were examined w, •ch spanned multiple disciplines (i.e., electrical

and mechanical). Hence, no single exiswig framework is expected to meet ATD needs. The

authors expected that several frameworks would need to be combined to meet ATD needs.

55



R

Electromagnetics is an important domain which spans the ECAD and MCAD dis-

ciplines, since it employs significant 3-D modelling. Electromagnetics is a potential area to

bridge the electrical and mechanical engineering disciplines. No particular frameworks 0

were found to address this bridge, although some electromagnetic analysis tools are avail-

able on ECAD frameworks. Further study is needed in this area. No specific framework

support for Electro-optics was found, although the support may simply be an extension of

current electrical and mechanical capabilities. 0

The product realization support found in this study has been limited. Although
many of the frameworks address the design phases of product realization, only limited

capabilities were shown in conceptualization or manufacturing. To a great degree the sup-
port found in this area tended to be tools such as virtual manufacturing simulation rather
than support for data exchange with Computer Integrated Manufacturing (CIM).

The technology for creating frameworks of frameworks is still not well understood.
Products such as OpenFrame use multiple framework products to create a single frame- 0
work. However the techniques that could be used by the ATDs to create a framework of

frameworks is not apparent.

The software engineering technologies of wrappings, wrappers, and weaves as
described in the VEHICLES pilot study show promise as a method of creating frameworks, 0
perhaps in an automated fashion. However, these technologies are very immature and
would require significant further development before they could be considered for use in

building frameworks.

4.3 1,)URE EFFORTS

As stated previously, this study reviewed a varied set of frameworks, but not all

frareworks. Future extensions of this type of study should complete the overview of
frameworks to consider all of the available relevant frameworks and technologies. There 0
are several frameworks that were identified but not reviewed due to time constraints. Of
specific interest are CIMOSA, OctTools, Nelsis and PDFab. Twelve commercially avail-

able frameworks, as listed in Table 3,were developed on the ACIS framework toolkit, but
none were reviewed for this strategy. 0

There is a great deal of important work in standards that directly leverage frame-

works. The VHDL standard has been very successful for digital electronic information

exchange. Correspondingly PDES/STEP shows much the same promise in the mechanical

56



domain. A more thorough examination of standards should be done in conjunction with the

frameworks examination.

This study needs to be extended to make recommendations for frameworks for the

ATDs. An analysis of ATD requirements needs to be done in order to properly recommend

a framework that meets those needs. The current ECAD and MCAD technology used in any

ongoing ATD activities needs to be taken into consideration in any ATD framework recom-

mendations.

A completed review of frameworks technology needs to be performed, extending

the work in this document to cover all relevant frameworks and associated technology

(such as standards). In order to achieve greater depth of analysis, access to more complete

documentation and to the actual software tools should be obtained.

An initial analysis of a set of candidate frameworks should be performed based on

the availability of detailed and accurate information. This analysis should identify a subset

of promising framework technologies that should be analyzed in greater detail. These

detailed analyses could involve steps such as evaluating the products at a site where they

are in use, using the products for a benchmark design, evaluating documentation, and inter-

viewing users. Appropriate consideration would need to be given to market directions and

emerging technologies.

Based on the statement of ATD needs and this more detailed analysis, recommen-

dations could be made on how framework technologies could meet ATD needs.

It is expected that final recommendations on frameworks will require the integra-

tion of multiple framework technologies since no single product appears to be general

enough to satisfy ATD needs. A major concern in making framework recommendations is

that the selected ATD framework helps to achieve the product realization goals including

conceptualization and manufacturing.

57



LIST OF REFERENCES

[Bellman 1991] Achieving Openness and Flexibility in VEHICLES, K. L. Bellman, A.

Gilliam, The Aerospace Corporation, 5 Sep 1991.

[Bellman 1993] Enhancing and Transitioning Vehicles: A Flexible Parametric Design

Environment, BAA Proposal: Kirstie Bellman, et al. The Aerospace

Corporation, March 12 1993.

[Brown 1992] Software Engineering Environments: Automated Support for Software

Engineering, Alan W. Brown, Anthony N. Earl, and John A. McDermid,

McGraw-Hill, Company, 1992.

[CFI 1990] CAD Framework Users, Goals and Objectives, Version 0.97, CFI,

August 10, 1990.

[CFI 1991a] Semiconductor Wafer Representation Architecture, version 1.0, TCAD

Framework Group, Semiconductor Wafer Representation Working

Group, CFI, Austin, TX.

[CFI 1991b] Current Concepts in Semiconductor Process Representation, Version

0.2, February 22, 1991, Semiconductor Process Representation, TCAD
Frameworks Working Group, CFI, Austin, TX.

[CFl 1993] The CAD Framework Initiative, Enabling CAD Tool Integration, CFI,

Austin, TX, March 12 1993.

[Czechowski 1989]

Red Book on Functional Specifications for the DICE Architecture,

Joseph Czechowski, et al., Joseph Cleetus, eds, February 28 1989.

[CORBA 1991] The Common Object Request Broker: Architecture and Specification,

OMG Document Number 91.12.1, Revision 1.1, the Object Manage-
ment Group and X/Open, 1991.

[DEC 1991] PowerFrame Handbook, Digital Equipment Corporation, 1991.

59



[Gorlick 1991] Using Weaves for Software Construction and Analysis, Michael M.

Gorlick, Rami R. Razouk, The Aerospace Corporation, Proceedings,

IEEE 13th International Conference on Software Engineering, May

13-17, 1991.

[Heystek 1987] An Analysis of the DoD Engineering Information System as a Frame-

work for Software Engineering, IDA Paper P-2025, Deborah Heystek

and Robert Winner, 1987.

[McGrath 1993] Technology for Integrated Product/Process Design, ARPA Tech Coun-

cil Review, Michael McGrath, June 14, 1993.

[Nash 1987] EIS Standards and Specifications: Preliminary Study, IDA Memoran- 0

dum M-281, Sarah Nash, Katydean Price, and Joseph Linn, 1987.

[Rolfe 1990] Interim Status and Recommendations for the Engineering Information

System (EIS) Program, IDA Document D-693, Robert Rolfe, Dennis

Fife, Edgar Sibley and Herbert Brown, 1990.

[Weisberg 1992] David E. Weisberg, ed., Engineering Automation Report, December

1992.

[Winner 1986a] The Department of Defense Requirements for Engineering Information
Systems (EIS), Volume I: Operational Concepts, IDA Paper P-1953,
Robert Winner, Joeseph Linn et al, 1986.

[Winner 1986b] The Department of Defense Requirements for Engineering Information

Systems (EIS), Volume HI: Requirements, IDA Paper P-1953, Robert

Winner, Joseph Linn et al. 1986.

60


