Areso)
UNCLASSIFIED ot 38wt |

>

AD-A275 992
MERRENR

IDA DOCUMENT D-1439

A COMPARISON OF
PRODUCT REALIZATION FRAMEWORKS

Harlow Freitag, Task Leader

Brian S. Cohen
Earl Ecklund
Michael Frame
Michael W. Marean
Stephen Yencho

October 1993

%00 9406049
T

Prepared for
Advanced Research Projects Agency

.~
© A
Q4 ¢ 24

dxd e o

o
012

Approved for public releass; unlimited distribution: 30auuiERNNR

INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street. Alexandria, Virginia 22311-1772

UNCLASSIFIED IDA Log No. HQ 83-044605

Best
Available

Copy

DEFINITIONS
1A publishes the following documents to report the resuits of its work.

Reports

Reports are the most suthoritative and most carefully considered products 1DA publishes.
They normally embody resuits of major projects which (a) have a direct bearing on
decisions affecting major programs, (b) address issues of significant concern to the
Exscutive Branch, the Congress aad/or the public, or (¢c) addrass issues that have
significant aconomic implications. 1DA Reports are reviswed by outside paneis of experts
to ensure their high quality and relevance to the problems studied, and they are released
by the President of IDA.

Group Reporis

Group Reports record the findings and results of iDA established working groups and
paneis composed of ssnior individuals addressing major issues which otherwiss wouid be
the subject of aa IDA Report. IDA Group Reports are reviewed by the senior individuals
respongible for the project and others as selected by IDA 1o ensure their high quality and
relevance to the problems studied, and are released by the President of IDA.

Papers

Papers, also authoritative and carefully considered products of IDA, address studies that
are narrower in scope than these covered in Reports. IDA Papers are reviewed to ensure
that they meet the high standards expected of refersed papers in professional journals or
formal Agency reports.

Documents

IDA Documents are used for the convenience of the spoasors or the analysts (a) to record
substantive work done in quick reaction studies, (b) to record the proces” ngs of
conferences and meetings, (c) to make available preliminary and tentative results of
analyses, (d) to record data developed in the course of an investigation, or (¢) to forward
information that is essentially unanalyzed and unsvaluated. The review of DA Documents
is suited to their content and intended use.

The work reported in this document was conducted under contract MDA 903 89 C 0003 for
the Department of Defense. The publication of this IDA document does not indicate
endorsement by the Department of Defense, nor should the contents be construed as
reflecting the official position of that Agancy.

© 1983 Institute for Defense Analyses

The Government of the United States is granted an unlimited licenss to reproduce this
document.

REPORT DOCUMENTATION PAGE

“Form

OMB No. 0704-0188

Peblic reporting burden for this collection of information is sstimated 1 average 1 howr per .

completing
phrs ; o for o this burd e
mm.wlm.mmwm:»mm;&w

the time for
COmMments

Sarvices, Disectorase

Budget, Paperwork Reduction Project

oxisting dats sources,
i ndlmlzlsh:n:
anmation
(O700.0188), Whaingion, DX 20503

1. AGENCY USE ONLY (Leave blank) 2.REPORT DATE

October 1993 Final

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE
A Comparison of Product Realization Frameworks

S. FUNDING NUMBERS
MDA 903 89 C 0003

ARPA Task Number A-163

6. AUTHOR(S)
Brian S. Cohen, Earl Ecklund, Michael Frame, Michael W. Marean,
Stephen Yencho

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Defense Analyses (IDA)
1801 N. Beauregard St.
Alexandria, VA 22311-1772

8. PERFORMING ORGANIZATION REPORT
NUMBER

IDA Document D-1439

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Advanced Research Projects Agency

Software and Intelligent Systems Technology Office
3701 N. Fairfax Drive

Arlington, VA 22203-1714

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; unlimited distribution: 36-Becemberi993

12b. DISTRIBUTION CODE
2A

13. ABSTRACT (Maximum 200 words)
In 1991 DoD established seven key science and technology thrust areas to

potential components of a DoD Thrust 7
activities for the Advanced Technology
m?ucm and “frameworks™ and is not intended to be either complete

eworks were each designed to meet the needs of a specific

assist in planning for investment in

defense technology. The goals of Thrust 7 are to develop new industrial capabilities that will lower product
unit costs and life-cycle costs, shorten the lead time in design and manufacture of products, and increase
product quality. This document reviews a set of software products, applications and standards which are

uct realization infrastructure to support design and manufacturing
monstrations (ATDs). This study is a quick sampling of software

or comprehensive. The reviewed
engineering discipline. No final

recommendations or judgements about particular frameworks were made since a rigorous and detailed analysis
of requirements has not been performed. None of the reviewed frameworks met all of the perceived needs for
a Thrust 7 and ATD framework, such as the need to design and analyze ATD g’oducts both within and across
engineering disciplines. The best option for obtaining a product realization framework to accommodate the
Thrust 7 needs appears to be the federation of multiple existing framework technologies to achieve the needed
capabilities. Future work should ihclude the extension of this study to cover all relevant frameworks and
associated technology. The Thrust 7 ATD requirements should be analyzed in order to properly recommend a
framework that meets those requirements.

14. SUBJECT TERMS
Product Realization; Frameworks; Computer-Aided Design; Manufacturing.

15. NUMBER OF PAGES
78

16. PRICE CODE

" .."SECURITY CLASSIFICATION
OF REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT
Unclassified

20. LIMITATION OF ABSTRACT
SAR

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102

——
UNCLASSIFIED

IDA DOCUMENT D-1439

A COMPARISON OF
PRODUCT REALIZATION FRAMEWORKS

Harlow Freitag, Task Leader

Brian S. Cohen
Earl Ecklund
Michael Frame
Michael W. Marean
Stephen Yencho

October 1993

Approved for public release; uniimited distribution: (JfheClater@ee””

2

INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 89 C 0003
ARPA Assignment A-163

UNCLASSIFIED

PREFACE

This document was prepared by the Institute for Defense Analyses (IDA) for the
Advanced Research Projects Agency under the Task Order, Technology for Affordability,
and fulfills an objective of the task, *“to develop and recommend common approaches and
metrics for the infrastructure support of Thrust 7 pilot projects.” This document was writ-
ten in response to a request from the sponsor to examine a selected set of product realization
frameworks for application to Advanced Technology Demonstrations.

The following IDA research staff members were reviewers of this document: Dr.
Dennis W. Fife, Ms. Deborah Heystek, Dr. Asghar 1. Noor, Dr. Karen J. Richter and Dr.
Robert M. Rolfe. Dr. Robert 1. Winner of the Center for High Performance Computing
provided additional review comments.

Accelsion Yor

NTIS GRA&I

DTIC TAB 0
Unannounced 0

Justidieation

By
%15\:1*1?1_;}}09[o

v Avellability Qodes
}Avai?. am,‘oi‘
Dist | spscial

AR

EXECUTIVE SUMMARY

DoD has established seven key science and technology thrust areas to assist in plan-
ning for technology investments related to defense. The Thrust 7 goals are to develop new
industrial capabilities that will lower product unit and life-cycle costs, shorten the lead time
in design and manufacture of products, and increase product quality. This document
describes and compares a number of computer frameworks used to design and manufacture
products in the context of the Thrust 7 goals.

These frameworks consist of standards and software which allow computer-aided
design systems, analysis tools, and modeling and manufacturing tools to cooperate and
appropriately exchange information. The development of frameworks has the potential to
significantly improve the cost effectiveness of computer tools by allowing tools to be devel-
oped and distributed independently, allowing interoperation of tools from different sources.
This study initially examined a small set of frameworks at the request of the sponsor, but
was expanded to a wider range of frameworks from three primary domains: electrical,
mechanical and software engineering.

The frameworks examined varied in maturity from research efforts to commercial
products that have been on the market for several years. The frameworks were historically
developed to address issues within specific disciplines, such as electrical engineering, and
frameworks strongly clustered around these disciplines. Modern product realization needs
the ability to span all of these disciplines and this appeared to be a major problem facing
all of these frameworks.

Some industrial trends in the area of framework technology are becoming apparent.
One of these trends is standardization on interoperability issues. The CAD Framework Ini-
tiative (CFI) is an industrial cooperative effort to standardize on interoperability areas for
primarily electrical engineering. Most electrical engineering framework developers are tak-
ing part and adhering to the CFI directions. The mechanical Computer-Aided Design
(CAD) community has progressed toward standards in the last few years, with the ACIS
and Pro/DEVELOP products being adopted by many of the MCAD vendors as supported

frameworks. Overall capabilities of mechanical CAD frameworks lag behind the capabili-
ties of the electrical CAD frameworks.

No single framework appears to meet all the perceived Thrust 7 needs, which
include interdisciplinary design and analysis capabilities. There are three possible options
for obtaining a framework:

1. Develop a new framework
2. Extend an existing framework
3. Federate several existing frameworks

It appears that based on current information, the best option will be the third, to fed-
erate several existing frameworks. The development of a new framework will likely be
inordinately expensive and time-consuming. Extension of an existing framework to cover
multiple engineering disciplines may be difficult since existing frameworks are heavily ori-
ented towards a specific discipline (in particular due to the exchange of data between dis-
cipline specific software), and most are proprietary.

The product realization support found in this study has been limited. Although
many of the frameworks address the design phases of product realization, only limited
capabilities were shown in conceptualization or manufacturing. To a great degree the sup-
port found in this area tended to be tools such as virtual manufacturing simulation rather
than support for data exchange with Computer Integrated Manufacturing (CIM).

Further study is needed to identify a frameworks strategy that can effectively meet
the Thrust 7 ATD needs, while remaining a cost effective alternative. The unification of the
electrical, mechanical and software engineering areas will be a central problem. Innova-
tions in framework technology in the areas of conceptualization and manufacturing will

also be important.

Table of Contents

1. INTRODUCGTION ...ccverieeereeresrerasnsssaseesesssssssssssossssessessssssssessesssssessasssnsssensssnanassssasssses 1
1.1 PURPOSEcooveeeerrereereraeeressessssesssssssssssessosssssssssssesssssessassesssasssssssessassasssnsssasaans 1
1.2 APPROAGCHuoerreriererenreseenessossaessssssessisussssssssssssssesssssesssssssesssssssssssesassassosasns 2

1.2.1 SCOPE .vcereeecncsrencrmsennissnsssenessssssssssssssssanasassssassssessssasessssnstnssssssassssersmsssssscsssas 3
1.3 BACKGROUNDoouvveeererreneressssesssssosssessssnsasssssssssssssnssssssassasesssssssssssasssssssssasass 3
1.3.1 Thrust 7 and ATD CONLEXLccceeeemrererecsressnessesssssssasssnssssssnssmsssessssssossossossass 3
1.3.2 Product REALIZAUONcceeeereeseermseccssasrecsorenscssesusssesncssscssssessnossosossnsssessans 4
1.3.3 Design Automation EVOIUtiONcccveumneiiereiieninnicnnincirecnnscnistnnssnnrenecacacncns 6
1.4 FRAMEWORK CONCEPTScceieeiinincnessssnisassistssessssssassisssssssssmssessosssssasans 8
1.4.1 Motivation for Using Frameworkscccceeverierenriennenvsssinnesennenneesesnecnes 9
1.4.2 FrameworK GOALSccocevuecmecnrnecsersacscetssssecsesssisseessersesssessesssssnasssnsssnns 10
1.4.3 Definition Of TEIMSccoevierrcecereencrsmssecsarssressessessessassasessosserssssansasssnssens 11
1.4.4 Supporting Cooperative WOrKcccoceeeciveerensnsnsnsnsessscsisssccssnsnsninrecaens 12
1.4.5 Functions of a8 FTameWOIKccocverneeninneinsinssieseessnsssessnssnnessesssesssmenees 13

2. FRAMEWORK DESCRIPTIONScocctniiinnrnnssinressessisassasssnsensssessassessasaessaseas 17

2.1 OVERVIEWotoirireererieseseessesessmostonssasssssssssastossssssssssessosssssassessassssassnssessssass 17
2.1.1 Falcon Framework (Mentor Graphics)coeeeeivucsecsunsensnesneesaessesansssneans 18
2.1.2 Design Framework II (Cadence)occoveeemeuennerereerenernsnesesnnscsnnscsnssuennass 20
2.1.3 OpenFrame (VIEWLOEIC) ..c.cccvrevuerererrennennnenensenetnsstsiesesnssensessossscnsasssacecsnss 22
2.1.4 CFI (CAD Framework INItHatiVe)cccccrrvecrcnnssnssnnnsssssseesssesssanssnsssnsasaeses 23
2.1.5 PowerFrame (DECQC)cvveerreernicccnncnseaccsnnesesssssnssossesssssssssssssssssasessnsesnss 25
2.1.6 GE/AE DICE (GE) eretnersereeseesenesnssassernestensesssnsastns 26
2.1.7 VEHICLES (Aerospace Corp) tesvessseeessesesereessntessasassnnssens 27
2.1.8 CV-DORS (Computer ViSiOn)cccccveesesaesecsnisussnesessessasansssssessessessasense 29
2.1.9 ACIS Geometric Modeler (Spatial Technology, InC.)cccceceveverrannnnnencencns 31
2.1.10 Pro/DEVELOP (Parametric Technology Corporation)ccceeeeeueuvennes 34
2.1.11 Arcardia (The Arcadia CONSOTHUMY)ccceeerceeccancssnacsasssssssesansssssassssesaes 35
2.1.12 ECMA/PCTE (The European Computer Manufacturer’s Associa-

tion) eresestessenesnestessententsenteseertestastatseerasanannesesrasssesesas sttt satteatassssrbeats 36
2.1.13 CORBA/IDL (The Object Management Group (OMG))cccecevrervunneas 37

3. ANALYSESocveireiicisrestisuessossssssaesnssassossssesssssssasasssassssssssssssssssassasasssnessssasssssassssss 41

3.1 COMPARISON METHODOLOGYcccoovseeursunsencansesaesessasansssssassessssasssansassnsses 41
3.1.1 Feature COMPATISONccccccceereeseesessessssssssssosessssssnsssssssssssssesssasssssssassessssnss 41
3.1.2 Discipline Comparison - reevessenasstesnsnsentasssanstsatese 4]
3.1.3 Market/Maturity Comparison veereesaeennenes 42

3.2 DETAILED COMPARISONS . eeeneseennessersensestsnseneraessasnessesassssssnssanaene 43
3.2.1 Feature Comparison veeeseenaseasenresaesnressensessnesasestaseres - 44
3.2.2 Discipline COMPALISONcccceeersenienscsesssssesssasssosasssssssssases . .. 48

vii

Table of Contents

..

4.1 FRAMEWORK COMPARISON SUMMARYccvnrriensenncniesenerecccrannes

4.2 CONCLUSIONS

viii

List of Figures
Figure 1. Product Realization ProCessccouuuimeerennrecernirierenserernsensesneseseesessesensenseneses 5
Figure 2. Structural View of @ Frameworkccoevveeeeriniinenennneneneeseneesesrseensnesensens 9
Figure 3. Current-State-of-Practice for Use of a Frameworkc.coceeeciiveeccnennnnnnnnene. 12
Figure 4. Framework Function Architectureccoccoveerevrcrereceesencsreseerassssnessessensenss 13
Figure 5. Levels of Data EXChange.........ccccovceinriniireerenrennnsessssseseesenteneseessesesssesesssssene 15
Figure 6. OpenFrame AICRiteCturecceiueuiiecrenecrceenenaecnesesesesensannsessseassesensnssnnns 23
Figure 7. CFI Framework Architecture Reference...........ccocueeevveveerennenrncvenenncnecnennnn, 24
Figure 8. ACIS System ATCRItECIUTEccccuirrrurrrrrrrsrieseenreressersseresesessnersssessreseessessees 32
Figure 9. CORBA ATCRILECIUTEcceueeeersceuernnrernrnesessessesessssesesseseosesssssnssesssesssssssonesees 38
ix

List of Tables
Table 1. CV-DORS Application TOOIS..........ccecevverecrunrinenenneeseerrnneesessisscsensensonsssssonsans 31
Table 2. ACIS-Based Commercially-Available Frameworksc.cccooeeennruecccrnennnns 33
Table 3. Feature COMPATISON.........ccoeteerresrscssinreenssiossenisarsansssessesensessessssessensesesssosenee 4
Table 4. DisCipline COMPATISONccoceereerrerunriinenuninrinincnssecsscmmcretssssestererssessssssssanes 48
Table 5. Market/Maturity COMPATISONc.cccecreerrieesinersenseesessosrssssssssessesessesessssessaen 50
Table 6. Framework Comparison SUMMATrYcccceoveieeerenrnressrsnnrsessereesensensesserssssessoses 53

1. INTRODUCTION

1.1 PURPOSE

The purpose of this study is to provide initial evaluations of a set of software prod-
ucts, applications and standards as potential components of a DoD Thrust 7 product real-
ization infrastructure to support design and manufacturing activities for Advanced
Technology Demonstrations (ATDs). This study is a quick sampling of software products
and “frameworks,” and is not intended to be either complete or comprehensive. No final
recommendations or judgements about particular frameworks are made since a rigorous
and detailed analysis of requirements has not been performed. The study draws some initial
conclusions about promising applications and frameworks, and recommendations about
additional research that should be performed to support decisions about useful components
of a Thrust 7 infrastructure.

This document has been prepared in response to a request for a comparison of a spe-
cific set of frameworks. The original list of comparison subjects included the GE/AE DICE
framework employed in the GE Aircraft Engines pilot study, the framework described in
the Aerospace VEHICLES proposal to ARPA, the CAD Framework Initiative (CFI), the
Falcon framework, CV-DORS, the Rapid Response Manufacturing (RRM) framework, and
Arcadia. The study team was unable to obtain sufficient information on the RRM frame-
work to support any evaluation.

The study team expanded the initial list of frameworks for review based on a
request from the sponsor for increased breadth of the study. The additions appear in the list
shown below. The list below does not encompass all of the currently available frameworks.
Rather, this list was compiled as a preliminary survey. The following frameworks and sets
of specifications are reviewed:

a. Electronic Design Frameworks
4. Falcon (Mentor Graphics)
5. Design Framework II (Cadence)

6. OpenFrame (ViewLogic)

7. CFI (CAD Framework Initiative)

8. PowerFrame (DEC)
b. Mechanical Design Frameworks

1. GE/AE DICE (GE)

2. VEHICLE (Aerospace Corp.)

3. ACIS (Spatial Technologies)

4. CV-DORS (Computer Vision)

5. Pro/DEVELOP (Parametric Technologies Corp.)
c. Software Design Frameworks

1. Arcardia (The Arcadia Consortium)

2. ECMA/PCTE
3. CORBA/IDL (Object Management Group)

1.2 APPROACH

This study examines the infrastructure needed to support the automation of the
product realization process. The use of a framework to at least partially fulfill the infrastruc-
ture requirements is examined. It should be understood that currently the development of
advanced products in many areas requires extensive use of design automation tools. The
infrastructure allows an automation environment to be created in a manner that is moduiar,
extensible and particular to specific needs while taking advantage of shared resources.

The reviews of frameworks in this document are broad, and made without the ben-
efit of a detailed review of Thrust 7 ATD requirements. This review is not complete; only
a representative sample of frameworks was chosen due to time constraints. The authors
have not seen actual demonstrations of the software described. Rather, this document was
compiled from product information, product reviews, and personal communications with
the developers. Additional sources of information include journal articles and product man-
uals.

1.2.1 Scope

This study is a short survey of the available frameworks. It examines the frame-
works from several different points of view. The Engineering Information System (EIS)
document [Winner 1986a] is used as a guide to assess the basic features of the frameworks.
These EIS concepts are discussed in the context of the product realization process. A com-
parison of the frameworks based on the analysis of features is performed.

The application of the selected frameworks to various engineering disciplines is
examined. The traditional Electrical Design Automation (EDA) frameworks are compared
to other frameworks developed for software and mechanical engineering. Finally, a basic
market and maturity analysis is performed. This will help in understanding how ready a
framework is for immediate use.

A more detailed discussion of the comparison method is given in Section 4.1.

1.3 BACKGROUND

1.3.1 Thrust 7 and ATD Context

The “Strategic Framework for Defense Science and Technology” was enunciated
by the Deputy Secretary of Defense in December 1991 as a means of DoD planning for
investment in technology related to defense needs. The strategy document establishes 7
thrust areas. Five of these thrust areas are defined to deal with technology directly related
to war fighting capabilities. They are global surveillance and communications, precision
strike, air superiority and defense, sea control and undersea superiority, and advanced land
combat vehicles. Two additional infrastructure thrusts are defined to support these five war
fighting thrusts. Thrust 6 focuses on synthetic environments. Thrust 7 addresses technology
for affordability.

Thrust 7 addresses the application of technology to increase hardware and software
system-life-cycle affordability. The goals of Thrust 7 are to develop new industrial capabil-
ities that will lower product unit costs and life-cycle costs, shorten the lead time in design
and manufacture of products, and increase product quality. The goals are being pursued by
promoting the expanded use of integrated product/process development (IPPD) methods in
design and manufacturing of products for DoD and by efforts to demonstrate fiexibie dual-
use manufacturing that permit production of defense products by factories that concurrently
produce commercial products or utilize new design manufacturing techniques. In addition,

the development of information integration both within and among companies will pro-
mote effective teaming and reduce overhead expenses [McGrath 1993].

A set of Advanced Technology Demonstrations (ATDs) are planned as part of
Thrust 7 to begin to implement these objectives. Several ATDs focus on missile seekers and
their components. The Flexible Design and Assembly of Missile and Munitions Seekers
(FDAMMS) ATD is focused on mechanical engineering and system integration issues
involving seeker components including gimbals, optics and motors, IR sensors and signal
processors. The Rapid Prototyping of Application Specific Signal Processors (RASSP)
ATD is focused on improved design and manufacture of signal processors employed in
seekers. The Infrared Focal Plane Array Flexible Manufacture (IRFPA-FM) ATD addresses
design and manufacture of Detector/Dewai ¢ - guired for seekers. The Interferometric Fiber
Optic Gyro (IFOG) ATD covers production of IFOG rate sensors that are used in stabiliza-
tion of the seeker. The Active Electronically Scanned Arrays (AESA) ATD addresses elec-
tronic components used in applications such as fire-control radar.

These ATDs are addressing the development of automated tools and work environ-
ments as part of their strategy to achieve new efficiencies in design and production of these
specific target products and to achieve “first-pass” successes.

The target products of the ATDs involve engineering disciplines of many types,
including, at the highest level, mechanical, electrical, optical and software disciplines, with
many sub-disciplines at lower levels. Tool and software development to serve these design
environments will need to address the ATD-specific requirements stemming from the
diverse engineering and product assembly problems.

In the context of the set of ATDs described above, and of the ATDs position as both
customer and suppliers of products, the question of shared infrastructure naturally arises.
The sharing of resources, tools and standards increases opportunities for efficient exchange
of product requirements, design and performance information that will contribute to the
improvement of product quality, reduction of product cost and reduction of schedule. Such
sharing will also reduce costs incurred as a result of unnecessary duplication of analogous
or identical capabilities.

1.3.2 Product Realization

Product realization has developed significantly over the last few decades allowing
an engineer to design and manufacture a product by using a computer to create the design,
predict its behavior and plan and control its production. In the last decade computer-aided

4

design tools have become a necessary part of the capabilities used to develop advanced
products in fields such as digital electronics and structural design. The number of tools
available to the engineer is large and the interaction of all of these tools used together is
problematical. A shift in the use of these tools is occurring. That shift is away from design-
ing for a fixed process vowards designing processes concurrently as part of the product real-
ization process.

A theme has been developing over the decades as products are designed conceptu-
ally rather than experimentally. It is now common practice to have an engineer design cer-
tain kinds of electronic products using simulation effectively to achieve “first-pass” success
producing the desired product without tuning or adjustment of the fixed manufacturing pro-
cess. The expansion of this idea into wider application offers significant opportunities for
affordable, timely, higher quality and more maintainable products. The challenge is to
achieve similar dramatic “first-pass” success in the context of products containing mechan-
ical, optical, and software components in addition to electrical components.

One concept of a product realization process [McGrath 1993] is shown below:

Virtual and Physical Pre-Production
Prototyping Test & Evaluation
.() Conceptual Detailed Manufacturing
Functional g, & ' Factery | .
Requirements | Parametric Conﬁgl!:anm Software > Operations _>Pmduct
Design Design Generation Delivery
. Factory
Manufacturing Process h
Planni e & Tooling
g Configuration

Figure 1. Product Realization Process
This view of the product realization process explicitly recognizes the interactions
among product conceptualization, design and manufacturing activities. These activities
have traditionally been totally separate. Significant effort has been expended in transition-

#5

ing between them. Major product development costs have been incurred from inabilities to
understand the effects of early design decisions on “downstream” engineering and manu-
facturing operations.

1.33 Design Automation Evolution

Cooperation of the separate processes involved with conceptualization, design and
manufacture of a product through effective exchange and management of product informa-
tion is the goal of a successful framework.

One means for achieving the needed sharing of product information is to create a
monolithic piece of software that shares its product information data structures with all the
algorithms required for each of the engineering disciplines involved with product realiza-
tion. The difficultics of implementing such a piece of software during a time when product
and process representations are evolving and when new software functions are being cre-
ated have led to an alternative approach: the use of a set of distinct design and analysis tools
that can interact efficiently, evolve smoothly over time, and together provide all the needed
functions. Once the assumption is made that multiple vendors will write software that must
cooperate, the need for standard interfaces and for a common operating environment for
their products is established.

This argument for standards and a common operating environment is supported by
the history of the earlier evolution that occurred in the Electronic Computer-Aided Design
(ECAD) community which has been struggling with many of these issues. Product com-
plexity, the expense of manual design techniques, and shrinking time-to-market windows
drove the need for design automation for integrated circuit design. In the mid 1980s strong
couplings of particular design automation tools were developed, in particular linking sche-
matic editors, simulation tools and layout tools. These integrations used proprietary trans-
fer formats such as netlists, GDS-II, and Gerber formats. Further developments also sought
to encode strict methodologies into the tools so that correctness could be checked with
respect to the manufacturing process.

A decade ago integrated clectronic design automation systems were constructed by
individual vendors. Mechanical design automation systems were created in the same way.
These initial integrated systems were monolithic. In the last decade, a number of propri-
etary ECAD frameworks were developed that used tool and data integration techniques to
allow different software tools to interoperate. These systems were generally closed and new
tools could only be effectively integrated by the original vendor, or by using special

translators. In the last few years a number of efforts have led to the emergence of both
ECAD and MCAD frameworks which are open and extensible.

Initial framework concepts originated in the late 1970s and early 1980s. In the mid
1980s, a group of DoD, government, commercial and academic interests met to focus these
framework ideas. This effort resulted in the publishing of a report giving a vision of a
framework [Winner 1986a/b], much of which still holds very true. Some of what was envi-
sioned at that time has actually come to fruition and is available commercially. Other parts
of the framework vision still lack implementation.

Several of the Electronic Design Automation (EDA) vendors have made significant
progress in developing open frameworks. These frameworks generally address the question
of how to integrate the vendors’ suite of design automation tools, and how to integrate the
customer’s in-house tools and third party tools into the mainline vendor’s environment.
Many of these framework products do not address other product realization problems such
as process modelling and policy enforcement. Frameworks which support Mechanical
Computer-Aided Design (MCAD) have lagged EDA systems partially due to the greater
difficulty in representing three dimensions, lack of effective representation abstractions and
the problem that there are many more mechanical manufacturing processes than there are
clectronic manufacturing processes.

A measure of the motivation behind frameworks in the EDA community is the for-
mation of the CAD Framework Initiative (CFI) in 1988. This alliance of commercial inter-
ests seeks to develop open common framework standards and interfaces, allowing vendors
to develop frameworks and design automation tools that are interchangeable. This effort is
a strong influence in the EDA framework community, but is clearly driven by the commer-
cial interests of its participants.

The development of effective data exchange standards has been beneficial beyond
the focused application in frameworks. The development of VHSIC Hardware Description
Language (VHDL) in the 1980s has recently begun to change the way the products are real-
ized. The success of VHDL has led to a growth in the number of standards efforts. An ever
increasing number of data exchange standards are being developed with a better under-
standing of how a data exchange standard should be developed and managed. The informa-
tion modelling language Express and Express-G are being used in a number of efforts
(specifically CFI and EDIF respectively) to understand the information model and eventu-
ally to understand how different languages and formats are related. Despite the deficiencies

of these first efforts, the piecing together of languages and formats to achieve a particular
data exchange between applications is still an art today.

MCAD systems historically were developed by vendors implementing the entire
software system as a tightly integrated set of proprietary modules. Some vendors even
developed their own operating system software, as the only means of obtaining acceptable
performance and complete functionality in such areas as file management and display inter-
action. In recent years, hardware and software vendors have significantly improved the
general capabilities of platforms, so no support in these areas is needed. This trend has pro-
gressed through uniform operating systems to a wide range of common standards and ser-
vices that are available today.

Both ECAD and MCAD have benefited by a plethora of independent tools that have
been developed to solve specialized application specific problems.

Complementing this improvement by the hardware vendors is a growing number of
firms that provide specialized component software packages. Heavy users of design auto-
mation began to identify that monolithic design automation environments were too expen-
sive to develop and maintain, and that the availability of modular design automation
capabilities was an opportunity. The concept of a framework as a general software archi-
tectures needed to support the automation of the product realization process has matured
over the last ten years.

1.4 FRAMEWORK CONCEPTS

A framework may be viewed as an architecture for integrating an enterprise. It con-
sists of several major components which are visible from different views of the architec-
ture. One view is the structural view of a framework, showing the relationship between
tools and the framework which is shown in Figure 2.

/ T3 % /S
1
/ Methodology Management

User Interface

Intertool
Communication

Figure 2. Structural View of a Framework!

1.4.1 Motivation for Using Frameworks

The DoD Science and Technology (S&T) Thrust 7 is an effort to make systems
affordable, primarily by reducing the cost over the life cycle of systems. The application of
affordability concepts to the Advanced Technology Demonstrations (ATDs) is the focus of
this paper and the focus of this motivation.

The motivation behind frameworks is described very effectively in [Winner 1986a].
The goal is to create a product with the least cost, the highest quality and in the shortest
time. Costs can be reduced by globally reducing the costs over all of the processes involved
with the creation and maintenance of that product. Referring back to the product realiza-
tion, it should be noted that there are a number of basic cooperating processes involved with
the product realization. There are several ways to reduce costs; for example:

1. Improve the process yield.

2. Make a single process more efficient.

3. Improve the cooperation of processes.

4. Simplify the product through improved design technology.

1" This view of a framework backplane was developed by George Tatge of HP, and figures of this type have
appeared in framework documents from EDA Systems, MCC and others. In particular this figure is found
in early CFI FAR documents and in [Brown 1992].

9

5. Streamline the manufacturing process.

By allowing more and better tools to be utilized, a single process can be made better.
If the cost of obtaining and using tools is reduced to improve a process then this will reduce
the cost of the process. A successful framework will be reduce the costs for obtaining and

using tools.

Processes cooperate better through improved coordination and communication.
Frameworks can help by supporting the information exchange between processes. The
coordination of processes can be assisted by having uniform mechanisms for data exchange
and sequencing. A framework can provide mechanisms for this coordination.

There may be some disadvantages to using frameworks, such as the performance
and storage overhead associated with them, or not allowing arbitrary tools to be used for a
process without integration. These disadvantages are greatly outweighed by the effective
gains through tool portability and integration, and the coordination and communication that
can be achieved through the product realization process.

1.42 Framework Goals

The original goals developed as part of the EIS effort [Winner 1986a] are still true
today. These goals were defined as:

1. Integrate design tools in a cost effective manner.
Encourage the portability of tools.

Encourage a uniform design environment.
Facilitate the exchange of design information.

Provide support for design management and the reuse of previous designs.

& m oA woN

Be adaptable to future changes in engineering methods.

While in more recent years another goal has emerged [Heystek 1987] that is just as
much a driving force in the IPPD community, which is:

7. Monitor and control the engineering processes used for product realization.

The recent CAD Framework Initiative (CFI), which is a commercial cooperative
effort to develop framework standards, as recently as 1990 affirmed a very similar list of
goals [CFI 1990].

Here, for comparison, are the seven top level CFI goals:

1. Facilitate design-in-the-large.

2. Facilitate cost effective, efficient, seamless incorporation of tools into
design systems.

3. Facilitate the management, sharing, reuse, and exchange of engineering
information.

4. Facilitate tool and framework portability across multiple platforms.

S. Facilitate consistency across user-interfaces in the framework.

6. Facilitate capture and application of local design procedures and practices.

7. Facilitate extension of the framework.

It is important to note that achievement of all of these goals should reduce the cost
of product realization. Each of these goals ties very effectively into the features that are
evaluated in this paper. For more details on how each of these goals relate to comparison
features see section 3.1.1.

1.43 Definition of Terms
For purposes of this analysis, the following terms are defined.

A software framework is a template set of standards which define how tools and
services should interoperate and how information should be reprcsentcd.2

An infrastructure is a set of networks, frameworks, and services that enable the
flow of information in support of enterprise integration.

A product realization framework is software framework designed to provide an
operating environment for tools supporting the product realization process.

» A product realization framework supports the product development and manu-
facturing process by enabling the interoperation of the processes involved with
product realization. In particular a product realization framework supports the
data and execution interoperability for computer tools and provides a core set
of services that are needed across the product realization processes.

2 This definition is a generalization of that used in the CAD Framework Initiative [CF1 1993). Their defini-
tionofaCADsystemis:“ACADﬁmnewa'kisasoftwateinﬁm:cnnewhichpmvidesammonopa-
ating environment for CAD tools.”

11

The term “framework” is used throughout the remainder of the document to refer
to a Product Realization Framework.

1.44 Supporting Cooperative Work

A framework should simultaneously support both an individual as well as a team in
a coordinated effort for product realization. An individual may use a framework to support
consistent look and feel for tools, allowing them to operate on the same platform. Tools
may operate within a framework to describe and execute a given task. The framework also
provides a mechanism for personalizing the environment for the individual while support-
ing appropriate interfaces for communication with the rest of the work group.

A framework also allows different groups to cooperatively work together, sharing
resources which include tools, information and policies. A framework that supports a small
set of groups can provide much tighter integration by only supporting the cooperative needs
of those groups. A framework that must support a large organization involved with a variety
of activities has many more requirements and is much more difficult to implement. In par-
ticular it is important to note that the framework embodies the infrastructure necessary to
support all the groups. Figure 3 shows a simplified organization hierarchy. The reader
should consider what a framework must support in order that cooperation can occur at the
different levels.

Individual Framework

-a—p Discipline Framework Organization Wide
- » Activity Framework Framework
- —

Figure 3. Current-State-of-Practice for Use of a Framework

12

One would clearly expect that a framework at a department level would only need
to support the processes and policies of the department, while a framework at the organi-
zation level would need to support all of the processes and policies of the enterprise. The
definition of what groups are to use the framework drives the definition of what services
the framework provides. Since a framework provides a common set of services, a frame-
work may also contain services that are common to the supported groups, even though that
service may not generally support outside groups.

The framework has some core services which provide the central resources, such as
the basic operating system facilities. The core services allow the framework to be indepen-
dent of the underlying hardware and software and to handle problems of communications
and distributed systems.

1.4.5 Functions of a Framework

Another view of the framework exarnines the different classes of functions that are
expected in a framework. Figure 4 shows the basic features:

Engineering Information
Management Control Management
(.g., configuration (e.g., design object
management) management)
Tool Integration Data Exchange External System
(e.g., Tool Encapsula- (e.g., VHDL) Interface
tion) (e.g., Data to External
Systems)

Figure 4. Framework Function Architecture

A framework is expected to allow applications and tools to be integrated. This gen-
erally means that they can be executed in the same environment and operated in a concur-
rent manner. Over the years this execution interoperability idea has grown into a spectrum
of capabilities. The most basic ability, sometimes called launch capability supports a com-
mon mechanism for setting parameters and executing an application. Only the starting of
the application is controlled through the launch capability. The basic mechanism used by
most frameworks for providing launch capability is tool encapsulation. This puts a wrapper

13

around the tool to control the inputs and outputs so that the tool appears uniform (i.e., just
like any other tool) to the framework.

More advanced execution interoperability support concurrency and control of the
application during execution. Typically these are standards for communication between
applications. Capabilities in current frameworks vary, but most allow basic launch facili-
ties. Some support additional concurrent facilities like the “highlight net” inter-tool com-
munication supported in CFI 1.0 standard. The support of actual concurrent operation of
tools through advanced inter-tool cooperation is still a future vision.

The other important aspect of tool execution is the support for the user interface.
Most typically a standard user interface look and feel is chosen to assure that the user sees
a consistent interface. A consistent user interface on multiple platforms is clearly impor-
tant, and becomes possible through platform independent display standards.

The exchange of information plays a crucial role in allowing design automation
tools to interoperate. Data can be exchanged by simply passing the entire set of data as a
raw set of numbers or characters, where the meaning of the data is agreed upon between
tools. Data which is exchanged in this way is very difficult to use for other purposes or
tools. In more advanced data exchange, the data is exchanged as information where the way
to interpret meaning from the data is a part of the standard (such as in VHDL). This allows
new applications to understand what the meaning of the numbers and characters are inde-
pendent of the available tools. This distinction is the motivation for the development of
standards for data exchange.There are several levels of data exchange, which correspond
to different levels of meaning that are attached to the data as shown in Figure 5.

14

CFI Procedural Interface Shared Meaning

Design & Modeling
Languages (e.g. VHDL)

Information Formats
(e.g. EDIF)

Data Formats
(e.g. ASCII)

Communication Physical Exchange
Protocols (e.g. TCP/IP)

Figure 5. Levels of Data Exchange

A product realization process effectively uses cooperative work and communica-
tion between teams to couple the concurrent activities involved with conceptualization,
design and manufacturing development. The ability to describe, control, execute and com-
municate between these processes is crucial. A framework needs to facilitate the control
and management of the process of product realization. A framework also needs the facili-
ties to enforce access controls and policy on the process. Some of the basic forms of this
include change control, version control and security. More advanced forms actually encode
the organizational policies that ensure the integrity of the product being realized. For
instance, a design engineer may make a modification to a drawing. An organizational pol-
icy may require that a product must be simulated by a solid modelling tool to assure thai it
meets requirements, and then that certain people in the organization be notified of the
change. These policies should be expressed as rules and automatically inserted and
enforced by an advanced framework.

Information management is used to organize aii cffcctively asz the vast quantities
of information that are generated and applied during the product realization process. Basic
information management supports product realization by storing «he information and pro-
viding access and update to it as required. Design information is managed as design objects
rather than simple files. Design information includes additional information (meta data)
that describes the information itself. Additional areas of support include the handling of the

15

naturally distributed information and the differences in platforms, which include hardware
and software incompatibilities as well as the mix of machine readable information and
paper information. Information management supports library functions to manage compo-
nents of a product and the reusable assets of an organization. The ability to store and main-
tain reliable information which has accessible versions of information as it evolves, is
critical to a realization process.

The framework is also called on to provide external interfaces. The framework
needs to be able to let the user access the resources in a manner that makes the location of
the information and computation resources transparent to the user. In many instances large
resources are tied into central computation facilities, such as parts libraries, and the user
needs to be able to effectively access that information. In general, effective interfaces for
obtaining and sharing data from various sources is critical to the effectiveness of an inte-
grated design automation system. A framework is expected to make this external interface
transparent and effective. The framework is also expected to support the control and man-
agement functions needed for information that is imported or exported from the framework.

16

2. FRAMEWORK DESCRIPTIONS

2.1 OVERVIEW

This section provides overviews of the sampled framework products. These over-
views are based on information collected from a variety of sources including marketing lit-
erature, published papers, framework documentation, as well as developers involved with
these products. While care has been taken to obtain the best information possible within the
limited time available, the presented information should be considered in the context
reviewed, since some of the available information was limited to somewhat vague market-
ing literature.

The overviews discuss each of the products in the terms used by the individual
framework vendor. At times this may be confusing since quite a number of terms are intro-
duced, and vendors name the components of the framework without regard to any standard
conventions. The overview attempts to discuss the goal of the framework, the approach
used in its construction, it architecture, application domain, maturity and the application of
the framework to the product realization process.

This overview considers frameworks of several types. Some of the frameworks
reviewed are software packages, others are software toolkits or suites with which to devel-
op frameworks, and others consist of a set of standards to be used by framework develop-
ers. The frameworks reviewed range in maturity from proposals and pilot studies to
commercially available software packages. The frameworks reviewed fall into three prima-
ry disciplines: ECAD frameworks, MCAD frameworks, and software design frameworks.

The ECAD frameworks reviewed are: Falcon by Mentor Graphics, Design Frame-
work II by Cadence, OpenFrame by ViewLogic, CFl, and PowerFrame by DEC. Falcon
and Design Framework II are commercially available software packages. CFI Release 1.0
is a set of framework development specifications from the CAD Framework Initiative, a
non-profit group which develops specifications primarily for ECAD frameworks. Open-
Frame and PowerFrame are designed to be used together.

17

The MCAD frameworks reviewed are: GE/AE DICE framework, VEHICLE by the
Acrospace Corp., ACIS by Spatial Technology, Inc., CV-DORS by Computer Vision, and
Pro/DEVELOP by Parametric Technologies Corp. GE/AE DICE is the result of a pilot
study on developing a framework for the design of hollow airfoils. VEHICLE is a software
prototype and development proposal by the Aerospace Corp to build an MCAD framework
using the technologies of wrappings and weaves. ACIS is a toolkit for developiig MCAD
frameworks using geometric modelers. Pro/DEVELOP is a library of C functions for
extending the functionality of the Pro/ENGINEER MCAD system.

The software engineering frameworks reviewed are: Arcardia by the Arcadia Con-
sortium, ECMA/PCTE, and CORBA/IDL by the Object Management Group. Arcadia is an
effort funded by ARPA to develop a framework to assist in the development of software
applications. ECMA/PCTE is an operational standard developed to provide tool portability
across a wide range of platforms. Although originally started as a European effort, NIST
now has adopted the ECMA/PCTE model. CORBA/IDL is an object oriented request
mechanism that supports general messaging, and has gained some acceptance as a common
means of comununication between tools.

The following sections address each of the frameworks described above in more
detail.

2.1.1 Falcon Framework (Mentor Graphics)

Mentor Graphics, founded in 1981, is an electronic design automation vendor offer-
ing tools for digital and analog design, focusing on PCB, MCM, ASIC, custom IC, and sys-
tems. Mentor Graphics 1992 annual sales were $350.7 million, and Mentor employs
approximately 2200 people worldwide.

The goal of the Falcon Framework is to provide a superior, open electronic design
environment. Falcon’s integration technology enables users to seamlessly integrate internal
and multi-vendor tool and design data suites into the Mentor Graphics environment.
Enhanced with productivity tools, the Falcon Framework helps users achieve increased
productivity and decreased time to market.

The components of Falcon Framework are: Advanced Multi-Purpose Language
(AMPLE), Common User Interface (CUI), Design Management Environment (DME),
Decision Support System (DSS), and documentation software (integrated FrameMaker).
Also included are BOLD for on-line documentation delivery, printer/plotter support, and

network licensing support. AMPLE, CUI, and DME are used to integrate tools into the Fal-
con environment. AMPLE, DSS, and the documentation tools enhance user productivity.

AMPLE is the extension language provided with the Falcon Framework. AMPLE,
which has a syntax resembling C, is used to implement wrappers for tool launch, to access
CUI, DME and DSS services of the framework, and to implement extensions to the design
environment, such as writing functions or macros to tailor the EDA environment to a user’s
unique requirements. An integrated tool can link C functions to an AMPLE API, as well as
allowing integrators access to Falcon Framework services through the AMPLE APIs.

The CUTI services provide an OSF/Motif compliant user interface. The AMPLE AP
enables third party tools to manage windows, menus, dialog boxes, prompt bars, and popup
command lines, and achieve an appearance and functionality consistent with Mentor’s
tools.

DME offers a common desktop for consistent management of tools and data in the
Falcon environment. The point-and-click iconic desktop is used for tool invocation, as well
as performing design object management. Design object management includes creating,
browsing and editing references (associations between design objects) and properties, con-
figuration management, and design release and version control. The Registrar is a DME
tool used to encapsulate tools within the framework. The integrated Design Manager (iDM)
is used by integrated tools for design object browse/navigation, to move, copy, delete and
change references, and to browse design hierarchies.

DSS is a preeminent productivity tool, combining a spreadsheet user interface, links
to external data, and a visual control panel building-block toolkit. DSS allows users to build
real-time applications that can monitor design data, monitor events, and present the results
of complex data analysis. DSS “watchers,” an integrated piece of the Falcon Framework,
provide the capability to monitor and analyze design data, and then take actions based on
status or calculated results. Numerical results of analysis can be presented as text, or visu-
ally using meters, gauges, or other gadgets in the DSS control-panel interface. Multi-user
applications built with DSS typically consist of C code, AMPLE code, and DSS, which ties
everything together. DSS is the most visible of the three since the user interface control
panels are built with DSS.

Documentation tools include an on-line information system (BOLD), text editing
(Notepad), word processing (integrated FrameMaker), and support for many printing and
plotting options. Notepad is an ascii editor that allows access to a consistent, mouse-based

19

text editor from within an application. FrameMaker is fully integrated with the Falcon
Framework to provide consistent documentation capabilities within engineering environ-
ments. Mentor Graphic’s External Rendering Interface enables text and graphics from
Mentor’s design tools to be imported into FrameMaker by external reference capabilities.

BOLD delivers searching, viewing and printing of on-line documentation, includ-
ing full text search, hyperlinks (predefined or user defined) to view across cross-references
among related documents, printing hard copy pages of the information viewed on-line, and
cut-and-paste text from on-line documentation into various applications. Mentor Graphics
now delivers their product documentation via BOLD using a CD-ROM as media.

Mentor Graphics is very active in CFl, and is committed to adopting the CFI stan-
dards as they emerge. AMPLE will provide an alternative syntax for Scheme, the CFI
extension language. Encapsulated tool launch will be supported using the CFI Tool Encap-
sulation Standard, and schematic (netlist) data will available through an API that conforms
to the CFI Design Representation PI. The latter two products are expected to be available,
following CFI certification, in 1994.

Falcon Framework is a two-year old product, yet it continues to evolve. The Open-
Door program offers other vendors access to the Falcon Framework’s integration toolkits.
The 1993 OpenDoor catalog lists more than 100 tools that are integrated (or encapsulated)
into the Falcon Framework. In the product realization spectrum from conceptualization to
manufacturing, Mentor Graphic’s products primarily focus on design activities, but several
OpenDoor partners integrate tools into the Mentor environment that provide links to con-
ceptualization and manufacturing. Examples include, Ascent Logic (product require-
ments), Fabmaster and Mitron (links to PCB manufacturing), and Metaphase (enterprise
product data management).

2.12 Design Framework II (Cadence)

Cadence Design Systems, formed by the merger of ECAD Inc. and SDA Systems
in 1988, is an electronic design automation vendor, focusing on digital, analog and micro-
wave design. Cadence’s 1992 annual sales were $434.5 million.

The goal of Design Fr:ir.ework I is to enable users and third-party vendors to easily
connect their tools into the Cadence Design environment, ensuring that data flows smoothly
between tools, all within a single environment. Design Framework II supports both encap-
sulation and integration to connect tools into the framework.

20

Four components of Design Framework II support tool integration: Communica-
tions Manager (CMAN), User Interface Manager (Ul), Teamwork Data Manager (DM),
and Integrator’s Toolkit (ITK). These components provide C language application program
interfaces (APIs) to be used by integrated tools. SKILL, the extension language for Design
Framework II, can be used to export services of an integrated tool to a SKILL API as well
as allowing integrators access to Design Framework HI services through the SKILL APIs.

Three components of Design Framework II support tool encapsulation: SKILL, the
Open Simulation System (OSS), and the Physical Interface Environment (PIE). SKILL is
used to implement wrappers for tool launch, to access CMAN, Ul and DM services of the
framework, and to implement extensions to the design environment, such as design flows.
OSS allows transfer of netlist data to encapsulated tools. PIE allows transfer of physical
netlist data and back annotating properties into the design. SKILL language APIs also pro-
vide read and write access to the Cadence databases.

CMAN uses a “data bus” architecture. Tools (and the Design Framework II) use
CMAN commands to: Express-interest in a specific message or action, Notify others that
an event has occurred, Export data, or Import data. Tools can use CMAN to efficiently send
and receive small amounts of data. The Ul services allow a tool to adopt the Design Frame-
work II look and feel, to achieve consistency with other tools in the Cadence Design Frame-
work II environment.

The requirements for managing individual work-in-progress and enterprise data
management are so different that one product cannot satisfy both needs. Cadence provides
a data management capability that satisfies this range of requirements of an individual engi-
neer to the enterprise. Design Framework II’s TeamworkDM provides the work group solu-
tion, while partners (such as Sherpa’s PIMS or Control Data Systems’ EDL) provide the
enterprise level data management.

TeamworkDM is targeted at coordinating the data-sharing and notification needs of
the design team. Teamwork Design Manager provides project setup and administration,
versioning, configuration management, library management, release control, process man-
agement and archiving for multi-user project teams. Designers work within the context of
a workarea running tools and creating, accessing and modifying designs. Promotion is the
operation used to move (release) a file from a work-in-progress workarea to a release or

integration workarea.

Since different enterprises adopt differing policies for data sharing and project man-
agement, TeamworkDM provides the building blocks to implement the required data shar-
ing model for each framework installation. As a starting point, TeamworkDM is configured
with several workarea use models to support the following project data-sharing models:
Dynamic Model, Isolation Model, Formal Release Model and Flexible Release Model.

Data exchange is supported by the ITK. Data can be obtained in netlist, EDIF,
VHDL, and Verilog HDL ascii formats, or through the ITK’s C language APL.

Cadence is very active in CFI, and is committed to adopting the CFI standards as
they emerge. SKILL (a LISP dialect) will evolve to Scheme, the CFI extension language.
Encapsulated tool launch will be supported using the CFI Tool Encapsulation Standard, and
schematic (netlist) data will available through an API that conforms to the CFI Design Rep-
resentation PI. The latter two products are expected to be available, following CFI certifi-
cation, in fourth quarter of 1993.

Design Framework II is a mature product, yet it continues to evolve (e.g., Team-
work DM is new this summer). Other vendors can acquire access to Cadence’s integration
products through the Connections Partners program. The 1993 Connections Partners cata-
log lists more than 100 tools that are connected (integrated or encapsulated) into Design
Framework II.

2.1.3 OpenFrame (ViewLogic)

OpenFrame is the name given to the Viewlogic Framework, which is also referred
to as Powerview. It is primarily oriented towards providing a design environment for elec-
trical design automation. Viewlogic is an electrical design automation company focusing
on digital and analog design. Viewlogic, established in 1984 had $65 million in annual sales
in 1992 and employes approximately 210 people.

OpenFrame links several components for framework technology together. Digital
Equipment Corporation PowerDM is used to provide data management, CFI technology is
used to provide tool launch integration, and a number of other standards are employed to
support a wider range of data integration. A number of additional facilities have been devel-
oped by Viewlogic to round out the framework capabilities, such as ViewDoc which pro-
vides on line documentation. The conceptual view of OpenFrame is shown below:

22

OpenFrame Cockpit
Tool Encapsulation ViewScript ViewFlow
Tool <-> Tool Data Access
InterTool ‘ ViewBase
S o] EDA oo EDA L] CrlSr
PCB Integ. Tool EDIF/VHDL
IC Integ. ViewNav
CrossProbing ViewDRC
' OpenFrame Cockpit
PowerView/DM
OpenFrame Cockpit
ViewScript Motif/OpenLook/Windows UNIX/DOS

Instaliation Navigation/Error Handlllg NFS/TCP-IP ViewDoc

Figure 6. OpenFrame Architecture
OpenFrame currently supports both digital and analog electrical design automation.
A wide range of facilities are supported for digital system design, including simulation, lay-
out, design rule check and high level design using VHDL. Some support for analog is avail-
able with basic digital like facilities for design, and simulation using variants of SPICE.
Limited enterprise wide support is available through PowerDM, but basic version control
is provided.

OpenFrame is currently available commercially. It is a new product from Viewlogic
and should be extended in coming years to be more CFI compliant and provide a stronger
platform for integration of the users environment. OpenFrame currently distinguishes itself
by the tools that are available from Viewlogic on the framework. Tools such as ViewDa-
tabook allow corporate parts information to be integrated.

OpenFrame concentrates on the integration of the design environment for the elec-
trical engineer. Limited support is made to integration with manufacturing. Some support
is available for conceptualizing through simulation.

2.14 CFI (CAD Framework Initiative)

The CAD Framework Initiative (CFI) is an international non-profit consortium of
CAD tool users, tool vendors, and research institutions. The CAD Framework Initiative
(CFI) started in 1988 followed earlier conceptual work from the Engineering Information
System project [Winner 1986a/b, Heystek 1987, Rolfe 1990] in the formation of an indus-

23

trial non-profit consortium. The CFI mission is to define standards that facilitate the inte-
gration and interoperability of design automation tools and design data for the benefit of
end users and vendors worldwide.

CFI has been primarily influenced by the commercial vendors who have participat-
ed, who themselves are interested in adding value to their markets. As such the products
from CFI have focused on the issues of tool integration and data exchange for the sets of
tools that currently exist in the largest markets, namely digital electronics. Other frame-
work issues have not in general been addressed, in particular the areas of engineering man-
agement control, information management and external system interfaces.

CF1 has defined a plan for phased release of standards, the first standard, release 1.0,
which is available now, includes the Design Representation, Tool Encapsulation, Inter-Tool
Communication, and Computing Environment Services. The second phase will release new
versions of the phase one standards and be extended to include Data Management, Simu-
lator Backplane, User-Level Extension Language, and Session Management Support. The
third phase will extend to library support and electronic databooks. The future directions in
the third phase also include front-end tools with physical design implementation and man-
ufacturing and technology management. The basic architecture proposed by CFI is shown
below:

&= &
Capture Tool

=) & (B (&) G (o

TOOLS

y y y y
Design Data Methodology Session
) Information| | _.’Managemen Management Manager
S
& Yy Y Y Y
5 System Environment

Figure 7. CFI Framework Architecture Reference

24

There is a subgroup of CFI that is looking at electronic semiconductor manufactur-
ing. Subcommittees are examining two potential standards: the Semiconductor Wafer Rep-
resentation [CFI 91a] and the Semiconductor Process Representation [CF1 1991b). The
efforts in this area are of particular interest to the product realization area since they support
the basic data exchange with manufacturing as well as the necessary information for virtual
process simulation.

2.1.5 PowerFrame (DEC)

PowerFrame is an open software framework that supports the creation of a design
environment for concurrent engineering [DEC 1991]. It provides the capability to integrate
third party tools and to manage design files, processes, and tools. It allows an organization
to autornate its engineering design guidelines. In addition to providing built-in tools, Pow-
erFrame permits the encapsulation of third party or proprietary tools. PowerFrame is built
around the concepts of the CFI “toaster model” (also known as the CFI Backplane Frame-
work Model). DEC is one of the founding members of CFI, continues to be active, and is
committed to implementing appropriate CFI standards in PowerFrame.

PowerFrame is built around the concepts of the CFI “toaster model” (also known as
the CFI Backplane Framework Model). DEC is one of the founding members of CFI and
continues to be active.

PowerFrame is composed of a Design Manager Server which maintains an active
meta data database. The meta data keeps track of information about design, library, and tool
data. The PowerFrame Executive is an X based GUI for invocation and interaction with
tools, and for displaying data maintained by the Design Manager Server. The Frame
Administrator utility supports framework administrators in defining which tools, data, and
libraries will be used. Each tool integrated into PowerFrame is encapsulated. A definition
file, or an optional Tool Agent Program (specially written), or modifications to the source
code of the tool provide different levels of “tightness” of tool integration. A Transfer Man-
ager tool is built into PowerFrame to allow data to be moved from one PowerFrame frame-
work to another or even within a framework. PowerFrame provides built-in version control
and configuration control.

Generally, PowerFrame is built around the concept of using meta data to track the
activities within a project. Since there is no built-in object base, there is no requirement for
tools to cooperate by adhering to standard data formats or interface protocols. Therefore,
even though many types of tools may be supported by PowerFrame, it is possible that data

25

from one tool cannot be easily used by another. However, as standards emerge and tools
adopt them, PowerFrame users will benefit from the added cooperation of tools that are
already integrated.

PowerFrame is called a “design management framework™ and emphasizes manag-
ing the design process. The development process itself is programmable. Since it supports
such a wide variety of tools, there does not seem to be any technical obstacle to Power-
Frame supporting the entire product realization process. However, DEC does not use this
terminology in describing PowerFrame.

PowerFrame is intended to support electronic and mechanical engineering design.
It has been a commercially available framework since at least 1991 and has a number of
commercial users. In addition, DEC has established a “PowerFrame Synergy Program”
with corporate members representing users, tool vendors, and others.

2.1.6 GE/AE DICE (GE)

This section reviews the framework used at GE Aircraft Engines during the DICE
Hollow Airfoil Pilot Project, which sought to apply selected DICE technology to the design
of hollow airfoils such as fan blades. The study was consistent with the DICE charter “to
develop and field-test a methodology and accompanying integrated information manage-
ment technology and tools offering a systematic approach to the concurrent engineering
development process for design and manufacture, in both mechanical and electronics
industries” [Czechowski 1989].

The GE/AE DICE software architecture was intended to be domain-independent. It
consists of three major functional layers. The application layer is the highest layer. It
includes the GE/AE DICE interface and applications. The management layer allows for
management of concurrency, communication, and cooperation. The data layer is the lowest
layer. It includes the representation and implementation languages and the Product, Pro-
cess-activity, and Organizational resource (PPQ) database, which is described below.

The GE/AE DICE pilot study had three primary goals:
+ Integration of software tools through the use of wrappers

* Controlled sharing of product information through the use of configuration
management tools and a product model

» Capture of design intent and product history

26

The GE/AE DICE architecture used at GE centered on the use of wrappers to inte-
grate applications and data of various design groups involved within product development.
[Czechowski 1989]. Wrappers encapsulate non-DICE applications to run within a DICE
system. The Application Interface Wrapper tool creates wrappers around pre-existing engi-
neering applications to permit them to read their data directly from the distributed or shared
engineering data base, and/or other wrapped applications.

In the GE/AE DICE Pilot Study, software wrappers were used to create the Aster*x
Parametric Design framework that was based on a spreadsheet (Aster*x). That framework
contained wrapped functions of a CAD/CAM system (Unigraphics), a finite element mod-
eling program (PATRAN), and a finite element analysis program (ANSYS) [Czechowski
1989]. This use of wrappers provided an effective union of multiple software products in
order to support rapid iteration in parametric modeling. The efficiencies gained in paramet-
ric modeling were the single largest source of cycle time improvement in the concurrent
engineering pilot study [Czechowski 1989].

Sharing of design information and coordination of product design activity is sup-
ported by use of a Product-Process-Organization (PPO) Model. The model contains prod-
uct representation information in a number of forms. It contains process models of
development activities and manufacturing processes. The capability of modeling organiza-
tions was not used in the GE/AE DICE Pilot. In this environment the PPO model contained
multiple representations of the air foil product, including spread-sheets data containing
parameters that specify the master-model, 2-dimensional CAD representations, 3-D dimen-
sional models, finite element mesh models and numerical control (NC) models. The Test-
bed Configuration Management System (TCMS) was employed to provide control over
multiple versions of designs contained in the master model.

2.1.7 VEHICLES (Aerospace Corp)

The Aerospace Corporation has developed an experimental proiotype design envi-
ronment named VEHICLES over the last six years to support the conceptual and parametric
design stages of space-based systems [Bellman 1993]. VEHICLES integrates distributed
models and analyses, solves equations symbolically, and automates parametric and trade-
off analyses. Its proponents believe this environment has application in industrial design
and manufacturing, and that it is a precursor to a new industrial process that they name
“information manufacturing.” The Aerospace Corp. defines information maaufacturing as
the process of collecting, ordering, and integrating information materials into information

27

products. Their proposal seeks to move the Vehicles environment into industry and to high-
light two software eagineering technologies: wrappings and weaves. The VEHICLES envi-
ronment is not now in deliverable form and is not supported by any organization.

VEHICLES is composed of:
* A flexible user interface;

+ An information base containing models of subsystem characterization; of data,
constraints, requirements, and conditions on use of data; containing context sen-
sitive rules for use of algorithms, variables and sets of equations; and containing
knowledge of proper context for use of software packages on distributed plat-
forms;

* Tools for evaluation of designs; and trade-off analysis, including an indepen-
dent variable sensitivity analysis tool, parametric study analysis tool, design
alternatives comparison tool; and

* Report generators covering design comparison, dependencies among design
parameters, input-output reports for subsystems, queries allowing for searches
of parameter values across multiple designs, and a series of status reports on the
state of design analysis.

The VEHICLES framework development employed the software engineering
methodologies of wrapping and weaving. Wrapping is an automated process concept for
deciding which software resources should be assembled to build a software system, such
as a robust version of VEHICLES. A wrapping is an expert interface that describe a
resource, such as a parametric design module, in a complex software system. A wrapping
contains an explicit description of the resource, used for management of the system archi-
tecture. Wrappings are used by the “Study Manager” and planning programs to provide
“intelligent user support functions.” The Study Manager organizes the problem solving
process into a sequence of steps, which are: posing the problem, interpreting the problem,
applying resources, and assessing results. The wrapping functions include: selection of
resources, assembly and integration of resources to exchange data, adoption of resources to
a problem and explanation of how resources were used. No specific wrapping products are
planned, though the wrapping approach is intended to permeate the VEHICLES system
design. Wrappings are intended eventually to be used to automatically generate weaves.
[Bellman 1991].

28

Aerospace contrasts their experimental wrappings technology from DICE wrapper
technology. DICE wrappers are viewed as “code-level encapsulations” as compared to
“knowledge-level encapsulations” provided by wrappings. Wrapper resource descriptions
are processed off-line by programs to produce wrappers. They also disagree with the wis-
dom of an architecture that includes a single Product-Process-Organization (PPO) model,
stating that the architecture must be able to handle multiple models and modeling para-
digms.

Weaves are interconnected networks of concurrently executing tools, which com-
municate by passing data objects [Gorlick 1991]. Weaves are designed to support rapid and
flexible construction of software systems. Weaves are composed of components that are
arbitrary deterministic programs and may be written in any common sequential program-
ming language. Components are sent objects, perform a series of functions, and then emit
objects. The objects may be complex and may have methods that perform substantial com-
putation. Weave components communicate blindly, that is, they are unaware of the identify
of other components with whom they exchange objects. Weave components are supported
by threads or light weight processes. Their encapsulation and self-sufficiency permit
weaves to be dynamically reconfigured as they are executing. The insertion of new compo-
nents can be tested without disturbing the proper functioning of existing weave compo-
nents.

Standard weave objects are defined to permit legacy systems to be incorporated into
a weave. Weaves are thus potentially useful as an integrating technology for multiple leg-
acy systems.

2.1.8 CV-DORS (Computer Vision)

CV-DORS is the Computer Vision Developers Open Resource Software. It is a set
of object-oriented interfaces which allow third-party software tools to interface with the
underlying database, graphics, and geometry of a product model. CV-DORS allows para-
metric design, feature-based modeling, and has support for assemblies.

CV-DORS is based on four méjor architectural components: a database, a user
interface, graphics, and geometry.

CV-DORS uses the ObjectStore distributed database by Object Design, Inc (ODI).
The ObjectStore database is object oriented, and is written in C++. The ObjectStore data-
base is graphically oriented. ODI currently supports several workstation vendors whose
systems operate under the Unix operating system, and Microsoft Windows.

29

The CV-DORS user interface will be available by January 1994. The Computer
Vision CADDS S Mechanical CAD system currently serves as a user interface for creating
part geometries.

CV-DORS uses Ithaca Software's Hoops Graphics system. Graphics are integrated
into the CV-DORS kernel, allowing application programs to access the geometric database
of the product without the need to use a CAD application program.

CV-DORS/3D Modeler is a geometric modeler which provides integrated wire-
frame, surface, and solid modeling using one common data structure. It supports geometric
objects including Non-Uniform Rational B-Splines (NURBS) curves and surfaces, and sol-
id primitives. CV-DORS/3D Modeler is double-precision and uses boundary representation
to represent topology and geometry. Programmatic access to the modeler is through C++,
C, or FORTRAN.

Models may be constructed with these objects through standard modeling opera-
tions such as filleting and sculpting. NURBS is an mathematical generalization of the B-
spline. It can describe both two-dimensional curves and three-dimensional surfaces.
NURBS assists in maintaining data homogeneity throughout the design-to-manufacture
cycle. NURBS can represent shapes to arbitrary precision limited only by storage. It there-
fore facilitates data transfer between dissimilar systems.

CV-DORS uses the UIMX Application Programmer's Interface. This API is a com-
mercially available toolkit which develops Motif-based interfaces. Model information is
directly shared between applications, and is maintained intact. Using UIMX, the product
geometry may be read from and written to without CADDS being active. As a result, users
are able to describe a 3D shape in CADDS, and then transfer this underlying geometry and
database between application tools. CV-DORS does not allow programmatic access to the
underlying direct object interface for the system, though it does allow access at the object
level.

Tool Integration with other systems is not based on the concept of a “wrapper” in
which the application tool is simply encapsulated in a layer of system interface code. The
disadvantage of wrappers is that they are often not as efficiently written as if the tool itself
were re-written. With CV-DORS, application tools need to be re-written to be integrated
with the framework. Typically, this rewrite would be done during a major release revision.
Computer Vision's expectation is that the rewrite would add an additional layer for the
framework interface.

30

CV-DORS has large potential for integrating third-party application tools. Approx-
imately 100 third-party developers are planning to produce tools for the CV-DORS frame-
work. Table 1 lists vendors of application tools for CV-DORS which will be available by

carly next year.
Table 1. CV-DORS Application Tools

Vendor Tool Name Functionality Product Status
m;
International available by 1/94
Technegroup, Inc.
PDA PATRAN Il Finite element analysis. available
SILMA CimStation Simulation and off-line pro- | available
CADDS gramming of automated
Interface 2.2 manufacturing equipment
such as robots and CMMs.
Also performs verification
of NC part programs.
Pointcontrol available by 1/94
Wisdom Systems Concept Modeler | Represents relationships | available
between components of
the product model, allows
flexibility.
ICAD available by 1/94
Rasna available by 1/94

2.1.9 ACIS Geometric Modeler (Spatial Technology, Inc.)

ACIS is an object-oriented 3D modeling kernel consisting of over 300 geometric
modeling functions for building geometric modeling systems. It is a toolkit of software
around which applications and frameworks can be built according to a data format which
is compatible with PDES/Step. ACIS is available for license by application developers to
use as a mechanical engineering framework kernel. ARIES Technology’s Geometry Bus is
an example of a commercially available framework based on ACIS. ACIS is entirely writ-
ten in C++ and it is produced by Spatial Technology, Inc. Figure 8 shows the ACIS system
architecture.

ACIS is a high-performance framework kernel. Typical speeds are approximately
five times as fast as CV-DORS. It offers platform support for all major workstations and
PC’s. ACIS has its own memory manager.

31

APPLICATION

ata Exchange
(IGES, PDES,
etc.)

Constraints Features Rendering

Application Procedural Interface (API)

Classes
Objects ACIS
Methods KERNEL

Parametric Curve & Surface Interface
1

Parametric Curve &
Surface Subsystem

Figure 8. ACIS System Architecture

Several implementation strategies are available for using ACIS. The first of these is
to re-write the application code to take advantage of ACIS. A second strategy is to build a
wrapper around an existing application in order to make it ACIS-compatible. FEGS, a finite
analysis program, ic an example of the latter approach. Application software developers
can choose to use only a portion of ACIS; an example of this is Hewlett-Packard’s 3D mod-
elling sysiem which does not use the surface modeling capabilities of ACIS, but rather uses
HP’s own surface modeler. Most ACIS applications are developed with Hoops Graphics.

Applications are attached to the ACIS kernel via the Application Procedural Inter-
face (API). ACIS toolkits are available for Microsoft Windows, Windows/NT, and Visual
Basic. ACIS uses the SAT format for data exchange between applications. This format is
translatable to IGES, PDES/Step, DXF, and other formats. There are three different levels
to access ACIS: the first is the API level, where functions are called; the second is the

32

Object level; the third is the lowest level, at the data structure level, where the application
developer can build in their own data structures.

ACIS has no user interface; the application tools which are based on ACIS contain
the user interfaces. The development of a user interface is the responsibility of the applica-
tion developers. A “test hamness” is available in ACIS as a user interface for application
developers.

Framework developers using ACIS have responsibility for creating the engineering
management control. This is an example of the value added by ARIES with their Geome-
tryBus product. Documentation control is also the responsibility of application developers.
An object-oriented database, ACIS/DB, is available for use with ACIS. It is sold by Spatial
Technology, Inc.

Table 2 lists twelve commercially-available frameworks which are based on ACIS.
The ACIS kernel is currently in wide usage, with over 200 licensees outstanding, and 90
application tools being developed for it.

Table 2. ACIS-Based Commercially-Available Frameworks

Company Product Ship Date
Aries Technology Concept Station June ‘93
Cognition Mechanical Advantage August ‘93
Concurrent Technologies Rapidcast June ‘92
Control Data ICEM DDN January ‘92
Control Data ICEM PART September ‘92
Grafiek GMS/SMART July ‘33
Hewlett-Packard Solid Designer March ‘93
Hitachi-Zosen Info. Systems GRADE/Shape June ‘93 (in Japan)
Lujuustekniikka Oy (Finland) ARGOS September ‘92
Strassle Infosystemes GmbH KONCAD June ‘93
Strassle Infosystemes GmbH RWT 2000 June ‘93

33

2.1.10 Pro/DEVELOP (Parametric Technology Corporation)

Pro/DEVELOP is a library of C language functions which may be used by devel-
opers to creates application programs to modify or interface with Parametric Technology’s
Pro/ENGINEER MCAD system. Pro/DEVELOP has three major purposes:

1. Customize the standard Pro/ENGINEER user interface by adding new
menus, new prompts, etc.

2. Automate simple or mundane tasks for the user, or automate complex design
tasks for which the company has a knowledge base.

3. Integrate Pro/ENGINEER with other existing tools such as MRP schedulers
or inventory control programs.

The C language functions which comprise Pro/DEVELOP primarily consist of data
extraction and modification functions. Applications developers can extract geometry, fea-
tures and parametric information from Pro/ENGINEER models and input this information
into application tools using the C functions in Pro/DEVELOP. Application tools are made
compatible with Pro/ENGINEER by using the C functions in Pro/DEVELOP. The separate
application programs created by using Pro/DEVELOP are automatically started when Pro/
ENGINEER is started up. Exampies of application programs would be to customize the
Pro/ENGINEER interface, extract data from Pro/ENGINEER, or modify objects from the
Pro/ENGINEER system. Pro/DEVELOP has access to notes, symbols and 2 dimensional
graphic entities in drawings. Pro/DEVELOP allows the developer to create a help file to go
with new menu items which are added to Pro/ENGINEER.

The Pro/ENGINEER system outputs data in IGES, VDA, SET, or a neutral format
file, or the user may write their own format for data exchange.

The user is not aware of the presence of application programs created with Pro/
DEVELORP. The user is only aware of the Pro/ENGINEER interface, and the menus which
may have been modified with Pro/DEVELOP.

Parametric Technology has a group of software development companies many of
whom have used Pro/DEVELOP to make their complimentary software products compat-
ible with the Pro/ENGINEER MCAD system. To date, a total of 50 companies have inter-
faced their products. The interfaced software products are in the following categories:

1. Document and Image Management

2. Electronic Design Automation

34

Engineering Analysis

Industrial Design, and Rendering
Information Management
Manufacturing

Translators / Migration Tools

N v W

8. Vertical Applications

There is no engineering management control built into Pro/DEVELOP. However, a
separate product from PTC, Pro/PDM (Parametric Data Manager) is designed for engineer-
ing management and control capabilitics. Pro/PDM uses a state-of-the-art user interface
and database for data management. Although a separate application, it is tightly integrated
with Pro/ENGINEER, and is supplied with a C library to allow developers to access the
Pro/PDM database. Document control is also accomplished through Pro/PDM. Pro/ENGI-
NEER is available for most Unix based workstations, the VMS operating system, and Win-

dows/NT.

2.1.11 Arcardia (The Arcadia consortium)

Arcadia is the name of an ARPA-sponsored research project being conducted by a
consortium of the University of Massachusetts, the University of California at Irvine, and
Colorado University. The goal of the project is, in general, to carry out validated research
on software development environments, and to establish an open architecture for process-
centered software environments.

The approach taken in the Arcadia project is to develop prototypes to demonstrate
the feasibility of concepts and to integrate these prototypes. A major result of the research
includes the lessons learned from the effort to maintain an integrated environment.

The principle components of Arcadia are:

» Capabilities for process definition and execution
¢ Object management

¢ User interface development and management

¢ Measurement and evaluation

e Language processing

e Analysis and testing

o Component composition

Arcadia is intended to support the software development and maintenance. There is
no restriction on the type of application it can support. In fact, a number of the capabilities

are specifically to support the development of complex concurrent applications. Thus, it
could be used to support real-time applications, for example an embedded control system.

Arcadia is a research project and is constantly undergoing revision in order to eval-
uate new alternatives. The research has been going on since the middle 1980s and many of
the original researchers are still actively involved. There does not seem to be any effort to
commercialize any of the components of Arcadia at this time.

A major thrust of Arcadia is the development of a process-oriented software devel-
opment environment. The development process itself is programmable. The environment
is primarily built around an event-driven operation. An important aspect of Arcadia is sup-
port for measurement and analysis of processes and support for management of the devel-
opment process.

2.1.12 ECMA/PCTE (The European Computer Manufacturer’s Association)

ECMA PCTE (Portable Common Tool Environment) is an application program
interface (API) standard. It has been developed by the European Computer Manufacturer’s
Association (ECMA). The goal of ECMA PCTE is to define a standard interface for a num-
ber of services required to support software development and maintenance. It is expected
that ECMA PCTE will be used in conjunction with other standards and services to com-
pletely support software development.

The approach taken in ECMA PCTE is to define sets of procedure calls and to
define the semantics of the services to be provided. There is an interface for an abstract lan-
guage, a set of C bindings, and a set of Ada bindings. ECMA PCTE is not an implementa-
tion and generally does not make any assumptions about how the various services will be
implemented.

ECMA PCTE is defined as having four levels of conformance as follows:
a. Level 1 (Core Module) conformance
1. object management

2. schema management

36

files, pipes, and devices
volumes and archives
process execution
messaging

notification

concurrency and integrity control

o 2©° N 0w AW

replication
10. networking and distribution
11. discretionary access control (DAC security)
b. Level 2 is Core Module Conformance plus mandatory access control (MAC)
c. Level 3 is level 2 Conformance plus Auditing Services
d. Level 4is level 3 Conformance plus Accounting Services

The application domain of ECMA PCTE is software development and mainte-
nance. There is no assumption regarding types of applications that may be developed with-
in the environment. However, there are no services specifically intended to support
complex types of applications. It is expected that special analysis tools will be integrated
by third parties in order to support various types of applications.

ECMA PCTE development was begun in 1990 and, at this time, there are no imple-
mentations of the standard. IBM has announced an implementation that partially meets
Core Module conformance requirements. The NIST reference model is the same as the
ECMA/PCTE reference model. The implementation is in beta testing and is expected to be
released for general use in September of 1993. It should be noted, however, that ECMA
PCTE is an evolutionary development of earlier PCTE standards. PCTE 1.5 and PCTE+
were developed in 1988 and implementations of PCTE 1.5 exist.

2.1.13 CORBA/IDL (The Object Management Group (OMG)))

The Common Object Request Broker Architecture and Specification [CORBA
1991] defines CORBA, the Common Request Broker Architecture, a framework to allow

! The OMG is composed of Digital Equipment Corporation, Hewlett-Packard Company,
HyperDesk Corporation, NCR Corporation, Object Design, Inc., and SunSoft, Inc.

37

ST

differing implementations of Object Request Brokers (ORB) to provide common ORB ser-
vices to clients. CORBA supports portable clients and the implementation of objects. COR-
BA is structured to allow the integration of a wide variety of object systems running in a
distributed, heterogeneous environment. The architecture of CORBA is shown in Figure 9.

A goal of CORBA is to provide interface standards and architectural guidelines to
allow implementors of client and object server software to cooperate. In particular, a client
should be able to request object services without regard to the number or placement of
object servers. In fact, over time objects could move from one server to another without any
effect on clients. CORBA is intended to support development of object oriented systems
regardless of their application domain.

The approach taken in CORBA is to establish a standard and protocols that partic-
ipants in an object oriented system would adhere to in order to work cooperatively. CORBA
interfaces are defined in terms of an Interface Definition Language (IDL) which can be used
to describe the syntax and the semantics of the interface between a client or server and the
ORB. A syntax of IDL that is compatible with the C++ language has been developed and
will be maintained along with the C++ standard.

Client Object hnegls%rrycer:ntatlo
| £
Skeler
. ORB eleton
Illl)\y:c%n SItl\)lks Interface I
ORB

Figure 9. CORBA Architecture
CORBA s built around the concept of clients, object implementations (servers),
and the ORB. The ORB provides an interface to clients and servers, IDL stubs, and a
dynamic invocation capability for clients, and an IDL skeleton and object adapter for serv-
ers. A client may make an object request by using an IDL stub or by dynamically construct-
ing the request and passing it through the dynamic invocation interface. The request is
processed by the ORB which determines which server is responsible for the object, then

38

passes the request to the server through the IDL skeleton. The server may use the object
adapter to convert the object to a form that is more usable.

As mentioned above, CORBA is not intended for any particular problem domain,
but to provide a way to allow any object oriented systems to work cooperatively. It can con-
ceivably be used to support database applications, design frameworks, or any other appli-
cation that requires a number of users of different types to work together.

CORBA is not an implementation and, at this time, no implementation has been
built. The designers of CORBA argue that many of the concepts upon which CORBA is
built are common techniques in computing; in particular, communications protocols.

39

3. ANALYSES

3.1 COMPARISON METHODOLOGY

3.1.1 Feature Comparison

The features of frameworks will be compared using the concepts developed by the
EIS study [Winner 1986a). The major features discussed are:

Tool Integration

Data Exchange

Engineering Management Control
Izformation Management
External System Interface

Conformance to Standards

3.12 Discipline Comparison

The discipline comparison looks at the way that engineers have been trained to
organize their activities. Traditional disciplines include electrical engineering and mechan-
ical engineering. In each of these areas sub disciplines are active such as digital electronics
or IR sensor engineering. Each of these disciplines is distinguished by the development of
techniques for engineering solutions. These techniques frequently overlap with other disci-
plines, however in many cases the disciplines have unique problems that are addressed by
specific techniques.

For the purposes of this comparison the frameworks are compared against the fol-
lowing major disciplines to determine what general areas of engineering techniques are

supported:

a. Electrical Engineering

1. Digital
2. Analog

41

3. Microwave and Millimeter wave
4. Electromagnetics (Antennas)
5. Manufacturing
b. Electro-optics
1. Sensor Engineering
2. Communications
3. Cryogenics
4. Manufacturing
¢. Mechanical Design
1. Mechanical CAD 2D/3D
2. Tolerance Analysis
3. Parametric Design
4. Physical Simulation
d. Manufacturing Engineering
1. Manufacturing Process Simulation
2. Statistical Process Control
3. Tachuchi /DOE Analysis
4. Cost Analysis
¢. Software Engineering
1. Embedded Systems
2. MIS Applications
3. Testing/Verification/Validation
3.1.3 Market/Maturity Comparison

This comparison examines the current state of the frameworks. The frameworks
was analyzed for maturity categorizing each of the frameworks according to whether they
are in research, under development of actually available on the market. Where appropriate
individual parts of a framework may be in different stages of maturity.

42

The market for each of the frameworks will be shown in Table 6 with a basic anal-
ysis of how widely the framework is applicable. Some frameworks may be so specific as to
have little general use.

32 DETAILED COMPARISONS

This section compares the frameworks following the methodology given in
Section 3.1

43

® [@ @ o L L L ®
3u
-Jopous s59203d udisop 1dHA pue
suoneIsom [eonydesn - mopImalp 41a3 ‘140 ‘sprepuerg
1sow pue suuojrerd satotjod ajdwis Jo3euewt
SMOPUIA PUe X1u() pue wiodyoayd ‘jon BIEp SURILIOMOd O
suoddns ‘wowuonaus -U0J $SIVR ‘JONU0I uoneifau] - WQqemod Buissed ofessow
Fuiwuread UOISIOA “NIPhe ‘Aouds suejdyoeg J0j dsepduy saddesm
-0ld - doepAU] Jas() <INOU0D) - INQIIMO] uonBIIS - SngURg rempasoad) - uon
Iseqelep uotieulIojul (poseq swayds) a8ueyoxo erep ya -“BOUNWIWOY) |00, JA]
sued areiodiod jo uon fijiqedes 28en3ue] puewwod 1D pue dnewoyds prepuels
-e18au] - JooqeIe(IMIIA asmolg - AeNMIIA | parardiau - iduogmalp ISINON - §5300yMalA | uoneinsdesug jool 11D surerjuadp
(uawoFeuews ssadoad 91d ‘SSO
‘aseajol ‘Judwadeuweus (NG ‘In
wwsFeuew Kresqy “wsuwsofeuews ‘NVID)) SIdV TIS
BIep [9A9] asud uoneindguoo ‘suors I1-san prepuels
-1us - 19 ¥ SKWId S{3poul SN BAIRNIOM -19A) N@pomwed), 1d dd 14D | uonensdesug jooy 4D
(1) 2oepau] sJou 98end “TAH Sojuap siduds TINIS 11 Jomaurel
BSN OV AV TS -Ued ore g % SWId -ueT uoIsuAxy TTIAS “TQHA ‘4103 SN BlA uoiie[nsdecuy udisaq
$100)
J10J uoddns (100pa)
pedatoN pure ‘(30)
-eS1Aeu AyaseIdiy) NQ!
sj00) parerdaul 30
(95e2]31 *suoisIoA paejnsdesua s
“uswodevew uon 01 AVULSIOTA TNA
(10113 -em8yuod ‘sJUARJAI (INa
-1Ul BIEP puR J9p[ing (stsfreue) SSa ‘donysap dtuodt) FNQ ‘INJ) sIdV 1INV
joued jonuod ‘adey (uonensdesus (spoue (uoneyudow prepuels
-1 130yspeaids) §§q 199{qo uB1sop) INQ | [onuod ‘s1ydtem) SSG | -noop o1 soydess) nyg | uonegnsdeouy jool 14D
(1ND) 3oepawW] J95() (uonmuawN0p dul| odend 1d ¥d 1D siduos g
JNON O |dV TIdAV | -uo payuipadAy) Q109 | -we uoisudixg F1dNY “IQHA ‘J1ad SN BIA UOnE[NSdesuy

doeuAU|
wANsAS [euIANX

juRde
-UB UOTIRULIOJU]

jonuo)) 29 wowge
-uep Suudsuidug

98ueyoxg ereq

uoneidxuf [oo], ylomauresj

uosiredwio)) 3xmeaj ‘¢ Iqel

uosuedwio) aamedy 1°7°¢

I R B B N+ it G i o o oot
i3 ;

1sedpeoiq pue
wnod oy ynod saBessopy

YUA UONBIIUNWWOo)
Joo parensdeouy

$20IN0SAU
Teuonezivedso sjoooioxd prepuels
pue SINIATIOR SS3D -ojoid J0 prepueis)
-oxd paerdosse e pue uoddns suonestjdde
sisAfeue pue ‘uotl widisAs 30 jonpoud jo veyi sjo20i0id uois
-enfeaa 1daouod isisse suondudsap a1jdwios -uNxe Amyoudosd depy
TeY) SIOSIAPR ‘S[00) samdes ey jopows amn)
‘Spoylaw ‘sdIAIOS uonBULIOJU ParByg | -3Nyase paseq sddesy 3@o) Ia
suon spomourey
-BJOUUR pue SANqUITe QUIRIJIOMO] UIIMIDq
sdrysuonefas afueyoxa suod
SIUIUID[‘Saserep Suuonbag -dns sofeuepy 1Jsuel],
‘syoederep ‘sj00) PUE UOIIBI0AU] YSBY, seare aurjdiosip
‘295N ‘SMIIA ‘s1oafosd [ONUOD) UOISIIA Jenonred o) paziwoy £8o
SOIA uoddns s129(qo e wow -snd 9q 1snus ‘poddns -jouysq, uonensdecuy
-BS Wwauwdewe o | -180f - o meq uBisaqg | -oBeweyy uonemdguo) 190190 suousy Auo uondensqy [0o], [| ourrjsImoq
MOy JORuoD
PUE MOl BIep ‘Uoned
~JUNWIWO) JOJ SU0J JOOL
s[00 AUf
UONEIIUNWWOD [00)
-13)u1 v1A safessoul jo
Butaooa pue Sutpuos
WS4
wdwodeuews udisop
BIEp Yiam uonsesau
suonoe jo 3uiddoq
100} JOXIUOD RIOMD!
OO N odduin
100] BlA JIoMIURY)

vvuANU] juowade {onuo)) % uawase
WNSAS [BwNXF -UR UOTIBULIOJU] -uejy Suussurdug d3ueyoxg meq uoges3aiuy jooL __ Homaurery
(panunuoa)) uosureduwio)) amjeay ¢ qe],
@ @ o L ® ® ® ®

45

o o o o o o o o o

Wad/od yeuuloj reo souRIqY O
uoddns awos sapia 30 12d0jaASp uoned -udosd 30 yQA ‘19S dOTIATQ/0Nd s dOTHAAA
YHANIONT/0Md | -osd1onposd wad/ond | -ndde £q poppe aq Aepy “IXd ‘SHOI suoddng | uonuUM-a1 3q ISR SJOOL, foid

M ‘4Xq ‘s3] ‘dars
»do ndo /S3Ad o JqemsuelL
“19A%p jo Luiqisuodsay | -1oA9p Jo Aunqisuodsoy eULOJ IVS SIOV
[0}
§,33dojoAdp wt dn 308 suoned HIOMOUIRL} R O
tou st jonuod juowmdoqg | -ridde usomiaq pareys parRISut 3q 0) uA)
S901 5udaoe osTy WA oqejreas Apoanp s1 erep [opoy | -3um-a1 9 0) PAJu SjOOL

pRpuels SIAd | Iseqerp pANqUISIP IGO0 [OIUOD WIWNDOP ON XKWIN paseq-1oddesm 10N SYOA-AD

513(q0

BIA RUNUWIW0D

sjoo} ey siwdowdery 1001

JO suoneuIqusiod 1ySu JO SYI0MIU - SIARIM
Suryoauy uy s1osn is155E ‘suonduosop
0) s3seq 23pajmouy I
' As..eome £q) s100fq0 n
Jo Bugssed ydnoryy, | -]
oAU 1udwRse fonuo)) % juAudse

£S | - By UonEULIOUY uepy SuusouiSug Jdueyoxyg nieqg uoneId3au] o0, jomaurery

(panunuo)) uosuisdio) 3anjeay °c Aqe],

g

s1alqo

%
Bur $$30014

Yolym Joj sjqisuodsai
SI Ol PUB QJB SIJAJDS
) oym jo yoen daoy
S30p IO YInoype 9 ‘Sutduanbos ysvy
uu! uonew mo *908JIAJUI 35N SSAIPPB
~Jogut 30j qqusuodsas -ySnonp pareys aq ued 10U $30p VERIOD
are suonwudwddun $192{q0 Jo uLoj MY W
1(qo 3ur BEp ‘VEI0D JO um VaJ0) 01 Buuaype
auoN | -tediorued oy - suoN SuoN | -B3J [eRuU3D) 51 SIYL Aq eradooa sjoay, || TaVVEIOD
JORUO0d SS358
Areuol1aIosIp ‘uoled
£1001 parRIBaut £[as00] ~griou ‘joRued ssaocosd IIAIDS Juw pauoddns uoneis
popaoad 3q isnw s[00], uawadeuey 129090 10j 5301195 W05 SBY | -oFeweu 150iqo ay sosp) | - Joos jo spAg L | 21Dd YINDT
woddns uon
-0vSURR SNOANIT023Y
SUORd
~JUNURLIOD PASBQ-JUdAY
Suiddwim soupouy
sadBpIaW] 10RNsqy
SOIMAN)
530}
S10) -Bjsuen pue giep-esoN
s98en3 B[SURI} PUB BIEpP-9jow suon -
siowsuen | -uef spdnnu 30§ poddng sonmqedsd uone suoned -gjuasasdaz uowwo)
Surdoyaaap 10j spre seH s19lqo ~D[EAD PUe JUSWIAINSEIJy | -JUNWIWIOD PISBq-JUdAT awfewepy 19990
ssodmd) 30) 3s30A1p J0J uoddng odd $|00) JudW

padojasdp 51003 5381 wowaseusu 139(40 saseq 102[q0 s3s) | -dojoasp soepaw 298 upeay
uuRde fonuo)) % juduIge
wWNSAS [ewIdxyg -UR\ UOBBULIOJU] -ue Sunddurduy sdueyoxg weq uone:33u] joo Homdurely
(panupuo)) uosueduwio)) aanjedj ‘g Iqey,
@ o o ® ® | ® [®

47

® o @ L o @ [o
sisA[eue
pue sjapows Q¢ pue uod
Az 10§ uoddng Suong | -dns a8ueyoxa erep swog SV
‘soutydiosip Suueoutus agdnynus ut
Ainqeondde ynua uisop swrourered pue remdaouod ur Apiqeordde aaey “iye1seceds jo uSisop surourered 30) pareasd Lreuiduo ‘sonmiqede) SPIIYIA
(sisApeve ¢
pue q7) udisaq opny (39) 3014
“P0M [RITIONAS WOS JOJ PUe [EILOIAI Ul Pash U2aq se “aurjdiastp repnonred Aue uoddns Ajarerpowun 10u saop ey 1onpasd opauen) || sursgzamog
Sprepuels
93ueyoxa eep spremo) Surpopow oy *uwod
ssasBosd swos ‘dnosd -dns ausn) - Sopeuy
(Suunisejnuews 10)onp spopow 3uons ‘uod
-U0dWIS) AVIL 2AY -dng pasndo - rendiq HO
Suumoejnuepy Juog - doppuy
J0JONPUOIUIAS JIsey Buons - rensiq swesruado ?
Suum
-eJauBiN §0d 0) Syul'y
SISATeuy peuuoy] Suumyoejnuey suog - Sojeuy || 11 JOMURI]
udisaq oBexoed 3J0100pUCI WIS JNsey 8uong - rdiq udseq
fuum
~®JnueN g42d 01 UL
SISAfeuy feussy] Suumseynuey
udisaq ofexoeg J0IONPUOIIURG d1seg
uone[nuIlg 3 ;
aremyos uS1Saq ey Suumogynuep sondQp-onsog reanavy jiomaurerj

uosteduwio)) uydpsiq *p AqE L

uospredwo) aundpsiq 7'7°€

"SI0 AP Jo seum
9qeLreA pue poxy pue
‘SANONAS P10 ‘sadA)
sduns :sadKy aqp-epy
3O [eosed 0) pAdnNsu

e om.__e £q poquasap) ‘[9A9] Surreys etep oy 18 sjoo) Surresdarur jo sueows
1RO 1wewadeuew Y se yI0D esodiodur pmod ssundiostp asay Joj syomaurel] ‘seare asai poddns ued vay0D “1dl
19lqo jo voneutpioo) 4q paquosap oq wed saundidsip asay ut erep unussaida o) pasn saIMONAS wep rewu o e asus P ul | TaveaIod
$IOIALIS Jofew) are
Kiunoas quowedeue
1iqo ‘1onu0d $532014 "BATE SH[U JUOP U33q SBY YoM OU Inq ‘autjdiosTp Yors 03 agisads sj00) aresBaul pinod || LLOd VINOF
(doueu
~a)utews pue uonesado
01 snwannban) Y1qs
aumue A S 0}
padojaadp aq wed sjooy,
waueBeuew 19(Q0 *BaJe ST Uy
uones3aiut [00], | Juop usaq sey 3o ou Inq ‘JundidsIP Yoes 01 SMNRds s eIB pue ssc ~~d SuuseuBua oy woddns pino eIpeary
wAsAs
QVONW ¥33ANIONT [onuod o) dOTdAdd
foid 30§ S|00) 0BLIW] | -UdAUT ‘YN J0j uoddng foid
sisA[eue
puRe sjpouws (J¢ pue uoddns a8ueyoxo
g 10} uoddng Suong eep pue [00) Suoag SV
sisAfeue
pue s[apow gq¢ pue
dg 0y woddng Suong voddns o3ueyoxq ereq
uone[nwig %
AeMIjOS uSISaC] [EIURYIIRN Suumoeynuepy sondp-onaslg JeoInRyg Jiomawel b
(panunuo)) uosiredwo)) aunddsiy °p qe
o ® @ o o ® o L

49

3.23 Market/Maturity Comparison

Table 5. Market/Maturity Comparison

Not available

Tools Integrated

More than 100 tools inte-
grated

Design Commercially Available Not available More than 100 tools inte-
Framework 11 {mature product) grated or encapsulated
OpenFrame Commercially Available Not Available Unknown

CHl Version 1 Standards 29 US memberss, 8 Euro- A number of tools are inte-
released Jan 1993. pean members and 12 grated into frameworks
Includes Design Repre- Japanese members. 8 of which are claiming CF1
sentations, Inter-Tool the US members are compliance. In general
Communication and sponsoring corporations. this means tool encapsu-
Tool Encapsulation and Some frameworks are lation rather than inter-
Computing Environment CFI compliant in a loose tool communication.
Services standards. manner, no separate

product.
PowerFrame Since Jan 1990 Had some difficulty mar- ECAD oriented
EDA Systems originally, keting framework. Pro/DEVELOP integrated
had on market for a few Cannot bundle tools as MCAD
years. EDA companies have SCRC Ideas tools
been able. Thermal Analysis
DICE Research Not Available In pilot study, wrappers
inte spreadsheet,
CAD systems, finite ele-
ment modeling, finite
Loo] path and Superplss
too uperplas-
tic Forming Analysis
Code applications for
particular design applica-
tion.

VEHCILES Research, for past 6 years; | Not available Weaves technology used in
proposal pending to sup- industrial setting to test
port additional work to alternative algorithms
permit transition to for target tracking;
industry. weaves used to simulate

avionics systems.

CV-DORS Commercially Available 120 Development Systems | By 1/94, application tools

Release 3.0 shipping now Shipped will be available from:
Intelligroup, PDA, SILMA,
ystems, , and
RASNA.
50

Table 5. Market/Maturity Comparison (Continued)

Maturity

Market

Tools Integrated

Commercially available for | 12 frameworks based on 3D MCAD (solid models)
past three years ACIS are now commer- FEA, FEM
cially available. Thermal analysis
200 development systems Surface modeling
shipped 90 applications Design rule processor
currently under develop- | Parametric Design
ment Kinematic Analysis
Material Properties Mgr
Inertial & Mass Properties
Pro/ Commercially available Not available Pro/PDM, Pro/ENGINEER
DEVELOP
Arcadia Research Not Applicable A few for particular appli-
cations, In addition,
alternative tools have
been developed to evalu-
ate problems related to
tool integration.
ECMA PCTE || A published standard. Itis | Software development ECMA PCTE does not
an evolutionary develop- environments are being specify or provide any
ment based on earlier actively marketed. There particular tools. IBM says
versions. An implementa- | are three major compet- they are working with
tion is nearing release ing approaches: PCTE tool vendors to integrate
from IBM. based, systems based tools that support each
upon the Atherton Soft- phase of the software
ware-Backplane, and development lifecycle
message based systems. and that these tools will
Large development be delivered with the
groups in the US and release in September
Europe believe environ- 1993,
ments can have a
significant positive effect
on the delivery of soft-
ware products.
CORBA/ The CORBA specification | It is conceivable that Not Applicable
IDL was published in 1991. CORBA could be used in
At this time there is no any situation where
commercially available applications, tools, serv-
implementation of ers, etc. need to cooperate
CORBA. Some vendors, by communicating via
such as DEC, are using objects. CORBA could
CORBA in the design of be integrated into many
integrated environments. of the other frameworks
The status of these mentioned here.
projects is not known.
51

4. SUMMARY

41 FRAMEWORK COMPARISON SUMMARY

The products that were examined varied in their type. Some of the frameworks
reviewed are software packages, others are software toolkits or suites with which to devel-
op frameworks, and others consist of a set of specifications to be used by framework devel-
opers. The frameworks reviewed range in maturity from proposals and pilot studies to
commercially available software packages. The VEHICLES system, for example, was an
carly prototype system that was primarily a proposal for further development.

The frameworks reviewed were separable into distinct engineering disciplines.
They fell into three primary disciplines: ECAD frameworks, MCAD frameworks, and soft-
ware design frameworks. No frameworks were reviewed that spanned multiple disciplines
effectively. The comparisons between frameworks that were examined are given in Section
3, which provides detailed tables. There are a number of observations that we can make
about these frameworks. Some of these comparisons are summarized in Table 6.

Table 6. Framework Comparison Summary

Type Maturity Discipline
2 8 g” -
et 15181318 1317/2151215
AHHHEBEEHEEE
P’Tﬁ#ﬁ%
Design Framework II Xi1X|X X X
OpenFrame X|X|X X X
CFI X X X
PowerFrame X X X
DICE X|X X XX

33

Table 6. Framework Comparison Summary (Continued)

Type Maturity Discipline
w e
= 8| €=
o 2} [g | OQ. § ; [¥]
Framework S8l=2] & 2l12lo|lS|18|S
zlel2lslo gi8lelzls)2
sl §lSi2|le|ol8l8|l&|8 5
Slal<|d|E|&|z|a|=|=]|3
VEHICLE X X X
CV-DORS X X X
ACIS X[|X|x X
Pro/DEVELOP X X|X
Arcardia X X X
ECMA/PCTE X|X X X
CORBA/IDL XX X X

4.2 CONCLUSIONS

Based on the authors’ understanding of the Thrust 7 and ATD requirements, none
of the reviewed frameworks meet all of the perceived needs for a Thrust 7 and ATD frame-
work. These perceived needs include the need to design and analyze ATD products both
within and across engineering disciplines.

Several of the reviewed frameworks meet a subset of the perceived Thrust 7 needs.
The reviewed frameworks were each designed to meet the needs of a specific engineering
discipline. None of these frameworks were designed with the needs of Thrust 7 such as
product realization taken into consideration.

Since no single framework appears to meet all the perceived Thrust 7 needs, there
are three possible options for obtaining a framework:

1. Develop a new framework
2. Extend an existing framework

3. Federate several existing frameworks

It appears that based on current information, the best option will be the third, to fed-
erate several existing frameworks. The development of a new framework will likely be
inordinately expensive and time-consuming. Extension of an existing framework to cover
multiple engineering disciplines may be difficult since existing frameworks are heavily ori-
ented towards a specific discipline (in particular due to the data exchange), and most are
proprietary.

There were a number of trends that were observed in the reviewed frameworks. In
the ECAD community, the CFI standards are being readily adopted by all of the major
framework vendors. The CFI standards, however, address only a narrow range of the elec-
trical discipline. Future development of CFI standards appear to be forthcoming, but
progress is slow.

The MCAD community has progressed toward standards in the last few years, with
the ACIS and Pro/DEVELOP products being adopted by many of the MCAD vendors as
supported frameworks. Overall capabilities in the MCAD area still lag behind the capabil-
ities of the ECAD frameworks.

During this study no framework was found which supports the electro-optical dis-
cipline. It appeared as though no specific frameworks activity supporting that discipline has
been done. The authors suspect that existing ECAD frameworks are able to support much
of the needs for Electro-Optics, but this has not been verified. Frameworks are configured
to an engineering discipline mostly by the choice of data exchange standards. The data
exchange standards tend to be applications specific. This has tended to limit the range of
applications that specific framework products address.

Software engineering frameworks tend to support an engineering methodology that
is very different from frameworks which cover other disciplines. No couplings of software
engineering frameworks into other disciplines was found. Weak couplings of electrical and
mechanical frameworks occur in thermal analysis, electronic circuit packaging analysis
and some simple electromagnetic support (such as interconnect analysis). Some concern is
warranted about the coupling of software engineering frameworks with electrical, electro-
optic and mechanical frameworks.

No frameworks were examined »* ich spanned multiple disciplines (i.e., electrical
and mechanical). Hence, no single exisuug framework is expected to meet ATD needs. The
authors expected that several frameworks would need to be combined to meet ATD needs.

55

Electromagnetics is an important domain which spans the ECAD and MCAD dis-
ciplines, since it employs significant 3-D modelling. Electromagnetics is a potential area to
bridge the electrical and mechanical engineering disciplines. No particular frameworks
were found to address this bridge, although some electromagnetic analysis tools are avail-
able on ECAD frameworks. Further study is needed in this area. No specific framework
support for Electro-optics was found, although the support may simply be an extension of
current electrical and mechanical capabilities.

The product realization support found in this study has been limited. Although
many of the frameworks address the design phases of product realization, only limited
capabilities were shown in conceptualization or manufacturing. To a great degree the sup-
port found in this area tended to be tools such as virtual manufacturing simulation rather
than support for data exchange with Computer Integrated Manufacturing (CIM).

The technology for creating frameworks of frameworks is still not well understood.
Products such as OpenFrame use multiple framework products to create a single frame-
work. However the techniques that could be used by the ATDs to create a framework of
frameworks is not apparent.

The software engineering technologies of wrappings, wrappers, and weaves as
described in the VEHICLES pilot study show promise as a method of creating frameworks,
perhaps in an automated fashion. However, these technologies are very immature and
would require significant further development before they could be considered for use in
building frameworks.

43 F!YI‘URE EFFORTS

As stated previously, this study reviewed a varied set of frameworks, but not all
frameworks. Future extensions of this type of study should complete the overview of
frameworks to consider all of the available relevant frameworks and technologies. There
are several frameworks that were identified but not reviewed due to time constraints. Of
specific interest are CIMOSA, OctTools, Nelsis and PDFab. Twelve commercially avail-
able frameworks, as listed in Table 3,were developed on the ACIS framework toolkit, but
none were reviewed for this strategy.

There is a great deal of important work in standards that directly leverage frame-
works. The VHDL standard has been very successful for digital electronic information
exchange. Correspondingly PDES/STEP shows much the same promise in the mechanical

56

domain. A more thorough examination of standards should be done in conjunction with the
frameworks examination.

This study needs to be extended to make recommendations for frameworks for the
ATDs. An analysis of ATD requirements needs to be done in order to properly recommend
a framework that meets those needs. The current ECAD and MCAD technology used in any
ongoing ATD activities needs to be taken into consideration in any ATD framework recom-
mendations.

A completed review of frameworks technology needs to be performed, extending
the work in this document to cover all relevant frameworks and associated technology
(such as standards). In order to achieve greater depth of analysis, access to more complete
documentation and to the actual software tools should be obtained.

An initial analysis of a set of candidate frameworks should be performed based on
the availability of detailed and accurate information. This analysis should identify a subset
of promising framework technologies that should be analyzed in greater detail. These
detailed analyses could involve steps such as evaluating the products at a site where they
are in use, using the products for a benchmark design, evaluating documentation, and inter-
viewing users. Appropriate consideration would need to be given to market directions and
emerging technologies.

Based on the statement of ATD needs and this more detailed analysis, recommen-
dations could be made on how framework technologies could meet ATD needs.

It is expected that final recommendations on frameworks will require the integra-
tion of multiple framework technologies since no single product appears to be general
enough to satisfy ATD needs. A major concern in making framework recommendations is
that the selected ATD framework helps to achieve the product realization goals including
conceptualization and manufacturing.

57

[Bellman 1991]

[Bellman 1993]

[Brown 1992]

[CFI 1990]

[CFI 1991a])

[CFI 1991b]

[CFI 1993]

LIST OF REFERENCES

Achieving Openness and Flexibility in VEHICLES, K. L. Bellman, A.
Gilliam, The Aerospace Corporation, 5 Sep 1991.

Enhancing and Transitioning Vehicles: A Flexible Parametric Design
Environment, BAA Proposal: Kirstic Bellman, et al. The Aerospace
Corporation, March 12 1993.

Software Engineering Environments: Automated Support for Software
Engineering, Alan W. Brown, Anthony N. Earl, and John A. McDermid,
McGraw-Hill, Company, 1992.

CAD Framework Users, Goals and Objectives, Version 0.97, CFI,
August 10, 1990.

Semiconductor Wafer Representation Architecture, version 1.0, TCAD
Framework Group, Semiconductor Wafer Representation Working
Group, CFI, Austin, TX.

Current Concepts in Semiconductor Process Representation, Version
0.2, February 22, 1991, Semiconductcr Process Representation, TCAD
Frameworks Working Group, CFIl, Austin, TX.

The CAD Framework Initiative, Enabling CAD Tool Integration, CFI,
Austin, TX, March 12 1993.

[Czechowski 1989]

[CORBA 1991]

[DEC 1991]

Red Book on Functional Specifications for the DICE Architecture,
Joseph Czechowski, et al., Joseph Cleetus, eds, February 28 1989.

The Common Object Request Broker: Architecture and Specification,
OMG Document Number 91.12.1, Revision 1.1, the Object Manage-
ment Group and X/Open, 1991.

PowerFrame Handbook, Digital Equipment Corporation, 1991.

59

[Gorlick 1991)

[Heystek 1987)

[McGrath 1993]

[Nash 1987])

[Rolfe 1990]

[Weisberg 1992]

[Winner 1986a]

[Winner 1986b]

Using Weaves for Software Construction and Analysis, Michael M.
Gorlick, Rami R. Razouk, The Aerospace Corporation, Proceedings,
IEEE 13th International Conference on Software Engineering, May
13-17, 1991.

An Analysis of the DoD Engineering Information System as a Frame-
work for Software Engineering, IDA Paper P-2025, Deborah Heystek
and Robert Winner, 1987.

Technology for Integrated Product/Process Design, ARPA Tech Coun-
cil Review, Michael McGrath, June 14, 1993,

EIS Standards and Specifications: Preliminary Study, IDA Memoran-
dum M-281, Sarah Nash, Katydean Price, and Joseph Linn, 1987.

Interim Status and Recommendations for the Engineering Information
System (EIS) Program, IDA Document D-693, Robert Rolfe, Dennis
Fife, Edgar Sibley and Herbert Brown, 1990.

David E. Weisberg, ed., Engineering Automation Report, December
1992.

The Department of Defense Requirements for Engineering information
Systems (EIS), Volume I: Operational Concepts, IDA Paper P-1953,
Robert Winner, Joeseph Linn et al, 1986.

The Department of Defense Requirements for Engineering Information
Systems (EIS), Volume II: Requirements, IDA Paper P-1953, Robert
Winner, Joseph Linn et al. 1986.

