

NRL Memorandum Report 5210

Possible Role of Vibrationally Excited Hydrogen in the Chemistry of the Earth's Upper Atmosphere

J. A. KAYE* AND D. F. STROBEL

Geophysical and Plasma Dynamics Branch Plasma Physics Division

*NRC/NRL Cooperative Research Associate

October 27, 1983

This research was supported by the Office of Naval Research.

NAVAL RESEARCH LABORATORY Washington, D.C.

Approved for public release; distribution unlimited.

DTIC QUALITY INSPECTED 2

PEPOPT DOCUMENTATION PAG	F	READ INSTRUCTIONS			
REFURI DUCUMENTATION PAG	ACCERTION NO. 1	BEFORE COMPLETING FORM			
I REPORT NUMBER	AT ACCESSION NO. J. NE				
NRL Memorandum Report 5210					
4. TITLE (and Sublitle)	5. TY	PE OF REPORT & PERIOD COVERED			
POSSIBLE ROLE OF VIBRATIONALLY EXCIT	ED inter	im report on a continuing			
HYDROGEN IN THE CHEMISTRY OF THE EA	RTH'S NRL	problem.			
UPPER ATMOSPHERE	•. PE	RFORMING UNG. REPORT RUNDER			
7. AUTHOR(a)	•. co	NTRACT OR GRANT NUMBER(4)			
J A Kave* and D F Strobel					
PERFORMING ORGANIZATION NAME AND ADDRESS	10. P	ROGRAM ELEMENT, PROJECT, TASK REA & WORK UNIT N umbers			
Navai Research Laboratory	611	53N; RR033-02-42;			
Washington, DC 20375	47-0	912-0-3			
IL CONTROLLING OFFICE NAME AND ADDRESS	Octo	ber 27 1983			
Unice of Naval Research	13. N	UMBER OF PAGES			
Arington, VA 22217		22			
4. MONITORING AGENCY NAME & ADDRESS(II different from	Controlling Office) 15. St	CURITY CLASS. (of this report)			
	UNC	CLASSIFIED			
	15a. C	RCLASSIFICATION/DOWNGRADING			
	k	·····			
7. DISTRIBUTION STATEMENT (of the ebetract entered in Bio	a 20, 11 different from Repor	t)			
8. SUPPLEMENTARY NOTES					
*NRC/NRL Cooperative Research Associate					
This wassach man supervised by the Odd of AV	al Jacoba-b				
Inis research was supported by the Office of Na	al riesearch.				
9. KEY WORDS (Continue on reverse eide if necessary and iden	ily by block number)				
Mesosphere, photochemistry					
Hydrogen, photochemistry					
Aeronomy, vibrationally exicted hydrogen					
	to by block sumber				
D. ABSTRACT (Continue on reverse side if necessary and ident	ty by block number)				
The possible role of vibrationally excited $H_2(1)$	I_2) on the budget of H	l ₂ in the earth's mesosphere			
and lower thermosphere is considered and found	to be negligible ($\sim 2\%$	at 80 km). Our model			
includes production, chemical reactions, and que	ching reactions of H_2	(v = 0.5). We estimate that			
at 30 km, where H_2 production is maximized, the	e rate of the H_2 remo	ving reaction $U(3P) + H_2 \rightarrow$			
OH + H does not exceed 6.4×10^{-12} cm molec ⁻¹ sec ⁻¹ for v = 5, which is sufficiently slow that					
quenching removes most n ₂ before it can react v	un U("").				
		<u>,</u>			
D FORM 1473 EDITION OF I NOV 65 IS OBSOL FTE					
S/N 0102-014-6601		TIGAL & F THIS BASS / 100			
	SECURITY CLASSIFICA	IIUN OF THIS PAGE (WAN DALS KAIN			

CONTENTS

۰.

.

I.	Int	roduction 1
II.	Che	mical Model 3
	Α.	Production of H_2^{\star} 3
	в.	Loss of H_2^{\star} by Chemical Reaction
	с.	Loss of H_2^* in Inelastic Collisions
III.	Est	imation of State-Specific Reaction Rates
		and Branching Ratios 5
	A.	Production of H_2^{\dagger} 5
		1. $H + HO_2 + H_2 (v) + O_2 \dots 5$
		2. $H_2O + h_v + H_2(v) + O(^1D)$
	в.	Loss of H_2^{\star} by $O(^{3}P) + H_2(v) + OH + H$
	с.	Loss of H [*] ₂ in Inelastic Collisions
		1. $H_2(v) + N_2 + H_2(v < v) + N_2$
		2. $H_2(v) + 0 + H_2(v' < v) + 0$
IV.	Aer	onomy of H [*] 2 13
۷.	Con	clusions 17
Acknowl	edgme	nts 17
Referenc	ces	

POSSIBLE ROLE OF VIBRATIONALLY EXCITED HYDROGEN IN THE CHEMISTRY OF THE EARTH'S UPPER ATMOSPHERE

I. Introduction

The chemistry of vibrationally excited molecules in the earth's atmosphere is a subject which has received substantial attention (Dalgarno, 1963; Cvetanović, 1974; Taylor, 1974, Vlasov, 1976). Much of this attention has been due to the fact that emission from vibrationally exicted molecules in the upper atmosphere is known to be responsible for major portions of the earth's airglow, most notably the Meinel bands of OH (Bates, 1982 and references therein). Infrared emission from vibrationally exicted molecules in the thermosphere is also expected to play a major role in atmospheric cooling (Gordiets <u>et al.</u>, 1982).

There is little evidence that chemical reactions of vibrationally exicted species play an important role in controlling the net photochemistry of the earth's upper atmosphere, however. By this, we mean that it is not expected that processes of the type

$$A^{*} + B + C + D$$
 (1a)

will be important while processes such as

$$A + B + C + D \tag{1b}$$

are not (an asterisk is used here to represent vibrational excitation). Crutzen (1974) suggested one case where vibrational excitation could play a very important role. This case is the reaction

$$O({}^{3}P) + H_{2} + OH + H$$
 (2a)

which is known to occur very slowly at low and moderate temperatures due to a large (~ 8.5 kcal/mole) activation energy. Because the H₂ vibrational quantum is large (10.2 kcal/mole) and vibrational excitation of H₂ is likely in H₂ forming reactions, Crutzen suggested that reaction 2 could be sufficiently accelerated by vibrational excitation of H₂ that it might become

Manuscript approved September 7, 1983.

one of the dominant loss processes for H_2 . He showed that if one assumed a temperature independent rate constant of 2.9 x 10^{-11} cm³molec⁻¹ for the reaction

$$O({}^{3}P) + H_{2}(v \ge 1) \ge OH + H$$
 (2b)

the predicted concentration of H_2 at and above the 80 km level of the atmosphere decreased by nearly 50%.

This increased destruction of H_2 by reaction (2b) led to a substantial increase in the mixing ratios of H_2O above 70 km calculated by Crutzen (1974). Odd hydrogen (HO_x) formed as a result of H_2O photolysis is known to lead to ozone (O_3) depletion by catalytic cycles, and such reductions are expected to be especially strong at higher altitudes (Prather, 1981). As the ability to measure O_3 in the upper mesosphere and lower thermosphere is increasing, the uncertainty in the H_2O concentration of the magnitude indicated by Crutzen (1974) due to the possible role of H_2^* becomes unacceptably large. Thus, it is important that the role of reaction (2b) as a means of altering the upper atmospheric H_2 and H_2O balance and, therefore, the O_3 concentration be established

Recent experimental work (Light, 1978) indicates that Crutzen seriously overestimated the effect of H_2 vibrational excitation on the rate of reaction 2, and theoretical calculations (Schinke and Lester, 1979) suggest that more than two vibrational quanta of excitation are needed for the rate of reaction 2 to even begin to approach the value suggested by Crutzen.

In this report we examine in some detail the aeronomy of vibrationally excited H_2 , hereafter referred to as H_2^{\star} , in the earth's upper atmosphere. We consider processes responsible for production and destruction of H_2^{\star} , and attempt to make reasonable estimates for the vibrational state specific chemical reaction and vibrational quenching rates. Finally, we combine the expressions obtained with a knowledge of the photochemistry of H_2 in the atmosphere (Hunten and Strobel, 1974; Liu and Donhue, 1974; Schmidt, 1974; Koshelev, 1976; Penner <u>et al.</u>, 1977) to conclude that consideration of H_2^{\star} is not expected to appreciably alter the calculated upper atmospheric H_2 densities.

II. Chemical Model

In this section we will briefly review all chemical reactions which we expect to be important in the aeronomy of H_2^* ; we will defer estimation of state specific rate constants to Section III. We will consider processes responsible for production, loss by reaction, and loss by inelastic processes of H_2^* .

A. Production of H_2^*

Crutzen (1974) suggested three processes which can reasonably be assumed to give rise to H_2^* in the earth's upper atmosphere:

$$H + HO_{2} + H_{2}(v) + O_{2}$$
 (3a)

$$H_{2}0 + hv \rightarrow H_{2}(v) + O(^{1}D)$$
(4a)

$$H + H + M \rightarrow H_2(v) + M$$
⁽⁵⁾

Of these, the small concentrations of H in the earth's upper atmosphere and the slow rate for R5 combine to make it unimportant. Model calculations of Hunten and Strobel (1974) show that the fractional contribution of R5 to H_2 production near its peak at 80 km must be not greater than 1 part in 10^4 . Thus, we will restrict our attention to the potentially important reactions R3 and R4a.

We note that R3a and R4a represent each only one possible product path for the respective reactions. Alternate (and frequently more prevalent paths) are

$$H + HO_{2} \rightarrow 20H$$
(3b)

$$+ H_2 0 + 0$$
 (3c)

$$H_{2}0 + hv + H + 0H \tag{4b}$$

$$\rightarrow 0 + H + H \tag{4c}$$

While the exact portion of reactions 3 and 4 resulting in H_2 formation by pathways 3a and 4a, respectively, is not precisely determined (Hack <u>et al</u>. 1978; Sridharan <u>et al</u>. 1982; Stief <u>et al</u>., 1975; Slanger and Black, 1982); the results of our analysis do not depend strongly on the branching ratios R3a/R3 and R4a/R4 unless we have greatly underestimated them.

B. Loss of H_2^{\bigstar} by Chemical Reaction

Three H_2 destruction reactions were considered by Crutzen (1974):

$$O(^{3}P) + H_{2} + OH + H$$
 (2)

$$O(^{1}D) + H_{2} + OH + H$$
 (5)

$$DH + H_2 \rightarrow H_2 O + H$$
 (6)

Of these, it is expected the R2 is the only one which will be important for H_2^{\star} . Reaction 5 is known to occur rapidly $(k_5 = 1.0 \times 10^{-10} \text{ cm}^3 \text{molec}^{-1} \text{sec}^{-1}$ and no temperature dependence) with ground vibrational state H_2 (JPL, 1982), so vibrational excitation is not expected to appreciably accelerate it. Supporting this expectation, quasiclassical trajectory calculations for R5 show only a 10% increase in reaction cross section on H_2 vibrational excitation (Schinke and Lester, 1980),. Since $[0({}^1D)] << [0({}^3P)]$, we may thus safely neglect the effect of R5 on H_2^{\star}

Reaction 6, which is known to have a substantial (4 kcal/mole) activation energy (JPL, 1982) could be expected to be appreciably accelerated by H_2 vibrational excitation, especially at low temperatures. At room temperature, single quantum excitation of H_2 is known to increase the rate of R6 by roughly a factor of 100 (Glass and Chaturvedi, 1981), corresponding to an approximate decrease in the activation energy from 4 to 2.5 kcal/mole (Truhlar and Isaacson, 1982) Even if multiple-quantum excitation of H_2 sufficiently accelerates R6 that there is no effective activation barrier, the low concentration of OH in the mesosphere, as opposed to that of $O({}^{3}P)$, (Prather, 1981) indicates that R2 should be much more important than R6, and we will thus consider R2 as the only reactive loss process for H_2^{\star} .

C. Loss of H^{*}₂ in Inelastic Collisions

We will need to consider three major non-reactive loss process for H_2^{\star} :

$$H_2(v) + N_2 + H_2(v < v) + N_2$$
 (7)

$$H_2(v) + 0_2 + H_2(v < v) + 0_2$$
 (8)

$$H_2(v) + 0 + H_2(v < v) + 0$$
 (9)

where we write here H_2^{\star} as $H_2(v)$ to reinforce the state-specificity of the quenching rates. Since there is no information on the rate of R8, we will assume that the rates for quenching of $H_2(v)$ by N_2 and O_2 are identical. This is a reasonable assumption, given the similarities of N_2 and O_2 in terms of mass, vibrational frequencies, and Lennard-Jones potential parameters (Lambert, 1977).

The only measurement of the rate of R7 is for v=l at room temperature (Bott, 1976) and is, therefore, not directly applicable to the high excitation and low temperatures encountered in the upper atmosphere. We will attempt to make reasonable approximations for the v and T dependence of the rate of R7. There are no measurements of the rate of R9, and no results were presented for H_2 vibrational deactivation in quasi-classical trajectory calculations on R2 (Schinke and Lester, 1979), so we will be forced to estimate the rate of R9.

III. Estimation of State-Specific Reaction Rates and Branching Ratios

- A. Production of H_2^{\star}
 - 1. $H + HO_2 + H_2 (v) + O_2$

Reaction 3a is sufficiently exothermic (2.25 eV if the 0_2 is produced in its ground electronic state) that the v = 0-4 vibrational levels of H₂ are energetically accessible. If the 0_2 is produced in one of its lowlying electronically excited states $(a^1 \Delta_g, b^1 \Sigma_g^+)$, less energy is available for H₂ product internal excitation. Experiments indicate that the yield of electronically excited 0_2 in reaction 3a is quite small (Washida <u>et al.</u>, 1978) and we will assume, therefore, that reaction 3a proceeds only to ground electronic state products.

No information is available on the distribution of internal energy in the products of reaction 3a. Quasi-classical trajectory calculations on a related reaction

$$H + HCO + H_2 + CO$$
(10)

have been performed (Fanantos and Murrell, 1980). They showed that between 25% and 30% of the available product energy goes into H_2 vibration in the temperature range 300-1000K, and that the H_2 vibrational state distribution is

approximately Boltzmann. If we assume these conclusions carry over to reaction 3a, we estimate a product state distribution for v = 0, 1, 2, 3, and 4 respectively of 0.35: 0.25: 0.18: 0.13: 0.09.

2. $H_20 + h_v + H_2(v) + O(^1D)$

Nothing is known of the H₂ vibrational state distribution in this process. Substantial vibrational excitation of H_2 is energetically permitted; the endothermicity of the dissociation process is 7.06eV, and a photon at 1216 Å (Ly- α , expected to be the most important vacuum ultraviolet wavelength) contains 10.20eV, leaving 3.14eV available for product excitation. Given that there is an appreciable change in the H-H distance on photodissociation, substantial vibrational excitation of the H₂ product is a distinct possibility. If we estimate that 20% of this available energy goes into H_2 and assume that the vibrational states are populated with a Boltzmann distribution, a product state distribution for v = 0, 1, 2, 3, 4, and v > 5 of 0.4: 0.2: 0.1: 0.08: 0.05: 0.06 is expected. This distribution is reasonably close, especially at the high vibrational excitation end, to that which would be expected on a purely statistical basis (i.e. product states are populated proportionately to the density of states).

B. Loss of H_2^* by 0 (³P) + $H_2(v) + OH + H$

The available data, both experimental (Light, 1978) and theoretical (Schinke and Laster, 1979) indicate that H₂ vibrational excitation leads to an enhancement in its rate by a factor much smaller than that assumed by Crutzen (1974). At room temperature Light (1978) measured a rate constant of 1.0 x 10^{-14} cm³molec⁻¹sec⁻¹ for R2b with v=1. No measurements of this reaction at the lower temperatures of the earth's mesosphere and lower thermosphere have been reported. Two quantum excitation of H₂ has been calculated to lead to an additional factor of 100 enhancement over the rate for R2b(v = 1) at 300K (Schinke and Lester, 1979), which gives an approximate value of 10^{-12} cm³molec⁻¹sec⁻¹ for R2b (v = 2) at 300K. In order for R2b to occur rapidly ($k_{2b} \gtrsim 10^{-11}$ cm³molec⁻¹sec⁻¹ we clearly require high vibrational excitation. As we showed earlier, population to v = 5 is probable, so detailed consideration of these higher levels is appropriate.

A simple picture which permits one to make reasonable predictions for the effect of vibrational energy on chemical reactions involves a combination of transition state theory and the vibrationally adiabatic theory of chemical reactions (Kuppermann, 1979 and references therein). In this picture, one specifically accounts for the fact that large effective energy barriers to chemical reactions may persist even when the amount of vibrational excitation is very large (Kaye, 1982). This method has been applied to R2 (v = 0,1) and shown to give reasonable results (Lee <u>et al.</u>, 1982b), and we use a simplified version of this model to make predictions for the temperature and quantum state dependence of R2b.

The crucial step in this method is the recognition that the position and energy of the transition states (represented by \pm) of the chemical reaction

$$0 + H_{2}(v) + 0 \cdot H \cdot H^{\ddagger}(v) + 0H(v) + H$$
(11)

depend on the reagent vibrational quantum number v. The transition-state theory expression for the state-specific is

$$k_{v}(T) = K(T) \frac{kT}{h} \frac{f_{tr}^{\dagger}}{f_{tr}^{0} f_{tr}^{H_{2}}} \frac{(f_{b})^{2} v^{(f_{rot})^{\dagger}} v}{(f_{rot})^{H_{2}}} \exp(-\Delta V \frac{t}{v}/kT)$$
(12)

where f_{tr} is a translational partition function, $f_{tr} = (2\pi m kT/h^2)^{3/2}$, f_b is the bending partition function not including zero-point energy, $f_b = [1 - \exp(-hv_{b,v}/kT)]^{-1}$, and f_{rot} is a rotational partition function. ΔV_v^{\pm} is the v-dependent height of the vibrationally adiabatic barrier to chemical reaction which includes stretching and bending zero-point energies. K(T) is a dynamical correction factor which we will take to be unity for reasons described below. In usual applications of transition state theory there are also terms for reagent vibration and complex "symmetricstretching" type modes but these are not considered here because our model restricts us to one vibrational state at a time; in any case both these modes are at a sufficiently high frequency that at mesospheric temperatures their

value is unity.

The position and energy of the vibrationally adiabatic barriers for R2 are determined by the method described by Lee et al. (1982) except that eigen-values were determined numprically (Truhlar 1972) rather than by a fit to a Morse oscillator, using the MOD POL-CI RMOS potential energy surface (Lee et al., 1982a). Transition state rotational partition functions were calculated using the geometries calculated for each transition state, under the rigid-rotor approximation. H_2 rotational partition functions are independent of v in the harmonic oscillator approximation for H_2 . Complex partition function were bending calculated using an assumed form $\left[v_{b,v} = A \exp(-bs_v^2)\right]$ for the dependence of the bending frequency on the distance s, of the vth transition state along the reaction coordinate from the saddle point. Since the MOD POL- CI RMOS surface (Lee et al., 1982a) is defined only for collinear configurations, we estimated b using the Johnson-Winter (JW) potential energy surface (Johnson and Winter, 1977). A was assumed to have the value of 514 cm⁻¹ determined by Walch <u>et al</u>. (1980) for their ${}^{3}A''$ surface. Bending frequencies were calculated using standard formulas for linear triatomic molecules (Johnston, 1966). Values of various quantities in Eq. 12 and parameters used to calculate these values in Eq. 12 are shown in Table 1.

We note that the MOD POL-CI RMOS surface does not have the correct asymptotic vibrational energy levels for H2, but this is not expected to lead to appreciable errors except for v=0 (where the barrier is assumed to be at the saddle point). The vibrationally adiabatic barriers are sufficiently far in the entrance channel (closer to $0 + H_2$ than 0H + H) that the heights and positions of the barriers are probably correct; only their absolute energies are wrong, and they do not enter into these calculations. The dynamical correction factors K(T) are taken to be unity as a reasonable compromise between two competing effects. At low T, quantum mechanical tunneling tends to make K(T) large (>1) while at high T, reaction probabilities are always $\langle 1, so K(T) \langle 1 also.$ Thus we feel our choice for K(T) is a physically reasonable one. If anything, this may be a slight overestimate of K(T), which means we are overestimating $k_w(T)$ and thus overestimating the importance of R2b. More accurate determination of K(T) is possible (Bowman et al., 1981; Lee et al., 1982b) but becomes expensive because of the large internal excitation we must consider here.

Table l

Values of Quantities Used in Estimating Rate Constants for the Reaction $0 + H_2(v) \rightarrow 0H + H$

	₋a	. 9	_ t	→	⁺c	tq	⁺ q	_a
v	v v	V[H ₂ (v)]	(R_{OH}^+)	$(R_{H_{a}}^{+})_{v}$	I T	ν .	∿ື້ 5. ⊽	7 <u>4</u>
0	-3.486	-3.872	2.33 1	L.74 ²	3.22(-39)	1636	514	0.450
1	-3.190	-3.375	3.01 1	1.49	4.36(-39)	3750	488	0.246
2	-2.812	-2.913	3.39 1	1.46	5.22(-39)	4090	451	0.157
3	-2.429	-2.485	3.83 1	L.44	6.32(-39)	4210	389	0.104
4	-2.048	-2.091	4.05 1	1.43	6.93(-39)	4280	355	0.087
5	-1.703	-1.732	4.27 1	L.44	7.57(-39)	4280	319	0.069

a) Potentials are measured (in eV) with respect to a zero energy at three infinitely separated atoms. V_v^{\ddagger} = height at top of vth vibrationally

adiabatic barrier.

 $V[H_2(v)] = energy of vth vibrational$

 ΔV_{v}^{\dagger} = vibrationally adiabatic barrier

height

- b) R_{xy}^{\pm} is xy internuclear distance (in bohr) at vth transition state
- c) I_v^{*y} is moment of inertia (in g cm²) of vth transition state.
 Numbers in parentheses represent powers of ten by which the non-enclosed numbers should be multiplied.
- d) $v_{s,v}^{\ddagger}$, $v_{b,v}^{\ddagger}$ are "symmetric stretch" and bending vibrational frequencies respectively (in cm⁻¹) at vth transition state

Using the data in Table 1 and eq. 12 we find an expression for the rate constant of

$$k_v(T) = a_v [1 - \exp(-b_v/T)]^{-2} T^{1/2} \exp(-c_v/T)$$
 (13)

Values of the constants a_v , b_v , and c_v , along with k_v at T=200, 300K are given in Table 2. The 300K result for v = 1 agrees quite well with the result of 1(+0.9, 0.6) x 10^{-14} cm³ molec⁻¹sec⁻¹ determined by Light (1978).

C. Loss of H_2^* in Inelastic Collisions 1. $H_2(v) + N_2 + H_2(v^2 < v) + N_2$

Due to the fact that the rate for this process is known only for v = 1 at room temperature, we must theoretically extend these results to the lower temperatures and higher levels of excitation encountered in the upper atmosphere. Simple methods for estimating rates of vibrational-to-vibrational (V-V) and vibrational (V-T) energy transfer, such as SSH theory and its derivatives (Lambert 1977 and references therein) give unreasonable results for H₂ and thus may not be used.

Some aspects generally seen in energy transfer collisions are expected be true for this process. Specifically, we expect all such deactivations to occur in single quantum transitions and the deactivation rate to be proportional to the level of H_2 excitation:

$$k_{v,v-1} = v k_{1,0}$$
 (14)

Rather than assuming the usual T dependence for deactivation rates (Lambert, 1977) in this system, we will assume that the $k_{v,v-1}$ are T independent. Our motivation for this comes from noting that in order to ensure that transition probabilities obey microscopic reversibility, simple expressions for them must contain a term of the form $exp(\Delta E/2kT)$. ΔE is the energy being converted from vibration to translation and is positive for deactivation and negative for excitation. Combining this dependence with usual T dependence we see in the simple theories

$$P_{10} \propto \exp(-BT^{-1/3})\exp(\Delta E/2kT)$$
(15)

v	$a_v^{\ddagger} b_v({}^{o}K)$	cv ^{(°} K)	k _v (200K)	k _v (300K)	
0	1.72(-9)	740	5220	5.85(-22)	3.28(-18)
1	2.32(-9)	703	2850	1.11(-16)	1.21(-14)
2	2.78(-9)	650	1820	2.35(-14)	4.72(-13)
3	3.37(-9)	556	1210	6.48(-13)	4.90(-12)
4	3.69(-9)	512	1010	1.96(-12)	1.11(-11)
5	4.04(-9)	460	800	6.43(-12)	2.63(-11)

Table 2: State Specific Rates $k_v(T)$ for the Reaction $0 + H_2(v) + 0H + H$

Rate constants have units of cm³molec⁻¹sec⁻¹. The numbers in parentheses represent the power of ten by which the non-enclosed number should be multiplied. Clearly, at sufficiently low T, P_{10} will increase with T. Using reasonable values for the collection of parameters B and ΔE we expect no enormous reduction in P_{10} from 300-200K (no more than a factor of three), and thus assume no T dependence for the deactivation rate. This assumption probably leads to a slight overestimate of the N₂ quenching rate and thus a slight underestimation of H^{}₂ concentrations and hence of its role in atmsopheric chemistry.

Since our neglect of the transmission coefficient in section B above probably led to an overestimate of the rate of R2b, we think these assumptions should more or less cancel each other out.

2.
$$H_2(v) + 0 + H_2(v < v) + 0$$

It is known that vibrational deactivation in potentially reactive collisions may be an extremely rapid process (Smith, 1976), and for this reason we must consider this process as a potential loss mechanism for H_2^{\star} . In addition, it has been seen in collinear quantum mechanical scattering calculations in atom-diatomic molecule systems that multi-quantum transitions, may account for a substantial fraction of deactivation collisions (Kaye, 1982).

In order to assess the relative magnitude of this process and, in particular, the importance of multi-quantum transitions we have performed collinear quantum mechanical scattering calculations on this system using the MOD POL-CI RMOS surface (Lee <u>et al.</u>, 1982a). For simplicity, we will consider one n-quantum transition as n single-quantum transitions. We estimate the rate of deactivation by this process to be given by

$$k_{v,v-1}^{(9)}(T) = R_{v}(T)k_{v}^{(2)}(T)$$
 (16)

where the superscript represents the reaction number; $k_v^{(2)}$ is given by eq. 12 or alternatively by eq. 13 and Table 2, and $R_v(T)$ is determined from the collinear quantum mechanical calculations by the expression

$$R_{v}(T) = \sum_{k=1}^{v-1} (v-v')k^{(9)}(T)$$

$$\frac{v = 1}{k_{v}^{(2)}(T)}$$
(17)
(17)

where the k's in eq. 17 are the calculated collinear ones. Results of the calculations indicate nearly T independent values of $R_v(T)$ of 0.4, 0.7, and

0.9 for v = 1,2, and 3 respectively. We further assume values of 1.0 for v = 4 and 5. The assumption that one may use the results of collinear calculations to make predictions about the real three-dimensional world has been made frequently in the past (Bowman <u>et al.</u>, 1981; Lee <u>et al.</u>, 1982b; Wassam and Lee, 1976; Wassam, 1980). and, while certainly not being exact, should give physically reasonable results.

IV. Aeronomy of H_2^{\star}

To evaluate the possible importance of R2b in controlling the H_2 concentration in the earth's upper atmosphere, we will consider a simple steady-state purely photochemical model (i.e. containing no transport) for the 80 km altitude region, at which H_2 production is expected to be a maximum (Hunten and Strobel, 1974; Liu and Donahue, 1974). For convenience we adopt results from the former. Although numerous reaction rate constants and branching ratios have been assigned new values since that work was performed, the qualitative picture remains unchanged. We thus assume that the conclusions we draw about the role of H_2^{\star} should also be valid in a model using more recent values for the many parameters necessary.

Concentrations of important species and reaction rates are taken from the appendix and Figures 2 and 3 of Hunten and Strobel (1974) and are shown in Table 3 here. Pertinent rate constants and reaction rates are shown for v = 0-5 at 80 km in Table 4.

The assumption of steady for H_2^{π} implies the following expressions:

$$\frac{d[H_{2}(v)]}{dt} = 0 = R_{v}^{(3a)} + R_{v}^{(4a)} - \{(k_{v}^{(12)} + k_{v}^{(9)})[0] + k_{v}^{(7)} [M] + k_{v}^{(5)}[0(^{1}D)]\}[H_{2}(v)] + (k_{v+1}^{(7)}[M] + k_{v+1}^{(11)}[0])[H_{2}(v+1)]$$
(18)

where we repeat that we are considering only single quantum deactivations and we neglect vibrational excitation. These equations may be rewritten in matrix form

$$K_{\mathbf{x}} = -\mathbf{R}$$
(19)

	Ta	able 3: Para	meters of 1	importance to	H_2^* Aero	nomy	
	(Taken from	appendix and	Figures 2	and 3 of Hur	nten and	Strobel	1974) b
z(km)) T(K)	[M]	[0]	[O(1D)]	[H ₂]	$R^{(3a)}$	$R^{(4a)}$
50	271	2.14(16)	3.25(9)	3.05(2)	1.5(9)	1	0
60	243.3	6.47(15)	3.25(9)	1.3(2)	2(9)	2	0
70	216.6	1.70(15)	2.0(9)	4.8(1)	1.5(9)	6	25
80	186	3.76(14)	7.0(9)	3.5(1)	8(8)	80	100
90	183	6.39(13)	2.2(11)	1.5(2)	1.5(8)	0.05	6
100	193.5	9.74(12)	8.0(11)	6.0(2)	2(7)	0.001	0.1

* Concentrations are in units of cm^{-3} , Reaction rates (R) are in units of $cm^{-3}sec^{-1}$. Numbers enclosed in parentheses are the powers of 10 by which the non-enclosed numbers should be multiplied.

Table 4: Data for Steady State Calculation at 80 km*

v	R <mark>(3a)</mark> V	R ^(4a) v	k _v (2)	k ⁽⁹⁾ v	R _v ⁽⁷⁾	$R_v^{(1)}$	R _v ⁽⁷⁾	R ⁽⁵⁾
0	28	<i>J. I</i> .	8.4(-24)	0	0	5.9(-14)	0	6.7(-9)
1	20	24	3.9(-17)	1.6(-17)	1.1(-7)	2.7(-7)	2.4(-2)	6.7(-9)
2	14	14	1.2(-14)	8.4(-15)	5.9(-5)	8.4(-5)	4.8(-2)	6.7(-9)
3	10	8	4.2(-13)	3.8(-13)	2.6(-3)	2.9(-3)	7.2(-2)	6.7(-9)
4	7	5	1.4(-12)	1.4(-12)	9.8(-3)	9.8(-3)	9.6(-2)	6.7(-9)
5	0	6	4.8(-12)	4.8(-12)	3.4(-2)	3.4(-2)	1.2(-1)	6.7(-9)

* Reaction rates (R) are in units of cm⁻³sec⁻¹, rate constants are in units of cm³molec⁻¹sec⁻¹. Numbers enclosed in parentheses are the powers of 10 by which the non-enclosed numbers should be multiplied.

where x is the column vector of $H_2(v)$ concentrations, R is the column vector of $H_2(v)$ production rates, and K is the transition matrix whose elements are given by

$$K_{vv}^{\prime} = \begin{bmatrix} (k_{v}^{(2)} + k_{v}^{(9)}) [0] + k_{v}^{(7)} [M] + k_{v}^{(5)} [0(^{1}D)] & v^{\prime} = v \\ k_{v+1}^{(7)} [M] + k_{v+1}^{(9)} [0] & v^{\prime} = v + 1 \end{bmatrix}$$
(20)

Equations 18-20 do not include the effects of transport, which will only be important for $H_2(v=0)$. This neglect implies that our calculated values of the concentration of $H_2(v=0)$ will be too high, but this error will not affect our calculated H_2 destruction rate by processes involving H_2^{*} . The calculated values for $[H_2(v)]$ and the loss rates due to reaction with $O(^{3}P)$ are shown in Table 5.

The major result to come from this study is seen at the bottom of Table 5: the total loss rate of H_2 expected due to chemical reactions of H_2^{\star} with $O(^{3}P)$ is approximately 3.9 cm⁻³sec⁻¹, compared with a total H_2 production rate (see Table 2) of 180 cm⁻³sec⁻¹. Thus, reactions of H_2^{\star} remove only some 2% of the total H_2 produced at this altitude (80 km). The only other chemical loss process for H_2 important at 80 km is R5, which occurs with a rate of 5.4 cm⁻³sec⁻¹. Thus, while H_2^{\star} makes a substantial contribution to chemical loss of H_2 , the total contribution of chemical losses to the overall H_2 budget is small; most of the H_2 produced at 80km is transported to higher or lower levels of the atmosphere (Hunten and Strobel, 1974). The very small contribution of loss of H_2 by reaction of H_2^{\star} to the total H_2 budget suggests that even if we have grossly underestimated $k_v^{(2)}$, our conclusion will still be valid.

From Table 2, one may see that 80 km is the most favorable altitude for a contribution of H_2^* to the overall H_2 chemistry. Away from 80 km, H_2 production is reduced, immediately reducing the potential role of H_2^* chemistry. Also, $[0(^{1}D)]$ is a minimum at 80 km and thus at other altitudes chemical loss of H_2 by R5 will be greater. At lower concentrations the vibrational quenching rates will increase, further limiting the possible contribution of H_2^* . At higher altitudes the combination of greatly decreased H_2 production and increased $[0(^{1}D)]$ will approximately cancel the

v	$k_v^{(2)}(\text{cm}^3\text{molec}^{-1}\text{sec}^{-1})$	$[H_2(v)](cm^{-3})$	$R_{y}^{(2)}(cm^{-3}sec^{-1})$
0	8.4(-24)	8(8) ^a	4.7(-5)
1	3.9(-17)	4.3(3)	1.2(-3)
2	1.2(-14)	1.3(3)	1.1(-1)
3	4.2(-13)	4.3(2)	1.3(0)
4	1.4(-12)	1.5(2)	1.5(0)
5	4.8(-12)	3.2(1)	1.1(0)
sum			3.9(0)

Table 5: Contributions of H_2^* to Loss of H_2 Reaction with $O(^{3}P)$ at 80 km*

- ± Numbers in parentheses are the powers of 10 by which the non-enclosed numbers should be multiplied.
- ^a $[H_2(v = 0)]$ is taken from Hunten and Strobel (1974) and not from the results of our calculation, which neglects transport.

increased $[0({}^{3}P)]$ and decreased total pressure, which would tend to increase the importance of reactions of H_{2}^{*} . Thus, it is apparent that H_{2}^{*} chemistry will not significantly perturb the H_{2} budget at any altitude in the mesosphere or lower thermosphere. We emphasize the difference between our results and those of the more complete but less chemically accurate model of Crutzen (1974), who suggested that consideration of R2b might greatly reduce upper atmospheric H_{2} . Our differences arise mainly from the different approximations made for the effect of vibrational enhancement on $k_{v}^{(2)}$. The value assumed by Crutzen (1976) for v > 1 is greater than our estimated value for v < 5 at 80 km. Since our model contains a much more realistic chemical treatment for the effect of H_{2} vibrational excitation on $k_{v}^{(2)}$, we feel confident that our results more accurately represent the effect of H_{2}^{*} chemistry on atmospheric H_{2}^{*}

V. Conclusions

We have shown using a realistic chemical model that the contribution of chemical reactions of vibrationally excited H_2 to the total upper atmospheric H_2 budget is negligible. This conclusion differs greatly from the preliminary result of Crutzen (1974) who suggested such a process could lead to a dramatic reduction in upper atmospheric H_2 . Our model contains chemically reasonable values for state-specific reaction rates and branching ratios for the production, chemical reaction, and quenching of H_2^* . Our estimate that only ~2% of the H_2 produced at 80 km is lost by reaction of H_2^* is sufficiently small that the conclusion should be independent of the exact assumptions made in our model. Gross errors (i.e. more than an order of magnitude would be necessary to qualitatively alter this conclusion.

Acknowledgment

We thank Prof Joel M. Bowman for helpful discussions. This work was supported by the Office of Naval Research.

References

- Bates, D.R., 1982: Airglow and aurora, Ch. 6 in <u>Applied Atomic Collision</u> <u>Physics, Vol 1.: Atmospheric Physics and Chemistry</u>, (ed. H.S.W. Massey and D.R. Bates), Academic Press, New York, pp 152-224.
- Bott, J.F., 1976: Vibrational energy exchange between $H_2(v = 1)$ and D_2 , N_2 , HC1, and CO_2 . J. Chem Phys., 65, 3921-3927.
- Bowman, J.M., G-Z. Ju, K.T. Lee, A.F. Wagner, and G.C. Schatz, 1981: Tests of collinear quasiclassical trajectory transmission coefficient to transition state theory. J. Chem. Phys., 75, 141-147.
- Crutzen, P., 1974: A review of upper atmospheric photochemistry. <u>Can J.</u> Chem., <u>52</u>, 1569-1581.
- Cvetanovic, R.J., 1974: Excited state chemistry in the stratosphere. <u>Can. J.</u> Chem., 52, 1452-1464.
- Dalgarno, A. 1963: Vibrationally excited molecules in atmsopheric reactions. Planet. Space Sci., 10, 19-28.
- Farantos, S.C. and J.N. Murrell, 1980: A classical trajectory study of the reaction $H + HCO + H_2 + CO$. Mol. Phys., 40, 883-891.
- Glass, G.P. and B.K. Chaturvedi, 1981: The effect of vibrational excitation of H₂ and OH on the rate of reaction H₂ + OH + H₂O + H. J. Chem. Phys., 75, 2749-2752
- Gordiets, B.F., Yu N. Kulikov, M.N. Markov, and M. Ya Marov, 1982: Numerical modelling of the thermospheric heat budget. J. Geophys. Res., 87, 4504-4514.
- Hack, W., H. Gg. Wagner, and K. Hoyermann, 1978: Reaktionen von Wasserstoffatomen mit Hydroperoroxylradikalen. I. Bestimmung der spezifischen Geschwindigkeitskontanten der Reaktionskanäle. <u>Ber. Buns.</u> <u>Phys. Chem.</u>, 82, 713-719.
- Hunten, D.M. and D.F. Strobel, 1974: Production and escape of terrestrial hydrogen. J. Atmos. Sci., 31, 305-317.
- Johnson, B.R. and N. W. Winter, 1977: Classical trajectory study of the effect of vibrational energy on the reaction of molecular hydrogen with atomic oxygen. J. Chem Phys., 66, 4116-4120.
- Johnston, H.S., 1966: <u>Gas Phase reaction rate theory</u>. Ronald Press, New York. JPL, 1982: Chemical kinetics and photochemical data for use in stratospheric modeling. Evaluation number 5. JPL Publication 82-57, Pasadena, CA.

- Kaye, J.A., 1982: Theoretical studies of chemical reaction dynamics. <u>Ph.D.</u> Thesis, California Institute of Technology, Pasadena, CA.
- Koshelev, V.V., 1976: Diurnal and reasonal variations of oxygen, hydrogen, and nitrogen components at heights of mesosphere and lower thermosphere. J. <u>Atm. Terr. Phys.</u>, 38, 991-998.
- Kuppermann, A., 1979: An exact quantum mechanical transition state theory I. An overview. J. Phys. Chem, 83, 171-187.
- Lambert, J.D., 1977: <u>Vibrational and rotational relaxation in gases</u>. Oxford U.P., Oxford, England.
- Lee, K.T., J.M. Bowman, A.F. Wagner, and G.C. Schatz, 1982a: A comparative study of the dynamics of several potential energy surfaces of $O({}^{3}P) + H_{2} + OH + H$. II. Collinear exact quantum and quasiclassical reaction probabilities. J. Chem Phys., 76, 3563-3582.
- -, 1982b: -- III. Collinear exact quantum transmission coefficient to transition state theory. J. Chem. Phys., 76 3583-3596.
- Light, G.C., 1978: The effect of vibrational excitation on the reaction of $O({}^{3}P)$ with H₂ and the distribution of vibrational energy in the product of OH. J. Chem. Phys., 68, 2831-2843.
- Liu, S.C. and T. M. Donahue, 1974: The aeronomy of hydrogen in the atmosphere of the earth. J. Atmos. Sci., 31, 1118-1136.
- Penner, J.E., M.B. McElroy, and S.C. Wofsy, 1977; Sources and sinks for atmospheric H_2 : A current analysis with projections for the influence of anthropogenic activity. Planet. Space Sci., 25, 521-540.
- Prather, M.J., 1981: Ozone in the upper stratosphere and mesosphere. <u>J.</u> Geophys. Res., 86, 5325-5338.
- Schinke, R. and W.A. Lester, Jr., 1979: Trajectory study of 0 + H₂ reactions on fitted <u>ab initio</u> surfaces. I. Triplet case. <u>J. Chem. Phys.</u>, <u>70</u>, 4893-4903.
- -, 1980: II. Singlet case. J. Chem. Phys., 72, 3754-3766.
- Schmidt, U., 1974: Molecular hydrogen in the atmosphere. <u>Tellus</u>, <u>26</u>, 78-90. Slanger, T. G. and G. Black, 1982: Photodissociative channels at 1216Å for H₂O, NH₃, and CH₄. J. Chem. Phys., 77, 2432-2437.
- Smith, I.W.M., 1976: Relaxation in collisions of vibrationally excited molecules with potentially reactive atoms. Acc. Chem Res., 9, 161-168.

- Sridharan, J.C., L.X. Qiu, and F. Kaufman, 1982: Kinetics and product channels of the reactions of HO₂ with O and H atoms at 296K. <u>J. Phys. Chem.</u>, <u>86</u>, 4569-4574.
- Stief, L.J., W.A. Payne, and R.B. Klemm, 1975: A flash photolysis-resonance fluorescence study of the formation of O(¹D) with H₂, Ar, and He. J. <u>Chem. Phys.</u>, 62, 4000-4008.
- Taylor, R.L., 1974: Energy transfer processes in the stratosphere. <u>Can. J.</u> <u>Chem., 52</u>, 1436-1451.
- Truhlar, D.G., 1972: Finite difference boundary value method for solving onedimensinoal eigenvalue equations. J. Comp. Phys., 10, 123-132.
- Truhlar, D.G. and A.D. Isaacson, 1982: Statistical-diabatic model for stateselected reaction rates. Theory and application of vibrational-mode correlation analysis to $OH(n_{OH}) + H_2(n_{HH}) + H_20 + H$. J. Chem Phys., <u>77</u>, 3516-3522.

- 8

4

- Vlasov, M.N., 1976: The photochemistry of excited species. J. Atm Terr. Phys., 38, 807-820.
- Walch, S.P., T.H. Dunning, Jr., R.C. Raffenetti, and F.W. Bobrowicz, 1980: A theoretical study of the potential energy surface for $O({}^{3}P) + H_{2}$. J. Chem. Phys., 77, 406-415.
- Washida, N., H. Akimoto, and M. Okuda, 1978: Formation of singlet state molecular oxygen in the reaction of $H + O_2$. J. Phys. Chem, 82, 18-21.
- Wassam, W.A., Jr. and R.D. Levine, 1976: On the relation between collinear and three dimmensional collision rates with applications to vibrational energy transfer. J. Chem. Phys., 64, 3118-3128.
- Wassam, W.A., Jr., 1980: On the relation between collinear and three dimensional rate constants associated with vibrational energy transfer in diatom-diatom collisions. J.Chem Phys., 72, 1945-1957.