- REPORT DOCUMENTATION PAGE i

X~

Public reporting burden for this collection d information is estimated 10 average 1 hour par respONse, INciuding the tme 10f FEVIeWINg ININUCHIONS, SAATIUNG 67 &' ing CalE SOWONS
and maintaining the data nesded, and g the collection of information. Send comments regarding this burden estimate or any other aspedt of this coliect w of information, §

222024302, and 1o the Othos of Information and Reguiaiory Aftairs, Ofhos of Management and Budget, Washington, DC 20503.

suggestions for reducing this burden, t¢ N-hmglon Hesdquarters Service, Directorste for information Operations and Repons. 1215 Jetterson Davis Highway, Sute 1204, Asiington, VA

1. AGENCY USE (Leave 2. REPORT 3. REPORT TYPE AND DATES

Level 826 , Target: SAME AS HOST TE
93121751.11336 ELLEC

fe RUthors:

i

FEB 2 2 1554

National Institute of Standards and Technology c
Gaithersburg, Maryland

@, TITLE AND vls ﬁ_UNDIB'T]'C'_-
NOS/VE Ada, Version 1.4, Host: CYBER 180-930-31 under NOS/ +

7. PERFORMING ORGANIZATION NAME(S) AND 8. PERFORMING
ORGANIZATION

ES?‘E?%& %ggfiﬁg%ﬁ Rgsgtandards and Technology

Gaithersburg, Maryland 20899
USA

'S SPONSORING/MONITORING AGENCY NAME(S) AND 10. SPONSORING/MONITORING
Ada Joint Program Office AGENCY

The Pentagon, Rm 3E118

Washington, DC 20301-3080 A D- A 275 9
e VRO

12a. DISTRIBUTION/AVAILABILITY 12b. DISTRIBUTION

Approved for Public Release; -distribution unlimited

13. (Maximum 200

NOS/VE Ada, Version 1.4, Host: CYBER 180-930-31 under NOS/VE, Level 326
Target: SAME AS HOST
93121751.11336

=;l, 94-05551 pmoaraT
(T

4. suBJECT 15. NUMBER OF

Ada programming ldnguage, Ada Compler Validation Summary Report, AW

RRGPIHEL¥30: 153BRPPAYAEY Val. Testing, Ada Val. Office, Ada Val.

17. SECURITY 18. SECURITY 19. SECURITY 20, LIMITATION OF
CLASSIFICATION < CLASSIFICATION

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
NSN Standard o

n 4 2 1 8 1 8 3 ProwibodbyANSlSld

v,)

Best
Available

Copy

AVF Control Number: NIST93CDS500_1 1.11
DATE COMPLETED

BEFORE ON-SITE: 93-12-10

AFTER ON-SITE: 93-12-20

REVISIONS: 94-01-14

-

[ﬁAda COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 931217S1.11336
Control Data Systems, Inc.
NOS/VE Ada, Version 1.4
CYBER 180-930-31 => CYBER 180-930-31 k|

Prepared By:
Software Standards Validation Group
Computer Systems Laboratory
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899
U.S.A.

l Accesion For

! NTIS CRA&I
i DTIC TAR
Uniantnounced
Justtication

aful .

:
i

' By

FOstibetion f

Asailabitity Codes

} Avali nd or
Dist ,

Spechal
o\

AVF Control Number: NIST93CDS500_1 1.11
Certificate Information
The following Ada implementation was tested and determined to pass
ACVC 1.11. Testing was completed on December 17, 1993.

Compiler Name and Version: NOS/VE Ada, Version 1.4

Host Computer System: CYBER 180-930-31 under NOS/VE, Level
826

Target Computer System: CYBER 180-930-31 under NOS/VE, Level
826

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
931217S1.11336 is awarded to Control Data Systems, Inc.. This
certificate expires 2 years after ANSI/MIL-STD-1815B is approved by
ANST.

This report has been reviewed and is approved.

!

7
\/ , e _ S
> { iy, . P
7 \,{6i;ﬁx{>> ,J/{f;fﬁ;’

Ada Validation Facility

Dr. David K. Mr. L. Arnold Jehnson
Chief, Information Systems Manager, Software Standards
Engineering Division (ISED) Validation Group

Computer Systems Laboratory (CSL)
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899
U.S.A.

///’Ada Joint Program Office

Director, (Cofiputer & Software z;iﬂn. Dirk Rogers, Major, USAF
Engineering Division Acting Director

Institute for Defense Analyses Ada Joint Program Office

Alexandria VA 22311 Washington DC 20301

U.S.A. U.S.A.

NIST93CDS500 1 1.11

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the

customer.
Customer:
Certificate Awardee:

Ada Validation Facility:

ACVC Version:

Ada Implementation:

Control Data Systems, Inc.

Control Data Systems, Inc.

National Institute of Standards and
Technology

Computer Systems Laboratory (CSL)

Software Standards Validation Group

Building 225, Room A266

Gaithersburg, Maryland 20899

U.S.A.

1.11

Compiler Name and Version: NQOS/VE Ada, Version 1.4

Host Computer System:

Target Computer System:

Declaration:

I the undersigned, declare that I have no knowledge of deliberate
deviations from the Ada Language Standard ANSI/MIL-STD-1815A ISO

CYBER 180-930-31 under NOS/VE,

Level 826

CYBER 180-930-31 under NOS/VE,

Level 826

8652-1987 in the implementation listed above.

Zcons Loigecen, 1216 /7>

Customef Sighature——

: Date /

Company Control Data Systems, Inc.

Title

72:4%2&3&L_J£:Jé£44‘:: (12/1¢ /) 3
Certificate Awardee—Stgnature. Date 7

Company Control Data Systems, Inc.

Title

TABLE OF CONTENTS

CHAPTER l..cccocececsccsssonosscscncscsssnsscscascssnssscsnssssal~l
INTRODUCTION. . ccceeccccecsssacssoccsccsoccsasssssncsecnsssssl=l
1.1 USE OF THIS VALIDATION SUMMARY REPORT...........1l-1

1.2 REFERENCES..¢:cccteeescccccscscosssssssssssssssasacl=2

1.3 ACVC TEST CLASSES.:ccceecccossacssscccscssssessal=2

1.4 DEFINITION OF TERMS.....ccccvoceoscescscscsssssessal=3

CHAPTER 2..cccccccecoscscssscsccssosccssssssccccacsssassossneseed=l
IMPLEMENTATION DEPENDENCIES.....cccccececcscsacscsssaassl=l
2.1 WITHDRAWN TESTS..eccccecccsccsccccscccncscsacnesa=l

2.2 INAPPLICABLE TESTS:.:ccccecccccccccsscsccccscssec=l

2.3 TEST MODIFICATIONS:. :tccccescssccscccsccscsccsccese2=5

CHAPTER 3..ccececccccossossscsnsosccnassascscscsocnscscsscscscssccsscsseld—l
PROCESSING INFORMATION..:eotteccccnsssssssacsscssecsacscssed—l
3.1 TESTING ENVIRONMENT......cc000cccccescccccscccseld=l

3.2 SUMMARY OF TEST RESULTS..cccceccccsccccccessscesld=l

3.3 TEST EXECUTION..cccccssssescccscccssassossnsocsasald—2

APPENDIX Aoao.uo..o...o..Qlc.o".coooo.o.o.o..i.coo-o-.'oooA-l
MACRO PARAMETERS'...l...l.......l....l....'...'.‘.‘..QOIA-l

APPENDIX BQ..'.....0.0...O..l..".....'......l...o.......I.B-l
COMPILATION SYSTEM OPTIONS..:ciccccescssosococceccccsasssB=l
LINKER OPTIONSO ® 8 € 0 5 0 ¢ 500 0 0 9 P S 0SS TP 0SS OGS OO E TS e L CO SN DSE .B-z

APPENDIX c.-000Qo.o.o.oooco.oo.'o..o..co.c-on...o.o..no.o.oc-l
APPENDIX F OF THE Ada STANDARD...:ccccecececsccccaccssssl-1

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro92] against the Ada Standard [Ada83]
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro92]. A detailed description
of the ACVC may be found in the current ACVC User’s Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systens,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road

Springfield, Virginia 22161

U.S.A.

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization

Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria, Virginia 22311-1772

U.S.A.

1.2 REFERENCES

[Ada83] Reference Manua or_ the da rogrammin Lanquaqge,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

(Pro92] Ada Compiler Validati ocedu , Version 3.1, Ada Joint
Program Office, August 1992.

[(UG89) da Compiler Validation Capability User’s Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECK FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK_FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK_FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is
compiled and the resulting compilation 1listing is examined to
verify that all violations of the Ada Standard are detected. Some
of the class B tests contain legal Ada code which must not be
flagged illegal by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values--for example, the

1-2

largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

For each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and [UG89]).

In order to pass an ACVC an Ada implementation must process each

test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation
Capability (ACVC)

Ada Implementation

Ada Joint Program
office (AJPO)

Ada Validation
Facility (AVF)

Ada Validation
Organization (AVO)

Compliance of an
Ada Implementation

The software and any needed hardware that
have to be added to a given host and target
computer system to allow transformation of
Ada programs into executable form and
execution thereof.

The means for testing compliance of Ada
implementations, Validation consisting of
the test suite, the support programs, the
ACVC Capability VUser’s Guide and the
template for the validation summary (ACVC)
report.

An Ada compiler with its host computer
system and its target computer system.

The part of the certification body which
provides policy and guidance for the Ada
certification Office systen.

The part of the certification body which

carries out the procedures required to
establish the compliance of an Ada
implementation.

The part of the certification body that
provides technical guidance for operations
of the Ada certification system.

The ability of the implementation to pass an
ACVC version.

Computer System

Conformity

Custonmer

Declaration of
Conformance

Host Computer
System

Inapplicable Test

ISsO

Operating System

Target Computer
System

A functional unit, consisting of one or more
computers and associated software, that uses
common storage for all or part of a program
and also for all or part of the data
necessary for the execution of the program;
executes user- written or user-designated
programs; performs user-designated data
manipulation, including arithmetic
operations and logic operations; and that
can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Fulfillment by a product, process, or
service of all requirements specified.

An individual or corporate entity who enters
into an agreement with an AVF which
specifies the terms and conditions for AVF
services (of any kind) to be performed.

A formal statement from a customer assuring
that conformity is realized or attainable on
the Ada implementation for which validation
status is realized.

A computer system where Ada source programs
are transformed into executable form.

A test that contains one or more test
objectives found to be irrelevant for the
given Ada implementation.

International Organization for
Standardization.

The Ada standard, or Language Reference
Manual, published as ANSI/MIL-STD-1815A

~-1983 and ISO 8652-1987. Citations from the
LRM take the form "“<section>.<subsection>:
<paragraph>."

Software that controls the execution of
programs and that provides services such as
resource allocation, scheduling,
input/output control, and data management.
Usually, operating systems are predominantly
software, but partial or complete hardware
implementations are possible.

A computer system where the executable form
of Ada programs are executed.

1-4

Validated Ada
Compiler

Validated Ada
Implementation

Validation

Withdrawn Test

The compiler of a validated Ada
implementation.

An Ada implementation that has Dbeen
validated successfully either by AVF testing
or by registration [Pro92).

The process of checking the conformity of an
Ada compiler to the Ada programming language
and of issuing a certificate for this
implementation.

A test found to be incorrect and not used in
conformity testing. A test may be incorrect
because it has an invalid test objective,
fails to meet its test objective, or
contains erroneous or illegal use of the Ada
programming language.

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 104 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 93-11-22.

B27005A E28005C B28006C C32203A C34006D C35507K
C35507L C35507N C355070 C35507P C355081 C35508J
C35508M C35508N C35702A C35702B C37310A B41308B
C43004A C45114A C45346A C45612A C45612B C45612C
C45651A C46022A B49008A B495008B AS4B02A C55B06A
A74006A C74308A B83022B B83022H B83025B B83025D
B83026B C83026A C83041A B85001L C86001F C94021A
C97116A C98003B BA2011A CB7001A CB7001B CB7004A
CCl223A BCl226A CCl226B BC3009B BD1B02B BD1BO6A
AD1BOS8SA BD2AO02A CD2A21E CD2A23E CD2A32A CD2A41A
CD2A41E CD2A87A CD2B15C BD3006A BD4008A CD4022A
CD4022D CD4024B CD4024C CD4024D CD4031A CD4051D
CD5111A CD7004C ED7005D CD7005E AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A BD8004C
CD9005A CD9005B CDA201E CE21071 CE2117A CE2117B
CE2119B CE2205B CE2405A CE3111C CE3116A CE3118A
CE3411B CE3412B CE3607B CE3607C CE3607D CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Commentaries and commonly referenced in
the format AI-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

C24113I..X (16 TESTS) use a line length in the input file that
exceeds 132 characters.

The following 19 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113Y C35705Y
C35706Y C35707Y
C35708Y C35802Y..Z (2 tests)
C45241Y C45321Y
C45421Y C45521Y..2 (2 tests)
C45524Y..2 (2 tests) C45621Y..2 (2 tests)
C45641Y C46012Y..2 (2 tests)

The following 21 tests check for the predefined type SHORT_ INTEGER;
for this implementation, there is no such type:

C35404B B36105C C45231B C45304B C45411B
C45412B C45502B C45503B C45504B C45504E
C45611B C45613B C45614B C45631B C45632B
B52004E C55B07B B55B09D B86001V C86006D
CD7101E

The following 20 tests check for the predefined type LONG_INTEGER;
for this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C Cc45632C B52004D
C55B07A B55B09C B86001W C86006C CD7101F
C35404D, ¢€45231D, B86001X, C86006E, and CD7101G check for a
predefined integer type with a name other than INTEGER,

LONG_INTEGER, or SHORT_INTEGER; for this implementation, there is
no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORT_FLOAT; for this implementation, there is no such type.

C35713D and B860012Z check for a predefined floating-point type with
a name other than FLOAT, LONG_FLOAT, or SHORT_FLOAT; for this
implementation, there is no such type.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE_OVERFLOWS is FALSE for floating point types and the results
of various floating-point operations lie outside the range of the
base type; for this implementation, MACHINE_ OVERFLOWS is TRUE.

C4A013B contains a static universal real expression that exceeds
the range of this implementation’s largest floating-point type;
this expression is rejected by the compiler.

B86001Y uses the name of a predefined fixed-point type other than
type DURATION; for this implementation, there is no such type.

2=2

C96005B uses values of type DURATION’s base type that are outside
the range of type DURATION; for this implementation, the ranges are
the same.

CA2009C and CA2009F check whether a generic unit can be
instantiated before its body (and any of its subunits) is compiled;
this implementation creates a dependence on generic units as
allowed by AI-00408 and AI-00506 such that the compilation of the
generic unit bodies makes the instantiating units obsolete. (See
section 2.3.)

CD1009C checks whether a length clause can specify a non-default
size for a floating-point type; this implementation does not
support such sizes.

CD2A84A, CD2A8B4E, CD2A84I..J (2 tests), and CD2A840 use length
clauses to specify non-default sizes for access types; this
implementation does not support such sizes.

and AD8011A use machine
provides no package

BD80O1A, BD80O03A,
code insertions;
MACHINE CODE.

BD8004A..B (2 tests),
this implementation

AE2101C and EE2201D..E (2 tests) use instantiations of package
SEQUENTIAL_IO with unconstrained array types and record types with
discriminants without defaults; these instantiations are rejected
by this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package
DIRECT_IO with unconstrained array types and record types with
discriminants without defaults; these instantiations are rejected
by this compiler.

The 18 tests listed in the following table check that USE_ERROR is
raised if the given file operations are not supported for the given
combination of mode and access method; this implementation supports
these operations.

2-3

Test File Operation Mode File Access Method
CE2102E CREATE OUT_FILE SEQUENTIAL_IO
CE2102F CREATE INOUT_ FILE DIRECT_IO
CE2102J CREATE OUT_FILE DIRECT_IO
CE2102N OPEN IN_FILE SEQUENTIAL IO
CE21020 RESET IN_FILE SEQUENTIAL IO
CE2102P OPEN OUT_FILE SEQUENTIAL_ IO
CE2102Q RESET OUT_FILE SEQUENTIAL IO
CE2102R OPEN INOUT_FILE DIRECT_IO
CE2102s RESET INOUT_FILE DIRECT_IO
CE21027 OPEN IN_FILE DIRECT_IO
CE2102U RESET IN_FILE DIRECT_IO

CE2102V OPEN OUT_FILE DIRECT_IO

CE2102W RESET OUT_FILE DIRECT_IO
CE3102F RESET Any Mode TEXT_IO
CE3102G DELETE = ======-- TEXT_IO
CE31021I CREATE OUT_FILE TEXT_IO
CE3102J OPEN IN_FILE TEXT_IO
CE3102K OPEN OUT_FILE TEXT_IO

The 3 tests listed in the following table check the given file
operations for the given combination of mode and access method;
this implementation does not support these operations.

Test File Operation Mode File Access Method
CE2105A CREATE IN_FILE SEQUENTIAL_ IO
CE2105B CREATE IN_FILE DIRECT_IO
CE3109A CREATE IN_FILE TEXT_IO

CE2107A..D (4 tests), CE2110B, and CE2111D check operations on
sequential files when multiple internal files are associated with
the same external file; USE_ERROR is raised when this association
is attempted.

CE2107E checks operations on direct and sequential files when files
of both kinds are associated with the same external file and both
are open for writing; USE_ERROR is raised when this association is
attempted.

CE2107H, and CE2107L apply function NAME to temporary sequential,
direct, and text files in an attempt to associate multiple internal
files with the same external file; USE_ERROR is raised because
temporary files have no name.

CE2108B, CE2108D, and CE3112B use the names of temporary
sequential, direct, and text files that were created in other tests
in order to check that the temporary files are not accessible after
the completion of those tests; for this implementation, temporary
files have no name.

CE2203A checks that WRITE raises USE_ERROR if the capacity of an
external sequential file is exceeded; this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE_ERROR if the capacity of an
external direct file is exceeded; this implementation cannot
restrict file capacity.

CE3111A..B, CE3111D..E, CE3114B, and CE3115A (6 tests) check
operations on text files when multiple internal files are
associated with the same external file; USE_ERROR is raised when
this association is attempted.

2-4

CE3304A checks that SET_LINE_LENGTH and SET_PAGE_LENGTH raise
USE_ERROR if they specify an lnapproprlate value for the external
file; there are no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the
page number ‘exceeds COUNT’LAST; for this implementation, the value
of COUNT’LAST is greater than 150000, making the checking of this
objective impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 68 tests.
The following tests were split into two or more tests because this

implementation did not report the violations of the Ada Standard in
the way expected by the original tests.

B22003A
B35101A
B38009B
B61001R
B83EO1D
B91002C
B91002J
B95077A
BC1109D

B26001A
B37106A
B55A01A
B61001W
B83EO1lE
B91002D
B91002K
B97103E
BC1202A

B26002A
B37301B
B61001C
B67001H
B85001D
B91002E
B91002L
B97104G
BC1202F

B26005A
B37302A
B61001F
B83A07A
B85008D
B91002F
B95030A
BA1001A
BCl202G

B28003A
B38003A
B61001H
B83A07B
B91001A
B91002G
B95061A
BA1101B
BE2210A

B29001A
B38003B
B61001I
B83A07C
B91002A
B91002H
B95061F
BC1109A
BE2413A

B33301B
B38009A
B61001M
B83EO1C
B91002B
B91002I
B95061G
BC1109C

C83030C and C86007A were graded passed by Test Modification as
directed by the AVO. These tests were modified by inserting
"PRAGMA ELABORATE (REPORT);" before the package declaraticns at
lines 13 and 11, respectively. Without the pragma, the packages
may be elaborated prior to package Report’s body, and thus the
packages’ calls to function REPORT.IDENT INT at lines 14 and 13,
respectively, will raise PROGRAM_ERROR.

CA2009C and CA2009F were graded inapplicable by Evaluation
Modification as directed by the AVO. These tests contain
instantiations of a generic unit prior to the compilation of that
unit’s body; as allowed by AI-00408 and AI-00506, the compilation
of the generic unit bodies makes the compilation unit that contains
the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification
as directed by the AVO. These tests check that instantiations of
generic units with unconstrained types as generic actual parameters
are illegal if the generic bodies contain uses of the types that
require a constraint. However, the generic bodies are compiled -

2-5

after the units that contain the instantiations, and this
implementation creates a dependence of the instantiating units on
the generic units as allowed by AI-00408 and AI-00506 such that the
compilation of the generic bodies makes the instantiating units
obsolete--no errors are detected. The processing of these tests
was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial pages
of this report.

If the point of contact for sales is the same as that for technical
use the second option:

For technical information about this Ada implementation, contact:

Mr. Henri T. .(Hans) Koppen
Control Data Systems, Inc
4201 Lexington Avenue North
Arden Hills, MN 55126
VOICE: 612-482-4320
FAX: 612-482-4746

For sales information about this Ada implementation, contact:

Mr. Jacques R. Lasserre
Control Data Systems, Inc
5101 Patrick Henry Drive
Santa Clara, CA 95054
VOICE: 408-496-4352
FAX: 408-496-4106

Testing of this Ada implementation was conducted at the customer’s
site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro92].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various

3-1

categories. All tests were processed, except those that were
withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the
implementation’s maximum precision (item e; see section 2.2), and
those that depend on the support of a file system--if none is
supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

a) Total Number of Applicable Tests 3912
b) Total Number of Withdrawn Tests 104
c) Processed Inapplicable Tests 154
d) Non-Processed I/O Tests 0
e) Non~Processed Floating-Point

Precision Tests 0

f) Total Number of Inapplicable Tests 154 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The
contents of the magnetic tape were 1loaded directly onto the
host/target computer.

After the test files were loaded onto the host/target computer, the
full set of tests was processed by the Ada implementation.

The tests were compiled, linked, and executed on the host/target
computer systen.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete 1listing of the processing options for this
implementation. It also indicates the default options. The
default options invoked for validation testing during this test
were:

PL (name_of_ program_library) DA=NONE EL=W LO=S OL=LOW SC=NONE
UL=TRUE

Test output, compiler and 1linker 1listings, and job 1logs were
captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in [UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in terms
of the maximum input-line 1length, which is the value for
S$MAX IN LEN--also listed here. These values are expressed here as
Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$MAX_IN_LEN 132 -- Value of V

$BIG_ID1 (1..V=1 => 'A’, V => 71/)

$BIG_ID2 (1..V-1 => ’A’, V => 727)

$BIG_ID3 (1..v/2 => 'A’) & 37 & (1..V-1-V/2 => ’A’)
$BIG_ID4 (1..V/2 => 'A’) & '4’ & (1..V=1-V/2 => 'A’)
$BIG_INT_LIT (1..v-3 => 70’) & "298"

$BIG_REAL LIT (1..V-5 => ’0’) & "690.0"

$BIG_STRING1 rans g (1..V/2 => 'A’) & 'ww/
$BIG_STRING2 /s & (1..V-1=-V/2 => 'A’) & '1’ & '/
$BLANKS (1..V=-20 => * 7)

S$MAX_ LEN_INT BASED_LITERAL
T & (1..V-5 => ’0’) & "11:"

$MAX_LEN_REAL BASED_LITERAL
"16:" & (1..V-7 => ’0’) & "F.E:"

$MAX STRING_LITERAL '""’/ & (1..V=2 => ’A’) & '"n/

The following table contains the values for the remaining

macro parameters.

Macro Parameter

Macro Value

ACC_SIZE
ALIGNMENT
COUNT_LAST
DEFAULT MEM_SIZE
DEFAULT_STOR_UNIT
DEFAULT_SYS_NAME
DELTA_DOC
ENTRY_ADDRESS
ENTRY_ADDRESS1
ENTRY_ADDRESS2
FIELD_LAST
FILE_TERMINATOR
FIXED_NAME
FLOAT_NAME
FORM_STRING
FORM_STRING2

GREATER_THAN_ DURATION

64

l

9223372036854775807
134217728

64

CYBER180

2#1.0#E-63
NO_SUCH_ENTRY_ADDRESS
NO SUCH __ _ENTRY —ADDRESS
NO SUCH__ —ENTRY__ ~ADDRESS
67
NO_SUCH_FILE_TERMINATOR
NO SUCH FIXED TYPE
NO SUCH_ FLOAT_ " TYPE

WCANNOT RESTRICT_FILE_CAPACITY"

GREATER THAN _. DURATION BASE_LAST

GREATER THAN FLOAT_ BASE LAST
GREATER THAN FLOAT SAFE LARGE

GREATER THAN SHORT FLOAT SAFE_LARGE

HIGH _ PRIORITY
ILLEGAL_EXTERNAL_FILE_NAME1
ILLEGAL EXTERNAL FILE_NAME2

INAPPROPRIATE LINE_ LENGTH
INAPPROPRIATE PAGE__ ~ LENGTH
INCLUDE_. PRAGMA1

INCLUDE_PRAGMA2

INTEGER_FIRST
INTEGER_LAST

INTEGER_LAST PLUS_1
INTERFACE_LANGUAGE
LESS_THAN_DURATION
LESS_THAN_DURATION_ BASE_FIRST
LINE_TERMINATOR

LOW_PRIORITY
MACHINE_CODE_STATEMENT
MACHINE_CODE_TYPE
MANTISSA_DOC

MAX_DIGITS

MU

CH—

100_000_000.0
7_000_000_000.0
1780131E+3008
5.221944407067E1232
NO_SHORT_FLOAT

127

BADCHAR"@. ~!

TOO_LONG_NAME_FOR_A_VE_FILE
-1

PRAGMA INCLUDE ("A28006D1.TST")

PRAGMA INCLUDE ("B28006El.TST")

-9223372036854775808
9223372036854775807
9223372036854775808

FORTRAN

-100_000_000.0

-7_000_000_000.0

[A 4

0

NULL;

NO_SUCH_TYPE

63

28

MAX_INT

MAX_INT PLUS_1
MIN_INT

NAME

NAME_LIST
NAME_SPECIFICATION1
NAME_SPECIFICATION2
NAME_SPECIFICATION3
NEG_BASED_INT
NEW_MEM_STZE
NEW_STOR_UNIT
NEW_SYS_NAME
PAGE_TERMINATOR
RECORD_DEFINITION
RECORD_NAME
TASK_SIZE
TASK_STORAGE_SIZE
TICK
VARIABLE_ADDRESS
VARIABLE_ADDRESS1
VARIABLE_ADDRESS2
YOUR_PRAGMA

90 68 85 00 0% S0 80 06 00 08 00 BF 60 S0 SO SF 60 00 B0 0 94 s

9223372036854775807
9223372036854775808
-9223372036854775808
NO_SUCH_TYPE_AVAILABLE
CYBER180
:V07.ADA.ACVC_TEMP.X2120A.;1
:V07.ADA.ACVC_TEMP.X2120B. ;1
:V07.ADA.ACVC_TEMP.X3119A.;1
16#FFFF_FFFF_FFFF_FFF8#
134_217_728

64
CYBER180

[2
NEW_INTEGER;
NO_SUCH_MACHINE_CODE_TYPE

64

64

0.001
VARIABLE’ADDRESS
VARIABLE1’ADDRESS
VARIABLE2 '’ ADDRESS
COMMON, EXPORT

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

\-

Compiling, Linking, and Executing 3

This chapter explains the NOS/VE Ada compiling, linking, and execution processes. A
sa .ple SCL procedure is provided at the end of the chapter to run these processes
automatically.

Compiler Command

NOS/VE Ada Implementation Feature

The ADA compiler command compiles your source program and, upon successful
compilation, stores one or more library units into the specified program library. The
ADA command uses the NOS/VE parameter conventions described in appendix D.

ADA

Purpose Invokes the compiler and specifies the current sublibrary, the files to be
used, and the compiler options to be used.

Format ADA
INPUT =file
PROGRAM _LIBRARY =file
LIST=file
DEBUG _AIDS =keyword
ERROR =file
ERROR _LEVEL =keyword
LIST _OPTIONS = keyword
OPTIMIZATION _LEVEL = keyword
SUPPRESS _CHECKS =list of keyword
UPDATE _LIBRARY =boolean
STATUS =status variable

Parameters INPUT (I)

File that contains the source text to be read. The source input ends when
an end-of-partition or an end-of-information is encountered on the source
input file. The default value is $INPUT.

PROGRAM _LIBRARY (PL)

Name of the current sublibrary. The default is $USER.ADA _PROGRAM _
LIBRARY. See Getting Started in chapter 2, if you have not set up an Ada
program library.

LIST (L)

File where the compiler writes the source listing, diagnostics, statistics,
and any additional list information specified by the LIST_OPTIONS
parameter. The default value is $LIST, which, by default, is connected to
$NULL. :

60498113 B Compiling, Linking, and Executing 3-1

L S

Compiler Command

NOTE

You can redirect your $LIST with the CREATE _FILE _CONNECTIONS
(CREFC) command. For example:

/create_file_connection standarg_file=glist filesoutput_file

This connection stays active until you DELETE _FILE _CONNECTION or
logout. See the NOS/VE System Usage manual for more information.

DEBUG _AIDS (DA)
Debug options to be used.

Keyword Description

ALL All of the available Debug options are selected.

DT Generates a line number table as part of the object code.
This line number table is used by Debug during
traceback.

NONE No Debug tables are produced. If this option is selected,

the program cannot be executed under Debug control.
If the parameter is omitted, NONE is assumed.

ERROR (E)
File to receive the error listing. The default value is $ERRORS.

ERROR _LEVEL (EL)

Minimum severity level of the diagnostics to be listed. The levels, in
increasing order of severity, are:

Keyword Description

)| INFORMATIONAL. The syntax of the construct is correct
but the usage is questionable.

w WARNING. An error that does not change the meaning
of the program or hinder the generation of object code.

Also, a construct for which the object code raises a
CONSTRAINT_ERROR at run time.

F FATAL. An illegal construct in the source program has
been detected. The compilation continues, but no object
code is generated.

Cc CATASTROPHIC. An error that causes the compiler to be
terminated immediately. No object code is generated.

If the parameter is omitted, W is assumed so all diagnostics are listed.

3-2 Ada for NOS/VE Usage Manual 60498113 B

Compiler Command

NOTE

You can redirect your $LIST with the CREATE _FILE _CONNECTIONS
(CREFC) command. For example:

/create_file_connection standard_file=$1ist file=output_file

This. connection stays active until you DELETE _FILE _CONNECTION or
logout. See the NOS/VE System Usage manual for more information.

DEBUG _AIDS (DA)
Debug options to be used.

Keyword Description

ALL All of the available Debug options are selected.

DT Generates a line number table as part of the object code.
This line number table is used by Debug during
traceback.

NONE No Debug tables are produced. If this option is selected,

the program cannot be executed under Debug control.
If the parameter is omitted, NONE is assumed.

ERROR (E)
File to receive the error listing. The default value is $SERRORS.

ERROR _LEVEL (EL)

Minimum severity level of the diagnostics to be listed. The levels, in
increasing order of severity, are:

Keyword Description

I INFORMATIONAL. The syntax of the construct is correct
but the usage is questionable.

w WARNING. An error that does not change the meaning
of the program or hinder the generation of object code.
Also, a construct for which the object code raises a
CONSTRAINT_ERROR at run time.

F FATAL. An illegal construct in the source program has
been detected. The compilation continues, but no object
code is generated.

C CATASTROPHIC. An error that causes the compiler to be
terminated immediately. No object code is generated.

If the parameter is omitted, W is assumed so all diagnostics are listed.

=" * ‘r NOS/VE Usage Manual 60498113 3

Compiler Command

LIST _OPTIONS (LO)

Information written to the listing file (LIST parameter). Multiple options
can be specified. for example, LO=(0,S).

Keyword Description
- 0 Object and source code listing.
R Symbolic cross-reference listing of all program entities.
S Source input listing.
ALL All of the available list options.
NONE No list options are selected.

If the parameter is omitted, S is assumed.

OPTIMIZATION _LEVEL (OL)
Level of object code optimization.

Keyword Description

LOW Lowest level of production quality code. No optimization
is performed.

DEBUG Generates code to support step mode debugging.

If the parameter is omitted, LOW is assumed. See chapter 8 for
information about debugging.

60498113 B Compiling, Linking, and Executing 33

Compiler Command

SUPPRESS _CHECKS (SC)

Specifies runtime checks to be suppressed in the same manner as if an
explicit pragma SUPPRESS had been inserted in the source code for the
compilation unit. The pragma SUPPRESS and detailed descriptions of the
runtime checks are given in the Ada reference manual.

Keyword Description
ALL Suppresses all runtime checks.
ACCESS (A) Suppresses the check for null values in

referenced pointers.

DISCRIMINANT (D) Suppresses the check that fields of a record
exist for the value of a discriminant.

ELABORATION (E) Suppresses the check that the elaboration before
access rule has been obeyed.

INDEX (D) Suppresses the check that an array index is
within bounds.

LENGTH (L) Suppresses the check of array lengths for array
operations.

RANGE (R) Suppresses the check that a value of a scalar
remains within the bounds defined for its type
or subtype.

NONE No runtime checks are suppressed.

If the parameter is omitted, NONE is assumed.

UPDATE _LIBRARY (UL)

Specifies whether or not the compiler is to update the Program Library
with the result of the compilation. In either case, the compiler performs a

syntax check.
" TRUE A syntactic and semantic check is performed and the result
of the compilation is saved in the Program Library.
FALSE A syntactic and semantic check is performed but the

Program Library is not updated.
If the parameter is omitted, TRUE is assumed.

STATUS

Specifies the name of the SCL status variable to be set by the compiler at
completion time.

34 Ada for NOSVE Usage Manual 60498113 B

Examples

/ada t=my_source

Compiler Command

The following compile command uses all of the default values:

The compiled source is written to the default program library
$USER.ADA _PROGRAM _LIBRARY. The listing is output to file $LIST.
Any errors are sent to file $ERRORS. No debug tables are produced.

The following compile command specifies program library YOURPL:

/ada 1=your_file pl=yourpl 1=1ist dasall eserror lo=(r,s)

The following compile command uses the default program library:

/ada isyour_file 1=1ist da=all e=error lo=(r,s)

Figure 3-1 presents the DISPLAY_COMMAND _INFORMATION output for ADA.

/disci ada
input, 1
program_library,
1ist, 1
debug_aids, da
error, e
error_level, el

list_options, lo

suppress_checks,

update_library,
status

p!

i optimization_level, ol

sC

ul

: file = SINPUT

: file = SUSER.ADA_PROGRAM_LIBRARY

: file = SLIST

: key none, dt, all, keyend = none

: file = SERRORS

: key (informational, t), (warning, w),

: 11st of key none, o, r, s, all, keyend = s
: key debug,
: (discriminant, d), (elaboration, e),

: boolean = truye
: (VAR, BY_NAME) status = $optional

(rfatal, f), (catastrophic, c), keyend = w
low, high, keyend = low

(index, 1), (length, 1), (range, r),
none, keyend = none

Figure 3-1.

For Better Performance

Sample DISPLAY_COMMAND _INFORMATION Output

When multiple compilation units are submitted, performance is better if they are
included in a single file rather than on multiple files. However, if the number of
compilation units grows over a certain limit (for example, 50 small compilation units of

about 50 lines each) or if the first compilation units are large, a degradation of the
throughput actually occurs.

End of NOS/VE Ada Implementation Feature

60498113 B

Compiling, Linking, and Executing 34.1

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted

otherwise, references in this appendix are to linker documentation and
not to this report.

Purpose

Format

Parameters

Revision A

Linker Command

Linker Command

NOS/VE Ada Implementation Feature

The Ada linker command links your compilation units or, if the RECOMPILATIONS
parameter is specified, checks the recompilation dependencies of one or more
compilation units. The LINK_ADA command uses the NOS/VE syntax conventions
described in appendix D.

LINK_ADA

Links Ada code after it has been compiled and before it can be executed.

LINK_ADA or LINA
— MAIN_PROGRAM=name
. PROGRAM_LIBRARY =file
BINARY =file
LIST =file
RECOMPILATIONS =string
STATUS =status variable

MAIN_PROGRAM (MP)

Compilation unit to be linked, that is, the name of the procedure to be
linked. It must be a parameterless procedure. The procedure must have
been compiled so that it is a library unit in the sublibrary specified by the
PROGRAM_LIBRARY parameter. The compilation unit names can be
listed using the SHOW command in a PLU session. This parameter is
required.

PROGRAM_LIBRARY (PL)

File containing the sublibrary to be referenced by the linker. The default
value is $USER.ADA_PROGRAM_LIBRARY.

BINARY (B)

File on which the executable code extracted from the user's program
library is written, thus creating an object file acceptable to the NOS/VE
loader. If SNULL is specified, the Ada linker performs all the compilation
order validation checks, but does not create an object file. The default
value is $SLOCAL.LGO.

LIST (L)

File where the linker writes the library units elaboration order list. The
default value is $LIST, which, by default, is connected to $NULL.

NOTE

You can redirect your $LIST with the CREATE_FILE_CONNECTIONS
(CREFC) command. For example:

/create_file_connection standard_file=$1ist fi{le=output_ftie

This connection stays active until you DELETE_FILE_CONNECTION or
logout. See the NOS/VE System Usage manual for more information.

Compiling, Linking, and Executrg 3-§

Linker Command

RECOMPILATIONS (R)

Name or names of any modules that need to be recompiled. This parameter
must be omitted to produce a binary file.

STATUS

Name of the SCL status variable in which the linker stores its termination
condition at completion time.

Remarks The main program name for the Ada linker is a procedure name used in
the source text.

NOTE

The main program for the LINK_ADA command must be a parameterless
procedure.

The default binary file name, SLOCAL.LGO, is also the default file name
for the EXECUTE_TASK command.

Examples The following link command produces a list of dependencies. A binary file
is not produced:

/1ink_ada main_programsyour_procedure recompflations ..
../11st=gependencies_tist

The following link command produces a binary file. A list of dependencies
is not produced:

/11ina mpsyour_procedure binarysbinary_ftle

Figure 3-2 presents the DISPLAY_ COMMAND_INFORMATION output for LINK_
ADA.

/atsct link_ada

main_program, mp : name = $required
program_library, pl : file = SUSER.ADA_PROGRAM_LIBRARY
binary. b : file = SLOCAL.1go

1ist, : file = $LIST

recomp.lstions, r : string = Soptional

status : var Of status = Soptional

Figure 3-2. Sample DISPLAY_COMMAND_INFORMATION Output

End of NOS/VE Ada Implementation Feature

3-8 Ada for NOSVE Usage Vanu-® Revision A

Execution
NOS/VE Ada Implementation Feature

Once you have compiled and linked an Ada program, the linked binary can be loaded
and executed in the following ways:

® Using the EXECUTE_TASK command, as described in the NOS/VE Commands and
Functions manual

® Using a direct file reference to the binary file produced by the Ada linker

® Using a call to the system interface procedure PMP$EXECUTE from within another
program, as described in the CYBIL System Interface manual

For Better Performance

Use of the INLINE pragma, where applicable, results in faster object code by avoiding
the call/return instructions and the dynamic initialization of the stack frame.

Using the EXECUTE _TASK Command

The EXECUTE_TASK command offers the most flexibility in loading and executing
your program. After compiling your program file and linking your compilation units,
you enter the following command at the system prompt:

/execute_task file=your_binary_f1ile_name

For example:
/exet f=mathlibgo)

Or, if you had omitted the BINARY parameter from the LINK_ADA command:
/exet $local.igo

Or the equivalent (if your working catalog is SLOCAL):

/1go

Revision A Compiling, Linking, and Exzecuting 3-7

The

APPENDIX C

APPENDIX F OF THE Ada STANDARD

only' allowed implementation dependencies correspond to

implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are

not

a part of Appendix F, are:

package STANDARD is

type
type

type

type

INTEGER is range -9223372036854775808 .. 9223372036854775807;

FLOAT is digits 13
range -16#7.FFFF_FFFF_FFF8#E1023 .. 16#7.FFFF_FFFF_FFF8#E1023;

LONG_FLOAT is digits 28
range -16#7. FFFF_FFFF_FFFF_FFFF_FFFF_FFF8#E1023 ..
16#7.FFFF_ FFFF FFFF FFFF FFFF FFF8#E1023,

DURATION is delta 0.001 range -6_279_897_600.0 ..
6_ _279_ 897 _600.0;

end STANDARD;

Implementation-Dependent Characteristics F

F.1NOS/VE Ada Pragmasccoiiiniiimiiiniiietiieaneieeinanennnn... F-2
F.2 NOS/VE Ada Attributes i F-3
F.3 Specification of the Package SYSTEMo F-3
F.4 Restrictions on Representation ClausescooiiiiiaL, F-3
F.4.1 Length Clausescoiuiiiiiiiiiiientiiiiiiaeenneeiinennenen, F-4
F.4.2 Enumeration Representation ClausescooiiiiiL.. F-4
F.4.3 Record Representation Clausescciiiiiiiiiiiiia., F-4
F.5 Implementation-Dependent Namesoiiiiiiiiiiiiiin . F-5
F.6 Address Clauses and Interruptsc.ooiiiiiiiiiiiiiiiininnnninan, F-5
F.7 Unchecked Type Conversionsccouiiiiiiiinirieeneniiniinenencnnn, F-5
F.8 Input-Output Packagesttt ittt iiieaeaaa., F-5
F.8.1 External Files and File Objectsttt F-6
F.8.2 Exceptions for Input-Output Errorsot F-6
F.8.3 Low Level Input-Qutputttt F-7
F.9 Other Implementation-Dependent Characteristics F-7
F.9.1 Implementation Features iiiiiiieiirerinnans F-7
F.9.1.1 Predefined Typesciiiiiiiitiiiiiir i iaa it eiiiiiia i, F-7
F.9.1.2 Basic Typesccoiiiiiiiiiiiiiiirirtaeaainanaaeeetanineenaneans F-8
FO.13 Compilerot e it s F-8
F.9.1.4 Definition of a Main Programciiiiiiiiiinniinn. F-9
F.9.1.5 TIME Type ...ooiiiittttieetiateaeeanneeenaneanreaneneeanninenenns F-9
F.9.1.6 Machine Code Insertionsiiiiiiiiiiiieinnniiiinnninnn F-9
FO 2 Entity TyPes ...oiiiiiti ittt taetananeannnenanecaneanenns F-9
F.9.2.1 Array TyPeS . .oiiiiiiitt ittt ettt et teiiaeneaeaaneeianeenns F-9
F.9.2.2 Record TyPesoociiriimiiiiiiiiit it eeeiaeaeaaaansaannnans F-10
F.9.2.2.1 Simple Record Types (Without Discriminants) F-10
F.9.2.2.2 Record Types With Discriminantscoiat. F-11
F.9.2.3 Access TyPesoviniimiiiiiiiiiiiiiiitiiiaaanataaeanaanenaennrons F-11
F.O.3 Taskingooiiiiiimiiiiiiiiiiiiiii ittt et aaettaneaaeeeianeennns F-11
F.9.4 Interfaces to Other Languagescciiiiiiiiiiiiinennneennn. F-11
F.9.5 Command Interfacesc.cciiiiiiiiiiiiiiiiiiiiiiiiienieanens F-11
F.9.5.1 Program Library Utility Commandsccc.... F-12
F.9.5.2 Compiler Commandc..oiiitiiiiiiiiiiiiiiiiiiiennennenns F-12
F.9.5.3 Linker Commandccoiiuiuiimiiiiiiiiiiiiiiiiineannennenn. F-12
F.O.5.4 EXeCUtIOnc0ivtiiitniiiiieiit i iineaaanereeereeereesensonneens F-12
F.9.6 Values of Data Attributeso iiiiiieennnn. F-12
F.9.6.1 Values of Integer Attributes it F-13
F.9.6.2 Values of Floating Point Attributes F-13
F.9.6.3 Values of Long Floating Point Attributes F-14
F.9.6.4 Values of Duration Attributesoiiii.. F-14

60498118 B

Implementation-Dependent Characteristics F

This appendix summarizes the implementation-dependent characteristics of NOS/VE
Ada by listing the following:

® NOS/VE Ada pragmas

® NOS/VE Ada attributes

® Specification of the package SYSTEM
® Restrictions on representation clauses
¢ Implementation-dependent names

® Address clauses and interrupts

® Unchecked type conversions

® Input-output packages

® Other implementation-dependent characteristics

NIEL T ol

is not used in this appendix.

" F1 NOS/VE Ads Pragmas

F.1 NOS/VE Ada Pragmas

NOS/VE Ada supports the following pragmas as described in the
ANSIMIL-STD-1815A-1983, Reference Manual for the Ada Programming Language,
except as shown below:

INLINE

This pragma causes inline expansion of a subprogram except as described in annex
B of this manual (see 6.3.2, 10.6).

INTERFACE

This pragma is supported for CYBIL, FORTRAN, and the NOS/VE Math Library,
as discussed in 13.9.1, 13.9.2, and 13.9.3, respectively.

PACK
Arrays of components of discrete type are packed into the nearest 2**n bits.

SHARED
This pragma is not supported for the following types of variables:

- Variables of type LONG_FLOAT

- Variables of a subtype of type LONG_FLOAT

- Variables of a type derived from type LONG_FLOAT

- Variables of a subtype derived from type LONG_FLOAT

SUPPRESS

This pragma is supported, but it is not possible to restrict the check suppression to
a specific object or type.

NOS/VE Ada does not support the following pragmas:

CONTROLLED
MEMORY_SIZE
OPTIMIZE
STORAGE _UNIT
SYSTEM _NAME

NOS/VE Ada supports the following implementation-defined pragmas:

COMMON

This pragma accepts the name of a FORTRAN labeled common as its single
argument. This pragma is allowed only in the specification of a library package.
This pragma specifies that the library package specification can be accessed as a
labeled common by a FORTRAN subroutine. To ensure proper results, the items
declared in the Ada library package specification must be of a type corresponding to
the type of the matching items in the FORTRAN common specification. The
argument name must be a legal NOS/'VE and FORTRAN name.

F-2 Ada for NOS/VE Reference Manual 60498118 B

F.2 NOS/VE Ads Attributes

e EXPORT

This pragma accepts a language name and a subprogram name as arguments. This
pragma is allowed only in the body of a library procedure. This pragma specifies
the other language (FORTRAN) and informs the Ada compiler that it must provide
an entry point in the procedure by the specified subprogram name. (FORTRAN is
the only supported language.) The subprogram name must be a NOS/VE and
FORTRAN legal name. Parameter passing is not supported.

F.2 NOS/VE Ada Attributes

NOS/VE Ada supports all the attributes described by the ANSUMIL-STD-1815A-1983,
Reference Manual for the Ada Programming Language. It does not provide any
implementation-defined attributes. The NOS/VE implementation of the P'ADDRESS
attribute returns the prefix P, the 48-bit process virtual address (PVA) right-justified
within a 64-bit variable of the predefined type INTEGER.

F.3 Specification of the Package SYSTEM

package SYSTEM is
type ADDRESS is access INTEGER,;
type NAME is (CYBER180);

SYSTEM _NAME : constant NAME := CYBERI180;

STORAGE _UNIT : constant := 64; — 64-bit machine
MEMORY_SIZE : constant := 128*1048576; — 128 megabytes

MIN_INT : constant := -9_223_372_036_854_775_808; ~ (-2**63)
MAX _INT : constant := 9_223_372_036_854_775_807;, - (2**63)-1
MAX _DIGITS : constant := 28;

MAX _MANTISSA : constant := 63;

FINE _DELTA : constant := 2#1.0#E-63; —~ 2**(-63)

TICK : constant := 0.001;

subtype PRIORITY is INTEGER range 0 .. 127,
end SYSTEM;

F.4 Restrictions on Representation Clauses

NOS/VE Ada implements representation clauses as described by the ANSI standard for
Ada. It does not allow representation clauses for a derived type.

NOS/VE Ada supports the type representation clauses with some restrictions:
® Length clauses

® Enumeration representation clauses

® Record representation clauses

® Address clauses

NOS/VE Ada does not support interrupts.

/fNsQATIR R Tmnlamentatinn.Nanandent Charactarictire 3

| Clauses

F.4.1 Length Clauses
NOS/VE Ada supports the attributes in the length clauses as follows:

e T'SIZE
NOS/VE Ada accepts the SIZE attribute for a type T under the following conditions:
- If T is a discrete type, then the specified size must be less than or equal to 64
and when the number of bits needed to hold any value of the type is calculated,

the range is extended to include 0 if necessary, i.e., the range 3..4 cannot be
represented in 1 bit, but needs 3 bits.

- If T is a fixed point type, then the specified size must be less than or equal to
64 bits. As for discrete types, the number of bits needed for a fixed point type
is calculated using the range of the fixed point type possibly extended to include
0.0.

- If T is a floating point type, an access type or a task type, the specified size
must be equal to the number of bits used to represent values of the type
(floating points: 64 or 128 bits, access types: 64 bits and task type: 64 bits).

- I T is a record type, the specified size must be greater than or equal to the
minimal number of bits used to represent values of the type per default.

- If T is an array type, the specified size must be equal to the minimal number of
bits used to represent values of the type per default.

¢ T'STORAGE_SIZE (collection size)
Supported

o T'STORAGE _SIZE (task activation size)
Supported

F.4.2 Enumeration Representation Clauses

In NOS/VE Ada enumeration representation clauses, the internal codes must be in the
range of the predefined type INTEGER.

F.4.3 Record Representation Clauses

NOS/VE Ada implements record representation clauses as described by the ANSI
language definition.

NOS/VE Ada supports only alignment on storage unit boundary, i.e., at mod 1, in
record representation clauses.

The component clause of a record representation clause gives the storage place of a
component of a record, by providing the following pieces of data:

® The name gives the name of the record component.

® The simple expression following the reserved word AT gives the address in storage
units, relative to the beginning of the record, of the storage unit where the
component starts.

F4 Ada for NOSVE Referencs Manual 60498118 B

F.5 lmplementation-Dependent Names

® The range in the component clause gives the bit positions, relative to that starting
storage unit, occupied by the recori component.

NOS/VE Ada supports the range for only those record components of discrete types
(integer or enumeration) or arrays of discrete elements. The range must be less or
equal to 64 bits and all values of the component type must be representable in the
specified number of bits. The component may start at any bit boundary. A range can
overlap 2 adjacent storage units.

If the record type contains components which are not covered by a component clause,
they are allocated consecutively after the last component with a component clause.
Allocation of a record component without a component clause is always aligned on a
storage unit boundary. Holes created because of component clauses are not otherwise
utilized by the compiler.

F.5 Implementation-Dependent Names

NOS/VE Ada does not support implementation-dependent names to be used in record
representation clauses.

F.6 Address Clauses and Interrupts

NOS/VE Ada accepts address clauses for objects but ‘address literals' cannot be
specified. Address clauses will therefore look like:

for X use Y'ADDRESS;

NOS/VE Ada does not accept address clauses for subprograms, tasks, packages, and
entries.

NOS/VE Ada does not support interrupts.

F.7 Unchecked Type Conversions

NOS/VE Ada allows unchecked conversions when objects of the source and target types
have the same size.

F.8 Input-Output Packages

The discussion of NOS/VE Ada implementation of input-output packages includes the
following:

o External files and file objects
¢ Exceptions for input-output errors

® Low level input-output

60498118 B Implementation-Dependent Characteristics F-S

P AR AR IS O AN 08,

LM AR

F.8.1 External Files and File Objects

NOS/VE Ada can process files created by another language processor as long as the
data types and file structures are compatible.

NOS/VE Ada supports the following kinds of external files:

® Sequential access files (see 14.1)

@ Direct access files (see 14.1)

® Text input-output files (see 14.3)

F.8.2 Exceptions for Input-Output Errors

The ANSI/MIL-STD-1815A-1983 Reference Manual for the Ada Programming Language
describes conditions under which input-output exceptions are raised. In addition to
these, NOS/VE Ada raises the following exceptions:

® The exception DATA _ERROR is raised when:

An attempt is made to read from a direct file a record that has not been
defined.

A check reveals that the sizes of the records read from a file do not match the
sizes of the Ada variables. NOS/'VE Ada performs this check except in those few
instances where it is too complicated to do so (see 14.2.2).

® The exception USE_ERROR is raised when:

The function NAME references a temporary file (see 14.2.1).

An attempt is made to delete an external direct file with multiple accesses
while more than one instance of open is still active. The file remains open and
the position is unchanged (see 14.2.1).

An attempt is made to create a sequential, text, or direct file of mode IN_FILE
(see 14.2.1).

An attempt is made to create an existing file (see 14.2.1).

An attempt is made to process a text file with a line that is longer than 511
characters.

An attempt is made to set the page length for a text file that does not have the
file contents of LIST (see 14.3.3).

An attempt is made to issue a new page for a text file that does not have the
file contents of LIST.

An attempt is made to open or create a file with the FORM parameter
specifying anything other than an empty string for sequential access or direct
access files.

An attempt is made to set a line for a text file that does not have the file
contents of LIST and the value specified by TO is less than the current line
number.

F48 Ada for NOS/VE Reference Manual 60498118 B

F.8.3 Low Lavel Input-Output

- An attempt is made to open or create a text file with the FORM parameter
specifying any other value than LIST, LEGIBLE, or UNKNOWN.

- An attempt is made to open or create a text file with attribute FILE _
CONTENTS not matching the file format specfied by the FORM parameter.

F.8.3 Low Level Input-Output
NOS/VE Ada does not support the package LOW_LEVEL _IO.

F.9 Other Implementation-Dependent Characteristics

The other implementation-dependent characteristics of NOS/VE Ada are discussed as
follows:

® Implementation features

® Entity types

® Tasking

® Interface to other languages
® Command interfaces

® Values of data attributes

F.9.1 Implementation Features

The NOS/VE Ada implementation features are listed as follows:
® Predefined types

® Basic types

® Compiler

@ Definition of a main program

e TIME type

® Machine code insertions

F.8.1.1 Predefined Types

NOS/VE Ada implements all the predefined types described by the
ANSIUMIL-STD-1815A-1983, Reference Manual for the Ada Programming Language,
except:

o LONG_INTEGER
e SHORT_FLOAT
o SHORT_INTEGER

AN4AQRIIR R Imnlamentatinn.Nanandent Charsmarietice F.7

E.S.IJ Basic Types

F.9.1.2 Basic Types
The sizes of the basic types are as follows:

Type Size (bytes)
ENUMERATION 8
FLOAT . 8
INTEGER 8
LONG _FLOAT 16
TASK 8

In NOS/VE Ada, the enumeration type includes predefined type boolean and character
as well as user defined enumeration types.

F.9.1.3 Compiler

NOS/VE Ada provides an ANSI standard Ada compiler.

The NOS/VE Ada compiler has the following characteristics:

® Source code lines up to 132 characters long

® Up to 100 static levels of nesting of blocks and/or subprograms

® External files up to one segment, 2**31-1 bytes, in length

® A generic body can be compiled in a separate file from its specification if it is
compiled before it is instantiated. If the specification, body and instantiation are in
the same file, the instantiation of the generic can be either before or after the
compilation of the body.

® A generic non-library package body or a generic non-library subprogram body
cannot be compiled as a subunit in a separate file from its specification.

F$8 Ada for NOS/VE Reference Manual 60498118 B

F.9.1.4 Definition of a3 Main Program

For Better Performance

The compiler throughput improves when multiple compilation units are submitted.
However, if the number of compilation units grows over a certain limit, for example 50
small compilation units of about 50 lines each, or if the first compilation units are
large, the throughput actually degrades.

Using the pragma INLINE, where applicable, results in faster object code by avoiding
the call/return instructions.

F.9.1.4 Definition of a Main Program

NOS/VE Ada requires that the main program be a procedure without parameters. The
name of a compilation unit used as a main program must follow NOS/VE naming
standards. The name can be up to 31 characters in length and must be a valid
NOS/VE name and a valid Ada identifier. Any naming error is detected at link time
only. For more information, see the Ada for NOS/VE Usage manual.

F.9.1.5 TIME Type

NOS/VE Ada defines the type TIME as an integer representing the Julian date in
milliseconds.

F.9.1.6 Machine Code Insertions
NOS/VE Ada does not support machine code insertions.

F.9.2 Entity Types

This discussion contains information on:
® Array types

® Record types

® Access types

F.9.2.1 Array Types
Arrays are stored row wise, that is, the last index changes the fastest.

An array has a type descriptor that NOS/VE Ada uses when the array is one of the
following:

® A component of a record with discriminants
® Passed as a parameter

® Created by an allocator

"~ F.9.22 Record Types

For each index, NOS/VE Ada builds the following information triplet:

Lower Bound

Upper Bound

Element Size

For multi-dimension arrays, NOS/VE Ada allocates the triplets consecutively.

Eler - at size is expressed in number of storage units (64-bit words). If the array is
packed, the element size is expressed in number of bits and represented by a negative
value.

NOS/VE Ada strings are packed arrays of characters. Each component of the array is
an 8-bit (1-byte) character. Packed arrays of booleans use 1 bit per component and are
left-justified. Arrays of integers or enumeration variables can also be packed. Each
component uses n bits. Thus, the integer or enumeration subtype is in the range
-2**n .. (2**n)-1.

Note that all objects start on a storage unit (64-bit word) boundary.

At run time when NOS/VE Ada elaborates an array definition, the amount of available
space remaining either on the stack or in the heap limits the maximum size of the
array (see 3.6).

F.9.2.2 Record Types

At run time when NOS/VE Ada elaborates a record definition, the amount of available
space remaining either on the stack or in the heap limits the maximum size of the
record (see 3.7).

NOS/VE Ada raises the exception STORAGE _ERROR at run time when the size of an
elaborated object exceeds the amount of available space.

The rest of this discussion on how records are stored includes:
® Simple record types (without discriminants)
® Record types with discriminants

F.9.2.2.1 Simple Record Types (Without Discriminants)

In the absence of representation clauses, each record component is word aligned.
NOS/VE Ada stores the record components in the order they are declared.

A fixed size array (lower and upper bounds are constants) is stored within the record.
Otherwise, the array is stored elsewhere in the heap, and is replaced by a pointer to
the array value (first element of the array) in the record.

F-10 Ada for NOS/'VE Reference Manual 60498118 B

F9.222 Record Types With Discriminants

F.9.22.2 Record Types With Discriminants

The discriminants are stored first, followed by all the other components as described
for simple records.

If a record component is an array with index values that depend on the value of the
discriminant(s), the array and its descriptor are both allocated on the heap. They are
replaced by a pair of pointers in the record. One points to the array value and the
other points to the array descriptor.

F.9.2.3 Access Types

Objects of access type are 6-byte pointers, left-justified within a word, to the accessed
data contained in some allocated area in the heap. If the accessed data is of type array
or packed array, the allocated area also contains the address of the array descriptor in
front of the data.

F.9.3 Tasking

NOS/VE Ada supports tasking by running all Ada tasks as NOS/VE concurrent
procedures activated and controlled by the tasking kernel which is an integral part of
the NOS/VE compiler run time system. Contact the site administrator to change the
site's TASK _LIMIT to run more concurrent tasks than the site currently allows. See
the Ada for NOS/VE Usage manual for more information on NOS/VE Ada tasking.

F.9.4 Interfaces to Other Languages

NOS/VE Ada supports calls to CYBIL and FORTRAN subprograms and to NOS/VE
Math Library subroutines with the following restrictions:

o CYBIL interface
(See 13.9.1 and chapter 6 of the Ada for NOS/VE Usage manual).

® FORTRAN interface
(See 13.9.2 and chapter 6 of the Ada for NOS/VE Usage manual).

¢ Math Library interface
(See 13.9.3 and chapter 6 of the Ade. for NOS/VE Usage manual).

F.9.5 Command Interfaces

The discussion of the command interfaces implemented by NOS/VE Ada includes:
® Program Library Utility commands

® Compiler command

® Linker command

® Execution commands

NOS/VE Ada commands use the syntax and language elements for parameters
described in the NOS/VE System Usage manual.

— 18 5.2 Mpun Uﬂnry Um Commands

F.9.5.1 Program Library Utility Commands

NOS/VE Ada provides a hierarchically structured (tree structured) program library to
fulfill the ANSI Ada language definition requirements. A node (sublibrary) in the tree
can contain up to 4096 compilation units. The Ada for NOS/VE Usage manual contains
a detailed discussion of the NOS/VE Ada implementation of the program library.

F.9.5.2 Compiler Command

The NOS/VE Ada compiler can compile an ANSI standard Ada program on NOS/VE.
See the Ada for NOS/VE Usage manual for information about the NOS/VE Ada
compiler command.

F.9.5.3 Linker Command

The NOS/VE Ada linker checks the order of compilation of the compilation units of a
program before the program can be executed.

See the Ada for NOS/VE Usage manual for more information about the linker
command.

F.9.5.4 Execution

NOS/VE Ada provides several ways to load and execute an Ada program. They are
described in the following manuals:

® Ada for NOS/VE Usage
¢ CYBIL for NOS/VE System Interface Usage
¢ NOS/VE Object Code Management Usage

F.9.6 Values of Data Attributes

The package STANDARD contains the declaration of the following predefined types and
their attributes:

® Integer (INTEGER)

® Floating point (FLOAT)

® Long floating point (LONG_FLOAT)
® Duration (DURATION)

F-12 Ada for NOS/VE Reference Manual 60498118 B

F.8.6.1 Values of Integer Attributes
Attribute Value

FIRST ~9_223_372_036.854_775_808
LAST - 9_223_372_036_854_775_807
SIZE 64
WIDTH 20

F.9.6.2 Values of Floating Point Attributes

F.9.6.1 Values of Integer Attributes

Attribute Value

DIGITS 13

EMAX 180

EPSILON 5.6_843_419_961#E-14

FIRST -16#7.FFFF_FFFF_FFF8#E1023
LARGE 1.532495540866E54

LAST 16#7.FFFF_FFFF_FFF8#E1023
MACHINE _EMAX 4095

MACHINE _EMIN —4096

MACHINE_MANTISSA 48
MACHINE _OVERFLOWS TRUE

MACHINE _RADIX 2

MACHINE _ROUNDS FALSE

MANTISSA 45

SAFE_EMAX 4095

SAFE _LARGE 5.221944407066E1232
SAFE _SMALL 9.574977460952E-1234
SIZE 64

SMALL 3.262652233999E-55

RN4BR11IR B

Trnlamantetian.Nenandent Charartarvietice F.IR

F.9.6.3 Values of Long Floating Point Attributes

Attribute Value

DIGITS 28

EMAX 380

FIRST ' -16#7.FFFF_FFFF_FFFF_FFFF_FFFF_FFF8#E1023
LARGE 2.462625387274654950767440006E114

LAST 16#7.FFFF_FFFF_FFFF_FFFF_FFFF_FFF3#E1023
MACHINE _EMAX 4095

MACHINE _EMIN —4096

MACHINE _MANTISSA 96
MACHINE _OVERFLOWS TRUE

MACHINE _RADIX 2

MACHINE _ROUNDS FALSE

MANTISSA 95

SAFE _EMAX 4095

SAFE _LARGE 5.221944407065762533458763552E1232
SAFE _SMALL 9.574977460952185357946731011E-1234
SIZE 128

SMALL 2.030353469852519378619219645E-115

F.9.6.4 Values of Duration Attributes

Attribute Value
DELTA 1.000000000000E-03
LARGE 8.589934591999E09

MACHINE _OVERFLOWS TRUE

MACHINE _ROUNDS FALSE

SIZE 64

SMALL 9.765625000000E-04

F-14 Ada for NOS/VE Refersnce Manual

60498118 B

