
REPORT DOCUMENTATION PAGE I •,,,.. (9)
Public reporting burden for the coo eain of inom atiion is estimated to averag I hour We resporres. inomg the lieb re O wAs-ng instruclooB. sarcofwi er-p'n datasouo qeo ~ w
end maintai•ng the data needed, ea d i reoimwn the •ecmtion of inomaton. Send ,orines regarding the buden otm•sino o any other mpecd o the aNd vin of irdomnhllon Ircdg
suggestons for redwang this burden, t, Nwehington H' ua'ters Ser4ie. O•roatQare for kn(onatootn Operstions end Reoftls. 1216 Js k w-D e' may.&"ugt 1xM4. Aftuotorn. VA
22202-4302, e"d to the Of.s- of Infor mation end Regduaory Affairs. Oftwe of wMan~emeft end "adgt. Washington. OC 205M.

1. AGENCY USE (Leave 2. REPORT 3. REPORT TYPE AND DATES

4. TITLE AND 5. FUNDI -n
NOS/VE Ada, Version 1.4, Host: CYBER 180-930-31 under NOS/! . 1

Level 826 , Target: SAME AS HOST ELECT E ;i
931217S1. 11336 FEB 22 19.S04

,6. -Au'nors: |Ci

National Institute of Standards and Technology

Gaithersburg, Maryland

7. PERFORMING ORGANIZATION NAME(S) AND 8. PERFORMING
ORGANIZATION

NatjQoal l1stiE ute Standards and Technology
ui 10ng , oom &

Gaithersburg, Maryland 20899
USA

9. SPONSORING/MONITORING AGENCY NAME(S) AND 10. SPONSORING/MONITORING

Ada Joint Program Office AGENCY

The Pentagon, Rrm 3E 118
Washington, DC 20301-3080 AD-A275 977
11. SUPPLEMENTARY llA i li1 hl I IA Il ill il

12a. DISTRIBUTIONIAVAILABILITY 12b. DISTRIBUTION

Approved for Public Release; -distribution unlimited

13. (Maximum 200

NOS/VE Ada, Version 1.4, Host: CYBER 180-930-31 under NOS/VE, Level 326
Target: SAME AS HOST
931217S1. 11336

'~94-05551 CQ -

14. SUBJECT 15. NUMBER OF

Ada programming linguage, Ada Compler Validation Summary Report, AP 6•P.pcE

-j•_ g_. Ab•p Val. Testing, Ada Val. Office, Ada Val. c*,.ity
17. SECURITY 18. SECURITY 19. SECURITY 20, LIMITATION OF
CLASSIFICATION CLASSIFICATION
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

NSN Standard Form 298, (Rev. 2-89)

"' 4 2 18 1 8 3 ,,~ W ANSI qw.

Best
Available

Copy

AVF Control Number: NIST93CDS500_1_1.11
DATE COMPLETED

BEFORE ON-SITE: 93-12-10
AFTER ON-SITE: 93-12-20
REVISIONS: 94-01-14

LAda COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 931217S1.11336
Control Data Systems, Inc.

NOS/VE Ada, Version 1.4 1

CYBER 180-930-31 => CYBER 180-930-31 \

Prepared By:
Software Standards Validation Group

Computer Systems Laboratory
National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, Maryland 20899

U.S.A.

Accesiown For
NTIS CRA&I
DTIC TAB

SBy _ _ _ _ _ _ _ _

A,,fjdijblty Codes

i Avs il afd or

AVF Control Number: NIST93CDS500_1_1.11

Certificate Information

The following Ada implementation was tested and determined to pass

ACVC 1.11. Testing was completed on December 17, 1993.

Compiler Name and Version: NOS/VE Ada, Version 1.4

Host Computer System: CYBER 180-930-31 under NOS/VE, Level
826

Target Computer System: CYBER 180-930-31 under NOS/VE, Level
826

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
931217S1.11336 is awarded to Control Data Systems, Inc.. This
certificate expires 2 years after ANSI/MIL-STD-1815B is approved by
ANSI.

This report has been reviewed and is approved.

da alidatiopIFa 1 ty Ada Validation Facility
Dr. David K. Offersin Mr. L. Arnold Johnson
Chief, Information Systems Manager, Softwate Standards

Engineering Division (ISED) Validation Group
Computer Systems Laboratory (CSL)

National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899
U.S.A.

Ada Va&id i organization Ada Joint Program Office
Directbr,&Oputer & Software ;4M. Dirk Rogers, Major, USAF

Engineering Division / Acting Director
Institute for Defense Analyses Ada Joint Program Office
Alexandria VA 22311 Washington DC 20301
U.S.A. U.S.A.

NIST93CDS500_1_1.11

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the
customer.

Customer: Control Data Systems, Inc.

Certificate Awardee: Control Data Systems, Inc.

Ada Validation Facility: National Institute of Standards and
Technology

Computer Systems Laboratory (CSL)
Software Standards Validation Group
Building 225, Room A266
Gaithersburg, Maryland 20899
U.S.A.

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: NOS/VE Ada, Version 1.4

Host Computer System: CYBER 180-930-31 under NOS/VE,
Level 826

Target Computer System: CYBER 180-930-31 under NOS/VE,
Level 826

Declaration:

I the undersigned, declare that I have no knowledge of deliberate
deviations from the Ada Language Standard ANSI/MIL-STD-1815A ISO
8652-1987 in the implementation listed above.

Custome& Sigfha tuxpe-- Date
Company Control Data Systems, Inc.
Title

Certi•'fcate Awardeo-&i~gnature, Date
Company Control Data Systems, Inc.
Title

1-4

TABLE OF CONTENTS

CHAPTER 1O.. N..................................... 1-1
INTRODUC1 ION 1-1

1.1 USE OF THIS VALIDATION SUMMARY REPORT T 1-1
1.2 REFERENCES 1 -2
1 .3 ACVC TEST CLASSES o 1-2
1.4 DEFINITION OF TERMS o 1-3

CHAPTER 2 o... 2-1
IMPLEMENTATION DEPENDENCIES 2-1

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-5

CHAPTER 3 o....................... 3-1
PROCESSING INFORMATION 3-1

3.1 TESTING ENVIRONMENT 3-1
3 .2 SUMMARY OF TEST RESULTS o 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A A-1
MACRO PARAMETERS o A-1

APPENDIX B........................ B-I
COMPILATION SYSTEM OPTIONS B-i
LINKER OPTIONS B-2

APPENDIX C C-1
APPENDIX F OF THE Ada STANDARD C-i

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro92] against the Ada Standard [Ada83]
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro92]. A detailed description
of the ACVC may be found in the current ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22161
U.S.A.

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, Virginia 22311-1772
U.S.A.

1-1

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

(Pro92] Ada Compiler Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECK FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is
compiled and the resulting compilation listing is examined to
verify that all violations of the Ada Standard are detected. Some
of the class B tests contain legal Ada code which must not be
flagged illegal by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values--for example, the

1-2

largest integer. A list of the values used for this implementation
i& provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

For each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and (UG89]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that
have to be added to a given host and target
computer system to allow transformation of
Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada
Validation implementations, Validation consisting of
Capability (ACVC) the test suite, the support programs, the

ACVC Capability User's Guide and the
template for the validation summary (ACVC)
report.

Ada Implementation An Ada compiler with its host computer
system and its target computer system.

Ada Joint Program The part of the certification body which
Office (AJPO) provides policy and guidance for the Ada

certification Office system.

Ada Validation The part of the certification body which
Facility (AVF) carries out the procedures required to

establish the compliance of an Ada
implementation.

Ada Validation The part of the certification body that
Organization (AVO) provides technical guidance for operations

of the Ada certification system.

Compliance of an The ability of the implementation to pass an
Ada Implementation ACVC version.

1-3

Computer System A functional unit, consisting of one or more
computers and associated software, that uses
common storage for all or part of a program
and also for all or part of the data
necessary for the execution of the program;
executes user- written or user-designated
programs; performs user-designated data
manipulation, including arithmetic
operations and logic operations; and that
can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Conformity Fulfillment by a product, process, or
service of all requirements specified.

Customer An individual or corporate entity who enters
into an agreement with an AVF which
specifies the terms and conditions for AVF
services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring
Conformance that conformity is realized or attainable on

the Ada implementation for which validation
status is realized.

Host Computer A computer system where Ada source programs
System are transformed into executable form.

Inapplicable Test A test that contains one or more test
objectives found to be irrelevant for the
given Ada impleLientation.

ISO International Organization for
Standardization.

LRM The Ada standard, or Language Reference
Manual, published as ANSI/MIL-STD-1815A
-1983 and ISO 8652-1987. Citations from the
LRM take the form "<section>.<subsection>:
<paragraph>."

Operating System Software that controls the execution of
programs and that provides services such as
resource allocation, scheduling,
input/output control, and data management.
Usually, operating systems are predominantly
software, but partial or complete hardware
implementations are possible.

Target Computer A computer system where the executable form
System of Ada programs are executed.

1-4

Validated Ada The compiler of a validated Ada
Compiler implementation.

Validated Ada An Ada implementation that has been
Implementation validated successfully either by AVF testing

or by registration [Pro92].

Validation The process of checking the conformity of an
Ada compiler to the Ada programming language
and of issuing a certificate for this
implementation.

Withdrawn Test A test found to be incorrect and not used in
conformity testing. A test may be incorrect
because it has an invalid test objective,
fails to meet its test objective, or
contains erroneous or illegal use of the Ada
programming language.

1-5

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 104 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 93-11-22.

B27005A E28005C B28006C C32203A C34006D C35507K
C35507L C35507N C355070 C35507P C35508I C35508J
C35508M C35508N C35702A C35702B C37310A B41308B
C43004A C45114A C45346A C45612A C45612B C45612C
C45651A C46022A B49008A B49008B A54B02A C55B06A
A74006A C74308A B83022B B83022H B83025B B83025D
B83026B C83026A C83041A B85001L C86001F C94021A
C97116A C98003B BA2011A CB7001A CB7001B CB7004A
CC1223A BC1226A CC1226B BC3009B BD1B02B BD1B06A
ADIB08A BD2AO2A CD2A21E CD2A23E CD2A32A CD2A41A
CD2A41E CD2A87A CD2B15C BD3006A BD4008A CD4022A
CD4022D CD4024B CD4024C CD4024D CD4031A CD4051D
CD5111A CD7004C ED7005D CD7005E AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A BDS004C
CD9005A CD9005B CDA201E CE2107I CE2117A CE2117B
CE2119B CE2205B CE2405A CE3111C CE3116A CE3118A
CE3411B CE3412B CE3607B CE3607C CE3607D CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Commentaries and commonly referenced in
the format AI-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

C24113I..X (16 TESTS) use a line length in the input file that
exceeds 132 characters.

2-1

The following 19 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113Y C35705Y
C35706Y C35707Y
C35708Y C35802Y..Z (2 tests)
C45241Y C45321Y
C45421Y C45521Y..Z (2 tests)
C45524Y..Z (2 tests) C45621Y..Z (2 tests)
C45641Y C46012Y..Z (2 tests)

The following 21 tests check for the predefined type SHORTINTEGER;
for this implementation, there is no such type:

C35404B B36105C C45231B C45304B C45411B
C45412B C45502B C45503B C45504B C45504E
C45611B C45613B C45614B C45631B C45632B
B52004E C55B07B B55B09D B86001V C86006D
CD7101E

The following 20 tests check for the predefined type LONGINTEGER;
for this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55B07A B55B09C B86001W C86006C CD7101F

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a
predefined integer type with a name other than INTEGER,
LONG INTEGER, or SHORTINTEGER; for this implementation, there is
no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORTFLOAT; for this implementation, there is no such type.

C35713D and B8600lZ check for a predefined floating-point type with
a name other than FLOAT, LONG FLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results
of various floating-point operations lie outside the range of the
base type; for this implementation, MACHINEOVERFLOWS is TRUE.

C4AO13B contains a static universal real expression that exceeds
the range of this implementation's largest floating-point type;
this expression is rejected by the compiler.

B86001Y uses the name of a predefined fixed-point type other than

type DURATION; for this implementation, there is no such type.

2-2

C96005B uses values of type DURATION's base type that are outside
the range of type DURATION; for this implementation, the ranges are
the same.

CA2009C and CA2009F check whether a generic unit can be
instantiated before its body (and any of its subunits) is compiled;
this implementation creates a dependence on generic units as
allowed by AI-00408 and AI-00506 such that the compilation of the
generic unit bodies makes the instantiating units obsolete. (See
section 2.3.)

CD1009C checks whether a length clause can specify a non-default
size for a floating-point type; this implementation does not
support such sizes.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length
clauses to specify non-default sizes for access types; this
implementation does not support such sizes.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine
code insertions; this implementation provides no package
MACHINECODE.

AE2101C and EE2201D..E (2 tests) use instantiations of package
SEQUENTIAL 10 with unconstrained array types and record types with
discriminants without defaults; these instantiations are rejected
by this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package
DIRECT 10 with unconstrained array types and record types with
discriminants without defaults; these instantiations are rejected
by this compiler.

The 18 tests listed in the following table check that USE ERROR is
raised if the given file operations are not supported for The given
combination of mode and access method; this implementation supports
these operations.

Test File Operation Mode File Access Method

CE2102E CREATE OUTFILE SEQUENTIAL_10
CE2102F CREATE INOUT FILE DIRECT 10
CE2102J CREATE OUT FILE DIRECT-IO
CE2102N OPEN IN FILE SEQUENTIAL 10
CE21020 RESET IN-FILE SEQUENTIAL0IO
CE2102P OPEN OUT FILE SEQUENTIALIO
CE2102Q RESET OUT_FILE SEQUENTIAL_IO
CE2102R OPEN INOUT FILE DIRECT IO
CE2102S RESET INOUT FILE DIRECT 10
CE2102T OPEN IN FILE DIRECTIO
CE2102U RESET IN-FILE DIRECT-IO

2-3

CE2102V OPEN OUTFILE DIRECTIO
CE2102W RESET OUT FILE DIRECT IO
CE3102F RESET Any Mode TEXT 10
CE3102G DELETE TEXT 10
CE3102I CREATE OUT FILE TEXT IO
CE3102J OPEN IN FILE TEXT IO
CE3102X OPEN OUTFILE TEXTIO

The 3 tests listed in the following table check the given file
operations for the given combination of mode and access method;
this implementation does not support these operations.

Test File Operation Mode File Access Method

CE2105A CREATE IN FILE SEQUENTIAL_10
CE2105B CREATE IN FILE DIRECT 10
CE3109A CREATE IN-FILE TEXTI1

CE2107A..D (4 tests), CE2110B, and CE2111D check operations on
sequential files when multiple internal files are associated with
the same external file; USEERROR is raised when this association
is attempted.

CE2107E checks operations on direct and sequential files when files
of both kinds are associated with the same external file and both
are open for writing; USEERROR is raised when this association is
attempted.

CE2107H, and CE2107L apply function NAME to temporary sequential,
direct, and text files in an attempt to associate multiple internal
files with the same external file; USE ERROR is raised because
temporary files have no name.

CE2108B, CE2108D, and CE3112B use the names of temporary
sequential, direct, and text files that were created in other tests
in order to check that the temporary files are not accessible after
the completion of those tests; for this implementation, temporary
files have no name.

CE2203A checks that WRITE raises USEERROR if the capacity of an
external sequential file is exceeded; this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this implementation cannot
restrict file capacity.

CE3111A..B, CE3111D..E, CE3114B, and CE3115A (6 tests) check
operations on text files when multiple internal files are
associated with the same external file; USEERROR is raised when
this association is attempted.

2-4

CE3304A checks that SET LINE LENGTH and SETPAGE LENGTH raise
USE ERROR if they specify an inappropriate value for the external
file; there are no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the
page number exceeds COUNT'LAST; for thrs implementation, the value
of COUNT'LAST is greater than 150000, making the checking of this
objective impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 68 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in
the way expected by the original tests.

B22003A B26001A B26002A B26005A B28003A B29001A B33301B
B35101A B37106A B37301B B37302A B38003A B38003B B38009A
B38009B B55AOlA B61001C B61001F B61001H B61001I B61001M
B61001R B61001W B67001H B83AO7A B83A07B B83AO7C B83EOlC
B83EO1D B83EO1E B85001D B85008D B91001A B91002A B91002B
B91002C B91002D B91002E B91002F B91002G B91002H B91002I
B91002J B91002K B91002L B95030A B95061A B95061F B95061G
B95077A B97103E B97104G BA1001A BAI101B BC1109A BCl109C
BC1109D BC1202A BC1202F BC1202G BE2210A BE2413A

C83030C and C86007A were graded passed by Test Modification as
directed by the AVO. These tests were modified by inserting
"PRAGMA ELABORATE (REPORT) ;" before the package declarations at
lines 13 and 11, respectively. Without the pragma, the packages
may be elaborated prior to package Report's body, and thus the
packages' calls to function REPORT.IDENT INT at lines 14 and 13,
respectively, will raise PROGRAMERROR.

CA2009C and CA2009F were graded inapplicable by Evaluation
Modification as directed by the AVO. These tests contain
instantiations of a generic unit prior to the compilation of that
unit's body; as allowed by AI-00408 and AI-00506, the compilation
of the generic unit bodies makes the compilation unit that contains
the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification
as directed by the AVO. These tests check that instantiations of
generic units with unconstrained types as generic actual parameters
are illegal if the generic bodies contain uses of the types that
require a constraint. However, the generic bodies are compiled

2-5

after the units that contain the instantiations, and this
implementation creates a dependence of the instantiating units on
the generic units as allowed by AI-00408 and AI-00506 such that the
compilation of the generic bodies makes the instantiating units
obsolete--no errors are detected. The processing of these tests
was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

2-6

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial pages
of this report.

If the point of contact for sales is the same as that for technical
use the second option:

For technical information about this Ada implementation, contact:

Mr. Henri T. .(Hans) Koppen
Control Data Systems, Inc

4201 Lexington Avenue North
Arden Hills, MN 55126

VOICE: 612-482-4320
FAX: 612-482-4746

For sales information about this Ada implementation, contact:

Mr. Jacques R. Lasserre
Control Data Systems, Inc
5101 Patrick Henry Drive
Santa Clara, CA 95054
VOICE: 408-496-4352

FAX: 408-496-4106

Testing of this Ada implementation was conducted at the customer's

site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro92].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various

3-1

categories. All tests were processed, except those that were
withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the
implementation's maximum precision (item e; see section 2.2), and
those that depend on the support of a file system--if none is
supported (item d). All tests passed, except those that are listed
in sections2.1 and 2.2 (counted in items b and f, below).

a) Total Number of Applicable Tests 3912

b) Total Number of Withdrawn Tests 104
c) Processed Inapplicable Tests 154
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 0

f) Total Number of Inapplicable Tests 154 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The
contents of the magnetic tape were loaded directly onto the
host/target computer.

After the test files were loaded onto the host/target computer, the
full set of tests was processed by the Ada implementation.

The tests were compiled, linked, and executed on the host/target
computer system.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete listing of the processing options for this
implementation. It also indicates the default options. The
default options invoked for validation testing during this test
were:

PL (name_ofprogram library) DA=NONE EL=W LO=S OL=LOW SC=NONE
UL=TRUE

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in (UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in terms
of the maximum input-line length, which is the value for
SMAX IN LEN--also listed here. These values are expressed here as
Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

SMAXINLEN 132 -- Value of V

$BIGIDI (1..V-1 => 'A', V => '1')

$BIGID2 (1..V-1 => 'A', V => '2')

$BIGID3 (I..V/2 => 'A') & '3' & (1..V-I-V/2 => 'A')

$BIGID4 (I..V/2 => 'A') & '4' & (1..V-l-V/2 => 'A')

SBIGINTLIT (l..V-3 => '0') & "298"

$BIGREALLIT (I..V-5 => '0') & "690.0"

$BIGSTRINGI ""' & (I..V/2 => 'A') & """

$BIGSTRING2 ""' & (1..V-1-V/2 => 'A') & '1' & '""'

SBLANKS (l..V-20 => '

$MAXLENlINTTBASEDLITERAL
"2:" & (1..V-5 => '0') & "11:"

SMAXLENREALBASEDLITERAL
"16:" & (1..V-7 => '0') & "F.E:"

$MAXSTRINGLITERAL """ & (1..V-2 => 'A') & '""'

A-i

The following table contains the values for the remaining
macro parameters.

Macro Parameter Macro Value

ACC SIZE : 64
ALIGNMENT : 1
COUNT LAST : 9223372036854775807
DEFAULT MEM SIZE : 134217728
DEFAULT STOR UNIT : 64
DEFAULT SYS NAME : CYBER180
DELTA DOC : 2#1.0#E-63
ENTRY ADDRESS : NO SUCH ENTRY ADDRESS
ENTRY ADDRESS1 : NOSUCH ENTRYADDRESS
ENTRY ADDRESS2 : NO SUCHENTRYADDRESS
FIELD LAST : 67
FILE TERMINATOR : NO SUCH FILE TERMINATOR
FIXED NAME : NO SUCH FIXED TYPE
FLOAT NAME : NOSUCHFLOATTYPE
FORM STRING : ""
FORMSTRING2

"CANNOT RESTRICT FILECAPACITY"
GREATER THAN DURATION : 100000 000.0
GREATER-THAN-DURATION BASE LAST : 7_000_000 000.0
GREATER-THAN-FLOAT BASELAST : 1.80141E+3008
GREATERTHAN FLOAT SAFE LARGE : 5.221944407067E1232
GREATER THAN SHORT FLOAT SAFE LARGE: NO SHORT FLOAT
HIGH PRIORITY - : 127 -

ILLEGAL EXTERNAL FILE NAME1 : BADCHARA@.-!
ILLEGALEXTERNALFILENAME2

MUCH TOO LONGNAMEFORAVEFILE
INAPPROPRIATE LINE LENGTH : -1
INAPPROPRIATEPAGELENGTH : -1
INCLUDEPRAGMAI

PRAGMA INCLUDE ("A28006D1.TST")
INCLUDEPRAGMA2

PRAGMA INCLUDE ("B28006E1.TST")
INTEGER FIRST : -9223372036854775808
INTEGER LAST : 9223372036854775807
INTEGERLASTPLUS_1 : 9223372036854775808
INTERFACELANGUAGE : FORTRAN
LESS THAN DURATION : -100 000 000.0
LESS THAN DURATION BASEFIRST : -7 000000_000.0
LINE-TERMI-NATOR :,7
LOW PRIORITY :0
MACHINE CODE STATEMENT : NULL;
MACHINE CODETYPE : NO SUCHTYPE
MANTISSA DOC : 63
MAXDIGITS : 28

A-2

MAX INT : 9223372036854775807
MAX INT PLUS_1 : 9223372036854775808
MIN INT : -9223372036854775808
NAME : NO SUCH TYPEAVAILABLE
NAME LIST : CYBERI80 -
NAME-SPECIFICATION1 : :V07.ADA.ACVC TEMP.X2120A.;1
NAME SPECIFICATION2 : :V07.ADA.ACVC TEMP.X2120B.;1
NAMESPECIFICATION3 : :V07.ADA.ACVCTEMP.X3119A.;1
NEG_BASED INT : 16IFFFF FFFF .FFFFFFF8#
NEW MEM SIZE : 134 217-728
NEWSTOR UNIT : 64
NEW SYS NAME : CYBER180
PAGE TERMINATOR I'

RECORD DEFINITION : NEW INTEGER;
RECORD NAME : NO SUCHMACHINECODETYPE
TASK SIZE : 64
TASKSTORAGESIZE : 64
TICK : 0.001
VARIABLE ADDRESS : VARIABLE' ADDRESS
VARIABLE ADDRESS1 : VARIABLE1'ADDRESS
VARIABLEADDRESS2 : VARIABLE2'ADDRESS
YOURPRAGMA : COMMON, EXPORT

A-3

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

B-i

Compiling, Linking, and Executing 3

This chapter explains the NOS/VE Ada compiling, linking, and execution processes. A
sa -ple SCL procedure is provided at the end of the chapter to run these processes
automatically.

Compiler Command
NOS/VE Ada Implementation Feature

The ADA compiler command compiles your source program and, upon successful
compilation, stores one or more library units into the specified program library. The
ADA command uses the NOS/VE parameter conventions described in appendix D.

ADA

Purpose Invokes the compiler and specifies the current sublibrary, the files to be
used, and the compiler options to be used.

Format ADA
INPUT=file
PROGRAM _L3 RARY= file
LUST-file
DEBUG _AIDS = keyword
ERROR =file
ERROR _LEVEL =keyword
LISTOPTIONS = keyword
OPTIMIZATION LEVEL = keyword
SUPPRESS _CHECKS =list of keyword
UPDATE _LIRAR Y =boolean
STATUS = status variable

Parameters INPUT (I)

File that contains the source text to be read. The source input ends when
an end-of-partition or an end-of-information is encountered on the source
input file. The default value is $INPUTT.

PROGRAMJLIBRARY (PL)

Name of the current sublibrary. The default is $USER.ADAPROGRAM.
LIBRARY. See Getting Started in chapter 2, if you have not set up an Ada

program library.

LIST VL)

File where the compiler writes the source listing, diagnostics, statistics,
and any additional list information specified by the LISTOPTIONS
parameter. The default value is $LIST, which, by default, is connected to
$NULL.

60498113 B Compiling. Linking, and Executing 3-1

Compiler Command

NOTE

You can redirect your $LIST with the CREATEFILE -CONNECTIONS
(CREFC) command. For example:

/create_fj leconnect ion standardfjleuSl=st file-output.f1 Ie

This- connection stays active until you DELETE FILE CONNECTION or
logout. See the NOS/VE System Usage manual for more information.

DEBUG -AIDS (DA)

Debug options to be used.

Keyword Description

ALL All of the available Debug options are selected.

DT Generates a line number table as part of the object code.
This line number table is used by Debug during
traceback.

NONE No Debug tables are produced. If this option is selected,

the program cannot be executed under Debug control.

If the parameter is omitted, NONE is assumed.

ERROR (E)
File to receive the error listing. The default value is SERRORS.

ERROR _LEVEL (EL)

Minimum severity level of the diagnostics to be listed. The levels, in
increasing order of severity, are:

Keyword Description

I INFORMATIONAL. The syntax of the construct is correct
but the usage is questionable.

W WARNING. An error that does not change the meaning
of the program or hinder the generation of object code.
Also, a construct for which the object code raises a
CONSTRAINT-ERROR at run time.

F FATAL. An illegal construct in the source program has
been detected. The compilation continues, but no object
code is generated.

C CATASTROPHIC. An error that causes the compiler to be
terminated immediately. No object code is generated.

If the parameter is omitted, W is assumed so all diagnostics are listed.

3-2 Ada for NOS/VE Usage Manual 60498113 B

Compiler Command

NOTE

You can redirect your SLIST with the CREATE -FILE -CONNECTIONS
(CREFC) command. For example:

/create.ftle.connection standard-fIle=Slist file=outDut-fl e

This connection stays active until you DELETE FILE CONNECTION or
logout. See the NOS/VE System Usage manual for more information.

DEBUG .AIDS (DA)

Debug options to be used.

Keyword Description

ALL All of the available Debug options are selected.

DT Generates a line number table as part of the object code.
This line number table is used by Debug during
traceback.

NONE No Debug tables are produced. If this option is selected,
the program cannot be executed under Debug control.

If the parameter is omitted, NONE is assumed.

ERROR (E)

File to receive the error listing. The default value is $ERRORS.

ERROR .LEVEL (EL)

Minimum severity level of the diagnostics to be listed. The levels, in
increasing order of seveiity, are:

Keyword Description

I INFORMATIONAL. The syntax of the construct is correct
but the usage is questionable.

W WARNING. An error that does not change the meaning
of the program or hinder the generation of object code.
Also, a construct for which the object code raises a
CONSTRAINT-ERROR at run time.

F FATAL. An illegal construct in the source program has
been detected. The compilation continues, but no object
code is generated.

C CATASTROPHIC. An error that causes the compiler to be
terminated immediately. No object code is generated.

If the parameter is omitted, W is assumed so all diagnostics are listed.

. ,r. NOS(VE Usage Manual 60498113 3

Compiler Command

LIST-OPTIONS (LO)

Information written to the listing file (LIST parameter). Multiple options
can be specified; for example, LO=(O,S).

Keyword Description

0 Object and source code listing.

R Symbolic cross-reference listing of all program entities.

S Source input listing.

ALL All of the available list options.

NONE No list options are selected.

If the parameter is omitted, S is assumed.

OPTIMIZATION -LEVEL (OL)

Level of object code optimization.

Keyword Description

LOW Lowest level of production quality code. No optimization
is performed.

DEBUG Generates code to support step mode debugging.

If the parameter is omitted, LOW is assumed. See chapter 8 for
information about debugging.

60498113 B Compiling, Linking. and Executing 3-3

Compiler Commend

SUPPRESS -CHECKS (SC)

Specifies runtime checks to be suppressed in the same manner as if an
explicit pragma SUPPRESS had been inserted in the source code for the
compilation unit. The pragma SUPPRESS and detailed descriptions of the
runtime checks are given in the Ada reference manual.

Keyword Description

ALL Suppresses all runtime checks.

ACCESS (A) Suppresses the check for null values in
referenced pointers.

DISCRIMINANT (D) Suppresses the check that fields of a record
exist for the value of a discriminant.

ELABORATION (E) Suppresses the check that the elaboration before
access rule has been obeyed.

INDEX (I) Suppresses the check that an array index is
within bounds.

LENGTH (L) Suppresses the check of array lengths for array
operations.

RANGE (R) Suppresses the check that a value of a scalar
remains within the bounds defined for its type
or subtype.

NONE No runtime checks are suppressed.

If the parameter is omitted, NONE is assumed.

UPDATE JJBRAR Y (UL)

Specifies whether or not the compiler is to update the Program Library
with the result of the compilation. In either case, the compiler performs a
syntax check.

TRUE A syntactic and semantic check is performed and the result
of the compilation is saved in the Program Library.

FALSE A syntactic and semantic check is performed but the
Program Library is not updated.

If the parameter is omitted, TRUE is assumed.

STATUS
Specifies the name of the SCL status variable to be set by the compiler at
completion time.

3-4 Ada for NOS/VE Usage Manual 60498113 B

Compiler Command

Examples The following compile command uses all of the default values:

/ada t-my-source

The compiled source is written to the default program library
$USER.ADA_-PROGRAM_-LIBRARY. The listing is output to file $LIST.
Any errors are sent to file $ERRORS. No debug tables are produced.

The following compile command specifies program library YOURPL:

/ada i-your-file pl-yourpl l1list da-all e-error lo-(rs)

The following compile command uses the default program library:

/ada i-your_file 1-list da-all e-error lo-(r.s)

Figure 3-1 presents the DISPLAY-COMMAND_INFORMATION output for ADA.

/disci ada
input.i file - $INPUT
program_llibrary. pI file - SUSER.AOAPROGRAM.LIBRARY
listl : file - SLIST
debug_aaids, da key none. dt. all, keyend - none
error. e file a SERRORS
error-level, el key (informational. 1). (warning. w).

(fatal. f), (catastrophic, c), keyend - w
list-options, lo list of key none, o. r, s. all, keyenda s
optimizationlevel, ol key debug. low, high, keyend - low
suopresschecks, Sc (discriminant, d), (elaboration, e).

(index. 1). (length, 1). (range, r).
none, keyend a none

undate-library, ul boolean - true
status : (VAR. BYNAME) status - $optional

Figure 3-1. Sample DISPLAYCOMMAND_INFORMATION Output

For Better Performance

When multiple compilation units are submitted, performance is better if they are
included in a single file rather than on multiple files. However, if the number of
compilation units grows over a certain limit (for example, 50 small compilation units of
about 50 lines each) or if the first compilation units are large, a degradation of the
throughput actually occurs.

End of NOS/VE Ada Implementation Feature

60498113 B Compiling. Linking, and Executing 3-4.1

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and
not to this report.

B-2

Linker Command

Linker Command
NOS/VE Ada Implementation Feature

The Ada linker command links your compilation units or, if the RECOMPILATIONS
parameter is specified, checks the recompilation dependencies of one or more
compilation units. The LINK-ADA command uses the NOS/VE syntax conventions
described in appendix D.

LINK-ADA

Purpose Links Ada code after it has been compiled and before it can be executed.

Format LINK-ADA or LINA
- MAIN-PROGRAM= name

PROGRAMLIBRARY=file
BINARY=file
LIST=file
RECOMPILATIONS = string
STATUS =status variable

Parameters MAIN-PROGRAM (MP)

Compilation unit to be linked, that is, the name of the procedure to be
linked. It must be a parameterless procedure. The procedure must have
been compiled so that it is a library unit in the sublibrary specified by the
PROGRAM-LIBRARY parameter. The compilation unit names can be
listed using the SHOW command in a PLU session. This parameter is
required.

PROGRAMLIBRARY (PL)

File containing the sublibrary to be referenced by the linker. The default
value is $USER.ADAPROGRAMLIBRARY.

BEINARY (B)

File on which the executable code extracted from the user's program
library is written, thus creating an object file acceptable to the NOS/VE
loader. If $NULL is specified, the Ada linker performs all the compilation
order validation checks, but does not create an object file. The default
value is $LOCAL.LGO.

LIST (L)
File where the linker writes the library units elaboration order list. The
default value is $LIST, which, by default, is connected to $NULL.

NOTE

You can redirect your $LIST with the CREATEFILECONNECTIONS
(CREFC) command. For example:

/create.fl le.sconnect ion standard-fi ie-Si1st fi le-outDut.fi le

This connection stays active until you DELETE_-FILE_-CONNECTION or
logout. See the NOS/VE System Usage manual for more information.

Revision A Compiling. L-inking. and Ezecuun.g 3-5

Linker Co---nd

RECOMPILATIONS (R)

Name or names of any modules that need to be recompiled. This parameter
must be omitted to produce a binary file.

STATUS

Name of the SCL status variable in which the linker stores its termination
condition at completion time.

ReBmrk The main program name for the Ada linker is a procedure name used in
the source text.

NOTE

The main program for the LINKADA command must be a parameterless
procedure.

The default binary file name, SLOCAL.LGO, is also the default file name
for the EXECL'TETASK command.

Ezamples The following link command produces a list of dependencies. A binary file
is not produced:

/1 ink..ada main-programuyourprocedure recomp lat ions
.. / I i st =deoendenc ies_- I ist

The following link command produces a binary file. A list of dependencies

is not produced:

/ mna mo-yourproceoure blnary=binary_fti le

Figure 3-2 presents the DISPLAY-_CO MA.TNDINFORMATION output for LINK.
ADA-

/disct link-ada
matn_lprogram, q. : name a Srecuired
Irogram_] ibrary. pl : file - SUSER.ADA_PROGRAM._LIBRARY
binary, : file - $LOCAL.lgo
list. 1; : file - $LIST
recomffilaions. r : string a $optional
status : var of status = Soptional

Figure 3-2. Sample DISPLAY_ COMMAND_INFORMATION Output

End of NOS/VE Ada Implementation Feature

3-6 Ada fer VNýSIVE t'a•. "u' Revision A

Execution
NOS/VE Ada Implementation Feature

Once you have compiled and linked an Ada program, the linked binary can be loaded
and executed in the following ways:

"* Using the EXECUTE-TASK command, as described in the NOS/VE Commands and
Functions manual

"* Using a direct file reference to the binary file produced by the Ada linker

"* Using a call to the system interface procedure PM.P$EXECUTE from within another
program, as described in the CYBIL System Interface manual

For Better Performance

Use of the INLINE pragma, where applicable, results in faster object code by avoiding
the call/return instructions and the dynamic initialization of the stack frame.

Using the EXECUTETASK Command

The EXECUTE-TASK command offers the most flexibility in loading and executing
your program. After compiling your program file and linking your compilation units,
you enter the following command at the system prompt:

/execute.task ft lewyour-.blnary-f I le_name

For example:

/exet fmathlbWgo

Or, if you had omitted the BINARY parameter from the LUNKKADA command:

/exet $local.Igo

Or the equivalent (if your working catalog is SLOCAL):

/1go

Revision A Compiling, Linking, and Executing 3-7

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -9223372036854775808 .. 9223372036854775807;

type FLOAT is digits 13
range -16#7.FFFF_FFFFFFF8IE1023 .. 16#7.FFFF_FFFFFFF8#E1023;

type LONG_FLOAT is digits 28
range -16#7.FFFF FFFF FFFF FFFF FFFF FFF8#El023

1617 .FFFFFFF FFFFFFFFZFFFFFFFI#E1023;

type DURATION is delta 0.001 range -6 279 897 600.0
6279897600.0;

end STANDARD;

C-I

Implementation-Dependent Characteristics F

F.1 NOS/VE Ada Pragmas ... F-2

F.2 NOS/VE Ada Attributes .. F-3

F.3 Specification of the Package SYSTEM .. F-3

F.4 Restrictions on Representation Clauses .. F-3
F.4.1 Length Clauses .. F-4
F.4.2 Enumeration Representation Clauses F-4
F.4.3 Record Representation Clauses ... F-4

F.5 Implementation-Dependent Names .. F-5

F.6 Address Clauses and Interrupts ... F-5

F.7 Unchecked Type Conversions ... F-5

F.8 Input-Output Packages ... F-5
F.8.1 External Files and File Objects ... F-6
F.8.2 Exceptions for Input-Output Errors F-6
F.8.3 Low Level Input-Output .. F-7

F.9 Other Implementation-Dependent Characteristics F-7
F.9.1 Implementation Features ... F-7

F.9.1.1 Predefined Types ... F-7
F.9.1.2 Basic Types ... F-8
F.9.1.3 Com piler .. F-8
F.9.1.4 Definition of a Main Program .. F-9
F.9.1.5 TIM E Type .. F-9
F.9.1.6 Machine Code Insertions ... F-9

F.9.2 Entity Types ... F-9
F.9.2.1 Array Types ... F-9
F.9.2.2 Record Types F-10
F.9.2.2.1 Simple Record Types (Without Discriminants) F-10
F.9.2.2.2 Record Types With Discriminants F-11
F.9.2.3 Access Types ... F-11

F.9.3 Tasking ... F-11
F.9.4 Interfaces to Other Languages ... F-11
F.9.5 Command Interfaces .. F-11

F.9.5.1 Program Library Utility Commands F-12
F.9.5.2 Compiler Command ... F-12
F.9.5.3 Linker Command ... F-12
F.9.5.4 Execution ... F-12

F.9.6 Values of Data Attributes ... F-12
F.9.6.1 Values of Integer Attributes ... F-13
F.9.6.2 Values of Floating Point Attributes F-13
F.9.6.3 Values of Long Floating Point Attributes F-14
F.9.6.4 Values of Duration Attributes F-14

60498118 B

Implementation-Dependent Characteristics F

This appendix summarizes the implementation-dependent characteristics of NOS/VE
Ada by listing the following-

"* NOSIVE Ada pragmas

"* NOS/VE Ada attributes

"* Specification of the package SYSTEM

"* Restrictions on representation clauses

"* Implementation-dependent names

"* Address clauses and interrupts

"* Unchecked type conversions

"* Input-output packages

"* Other implementation-dependent characteristics

%aft. is not used in this appendix.

rF. No S/VE Ada prrag

F.1 NOS/VE Ada Pragmas
NOS/VE Ada supports the following pragmas as described in the
ANSI/MIL-STD-1815A-1983, Reference Manual for the Ada Programming Language,
except as shown below:

"* INLINE

This pragma causes inline expansion of a subprogram except as described in annex
B of this manual (see 6.3.2, 10.6).

"* INTERFACE

This pragma is supported for CYBIL, FORTRAN, and the NOS/VE Math Library,
as discussed in 13.9.1, 13.9.2, and 13.9.3, respectively.

"* PACK
Arrays of components of discrete type are packed into the nearest 2**n bits.

"* SHARED

This pragma is not supported for the following types of variables:

- Variables of type LONGFLOAT

- Variables of a subtype of type LONGFLOAT

- Variables of a type derived from type LONG-FLOAT

- Variables of a subtype derived from type LONG-FLOAT

"* SUPPRESS

This pragma is supported, but it is not possible to restrict the check suppression to
a specific object or type.

NOS/VE Ada does not support the following pragmas:

"* CONTROLLED

"* MEMORY-SIZE

"* OPTIMIZE

"* STORAGE -UNIT

"* SYSTEM -NAME

NOS/VE Ada supports the following implementation-defined pragmas:

* COMMON
This pragma accepts the name of a FORTRAN labeled common as its single
argument. This pragma is allowed only in the specification of a library package.
This pragma specifies that the library package specification can be accessed as a
labeled common by a FORTRAN subroutine. To ensure proper results, the items
declared in the Ada library package specification must be of a type corresponding to
the type of the matching items in the FORTRAN common specification. The
argument name must be a legal NOS/VE and FORTRAN name.

F-2 Ada for NOSNVE Reference Manual 60498118 B

F.2 NOS/VE A&a Auribuo

0 EXPORT

This pragma accepts a language name and a subprogram name as arguments. This
pragma is allowed only in the body of a library procedure. This pragma specifies
the other language (FORTRAN) and informs the Ada compiler that it must provide
an entry point in the procedure by the specified subprogram name. (FORTRAN is
the only supported language.) The subprogram name must be a NOS/VE and
FORTRAN legal name. Parameter passing is not supported.

F.2 NOS/VE Ada Attributes

NOS/VE Ada supports all the attributes described by the ANSL/MIL-STD-1815A-1983,
Reference Manual for the Ada Programming Language. It does not provide any
implementation-defined attributes. The NOS/VE implementation of the P'ADDRESS
attribute returns the prefix P, the 48-bit process virtual address (PVA) right-justified
within a 64-bit variable of the predefined type INTEGER.

F.3 Specification of the Package SYSTEM

package SYSTEM is
type ADDRESS is access INTEGER;
type NAME is (CYBER180);

SYSTEM-NAME constant NAME := CYBER180;

STORAGEUNIT constant := 64; - 64-bit machine
MEMORYSIZE : constant := 128*1048576; - 128 megabytes

MININT constant = -9-223_372_036_854-775-808; - (-2*"63)
MAXINT constant 9=.9-223_372_036_854-775-807; - (2"'63)-1
MAXDIGITS : constant := 28;
MAXMANTISSA : constant := 63;
FINE-DELTA : constant := 2#1.0#E-63; - 2**(-63)
TICK : constant := 0.001;

subtype PRIORITY is INTEGER range 0 .. 127;

end SYSTEM;

F.4 Restrictions on Representation Clauses

NOS/VE Ada implements representation clauses as described by the ANSI standard for
Ada. It does not allow representation clauses for a derived type.

NOS/VE Ada supports the type representation clauses with some restrictions:

"* Length clauses

"* Enumeration representation clauses

"* Record representation clauses

"* Address clauses

NOS/VE Ada does not support interrupts.

F.4.1 Length Clauses

NOS/VE Ada supports the attributes in the length clauses as follows:

NOSfVE Ada accepts the SIZE attribute for a type T under the following conditions:

- If T is a discrete type, then the specified size must be less than or equal to 64
and when the number of bits needed to hold any value of the type is calculated,
the range is extended to include 0 if necessary, i.e., the range 3..4 cannot be
represented in 1 bit, but needs 3 bits.

- If T is a fixed point type, thenn t specified size must be less than or equal to
64 bits. As for discrete types, the number of bits needed for a fixed point type
is calculated using the range of the fixed point type possibly extended to include
0.0.

- If T is a floating point type, an access type or a task type, the specified size
must be equal to the number of bits used to represent values of the type
(floating points: 64 or 128 bits, access types: 64 bits and task type: 64 bits).

- If T is a record type, the specified size must be greater than or equal to the
minimal number of bits used to represent values of the type per default.

- If T is an array type, the specified size must be equal to the minimal number of
bits used to represent values of the type per default.

"* T'STORAGESIZE (collection size)

Supported

"* T'STORAGE-SIZE (task activation size)

Supported

F.4.2 Enumeration Representation Clauses

In NOS/VE Ada enumeration representation clauses, the internal codes must be in the
range of the predefined type INTEGER.

F.4.3 Record Representation Clauses

NOS/VE Ada implements record representation clauses as described by the ANSI
language definition.

N OS/VE Ada supports only alignment on storage unit boundary, i.e., at mod 1, in
record representation clauses.

The component clause of a record representation clause gives the storage place of a

component of a record, by providing the following pieces of data:

"* The name gives the name of the record component.

"* The simple expression following the reserved word AT gives the address in storage
units, relative to the beginning of the record, of the storage unit where the
component starts.

F.4 Ada for NOS/VE Referenan Manual 60498118 B

F.5 lmplmaeation-Delpndent Name

* The range in the component clause gives the bit positions, relative to that starting
storage unit, occupied by the recori component.

NOS/VE Ada supports the range for only those record components of discrete types
(integer or enumeration) or arrays of discrete elements. The range must be less or
equal to 64 bits and all values of the component type must be representable in the
specified number of bits. The component may start at any bit boundary. A range can
overlap 2 adjacent storage units.

If the record type contains components which are not covered by a component clause,
they are allocated consecutively after the last component with a component clause.
Allocation of a record component without a component clause is always aligned on a
storage unit boundary. Holes created because of component clauses are not otherwise
utilized by the compiler.

F.5 Implementation-Dependent Names

NOS/VE Ada does not support implementation-dependent names to be used in record
representation clauses.

F.6 Address Clauses and Interrupts

NOS/VE Ada accepts address clauses for objects but 'address literals' cannot be
specified. Address clauses will therefore look like:

for X use Y'ADDRESS;

NOS/VE Ada does not accept address clauses for subprograms, tasks, packages, and
entries.

NOS/VE Ada does not support interrupts.

F.7 Unchecked Type Conversions

NOS/VE Ada allows unchecked conversions when objects of the source and target types
have the same size.

F.8 Input-Output Packages
The discussion of NOS/VE Ada implementation of input-output packages includes the

following:

"* External files and file objects

"• Exceptions for input-output errors

"* Low level input-output

60498118 B Implementation.Dependent Characteristic F-S

F.8.1 External Files and File Objects

NOS/VE Ada can process files created by another language processor as long as the
data types and file structures are compatible.

NOS/VE Ada supports the following kinds of external files:

"* Sequential access files (see 14.1)

"* Direct access files (see 14.1)

"* Text input-output files (see 14.3)

F.8.2 Exceptions for Input-Output Errors

The ANSI/MIL-STD-1815A-1983 Reference Manual for the Ada Programming Language
describes conditions under which input-output exceptions are raised. In addition to
these, NOS/VE Ada raises the following exceptions:

"* The exception DATAERROR is raised when:

- An attempt is made to read from a direct file a record that has not been
defined.

- A check reveals that the sizes of the records read from a file do not match the
sizes of the Ada variables. NOS/VE Ada performs this check except in those few
instances where it is too complicated to do so (see 14.2.2).

"* The exception USE-ERROR is raised when:

- The function NAME refereaces a temporary file (see 14.2.1).

- An attempt is made to delete an external direct file with multiple accesses
while more than one instance of open is still active. The file remains open and
the position is unchanged (see 14.2.1).

- An attempt is made to create a sequential, text, or direct file of mode IN-FILE

(see 14.2.1).

- An attempt is made to create an existing file (see 14.2.1).

- An attempt is made to process a text file with a line that is longer than 511
characters.

- An attempt is made to set the page length for a text file that does not have the
file contents of LIST (see 14.3.3).

- An attempt is made to issue a new page for a text file that does not have the
file contents of LIST.

- An attempt is made to open or create a file with the FORM parameter
specifying anything other than an empty string for sequential access or direct
access files.

- An attempt is made to set a line for a text file that does not have the file
contents of LIST and the value specified by TO is less than the current line
number.

F-6 Ada for NOSIVE Rderence Manual 60498118 B

F.3 Low Laval IzpuiOutput

- An attempt is made to open or create a text file with the FORM parameter
specifying any other value than LIST, LEGIBLE, or UNKNOWN.

- An attempt is made to open or create a text file with attribute FILE.
CONTENTS not matching the file format specfied by the FORM parameter.

F.8.3 Low Level Input-Output

NOSIVE Ada does not support the package LOW._LEVELJO.

F.9 Other Implementation-Dependent Characteristics

The other implementation-dependent characteristics of NOS/VE Ada are discussed as
follows:

"* Implementation features

"• Entity types

"• Tasking

"* Interface to other languages

"* Command interfaces

"* Values of data attributes

F.9.1 Implementation Features

The NOS/VE Ada implementation features are listed as follows:

"* Predefined types

"* Basic types

"* Compiler

"* Definition of a main program

"* TIME type

"* Machine code insertions

F.9.1.1 Predefined Types

NOS/VE Ada implements all the predefined types described by the
ANSL'MIL-STD-1815A-1983, Reference Manual for the Ada Programming Language,
except:

"* LONG -INTEGER

"* SHORT-FLOAT

"* SHORT-INTEGER

F.9.1.2 Basic Types

F.9.1.2 Basic Types

The sizes of the basic types are as follows:

Type Size (bytes)

ENUMERATION 8

FLOAT 8

INTEGER 8

LONG -FLOAT 16

TASK 8

In NOS/VE Ada, the enumeration type includes predefined type boolean and character
as well as user defined enumeration types.

F.9.1.3 Compiler

NOS/VE Ada provides an ANSI standard Ada compiler.

The NOS/VE Ada compiler has the following characteristics:

"* Source code lines up to 132 characters long

"* Up to 100 static levels of nesting of blocks and/or subprograms

"* External files up to one segment, 2"*31-1 bytes, in length

"* A generic body can be compiled in a separate file from its specification if it is
compiled before it is instantiated. If the specification, body and instantiation are in
the same file, the instantiation of the generic can be either before or after the
compilation of the body.

"* A generic non-library package body or a generic non-library subprogram body
cannot be compiled as a subunit in a separate file from its specification.

F-S Ada for NOS(VE Reference Manual 60498118 B

F.9.1.4 Delinitim d a Main Proram

For Better Performance

The compiler throughput improves when multiple compilation units are submitted.
However, if the number of compilation units grows over a certain limit, for example 50
small compilation units of about 50 lines each, or if the first compilation units are
large, the throughput actually degrades.

Using the pragma INLINE, where applicable, results in faster object code by avoiding
the call/return instructions.

F.9.1.4 Definition of a Main Program

NOS/VE Ada requires that the main program be a procedure without parameters. The
name of a compilation unit used as a main program must follow NOS/VE naming
standards. The name can be up to 31 characters in length and must be a valid
NOS/VE name and a valid Ada identifier. Any naming error is detected at link time
only. For more information, see the Ada for NOS/VE Usage manual.

F.9.1.5 TIME Type

NOS/VE Ada defines the type TIME as an integer representing the Julian date in
milliseconds.

F.9.1.6 Machine Code Insertions

NOS/VE Ada does not support machine code insertions.

F.9.2 Entity Types

This discussion contains information on:

"* Array types

"• Record types

"* Access types

F.9.11 Array Types

Arrays are stored row wise, that is, the last index changes the fastest.

An array has a type descriptor that NOS/VE Ada uses when the array is one of the
following:

"* A component of a record with discriminants

"* Passed as a parameter

"• Created by an allocator

F-9.2.2 Record Type

For each index, NOS/VE Ada builds the following information triplet:

Lower Bound

Upper Bound

Element Size

For multi-dimension arrays, NOS/VE Ada allocates the triplets consecutively.

Elevn at size is expressed in number of storage units (64-bit words). If the array is
packed, the element size is expressed in number of bits and represented by a negative
value.

NOS/VE Ada strings are packed arrays of characters. Each component of the array is
an 8-bit (1-byte) character. Packed arrays of booleans use 1 bit per component and are
left-justified. Arrays of integers or enumeration variables can also be packed. Each
component uses n bits. Thus, the integer or enumeration subtype is in the range
-2**n .. (2**n)-l.

Note that all objects start on a storage unit (64-bit word) boundary.

At run time when NOS/VE Ada elaborates an array definition, the amount of available
space remaining either on the stack or in the heap limits the maximum size of the
array (see 3.6).

F.9.2 Record Types

At run time when NOS/VE Ada elaborates a record definition, the amount of available
space remaining either on the stack or in the heap limits the maximum size of the
record (see 3.7).

NOS/VE Ada raises the exception STORAGE-ERROR at run time when the size of an
elaborated object exceeds the amount of available space.

The rest of this discussion on how records are stored includes:

0 Simple record types (without discriminants)

* Record types with discriminants

F.9.Z2.1 Simple Record Types (Without Discriminants)

In the absence of representation clauses, each record component is word aligned.
NOS/VE Ada stores the record components in the order they are declared.

A fixed size array (lower and upper bounds are constants) is stored within the record.
Otherwise, the array is stored elsewhere in the heap, and is replaced by a pointer to
the array value (first element of the array) in the record.

F-10 Ada for NOSNVE Roferes Manul 60498118 B

F.92.22 Record Tpes With Diwimi ts

F.9.2.2.2 Record Types With Discriminants

The disciniinants are stored first, followed by all the other components as described
for simple records.

If a record component is an array with index values that depend on the value of the
discriminant(s), the array and its descriptor are both allocated on the heap. They are
replaced by a pair of pointers in the record. One points to the array value and the
other points to the array descriptor.

F.9.2.3 Access Types

Objects of access type are 6-byte pointers, left-justified within a word, to the accessed
data contained in some allocated area in the heap. If the accessed data is of type array
or packed array, the allocated area also contains the address of the array descriptor in
front of the data.

F.9.3 Tasking

NOS/VE Ada supports tasking by running all Ada tasks as NOS/VE concurrent
procedures activated and controlled by the tasking kernel which is an integral part of
the NOS/VE compiler run time system. Contact the site administrator to change the
site's TASK-LIMIT to run more concurrent tasks than the site currently allows. See
the Ada for NOS/VE Usage manual for more information on NOS/VE Ada tasking.

F.9.4 Interfaces to Other Languages

NOS/VE Ada supports calls to CYBIL and FORTRAN subprograms and to NOS'VE
Math Library subroutines with the following restrictions:

"* CYBIL interface
(See 13.9.1 and chapter 6 of the Ada for NOS/VE Usage manual).

"* FORTRAN interface

(See 13.9.2 and chapter 6 of the Ada for NOS/VE Usage manual).

"* Math Library interface

(See 13.9.3 and chapter 6 of the Ade. for NOS/VE Usage manual).

F.9.5 Command Interfaces

The discussion of the command interfaces implemented by NOS/VE Ada includes:

"* Program Library Utility commands

"• Compiler command

"• Linker command

"* Execution commands

NOS/VE Ada commands use the syntax and language elements for parameters
described in the NOS/VE System Usage manual.

F k'tog Mram uhirary UtiiyCm mad

F.9.&I Program Library Utility Commands

NOS/VE Ada provides a hierarchically structured (tree structured) program library to
fulfill the ANSI Ada language definition requirements. A node (sublibrary) in the tree
can contain up to 4096 compilation units. The Ada for NOSIVE Usage manual contains
a detailed discussion of the NOS/VE Ada implementation of the program library.

F.9.5.2 Compiler Command

The NOS/VE Ada compiler can compile an ANSI standard Ada program on NOS/VE.
See the Ada for NOS/VE Usage manual for information about the NOS/VE Ada
compiler command.

F.9.5.3 Linker Command

The NOS/VE Ada linker checks the order of compilation of the compilation units of a
program before the program can be executed.

See the Ada for NOS/VE Usage manual for more information about the linker
command.

F.9.5.4 Execution

NOS/VE Ada provides several ways to load and execute an Ada program. They are
described in the following manuals:

"* Ada for NOS/VE Usage

"* CYBIL for NOS/VE System Interface Usage

"* NOS/VE Object Code Management Usage

F.9.6 Values of Data Attributes

The package STANDARD contains the declaration of the following predefined types and
their attributes:

"* Integer (INTEGER)

"* Floating point (FLOAT)

"• Long floating point (LONG-FLOAT)

"* Duration (DURATION)

F-12 Ada for NOSIVE Reference Manual 60498118 B

Fi.9.I Vuims d Iuagw AntW

F.9.&.1 Values of Integer Attributes

Attribute Value

FIRST -9-223 -372-036 -854-775 -808

LAST 9-223-372_036_854-775-807

SIZE 64

WIDTH 20

F.9.6.2 Values of Floating Point Attributes

Attribute Value

DIGITS 13

EMAX 180

EPSILON 5.6.843 -419 -961#E-14

FIRST -16#7.FFFFFFFFFFF8#E1023

LARGE 1.532495540866E54

LAST 16#7.FFFF_.FFFFFF8#E1023

MACHINEEMAX 4095

MACHINE _EMIN -4096

MACHINE _MANTISSA 48

MACHINE -OVERFLOWS TRUE

MACHINE -RADIX 2

MACHINE-ROUNDS FALSE

MANTISSA 45

SAFE _EMAX 4095

SAFE -LARGE 5.221944407066E1232

SAFE -SMALL 9.574977460952E-1234

SIZE 64

SMALL 3.262652233999E-55

Anf4R11R R , f.hs -,ui .p l.l i

F.9.&3 Values of Long Floating Point Attributes

Attribute Value

DIGITS 28

EMAX 380

FIRST -16#7.FFFFFFFFFFF FFFFFFFFF FFFS#E1023

LARGE 2.462625387274654950767440006E114

LAST 16#7.FFF _FFFFFFFFFFFFFFFFFFFFF#E 1023

MACHINE _EMAX 4095

MACHINE _EMIN -4096

MACHINE _MANTISSA 96

MACHINE OVERFLOWS TRUE

MACHINE RADIX 2

MACHINE ROUNDS FALSE

MANTISSA 95

SAFE _EMAX 4095

SAFE -LARGE 5.221944407065762533458763552E 1232

SAFE SMALL 9.574977460952185357946731011E-1234

SIZE 128

SMALL 2.030353469852519378619219645E-115

F.9.6.4 Values of Duration Attributes

Attribute Value

DELTA 1.0000000000OOE-03

LARGE 8.589934591999E09

MACHINE -OVERFLOWS TRUE

MACHINE -ROUNDS FALSE

SIZE 64

SMALL 9.765625000000E-04

F-14 Ada for NOS/VE RPfersrme Manual 60498118 B

