
ELECT.

AD-A 75 90 S FEB 8194 MEINN CDRL Sequence 05504-001AD-A275 950 l FEB 1 8 1994 CDRashclsubtaskl1D52,1 (2)

~IIII hIIIf C 31 July 1993

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE

SYSTEMS (STARS) PROGRAM

Cleanroom Engineering Handbook
Volume 5

Development Team Practices

Contract No. F19628-88-D-0032

Task ID52 - STARS Technology Transfer Demonstration

Project for the U.S. Army

Prepared for:

Electronic Systems Center

Air Force Materiel Command, USAF

Hanscom AFB, MA 01731-2816

Prepared by:

IBM Federal Systems Company

800 North Frederick Avenue

94-05361 Gaithersburg, MD 20879

Approved for Public Release, Distribution Is Unlimited

94 2 17 083

Best
Available

Copy

Task/Subtask ID52.1(2)
CDRL Sequence 05504-001

31 July 1993

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE

SYSTEMS (STARS) PROGRAM

Cleanroom Engineering Handbook
Volume 5

Development Team Practices

Contract No. F19628-88-D-0032

Task ID52 - STARS Technology Transfer Demonstration

Project for the U.S. Army

Prepared for: Accesji, For -

NTIS CRA&i
DTIC TAf

Electronic Systems Center UWannouriced 0o

Air Force Materiel Command, USAF Justiticbto

Hanscom AFB, MA 01731-2816 By
Distribution I

Availability Codes

Prepared by: Dist Avail dd/or

IBM Federal Systems Company Sp-a

800 North Frederick Avenue

Gaithersburg, MD 20879

SI o'll' Aj)j~,o.c¢

REPORT DOCUMENTATION PAGE o,.8 No o7Oo,66

1. AGENCY USE ONLY (eave blank) 2. REPORT DATE 13. REPURT TYPE AND DATES COVERED

7/3193 iInitial

A. TITLE AND SUBTITLE 7S. FUNDING NUNM8ERS

Cleanroom Engineering Handbook:
Development Team Practices F19628-88-C-0032/0010

6. AUTHOR(S)

Ara Kouchakdjian Alan R. Hevner
Richard H. Cobb James A. Whittaker

7. PERFORMING ORGANIZATION NAME(S) AND AODRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

IBM Federal Systems Company SET, Inc.
800 North Frederick Avenue 2770 Indian River Blvd. 05504-001
Gaithersburg, MD 20879 Vero Beach, FL 32960

Volume 5

9. SPONSORING:MONITORING AGENCY NAME(S) AND AODRESS(ES) 10. SPONSOWING IMONITORING
AGENCY REPORT NUMBER

Electronic Systems Center/ENS
Air Force Materiel Command, USAF
5 Eglin Street, Building 1704
Hanscom Air Force Base, MA 01731-2116

11. SUPPILEMENTARY NOTES

N/A

12a. DISTRIBUTION I AVAILABILITY STATEMENT 12b- DISTRIBUTION COO[

Cleared for Public Release, Distribution is Unlimited

13. ABSTRACT (Maj,murm200wods)

This is one of a series of six engineering handbooks prepared for and used by the engineering staff at
Picatinny Arsenal for the STARS technology transfer demonstration. The handbooks define the engineering
process and algorithms that will be used in Cleanroom projects. They are designed to provide support to
trained engineers using Cleanroom Engineering, not to substitute for training.

This handbook, Volume 5, explains the set of specific tasks performed by the Cleanroom Development Team to
design and implement each increment j in the software project. In the Cleanroom environment, the
Development Team has a well-defined mission which can be stated as: "Given a set of functions (i.e.,
specifications) which are to be implemented in software, find rules (i.e., program code) that correctly
implement the functions".

State-of-the-art systems engineering and software engineering principles, methods, and tools are employed
in the Cleanroom development process. The theory and methods of box structure design objects that the
development team utilizes are defined. Templates for preparing all design tasks are defined. Tasks for
orrecting software failures during certification are described.

e Cleanroom process model for software system development projects is presented in Volume 1 - Cleanroom
rocess Overview - of this series of handbooks. This handbook, Volume 5, describes the activities of
leanroom software development for increment J. Process P.5.j, Software Development and Certification
velopment for Increment j. provides the framework for transforming system and software specifications

described in Volume 4 - Specification Team Practices) into design objects and code implementation.

14 SUBJECT TERMS 15 wJ'1P.•F,•Fr OF PACES

Certification, Cleanroom, Cleanroom Engineering, Development, 71
Management, Software Development, Specification 16 prict(oof

17. SECURITY CLASSIFICATION Is. SECURITY CL93S%1f4C4trON I SICIOVITY C1ASSIVICA o1. 20 tIMOXAlIONOr ASTQ_(7
OF REPORT OF THIS PAGC Of L8s.H.-'-(r I

Unclassified Unclassi:>-- I .c-.ý. '- ;.
-,- nf-.= ;o" Cr'.AJr,...

PREFACE

This series of handbooks is prepared for use by managers and engineers assigned to
Cleanroom projects at Picatinny Life Cycle Software Engineering Center.

These handbooks define the engineering process and algorithms that will be used in
Cleanroom projects.

This document was developed by the IBM NFederal Systems Company, lo,:atcd at SO•) North
Frederick Avenue. Galithersburg. MD 20879 and Software Fneineering Technology. Inc. located
at 2770 Indian River Boulevard, Vero Beach, FL 32)60. Questions or coinints should be
directed to Mr. Paul Arnold at 301-240-7464 (Internet: pga{,sci.cmu.edu).

This document is approved for release under Distribution "C" of the Scientific and Technical
Information Program Classification Schieme (DoD Directive 5230.24). Permission to use, moditf,
copy or comment on this document for purposes stated under Distribution "C" without fee is is
herebv gnranted. The Government (IBM and its subcontractors) disclaims all responsibilitN against
liability, including expenses for violation of proprietary rights, or copyrights arising out use of this
document. In addition, the Government (IBM and its subcontractors) disclaims all warranties with
regard to this document. In no event shall the Government (IBM nor its subcontractors) be liable
for any damages in connection with the use of this document.

DEVELOPMENT TEAM PRACTICES

TABLE OF CONTENTS

Section 1: Introduction 2
1.1 Background and Motivation 2
1.2 Clean'oom Development Process Model - PS-j 3

Section 2: Increment j Development Tasks 7
2.1 Select Box Design Object from Pick List 7
2.2 Refine and Verify Box 8
2.3 Update Pick List 13
2.4 Increase Understanding of Problem and Solution Domains 13
2.5 Team Decision Options for Increment j 13

Section 3: Box Structure Overview 15
3.1 Box Structure Concepts 15
3.2 Box Structure Principles 16

Section 4: Box Structure Software Development 19
4.1 Black Box Definition 20
4.2 State Box Definition 26
4.3 Clear Box Definition 35
4.4 Clear Box Ref'Liements 44
4.5 Design Translation 49

Section 5: Correct Test Increment (I1... j) 53
5.1 Isolate Failure 54
5.2 Correct Failure 54
5.3 Verify Corrections 54
5.4 Prepare Engineering Change Notice (ECN) 54
5.5 Team Review for Corrections 55
5.6 Submit Test Increment (I1... j) to Certification Team 56

Exhibit A: Box Description Language (BDL) BNF 57

Exhibit B: Line Numbering for Box Description Language 61

Exhibit C: State Data Modeling Example 64

ID52 - Vol. 5 - Development Team Practices Page I

DEVELOPMENT TEAM PRACTICES

SECTION 1: INTRODUCTION

The mission of this handbook for Cleanroom Development is to organize and explain the set of
specific tasks performed by the Cleanroom Development Team to design and implement each
increment j in the software project.

In the Cleanroom environment, the Development Team has a well-defined mission which can be
stated as:

Given a set of functions (i.e., specifications) which are to be implemented in software, find
rules (i.e., program code) that correctly implement the functions.

State-of-the-art systems engineering and software engineering principles, methods, and tools are
employed in the Cleanroom development process. The theory and methods of box structure
design objects that the development team utilizes are defined. Templates for preparing all design
tasks are defined. Tasks for correcting software failures during certification are described.

The Cleanroom process model for software system development projects is presented in Volume
1 - Cleanroom Process Overview of this series of handbooks. This volume 5 describes the
activities of Cleanroom software development for increment j. Process P.5.j, Software Develop-
ment and Certification Development for Increment j, provides the framework for transforming
system and software specifications (described in Volume 4 - Cleanroom Software Specification)
into design objects and code implementation.

1.1 Box Structures: Some Background

People have been searching for methods that they can use to guide the development of software
solutions. Today most competent software developers are using some variant of one of the
following three methods:

Process Oriented Development
Example methods include:

Structured Analysis and Structured Design
Jackson System Development

Data Oriented Development
Example methods include:

Wamier-Orr Systems Development
Information Engineering

Object Oriented Development
Example methods include:

ID52 - Vol. 5 - Development Team Practices Page 2

Booch's Design Method
Meyer's Approach (Eiffel)
Coad and Yourdan Methods

Some practitioners using these methods design good software solutions and others are not so
successful. The difficulty is that the software development problem is multifaceted and each of
these three orientations focus on just one facet giving only limited emphasis on the other two
facets.

Mills developed the Box Structure Method to unify the three approaches by providing the
engineer with the ability to focus on each view in turn. The relationship between the Box
Structure views and the traditional software design methods is as follows:

Black Box Object orientation

State Box Data orientation

Clear Box Process orientation

Box structures support a rigorous, yet practical, set of methods for the development of systems.
Box structure methods have been used successfully on numerous projects.

The box structure design algorithm, as presented in this manual, combined with all other
Cleanroom practices permit software engineers to replace the craft-based activities that they
currently use to develop object-oriented systems with engineering-based processes. As a result
they derive all the benefits that engineering provides over crafting.

1.2 Cleanroom Development Process Model - P5.j

The Cleanroom development process model is embedded within the P5.j process, Software
Development and Certification Development for Increment j.

ID52 - Vol. 5 - Development Team Practices Page 3

proc P5.j: Software Development and Certification Preparation
[For each P5.j, the specification is tailored, then the software is designed to the code by the
Development team (P5.j.3), while the Certification team does the work necessary to prepare
for certification of the increment (P5.j.2).I
do [P5.j: Software Development and Certification Preparation]

run P5.j.,: Tailor specification to increment/accumulation j;
con

run P5.j.2: Prepare for Certification of Accumulation j;
run P5.j.3: Increment j Development;

noc;
until

Completion Conditions achieved for P5.j.2 and P5.j.3 or P5.j.3 team decision indicates the
need for replanning or specification revisions

od;
corp;

A brief summary of the three subprocesses is presented. The next section then describes P5.j.3,
Increment j Development, in detail.

1.2.1 Tailor Specification to Increment j

The Specification Team determines the set of increments for the development of the complete
system. The description of system increments is contained in Volume VI - Construction Plan of
the system specification. As each increment is defined the Specification Team will tailor the
specification information for that increment into an effective format for the Development Team
and the Certification Team to use in their processes. The model for this subprocess is:

proc P5.j. 1: Tailor specification to increment/accumulation j
do [P5.j.1: Tailor specification to increment/accumulation j]

con
S5.j. 1.1: Tailor Black Box functions to increment/accumulation j;
S5.j. 1.2: Tailor Usage Profile to increment/accumulation j;

noc;
until

Completion Conditions achieved for S5.j.I.1 and $5.j.1.2
od;

corp;

A full description and explanation of these tasks are found in the process manual Volume 4 -
Cleanroom Software Specification.

ID52 - Vol. 5 - Development Team Practices Page 4

1.2.2 Prepare for Certification of Accumulation j

In parallel with increment j development, the Certification Team will prepare for the certification
of the accumulation of increments 1,..,j by constructing the test plan and test scenarios. The
process model for this subprocess is:

proc P5.j.2: Prepare for Certification of Accumulation j
[This process results in test plan and test scenarios for accumulation j]
[P5.j.2: Prepare for Certification of Accumulation j]
con

do
do

C5.j.2. 1: Prepare test plan;
until

Completion Conditions for C5.j.2.1 achieved
od;
do

con
C5.j.2.2: Prepare test scenarios or test case generator for accumulation j;
C5.j.2.3: Determine expected results for test cases;

noc;
until

Completion Conditions for C5.j.2.2 and C5.j.2.3 achieved
od;

od;
C5.j.2.4: Increase Understanding of Problem and Solution Domains;

noc;
corp;

A full description and explanation of these tasks are found in the process manual Volume 6 -

Cleanroom Software Certification.

1.2.3 Increment j Development

This subprocess contains the tasks that are the focus of this manual. The process model for
increment j development is:

ID52 - Vol. 5 - Development Team Practices Page 5

proc P5.j.3: Increment j Development
[Process results in verified software for increment.]
do [P5.j.3: Increment Development]

con
for all design objects currently available to be worked on
do

D5.j.3. 1: Select a box design object from pick list; [Items appear on individual
developers pick list based on (1) Completion Conditions achieved for
parent design obiect. (2) design obiect previously assigned to team
member making selection and (3) design object is not yet fully refined]

D5.j.3.2: run P5.j.3.2 Refine and verify box;
D5.j.3.3: Update pick list; [To reflect results of D5.0.3.21

od:
D5.j.3.4: Increase Understandiig of Problem and Solution Domains;
D5.j.3.5: Team Decision if one is required: (1) Increment complete, verified and

ready for certification, (2) Design problems-project/spiral should be
replanned or (3) Specification problems-specifications should be revised;

noc;
until

D5.j.3.5 team decision indicates increment complete or project should be replanned or
specifications should be revised

od;
corp

Sections 2 and 3 will describe the above five tasks in detail. The D prefix indicates that the
Development Team is responsible for the performance of the task.

1.2.4 Verifying Failures Found During Certification of Increment j

This task is also discussed in this manual.

D6.j.4: Correct failure, verify correction and prepare ECN;

This task is a part of the P6 process. It will be discussed in section 5.

ID52 - Vol. 5 - Development Team Practices Page 6

DEVELOPMENT TEAM PRACTICES

SECTION 2: INCREMENT J DEVELOPMENT TASKS

The development process followed by the Cleanroom Development Team is contained in process
P5.j.3, Increment j Development. The detailed process is repeated here:

proc P5.j.3: Increment j Development
[Process results in verified software for increment.]
do [P5.j.3: Increment Development]

con
for all design objects currently available to be worked on
do

D5.j.3. 1: Select a box design object from pick list; [Items appear on individual
developers pick list based on (1) Completion Conditions achieved for
parent design object, (2) design object previously assigned to team
member making selection and (3) design object is not yet fully refined]

D5.j.3.2: run P5.j.3.2 Refine and verify box;
D5.j.3.3: Update pick list; [To reflect results of D5.i.3.21

od;
D5.j.3.4: Increase Understanding of Problem and Solution Domains;
D5.j.3.5: Team Decision if one is required: (1) Increment complete, verified and

ready for certification, (2) Design problems-project/spiral should be
replanned or (3) Specification problems-specifications should be revised;

noc;
until

D5.j.3.5 team decision indicates increment complete or project should be replanned or
specifications should be revised

od;
corp

The five development tasks that are identified in the process are discussed in this section. The
fundamental box structure concepts, methods, and principles that underlie these tasks are
reviewed in Sections 3 and 4 of this manual.

2.1 Select Box Design Object from Pick List

The Cleanroom Development Team builds the increment design in a top-down manner in the
framework of a box structure usage hierarchy. The critical principle of referential transparency
allows the team manager to assign the development of box structures as independent units of
design. This provides clean lines of delegated responsibility for units of work. Thus, each
unique box structure in the increment's usage hierarchy is an assignable design object.

ID52 - Vol. 5 - Development Team Practices Page 7

An engineer on the development team is assigned one or more box structures for analysis and
design. The engineer commences work by selecting an available box structure design object from
his or her pick list. This selection process is based on priority assignment by the team manager
or by selecting the box structure that is highest in the hierarchy and still uncompleted.

2.2 Refine and Verify Box

The process for refining and verifying each box structure in the system design is:

proc P5.j.3.2: Refine and Verify Box
[Process results in a refined and verified box.]
do [P5.j.3.2: Refine and Verify Box

D5.j.3.2.1: Refine, verify and team review design object;
if team review passes
then

D5.j.3.2.2: Sign Completion Conditions;
else

D5.j.3.2.3: Team Decision: (1) Continue refinement of design object, (2) Change some
prior design decision which requires pruning of design hierarchy;

fi;
until

Completion Conditions signed by full team or team review concludes that a prior design
decision be modified which requires pruning of design hierarchy and updating of pick list

od;
corp;

Each of these sub-tasks are described in the following sections.

2.2.1 Refine Design Object

The analysis, design, verification, and implementation of a box structure object progresses
through a series of tasks. These activities are detailed in the Box Structure Algorithm:

Box Structure Algorithm

I. Develop Black Box
con

Task I - Define Stimuli and Responses
Task 2 - Develop Black Box Behavior
Task 3 - Examine and Verify Black Box

noc;

ID52 - Vol. 5 - Development Team Practices Page 8

H. Develop State Box
con

Task 4 - Determine State Data
Task 5 - Retain/Migrate State Data
Task 6 - Develop State Box Behavior
Task 7 - Examine and Verify State Box

noc;

III. Develop Clear Box
con

Task 8 - Identify Data Objects and Internal Black Boxes
Task 9 - Develop Clear Box Behavior
Task 10 - Examine and Verify Clear Box

noc;

IV. Refine Clear Box
con

Task 11 - Refine Clear Box
Task 12 - Examine and Verify Refined Clear Box

noc;

Repeat Step IV Until Clear Box Completed

V. Box Structure Translation
con

Task 13 - Translate Design
Task 14 - Verify Translation

nc;

Repeat Algorithm for Each Internal Black Box

End of Box Structure Algorithm

The work involved with each of these steps is described in Section 4 of this manual. The
Cleanroom engineer is responsible for executing the steps of the algorithm on the assigned box
structure object. Each step further refines the object to a final design for software implementa-
tion.

The engineer retrieves and returns the design object to the central repository in the Cleanroom
development environment. The current status of the object (i.e., the current work step) is
maintained in the system along with all intermediate work products.

ID52 - Vol. 5 - Development Team Practices Page 9

2.2.2 Verify Refinement

At well-defined points in the box structure refinement, the design object must be verified for
correctness and consistency. These points are:

Task 3 - Examine and Verify Black Box
Task 7 - Examine and Verify State Box
Task 10 - Examine and Verify Clear Box
Task 13 - Examine and Verify Refined Clear Box
Task 15 - Examine and Verify Translation

Each of these steps is critical and must be completed before the box structure development can
continue. Section 4 provides guidance for presenting effective verification arguments. These
arguments are important for the team proof reviews that evaluate Completion Conditions for each
box structure object.

2.2.3 Box Design Language

A specific language has been created to document desired behavior using box structures. The
language is called Box Design Language (BDL). Its syntax is closely related to other third
generation languages, so should appear quite intuitive. The BNF for BDL appears in Appendix
A.

2.2.4 Team Proof Reviews

A Team Proof Review is performed for each box structure design object in the increment. The
complete Cleanroom development team, or a selected portion thereof, meets to evaluate and
determine the completion of the design object. The box structure is evaluated in terms of the
four products of the development process: the black box, the state box, the (refined) clear box,
and the software implementation (e.g., code).

A team review is a simple activity. The team assembles for the meeting. It is not required that
the material to be reviewed be distributed before the review, although in some cases that may
be a good thing to do. The engineer whose material is to be reviewed presents the material with
the goal of confirming to the rest of the team that the design is correct. If the team is persuaded,
then the review passes. Otherwise, the engineer will need to modify material and have it
reviewed again. Reviews should be timed so they do not go on for more than one hour. The
amount of work to be reviewed should fit into that time period, which also drives the frequency
at which reviews will occur.

The reasons that a review does not pass can include the following: a mistake has been found,
a design is so complex that the team could not be persuaded of its correctness, or the review has
taken too much time. Actions to be taken for a change are discussed in Section 2.2.5. If a
review passes, then Completion Conditions can be signed, as described in Section 2.2.4.

ID52 - Vol. 5 - Development Team Practices Page 10

The Completion Conditions are determined to be satisfied, as discussed in Section 2.2.4, or
changes are required in the box structure design, as discussed in Section 2.2.5.

2.2.5 Sign Completion Conditions

If the team review of the design object is successful, a document is signed stating that all
Completion Conditions are met. All team members that participated in the review must agree
that all conditions are satisfied. The four development products (i.e., black box, state box,
refined clear box, and implementation) are stored in the development repository. The pick list
is updated to reflect the completion of the current design object. This may release additional box
structure objects (e.g., the internal black boxes of the current object) for development.

The following describes typical Completion Conditions that must be satisfied for each product
to be completed.

Black Box Completion Conditions

1. Is the black box presented in appropriate box description language (BDL)?

2. Are all stimuli and responses identified, clearly labeled with meaningful names, and fully
described?

3. Have all black box behaviors been clearly defined in terms of stimulus histories?

4. Have sufficient black box analyses been performed? Has black box closure been verified?

5. Are the black box verification arguments complete, accurate, and clear?

State Box Completion Conditions

1. Is the state box presented in appropriate box descriptioi language (BDL)?

2. Are all required state data designed, clearly labeled with meaningful names, and fully
described?

3. Are the design decisions on state data grouping good ones? Is the set of state data to be
maintained in the current box structure cohesive and meaningful?

4. Have all state box behaviors been clearly defined in terms of current stimulus and current
state?

5. Have sufficient state box analyses been performed? Has state box closure been verified? Has
a state usage analysis been performed?

ID52 - Vol. 5 - Development Team Practices Page 11

6. Does the state box process all stimuli values, valid and invalid, leaving the state data in a

valid condition?

7. Are the state box verification arguments complete, accurate, and clear?

Clear Box Completion Conditions (These conditions must also be satisfied for each refinement
of the clear box.)

1. Is the clear box presented in appropriate box description language (BDL)?

2. Are all procedural constructs in the clear box clearly described?

3. Are the design decisions on the internal black boxes good ones? Do the internal black boxes
define cohesive, independent behaviors? Do the internal biack boxes support effective state
migration?

4. Have all clear box behaviors been clearly defined in terms of current stimulus and current
state?

5. Have sufficient clear box analyses been performed? Has clear box closure been verified? Is
referential transparency clearly supported in the clear box?

6. Have all object composition opportunities and common service opportunities been explored?

7. Has the use of concurrent behaviors in the clear box been exploited? If so, are appropriate
concurrency controls in place?

8. Are the clear box verification arguments complete, accurate, and clear?

Implementation Completion Conditions

1. Is the implementation in an appropriate structured programming language?

2. Is the code presented in a readable form with structured indentation and adequate comments?

3. Is the code modularized for easy understanding and maintenance?

4. Are the code verification arguments complete, accurate, and clear?

2.2.6 Team Decision Options for Design Object

If the team review of the design object is not completely successful, a decision is made on what
needs to be done to complete the object. Two options are possible:

ID52 - Vol. 5 - Development Team Practices Page 12

I , , ,"• ' I I I I IM

Option 1: The development team should continue the design process with additional refinements
to the box structure products. The review team should identify clearly the problems
found and the steps needed to complete the object development.

Option 2: The review team may discover problems in the increment design that are not solely
isolated in the current design object. Design decisions made in higher levels of the
box structure usage hierarchy may be called into question. The impact of the needed
changes should be studied along with the identification of all design objects that must
be modified. The objects to be modified are placed on the pick list along with
specifications for the needed modifications.

2.3 Update Pick List

Based on the decisions made in the previous task, the development team pick list is updated.
New design objects (e.g., the newly defined internal black boxes) are released for development
or existing design objects are placed on the pick list for further refinement.

2.4 Increase Understanding of Problem and Solution Domains

Many issues and questions arise during all phases of the Cleanroom development process. These
issues are often the result of some new, unknown factor being noticed. This factor may become
a part of the design or it may not. But to make any sort of determination, the issue must be
understood. As a result, the development team must find clarifications and answers
expeditiously.

The first task required of the development team when faced with a issue or question is to fully
understand it. This will require talking with the individual(s) who raised the problem. If it is
a simple misunderstanding, the matter can be settled by a clarification and complete answer.

Deeper system issues will necessitate an increased understanding of the problem domain and the
solution domain. A development team member, or the entire development team may be required
to go off and perform an analysis task. This will typically include information through
interviews, document reviews, and prototyping. Also, more information on solution opportunities
can be gathered. This new information is integrated with the known information to create an
analysis report thp documents what has been learned. The task of increasing the understanding
of system requiremnnts continues until the resolutions to the questions are considered satisfactory.

2.5 Team Decision Options for Increment j

The development tasks continue as described in the Increment j Development process until one
of three conditions occur:

ID52 - Vol. 5 - Developmen a Practices Page 13

Option 1: All design objects in Increment j are completed and signed-off in team reviews. The
increment is the passed to the Cleanroom Certification Team for testing and
certification.

Option 2: New understandings of the problem and solution domains require significant re-
specification of Increment j. All intermediate design products are maintained in their
current state for possible use when Increment j comes under development again. The
Specification Team is called on to develop modified specification for increment j.

Option 3: Project planning issues (e.g., budget, personnel, materials) require that the increment
development be re-planned. Re-planning tasks are covered in Volume 2 of the
Process Manuals. Again, all intermediate design products are maintained in their
current state for possible use when Increment j comes under development again.

ID52 - Vol. 5 - Development Team Practices Page 14

DEVELOPMENT TEAM PRACTICES

Section 3: Box Structure Overview

Box-structured systems development is a stepwise refinement and verification process that
produces a system design. Such a system design is defined by a hierarchy of small design steps
that permit the immediate verification of their correctness. Three basic principles underlie the
box-structured design process:

1. All data to be defined and stored in the design are hidden in data abstractions.

2. All processing is defined by sequential and concurrent uses of data abstractions.

3. Each use of a data abstraction in the system occupies a distinct place in the usage hierarchy
of the system.

These principles are embodied in box structure system views and methods for constructing box
structures.

3.1 Box Structure Concepts

Box structure methods define a single data abstraction in three forms in order to isolate the
creative design steps involved in building the abstraction. The black box gives an external de-
scription of data abstraction behavior in terms of a mathematical function from stimulus histories
to responses. The black box is the most abstract description of system behavior and can be
considered as a requirements statement for the (sub)system. The state box includes a designed
state and an internal black box that transforms the stimulus and an initial state into the response
and a new state. The state is designed from an analysis of the required stimulus histories and
responses for the system. Finally, the clear box replaces the internal black box with the designed
sequential or concurrent usage of other black boxes as subsystems. These new black boxes are
expanded at the next level of the system box structure usage hierarchy into state box and clear
box forms.

Box structures have underlying mathematical foundations that permit the scale-up of analysis and
design to systems of arbitrary size. These foundations are based on sets and functions that can
be described in mathematical notation for small systems or subsystems or in well-structured
natural language in a given context in larger systems.

Throughout the box structure design process, it is important to preserve design information and
knowledge as the design is refined from black box to state box to the initial clear box and all
clear box refinements. This is done by retaining the black box and state box statements as
intended functions. These design statements are ircluded as comments at appropriate points
throughout the BDL.

ID52 - Vol. 5 - Development Team Practices Page 15

Intended functions basically serves to describe portions of a design in a more abstract/informal
(but still precise form). There are two places where intended functions appear, before and after
a line or structure of the box structure they are describing. The more abstract/informal form that
appears before a line or structure is typically the design from a previous step. Intended functions
may also appear after a line or structure to provide rigor for a portion of the design that is
presently not rigorously enough described. Basically, this type of intended function serves as a
surrogate for stimulus history or other information in line. For example, a condition in terms of
stimulus history may need a comment that will more rigorously define the stimulus history. This
type of intended function is underlined, so a reader will be aware that it is necessary to
understand the design statement appearing before it.

Providing intended functions result in a precise description of behavior. Typical function
commentary are non-rigorous editorials that attempt to describe behavior. A precise, yet
readable, description of behavior will provide the stakeholders in that design with useful
information, not an editorial. Examples of intended functions appear below:

Intended Function:

B08.06 then [Update and return files]
B08.07 if Version# = Version# of S7 stimulus in B8.1
B08.08 then [version# is same as most recent version]

Intended Function:

B09.09 RA2: ProjSysCom(copy, SDRDirectory/Projid/Pathinfo,
FilenamellVersion#, SDirectory, FilenamellVersion#);

[where S directory is (Workstation Machine NamellSession Directory) from most
recent S l->RI(000 'Project Session opened')l
[where Version# is requested Version# or latest Version# if Version# empty.]
[where Prouid is from most recent S l->RI(000)1

3.2 Box Structure Principles

The effective use of box structures for the development of information systems is guided by the
use of nine basic box structure principles, referential transparency, transaction closure, state
migration, common services, correct design trail, functional verification, writing correct programs
- not proving programs correct, proof by direct assertion, reorganization. The principles are:

Referential Transparency - Referential transparency occurs when a black box abstraction is
completely defined within the clear box at the next higher level in the usage hierarchy. The
black box is then logically independent of the rest of the system, and can be designed to satisfy
a well defined behavior specification. The principle of referential transparency provides a crisp
discipline for management delegation and assignment of responsibility.

ID52 - Vol. 5 - Development Team Practices Page 16

Transaction Closure - The principle of transaction closure defines a systematic, iterative
specification process to ensure that a sound and complete set of transactions is identified to
achieve the required system behavior. The closure process can be performed at each box
structure view of an object abstraction. At the black box, checks are performed to ensure that
the system stimuli are necessary and sufficient to generate the required system responses. At the
state box, the defined transactions must be necessary and sufficient for the acquisition and
preservation of all state data, and the state data must be necessary and sufficient for the
completion of all transactions. At the clear box, the procedural design and the internal black
boxes must include all transactions.

State Migration - State data should be identified and stored in the system part (i.e., data
abstraction) at the lowest level in the box structure hierarchy that includes all references to that
data. At any time in the systems development process, state data can be migrated upward or
downward in the hierarchy in order to achieve some system objective, such as minimizing data
scope. State migration must be performed carefully in order to maintain the consistency and
mathematical correctness of data abstractions throughout the hierarchy.

Common Services - A common service is a data abstraction that is described in a separate box
structure hierarchy, and used in other box-structured systems. System parts with multiple uses
should be defined as common services for reusability. Also, predefined common services, such
as database management systems and input/output interfaces, should be used to advantage
throughout the box structured system. The advantages of reusable common services for systems
development are obvious. Box structures directly support the identification and reuse of common
services within and among systems.

Correct Design Trail - When developing software while using Cleanroom, just like when using
any other approach, errors can occur. When correcting an error, it is important to ensure that the
entire design trail continues to be kept consistent. For example, if while developing a state box,
one discovers that a stimulus is missing, then all previous documents, from the first onwards,
must be corrected. If corrections to a previous design document are trivial, then the,,- ýan be
made in real time, without stopping the current design process. If the corrections are major, then
the current design activity stops, until the previous documents are made correct.

Functional Verification - A program is a rule for a mathematical function. Looking at any part
of a design or program allows the power of mathematics to confirm correctness. An additional
benefit of looking at any part of a design/program as a rule, is that it defines a specified
behavior. As a result of referential transparency, we determine that a program's behavior stays
unchanged whether or not it is changed. That means that we need only to confirm that a change
(such as a refinement) was made correctly. Therefore, the amount of verification is only a
function of the changes made between refinements, and not a function of the size of the design
or program.

Writing Correct Programs, Not Proving Programs Correct - In the subsequent sections, one will
notice that the design tasks are kept separate from the analysis and verification tasks. The reason

ID52 - Vol. 5 - Development Team Practices Page 17

for this is a documentation separation issue, not necessarily a task separation issue. It is critical
for an engineer to do all of the tasks for a particular step in concert. In that manner, the design
is created consistently with the analysis and verification. Complete separation of these tasks
results in a design being written, followed by the activity of proving the program correct.
Writing the program with the proof in mind, increases the probability of creating a correct design,
and facilitating its proof, often by direct assertion.

Proof by Direct Assertion - Any structured program can be verified, as proven in Structured
Programming by Linger, Mills and Witt. But, functional verification is not a trivial task, and,
because it is rigorous, can be time-consuming. The goal in developing software is to write code
that will be verifiable by direct assertion, and not by written proof. This is done by taking small
design steps, rather than large leaps, and by creating designs with the understanding that both the
developer and other members of the development team will need to confirm that the refinement
was correct. Creating simple and easy to read designs are easy to verify, often by direct
assertion, and are typically correct.

Box Structure Reorganization - What will appear in the sections below are strategies for box
structure refinements. It is also possible that a box can be reorganized. What this means is that
some part of the control structure may be modified, but all modifications do not change the
behavior of the box. For example, the first black box for the development team is prepared by
the specification team. It may not be in a form most conducive for the development team to use.
The development team can modify the black box to make it more conducive for development.
Analyzing and verifying the correctness of a reorganization requires the same tasks as analysis
and verification of a refinement (that is, black to clear box, state to black box, clear to state box,
or clear box refinement to clear box). All descriptions of design refinements can also be viewed
as reorganizations. More specifically, creating the state box from the black box entails the same
process as creating the state box from another state box.

Quality and Correctness - Hand in hand with the inventive steps, developers also confirm that
the invention was acceptable. The confirmation is done by examination and verification.
Verification confirms that the invention was correct. Examination confirms that the invention
was the best possible. Having an appraisal from both of these perspectives ensures that the
invention was correct and the best possible.

These principles will be referenced throughout the box structure design steps found in the next
section.

ID52 - Vol. 5 - Development Team Practices Page 18

DEVELOPMENT TEAM PRACTICES

Section 4: Box Structure Software Development

The Box Structure Algorithm is repeated here with an index to the section and page where each
step is described. One can view it as a five step algorithm, with a total of 15 tasks.

Box Structure Algorithm

I. Develop Black Box
con

Task 1 - Define Stimuli and Responses - Sect. 4.1.1, p. 21
Task 2 - Develop Black Box Behavior - Sect. 4.1.2, p. 23
Task 3 - Examine and Verify Black Box - Sect. 4.1.3, p. 25

noc;

II. Develop State Box
con

Task 4 - Determine State Data - Sect. 4.2.1, p. 27
Task 5 - Retain/Migrate State Data - Sect. 4.2.2, p. 28
Task 6 - Develop State Box Behavior - Sect. 4.2.3, p. 29
Task 7 - Examine and Verify State Box - Sect. 4.2.4, p. 31

noc;

11. Develop Clear Box
con

Task 8 - Identify Data Objects and - Sect. 4.3.1, p. 36
Internal Black Boxes

Task 9 - Develop Clear Box Behavior - Sect. 4.3.2, p. 38
Task 10 - Examine and Verify Clear Box - Sect. 4.3.3, p. 40

noc;

IV. Refine Clear Box
con

Task 11 - Refine Clear Box - Sect. 4.4.1, p. 45
Task 12 - Examine and Verify - Sect. 4.4.2, p. 47

Refined Clear Box
noc;

Repeat Step IV until Clear Box Completed - Sect. 4.4.3, p. 50

ID52 - Vol. 5 - Development Team Practices Page 19

V. Design Translation
con

Task 13 - Translate Design - Sect. 4.5.1, p. 50
Task 14 - Verify Translation - Sect. 4.5.2, p. 52

noc;

Repeat Box Structure Algorithm - Sect. 4.5.3, p. 53
for Each Internal Black Box

End of Box Structure Algorithm

In this section, a full description of each of the steps in the context of the tasks is provided along
with templates for recording the results of box structure development.

4.1 Black Box Definition

A black :5ox is defined by a mathematical function from histories of stimuli to the next response.
Let S be the set of possible stimuli, and R be the set of possible responses of a system or
subsystem. In illustration, an airlines reservation system with many thousands of concurrent
users, will accept their stimuli sequentially into the system in real time and return responses
accordingly. The black box function, say f, will map historical sequences of such stimuli, in this
case S*, to responses, R, shown in the form

f: S* -- R.

The description of function f may be very complex for many systems, e.g., an airlines reservation
system, but it is a function, no more, no less. This description of the black box assumes no data
storage between stimuli, even though such storage may be known to exist, or be planned for
development.

The Cleanroom Specification Team performs specification tasks to understand and describe the
requirements of the system and software to be developed. They produce a six-volume
specification as described in Volume 4 of the Cleanroom Process Manuals. The software
specification is presented as black box behaviors that are tailored by the Specification Team for
development and certification. Given a specification in terms of a high level black box require-
ment, or a clear box that defines the stimuli to lower level black boxes, the Development Team
performs tasks to produce a black box design. The tasks are not necessarily completed in the
order presented below, they are done in the order that most effectively results in the work getting
done completely and correctly.

4.1.1 Task 1 - Define Stimuli and Responses

The black box of the system is completely defined based on the requirements for the system.
The black box is described by its stimuli, responses, and the behaviors that map stimulus histories

ID52 - Vol. 5 - Development Team Practices Page 20

into responses. The discovery of stimuli, responses, and behaviors is an iterative, interdependent
process. For example, the identification of a new stimulus may cause a new response to be
discovered, and vice versa.

Stimuli and responses are defined as variables. The following discussion describes an effective

method for numbering variable names in box structure analysis and design.

Variable Naming Conventions

Stimuli, responses, and state all initially have

1) An identifier (SXXI, RXXI, TXXI..... where XX defines the data object more
specifically and I is a number),

2) A descriptive name (which is a textual description of the data object).

The stimulus, response or state will change to a specific variable name at some time before
the design is implemented. When that change happens, which could be at various design steps
of the box structures algorithm, the design object should have the following appear:

[YXXI: Descriptive name]
concrete-name : type;

In this way, the transition between the original data object name, and a subsequent/final name
is clear and unambiguous. If a subsequent name is changed (made more concrete), the
following will appear:

[concrete_name : type;]
more_concretename: type;

One will need to make sure that uses of a new variable are consistent just as when verifying
that state data is equivalent to stimulus history.

End of Variable Naming Conventions.

It is important to employ an effective means of recording the black box information. Template
1 provides a sample table for recording the stimuli and responses of a black box.

ID52 - Vol. 5 - Development Team Practices Page 21

Template 1: Black Box Stimuli and Responses for Box <boxname>

List stimuli and responses for the box <boxname>.

stimuli
S I: Invocation
SF2: Sensor value(sensor reading)
<S3>: <s3>
<S4>: <s4>

responses
RFI: Open file for input
RF2: Read value
<R3>: <r3>
<R4>: <r4>

Design Notes:
RF1 and RF2 are commands sent to the File.

* In developing stimuli and responses it is necessary to adopt the view of the software that will
be receiving the stimuli and issuing the responses.

Helpful Hints:

"• It is often useful to have a naming convention for stimuli and responses. For example, having
the letter(s) after the S or R define the external black box/device that the stimulus comes from
or response goes to.

"* When there is difficulty in coming up with proper black box behavior, it is often useful to go
back to the stimuli and responses, to ensure that all are complete.

"• Always keep in mind the invocation stimulus and the clock pulse stimulus, which are in many
systems and are often ignored.

4.1.2 Task 2 - Develop Black Box Behavior

Stimuli and responses are combined into black box functions to describe the behaviors of the
system. Template 2 provides a box description language (BDL) format for defining black box
functions. The internal BDL (denoted by <>) is described by the BDL BNF found in Exhibit A
of this manual. Line numbering conventions for the BDL are found in Exhibit B.

ID52 - Vol. 5 - Development Team Practices Page 22

It is important to keep in mind that a black box can be reorganized a number of times before
moving on to a later step. In a reorganization, the behavior and level of abstraction (black, state
or clear box) are kept, but the form of the black box is modified to make it more readable for
the development team. For reorganizations, identical behavior needs to be confirmed, so the
same analysis and verification task is necessary, although it is often much more simple, since
there is no transformation.

Template 2: Black Box Function for Box <boxname>

begin black box function S* 11 S: <boxname>

black box sub-function S* 11 Si: Invocation is
B01.01 RFI: Open file for input;
B01.02 RF2: Read value;
XOB;

black box sub-function <S2>: <s2> is

XOB;

end black box function S* 11 S: <boxname>

Design Notes:

"* Given the stimuli and responses identified in Template 1 it is straightforward to write down
each of the responses in terms of stimuli histories.

" In general, the steps of discovering stimuli, responses, and behaviors are performed
concurrently. One first develops some stimuli and responses and then begins to refine the
Black Box function. This leads to identification to the need for more stimuli and/or responses.
This cyclic process continues until it seems the definition is complete. Then one moves on
to examine and to verify the function. These tasks may uncover the need for more stimuli
and/or responses or modifications to the control structure for the subfunctions.

Helpful Hints:

"* If the black box is hard to read, but expresses correct behavior, reorganize the black box

"* Behavior must be in terms of stimuli histories, all conditions, etc. must be checked to ensure
that all behavior is only in terms of stimuli histories.

ID52 - Vol. 5 - Development Team Practices Page 23

4.1.3 Task 3 - Examine and Verify Black Box

Black box analysis and verification evaluates the quality and completeness of the black box
specification. For the black box, the following types of analyses can be performed:

Black Box Closure - Closure analysis would ensure that all stimuli, responses, and behaviors are
necessary and sufficient in the system. A straightforward algorithm for checking black boxes
closure is:

Black Box Closure Algorithm

Given:

S = (s,, s2. . s.) : complete set of stimuli entering the system

R = (rl, r2, . . ,rm) : complete set of responses generated by the system

F = (fl, f2, . . Qf) : complete set of subfunctions describing the behavior of the black box

Step 1: Check that all responses are generated:

For all rj in R there exists a subset SA of S and a fkin F such that fk(SA) -4 r,. In other words,
ensure that each response results from at least one stimulus subfunction.

Step 2: Check that all stimuli are used:

For all s, in S, there exists an SA where si r SA QS, and there exists a rJ in R and fk in F, such
that fk(SA) - rj and fk(SA - si) -A r,. In other words, ensure that there is a stimulus subfunction
for each stimulus.

Step 3: Check that all subfunctions are used:

For all fk in F there exists a r, in R such that fk(SA) -- rj where SA g S. In other words, ensure
that all stimulus response pairs exist.

End of Black Box Closure.

Black Box Completeness - Via reviews with customers, users, managers, and domain experts (for
the first level black box) or amongst team members (for lower level black boxes), the
Development Team must validate that all system requirements are captured in the Black Box
Design.

ID52 - Vol. 5 - Development Team Practices Page 24

Black Box Clarity - The Black Box Design must be clearly understood by the entire development
team. An analysis of clarity would focus attention on domain jargon, naming conventions,
intended functions, and other sources of miscommunication.

Template 3 can be used to record these analyses along with other analyses performed on the
black box definition.

Template 3: Black Box Analysis for Box <boxname>

List all analyses performed for the black box definition.

Hypothesis: Black box closure exists.

- Analysis Process:

- Results:

- Black Box Modifications:

Hypothesis: The black box is complete.

- Analysis Process:
(1) Make a mapping between each line of the black box and a section of the problem

description.
(2) Ensure that all parts of the problem description have been covered.

- Results:

- Black Box Modifications:

Hypothesis: The black box is clearly described.

- Analysis Process:

- Results:

- Black Box Modifications:

Additional Analyses as Required

ID52 - Vol. 5 - Development Team Practices Page 25

Helpful Hints:

* Black boxes that are not readable should be reorganized.

4.2 State Box Development

The state box of a system or subsystem expands the black box by identifying data at this system
level to be stored between stimuli so that only a current stimulus is required but not previous his-
tory. Let T be a set of possible data states at the top level, and let t be the initial state of the
system or subsystem. As noted above, the state box contains an internal data abstraction that is
defined by another black box, say g. In this case, the internal black box has a compound
stimulus consisting of the external stimulus and the internal state and a compound response
consisting of the external response and the new internal state. That is, g has the form

g: (S x T)* -4 (R x T).

Then, each pair <tg> of an initial state and an internal black box function will uniquely defime
the behavior of the system. Note that the internal data abstraction will be capable of maintaining
more deeply stored data, with the internal black box using its compound stimulus histories.

The state box is verified consistent with the original black box by removing the state
representation and recovering the black box function from stimulus history to response. The
following tasks are performed to produce a black box design. The tasks are done in the order
that most effectively results in the work getting done completely and correctly.

4.2.1 Task 4 - Determine State Data

The state of the system is created by encapsulating required stimulus history in a state box. Data
design methods, such as Entity-Relationship models, are used to create a state design. A number
of excellent textbooks exist on the topics of data structures, file organizations, and database
modeling. Exhibit C demonstrates an example of database modeling using Entity-Relationship
and relational models.

The first step of developing a state box is to identify effective state data to represent stimuli
histories. There are many valid state representations. The skill and experience of the designer
will help identify the most effective data design. The following template can be used to match
stimuli histories to state data.

ID52 - Vol. 5 - Development Team Practices Page 26

Template 4: State Data Design for Box <boxname>

In this step, all stimuli histories used in the black box are listed. The purpose is to be able to
thoroughly consider all potential state data items T.

S 1: Invocation
SDI: None

SF2: Sensor value(sensor reading)
SD2: number of inputs processed - handles hour/minutes (ie, number of input that have been

read or processed) for any stimulus

hourly mean - handles hourly mean as well as malfunction

hourly violations - handles number of violations for an hour

number of high readings - handles five high readings = violation situation

S3: <>
SD3: <>

S4: <c
SD4: <>

Helpful Hints:

"* Scan the black box and drag any observed stimuli histories into this section.

"• Group related stimuli histories to begin determining what the state data candidates are.

4.2.2 Task 5 - Retain/Migrate State Data

In this step, a software engineer must decide what state data items will appear in the current level
object. Typically, a trade study would be conducted in order to assess alternatives, such as
impact of a particular configuration on usage or development. This is an analytical step, resulting
in the major state box decision.

Data items should be grouped in objects (i.e., boxes) in order to provide coherent object meaning
and clean hierarchical decomposition. State data maintained at the current level of the box
structure usage hierarchy will be visible to all boxes below in the usage hierarchy. The decision

ID52 - Vol. 5 - Development Team Practices Page 27

on data grouping will strongly influence the clear box decomposition defined later. The
following template can be used to group state data to be maintained at this level.

Template 5: State Data to be Maintained in Box <boxname>

State data requirements for box <boxname>.

TI: number of inputs processed
T2: hourly mean
"T3: <
T4: <>

State data to be maintained at this level.

TI: number of inputs processed
T2: hourly mean (hourly means are handled for each of the 24 hours)

Rationale for selection.

State data to be migrated to lower levels.

Tx: <xname>
Ty: <yname>

Helpful Hints:

- This is a major decision step, a trade study is useful, as is bottom up reasoning.

4.2.3 Task 6 - Develop State Box Behavior

In this step, an engineer will develop the state box, by using state data as a surrogate for the
replaced stimuli histories. The line numbering strategy is used to identify the new, changed, and
unchanged design statements. That will be used to focus the verification strategy.

The definition of state box behaviors is driven by the state grouping decisions made in the
previous step, since differences between the black and state boxes are strictly a function of the
state data selected to be kept at this level. The major decision for the state box is the state
grouping, leaving the definition of the state box as the creative step that will document the results
of the decision. The following template records the state box. The internal BDL (denoted by

ID52 - Vol. 5 - Development Team Practices Page 28

<>) is described by the BDL BNF found in Exhibit A of this manual. Line numbering
conventions for the BDL are found in Exhibit B.

It is important to keep in mind that a black box can be reorganized a number of times before
moving on to a later step. In a reorganization, the behavior and level of abstraction (black, state
or clear box) are kept, but the form of the black box is modified to make it more readable for
the development team. For reorganizations, identical behavior needs to be confirmed, so the
same analysis and verification task is necessary, although it is often much more simple, since
there is no transformation.

Template 6: State Box Behavior for Box <boxname>.

Development tasks:

(1) copy black box function

(2) edit to develop required sub-functions

(3) upon completion of step, renumber subfunction statements

State Box BDL:

begin state function S: <boxname>

state box sub-function SI: Invocation is
SOL.01 con
S01.02 number-processed := 0;
SO.03 mean(O..23) := 0;
SO1.04 violations(O..23) := 0;
SO1.05 highreading := 0;

BO1.O1 B01.06 RFI: Open file for input;
S01.07 noc;

B01.02 S01.08 RF2: Read value;
XOB;

state box sub-function <S2>: <s2> is

XOB;

end state box function S: <boxname>

ID52 - Vol. 5 - Development Team Practices Page 29

Helpful Hints:

* Replace all stimuli histories for which you have decided to keep state data at this level as a
surrogate.

* Make sure that line numbering is correct, since it will facilitate the verification step.

* Reorganize hard to read designs. That will facilitate verifications.

4.2.4 Task 7 - Examine and Verify State Box

State box analysis and verification evaluates the quality and completeness of the state box design.
Types of state box analyses/verification include:

State Box Closure - Closure analysis would ensure that all stimuli, responses, state, and behaviors
are necessary and sufficient in the system. A straightforward algorithm for checking state box
closure is:

State Box Closure Algorithm

Given:

S = (s,, s2, . . s.) : complete set of stimuli entering the system

R = (r,, r2,• . ,r) : complete set of responses generated by the system

T = (t1 , t2, . . Qt) : complete set of state data items encapsulated in the system

G = (g1, g92 , . gp) : complete set of subfunctions describing the behavior of the black box

Step 1: Check that all responses are generated:

For all r, in R there exists a subset S^ of S, a subset TA of T, and a g, in G such that gk(SA,
TA) -+ r,

Step 2: Check that all stimuli are used:

For all si in S, there exists an SA where s1 rA SA 9S, and there exists a rj, in R, a TA in T, and
g, in G, such that gk(SA, TA) -- rj and gk(SA - Si, TA) -# rj

Step 3: Check that all state data are used:

For all t• in T, where t1 E TA g T, there exists a rj in R, aSA Cc S, and a g& in G such that

gk(SA, TA) -- rj and g&(SA,TA^- t0 -A> r,

ID52 - Vol. 5 - Development Team Practices Page 30

Step 4: Check that all subfunctions are used:

For all g. in G there exists a r, in R such that gk(SA, TA) -- rj where SAc S and TA r T

End of State Box Closure.

State Box Completeness - Via team reviews, the Development Team must validate that all system
requirements are captured in the State Box Design.

State Box Clarity - The State Box Design must be clearly understood by developers. An analysis
of clarity would focus attention on domain jargon, data naming conventions, and other sources
of miscommunication.

State Migration Analysis - The Development Team performs an analysis on the quality of their
state migration decisions performed in Task 6.

State Usage Analysis - An important analysis procedure is to record the state data usage in the
state box. All references to each data item is identified and recorded. The record of data usage
can be used in a number of ways for the analysis of data flow in structure programs. A
procedure for recording state data usage is:

(1) copy names of state data being maintained at this level
(2) for each state data record all required references in the state box subfunctions

State Maintenance Analysis - It is critical to ensure that all state data maintenance is done
correctly. In that manner, one can prove that the state data serving as a surrogate for stimulus
history in the black box reflects the same behavior. The procedure for recording state
maintenance is:

(1) Ensure all statements that have been changed from the Black Box to the State Box
exhibit the same behavior. Show that each pair of different statements generate the
same (stimuli, response) pairs. Engineers proceed by listing each pair of different
statements and then following the pair with an argument that both statements generate
the same set of (stimuli, response) pairs for the entire domain of operations.

(2) Ensure that all new state box statements are used in the above arguments. This is done
to ensure that all new statements introduced in the State Box are required to show
equivalence, meaning that behavior was not modified. If extra statements are left in the
"unction they will cause the state data to take on the wrong value at some time in
calculating the values for the state data. This check is performed by listing each State
Box statement in a column. In a second column we insert the fact that the statement
is a key word or indicate what proof argument(s) for which the State Box statement was
used to show equivalence. Any statements listed in column I that do not have a
corresponding entry in column 2 are extra statements that are not required.

ID52 - Vol. 5 - Development Team Practices Page 31

(3) Confirm that the control structure remains unchanged for each black box statement (new
or modified). This is done by confirming that the conditions which would lead to each
black box statement have remained unchanged. To do this, an engineer must confirm
that all control flow statements a black box statement is nested within do not modify the
behavior of the black box statement in the following four cases:

1) Structures that the black box statement is nested within must be in a state box
equivalence argument.

2) Black box statement must be in same position in a sequence structure relative to
other Black box statements.

3) Black box statement must not be in a new state box iteration or alternation
structure.

4) Black box statement must not be in a new state box concurrent structure with
more than one Black box statement.

The following template can be used to record the analyses performed on the state box design.

Template 7: State Box Analysis for Box <boxname>

List all analyses performed for the state box design.

Hypothesis: State box closure exists.

- Analysis Process:

- Results:

- State Box Modifications:

Hypothesis: The state box is complete.

- Analysis Process:

- Results:

- State Box Modifications:

ID52 - Vol. 5 - Development Team Practices Page 32

Hypothesis: The state box is clearly described.

- Analysis Process:

- Results:

- State Box Modifications:

Hypothesis: State migration is correct.

- Analysis Process:

- Results:

- State Box Modifications:

Hypothesis: State usage is complete.

- Analysis Process:

State Data Usage for box <boxname>

HIGH_READING
S01.05 high-reading 0;
S02.07 highreading := 0;
S02.14 high-reading := high-reading + 1;
S02.19 high_reading := 0;
S02.23 if high-jeading = 5
S02.31 high-reading := 0;

End of State Data Usage Algorithm.

State Data: Lower Levels

[(1) copy names of state data to be maintained at lower levels from step 5 and (2) then for
each state data record all required references]

- Results:

- State Box Modifications:

ID52 - Vol. 5 - Development Team Practices Page 33

Hypothesis: State maintenance is correct.

- Analysis Process:
1)

State box subfunction SF2: Sensor value(sensor reading)

Statement pairs and equivalence arguments:

Hypothesis - S02.37 exhibits the same behavior as B02.01

statement pair: B02.01/S02.37
S02.37 if number-processed = 1440
B02.01 if 1440 SF2 stimuli have been received since most recent SI stimulus

equivalence argument:
number-processed keeps the running count of stimuli read which, in effect, handles the hours
and minutes of the readings, since each sensor value represents the reading at another minute.
number-processed is initialized at invocation (SO1.02). It is incremented after each sensor
value is processed (S02.36), but before the number__processed is checked for completion (ie,
1440 readings read).

2)
New S statements: Used in equivalence argument / keyword:

SO1.01 Keyword
S01.02 B02.01/S02.36, B02.04/S02.39, B03.02/S03.02
SO1.03 B02.04/S02.39, B03.02/S03.02

3)
Black Box Stmt: In equiv. arg.: Seq: 1/A: Con:
BO1.06 N/A T N/A N/A
S01.08 N/A T N/A N/A
S02.37 N/A T N/A N/A
B02.38 T N/A T N/A

- Results:

- State Box Modifications:

Additional Analyses as Required

ID52 - Vol. 5 - Development Team Practices Page 34

Helpful Hints:

"* Only verify what is new or has been changed. Verifications are a function of the extent of
change in the design, not a function of the size of the design.

"* Analysis and verification by direct assertion is preferable. If a design is hard to read,
redesign.

4.3 Clear Box Development

A state box can be expanded into a clear box by replacing the internal data abstraction with a
procedural structure of new data abstractions in either sequential or concurrent logic. Sequential
structures may involve simple sequence, alternation, or iteration whose semantics are well known
from sequential programming. Since sequential programs are rules for mathematical functions,
from initial states to final states of computation, a clear box in sequential structures defines the
functional behavior in terms of the next level black boxes. Concurrent struc:ures require more
analysis and discipline in use because of their potential complexities.

The clear box development produces a top-down, stepwise refinement of the increment
functionality. A usage hierarchy of box structures is constructed during system design via the
application of both system decomposition and object composition. Top-down system
decomposition enables an essential intellectual control in development. The system grows one
level at a time. The mathematical structuring of systems in usage hierarchies of objects allows
formal verification methods to be used. Also, the referential transparency of objects in a clear
box provides an essential modularity and design independence to each object. The internal black
boxes are defined on the next level of a box structure usage hierarchy, as shown in Figure 1.

Clear box designs are verified to the original state by eliminated the procedural structure and
merging all internal black boxes into a single internal data abstraction. Sequence and alternation
structures are eliminated by function composition and disjoint union directly. Iteration structures
can be reformulated as recursion, but iteration free. In this way, clear box designs can be verif-
ied against state box specifications.

4.3.1 Task 8 - Identify Data Objects and Internal Black Boxes

The identification of objects (i.e., boxes) at the next level of the system hierarchy is a key task.
The state grouping analysis performed in the state box definition provides some guidance here.
State data not maintained at this system level will be migrated downward to lower level objects.
The grouping of this lower level state into data abstractions will define black boxes within the
current clear box.

There are two sub-tasks in Task 8. Task 8A defines the data abstractions for the state data to
be maintained in the clear box at this level of the hierarchy. The state data are completely
designed and described in terms of data type and length. Task 8B then deals with the data

ID52 - Vol. 5 - Development Team Practices Page 35

I I

"-I•] I UcB i I •

I I I• _ li'"ii I r'- I

I IIwB

II I ,, i

Figure 1: Box Structure Usage Hierarchy

The following template can be used to record both steps 8A and 8B. The internal black boxes
are defined fully in 8B.

Template 8: Internal Black Boxes for Box <boxname>

Task 8A: Define data abstractions for state data at this level.

TI: password = String of X characters

T3: buoy-status = [shutdown, restart, active]

Design Notes:

o The limit of password size will be finalized upon discussion with other buoy designers.

ID52 - Vol. 5 - Development Team Practices Page 36

Task 8B: Define communications with lower level black boxes for migrated state data.

In creating the clear box, a number of stimuli to lower lever black box need to be invoked to
handle stimuli histories.

In the Buoy case study, the following stimuli are defined:

SOSstatus
broadcast_status
broadcast_waiting

In all cases it will be necessary to set and get each of the 11 state values. In the case of the four
data values it will be necessary to put, get and clear values. Stimuli to accomplish putting,
getting and clearing these values are:

seLSOSstatus(X) - which sets the SOS status to X (X--ON/OFF)

getSOS~status - which gets the present SOS status

set_broadcast.status(X) - which sets the broadcast status to X (X--ON/OFF)

getLbroadcaststatus - which gets the present broadcast status

set_broadcastLwaiting(X) - which sets the broadcast waiting status to X (X=TRUE/FALSE)

get broadcastwaiting - which gets the broadcast waiting status

Helpful Hints:

"• Consider all possible use of migrated state data. That will facilitate the determination of
proper stimuli to that state data.

"• Use abstract data types (Chapter 3 of Structured Programming) to define complex data items

at this level.

4.3.2 Task 9 - Develop Clear Box Behavior

Given the internal black box behaviors, the clear box defines the procedurality and communica-
tion among the black boxes. The following template provides a box description language (BDL)
for recording the clear box design. The internal BDL (denoted by <>) is described by the BDL
BNF found in Exhibit A of this manual. Line numbering conventions for the BDL are found in
Exhibit B.

ID52 - Vol. 5 - Development Team Practices Page 37

Template 9: Clear Box Function for Box <boxname>

begin clear box <boxname>

stimuli:
<copy from Template 1>
SI: Invocation
SF2: Sensor value(sensor reading)

responses:
<copy from Template 1>
RFI: Open file for input
RF2: Read value

state:
<copy from Template 5>
TI: number-processed = INTEGER
T2: mean = Array (0..23) of REAL

data variables:
i : INTEGER

proc <boxname>
(1) copy state box function
(2) edit to develop required procedure
(3) upon completion of step, renumber clear box statements
S01.01 S01.01 con
S01.02 S01.02 number processed := 0;

[initialize mean and violations arrays]
1.03 for

i := 0 to 23
1.04 do []

S01.03 1.05 mean(i) := 0;
S01.04 1.06 violations(i) -= 0;

1.07 od;
S01.05 S01.08 high-reading := 0;
B01.06 [RFI: Open file for input; --->j

1.09 open(file);
S01.07 SO0.IO noc;

corp <boxname>

ID52 - Vol. 5 - Development Team Practices Page 38

Design Notes:

In this step, an engineer develops the clear box, defining the behavior in terms of a process.
The line numbering strategy is used to identify the new, changed, and unchanged design
statements. That will be used to focus the verification strategy.

The fimal, desired clear box must be considered before the first clear box is created. This
means issues concerning the final source code version should be thought about now. In this
manner, clear boxes will be created in a logical manner that will ease future refinements and
verifications towards the final clear box. Not thinking about the final clear box may lead to
illogical designs and unverifiable code.

Helpful Hints:

"• The control structure for the clear box is the major decision at this level.

"* Keeping to the line numbering approach will facilitate verifications.

"• If parts of the clear box are unreadable, reorganize. That will also facilitate verification.

4.3.3 Task 10 - Examine and Verify Clear Box

Clear box analysis and verification evaluates the quality and completeness of the clear box
design. Types of clear box analyses/verification include:

Clear Box Closure - Closure analysis would ensure that all stimuli, responses, state, internal black
boxes, and procedural structures are necessary and sufficient in the system. A similar algorithm
to state box closure is used with additional consideration of the internal black boxes and the
procedural structures.

Clear Box Completeness - Via team reviews, the Development Team must validate that all system
requirements are captured in the Clear Box Design.

Clear Box Clarity - The Clear Box Design must be clearly understood by customers as well as
developers. An analysis of clarity would focus attention on domain jargon, data naming
conventions, procedural structure (e.g., pseudo-code, flowcharting) conventions, and other sources
of miscommunication. This is only a concern for the top level clear box.

State Migration Analysis - Based upon the design of the internal black boxes, another state
migration analysis is performed to evaluate the state migration decisions.

ID52 - Vol. 5 - Development Team Practices Page 39

Referential Transparency - The procedural clear box design ensures that each internal black box
is referentially transparent from all other peer black boxes and common services in the clear box.
Thus, each black box can be designed independently.

Procedure Correctness Analysis - The procedural clear box design must be correct with regards
to the procedure free behavior described in the state box. The steps to confirming the clear
boxes' correctness are the following:

(1) Ensure all statements that have been changed from the State Box to the Clear Box
exhibit the same behavior. We need to show that each pair of different statements
generate the same (stimuli, response) pairs. Engineers proceed by listing each pair of
different statements and then following the pair with an argument that both statements
generate the same set of (stimuli, response) pairs for the entire domain of operations.

(2) Ensure that all new Clear box statements are used in the above arguments. This is done
to ensure that all new statements introduced in the Clear Box are required to show
equivalence, meaning that behavior was not modified. If extra statements are left in the
function, then the Clear box implements a function with behavior different than that
found in the State Box. This check is performed by listing each Clear Box statement
in a column. In a second column we insert the fact that the statement is a keyword or
indicate what proof argument(s) for which the State Box statement was used to show
equivalence. Any statements listed in column 1 that do not have a corresponding entry
in column 2 are extra statements that are not required.

(3) Confirm that the control structure does not affect behavior for each State box statement
(new or modified). This is done by confirming that the conditions which would lead
to each State box statement have remained unchanged. To do this, an engineer must
confirm that all control flow statements a State box statement is nested within do not
modify the behavior of the State box statement.
1) Structures that the state box statement is nested within must be in a Clear box

equivalence argument.
2) State box statement must be in same position in a sequence structure relative to other

State box statements.
3) State box statement must not be modified by a new Clear box iteration/alternation

structure, or a removed structure.
4) State box statement must not be in a new Clear box concurrent structure with more

than one State box statement and removed concurrent structures must also have no
effect.

Reuse Analysis - The design of internal black boxes should include a thorough consideration of
reuse opportunities. The ability to reuse design objects within and among systems provides
tremendous productivity and quality advantages. Pre-existing design objects are stored on an
organizational repository. An object requirement, stated as a black box, can be matched with
existing object classes stored for reuse. During an analysis of the black box the benefits and
costs of object reuse and modification can be studied. Knowledge of existing object classes or

ID52 - Vol. 5 - Development Team Practices Page 40

insight into desired object classes will influence the designer's invention of data abstractions as
black boxes at the next level in the box structure hierarchy.

As an example of matching black box behavior with reusable objects, assume there exists a
reusable software module with black box transaction behavior, r(I'*) -- 0', where I' and 0'
are the inputs to and outputs from the module. Given a black box transaction, pi(r"*) -ý 0",
we are able to evaluate the potential for the reusable module to match the black box behavior.
Requirements matching must be done on inputs (I' and I"), outputs (0' and 0"), and behaviors
(r and p.). If an exact match is not found, several alternatives can be studied:

1. Use the reusable module as is and modify the black box behavior and the clear box to

accommodate its behavior.

2. Modify the behavior of the reusable module to match the black box behavior.

3. Modify both the behavior of the reusable module and the black box in order to produce an
effective match.

4. Do not use the reusable module and search for other reuse opportunities or decide to
develop a module from scratch to satisfy the system requirement.

A detailed matching algorithm is needed, along with a cost tradeoff procedure to evaluate the
most effective reuse strategy.

Common Service Analysis - The design of internal black boxes should include a thorough analysis
of common services in the development environment. As discussed in Section 3, common
services are well-defined procedures that are reused within and among systems. Common
services are pre-defined functions and procedures that are run from the clear box with appropriate
input and output parameters. Examples of common services are mathematical routines, interfaces
with external devices (e.g., printers), database systems, etc.

Concurrency Analysis - The clear box design should be analyzed for effective use of concurrency.
Opportunities for concurrency should be identified and maximized in the design. Implementation
decisions will determine whether the full concurrency of the system can be realized in the
implementation environment.

The following template can be used to record the analyses performed on the state box design.

ID52 - Vol. 5 - Development Team Practices Page 41

Template 10: Clear Box Analysis for Box <boxname>

List all analyses performed for the clear box design.

Hypothesis: Clear box closure exists.

* Analysis Process:

* Results:

• Clear Box Modifications:

Hypothesis: The clear box is complete.

"• Analysis Process:

"• Results:

"* Clear Box Modifications:

Hypothesis: The clear box is clearly described.

"* Analysis Process:

"* Results:

"* Clear Box Modifications:

Hypothesis: State migration is correct.

"* Analysis Process:

"* Results:

"* Clear Box Modifications-

Hypothesis: The clear box is correct with regards to the state box.

• Analysis Process:
1)

Hypothesis - 1.05 exhibits the same behavior as S01.03

ID52 - Vol. 5 - Development Team Practices Page 42

statement pair: S01.03/1.05
1.05 mean(i) := 0; AND
S01.03 mean(O..23) := 0;

equivalence argument:
Lines 1.03, 1.04, 1.07 serve as a loop to substitute a instantaneous array initialization with a
sequential one, which is done in reality.

hypothesis confirmed

2)
New C statements: Used in equivalence argument / keyword:

1.03 S01.03/1.05, S01.04/1.06
1.04 S01.03/1.05, S01.04/1.06

3)
State Box Stint: In equiv. arg.: Seq: I/A: Con:
1.05 T N/A T N/A
1.06 T N/A T N/A
S02.14-S02.15 N/A N/A T N/A

"* Results:

"• Clear Box Modifications:

Hypothesis: Referential transparency exists.

"* Analysis Process:

"* Results:

"* Clear Box Modifications:

Hypothesis: Reuse analysis is complete.

"* Analysis Process:

"• Results:

"* Clear Box Modifications:

ID52 - Vol. 5 - Development Team Practices Page 43

Hypothesis: Common service analysis is complete.

"* Analysis Process:

"* Results:

"* Clear Box Modifications:

Hypothesis: Concurrency analysis is complete.

"* Analysis Process:

"* Results:

"* Clear Box Modifications:

Additional Analyses as Required

Helpful Hints:

* Verify only what's been changed. Verifications are a function of the extent of change, not
of the size of the clear box.

* If portions of the clear box are hard to examine or verify, reorganize the clear box.

4.4 Clear Box Refinements

The initial clear box design will nearly always undergo a series of refinements based upon
subsequent design decisions made in the development of the current increment. Analyses that
would lead to refinements include the optimization of control structures and further consideration
of common service subsystems and reusable objects as alternatives for the behaviors of the
internal black boxes in the clear box.

4.4.1 Task 11 - Refine Clear Box

The initial clear box design may be refined one or more times based upon required system
changes, new and improved understandings of system solutions, and effective common service
and reusable object opportunities. Each new refinement must be carefully recorded and verified
as correct. Template 11 provides a format for recording each refinement.

ID52 - Vol. 5 - Development Team Practices Page 44

Template 11: Clear Box Refinement for box <boxname>

Refinement <refnum>: Clear Box Function Refinement for box <boxname>.

begin clear box <boxname>

proc <boxname>

(1) copy the previous clear box function

(2) edit to develop required procedure

(3) upon completion of step, renumber clear box statements

S01.08 S01.08 highjeading := 0;
B01.06 [RFI: Open file for input. --->]

1.09 1.09 open(file);
S01.10 S01.10 noc;
S01.11 [RF2: Read value; --->]
1.11 1.11 read(stimulus);

2.12 hour := number-processed DIV 60;
2.13 minute := number-processed MOD 60;

corp <boxname>

Design Notes:

" In this step, an engineer refines the clear box, defining the behavior in terms of a process.
The line numbering strategy is used to identify the new, changed and unchanged design
statements. That will be used to focus the verification strategy.

" The final, desired clear box must be considered before the clear box is refined. This means
issues concerning the final source code version should be thought about now. In this manner,
clear boxes will be created in a logical manner that will ease future refinements and
verifications towards the final clear box. Not thinking about the final clear box may lead to
illogical designs and unverifiable code.

ID52 - Vol. 5 - Development Team Practices Page 45

Helpful Hints:

"* Small design refinements are the key. Making large logical leaps will lead to difficult
verifications.

"* If portions of the clear box are hard to examine or verify, reorganize the clear box.

4.4.2 Task 12 - Examine and Verify Refined Clear Box

Appropriate analysis and verification activities are performed based upon the types of refinements
performed on the clear box. For example, if a control structure is altered, a clarity analysis
should analyze the effect on the understandability of the new design structure. Additionally, it
must be shown that the control structure is correct with regards to the previous clear box. If a
new reusable object is identified and integrated into the clear box, then a new state migration
analysis is needed, along with correctness confirmation. Thus, the template for analyzing the
refined clear box would be identical to Template 12 for clear box analysis. However, only
essential analyses or verifications would be performed.

Template 12: Refined Clear Box Analysis for Box <boxname>

List all analyses needed for the refined clear box design.

Hypothesis: Clear box closure exists.

"• Analysis Process:

"* Results:

"• Clear Box Modifications:

Hypothesis: The clear box is complete.

"* Analysis Process:

"* Results:

"* Clear Box Modifications:

ID52 - Vol. 5 - Development Team Practices Page 46

Hypothesis: The clear box is clearly described.

"* Analysis Process:

"* Results:

"* Clear Box Modifications:

Hypothesis: State migration is correct.

"* Analysis Process:

"* Results:

"* Clear Box Modifications:

Hypothesis: The clear box refinement is correct with regards to the parent clear box.

• Analysis Process:

Hypothesis - 3.25 exhibits the same behavior as S02.20-S02.30 and S02.32-S02.35

statement pair: S02.27-S02.30,S02.32-S02.35/3.25
S02.27 con
S02.26 [Combine sensor reading with mean(numberprocessed DIV 60); --->1
2.28 mean(hour) := mean(hour) + stimulus.sensor reading/60;
S02.30 noc;
S02.32 con
S02.31 [Combine sensor reading with mean(number-processed DIV 60); --->]
2.33 mean(hour) := mean(hour) + stimulus.sensor reading/60;
S02.35 noc; AND

3.25 mean(hour) := mean(hour) + stimulus.sensor reading/60;

equivalence argument:
Since the exact functionality is done to mean(hour) in both cases of the if-then-else condition,
it was decided that it would be better to have the code only appear once before the if-then-
else. As a result, there is no need for the two con-noc structures, since an order has now been
placed on the code.

hypothesis confirmed

ID52 - Vol. 5 - Development Team Practices Page 47

* Results:

e Clear Box Modifications:

Hypothesis: Referential transparency exists.

"• Analysis Process:

"* Results:

"* Clear Box Modifications:

Hypothesis: Reuse analysis is complete.

"* Analysis Process:

"* Results:

"* Clear Box Modifications:

Hypothesis: Common service analysis is complete.

"• Analysis Process:

"* Results:

"* Clear Box Modifications:

Hypothesis: Concurrency analysis is complete.

"* Analysis Process:

"• Results:

"• Clear Box Modifications:

Additional Analyses as Required

Helpful Hints:

• Strive for designs that are verifiable by direct assertion.

ID52 - Vol. 5 - Development Team Practices Page 48

4.4.3 Repeat Step IV until Clear Box Completed

Clear box refinements are continued until the Development Team is satisfied with the quality and
the correctness of the designed clear box. Each clear box refinement is kept small in order to
make the required analyses and verifications as simple as possible.

4.5 Design Translation

Given a final clear box refinement, the software engineer produces the translation of the design
in a appropriate form. The software component of the implementation is coded in an appropriate
programming language. The resulting code is verified as consistent with the clear box design.

4.5.1 Task 13 - Design Translation

System implementation accepts the design specification in the form of a box structure usage
hierarchy and provides the capabilities and resources to implement it. Implementation may be
an integration of hardware, software, and human behavior. Implementation objectives are to
build and optimize the specified system and to prepare users and operators for its operation a&id
maintenance.

Software translation is performed under the rigors of structured programming as exemplified.
The appropriate programming language is selected based on the system environment and
requirements.

The Box Structures approach is programming language independent, but it can be language
dependent if that is more efficient. The use of BDL is recommend, although it is certain that the
target language for the software system will not be BDL. If one uses BDL, there is a
transformation during the software implementation, where the developer moves from BDL to the
target language. It is recommend that this transformation be done at the final refinement. Of
course, the shift to the target language can be done at any time. Conceivably, that transformation
may be done at the first black box. The critical notion is that language structure- used must not
be a superset of BDL. Final structures in many languages may differ from the syntax for BDL.
Another well-defined syntax may be used, given the condition that only the same structure types
are used.

BDL has been found to be useful because it is simple. It is also easy to provide automatic
support for the transformation. An example for c is discussed below. The transformation must
occur at some point in the project. When the transformation occurs, it should be viewed as a
reorganization and not a refinement. One should just do the switch from BDL to target language
without refining the design. That simplifies reading of the transformation. If there needs to be
refinement, the previous refinement must appear as functional commentary. That will make the
refinement easier to understand.

ID52 - Vol. 5 - Development Team Practices Page 49

BDL is not a completely fixed language. The structures defined in the BDL are fixed, but there
can be extensions to the language in a particular application domain. For example, if stimuli,
responses or assignment liave a particular syntax, using that syntax may simplify work. BDL is
effective because it is simple, which makes it tailorable and extendable. It only requires that one
limits the structures used, without limiting functionality.

A convention currently followed for using BDL and the target language is presented below.

One should use BDL for as many levels of design as possible. The syntax is simple and
readable, which means that individuals reading a design will not need to acquire a programming
language expertise in order to be productive. Where possible, only the final refinement should
be converted to the target language, after all, only the final code is to be compiled. The final
transformation to executable code should be done, if at all possible, using global searches and
replaces with the editor at hand.

For example, a conversion of BDL into C might occur as in Template 13 below.

Template 13: Software Translation

BDL C
if x=y if x=y
then I

Z X, z= X;
else }

z :=y * 3; else

z =y *3;
I

If one looks carefully, they can determine the set of replacements that an editor, such as Word
Perfect, would need to complete in order to correctly shift from BDL to code. Having either a
script, a translator or a global definition fide is the approach to create a correct translation from
BDL to programming language code. More specifically, the following sequences of replacements
would be done:

ID52 - Vol. 5 - Development Team Practices Page 50

Item: Replaced by:

then ----- >
else ----> >

else
{

fi; ----> >

Helpful Hints:

"* This step should only be a translation, with no refinement.

"* The primary intellectual challenge for this level of refinement is insuring that the translated
design has proper data typing for the target language.

4.5.2 Task 14 - Verify Implementation

Each form of system component is verified correct and consistent with the final clear box design.
The software code is verified by proving the equivalence of the structured program and the box-
structured design found in the final clear box refinement. Template 14 provides a format for
recording these arguments.

Template 19: Software Code Verification

Item: Replaced by: Correctness argument:

then ---- > {
else ----- >

else
{

fi; ... I

Upon completion of the final software verifications, the box structure is sent to a Team Review
for sign-off of all Completion Conditions as described in Section 2.2 of this manual.

ID52 - Vol. 5 - Development Team Practices Page 51

Helpful Hints:

- This verification should be trivial, with the only intellectual challenge being the confirmation
of the data typing.

4.5.3 Repeat Box Structure Algorithm for Each Internal Black Box

The box structure design algorithm is recursive in that each internal black box in the final clear
box is designed by the same steps. A box structure usage hierarchy is constructed for the current
increment j. The algorithm is complete when no further black box subsystems are identified in
the design that are part of the current design increment.

When the increment is complete, then the code is given to the certification team for compilation,
linking and execution. The development team can then begin to work on the next increment.
At that time, the only responsibility that the development team has for the just completed
increment is to isolate and resolve any failures observed by the certification team.

ID52 - Vol. 5 - Development Team Practices Page 52

DEVELOPMENT TEAM PRACTICES

Section 5: Correct Test Increment (l...j)

The Cleanroom Certification Team is responsible for process P6.j, Software Certification for
Increment j. This process is executed upon completion of process P5.j, Software Development
and Certification Development for Increment j. The Cleanroom Development Team is
responsible for correcting failures as they are found in the certification process. Specifically, task
D6.j.4: Correct failure, verify correction and prepare ECN; defines the process of correcting
failures in the increment design and returning the corrected increment j to the certification team.
Below is found a lower level algorithm for correcting failures.

proc D6.j.4: Correct failure, verify correction, and prepare ECN of Increment j
[This process results in a refined clear box and Engineering Change Notices to describe the
corrective actions for increment j]
do

for all failures found by Certification Team
do

do
D6.j.4.1 Isolate failure;
D6.j.4.2 Correct failure;
D6.j.4.3 Verify failure correction;

until
Correction is verified

od;
D6.j.4.4 Prepare Engineering Change Notice (ECN);

od;
D6.j.4.5 Hold team review for corrections;
if Completion Conditions satisfied
then

D6.j.4.6 Submit test increment (l...j) to certification team;
fl;

od;
corp;

The certification team will complete Failure Reports on the current test increment (1...j). At
designated points, as discussed in the Certification Process Manual, the existing Failure Reports
will be accumulated and passed on to the Development Team for correction. The certification
process will be suspended until the corrections are completed. The Certification Team does not
make corrections to the test increment; that is the responsibility of the Development Team.

The above process model shows that Failure Reports are handled by isolating the failure,
correcting it, and verifying the corrections. Then an ECN is prepared. Once all failures are
corrected a team review is held. If all Completion Conditions are satisfied, the corrected test

ID52 - Vol. 5 - Development Team Practices Page 53

increment (I...j) is returned to the Certification Team. The individual development tasks for

making corrections are described here.

5.1 Isolate Failure

The Certification Team provides a formal Failure Report for each software failure found during
testing. The Failure Report includes the testing scenario, the test data, and the test results. The
format of the Failure Report is described in Volume 6. The Development Team should isolate
the erroneous code. If the failure cannot be isolated, the certification engineers will be called in
to work with the developers to determine if a failure exists.

Once the failure is found and isolated the development team begins corrective actions on the
design and the code.

5.2 Correct Failure

Failure resolution may be a simple matter of correctly initializing a value or it may be a deep
logic error that was not discovered during the development process. For simple errors, the
needed modifications are made in the code and the increment design. In Cleanroom practice,
typically a large majority of failures are caused by such simple errors.

For more complex failures, the software engineers must review all products of the development
process (black box, state box, (refined) clear box, and ,-ode). Once the appropriate corrections
are determined, the design trail should be modified to reflect the corrections. However, the actual
design records and code should not be finalized until the corrections are verified.

In some cases, failure correction may require modifications to the designs of box structures at
higher levels in the box structure hierarchy. A complete design trail for such complex failures
must be recorded for thorough verification and team review.

5.3 Verify Correction

All corrections needed to resolve a Failure Report are verified as correct and consistent with the
required software behavior. All levels of verification (black box, state box, refined clear box,
and code) should be performed for each failure.

5.4 Prepare Engineering Change Notice (ECN)

A formal document, the Engineering Change Notice (ECN) is prepared to document all changes
to the current increment. The modifications made to all design records and code in the box
structure usage hierarchy are presented. The template for the ECN is shown below:

;.)52 - Vol. 5 - Development Team Practices Page 54

Template - Engineering Change Notice (ECN#

Failure Report #

Date Received Date Completed

Brief Description of Failure:

Changes Made to Correct Failure:

Design Objects Modified:

Black Boxes -

State Boxes -

Refined Clear Boxes -

Implemented Boxes -

Design Notes:

* One ECN may provide the corrections to satisfy one or more Failure Reports. If so, this
should be noted and justified.

5.5 Team Review for Corrections

Once all Failure Reports are handled by a set of ECNs, the Development Team performs a team
review to validate the correctness of all changes to the test increment (1 ...j). The team evaluates
a set of Completion Conditions, such as:

Failure Corrections Completion Conditions

1. Have all Failure Reports been resolved?

ID52 - Vol. 5 - Development Team Practices Page 55

2. Have ECNs been completed for all modifications to the design and code?

3. Is each ECN complete with full design trails for the corrections?

4. Is the current state of the box structure design records complete and up-to-date?

5. Have all pertinent reviews for this process been completed?

5.6 Submit Test Increment (1...j) to Certification Team

Upon successful completion of the team review the corrected test increment (I...j) is returned to
the Certification Team for further testing. The Development Team turns over complete control
of the design and code. No additional changes can be made until the next set of Failure Reports
are received.

ID52 - Vol. 5 - Development Team Practices Page 56

Exhibit A - BOX DESCRIPTION LANGUAGE BNF

The BNF below is presented to clarify the valid syntax for Black, State and Clear Boxes. More
specifically, one will see that a part of the BNF that appears here for the Black, State and Clear
boxes also appears in the respective templates for each box.

Notation: means 1 or more

"means 0 or more

<design object> ::= <black box> I <state box> I <clear box>

<black box> ::- black box function S* II S <object name> is
[black box subfunction S*ll <stimulus name> is

<structure>*
XOB;)÷
end black box function S* ii S <object name>

<state box> ::= state box function S: <object name> is
[state box subfunction <stimulus name> is

<structure>;
XOB;]÷
end state box function S: <object name>

<clear box> ::= begin clear box <object name> is
[stimuli

<stimulus name>"
responses

<response name>
state

<state name>
data variables

<variable name>' I
var

<stimulus name>*
<response name>
<state name>
<variable name>*]

[proc <object name>
<CBstructure>+]"

corp;
I

begin clear box <object name> is
stimuli

<stimulus name>'

ID52 - Vol. 5 - Development Team Practices Page 57

responses
<response name>

package <object name>
state

<state name>*
data variables

<variable name>"
[proc <object name>

<CBstructure>÷
corp;]÷

egakcap;
end clear box <object name>

<object name> object name

<stimulus name> SXXi: stimulus name I <variable name>

<response name> RXXi: response name I <variable name>

<state name> TXXi: state name I <variable name>

<variable name> variable name

<structure> <sequence> I <fordo> I <ifthen> I <ifthenelse> I <case> I <whiledo> I
<dountil> I <connoc>

<CBstructure> <structure> I <run> I <use>

<sequence> (<structure> I <NOOP> I <statement>;')*

<fordo>."]
for

indexlist
do [U

<sequence>
od;

ID52 - Vol. 5 - Development Team Practices Page 58

<ifthenelse> []
if

<condition>
then [I

<sequence>
else []

<sequence>
fi;

<case> .-]
case

p
([0
part(CLi)

<sequence>)*
[0
else

<sequence>
esac;

<whiledo> .--]
while

<condition>
do []

<sequence>
od;

<dountil> : [
do

<sequence>
until

<condition>
od;

<connoc> "-
con

<sequence>
noc;

<run> run <service>

<use> use <BBstatement>

ID52 - Vol. 5 - Development Team Practices Page 59

<statement> any statement that is returning a response, presenting a description of actions

(non-commentary), or making an assignment.

<condition> any logical expression that can evaluate only to true or false.

<service> A name of a common service that is at the current level of the software
system's parts hierarchy.

<BBstatement> A stimulus to a lower level black box

<NOOP> ::= Either some sort of no operation statement, or a blank line.

ID52 - Vol. 5 - Development Team Practices Page 60

Exhibit B - LINE NUMBERING RULES FOR BOX DESCRIPTION LANGUAGE

Since functional verification entails determining whether two items both define the identical
function, each line of design can be viewed as a separate sub-function. If that line is not
changed, its subfunction does not change. In that manner, once a line is verified to define the
same function as a line in a previous design, it does not need to be verified again, unless it is
changed.

As a result, the amount of verification is only a function of the number of changes and additions,
not a function of the present size of the design. To handle verifications correctly, a line
numbering strategy is needed.

Every non-comment line in a pseudo-code representation of a box will have one or two
identifiers associated with it.

"* The position of the line in the previous box
"* The position of the line in the present box

Of course, lines in a black box do not have previous box identifiers associated with them, nor

do new lines created in the present box.

The present box identifier has the format XXX.YYY where:

XXX identifies the box where the line was most recently modified (newly created lines have
the present box identifier).

YYY identifies the present sequential position of the code in the box. The third digit is
typically left blank, resulting in YYY having the valid range of 00-99.

The previous box identifier has the format XXX.YYY where (newly created lines, of course, will
have not previous box identifier):

XXX identifies the box where the line was most recently modified previous to this box.

YYY identifies the sequential position of the code in the previous box. The third digit is
typically left blank, resulting in YYY having the valid range of 00-99.

For a black box, the identifier XXX is B??, where ?? is a number representing the current black
box subfunctio-.

For a state box, the identifier XXX is S??, where ?? is a number representing the current state
box subfunction.

ID52 - Vol. 5 - Development Team Practices Page 61

For a clear box, the identifier XXX is C?? where ?? is a number representing the clear box
instance. For example, the first clear box is 1, its refinement is 2, and so on.

For clear box refinements, the syntax of the clear box is kept, with the exception as described
below. Lines have intended functions that are refined and are now comments keep previous line
number and have no present number, while the lines that are refined have just a present box
number and no previous number.

As stated above, the last character of the YYY for the line number should be left blank. In that
manner, if a change to a box is necessary after a verific..don, the amount of renumbering will
be minimized by using the blank character for numbering inserted lines.

When the last character is being used, the values a-z should be used. In that manner, up to 26
lines can be inserted between two other lines as a correction. If more than 26 lines are to be
changed, the convention is made that the change is substantive enough where a renumbering is
desirable.

If the box has more than 100 lines, the syntax described above, which is XXX.YYY is changed
to XXXYYYY, where the. is eliminated and the last Y is still left blank to handle enhancements.
Some examples are now in order. In these cases, we will show the progression of a number of

lines of code from a black box to code:

For a black box, one would number the lines as follows:

B05.01 B05.01 if value = value of first SI stimulus
B05.02 B05.02 then
B05.03 B05.03 R4: Acknowledge stimulus;

For a state box, one would number the lines as follows:

B05.01 S05.02 if value = 3
B05.02 B05.03 then

S05.04 value := S5;
B05.03 B05.05 R4: Acknowledge stimulus;

For a clear box, one would number the lines as follows:

S05.02 S05.32 if value = 3
B05.03 B05.33 then

CO1.34 con
C01.35 x, y := y, x;

1D52 - Vol. 5 - Development Team Practices Page 62

For a clear box refinement, one would number the lines as follows:

S05.32 S05.98 if value = 3
B05.33 B05.99 then
CO1.34 C01100 con
C01.35 Ix, y := y, x;]

C02101 x := x + y;
C02102 y:= x - y;
C02103 x := x - y;

If it was determined, after a verification, that the clear box refinement would need additional
lines, one would number the lines as follows.

C01.34 CO1100 con
C01.35 [x, y, z := y, x, z + 1;I

C02101 x x + y;
C02102 y := x - y;
C02103 x := x - y;
C02103a z:= z + 1;

ID52 - Vol. 5 - Development Team Practices Page 63

Exhibit C: STATE DATA MODELING EXAMPLE

An example of state data modeling occurs when the Development Team is faced with a
application that requires a departmental database for an organization. A database designer uses
a modeling technique to represent the required semantics for the application. For the example,
the Entity-Relationship model is used. The ER model is then translated into a relational database
schema.

The problem statement for the database is:

An organization has a number of departments, defined by a department number (D#), name
(DNAME), a manager (MGR#), and a location (LOC). A department has employees, defined
by employee number (E#), name (ENAME), position (POS), and salary (SAL). An employee
works in onc. department. Each department is responsible for an equipment inventory. Each
piece of equipment has attributes inventory number (INV#), description (DESC), and cost
(COST). Employees work on projects, defined by project number (P#), project name
(PNAME), and work site (SITE). An employee may work on many projects. The hours
(HRS) worked on each project are recorded. Each project is administered by one department,
and a department can administer many projects.

Entities are denoted by rectangles with attributes in attached ovals. A primary key is typically
underlined. Relationships between entities are denoted by diamonds with arcs that connect the
two entities in the relationship. Relationships are named and may have attributes in attached
ovals. Three types of relationships may exist:

One-to-one relationship - An instance of one entity is related to at most one instance of the other
entity and vice versa. For example, an employee can manage at most one department and a
department is managed by at most one employee.

One-to-many relationship - An instance of the one entity is related to any number of instances
of the many entity. However, an instance of the many entity is related to at most one instance
of the one entity. For example, a department has many employees, but an employee is in at most
one department.

Many-to-many relationship - An instance of an entity is related to any number of instances of
the other entity and vice versa. For example, a project is worked on by many employees and an
employee can work on many projects.

The cardinality of each relationship is shown with the characters 1 and M on the appropriate arcs.

Figure C-1 shows an Entity-Relationship model for the example database. There are four entities
and five relationships in the database model.

ID52 - Vol. 5 - Development Team Practices Page 64

The Entity-Relationship model can be transformed into a database schema. The following
description demonstrates how a relationship database schema is developed from the ER model.

Each entity forms a separate relation. Relationships are represented by adding attributes to entity
relations for one-to-one and one-to-many relationships or building new relations for many-to-
many relationships. By matching the values of attributes among relations the relationships in the
database are designed.

For the example database, each entity becomes a relation with the appropriate attributes:

DEPARTMENT (D#. DNAME, MGR#, LOC)
EMPLOYEE (E#, ENAME, POS, SAL)
EQUIPMENT (INV#, DESC, COST)
PROJECT (P#, PNAME, SITE)

The one-to-one manages relationship is already represented in DEPARTMENT by including the
attribute MGR#. MGR# and E# in EMPLOYEE are defined on the same domain allowing values
to matched across these two attributes.

One-to-many relationships are represented by placing a new attribute in the many entity that
uniquely identifies the instance of the one entity to which it is related. For the works-in
relationship between EMPLOYEE and DEPARTMENT, the unique attributed of DEPARTMENT,
D#, would be added as an attributed to each employee, i.e.,

EMPLOYEE (E#, ENAME, POS, SAL, D#)

In the same way, the inventory and administers relationships are shown as:

EQUIPMENT (INV#, DESC, COST, D#)
PROJECT (P#, PNAME, SITE, D#)

A many-to-many relationship requires the construction of a new relation that contains an
attributed for the primary key of both involved entities. Data that is recorded based upon the
relationship of specific instances of each entity is stored as an attribute in this relation. Thus,
the works-on relationship becomes the relation:

WORKS-ON (E#, P#, HRS)

Therefore, the final relational database schema for the example is:
DEPARTMENT (D#, DNAME, MGR#, LOC)
EMPLOYEE (E#, ENAME, POS, SAL, D#)
EQUIPMENT (INV#, DESC, COST, D#)
PROJECT (P#, PNAME, SITE, D#)
WORKS-ON (E#, P#, HRS)

ID52 - Vol. 5 - Development Team Practices Page 65

D#r
E#

S....... m
_~i,."r

,r

M M

Figure C. : E~xample' Entity-Relationship Diagram

ID52 - Vol. 5 - Development Team Practices
Page 66

