

RESEARCH TRIANGLE INSTITUTE

RTI/5676/93-Quarterly

October 1993

DEVELOPMENT OF LARGE AREA rf INDUCTION PLASMAS FOR COST EFFECTIVE DIAMOND

First Quarterly Report July 20, 1993 - October 20, 1993

> R. A. Rudder R.C. Hendry

Office of Naval Research Program No. N00014-94-C-0030

94-05151

16 020

2

94

DTIC QUALT

opproved the public

Dissily

POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NORTH CAROLINA 27709-2194

ID S

REPORT DOCUMENT PAGE			Form Approved OMB No 0704-0188		
Public reporting burden for this collection of in anthering and maintaining the data needed, an collection of information, including suggestion	nformation is estimated to average 1 hour per re d completing and reviewing the collection of in us for reducing this burden to Washington Head	esponse, including the time for reviewing instruct formation. Send comments regarding this burder lquarters Services, Directorate for Information O	ions, searching existing data sources, estimate or any other aspect of this berations and Reports, 1215 Jefferson		
Davis Highway, Suite 1204 Arlington, VA 22 1. AGENCY USE ONLY (Leave blank)	202-4302, and to the Office of Management an 2. REPORT DATE January 31, 1994	1 Budget Paperwork Reduction Project (0704-088), Washington, DC 20503 3. REPORT TYPE AND DATES COVERED Quarterly July 20,1993-Oct. 20,1993			
4 TITLE AND SUBTITLE Development of Large Area rf Induction Plasmas for Cost Effective Diamond			5. FUNDING NUMBERS N00014-94-C-0030		
• AUTHOR(S) R.A. Rudder, R.C. Hendry					
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER 9311 5676		
P. O. Box 12194 Research Triangle Park, NC 27	709		850-5070		
9. SPONSORING/MONITORING AGENCE Office of Naval Research	Y NAME(S) AND ADDRESSES(ES)		10. SPONSORING/MONITORING AGENCY REPORT NUMBER		
800 N. Quincy Street Arlington, VA 22217-5000					
II. SUFFLEMENTARI NUTES					
12- DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; unlimited distribution			125. DISTRIBUTION CODE		
13. ABSTRACT Work this quarter focused on imparasitic oscillators which were area tool have been documented area. Gas stagnation is likely th gas distribution and pumping to thermal conductivity testing.	itiation and testing of large area is suppressed. The plasma potentia by SEM, X-ray, and Raman. Di e problem limiting the deposition eliminate the stagnation problem	f induction plasma system. The r al to ground was minimized. Dian iamond is being deposited over ~ 7 n area to the 70% value. The prog n. Thick deposits are also being ta	f generator contained some nond depositions from the large 76% of the available substrate ram is directed at improving the rgeted next quarter to enable		
14. SUBJECT TERMS diamond, large-area, rf, ind	luction		15. NUMBER OF PAGES 16. PRICE CODE		
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED	20. LIMITATION OF ABSTRACT		
NSN 7540-01-280-550 Form 298 (Rev. 2-89)			Standard		
by ANSI Std Z39–18			Prescribed		

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	EXPERIMENTAL RESULTS	3
3.0	NEAR TERM TECHNICAL GOALS	ł

Accesion For				
NTIS DTIC U anno Justaic	CRA&I TAB ounced ution			
By Dit ib	tion /			
Availability Codes				
Dist	Avail Sp	and / or ecial		
A-1				

LIST OF FIGURES

FIGURE 1	4
FIGURE 2	5
	6
	0
FIGURE 4	7
FIGURE 5:	8
FIGURE 6	9
FIGURE 7	10

ľ

1.0 INTRODUCTION

The program N00014-94-C-0030, "Development of Large Area rf Induction Plasmas for Cost Effective Diamond", began July 20, 1993. This document is the first quarterly report. The program seeks to significantly reduce the current costs of CVD diamond. Of all the competing thick-film diamond technologies (dc-arc jet, hot-filament, and microwave), the rf induction plasma technology has the potential to produce diamond at a low enough cost to compete with existing heat sinks (\$10/in²). Currently, the rf plasma technology is in the proof-of-concept stage. Significant technical problems related to reactant gas distribution, plasma uniformity, substrate temperature control, and vacuum vessel design remain to be solved. However, there appear to be no "show stoppers", and substantial progress has been made this quarter in demonstrating large area diamond deposition from the rf induction plasma system:

- 1. equipment part count and equipment complexity have been reduced;
- 2. parasitics oscillations in the rf generator have been suppressed;
- 3. reactant gas feed has been placed under mass flow control;
- 4. plasma potential to ground has been minimized;
- 5. diamond has been deposited over 70% of the substrate area (900 cm²);

Routine diamond growth from the large area rf induction plasma system is now possible. Diamond deposition proceeds everywhere in the system where the atomic hydrogen generated by the rf induction plasma is complemented by sufficient reactant feed and temperature.

2.0 EXPERIMENTAL RESULTS

Figures 1 - 4 show SEM and optical micrographs of diamond deposited in the rf planar reactor. The diamond is clearly faceted (111) material. Grain size in the deposited films increases with deposition thickness. 50 μ m thick films are presently the thickest deposits. Those films are adherent to quartz substrates and do not show any cracking at this thickness. Renucleation does not appear to be dominating the growth process. Besides deposition on the quartz substrates, material has been recovered from other parts of the system. This material has been crushed into powders. The powders show clear faceting. X-ray analysis confirmed that the powders are diamond powder.

The primary problem with diamond deposition from the rf induction system this quarter has been a "hole" in the deposition pattern. Figure 5 shows a photograph of the deposition pattern. The photograph shows an annulus of diamond deposition near the periphery of the system. There exists near the center of the substrates a "hole" in which no diamond was deposited. We speculate that the hole is a consequence of gas stagnation and carbon depletion from the stagnated gas. Work next quarter will concentrate on eliminating this "hole" in the deposition pattern.

Besides materials deposition, RTI has been developing a downstream process monitor for the water-based process. A mass quadrupole is used to quantify the components of the output gas stream. We eventually intend to output data from the quadrupole to a computer program which will plot the C, O, and H atomic fractions on Bachmann's C-H-O phase diagram. For now, we have been monitoring the production of by-products, H₂, CO, and C₂H₂ as well as residual H₂O. We have observed that the ratio of H₂O:C₂H₂:CO is critical to high quality diamond growth. Figures 6 and 7 show SEM micrographs of two samples grown under nearly identical conditions except for the H₂O:C₂H₂:CO ratio. The sample grown with a high C₂H₂ background is small grain material. The sample grown with a lower C₂H₂ background shows excellent facetting and very little secondary nucleation. This work is ongoing on a separate reactor at RTI.

The reactor is undergoing a modification to provide for alternative reactant distribution and pumping. The new configuration will promote greater flexibility to support experimental and simulation efforts to optimize reactant distribution. In addition to the gas distribution change, the reactor will require increased pumping speed to handle increases in reactant throughput. This is particularly important to support studies of deposition rate and uniformity.

.

20µm

Figure 3

ſ

Figure 4

ALCO (SI

H2O:CO:C2H2 (26:33:7)

and the second second

Figure 6

H20:C0:C2H2 (25:25:6)

\$7

Figure 7

3.0 NEAR TERM TECHNICAL GOALS

Current directions of experimental thrust (under the ARPA/ONR program) are :

- complete modifications to gas delivery and exhaust system;
- fabricate 100 µm thick samples for thermal conductivity testing;
- explore higher growth rate conditions (higher power, pressure, flow rates);
- upgrade pumping to enable higher mass flow rates;