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I. INTRODUCTION

An object may be treated as a point scatterer for

Existence and Uniqueness of motion estimation of small (distant) objects. We define
a distributed object as one that cannot be adequately

Motion Parameters in Active represented as a single point scatterer for motion
estimation purposes. A distributed object model is

Ranging valid if the size of the object is of the same order as
the distance between the object and the observer.

Many papers on metion estimation of distributed
objects have appeared in the literature. See [191
for a more thorough review. Trhe measurements

ROCKIE IL RIC .KS are extracted from sequential images (or frames).

Naval Command, Control and Ocean Surveillance Center .Japers in the literature have dealt with a variety of

SHANKAR CHATr1J measurement systems including perspective projections

University of Caiirk, San Diego [4-8, 10-14], orthographic projections (3-D position)
[2, 3, 15, 18], and range-Doppler [9]. Here we deal
with a measurement vector that includes the 3-D (or
2-D) position plus Doppler. Such measurements are

Motloni esanalon of distributed ojes Is discussed, available from monopulse radar, and some sonar and

Measurements Inclule posion plus Doppler We show th1t 2.D laser systems.

position plus Dopplert sufafcent to uniquely detnndi the A distributed object can be modeled as a surface

nation parameters of an object an a circular tjectory except or as a finite set of point scatterers [1]. The point

foes pc il "a oscatterer model is more appropriate when the
Accesk• .wavelength is shorter than object feature. Here, we
NTIS aemuilty of calculated jtiea t to measure.nWsh t ter assume the point scatterers modeL We also assume

sniid paraete tthe scatterers are fixed on the object (i.e., rigid body
DTIC I boned. We also show Mal the error In the mtaIon parameters motion).
Unannc tend& to zero a the memurnent error approaches zero. There are two main approaches to motion
Justific'. S...... .estimation in the literature, flow-based methods and

feature matching methods. For the point scatterer
By model of a distributed object, feature matching seems
Distribution I to be a natural choice.

Availability Codes Feature matching methods require that a
- Availabiidyodes correspondence be known or established between

SAvail and or features in successive frames. Algorithms that do
Disl Special not require the establishment of correspondences

have also been pursued [2, 3], but lack the occlusion
W•'\ 'f0 tolerance and motion parameter uniqueness of the

approach described here. Methods for establishing such
correspondences have been developed in [8, 9, 13]. The

Manuscript received April10, 1990 revised October 1, 1992 and process of establishing correspondences is prone to

February 9, 1993. error. The probability of making an error is especially
high when estimating motion from the first two frames

IEEE Log No. T-AES/30/l3042. if a prior motion estimate is not available. Errors from

Ilis work was supported by the Independent Research Program at feature mismatch often propagate many frames before
Naval Command, Control and Ocean Surveillance Center, Research, being resolved [9, 131.
Development, Test, and Evaluation Division and the Office of Naval On startup, rather than attempt to match features
Rsearch. by the nearest neighbor method, we propose assuming

Authors' current address: R. Ricks, 1NCCOSC RDT& E Div., feature associations over enough time samples such
Code 572, 49590 lTAming Rd., San Diego, CA 92152-6147, that the combined measurements uniquely determine
2Computer Laboratory for Analyzing Spatial Signals, Department of the

Electrical and Computer Engineering, Mail Code R0407, University the motion parameters. If motion parameters are

of California San Diego, La Jolla, CA 92Y37-0407; S. Chatterjee, calculated from the combined measurements, the
Computer Laboratory for Analyzing Spatial Signals, Department of motion parameters from each correctly associated
Electrical and Computer Engineering, Mail Code R0407, University feature are identical except for noise effects. If there
of California San Diego, La Jolla, CA 92037-0407. are N features, there are N 2 possible feature

associations between two frames of data. If three
0018-925194$44.00 @ 1994 IEEE frames of data are required to uniquely determine the
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motion parameters, one would have to consider N 3  estimated motion parameters. Therefore uniqueness
associations. We choose to consider only two frames is not guarenteed and it is necessary to analyze the
and only salient features such that N is small. To existence and uniqueness of the motion parameters.

have sufficient measurements from only two frames The work is organized as follows. In Section lI the

we assume the measurements include position (i.e., measurements are discussed. In Section III the motion

active rather than passive measurements) plus Doppler. model is given with insights into the limits that are

The use of only passive measurements would require placed on the model by the occlusion assumption. This

more frames to uniquely determine the parameters of is followed in Section IV by analysis of the uniqueness

the same motion model. It would also require proof and existence of the motion parameter given the

that the parameters of this specific motion model measurements. Finally, in Section V the sensitivities

are uniquely determined. We show that only one of the calculated motion parameters to errors in

feature match (6 measurements in 2-D) is required measurements are derived.

to uniquely estimate circular motion in a plane (5
unknown parameters). This analysis is extended to II. MEASUREMENTS
motion of a 3-D object when the orientation of the axise measurement model is intended for an
of rotation is known. the measmeng andeceivin tend ere

Occlusion (part of the object not visible) active (transmitting and receiving) system wherecomplicates the association of features. It may be the transmitted waveform is sufficiently narrow
compicaes he ssocatin o feture. I ma bein bandwidth so that the time compression of

caused by glint (phase interference) or one object the waveforn dueto t th tio he object can be
shadowing another. It may occur if the transmitting interpreted as a Doppler shift. Given that assumption,
and receiving beams are poorly positioned or rngerate as alDpler shift. Give tha
insufficiently wide to cover the entire object. It range-rate can be calculated exactly from the
may also be caused by aspect dependence or range
dependence of the feature scattering strength as C = c + ft
in the following examples. Consider a scenario
where the range to the object is decreasing by orders where c is the speed of the sound.
of magnitude. The number of resolvable features We assume the system has two sensors on the order
increases as the range decreases. Consider also a of a wavelength apart. The direction of arrival can
scenario where the aspect is changing with time. be estimated from the difference in phase between
Features visible at one aspect may not be visible at sensors. The wavelength is assumed small with

another. respect to the object structure so the sonar return is
Robustness against occlusion by filling in missing dominated by specular reflections, thus justifying the

meg.surements with model estimates has been representation of the object as a set of point scatterers.
proposed [131. This assumes a good motion estimate We also assume that the resolution of the transmitted
is available and the number of features is constant. pulse is sufficient to resolve the features of the object.
To develop an algorithm that adapts to changes in

the number and visibility of features, we propose III. MOTION MODELS
matching features one by one and extracting the
motion information from each match. Thus, the Models for motion estimation of point objects
number of features and some (but not all) of the use parameters such as position and velocity. A
features being measured are allowed to change each motion model for distributed objects must describe
frame. the motion of each feature on the object. One could

Occlusion invalidates several common assumptions. build a distributed model by letting each point have
It is common to represent the interframe motion as a its own motion parameters and add the constraint that
rotation and a translation, and estimate the translation feature-to-feature fluctuations in the parameters are
by assuming the average of the feature locations is small. Rather than add this complexity, we assume the
fixed with respect to the object 12, 3, 9, 18]. Under motion parameters are constants.
occlusion the average of the feature locations is not One approach to representing distributed motion
fixed. It is frame dependent even without consideration with constant parameters is to describe the motion
of measurement noise. Object-centered coordinate of a reference point on the object and the relation of
systems (13-15] are inherently intolerant of occlusion, all features to it. Another approach is to describe the

Because the size of the object is of the order of the motion of the whole rigid object such that the motion
range, Doppler cannot be treated as "cross-range" as parameters describe the motion of each and every
is commonly done in radar. For this work, Doppler feature on the object. An equivalent definition is that
is treated as a measurement of range-rate. Inclusion the parameters that describe the motion of the object
of Doppler as a measurement invariably leads to a as a whole are observable from measurements of any
nonlinear relationship between measurements and the feature on the object. The motion parameters in

RICKS AND CHAITERJEE: EXISTENCE AND UNIQUENESS OF MOTION PARAMETERS IN ACTIVE RANGING 19



such a model are herein called "common" motion

parameters.
The reference point model is poorly defined when "

the reference point is not directly measurable. If an
arbitrary point on the object is chosen, the position of "
that point can be updated with time using estimated /

motion parameters. With uncertainty in the motion
parameters, the measurement uncertainty of the S

reference position always increases with time. Unless Fig. 1. "Common" parameter motion model of distributed object.
measurements of the reference point's position can be
obtained, the reference point model is not viable for
estimation purposes. If the reference point is an objct Note that the observer need not be at the enter
feature, that feature may become unmeasurable due to of the circle. The heading rate w, and the center of

occlusion. If the reference point is the object centroid rotation S are common motion parameters. They

(average of all visible features), its measurement is are the same for all features on the object. With the

affected by the occlusion of any feature. In our model, designation of an increment in time, they constitute

we assume that the features are fixed on the object a transformation. Furthermore, the parameters (of

and are visible for at least two successive frames. The the transformation) are time invariant The relation

centroid is allowed to vary from frame to frame. lb between the reference point model and the common

add robustness against occlusion, the common motion motion model is as follows:

model is used for motion estimation. x0 V 1iho•,However, the common motion model also has a S = W(7)
drawback. The common motion model for a circular yo + V cos ho

(rotating) trajectory is poorly defined for a straight-line Y

(nonrotating) trajectory. The reference point model u(i)l
is well defined on the boundary JPetween circular and
straight-line trajectories. It is used to generate common Qi [( (8)
motion models for both circular and straight-line
trajectories. Therefore both common motion models
represent equivalent motion at the boundary. H0 = [sinh cosh0 o (9)

To derive the reference point motion model i Ch
we assume the object is moving with a constant |coswt -sinwt1
angular-velocity on a circular trajectory in a known R,(t) =' / (10)
plane [20]. Five parameters are needed to describe Lsinl2t Io(10)
the motion of the reference point; the initial position A (t) = S + R.(t)HoQi. (11)
xo,yo, speed V, initial heading ho, and heading rate w.

For a distributed object, we add structure, the The model can be further simplified by letting
position of the additional features relative to the Gi = Ho~ i which yields
reference point which is denoted as (ui,vi) where ui
is the position component of the ith feature in the Pi(t) = S + R.(t)Gi. (12)

direction of the heading and vi is the component along This simplification leads to no loss of generality
the perpendicular direction as shown in Fig. 1. The because the matrix H0 only orients the object-centered
position, Pi(t), and range-rate, ti(t), for the ith feature coordinate system.
without noise are given by As mentioned, this parameterization has a

xi(t) = xo + uicosh(t) - vi sinh(t) drawback. As the heading rate approaches zero,

# the distance between the object and the center of

+ V cosh(T)dr (2) rotation approaches infinity. For this case (straight-line
J0 motion) a different common motion model is used.

yi(t) = yo + ui sinh(t) + vi cosh(t) The reference point model with w = 0 is equivalent to
I the following common motion model with the velocity

+V] sin h(r)dr (3) components, V, = Vcos(ho) and Vy = Vsin(ho), as the
J0w common motion parameters. The model becomesh(t) = ho + wt (4)

= [xi(t) yi(Of (5) P1(l) [x]+ Ho [ua] + [x]. (13)

qit) =Pi(t)Tpb,(t)/11P,(t)11 (6)A i V
The range-rate measurement is given by (6). For

where T denotes the transpose. straight-line motion, there is no need to distinguish
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between the common motion and the reference point where the subscript k has been added to distinguish
models. equations. Both equations are clearly a function of

both t, and t2. Further simplification is possible using

IV. EXISTENCE AND UNIQUENESS = Wtd to scale w and defining

The relationship between parameters and Ai(tk) = ItAPiJI/( 21dt•ii(tk)1) (23)

measurements for the circular trajectory, common (t0) = sgn(tk - t.)Oi (tk) + 7 - 'sgn(ti(tk)) (24)
motion model is nonlinear. Therefore, having more

measurements than unknowns is not sufficient to pi (tk)TBAPi(
establish the uniqueness of the motion parameter Oi(tk) = arctan [ pk ])Ap (25)

solution. Furthermore, a solution may not exist. In
this section both existence and uniqueness of the sgn(t) = >

common motion parameters are analyzed for an f-1 t < 0
object on a circular trajectory. A method is given to These substitutions yield
distinguish straight-line and circular trajectories. Once
a straight-line trajectory is distinguished, the existence sinp/p = Ai(tk)cos(p - 0i'(tk)), k = 1,2
and uniqueness analysis becomes trivial with position (27)
measurements only. We concentrate on analyzing the which is the basis of our uniqueness and existence
circular trajectory while extending some analysis to analysis. Since (27) is really two equations, for clarity
straight-line trajectories, we use the word roots to mean the solution of a single

Circular motion cannot be uniquely determined equation. We use the word solution in referring to both
from position measurements at two successive times. equations simultaneously. Because the above derivation
(An infinite number of circles can be drawn through involved dividing by ti(tk), special considerations are
two points.) The ambiguity is resolved using range-rate required when ,i(tt) = 0.
measurements in addition to position. If we let P be the solution of (27),= the enter of

Let the ith object feature be observed through 2-D rotation is
position Pi(t) and range-rate fi(t) (from Doppler)
measurements at successive times t = t1 ,t2 given by = [Pi(tl) + Pi(t2)]/2 + (cot(P)/2)BAPi. (28)

Pi(t) = S + R&(t)Gi (14) Clearly S exists and is unique if a solution of (27),
ti(t) = Pi(t~rPi(t)/llPi(t0ll. (15) p, exists and is unique, respectively. Therefore the

focus is on the existence of a solution to (27) and its

Beginning with these six measurement equations uniqueness.

in the five unknown motion parameters, w, S, and
Gi, we use substitution to reduce the problem to A. Motion Classes
two transcendental equations in the one unknown We define the following exceptional classes
parameter w. Differentiation of P.(i) gives of motion. Let C, be straight-line motion. Let

pi(t) = R•(t)Gi (16) C2 be circular motion for a feature that is the
center of rotation (IlGill = 0). Let C3 be circular

= wBR&(t)Gi (17) motion for a feature that has completed a full circle

where between samples (p = nr, n j4 0, n E X). Let C4

F0 -1] be the nil motion of a stationary feature. C4 can be
B = [0 (18) mathematically described by the straight-line motion

parameters with V, = Vy = 0. Note that (21) and (17)

The change in position is are not valid for motion classes Cl and C4. There is
A = P,2) - Pi(tl) (19) reason for concern that (27) does not apply to this

case. However, by substituting the common motion

= (P-(t2) - R.(ti))Gi (20) model for straight-line motion into (27) we get

= 2sin(wtd)BR•,(td)Gi (21) sin p/p = cosp + sinpsgn(tk - tQ)tan(Oi(tk))

where t. = (t2 + tl)/2 and t1 = (t2 - tl)/2. Substituting k = 1,2. (29)
(21) into (17) to eliminate Gi and substituting for Pi(t) Clearly p = 0 is always a root. Therefore (27) is valid
gives the pair of equations for A, E C,.

Define Di as the motion class of the ith feature.

1 (tk) = (wJPi(tk)TR&(tk -- a)APi)/(2IIPi~tk)Isinwt'), The following lemmas determine if Di belongs to
k = 1,2 (22) exceptional classes C2, C3 , or C4.

RICKS AND CHATTEPJEE: EXISTENCE AND UNIQUENESS OF MOTION PARAMETERS IN ACTIVE RANGING 21



Fit. I Object feature on a circular trajectory and observer outside Fg . T ae t re f O~ i n it) f r cr u a e t r
the crcle.trajectory and observer outside the circle.

1.EMMA I Motion classes C2 and C4 are physically

L 2-

I.mA ViEC2UC4=IIA14ýi=Oandti(t) =a "\ ,

LEMMA, 4 1IAP•II = 0 A> E C2 UC3 U 4

~~~~~~~~~~~~~~~~~~Fig. 4. Object feature on a circular trajectory and observer otde Fg3.'lactreofW()an iQ)orcr inarifeat

SPROOF. Using the circular motion model, to d proof the andoe r

for motion classes C2 or C3 follows from

AP4 4sndisp Ggui. (30

Using the straight-line motion model, the proof forthe ,,,.
motion class C4 o rlCw follows from

APTAPi 4 2 (30)
ATP-4tq(V•+V, 2 . (31) Lu

locatio a trajecry

By Lemma 4, if IAPII = 0 we conclude A, E Fig. 5. "1*jectories of Voi(tl) and Oi(t 2 ) for circular feature

C2 UC 3 UC 4. But if IIAP5II = 0 and 1(tk) - 0, k = 1 or trajectory and observer inside the circle.
2 we further conclude AP E C3. However, there exists
a subset of C3 such that ti((k) = 0, k = 1,2 which is
visibly indistinguishable from C2 U C4.

B. Existence of Motion Parameter Solution -

Assume Vi 0 C2 U C3 U C4. The measurements • -
enter into (27) only through the functions Ai(tk) and
WPi(tk). Given Pi(tk), APi E IZ2 - {(0,0)} and Pi(tk) E
[-M,M] for an appropriate value M, Ai(tk) and
4ip(tk) map onto the intervals (0,oo) and (p .- 7r,p + I], Fig. 6. Object feature on a straight-line trajectory.

respectively. Their domains are more restricted in
special cases.

Consider a feature moving on a circular trajectory
with the observer outside the circle as shown in Fig. 2.
In Figs. 2-7 the trajectory of Pi(tl) begins at the "o" "
and ends at the "*." The trajectory of Pi(t 2) leads thati
of Pi(ti) by the angle 2p. Here p = 0.4. As the feature .
moves, Oi(ti) and ioi(t 2 ) take on sampled values along .,'

the trajectory shown in Fig. 3. As a feature completes lctin as c

one circle, Oi(ti) cycles through its domain twice. Fig, 7. "'ajectories of Oi(tl) and Oi(t2) for straight-line feature

If the observer is inside the trajectory circle as trajectory.

shown in Fig. 4, the trajectory of ipi(t 1) changes form
as shown in Fig. 5. Variables 4'i(tk), k = 1,2 never trajectories are shown in Figs. 6 and 7. Here ip (t1 ) and
take on values on the interval (p-arccos(do/d), p + Oi(t2) take on the value zero only if the observer is in
arccos(do/d)), the path of the feature trajectory. They approach zero

For a feature on a straight-line trajectory, the as the feature range (IP,(tQl)I or llP,(2)11) approaches
trajectory and corresponding •ip(ti) and ipi(t2) infinity.
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TABLE I A - p) (t,)
Values of Aag(0i(1k))

' I A.,, 1 ,30) _M_ ..ij "m'/"] "•,,
0 I 1.00000 0.82808
1 0.99M2 9 0.79330
2 0.9805 10 0.73442
3 0.97141 11 0.67822
4 0.95638 12 0.61707 p(e..(,,) -p)

6 0.9306 13 0.46W39 Fig. 8. Graph of (27) showing the existence of 0 or 2 roots as a
6 0.90251 14 0.46743 fnto fAk
7 0.86783 15 0.31831 function of A.Qt).

With these preliminaries, we next investigate Theorem 1 is useful for testing whether roots exist,

the existence of roots of (27) for each k separately, but the following extension is more useful in proving

Conditions for existence of roots are as follows, the theorems that follow.
Let

THEOREM 1 If (JIi(tk))21. < v/2 there is a value p i
Acrit = Ait (0iP(tk)) that satisfies the following: Equation i(tk) = t(pft) = arctan sin)
(27, t = tk) has two roots on the interval p E (-w x] iff sPintp=_=A i(tk) >A•,t. (35)

The subscript 2w indicates constraint modulo 2w to
the interval (-ir,• ]. The proof is shown graphically in represent the invrtible mapping of (33).
Fig. & Note the main lobe of the sinp/p always has THEOREM 2 Given 0i(tk) Ai(tk) = Acit Iffp = Pct =
twice the width of the sinusoid.

COROLLARY 1 If I(4'a(tk))2.J < 7/2 and two roots of The proof follows from (32). Even though Pcnt
(27, t = tk) exist on the interval p E (-w,ir1, those roots is a double-valued function of Acit, the ambiguity is
are identical iff Ai(tk) = A•. resolved by knowing the sign of oti(tk).

Aitk) = A~,it(ob(tk)) defines the boundary for the Next we consider conditions for which roots always
exist.

existence of roots to (27). If Ai(tk) < Acrit(•i~(tk)) no

roots exist. However, for the noiseless case, Ai(tk) THEOREM 3 If -x- < (t'i(tk))2, < -;r/2 or 7r/2 <
is always greater than or equal to Afit(7Pi(tk)) and (0i(tk))2, < 7r, (27) has two roots on the interval p E
equality is only achieved if sample times happen to fall (-r],z.
at specific time instants. The noisy measurement case The proof also follows from Fig. 8
is treated in Section V

The function A.*(t'j(tk)) can be calculated If it is known a priori that the observer is inside the
numerically by noting that both functions in Fig. 8 and feature's circular trajectory, the following theorem is
their derivatives are equal when Ai(tk) = Acnt(*i(tk)). useful. With a sufficiently high sample rate (sufficiently
Let P,•t denote the value of p at the point of tangency. small p), two roots always exist. Let C(p) = p - ý(p).
Then we can calculate A~it(0bi(tk)) from This is also an invertible mapping.

Apit2 + sin2 p.nt - 2pcntsinpaitcosparit THEOREM 4 If the observer is inside the circular

Pint4  trajectory of the feature and IPI < (--(arccos(do/d))
then p 4 •-(0i(tk)) Wk.(32)

PROOF OF THEOREM 4 The proof follows from

tan(?'PQk)) = pcrt - sinpancospcfit (33) Fig. 5. The function ý(p) is a monotonically increasing
Sinp2 Pai and passes through the origin. Therefore a plot of

by solving (33) numerically for pcrit. Results are Pcit versus time has the same form as the plot of

listed in 'lhble I which is interpreted using A,,it(x) = ti(tt) in Fig. 5. It follow that there exists a value pmi

Ac•(-x) Vx. It is interesting to note that Afil(r/2) = corresponding to p - arccos(do/d) in Fig. 5 such that

1/ir. pent never exceeds P,., during the first half of the

Theorem 1 with substitution from (23) gives an oi(tl) trajectory. Similarly, there exists a value Pm.2

upper bound on the range rate of the ith feature, corresponding to p + arccos(do/d) in Fig. 5 such that
piit never decreases below Pmo2 during the sezond

Ir(tk)l < IIAPiII (34) half of the ?'a(ti) trajectory. If p is such that pint <

2tdAit(Oi(tfk)) P < Pm2, then p 7 Ppit Vtk, k = 1,2. Transforming by

as a sufficient and necessary condition for roots of (27) applying ý(-) yields

to exist if J(ti(tk))2J < ir/2. p - arccos(do/d) < t(p) < p + arccos(do/d) (36)

RICKS AND CHATTERJEE: EXISTENCE AND UNIQUENESS OF MOTION PARAMETERS IN ACTIVE RANGING 23



C. Uniqueness of Motion Parameters

What if two values p() and p(2) exist which are
roots of both equations (27, k = 1) and (27, k = 2)?

(a) (b) (c) The uniqueness of the solution is stated in the

Fl. 9. -Equation (27, t =t) is (a) inconsistent, (b) consistent with following theorem which is proved with the aid of
one omot, and (c) consistent with both rots of (27, 1 = 1z). subsequent lemmas.

THEOREM 7 Let 0i(ti) be the angle between Pi(h) and

and AP,, and Gi(t 2) be the angle between Pi(t2) and APA
IpI < (-'(arccos(do/d))• (37) (0i(tl) and Oi(t2) are consistent with earlier definitions.)

Assume a solution exists f]or (27). The solution is

0 ambiguous (two distinct solutions exist) iff

Consider the special case of ti(fk) 0 0. 9i(t1 ) + Oi(t2) = 0, ri(t2) = ri(tl) (39)
Equation (27) has the two roots p = Oi(tk) ± r/2.
Clearly, roots always exist. or

Consider the case of straight-line motion (Di E C1). 9,(t1 ) + G.(t2 ) = r, ri(t2 ) = -ri). (40)
With the following minor conditions, two roots always LEMMA 6 The equation
exist.

THEOREM 5 If the feature is on a straight-line Ai(tl)cos(p - ibi(t1)) = Ai(t 2 )cos(p - •i(t2))
trajectory, the observer is not located on the trajectory, (41)
and t1iP,(tk)1I < op, then p # 7(/i~k)

is either true for all p, or has two solutions on the
The proof follows from Fig. 7 interval p E (-T,w] and p( = pQ) + x.

"To this point, we have examined (27) for each time To prove Lemma 6, we form a function by
separately. Using (27) for both instants of time t, and subtracting the right-hand side of (41) from the
t 2 , we examine the existence as well as the uniqueness left-hand side. The function is a sinusoid of the same
of the solution. The existence condition-is stated as period and the roots are related by p(2) = p(l) + 7r.
follows. By application of the Intermediate Value Theorem to

LEMMA 5 If roots exist for both equations (27, k = 1) this function, we conclude it has two roots on (-ir,lr1,
and (27, k = 2), a solution exists for (27) the pair unless it is zero everywhere, in which case all values of
if one root of (27, k = 1) is identical to one root of p are roots.
(27, k = 2). LEMMA 7 Two values, p() and p(2) # p(l), exist which

Ti is illustrated in Fig. 9. In Fig. 8, (27) is plotted are roots of both (27, k = 1) and (27, k = 2) iff
showing variations of Ai(tk). Here (27) is again Ai(tl)cos(p - 0bi(ti)) = Ai(t2)cos(p - 'Pi(t2 )) V p.
plotted, but Ai(tk) is constant and both equations
(k = 1,2) are shown. (42)

Generally, it is a good idea to stay away from
the existence boundary (A,(t) = Ait). We show that PROOF OF LEMMA 7 If p(l) and p(2) are roots of both
motion parameters are more sensitive to measurement equations (27, k = 1) and (27, k = 2) and p(i) ý- ,(2),
error there. The following theorem gives conditions then
such that roots of both equations are simultaneously on sP
the existence boundary. mp = Ai(ti)cos(p - ?it)P
THEOREM6 Assume the roots of (27, k =1) are on (2)

the exstence boundary and that the roots of (27, k = 2) = A7(t2)cos(p - tp(t 2)), p -

satisfy the existence conditions of Lemma 5. Then the (43)
roots of (27, k - 2) are also on the existence boundary
iff the object-observer geometry is one of the ambiguous Sine sinp /p 0 for p E (-x,a-g and sriop/p = 0 onlygeometries defined •bi(t) = •i~(t1) (discussed later). for p = ,r, we can assign the roots to pQ) and p(2)

such that Ai(tk)cos(p(l) - fpi(tk)) > 0, k = 1,2 and
PROOF OF THEOREM 6 Although p is unknown, we Ai(tk)cos(p(2) - tpi(tk)) > 0, k = 1,2. Assume there
know p = ph = ý--((O(tk)), k = 1,2. Applying the exists some value P E (-ir, 7r] such that (43) is not
one to one mapping, t, yields true. Then, given that pQ) satisfies (43), by Lemma 6,

= 'P()- (38) When angles are added, we imply that the result is constrained to

The converse is straight forward. 0 the interval (- r, r).
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trajectories are dissimilar as shown in Fig. 11(b).
Ambiguities associated with nonsymmetric trajectories

4 , 4 are resolved by measurements at another time 13, if

the trajectory is again limited to less than a full circle

(a) (b) between t2 and 13. The speed distinguishes the correct
trajectory.

Fig. 10. Ambiguous geometries for (a) Oi(ti) + Oi(t 2) = 0, and It is possible that the ambiguity of a collinear
(b) 0t~il) + Oi(tz) ;r- geometry would not be resolved by a measurement

at t3 if the feature position is also collinear with the
first two (and the observer). Since these are limited to
specific ambiguous geometries, it is highly probable
that ambiguities would be resolved by matching
"multiple features on an object

(a) (b) D. Existence and Uniqueness for 3-D Position Plus

Fig. 11. "11,ajectories associated with ambiguous geometries.Dope

(a) Symmetric. (b) Asymmetric. This analysis can be extended to 3-D motion if the
orientation of the rotation axis is known. If the plane

p2) = p) + Y is the other root. This leads to the of object motion is unknown, a noncollinear position
contradiction measurement at another time t3 is required. Assume

now that Doppler and 3-D position measurements are
Ai(tk)cos(p0) - 1Pi(tk)) <0 k = 1,2. (44) available. We consider the case where the observer is

not in the plane of motion of a given feature. Assume
The onverse follows from Fig. 9(c). that the observer is at z = 0 and the reference has been

rotated such that measurements yield the same depth
LEMMA 8 Since Ai(t1),Ai(t 2) > ([ (Le., zi(th) = zi(t2)).

-Ai(t2 )cos(p - 2 )) V, P For this case (27) becomes

S0i(th) = ?Pi(t2). (45) sinpp = Ai(k)cos(p - piP(tk)), k = 1,2

(49)
PROOF OF THEOREM 7 Assume the solution is where
ambiguous (i.e., p(l) and p(2) 4 pQ) are roots of
both equations (27, k = 1) and (27, k = 2)). Then by ,4i(tk) = [tIAPgIcos(Eatk))1/(2tdlr(tk)l) (50)
Lemmas 7 and 8 ipi(tl) = ip/(i 2 ). First, if we assume
ti(t2) = h(tl) in (24) and

i(t2) = -o,(t,). (46) cos(E=Q)) V X?(t) +yf(t) +ZQ) (51)

Alternately, if we assume that ti(t2) = -- i(ti) in (24) ith replacing Ai(tk), the existence and

Oi(t2) = -Oi(ti) + ir. (47) uniqueness analysis is identical to that given earlier.

lb prove the converse, one can show that pi(ti) =
tpi(t 2 ) and Ai(t1 ) = Ai(t2). We then conclude that E. An Example

Ai(t)cos(p - ipi(tl)) = Ai(t 2 )cos(p - *i(12)) V p Assuming noiseless measurements, uniqueness
guarantees that the true motion parameters can be

(48) found by solving the measurements equations of any
and the trajectory is ambiguous by Lemma 7. 0 feature pair. The motion parameter p and hence

w = p/td are obtained from
Assume an object feature is located as indicated by

the "o"s in Fig. 10(a) and (b) at times t = tl and t = 12. sinp/p = Ai(tk)cos(p -- 1i(4k)), k = 1,2
The loci of the observer locations that yield ambiguous (52)
geometries are shown as dark lines.

If measured positions and observer are collinear, using the method of chords given in Appendix A. In
the ambiguous trajectories are reflections of each general one obtains two values of p for each t. The
other as shown in Fig. 11(a). If the observer lies value of p that satisfies (52) for both k = 1,2 is the
on a perpendicular bisector of APi, the ambiguous unique solution.

RICKS AND CHATTERJEE: EXISTENCE AND UNIQUENESS OF MOTION PARAMETERS IN ACTIVE RANGING 25



Once the estimate P is obtained, S is estimated by it follows that

-= [Pi(tl) + Pi(t 2)]/2 + (cot(p)/2)BAPi. (53) Idpl 'P jjdAPjjI + 'P ItdP,(fk)jI

For the ith feature, let Pi(t,) = [8 0 T, P*(t2)= = 
49 P

(8 8]T, ti(ti) = w, and ti(t2) = 0. Assume t d = 1. The + Id'rt&)I. (58)

two roots of (52, k = 1) are p = w and p = r/4.

Similarly, the two roots of (52, k = 2) are p = -31/4 Here, T denotes the transpose and vector norms are
and p = w/4. We then set p = w/4 because it satisfies 12-norms. From (58) it is sufficient to show that
both equations. The center of rotation is ocated at=PP

[4 4T. 1 ' 11 ,11 E ' I 1< 00. (59)
s = (4 1 T OI~k) LW~ A, ' '9 r,k)

Differentiating (56) with respect to the unspecified

V. SENSITIVITY OF MOTION PARAMETERS TO motion parameter q andalso substituting from (56) to

ERRORS IN MEASUREMENTS remove dependence on Ai(tk) yields

Now consider that the measurements contain [PcosP Cos(p - i(ok)) + p sin(p - ,(tg)) 1 dp
noise and the roots of the measurement equations [ 'u" -
are in error. The measurement equations are barely = CO(P d_• A jtk)
overdetermined and one would not expect the roots
to be highly robust to noise. The use of such roots
in an efficient estimator is discussed in f241. As the + s'P sin(p - ji(tk)) .(tk) (60)
density of the measurement errors, estimation bias, and Pdq

estimation variance are not available, a complete noise For q = AP1 , the partials are
analysis is not possible. However, we can calculate the OA(t) sinpAP,
derivative of the motion parameters with respect to = (61)
the measurements and address the cases for which OAPi pcos(p - p(tAk))IfAPjiI 2

it is not bounded. Though not totally rigorous, the - s - ta)BRek)(1)PI(tk)
measurement gradient is composed of reciprocals of Ai = jPi(tk)j 11APil(

the derivatives given here. The measurement gradient
is used for calculating the error gradient and Hessian The right-hand side of (60) becomes
for nonlinear minimization.

Measurement noise can change the parameters of si P(63)
(27) such that roots do not exist particularly if Ai(tk) is PI-APihl2 Rp(tk)),gn(,,k)(1)AP(6

near Act. We show that the solution P can be defined We have used the identity
such that the error in the estimate is bounded and goes
to zero as the measurement errors go to zero. This is Pi(tk) = hIitk)f I RS)ln (64)
required for nonlinear minimization. APil-- t

'Tb simplify the derivation, we use the following Note that there is a pole at I[APil[ = 0. If IIAPIhl = 0
alternative definitions we conclude that the motion class Di E C2 U C3 U C4.

= ____ __For 
,9 = ri(qk), it would appear that there are

=2  i(tk) (54) poles at ri(tk) = 0. However, upon more careful
examination, poles cancel and the only pole left is the

Vi(tk) = sgn(tk - t)Oi (tk). (55) aforementioned pole at IIAPAII = 0.
For T = Pi(tk), the partials are

The equation TheequtiocOAi(tk) 1 0 0]T (65)
sint, = ;i(t)cos(p -C t(tk)) (56)8A 1Qk)

P O4i(tk) = sgn(tk - ta)BPi(tk)
still holds. OP(tk) IPpi(tk)112

Using the definition of a total derivative for the The right-hand side of (60) becomes
parameter p,

sinp . sgn(tk - t,)BPi(tk)aOpTstop sinC° - ýjitk)) 11p .k11 (67)
dp y- 'dAP + 5'ý dPi(tk) P

Thus, there is a pole at IIP,(tk)lI = 0. The case

+ O*p . tk) (57) IIPa(tk)Il = 0 is easily detected and not expected to
IETi(tN) occur in practice.
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The derivative fails to exist if the coefficient of points. If without noise Ipj(tk)I > r/2, but due to noise
dp/dvq in (60) is zero, and the right-hand side is ji~a(tk)j < ir/2, we can redefine p(O) = ±x which is its
non-zero (251. This happens when p is the solution of value at the boundary and equation (71) applies.

t = p - sinpcosp Unlike P for which the effect of a small change in
tans2 (68) a measurement is bounded for all interesting cases,

an infinitesimally small change in Pb can cause a
Noting that tan~i(tk) = taniPi(tk), this equation large change in S near p = 0 or ±x-. Fortunately, P
is immediately recognized as the definition of the is calculated before S so this case is detectable. A
existence boundary. For continuity across the existence trivial remedy is to use the straight-line motion model
boundary we redefine p as if -p.. _ P !5 pm for some constant p,,. To preclude

= - ±r (and IIAP4ll • 0) one places a lower limit onSEither solution of sin P/P Ai~tk)COS(P - i(&)) the data sampling rate. Assuming these constraints
if a root exists, have been met, we disregard these cases.

pit else Substituting Po. = (Pi(t2) + Pi(t;))/2 in (53) we
have

(69)
-s

Though dp/dt1 does not exist at the boundary, the apo- = (75)

change in p due to a small error in any measurement
is bounded and decreases to zero as the measurement S= (cot(p)/2)B (76)
error approaches zero which is illustrated as follows. (AP c

Let p(O) be the true value of p and let p(") be the as = -1
calculated parameter from noisy measurements. Then, OP 2 BAP (77)
for any increase in ii(tk), even if the change causes the
roots of the measurement equations to not exist, where I is the 2 x 2 identity matrix. Clearly, no

Ip~) - p(O)l <5 Ipdt _ p(o) 1. (70) additional poles exist.

Furthermore, IPcit - PAO) I 0 as the true
measurements approach the existence boundary. VI. CONCLUSIONS

But if q! = AP, or P1(tk), then pei is affected by
the measurements. In this case, let pi(. be the value We have shown that unique motion parameters can
of p,_t without noise and p) be the value with noise. be obtained from a single feature match for position
Then plus range-rate measurements with the exception of

a few specific geometries. Geometric constraints for

P(- P0°I < IP - P() + IP - PI. (71) uniqueness and existence of motion parameters have
been given. The motion model uses common motion

The second term may be approximated by parameters, parameters that describe the motion of
all features associated with a rigid object. Because

(n) (0) OPcrit dp,,it 190i(tk) each feature match (two frames) uniquely determines
-r it --- dj d- i(tk) =a the motion parameters, motion can be estimated foreach feature pair. The result is a significant increase

(72) in occlusion tolerance. Finally, the sensitivities of the

using the chain rule. The partials of ji(tk) are given in motion parameters to small changes in measurements
(62) and (66). From (33) are given. All sensitivities are bounded and the errors

in motion parameters tend to zero as the measurement
aprit = Pcit + sin2 (pt) - 2p:Sitsin(pcit) cos(pcrit) errors approach zero.

t 2Several issues must be addressed. Since a singleatp,(tk) 2sin(p~1 1 )(sin(pj 1 ) - pctcos(pct)) feature association uniquely determines the motion

(73) parameters, features may be associated using the
Both denominator factors have Pair = 0 as their only common motion paradigm. But, the association ofroot on the interval (- har) and features without a motion estimate has yet to be

demonstrated or analyzed. Furthermore, sequential

im aPetit 3/2. (74) multiple-feature motion estimation with tolerance to
P-o DIP-(tk) errors in feature association needs to be demonstrated.

Also, the circular motion model is not adequate
Therefore jP - (0)P 1t is bounded on that intervaL for many applications. The model can be extended

As *i(tk) -- +r/2, peru -" +r. Furthermore, the by allowing the center of rotation to move with
derivative in equation (73) tends to infinity at these constant velocity or allowing the plane of rotation
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to be unknown. If the measurements include 3-D [51 - (1982)

position plus Doppler, the motion parameters~may be Estimating three-dimensional motion parameters of a rigid

uniquely determined for both extensions. Finally, the planar patch, II: Singular value decomposition.
IEEE Transactions on Acoustics, Speech, and Signal.

theoretical sensitivity analysis needs to be completed Processing, ASSP-30 (Aug. 1982), 525-534.
and compared with numerical results. (61 - (1984)

Estimating three-dimensional motion parameters of a
rigid planar patch, III: Finite point correspondences and

APPENDIX A. FINDING ROOTS OF EQUATION (27) three-view problem.
IEEE Tranactions on Acoustics, Speechk and Signal

Section IV shows that (27) has at most two roots on Processing, ASSP-32 (Apr. 1984), 213-219.
the interval (-7r,r]. These roots are also roots of 17] - (1984)

Uniqueness and estimation of three-dimensional motion
F(p) = Ai(tk)cos(p - ii(tk)) - sinp/p. (78) parameters of rigid objects with curved surfaces.

IEEE Transactions on Pattern Analysis and Machine
We can redefine F(p) as a circular function that wraps Intelligence, 6 (Jan. 1984), 13-27.
around from -ir to ir by constraining its argument to [81 Gennery, D. B. (1982)

the interval (-r,,r]. Since F(-r) = F(w) the redefined aTcking known three-dimensional objects.

function is continuous. In Proceedings of the National Conference on Anrticial

The method of chords is used to find the roots of Intelligence, Aug. 1982,13-17.
1[9 Jaenicke, R. A. (1989)

F(.) if they exist. This method requires a starting and Structure from limited motion of complex rigid objects.
ending point such that the function, F(.), changes sign In Proceedings of the Wbokshop on Visual Motion, Mar.
on the interval between these points. 1989, 256-263.

First, assume 0 < I•ti(tk)I < r/2. If roots exist, 110] Broida, T. J., and Chellappa, R. (1986)
Estimation of object motion parameters from noisy

F(poit) = Ai(tk)cos(p i - 40i(tk))- sinprit/prit > 0 images.
IEEE Transactions on Pattern Analysis and Machine

(79) Intelligence, PAMI-S (Jan. 1986), 9O-990

equality indicating that both ro6ts are equal to pcit. [111 -- 11986)
Note that Kinematics and strtucture of a rigid object from a sequence

F(p it±r)<0. (80of noisy images.
(8) In Proceedings of IEEE lbrkshop on Motion:

T17herefore, we use pcit and p t + ir as the starting and Representation andAna4tsis, May 1986, 95-100.
[121 - (1986)

ending points, respectively, in the search for one root Kinematics of a rigid object from a sequence of noisy
and pctit and p,,t - r for the other. images: A batch approach.

Next assume r/2 < jIi(tk)j < r. Since two roots are In Proceedings of IEEE Conference on Computer Vision
known to exist, no existence test is necessary and pcit and Pattern Recognition, Miami Beach, Fl, June 1986,
is not defined. Here F(r) = F(-7r) Ž 0 and F(0) < 0. 176-182

S[131 Broida, T J., Chandrashekhar, S., and Chellappa, R. (1990)Therefore, we use i" and 0 as the starting and ending Recursive estimation of 3-D motion from a monocular

points, respectively, in the search for one root and -ir image sequence.
and 0 for the other root. IEEE Transactions on Aerospace Electronic System, 26

(July 1990), 639-656.
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