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. INTRODUCTION

An object may be treated as a point scatterer for
motion estimation of small (distant) objects. We define
a distributed object as one that cannot be adequately
represented as a single point scatterer for motion
estimation purposes. A distributed object model is
valid if the size of the object is of the same order as
the distance between the object and the observer.

Many papers on metion estimation of distributed
objects have appeared in the literature. See {19]
for a more thorough review. The measurements
are extracted from sequential images (or frames).
2apers in the literature have dealt with a variety of
measurement systems including perspective projections
[4-8, 10-14], orthographic projections (3-D position)
{2, 3, 15, 18], and range-Doppler [9). Here we deal
with a measurement vector that includes the 3-D (or
2-D) position plus Doppler. Such measurements are
available from monopulse radar, and some sonar and
laser systems. '

A distributed object can be modeled as a surface
or as a finite set of point scatterers [1]. The point
scatterer model is more appropriate when the
wavelength is shorter than object features. Here, we
assume the point scatterers model. We also assume
the scatterers are fixed on the object (i.e., rigid body
motion).

There are two main approaches to motion
estimation in the literature, flow-based methods and
feature matching methods. For the point scatterer
model of a distributed object, feature matching seems
to be a natural choice.

Feature matching methods require that a
correspondence be known or established between
features in successive frames. Algorithms that do
not require the establishment of correspondences
have also been pursued [2, 3], but lack the occlusion
tolerance and motion parameter uniqueness of the
approach described here. Methods for establishing such
correspondences have been developed in [8, 9, 13]. The
process of establishing correspondences is prone to
error. The probability of making an error is especially
high when estimating motion from the first two frames
if a prior motion estimate is not available. Errors from
feature mismatch often propagate many frames before
being resolved [9, 13].

On startup, rather than attempt to match features
by the nearest neighbor method, we propose assuming
feature associations over enough time samples such
that the combined measurements uniquely determine
the motion parameters. If motion parameters are
calculated from the combined measurements, the
motion parameters from each correctly associated
feature are identical except for noise effects. If there
are N features, there are N2 possible feature
associations between two frames of data. If three
frames of data are required to uniquely determine the
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motion parameters, one would have to consider N3
associations. We choose 1o consider only two frames
and only salient features such that N is small. To

have sufficient measurements from only two frames
we assume the measurements include position (i.c.,

active rather than passive measurements) plus Doppler.

The use of only passive measurements would require
more frames to uniquely determine the parameters of
the same motion model. It would also require proof
that the parameters of this specific motion model

are uniquely determined. We show that only one
feature match (6 measurements in 2-D) is required

to uniquely estimate circular motion in a plane (5
unknown parameters). This analysis is extended to
motion of a 3-D object when the orientation of the axis
of rotation is known. ‘

Occlusion (part of the object not visible)
complicates the association of features. It may be
caused by glint (phase interference) or one object
shadowing another. It may occur if the transmitting
and receiving beams are poorly positioned or
insufficiently wide to cover the entire object. It
may also be caused by aspect dependence or range
dependence of the feature scattering strength as
in the following examples. Consider a scenario
where the range to the object is decreasing by orders
of magnitude. The number of resolvable features
increases as the range decreases. Consider also a
scenario where the aspect is changing with time.
Features visible at one aspect may not be visible at
another.

Robustness against occlusion by filling in missing
mezsurements with model estimates has been
proposed [13]. This assumes a good motion estimate
is available and the number of features is constant.
To develop an algorithm that adapts to changes in
the number and visibility of features, we propose
matching features one by one and extracting the
motion information from each match. Thus, the
number of features and some (but not all) of the
features being measured are allowed to change each
frame.

Occlusion invalidates several common assumptions.
It is common to represent the interframe motion as a
rotation and a translation, and estimate the translation
by assuming the average of the feature locations is
fixed with respect to the object {2, 3, 9, 18]. Under
occlusion the average of the feature locations is not
fixed. It is frame dependent even without consideration
of measurement noise. Object-centered coordinate
systems [13-15] are inherently intolerant of occlusion.

Because the size of the object is of the order of the
range, Doppler cannot be treated as “cross-range” as
is commonly done in radar. For this work, Doppler
is treated as a measurement of range-rate. Inclusion
of Doppler as a measurement invariably leads to a
nonlinear relationship between measurements and the
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estimated motion paramecters. Therefore uniquencss
is not guarenteed and it is necessary to analyze the
existence and uniqueness of the motion parameters.
The work is organized as follows. In Section II the
measurements are discussed. In Section 1l the motion
model is given with insights into the limits that are
placed on the model by the occlusion assumption. This
is followed in Section IV by analysis of the uniqueness
and existence of the motion parameter given the
measurements. Finally, in Section V the sensitivities
of the calculated motion parameters to errors in
measurements are derived.

IIl.  MEASUREMENTS

The measurement model is intended for an
active (transmitting and receiving) system where
the transmitted waveform is sufficiently narrow
in bandwidth so that the time compression of
the waveform due to motion of the object can be
interpreted as a Doppler shift. Given that assumption,
range-rate can be calculated exactly from the
transmitted and received frequencies, f; and f, by

TR

where ¢ is the speed of the sound.

We assume the system has two sensors on the order
of a wavelength apart. The direction of arrival can
be estimated from the difference in phase between
sensors. The wavelength is assumed small with
respect to the object structure so the sonar return is
dominated by specular reflections, thus justifying the
representation of the object as a set of point scatterers.
We also assume that the resolution of the transmitted
pulse is sufficient to resolve the features of the object.

1)

fil. MOTION MODELS

Models for motion estimation of point objects
use parameters such as position and velocity. A
motion model for distributed objects must describe
the motion of each feature on the object. One could
build a distributed model by letting each point have
its own motion parameters and add the constraint that
feature-to-feature fluctuations in the parameters are
small. Rather than add this complexity, we assume the
motion parameters are constants.

One approach to representing distributed motion
with constant parameters is to describe the motion
of a reference point on the object and the relation of
all features to it. Another approach is to describe the
motion of the whole rigid object such that the motion
parameters describe the motion of each and every
feature on the object. An equivalent definition is that
the parameters that describe the motion of the object
as a whole are observable from measurements of any
feature on the object. The motion parameters in

19
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such a model are herein called “common” motion
parameters.

The reference point model is poorly defined when
the reference point is not directly measurable. If an
arbitrary point on the object is chosen, the position of
that point can be updated with time using estimated
motion parameters. With uncertainty in the motion
paramcters, the measurement uncertainty of the
reference position always increases with time. Unless
measurements of the reference point’s position can be
obtained, the reference point model is not viable for
estimation purposes. If the reference point is an object
feature, that feature may become unmeasurable due to
occlusion. If the reference point is the object centroid
(average of all visible features), its measurement is
affected by the occlusion of any feature. In our model,
we assume that the features are fixed on the object
and are visible for at least two successive frames. The
centroid is allowed to vary from frame to frame. To
add robustness against occlusion, the common motion
model is used for motion estimation.

However, the common motion model also has a
drawback. The common motion model for a circular
(rotating) trajectory is poorly defined for a straight-line
(nonrotating) trajectory. The reference point model
is well defined on the boundary petween circular and
straight-line trajectories. It is used to generate common
motion models for both circular and straight-line
trajectories. Therefore both common motion models
represent equivalent motion at the boundary.

To derive the reference point motion model
we assume the object is moving with a constant
angular-velocity on a circular trajectory in a known
plane [20]. Five parameters are needed to describe
the motion of the reference point; the initial position
Xo, Y0, speed V), initial heading Ao, and heading rate w.

For a distributed object, we add structure, the
position of the additional features relative to the
reference point which is denoted as (u;,v;) where u;
is the position component of the ith feature in the
direction of the heading and v; is the component along
the perpendicular direction as shown in Fig. 1. The
position, P;(t), and range-rate, #;(¢), for the ith feature
without noise are given by

x;(t) = xo + u;cosh(t) — v;sinh(t)

+ V/‘cosh(‘r)d'r 2)
0
yi(t) = yo + u;sinh(t) + v;cosh(r)
+V/'sinh(r)dr 3)
°
h(t) = ho + wt @
Py =[xt y@ ®)
#(e) = P@)"B@/NIPi ol ©)

where T denotes the transpose.

Fig. 1. “Common” parameter motion model of distributed object.

Note that the observer need not be at the center
of the circle. The heading rate w, and the center of
rotation S are common motion parameters. They
are the same for all features on the object. With the
designation of an increment in time, they constitute
a transformation. Furthermore, the parameters (of
the transformation) are time invariant. The relation
between the reference point model and the common
motion model is as follows:

-xo - Y—sinho
S= “‘,’ )
| Yo + —u-)-cosho
o [ u() ] o
i = .V 3
[vO-5
r —ar h
Hy = c?sho sin o] ©)
| sinhg coshg
R = [cosw! —sinwt] 10
v =  sinwt  coswt (19)
P;(t) = S+ R, (t)HoQ:. (i1)
The model can be further simplified by letting
G; = HpQ; which yields
P(t) =S+ R,()G.. (12)

This simplification leads to no loss of generality
because the matrix Hp only orients the object-centered
coordinate system.

As mentioned, this parameterization has a
drawback. As the heading rate approaches zero,
the distance between the object and the center of
rotation approaches infinity. For this case (straight-line
motion) a different common motion model is used.
The reference point model with w = 0 is equivalent to
the following common motion model with the velocity
components, ¥, =V cos(ho) and V, = V'sin(ho), as the
common motion parameters. The model becomes

X0 u; V“r
CENEINEE
Yo Vi Vy
The range-rate measurement is given by (6). For
straight-line motion, there is no need to distinguish

(13)
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between the common motion and the reference point
models.

V. EXISTENCE AND UNIQUENESS

The relationship between parameters and
measurements for the circular trajectory, common
motion model is nonlincar. Therefore, having more
measurements than unknowns is not sufficient to
establish the uniqueness of the motion parameter
solution. Furthermore, a solution may not exist. In
this section both existence and uniqueness of the
common motion parameters are analyzed for an
object on a circular trajectory. A method is given to
distinguish straight-line and circular trajectories. Once
a straight-line trajectory is distinguished, the existence
and uniqueness analysis becomes trivial with position
measurements only. We concentrate on analyzing the
circular trajectory while extending some analysis to
straight-line trajectories.

Circular motion cannot be uniquely determined
from position measurements at two successive times.
(An infinite number of circles can be drawn through
two points.) The ambiguity is resolved using range-rate
measurements in addition to position.

Let the ith object feature be observed through 2-D
position P;(r) and range-rate F;(t) (from Doppler)
measurements at successive times t = t1,f; given by

Pi(t) = S + R,(1)Gi (14)
Fi(t) = PP/ || Pi(e)- (15)

Beginning with these six measurement equations
in the five unknown motion parameters, w, S, and
G;, we use substitution to reduce the problem to
two transcendental equations in the one unknown
parameter w. Differentiation of P;(r) gives

P(t) = Ru(t)Gi (16)
=wBR,(t)Gi 17
where
s=[, "o (18)
1 0

The change in position is
AP; = Pi(t2) - Pi(t1) 19
= (Ru(t2) - Ru(1))Gi (20
= 2sin(wt4) BRu (t.)Gi (21

where £, = (12 + 11)/2 and ¢4 = (£ — 11)/2. Substituting
(21) into (17) to eliminate G; and substituting for P;(t)
gives the pair of equations
Filtk) = @P:(t)T Ru (6 — t)AP)/ (2| Pi(t) || sinwta),
k=12 (22)

where the subscript & has been added to distinguish
equations. Both equations are clearly a function of
both 1, and ¢;. Further simplification is possible using
P = wiy to scale w and defining

Ai(te) = AP/ (2alFi(u)))
ilte) = sgn(te — L)0iCte) + 5 — ZSEN(A(L)) (24)

2)

) T .
6:(1) = arctan [%] (25)
sgn(t) = { >0 . (26)
-1 <0
These substitutions yield
sinp/p = Ai(t)cos(p — Yi(te)),  k=1,2
e2)

which is the basis of our uniqueness and existence
analysis. Since (27) is really two equations, for clarity
we use the word roots to mean the solution of a single
equation. We use the word solution in referring to both
equations simultancously. Because the above derivation
involved dividing by #;(t), special considerations are
required when f’,'(tk) =0

If we let p be the solution of (27), the center of
rotation is

S = [Pi(th) + Pi(12)]/2 + (cot(p)/2)BAP..

Clearly § exists and is unique if a solution of (27),
D, exists and is unique, respectively. Therefore the
focus is on the existence of a solution to (27) and its
uniqueness.

(28)

A. Motion Classes

We define the following exceptional classes
of motion. Let C; be straight-line motion. Let
C- be circular motion for a feature that is the
center of rotation (||G;|| = 0). Let C; be circular
motion for a feature that has completed a full circle
between samples (p = nm, n#£0, n€ N). Let C4
be the nil motion of a stationary feature. C4 can be
mathematically described by the straight-line motion
parameters with V, = ¥, = 0. Note that (21) and (17)
are not valid for motion classes C; and C4. There is
reason for concern that (27) does not apply to this
case. However, by substituting the common motion
model for straight-line motion into (27) we get

sinp/p = cos p + sin psgn(ty — t,)tan(8;(t))
k=12 (29)
Clearly p = 0 is always a root. Therefore (27) is valid
for D; € C;.
Define D; as the motion class of the ith feature.

The following lemmas determine if D; belongs to
exceptional classes C, C3, or Cy.

RICKS AND CHATTERIJEE: EXISTENCE AND UNIQUENESS OF MOTION PARAMETERS IN ACTIVE RANGING 2]
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Fig. 2 Object feature on a circular trajectory and observer outside
the cirde.

LEMMA 1 Motion classes C; and C4 are physically
indistinguishable.

mm 2 DieCi=||lAP =0

LEMMA3 D;€C2UC = ||AP|| =0and 7;(f) =Q
LEMMA 4 }|AP)j =0=D; €C2UCUC,

PROOF. Using the circular motion model, the proof
for motion classes C, or C3 follows from
APYAP; = asin’ p GTG..

Using the straight-line motion model, the proof for
motion class C¢ follows from

?
APFAP; =4(V2 +V)).

(30)

(31)

a-

By Lemma 4, if ||AP;|| = 0 we conclude D; €
C2UC3UCy. Butif ||AP;|| =0and #(t) #0, k=1 or
2 we further conclude D; € C3. However, there exists
a subset of C3 such that #;(t;) =0, k = 1,2 which is
visibly indistinguishable from C; UC,.

B. Existence of Motion Parameter Solution

Assume D; ¢ C3UC3UCy. The measurements
enter into (27) only through the functions A;(#x) and
¥i(tx). Given Pi(tx), AP; € R? - {(0,0)} and #:(tx) €
[-M,M] for an appropriate value M, A;(t;) and
¥i(t) map onto the intervals (0,00) and (p - 7,p + 7),
respectively. Their domains are more restricted in
special cases.

Consider a feature moving on a circular trajectory
with the observer outside the circle as shown in Fig. 2.
In Figs. 2-7 the trajectory of P;(t;) begins at the “o”
and ends at the “x.” The trajectory of P;(rz) leads that
of P;(t;) by the angle 2p. Here p = 0.4. As the feature
moves, ¥;(¢;) and ¢;(f;) take on sampled values along
the trajectory shown in Fig. 3. As a feature completes
one circle, ¥;(t;) cycles through its domain twice.

If the observer is inside the trajectory circle as
shown in Fig. 4, the trajectory of ¥;(#1) changes form
as shown in Fig. 5. Variables %;(), k = 1,2 never
take on values on the interval (p — arccos(do/d), p +
arccos(do/d)).

For a feature on a straight-line trajectory, the
trajectory and corresponding v;(¢1) and ¥:(f2)

. \\*-'(‘:)
\,

i
Eas *(") A i :
% location o trajectory

Fig. 3. Trajectories of ;(t1) and y;(f2) for circular feature
trajectory and observer outside the drcle.

/7‘\\%-'-,
k}l

Fig. 4. Object feature on a circular trajectory and observer inside
the cirde.

1
-] %(ta)
eStp - m‘i‘c/‘)

sl TP

P+ acoe(de/d);

(radiane)

Fig. 5. Trajectories of y;(f1) and y;(s;) for circular feature
trajectory and observer inside the circle.

Fig. 6. Object feature on a straight-line trajectory.

15}
N

[~
#(ts)

k_

{radians)

1
as|
o
as|
4

e location on trajectory

Fig. 7. Trajectories of ¢;(t;) and ¢i(t;) for straight-line feature
trajectory.

trajectories are shown in Figs. 6 and 7. Here ¥;(7;) and
¥i(2) take on the value zero only if the observer is in
the path of the feature trajectory. They approach zero
as the feature range (||P;(t:)|| or ||P;(t2)[|) approaches
infinity.
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TABLE 1
Values of Agic(Vi(tc))

m | Acrie ;mgaoj m | A (mx/30)
0 1. 8 0.82808
1 0.99726 9 0.79330
2 0.98905 10 0.73442
3 0.97541 11 0.67822
4 0.95638 12 0.61707
5 0.93206 13 0.54839
[} 0.90251 14 0.46743
7 0.86783 16 0.31831

With these preliminaries, we next investigate
the existence of roots of (27) for each k separately.
Conditions for existence of roots are as follows.

THEOREM 1 If [(¥i(tx))2x| < ¥/2 there is a value

Agir = Acit(¥i(tx)) that satisfies the following: Equation
(27, t = tx) has two roots on the interval p € (-7 «] iff
Ai(tx) 2 Acie

The subscript 2x indicates constraint modulo 27 to
the interval (—=,7]. The proof is shown graphically in
Fig. 8. Note the main lobe of the sin p/p always has
twice the width of the sinusoid.

COROLLARY 1 If |(¥i(tx))2x| < */2 and two roots of
(27, t = t) exist on the interval p € (—7,7], those roots
are identical iff A;(t&k) = Aair-

A;(tx) = Aqin(¥i(tx)) defines the boundary for the
existence of roots to (27). If A;(tx) < Acrie(Pi(tk)) no
roots exist. However, for the noiseless case, A;(&)
is always greater than or equal to A (¥i(t)) and
equality is only achieved if sample times happen to fall
at specific time instants. The noisy measurement case
is treated in Section V.

The function Aqu(¥:(tt)) can be calculated
numericaily by noting that both functions in Fig. 8 and
their derivatives are equal when A4;(t;) = Aci(Vi(t))-
Let p.i denote the value of p at the point of tangency.
Then we can calculate A (¥:(tx)) from

Perit? + $in% Perit = 2Perit SN Perit COS Perit
Pait

A ($i(8)) =
(32)

Pait — S Perit €OS Perit

Sinz Perit

by solving (33) numerically for pqi. Results are

listed in Table I which is interpreted using Aqq(x) =

Aei(—x) Vx. It is interesting to note that Ami(7/2) =

1/=. _

Theorem 1 with substitution from (23) gives an
upper bound on the range rate of the ith feature,
__lIaR)

24 Aceir(Vi(te))

as a sufficient and necessary condition for roots of (27)
to exist if {(¥;(tx))2e] < 7/2.

tan(yi(t)) = (33)

[F:te)] < (34)

RICKS AND CHATTERIJEE: EXISTENCE AND UNIQUENESS OF MOTION PARAMETERS IN ACTIVE RANGING
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Acrui cons($(te ) ~ p)

i;:_’
Ai(ta)cos(i(ts) - p)

Fig. 8. Graph of (27) showing the existence of 0 or 2 roots as a
function of A;(t).

Theorem 1 is useful for testing whether roots exist,
but the following extension is more useful in proving
the theorems that follow.

Let

Perit — SiN Pris COS P it )
sin? Pait

¥i(tt) = €(Pait) = arctan (

(35)
represent the invertible mapping of (33).

THEOREM 2 Given ¥;(tx), Ai(tx) = Acrit iff P = Perit =
U C1(9)}

The proof follows from (32). Even though pcsi:
is a double-valued function of Ay, the ambiguity is
resolved by knowing the sign of ¥;(t).

Next we consider conditions for which roots always
exist.
THEOREM 3 If —% < (¥i(te))2e < —7/20r /2 <
Wi(t))2x < 7, (27) has two roots on the interval p €
(m, 7]

The proof also follows from Fig. 8.

If it is known a priori that the observer is inside the
feature’s circular trajectory, the following theorem is
useful. With a sufficiently high sample rate (sufficiently
small p), two roots always exist. Let {(p) = p — £(p).
This is also an invertible mapping.

THEOREM 4 If the observer is inside the circular
trajectory of the feature and |p| < (~'(arccos(dy/d))
then p # £~ (%i(t)) Vix.

PROOF OF THEOREM 4 The proof follows from

Fig. 5. The function §{(p) is a monotonically increasing
and passes through the origin. Therefore a plot of
Perit Versus time has the same form as the plot of
¥i(t) in Fig. 5. It follow that there exists a value pmi
corresponding to p — arccos(do/d) in Fig. 5 such that
Perit NEver exceeds p,, during the first half of the
¥i(n) trajectory. Similarly, there exists a value p..»
corresponding to p + arccos(do/d) in Fig. 5 such that
Peri NEver decreases below pn,» during the second
half of the ;(t;) trajectory. If p is such that p,,; <

P < Pm2, then p # peie Vti, k = 1,2. Transforming by
applying £() yields

p — arccos(dg/d) < £(p) < p +arccos(dy/d) (36)
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AW WA

Fig. 9. -Equation (27, ¢ =) is (a) inconsistent, (b) consistent with
one root, and (c) consistent with both roots of (27, ¢ = 13).

and
(37)

O

(P < ¢~ (arccos(do/d)).

Consider the special case of 7;(tx) = 0.

Equation (27) has the two roots p = ¥;(ix) £ 7/2.
Clearly, roots always exist.

Consider the case of straight-line motion (D; € ;).
With the following minor conditions, two roots always
exist.

THEOREM 5 If the feature is on a straight-line
trajectory, the observer is not located on the trajectory,
and {[P;(ti)lf < oo, then p # €~ (yi(t))

The proof follows from Fig. 7.

To this point, we have examined (27) for each time
separately. Using (27) for both instants of time ¢; and
t2, we examine the existence as well as the uniqueness
of the solution. The existence condition is stated as
follows.

LEMMA 5 If roots exist for both equations (27, k = 1)
and (27, k = 2), a solution exists for (27) the pair

iff one root of (27, k = 1) is identical to one root of
27, k =2).

This is illustrated in Fig. 9. In Fig. 8, (27) is plotted
showing variations of 4;(#%). Here (27) is again
plotted, but 4;(¢;) is constant and both equations
(k = 1,2) are shown.

Generally, it is a good idea to stay away from
the existence boundary (A;(¢) = Aci). We show that
motion parameters are more sensitive to measurement
error there. The following theorem gives conditions
such that roots of both equations are simultaneously on
the existence boundary.

THEOREM 6 Assume the roots of (27, k = 1) are on
the existence boundary and that the roots of (27, k = 2)
satisfy the existence conditions of Lemma 5. Then the
roots of (27, k = 2) are also on the existence boundary
iff the object-observer geometry is one of the ambiguous
geometries defined ¥;(t2) = ¥;(t,) (discussed later).

PROOF OF THEOREM 6 Although p is unknown, we

know p = peir = £ (%i(tx)), k = 1,2. Applying the
one to one mapping, £, yields

C. Uniqueness of Motion Parameters

What if two values p(!} and p@ exist which are
roots of both equations (27, k = 1) and (27, k = 2)?
The uniqueness of the solution is stated in the
following theorem which is proved with the aid of
subsequent lemmas.

THEOREM 7 Let 8;(t)) be the angle between P;(1;) and
AP;, and a,'(lz) be the angie between P,'(lz) and AP;
(0:(t)) and 6,(12) are consistent with earlier definitions.)
Assume a solution exists for (27). The solution is
ambiguous (two distinct solutions exist) iff

9,'(11) + 9,'(12) =0, F; (t2) = Fi(t1) (39)
or
0:(1h) +0i(r2) = =, Fi(t2) = —Fi(n)- (40)
LEMMA 6 The eguation
Ai(t)cos(p — $i(t1)) = Ai(t2)cos(p ~ ¥i(12))
(41)

is either true for all p, or has two solutions on the
interval p € (-x,7) and p® = pM + 5.1

To prove Lemma 6, we form a function by
subtracting the right-hand side of (41) from the
left-hand side. The function is a sinusoid of the same
period and the roots are related by p@ = p() + 7.

By application of the Intermediate Value Theorem to
this function, we conclude it has two roots on (-, 7],
unless it is zero everywhere, in which case all values of
P are roots.

LEMMA 7 Tivo values, p and p® # p", exist which
are roots of both (27, k = 1) and (27, k =2) iff

Ai(t)cos(p ~ ¥i(f)) = Ai(t2)cos(p - ¥i(12)) ¥ p.

(42)

PROOF OF LEMMA 7  If p®) and p® are roots of both
equations (27, k = 1) and (27, k =2) and p) # p®,
then

%ﬁ = A;(t1)cos(p — ¥ (1))

p=p",p%.
(43)

= Ai(t2)cos(p — ¥i(t2)),

Since sinp/p > 0 for p € (~7,7] and sinp/p = O only
for p = 7, we can assign the roots to p() and p@
such that A4;(r,)cos(p® — 9;(t)) > 0, k = 1,2 and
Ai(t)cos(pD — 9i(t)) > 0, k = 1,2. Assume there
exists some value p € (—m, ] such that (43) is not
true. Then, given that p(!) satisfies (43), by Lemma 6,

Yi(t) = i(ty). 38 ——————
¢ i€ ) ( ) 'When angles are added, we imply that the result is constrained to
The converse is straight forward. O theinterval (~7,x).
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(a) ®

Fig. 10. Ambiguous geometries for (a) 9;(t)) +0;(t2) = 0, and
() 0:(r) +8ir2) = 7.

h e‘: l @
(2} ®)

Fig. 11. Trajectories associated with ambiguous geometries.
(a) Symmetric. (b) Asymmetric.

PP = p® +x is the other root. This leads to the
contradiction

Ai(t)eos(pV - i) <0 k=12 (44)
The converse follows from Fig. 9(c). 0
LEMMA 8 Since A;i(t:), 4i(t2) > G,
Ai(ty)cos(p - 9i(f1)) = Ai(t2)cos(p~¥i(t2))  V p
= Yi(t1) = Yi(12)- (45)

PROOF OF THEOREM 7 Assume the solution is
ambiguous (i.e., p() and p@ # p() are roots of
both equations (27, k = 1) and (27, k = 2)). Then by
Lemmas 7 and 8 v;(#1) = ¥;(s2). First, if we assume
Fi(t2) = #i(1) in (24)
0:(t2) = —0:(t1).
Alternately, if we assume that #;(2) = —#;(#1) in (24)

(47)

(46)

0:(t2) = —0;(t)) + =.

To prove the converse, one can show that y;(f1) =
¥i(22) and A;(t;) = A;(tz). We then conclude that

Ai(n)cos(p — ¥i(h)) = Ai(@)cos(p - ¥i(t2))  Vp
48)
and the trajectory is ambiguous by Lemma 7. O

Assume an object feature is located as indicated by
the “o”s in Fig. 10(a) and (b) at times ¢t =¢; and ¢ = 1,.
The loci of the observer locations that yield ambiguous
geometries are shown as dark lines.

If measured positions and observer are collinear,
the ambiguous traiectories are reflections of each
other as shown in Fig. 11(a). If the observer lies
on a perpendicular bisector of AP;, the ambiguous

trajectories are dissimilar as shown in Fig. 11(b).
Ambiguities associated with nonsymmetric trajectories
are resolved by measurements at another time 3, if
the trajectory is again limited to less than a full circle
between 1; and f3. The speed distinguishes the correct
trajectory.

It is possible that the ambiguity of a collinear
geometry would not be resolved by a measurement
at ¢3 if the feature position is also collinear with the
first two (and the observer). Since these are limited to
specific ambiguous geometries, it is highly probable
that ambiguities would be resolved by matching
multiple features on an object.

D. Existence and Uniqueness for 3-D Position Plus
Doppler

This analysis can be extended to 3-D motion if the
orientation of the rotation axis is known. If the plane
of object motion is unknown, a noncollinear position
measurement at another time 3 is required. Assume
now that Doppler and 3-D position measurements are
available. We consider the case where the observer is
not in the plane of motion of a given feature. Assume
that the observer is at z = 0 and the reference has been
rotated such that measurements yield the same depth
(i.e., Z,'(ll) = Z,'(tz)).

For this case (27) becomes

sinp/p = Ait)cos(p - ¥i(1)),  k=1,2
(49)
.wherc
Ai(n) = [|AP||cos(Ei (0 )}/ Qealti(t)l)  (50)
and
ey L HORSAQ)
B0 = \/x,?(r) wio+ao O

With A;(tx) replacing A4;(t), the existence and
uniqueness analysis is identical to that given earlier.

E. An Example

Assuming noiseless measurements, uniqueness
guarantees that the true motion parameters can be
found by solving the measurements equations of any
feature pair. The motion parameter p and hence
w = p/ty are obtained from

k=12
(52)

sinp/p = A;(tx) cos(p — ¥i(ti)),

using the method of chords given in Appendix A. In
general one obtains two values of p for each ¢. The
value of p that satisfies (52) for both &k = 1,2 is the
unique solution.
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Once the estimate p is obtained, S is estimated by
§ = [Pi(t1) + Pi(t2))/2 + (cou(p)/2)BAP;.  (53)

For the ith feature, let P,(t;) = [8 0T, Pi(12) =
(8 87, #:i(1h) =, and #;(rz) = 0. Assume ¢4 = 1. The
two roots of (52, k = 1) are p =7 and p = 7/4.
Similarly, the two roots of (52, k = 2) are p = —3x/4
and p = 7/4. We then set p = 7 /4 because it satisfics
both equations. The center of rotation is located at
S=44q.

V. SENSITIVITY OF MOTION PARAMETERS TO
ERRORS IN MEASUREMENTS

Now consider that the measurements contain -
noise and the roots of the m=asurement equations
are in error. The measurement equations are barely
overdetermined and one would not expect the roots
to be highly robust to noise. The use of such roots
in an efficient estimator is discussed in [24]). As the
density of the measurement errors, estimation bias, and
estimation variance are not available, a complete noise
analysis is not possible. However, we can calculate the
derivative of the motion parameters with respect to
the measurements and address the cases for which
it is not bounded. Though not totally rigorous, the
measurement gradient is composed of reciprocals of
the derivatives given here. The measurement gradient
is used for calculating the error gradient and Hessian
for nonlinear minimization.

Measurement noise can change the parameters of
(27) such that roots do not exist particularly if 4;(t) is
near Aq;. We show that the solution p can be defined
such that the error in the estimate is bounded and goes
to zero as the measurement errors go to zero. This is
required for nonlinear minimization.

To simplify the derivation, we use the following
alternative definitions

llarpy

it follows that

ap1 < | 328 |1eapit + | 225 Hapo

(38)

|dri(t)).

ap
ar (t)

Here, T denotes the transpose and vector norms are
[2-porms. From (58) it is sufficient to show that

ap op ap
AP(t) ||’ [| 0AP: ||| 8%:i(tk)
Differentiating (56) with respect to the unspecified

motion parameter 7 and also substituting from (56) to
remove dependence on A, () yields

< 00. (59)

[‘39!;;—"2 cos(p - () + L sin(p - E.m»] z

(o~ )

T2 singp - ) )

sm p (60)

Forn= AP,-, the partials are

A1) _
8AP;,

sin pAP;
peos(p = Yt AP|?

99i() _ s8Rt ~ ta)BRo,) (1) Pi(ti)
dAP; 1P (eI AP ’

The right-hand side of (60) becomes

(61)

(62)

sinp

PIAPIE o=yt (63)

—y(DAP;.
We have used the identity

[Pi)ll

l“AP I R, (’k)(l)AP

Note that there is a pole at ||AP}| = 0. If ||JAP}| =0

we conclude that the motion class D; € CoUC3 UCq.
For 5 = #;(tx), it would appear that there are

Pi(te) = (64)

Ai(te) = IR (54) poles at #;(1;) = 0. However, upon more careful
47k examination, poles cancel and the only pole left is the
D.(t) = sgn(te — ta)0:(12)- (55) aforementioned pole at “AP,H =0.
For 1 = P;(t), the partials are
The equation 9Lt
sinp _ = apfzk) = of (63)
— = Ailt)cos(p ~ Bi(t) (56) Til)
: 0%, (t) _ sgn(t — ta)BPi(ty) (66)
still holds. 9P;i(t) WPl
Using the definition of a total derivative for th
parax:ctir ; ehmto ot detivalt r e The right-hand side of (60) becomes
sinp sgn(te — t,)BPi(tx)
ap T ap T —=sin(p — ¥;(%)) Paore - ©D
— X i (2,
dp=zap dAPi+ 5o TN dPi(t) P 1P ()l
Thus, there is a pole at ||Pi(t)]] = 0. The case
+ ?P i) (57) ||P,~(tQ|{ =0 xs easily detected and not expected to
ori(t) occur in practice.
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The derivative fails to exist if the coefficient of
dp/dn in (60) is zero, and the right-hand side is
non-zero {25]. This happens when p is the solution of
p —sin pcos P

sin’ p
Noting that tan,(f) = tan; (i), this equation
is immediately recognized as the definition of the
existence boundary. For continuity across the existence
boundary we redefine p as
Either solution of sin p/p = Ai(ty)cos(p ~ ¥,(1x))
if aroot exists .

tanp, (&) = (68)

else
(69)

Pait

Though dp/dn does not exist at the boundary, the
change in p due to a small error in any meéasurement
is bounded and decreases to zero as the measurement
error approaches zero which is illustrated as follows.

Let p© be the true value of p and let p* be the
calculated parameter from noisy measurements. Then,
for any increase in 7;(z;), even if the change causes the
roots of the measurement equations to not exist,

16~ pO| < Ipd— PO.

Furthermore, |perit — p©@| — 0 as the true

measurements approach the existence boundary.
But if n = AP; or P;(t), then pqy is affected by

the measurements. In this case, let pc?,)‘ be the value

of Perir without noise and p{) be the value with noise.
Then

(70)

16— pOI < |pQh = PO+ PSR- PG (1)
The second term may be approximated by
P p® o Opait " dn = 4Pait_ at/’,(tk)
crit crit a” dlp (t ) aﬂ
(72)

using the chain rule. The partials of ¥;(t) are given in
(62) and (66). From (33)

0Pt - P + SIn?(Perit) — 2 Perie SIN(Perie) €08 (Peric)
ai; (tx) 28i0(Perit) (SIN(Parit) — Perit €OS(Per))

(73)
Both denominator factors have pgy = 0 as their only
root on the interval (—7,7) and

apu'il
—_—=3/2.
Ptk

Therefore | p( pcml is bounded on that interval
As Y;(ty) — £7/2, paix — t7. Furthermore, the
derivative in equation (73) tends to infinity at these

(74)
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points. If without noise |y,(1¢)| > 7 /2, but due 10 noise
[¥i(te)| < x/2, we can redefine pg)i)‘ = 17 which is its
value at the boundary and equation (71) applies.
Unlike p for which the effect of a small change in
a measurement is bounded for all interesting cases,
an infinitesimally small change in p can cause a
large change in S near p = 0or xx. Fortunately, p
is calculated before S so this case is detectable. A
trivial remedy is to use the straight-line motion model
if —pm < p < pm for some constant p,,. To preclude
P = £ (and ||AP;|| =~ 0) one places a lower limit on
the data sampling rate. Assuming these constraints
have been met, we disregard these cases.
Substituting P,; = (P;(t2) + Pi(t1))/2 in (53) we
have

LAY

=1 (75)
sap = Cop)/DB 76)
5 __ -1 pup ™

ap  2sin’(p)

where [ is the 2 x 2 identity matrix. Clearly, no
additional poles exist.

VI. CONCLUSIONS

We have shown that unique motion parameters can
be obtained from a single feature match for position
plus range-rate measurements with the exception of
a few specific geometries. Geometric constraints for
uniqueness and existence of motion parameters have
been given. The motion model uses common motion
parameters, parameters that describe the motion of
all features associated with a rigid object. Because
each feature match (two frames) uniquely determines
the motion parameters, motion can be estimated for
each feature pair. The result is a significant increase
in occlusion tolerance. Finally, the sensitivities of the
motion parameters to small changes in measurements
are given. All sensitivities are bounded and the errors
in motion parameters tend to zero as the measurement
errors approach zero.

Several issues must be addressed. Since a single
feature association uniquely determines the motion
parameters, features may be associated using the
common motion paradigm. But, the association of
features without a motion estimate has yet to be
demonstrated or analyzed. Furthermore, sequential
multiple-feature motion estimation with tolerance to
errors in feature association needs to be demonstrated.
Also, the circular motion model is not adequate
for many applications. The model can be extended
by allowing the center of rotation to move with
constant velocity or allowing the plane of rotation

5 ——




to be unknown. If the measurements include 3-D
position plus Doppler, the motion parameters-may be
uniquely determined for both extensions. Finally, the
theoretical sensitivity analysis needs to be completed
and compared with numerical results.

APPENDIX A. FINDING ROOTS OF EQUATION (27)

Section IV shows that (27) has at most two roots on
the interval (—w,x]. These roots are also roots of

F(p) = Ai(tx)cos(p - ¥i(t)) - sinp/p.  (78)

We can redefine F(p) as a circular function that wraps
around from —x to 7 by constraining its argument to
the interval (—m, 7). Since F(—7) = F(x) the redefined
function is continuous. :

The method of chords is used to find the roots of
F(-) if they exist. This method requires a starting and
ending point such that the function, F(-), changes sign
on the interval between these points.

First, assume 0 < |;(f)] < x/2. If roots exist,

F(Perit) = Ai (tk)cos(puii — ¥i(tx)) — Sin Perie/ Pesie > 0
)]
equality indicating that both robts are equal to pg;.
Note that
F(peir 2 7) <0. (80)

Therefore, we use poy and p i + 7 as the starting and
ending points, respectively, in the search for one root
and pgi and pgir — 7 for the other.

Next assume 7 /2 < |;(t;)] < . Since two roots are
known to exist, no existence test is necessary and P
is not defined. Here F(r) = F(—%) > 0 and F(0) < 0.
Therefore, we use = and O as the starting and ending
points, respectively, in the search for one root and —7
and O for the other root.
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