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Chapter 1
The HOPLA Architecture
1.1.Introduction:

The general properties of a new digital optical computer architecture, the optical programmable
logic array (HOPLA), are discussed. The advantages such as immense parallelism and sub-kT
operation of the HOPLA are discussed. Problems deriving from limitations on logical complexity and
on fixed interconnection are addressed. It is shown that the architecture may be used for general
purpose operation with the use of pre- and post-processors.

" 1.1.1 Objective:

In this chapter we describe a new architecture: the Optical Programmable Logic Array (HOPLA)
based upon the N4 interconnect devised by Caulfield [1,2]. It is capable of implementing arbitrary
logic by the use of the control operator method proposed by Morozov (3] and elaborated upon bly
Guilfoyle{4,5]. It is functionally identical to the class of electronic devices known as Programmable
Logic Arrays (PLAs) although on a considerably larger scale. Unlike previous designs implementin?
the control operator method, the HOPLA is a Wave Particle Duality (WPD) feasible processor(6,7,8
fufilling both the physical and computational criteria for WPD operation, and thus capable of
operating at exceedingly low power consumption levels. :

In addition we shall address the issue of generating the large (~105-6) fan-ins necessary for
achieving sub-kT efficiency within a WPD capable processor. We.shall also illustrate that although
the loFic 18 fixed within our processor, our design is capable of being reprogramed by a combination of
flexible pre- and post- processors as well as by the use of stored programs.

1.1.2. Background:

Within the past decade it has become a tenet of optical computing that for an optical computer to be
feasible, its performance, relative to that of a comparable electronic system, must be qualitatively
superior, given that electronics is the established and mature technology. One considerable
advantage to optical systems is the capacity for three dimensional interconnectivity. Guilfoyle (4] has
suggested that the optical computer should utilize a "global parallelism” which not only executes large
number of operaticns in parallel but interrelates the input data in such a fashion that the output is
dependent upon all of the input data. Such "global” parallelism is essentially the digital equivalent of
neural networks. But high interconnectivity has an importance beyond that of simple utility.
Caulfield et al. (6,7,8] have noted that certain configurations of highly interconnected optical
computers comprise Wave Particle Duality (WPD) computers. Such WPD computers are theoretically
capable of operating at an ener&y consumption rate of less than kT per operation, where k is the
Boltzmann constant and T is the absolute temperature. In contrast, current electronic digital

computers operate at energy consumption rates on the order of 106-101 0 kT per operation.

There exist a broad range of designs for implementing digital operations via o%tics. Both Cathey et
al.[9]) and Mirsalehi et al.g['w] have produced extensive reviews of the topic. Schemes which involve
high degrees of parallelism include the Optical Parallel Array Logic System (OPALS) architecture{11],
symbolic substitution archiect-ures{12], look-up table architectures{13), and various forms of the
control operator method(3,4,5]. As we will see, the control operator method subsumes table look-up
methods and has many similarities to the OPALS architecture. The unique advantages of the control
operator method are that it is capable of exploiting large fan-ins as well as only requiring a single
reshold level in the interpretaticn of its results.

1.1.3 The Control Operator Methed:

The control operator method was devised by Morozov (3] as a means of implementing digital logic on
computers via the use of matrix multiplication operations. The :ontrol operator technique has several
unique advantages such as gerera ity of operations, "global” pa -allelism, and, simple implementstion.

Optical systems are well suited for analog matrix multiplication. There exist a broad range of
methods for implementing such operations(1 4f By constraining the values within our matriczs and
vectors to either 0 or 1 and thresholding the resuits, it is possible to define a form of logical matrix
operation we shall refer to as a boolean matrix. Since the operations involving boolean matrices are

Page 1




" simply thresholded analog operations, any system capable of achieving analog matrix operations may
be converted to a bc lean matrix sysiem in a simple manner as shown below: -

1
0
101010 1] 1
010010-(1)=o-+o
01010 1] | (2] [1
-1.4

Thus in terms of logical equations after thresholding:

[a]
101010 5 a+b+c
01001.0-]:,= a'+c
010101 . a'+b'+c'
-c'-

When arithmetic is thus constrained to the values of 1 (true) or 0 (false) we discover that the
addition and multiplication operations become the OR (+) and AND (*) operations respectively. Thus
Boolean matrices follow the same rules for matrix multiplication as conventional matrices but with
the substitution of the AND operation for multiplication and the OR operation for addition. Note that
the control operator technique always uses bright loﬁli\cd where 1 denotes a true value, the presence of
light, or, a clear or reflective pixel in the case of an SLM.

Examining the results of such matrices operating upon a vector of binary variables we find that the
result is a boolean vector. The components of this resulting vector are obtained by the ORing of the
various elements of the input vector. Unfortunately the loE'scal OR operator is not sufficient to form a
complete system of logic. That is no combination of ORs is capable of generating an AND or a
NOT()(15]. Fortunately it is possible to generate the AND operator from the OR ogerat,or by the use
of the NOT operator. This is possible due to DeMorgan's laws (i.e. (ab'c)'=a'+b+c¢’ and
(a+b'+c)'=a'bc’)(15]. Thus the combination of the OR and NOT operator may be used to form a
complete system of logic in which it is alwmossible to reduce any logical function to the sum (series
of ORs) of a number of products (series of s) of logical variables and their complements (15]. The
format of such an equation is referred to as the Sum Of Products (SOP) or disjunctive normal form.
Sucha nom}al form serves as a useful intearmediate form for the transformation of of a logical function
into matrix form.

We now consider the means by which an arbitrary set of logical functions may be decomposed into a
pair of boolean matrix operations. To facilitate our discussion we offer a set of functions which are
used in section 4.2 of Reference (16]. The truth tables of these functions are shown in figure 1.1.

The disf'unctive normal form of a function may immediately be constructed by examination of the
truth table. Each term in this fcrm contains all of the input variables or their complements: i.e.
X1 x9X£'g corresponds to the 1 1 0 row of this truth table and is only true for that row. The disjunctive

normal form is thus simply constructed by ORing together the termns corresponding to rows in which
the function is true (1). In the case of our example:

21(x1,X2,X3)= X'1 X'9X'3 + X1 X'9X'3 + X1X'ox3 (3]
+ X] X9X3

29(x],X9,X3)= X'1X'9X3 + X'1XgX'g + K'1x0x3  [4]
+ X] X2X'3
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23(x] Xg,X3)= X1X'9X3 + X'1X X3 + X'1X9x'3 (5
+ X1 X'9X3 + X1 X9X'g + X] X9X3

The disjunctive normal form, although theoretically useful, is in most cases not the simplest
expression of a lcagical function. As noted 5)ove it is possigle to minimize a logical function by the use
of several methods. The best known of these being the Quine-McCluskey algorithm(15], individually
minimizing our functions we obtain: S

21(x1 Xg,X3)= X9X'3 + X1 X3 (6]
z9(x1 ,Xx9,X3)= X'1 X3 + x2§'3 (7
z3(x1 ,x9,x3)= X'9x3 + X1 X9 + X'1x'g [8] .

Such individual minimization techniques may lead to less than optimal results with respect to the
entire expression. Since we generate the component terms before we combine them, considerable
overall simplification may be achieved by discovering common terms between functions. Several
techniques have been devised which allow us to use methods such as the Quine-McCluskey algerithm
to optimize for overall simplicity; the Muller method [167 and the tag method [16] are the most
notable. In their current form the functions in our example have no common terms. Simultaneously
optimizing for greatest common simplicity we obtain:

z1(x1,x9,X3)= X'9x'g + X1 X3 9
z9(x1,%9,X3)= X'1X3 + X2*'3 [10]
z3(x1 ,x9,x3)= x9x'3 + X'1X'9 + x1x3  [11]

With this new formulation we now have several common terms, thus minimizing our overall
complexity.

Once the optimum overall formulation of the functions have been determined, the functions must
then be expressed in the form of two matrix operations interspersed with two logical complements in
the following manner:

z=S(Px) (12)

where x is a vector of the input variables, z is the vector of resulting functions, and S and P are both
matrices. A table is first constructed which lists the terms in relation to their component variables
and the functions in which they are members. In our current example such a table is shown in figure’
1.2. This table form is of considerable utilig:, not only for the construction of the desired matrices S
and P, but also for the light it sheds on the relationship between the critical components of the
gs&em. In the case of both current electronic PLA design and existing optical architectures, this table

irectly corresponds to the masking or interconnect pattern used, be the medium a matrix of wires or
a transmission pattern on an SLM. Due to this direct relationship, two critical parameters of this
table its height (which corresponds to the number of terms required for implementation), and its
width (which corresponds to the number of inputs and outputs), are used to describe the system. In
general these parameters are simply referred to as "height” and "width". Finally, this tabie may be
viewed as a form of schematic diagram of a system allowing one to trace out the operation of the
system under differing inputs.

Once the above table has been formed, the S and P matrices may be constructed. The P matrix
converts, in concert with the logical complementation operators, the x vector to the constituent terms
of the system. As noted above, boolean matrix operators may only form selective OR operations; and
thus the generation of the terms requires an indirect method using DeMorgan's laws. First the P
vector is constructed such that in operating upon the x vector, it generates the components of the
terms ORed together. From our example:
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0101 0 0] :? 2 by
010010 R EREE?
10001 o-{f | 2 +2,
00100 1| ]| % |x+x,
00010 1] |5} |x,+2y
4 |

We then complement x (in reality we simply interchange x,, and x') and complement the result which
by DeMorgan's laws generates the terms. Following our example:

-

0101 0 0] :f k]

010010 || |x+x,

10001 0fe*?|=|x,+x,

001001 f %', +2,

000101 ; | X +x;
and

[, +xp] [2%25]

X t+X, XX
(Px')=|x+x'5 | =| %%,
X'y +% X%’

L X+ X3 | _x'zx'a_

Once the necessary terms have been generated in the form of a vector, all that remains is to
enerate the set of functions by ORing the values of the terms together. Since this is the primary
ction of the boolean matrix the construction of the S matrix is quite triviel and essentially amounts
to a trlansposed form of the second section of the table we have constructed. In the case of our
example:

Tt
0010 1]|x,x
S(Px')=|0 1 0 1 Ofe| xx,
1011 0] |xx,
EXEY

X &y ¥

=| X 5+xnx,

X'y +x' X'y +2,2,
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2, (%, 20,%)
=| 2(%y, 2, %) |= 2
2,(xy,2,,%,)

Thus we have shown how it is possible to express any set of logical functions with two boolean
matrix operations and an intermediate logical complementation. The combination of these operators
may be expressed as a single operator:

Ox=S(Px)’=z (19]

This control operator is equivalent to any set of combinational logic functions, that is, any logical
expression which is not dependent upon memory or feedback. It is well known that arbitrary finite
automata may be genera feeding back the outputs of a system of combinatoral logic. Morozov{3]
has indicated that such feedback may be expressed as progressive application of the appropriate

control operator ® assuming the output vector z is of the same format as the input vector x. Thus we
have a practical method of implementing arbitrary logic and by feedback, arbitrary finite automata
via control operators.

1.1.4 Previous Designs:

As seen in the previous section, the control operator method provides a means of expressing logical
expressions as a series of thresholded analog matrix operations. The existence of such a method opens
the possibility of using any of the wide range of optical matrix multiplication schemes coupled with
thesholding and inversion components, either optical or electronic, to achieve digital logic. Two
%r:‘vious general purpose drchitectures have been proposed, one by Morozov(3] and one by

ilfoyle(5]. The architectures are similar in their capacity for reconfiguration and their use of SLMs
for the agent of interconnection.

Morozov [3] has tgroposcad several designs using the control operator method, the most general
architecture being that illustrated in figure 1.3. This system basiclag/lly consists of two SLM based
matrix multipliers with a one dimensional optically addressed S conﬁ%lred to operate in a
threshold and invert mode. Input is achieved via the use of a one dimensional LED array and output
is achieved by the use of a one. dimensional photodetector array with electronic thresholding.
Programming is achieved by loading the P matrix upon the first SLM and the S matrix upon the
second SLM. This system grovides for high speed due to the one dimensional nature of all of the data
carrying components. By changing the S and P matrices the logic of the system may be reconfigured.
The single major limitation of this method is that due to the use of SLMs as the control for
;r;tcir::nnection, the input is limited to one dimension, thus limiting the parallelism of the

itecture.

Guilfoyle[5] has proposed a radically different system that is capable of achieving two dimensional
data inpput by a systolic method. The Guilfoyle architecture displayed in figure 1.4 uses a two
dimensional SLM to input data, shifting each input vector to the adjacent row of pixels. The P matrix
is loaded upon the second, stationary . At each cycle the two SLMs are imaged together and the
result is focused column-wise onto a one dimensional detector array. The detector array utilizes
custom electronics to threshold and invert the results then OR the results with its previous state and
then transfer the result to the adjacent detector, thus electronically "following” the motion of the
input vector. This system does not use an ex%}‘i‘cit S vector but instead ORs all terms in the P vector
to generate a single. desired logi: function. This scheme essentially pipelines progressive matrix-
vector products. Since the data input SLM is an acousto-optic device, the rov; to row transfer is
automatic and rapid. The repid speed of operation coupled with high throughput results in impressive
preformance and parallelisin, despite the essentially serial output. Since, once again, a SLM mediates
the interconnection, the system is capable of reconfiguration. In addition, the dynamic nature of the
system allows especially large P matrices to be evaluated in several passes, giving the system an
essentially infinite virtual "height”, as defined in the previous section. Although the systolic approach
allows for two dimensional input, the use of a SLM for the control of the interconnect leads to the
limitation of the output array to one dimension. In fact, the requirement of the detector to
electronically "follow" the input vector limits the effective detector dimension to a single bit, although
the systolic nature of the output array assures that this is a fast serial output.

1.2. The HOPLA
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The Optical Programable Logic Array is a new implementation of the control operator method that
differs from previous designs in several critical aspects. Input and output are both two dimensional
and all elements of the input may interact with all others. The interconnections are not mediated by
SLMs but by holographic means. The interconnections are fixed and not reprogrammable. And most
importantly the HOPLA is WPD-Capable, and thus capable, under proper conditions, of operating at
energy consumption rates of less than kT per operation. This renders a proportional reduction in heat
dissipation[6,7,8]. The hardware configuration, WPD properties, and basic operation as a special
purpose processor are detailed in a previous paper{17].

As with all control operator method based computers, the HOPLA consists of a pair of matrix-vector
multipliers with an intermediate thresholding optical inverter. The optical layout of the system is
shown in figure 1.5. In the case of the HOPLA the matrix-vector multipliers consist of a pair of N4
interconnects. The thresholding inverter is a two dimensional optically-addressed SLM wit?\ contrast
hard-clipping and inverting features. Input is mediated by an electronically addressed SLM in the
first N4 interconnect; while output is achieved by the use of a two dimensional detector array at the
output plane of the second N4 intercennect. Feedback and storggze are achieved by electronic means.

The N4 interconnect, devised by Caulfield(1,2], serves as the heart of of the HOPLA. The N4
interconnect functionally operates as a weightea total interconnect between a SLM and an output
plane. The interconnect preforms the tensor product between a four-tensor T; ; i ) stored in the
hologram and a matrix a; j stored in the SLM resulting in a second matrix by | as calculated in the

following manner:
bic,1= £ X T j e 1bi [20]
1]

For purposes of the control operator method we may simpl%' rearrange the input vector x into the two-
dimensional a; ; matrix and in the same fashion view the T j ) | tensor as a very large P matrix. The
output product is folded into two dimensions in the same fashion as x vector was. The thresholding
inverter then complements the intermediate result; ar.d the proces= is repeated in the same fashion
for the S matrix. With the exception of the trivial folding of the input and output vectors, the
procedure is identical to the standard control operator method.

In order to grasp the differences between the HOPLA and previous SLM based approaches it is
useful to follow the P matrix multiplication through the system for a single bit of the result. A

functional diagram of the N4 interconnect is given in figure 1.6. The x vector is electronically loaded
onto the SLM. The hologram array is then illuminated. The hologram array consists of an NxN array
of seperate holograms 'msemblinil\ad Page Oriented Holographic Memory (POHM) each projecting a
different mask pattern onto the SLM, and each projection possessing a different angular frequency. In
the case of the specific output bit under consideration, the hologram at the conjugate point of the bit

' Fro'ects an image corresponding to a row from the P vector which has been folded in the same
ashion as the x vector. The mask encounters the SLM and is selectively transmitted evaluating the
AND operations of the boolean matrix product. The resulting wavefront is then focused to a point on
the output plane executing the OR operations of the boolean matrix product. If light is detected, the
result is true. Essentially the result 1s false if the grojected image is completely blocked by the SLM
and true otherwise. This is the only information derived from the operation. The results are then
detected, tresholded, inverted, and displayed by the optically addressed SLM which serves us the
thresholding inverter. .

Operationally, the dependence upon the mere presence or absence of light is the greatest strength of
the control operator method. Only a single threshold value is required; and the value of the threshold
is purely dependent upon the crosstalk and scatter of the N4 interconnect. The potential of each bit to
be simultaneously dependent upon any of the input values allows for values cf fan-in sufficent *> allow
for WPD- feasible operation.

1.2.1 The Height Prcblem

The optical strengths and weaknesses of the components of the HOPLA, especially the N+
interconnect, have been extensively discussed(2! but the switching theoretical feature have not been
yet considered. In this section we examine the savantages and drawbacks of the HOPLA in terms of
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ggg&aﬁoual complexity. In the next section we will offer possible remedies for the failings of the

An HOPLA capable of operation as a WPD processor would generalily incorporate roughly 106 inputs
organized as a 1024x1024 matrix. The number of possible outputs for a WPD processor is of a
comparable order. It would be biatantly imrossible to claim that an HOPLA or any other physically
realizable device would be capable of im'Fhementing any "arbitrary” logical function with such a
"width" or number of inputs and outputs. The reason for i’xis is the quality of "height”, or the number
of intermediate terms, as defined in section 1.3 of this chapter. The number of possible terms for n
variables is proportional to 21, thus the hei%’xt should grov. exponentially with the width in order to
retain generality. But in the case of the HOPLA the height is proportional to the width, since the
intermediate result is processed and stored on the thresholding inverter. This is due to the fact that
the scale of the thresholding inverter is limited to essentially the same scale as the input.

The second computational difficulty with the design of the HOPLA is the fixed nature of the
interconnections. Since the intercennections are mediated by the use of holograms rather than SLMs
as in the case of previous designs, the interconnections are incapable of reconfiguration during
computation. Although of little importance within.special purpose applications of this
architecture(17], the fixed nature of the interconnects complicates the task of designing a general
purpose processor. In the flexible interconnect systems the "program" resides in the interconnections
and the "data” resides within the input vector. Such a division of labor existed within the earliest
electronic computers as well; but as programs became more and more complex, this method became
infeasible. In current electronic computers the interconnections of the components are fixed and the
“"program"” resides in memory in the same fashion as data. The same "stored program"” concept n:ay be
used to implement a general purpose architecture on the HOPLA. Since the total possible number of

interconnections within an HOPLA system would be on the order of ~2x1012, the net complexity of
th2 system would seem to greatly surpass that of most microprocessors. Unfortunately the height
limitation may considerably limit the number of interconnections to several orders of magnitude less
than 1012, on the other hand with a width of 106 it is almost certain that an interconnection level

would be roughly between 107 and 109. This complexity level is comparable with current
microprocessor levels; and should still be sufficent for stored program operations but may introduce
constraints upon the extent of possible global operations.

1.2.2. Examples

The limit on height, for example, is the reascn that we may not add tens of thousands of
conventional binary numbers simultaneously in a single cycle. The functions defining the resulting
sum would double in complexity with each carry bit. The exponential increase required for each
additional bit would overwhelm the height of any conceivable system. The conventicnal method used
by electronics is to shift to muitiple cycles and feedback the carry bit. A second approach more
common to optical systems is to shift to alternative number systems which avoid carries entirely.
Although either approach "solves” the height problem, both approaches also compartmentalize the
logical operations, limiting both tae complexity of the functions and the fan-in values. But it is the
capacity to handle large fan-ins that gives the HOPLA its advantalfes both in parallelism and WPD
operation. Thus in order to retain the primary advantages of the HOPLA, a balance must be struck
between sufficient height to exploit such advantag2 while avoiding intractable complexity.

1.3.1 Analysis

The height problem is the basic constraint upon the capacity of the HOPLA to perform arbitrary
operations in a single cycle; but, due to several factors, it does not limit the general purpose nature o
the unit. First of all, the range of loFical functions that may be deemed to be useful, such as
arithmetic functions, are much simpler logically than the class of pathological functions for the same
height. Secondly, the major contributor to the exponential increase in height within functions of
interest are intermediate values, such as carry bits, which are either best handled by feedback or by
recasting the function in a fashion that avoids carries(18]. Finally, the height of the HOPLA 1s
predigious in comparison to nearly any other scheme using the control operator method. Thus even
with a limited number of inputs, the HOPLA should be capable of performing useful functions that
exploit its unique features.

Before considering techniques by whizh the generality of the HOPLA may be extended, it is
instructive to examine the extreme limits of width versus height.
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If we consider a likely height of the order of 108 and if we wish a height:width ratio of 21:1, where n
is the number of inputs, then we find that 20 inputs would be maximum. In the case of 20 inputs it is
possible to generate all permutations containing all inputs or their compliments and we may then
obtain any desired function of the inputs by selecting the appropriate combination of these terms. But
if we examine the terms produced, we discover that only one of these terms may be true at one time,
thus reducing the P matrix multiplication to a simple though very expensive address decoder. The
second stage then reduces to an equally simple yet expensive table look-up system. In the case of
greater input variables multiple terms may be true at the same time, and the task of constructing the

matrix becomes more comrlicated than the enumeration of truth tables. Thus we find that in the
case of an "optiinal”’ number of inputs, the system becomes trivial and a greater width is necessary in
order to achieve any useful efficiency.

- In the same fashion, if we consider a number of inputs comparable to the height and terms in which
the maximum fan in is considered i.e. all pixels or their compliments are represented. Then we obtain
a set of functions which returns results that answer questions such as "are all inputs true/false”,"is
there one and only one true/false term", et cetera. Such functions tend to indicate global conditions
and rapidly increase-in height with the complexity of forms. Many of the useful forms of these
equations conform to the symmetric functions which are not simplified in electronics due to the
existence of a simple means of implementation via cascaded gates{15). The use of considerably

simpler interconnections of gates may be used to generate these functions, reducing the number of

intermediate values from 106 to ~40. Thus we see that the blind implementation of functions
operating over a large number of inputs results in situations as absurd as the case of limited inputs.

The situation for the middle range between these extreme values remains uncertain since at this
point the parameters of the HOPLA radically diverge from known electronic or optical devices. Many
of the techniques used for logical simplification, such as the Quine-McCluskey algorithm or Spectral
Analysis(19,20,21), break down at the large number of variables and functions possible. The only

ide to the actual behavior of the functions available at this time is the general properties of logical

nctions under group theory. From such general results of group theory we find that a single
function may be transformed to a wide range of different functions without changing the structure of
function by instead changing the nature of the inputs or outputs(19]. The forms of modification that
may be used to achieve such iransformation are: negation, permutation, replacement with a constant
(1 or 0) value, or "modulation” by XORing with another variable which 1s also input{19,20]). Such
orerations may be referred to as linear transformations due to their relationship to modulo-2 linear
algebra{21]. In a dual rail Kstem this range of operations breaks down to a single basic operation:
conditional permutation with the possibility of the condition resting upon a logical constant. This
operation is equivalent to the operation performed by the Fredkin gate{22). A combination of pre-
processors and post-processors as indicated in figure 1.7 preforming conditional permutations of the
input and feedback variables may well be able to compensate for both the limitations imposed by
height and fixed interconnectivity{20).

We may express the linear transformations of the pre- and post-processor in the form of a matrix
operation in medulo-2 (mod-2) ar‘thmetic{21). The practical difference between t* * mod-2 matrix
operations and the boolean matrix operations defined above is that the addition operation in the mod-
2 arithmetic corresponds to the exclusive-or (XOR) operation rather than the conventional OR
operation. We may express the rre- and post-processor operations in the form of one non-singular
(invertible) mod-2 matrix operating upon a vector of the relevant variables (but not their
compliments), and a subsequent XOR of the resultant vector by an arbitrary vector{20,21). The latter
operation is necessary to achieve fixed negations and the inclusion of constant values. Karpovsky(21]
proves that the overall complexity of such operations is of the order of n2/1032n for n inputs thus
ensuring that the HOPLA is still achieving the bulk of the actual computation. Of course the presence
of multiple interrelated outputs cumplicates the process by the need for insuring that the results are
simultaneously post-processed. Thankfully this is possible to achieve by the use of mod-p linear

algebras where p=2n.
1.4.Conclusion

The Optical Programmable Logic Arrzy (HOPLA) is a new architecture which uses the N+
interconnect in concert with thresholding optical inverters to implement the control operator method.
The capacity for total interconnection between two two-dimensional planes affords several unique
advantages in implementation of the control operator method in comparison with previous
architectures. The most notable of all advanta‘ﬁ)s of this architecture is its capacity to operate as a
Wave Particle Duality (WPD) processor. The WPD capability of this design suggests that properly
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formulated operations may be capable of an energhy cost per logical operation which is lower than the

limit of kT, a limit independently proposed by both Szilard[23] and Brillouin(24}, and first addressed

2{ Landauer[25]. In addition an extraordinary level of parallelism is possible due to the capacity of
| inputs to interact in the same cycle. :

In exchantie for the above advantages the HOPLA has several disadvantages related to the limited
"height” of the system and the fixed nature of the interconnects. The extent to which these failings
will impact the general purpose operation of the system is uncertain. The above limitations may be
ameilorated by the use of pre- and post- processing, careful design, and the use of the "stored
program” concept universal to electronic computers. ‘
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Chapter 2
Lewin's Algortithm and its Variants
2.1.Introduction .

In this chapter two variations upon Lewin's "dual-sense” associative search algorithm(26,27] are
proposed. The purpose of these algorithms is the ordered retrieval of a set of logical flags from a large
arra% The proposed alﬁorithms offer greater performance over Lewin's algorithm in the case of a large
number of activated flags. They achieve this by reco izing1 blocks of flags rather than individual
flags. Such a scheme amounts to a compression of the list of flags in a manner that allows for simple
decompression. This feature leads to the application of the proposed algorithms to image compression
and decompression. It is shown that the proposed algorithms resemble quadtree or octree algorithms
in their compression strategies. It is shown that optimal comgi'elssions are NP-hard under "worst
case” conditions, but arguments are made that specific heuristic functions may be used to obtain high,
though not optimal, compression levels. o

The two proposed modifications, as well as Lewin's original algorithm, are shown to be well suited
for implementation upon certain digital optical computers. A specific architecture for the
implementation of the proposed algorithms is described.

2.2. Background
2.2.1, The "Dual-Sense" or Multiread Function.
2.2.1.1. Introduction.

The "dual-sense” architecture was first proposed by Lewin[26] for the ordered retreval of lists from
associative memory. The algorithm is equally useful for the ordered retrieval of the addresses of
activated logizal flags within associative memory. The search method itself is a simple binary search
augmented by the "dual-sense” information retrieved. The "dual-sense” or "multiread” function
returns clustering information which allows for the efficient pruning of the search tree which leads to
greater efficiencies.

The multiread function essentially scans a set of binary numbers for bit positions with the same
value in all numbers within the list and returns an expression denoting such positions, which we shall
refer to as constraint bits. The resulting expression, which we shall refer to as the constraint bit
notation, takes a form identical to that used in logical simplification procedures, i.e. 0 and 1 denoting
constraint bit notations, whereas @ denotes variable bit positions where both values of 0 and 1 exist
within members of the set. -

For example g)plying the multiread function to the set of numbers {1000, 1010, 1100) results in the
expression 1300 indicating that the first and last bits are constrained to values of 1 and 0
respectively, while the middle bits contain values of both 1 and 0. It is easily seen from this example
that the multiread function is not a one-to-one function since the same result would be obtained from
the sets (1000,1010,1100,1110}, (1000,1110) or {1100,1010}.

Although it is clearRr impossible to invert the multiread function, by replacing the @ values with all
ermutations of 1 and 0 it is possible to construct the largest set which results in a given constraint
it expression, which we shall call the "window set". In the previous example the window set

corresponding to the expression 1300 is (1000,1010,1100,1110) which shall be denoted by (1 99@0). All
sets which generate the same result are subsets of the result window, although the converse is not
true (i.e. if we replace a @ with a 1 or a 0 the resulting window set is a proper subset of the original
window set, yet the generating expression is different). The "size” of the window set is defined to be
the number of elements within the set and is equal to 2f] where f1 is the number of "@"s within the
multiread output expression. We may define the multiread function in terms of the window set by
stating t}&gt the result of the multiread function generates the smallest window set of which the input
set is a subeset.

The multiread function operates upon sets and cannot distinguish between multiple occurrences of
the same value within a list. For this reason the function is particularly well suited to operations
involving addresses since the numerical value of two different addresses is, by definition, different.
We shall thus confine our current discussion to the use of the multiread operation with addresses.
Specifically we wish to map the vector of bits p to a set of addresses P and then to the corresponding
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multiread output expression w(p), in addition we wish to generate the window function corresponding
to a given output expression.

We shall describe a means of generating both the multiread function and the window function in
both an iterative manner and by the use of boolean matrix functions.

2.2.1.2. Implementation of the Multiread Operation.

We have defined the multiread function in the previous section but we have not given any means |,
which it mag be implemented. Within this section we show the means of implementing the multiread
function and the window set function in an iterative fashion.

Given that the constraint bit expression that constitutes the result of the multiread operation is a
trinary expression, in order to implement the function in binary logic it is necessary to subdivide the

task of generating the result into to parts. Thus we divide the result into two binary vectors w0 and
w! which indicate by the presence of true (1) value a constraint bit value of "0" and "1" respectively.
For example we would indicate the value of w=1@@0 by the values w0=0001 and w!=1000.

The task of computing the value of w! then becomes quite simple. The value of wl is simply the
bitwise AND of all the elements of the set under consideration. This works since unless all values in a
given bit position are true (1) values the result for that bit position is a false (0) value. Following our
example, doing a bitwise AND of the values (1000,1010,1100,1110) gives us the value 1000 which is
the desired value of w!. The value of w0 is found by first taking the bitwise logical complement of the
elements of the input set and then doing the bitwise AND of the set. This operation simply
interchanges the 0 and 1 values and repeats the procedure used to obtain wl. Thus taking the logical
complements of our example set {1000,1010,1100,1110} results in the set (0111,0101,0011,0001).
When we do the bitwise AND.of this latter set we obtain the value 0001 which corresponds to the
predicted value of wo.

By invoking DeMorgan's law (i.e. a AND b=NOT{(NOT a) OR (NOT b)}=(NOT a) NOR (NOT b) it is
possible to reformulate the above expressions in terms of bitwise NOR (NOT OR) operations. We may
thus state that the value of w0 is the bitwise NOR of the elements of the input set and w! is the
bitwise NOR of the logical complements of the elements of the input set.

2.2.1.3 The Window Set Function.

Just as we have defined the defined the multiread function we have previously defined the window
set function w(p) without explicitly providing a means of generating it. Within this section we describe
a serial algorithm for the generation of the window set function, in later sections we shall provide
globally parallel algorithms for its generation. Given the generality and utility of this function,
ﬂmﬂy paliazlsl]el algorithms have been devised for its iraplementation upon S-SEED architectures by

urdocca [28). 5

To iteratively generate the window set of a given constraint bit expression w we first simply replace
all @ values with the value of 0 and assign this value to a register b. We then increment b by one, but
we do not pass carries to conztrained bits, but rather to the next variable (i.e."@") bit. We repeat this
process until all variable bits cycle to a value of 0.

The above algorithm may be implemented quite simply by the use of bitwise AND and OR
operations and a increment & one operation. The technique is quite simple: we replace all the
constrained bits within b with the value 1. We then increment b by one. Thus any carries that reach a
constrained bit carry to the next position until they reach a variable bit. the values of the constrained
bits are then returned to their oniginal values. :

The explicit implementation follows: The mask selecting constrained bits consists of the quantity
(w0 AND wl). We first set all constrained bits to 1:

w9 ANDw!)ORDb

We then increment the value by one:
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_ (w0 AND wl)ORb +1
We then set all constrained bits to 0:
(w0 AND wl)ORb +1) AND (w9 NAND wl)

Finally we reset the constrained bits to their constant values w! and assign the new value to the b
register:

b:=((w® AND wl)ORb +1) AND (w0 NAND wl))

OR w!
We' begin with h:=w! and end when b returns to the value of wl. It is a trivial matter to implement
_ this algorithm via either hardwired logic or the use of a microprocessor.

2.2.1.4. Matrix Implementations of the Multiread and Window Functions

The implementation of the multiread operation by means of the boolean matrix operations described
in chapter one is now given. We first introduce the 2Mxm boolean matrix 8 with elements such that:

m-1
=E2'5;

i.e.:ithe jth column consists of the value of j in binary. For example the value of S in the case of m=8
consists of:

01010101
S={0 0110011
100001111

Given an appropriately sized S matrix we may now find the value of the multiread function for a
given 2™ long p vector by simple boolean matrix vector multiplication. We express the result in terms
of the two binary result vectors w0 and w! which are calculated as follows:

wO=(S pf
whs(S' gl

The two m long boolean vectors w0 and wl encode the three possible values (0, 1, @) of the ith bit
position of the output expression in the following fashion: a true (1) value in w0j corresponds to a

value ¢f "0" in the jy, position, a truc (1) value in w1; corresponds to a value of "1" in the jth pogition,

while false values for both the former and the latter correspond to the value of "@" in the j'?h position.
If all elements of w0 and w! have the value 1 then the window set is the null set.

. The generatian of the "worst case” window function g(w) (g(w) AND p=p for all p resuiting in a

multiread value of w) from the value of w0 and wl is equally simple. The ith column of the matrix S
designates with a 1 all positions of the vector p with a value of 1 in the j'-h while the complement of
that row designates the all g:)sitiom with a value of 0 within the jth bit position. Thus if we form the
intersection of all sets which fulfill the constraints of each individual constrained bit we obtain the
window set g. The intersection of & pair of sets designated by binary vectors indicating membership is
simply the bitwise OR of the two vectors. Thus the vailue of q is simply:

a(w)=((ST w0) OR (ST wl)}

Where T denotes the transpose of the matrix.
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2.2.1.5. Properties of The Multiread Function.

Having defined the multiread function and described its implementation, we now derive several
useful properties of the multiread function and its corresponding window sets.

We first define the vectors 0 and 1 which are two m long vectors with elements that all contain
values of 0 or 1 respectively. In addition we denote the hamming distance between two vectors a and b
- by dist(a,h). The hamming distance between twe vectors is defined to be the number of true bits
resulting from the bitwise XOR of the vectors. :

Several properties of window sets may be shown by simg e enumeration: The size of a window set
Q(w) generated by a given constraint bit expression w is 2!, where fl is the number of variable (i.e.

"@") bits within the expression. If we replace a variable bit within a constraint bit expression with a
constrained bit we obtain an expression with a window set which is half the size of the original
window set and a proper subset (i.e. (1000} is a proper subset of {1800}) . If two constraint bit

expressions have a bit position in which both are constrained, but to a differing value, the two
corresponding window sets are disjoint sets (i.e. (0090} and {1990} are disjoint sets).

We say that a window set is continuous if the set of values that it describes are successive. Thus
1199 is continuous since it describes the set {1100,1101,1110,1111} while 1800 is not since it
describes the set (1000,1010,1100,1110} which is not successive. The criterion for window sets which
are continuous are that all the variable bits within the expression for the window set be less
significant than the constraint bits. Thus 101000 or 1190000 are continuous while 91100,
191000 and 110800 are not. A window set which is not contiguous may be expanded into one that is
by reglacing every occurrence of a constraint bit which is less significant than the most significant
variable bit with a variable bit. For example the discontinuous window set 10010008 would be
expanded to the continuous window set 10209300.

The intersection of two window sets results in a window set. The constraint bit expression
corresponding to the intersection of two constraint bit expressions is obtained by combining the two
expressions bit position l:_y bit position, eliminating variable bits in preference for constrained bits (i.e..
for a given bit position, if one expression has a constrained value (0 or 1) and the other expression has
a @ in the same position, then the intersection expression has the constrained bit in that position).
For examgle, the intersection of (19900} and {BOB0) is (1BB0). Of course, if the two window sets are
disjoint, the result is the null set.

The difference of two window sets m;y result in & null set (if the two window sets are disjoint), or a
set of one or more window sets: the difference set. We shall make considerable use of the difference
operation in our extensions upon Lewin's Algorithm. -

We now present an algorithm to enumerate the set of window sets resulting from the difference cf
two window sets a-b:

1. Let c=(anb). As we have shown in the previous section, ¢ is a window set.

2. We first recognize that a-b=a-(anb)=a-c thus reducing the problem to finding the difference between
a window set a subset window set.

3. If a=amb then the difference a-b is obviously the null set.
4. If ¢ is the null set, then a=a-c=a-b. Thus the resuit is the window set a.

Otherwise, the window set ¢ is a proper subset of the window set a. Thus the expression for a differs
from the expression for ¢ in that ¢ has at least one constraint bit which is a variable bit within a.

5. Let d=a.

6. Find the most significant variable bit within d which is a constraint bit within c. Set this bit to the

complement of the value of the constraint bit within ¢, this expression is an element of the set of

g_in ow sets forming (a-b). Now set the value of the same variable bit to the value of the constraint
it in ¢.
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7. If d=c then halt, otherwise repeat step 6.

We now present an example:

=1000, b=0A01
c=anb=1¢01
d=a
d c. . Set Element
190990 1901 . - 1019
1000 : 1901 1900
1901 1301 ) Halt

Thus :
a-b=1000-830301=(1910, 1000}

This algorithm operates by recursively splitting the window set d into two halves each window sets,
one of the halves being a superset of ¢ and the other a member of the difference set. It is trivial to
show that all window sets of the difference set generated do not intersect with each other or with ¢
and that the sum of the sizes of the elements is equal to the difference of the size of a and the size of c.

Given the intersection operation we may comd:ose all window sets from the 2M*1 primitive window
sets which have only one constraint bit (i.c. 0000, 10990, 3000, 9100, ..., 9091). We may consider

the w0 and w! vectors as designating the set of primitive window sets that define the desired window ,

by their intersection. We may use the bitwise OR upon the w0 and w! vectors of two different window

sets to obtain the intersection of the two sets. By using the intersection operation and the size

tﬁ;nctipndwe ma): obtain the necessary information to determine the nature of relationship between
o window se :

We may use DeMorgans law for sets, i.e.. the complementary set of the intersection of two sets is the
union of the complements of the two sets, to understand how the multiread function operates. We
obtain the set of primitive sets which do not intersect the set P of addresses. The union of these sets
corresponds to the complement of the window set we wish to obtain. Thus we obtain the window set
by intersecting the complements of the sets described above. In section 2.4 we shall show how this
principle relates to simple geometrical principles.

2.2.2. Previous Search Algorithms.

) We now describe several methods by which we may search a binary vector p and return an ordered
list of values corresponding to the addresses of the true values.

The first algorithm is the simple serial search. This algorithm simply examines each consecutive
element of the vector and returns the address if the value of the elemert 18 true. For a vector which is
n=2M elements lonf. the serial search requires n searches to exhaustively search the vector. This
search algorithm only requires the value of the element under consideration during each cycle.

2.2.2.1. Frei and Goldberg's Algorithm

The second algorithm is the sim’ﬁle binary search. It requires a function which returns whether the
vector contains any true values. The algonithm divides the p vector into two halves. If the first half
contains any true values, the process is repeated, recursively dividing the half into quarters and
checking their contents. The recursion is terminated when the vector under consideration consists of
a single element. If the element is true the address is returned. Once the first half has been searched,
the procedure is repeated for the second half. Since during any cycle the algorithm may eliminate half
of the remaining search space, under proper conditions this algorithm is considerably more efficient
than the serial search.

A specific form of this algorithm was proposed by Frei and Goldberg [29] using the same notation we
}\aﬁre used for the description of window sets. Using our notation, the algorithm may be described as
ollows:

1. Initialize all positions within the window expression w to @ values.
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2. Generate the q(w) vector and form the "dot product” of the , vector and the p vector fl- Tn.

3. If the value of f1 is true (1) then find the most significant bit within w which is still a @ value and
replace it with al.(For example 000@ becomes 001J.) Return to step 2.

If no @ value remains within w then the value of w is a valid binary address of an activated flag.
Append the value of w to the list of addresses of true values. reset fl to false and continue to step 4.

4. If fl is false locate the least significant position within w in which a 1 is present and replace it with
a zero. Replace all less significant gositions with @ values. (For example 1100 becomes 1009.). If
there are no positions within w which have the value of 1 then halt, the search is completed.

The case of {1000,1100,1010] is given as an example .

Comments

w
0000
1000
1109
1119
1100
1101
1100
1009
1019
1011
1010
1000
1001
1000
0000

Frei and Goldberg's algorithm is clearly a binary depth first search. The value of fl indicates the
presence of one or more true values within the window prescribed by w. Each time a 1 value replaces
a 0 value the search window is cut in half, Each time a 0 value replaces a 1 value the search window
abandons the current branch and tries the next possible branch. Each time step 4 is invoked the
yult is eqn;livilg:nt to a recursion in conventional binary searches. Once the final branch is exhausted

e routine halts.

Frei and Goldberg's algurithm forms the basis for all algorithms described within this chapter and
displays several common features. It tienaplements a recursive algorithm in a serial fashion, eliminzting
the traditional complications associated with the implementation of recursive algorithms. It requires
the capacity to select a specific search window and extrast global information on the selected window.

Add to list

Add to list

OHOHHORMIEOMON Y,

Add to list
Halt

The primary weakness of Frei and Goldberg's algorithm is that it must examine branches that
contain no true values before abandoning them. This requirement arises since this is the only means
by which the algorithm may gain information on the distribution of true values. By introducing a

more sophisticated heuristic function than fl Lewin's algorithm eliminates such false starts.
2.2.2.2. Lewin's algorithm

The Lewin algorithm achieves a greater efficiency over Frei and Goldberg's algorithm by using the
more sophisticated (and complex) multiread function to eliminate wastefu] searches. The difference
between the two algorithms is that the Lewin algorithm uses the multiread function to determine the
smallest search window that encloses the remaining true values, and then replaces the current search
window with this value. This achieves two functions: it reduces the search window and it ensures
that when the search window is split both subwindows contain true values. The latter feature arises
from the fact that when a search window is split in half the resulting subwindows are windows as
well. Since the original window is the smallest window that encloses all true values, both of the
subwindows must have some true values enclosed.

In our notation the Lewin search algorithm may be expressed as follows:
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1.Initialize two search window expressions r and w by setting all positions to a value of @.
2.Generate the window set g(r) and do a bitwise AND of q with p.
v=q(r) ANDp |

3. ljo a multiread of the vector v to obtain the window expression w from the values of w0 and wl
0[S y7 .
Il =[s' ﬂ' . .

4. Find the most significant position within w that contains a @ value. Replace the same position
within r with a 1. Return to step 2. : .

5. If there are ho remaining @ values within w then w is a valid binary address of a true value.
Append w to the list of true values and continue to step 6.

6. Find the least significant position within r containing a 1 and replace it with a 0 and set a!l lower
significance positions with @ values. Return to step 2.

6. If there are no positions within r that contain a 1 then all true values have been found, halt.

An example of the Lewin Algorithm is now given for the case of (1000, 1100,1010):

r w Comments
o0D 1000

2100 1100 Add to list
9000 1090

9010 1010 Add to list
0000 1000 Add to list,Halt

As we may see in the example given, the Lewin algorithm is considerably more efficient than Frei
and Goldberg's algorithm. Surprisingly, the number of cycles required to complete an ordered search
is not a function of the size of the search space but of the number of true values(26,27). If there are h
true values 2h-1 cycles are required in order to retrieve the addresses of all true values.

2.3. The Improved Lewin Algorithms.
2.3.1. Introduction.

The Lewin algorithm displays impressive efficiency in searching sparsely populated search spaces,
but loses efficiency as the population of the search space becomes uniformly distributed. When the
true values within the search space are uniformly distributed, the smallest window that encloses all
true values is often identical to that of the search space itself. Under such circumstances, the
multiread function returns no useful information, at which point the Lewin algorithm becomes
functionally identical with Frei and Goldberg's algorithm.

The worst case condition for Lewin algorithm occurs, paradoxically, when the entire search space is
populated with true values. Uncer such conditions, the Lewin algorithm requires 2n-1 cycles to
search the space while a serial search only requires n cycles.

An especially odd feature of the above paradox may be illustrated by the followin% example.
Consider a Lewin search over a sa2t of addresses (J999) in which ill eight odd values (B¥01) are
true. In the first cycle of the Lewin search the multiread function returns a value for w of 2001,
precisely the set of true values! Unfortunately sixteen more cycles must be wasted to enumerate all of
the true values. The reason for this is that a multiread function result of @91 may be the result of
true value sets that may range between {0001,1111) and (29@1). Without additional information it is
necessary to proceed with additional, possibly wasteful, cycles to finish the search.

2.3.2. The First Algorithm,

The simplest method by which the deficency noted may be addressed is to recognize when the search
window is devoid of false values and, if so simply enumerate the entire window in the manner of
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section 2.2.1.2. rather than search it. We introduce the function f0=g(w)Tn' which is identical to the

funection f! defined previously, except that it indicates the presence of false values within the selected
window rather than true values.

W; énay then simply append an additional step to our formulation of the Lewin Algorithm in section
2.222.: : 5

2.a. Let f0=g(w)Tp". If 0 is false then append w to the list of true values and proceed to step 6.

By expressing the list of true values in terms of window sets, rather than individual addresses, this
alﬁorithm not only achieves an increase in the search rate, but also a compression of the list of true
v ues.ghAs we shall see, the capacity of this algorithm for compression may prove quiie useful in its
own right. :

. Like Frei and Goldberg's algorithm, the present al&rrithm first examines a given branch, and then
"discards” it. The difference between the two algorithms is that the former discards em&ty windows
while the latter records and then discards full windows. The weakness of the two algorithms are the
same, insufficient information leads to unnecessary searches. Following this analogy to its logical
conclusion suggests that the use of the multiread function upon the complement of the search space
_may serve to correct this problem. This is the basis of the second proposed algorithm.

2.3.3. The Second Algorithm

The second proposed algorithm addresses the deficiencies of the first algorithm by applying the
multiread function to both the search space and its complement. We designate the result of the
multiread operation as applied to the search space as the true window and denote the returned
expression as l. In the same fashion we designate the result of the multiread operation as applied
upon the complement of the search space as the false window and denote the returned expression as
d. The associated logical operations are: '

10-.-.[8 Q(W)'I;P]'
L=(8' gw)TpJ

d0=(S g(w)Tp7
dl=(S gw)TpT

Initially, one might assume that the information returned by the 1 and d functions might introduce
considerable complications given the range of possible relationships between the two functions.
Surprisinglly. there are only three possible outcomes in terms of the set. relationships between | and d.
Either both | and d are both the same set as the search space r, or one (but not both) expressions are

roper subsets of the search space if not a null set, while the other is the same as the search space.

e third option is that 1 and d are disjoint window sets with a union that forms the window set that
describes the search space.

This situation arises due to the fact that the size of all window sets are powers of two. It follows
that all windows enclosed within a window must be at least half the size of that window. Thus if | is a
proper subset of the search space °, then 1 must Le at least half the size of r. Since | encloses all true
values within it, the number of true values within the search space must be equal to or less than half
the size of the search space. If precisely half of the search space consists of true values then eve
element within | is true, since 1 is half the size of the search space and encloses all true values. In this
case, the window set d which encloses all false values is aiso a subset of the search space, one which is
disjoint from the set 1. If less thar half of the search space consists of true values then it follows that
more than half of the search space consists of false values. Since the window set d must contain all
false values within the search space its size must the greater than half of the search space. But, as we
have noted, no subwindow of the search space may be larger than half the size of the search space.
Thus in this case d is the same set as the search space r. This proves the contention of the previous

paragraph.
Each of the predicted outcomes may be used within our algorithm to extract information relevant to

the position of true values. We shall now enumerate the possible outcomes and discuss the
information that may be extracted.
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The first possible outcome is that both window sets | and d are identical to the search space r. In
this case, the true and faise values within r are are so interspersed that it is necessary to recursively
subdivide the search space to obtain further information.

The second possible outcome is that either | or d return the null set. In this case the entire search
space is either completely filled with false or true values respectively. In either case the disposition of
e entire search space is known. :

The third possible outcome is that | is a subwindow of the search space r. This is identical to the
. collapse of the r window in the previous algorithms. It indicates thatthe section of the search space
external to the ] window set consists entirely of false values and may be discarded. The search space r
is set equal to | and t.heugrocedura is repeated. Note that this contingency also addresses the case
where both | and d are subwindows. : '

The fourth possible outcome is that d is a subwindow of the search space r. This out.ome is the
most interesting, in that this is the outcome which is unique to the present algorithm. It indicates
that the section of the search space external to the d window consists entirely of true values.
Obviously, this external area contains no further information and may be discarded once its extent is
noted. Unfortunately, the extent of the external area is the difference between two window sets, an
entity which in general does not constitute another window. Thankfully as we have shown in section
2.2.1.5. it is possible to ::Eress the difference between two windows as the union of several window
sets, although it is preferable to express the area in terms of the difference so as to retain the highest
possible compression. Thus the proper response to this outcome is to record the difference of r and d
and then set r equal to d and repeat the procedure.

Unfortunately, the use of set differences to describe blocks of true values may result in the loss of
order, since the contents of the remaining search space may proceed the contents of the window set
difference. If ordered retrieval, as opposed to pure compression is required, it is possible to limit the
collapse of the search space so that it is contiguous, and divide the difference set into windows that
?recede and follow the search space. The ﬂrecedin element may then be added to the list, and the
ollowing section pushed upon a stack, which is then popped after the termination of the current
{iecgrt:;on. Such a modification results in a reduction in performance since the extent of collapse is

mited.

All of the possible responses to the outcomes of the 1 and d functions result in the reduction or
“collapse” of the search space to the smaller of the resultinf window sets regardless of whether the
eliminated section is all true ur all false. Two impertant conclusions result from this observation. The
first is that this algorithm does not search for blocks of true values as do the other algorithms, but
instead, searches for blocks of interspersed true and false values within a backround of
undifferentiated values. In essence this algorithm detects boundaries rather than blocks. The second
conclusion is that a of seriss of collapses may occur over a continuous period. of operation without
recursive splitting of the search space as lorig as the backrounds alternate in value.

Having analyzed the implications of each possible outcome of the application of the multiread
function to both the search space and its complement, it is now possible to explicitly formulate our
second algorithm. We shall uss two window sets r and v the former describing the search space, while
the latter is used to track the progress of recursion. It is important to note that r is always a subset of
V.

1. Initialize both r and v to include the entire search space.
2. Determine the values of ] and d “or the current value of r.
3. If 1 is a null set then proceed to step 9. Record a termination of recursion.

4. If d is a null set then proceed to step 9. Append 1 to the list of true values. Record a termination of
recursion.

5. If | and d are disjoint sets then proceed to step 9. Append | to the list of true values. Record a
termination of recursion.

g. If d is a subset of r then set the value of r equal to the value of d. Append the set difference of | and
to
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the list of true values. Proceed to step 2 unless d contains no @s. If d contzins no @s proceed to step 9
and record a termination of recursion. .

7. If 1 is a subset of r then set the value of r equal to the value of 1 and proceed to step 2 unless 1
contains no @s. It'] contains no @s, append the value of 1 to the list of true values and proceed to step 9
and record a termination of recursion. ' '

8. Find the most significant position within r with a value of @ and replace it with a 1. Replace the
same position within v with a 1 Proceed to step 2.

9. Find the least significant position within v containing a value of 1 and replace it with a 0. Set the
value of r equal to that of v. proceed to step 2. If there are no remaining values of 1 within v Halt.

Analyzing the above algorithm, we see that 3-7 are responses to the various results of 1 and d
discussed in the previous paragraphs while steps 8-9 mediate the recursive splitting of the search
space. Steps 8 and 9 are extensions of the corresponding steps 4 and 6, respectively, within the Lewin
l1501'“:11::1. The important difference is the presence of the window set v which keeps track of of the

uction of the search space due to recursive splitting alone. The need for v arises due to repeated
collapses of the search space. If we were to operate upon the search space r rather than v we would
find that we would recurse into areas that had already been eliminated by collapses. In essence v
operates like a stack to keep track of recursive splitting.

Applying our current algorithm to our ongoing example {1000,1100,1010} we obtain the following
resuits:

W 1 a Comments
2000 190090 . 14143%]
1900 19000 1110 Add 1900-1110 to the list
and Halt.

In this example the second algorithm is much more efficient in both speed and compression than the
previous algonithms. In addition, no recursive splitting is re(‘uired, and two sequential collapses
occuy, first a collapse of the 1 function and the second a collapse of the d function. Sufficient
information is supplied to select the most efficient separation of the search space into subwindows.

l A ttll:ore complete example {0000,1000,1010,1110,0111} illustrates more of the features of the

algorithm:

v w 1 d Comments

2000 2000 2000 2000

1000 19000 1000 1000 Split

1000 1000 1000 11i0 i\dg 1000-1100 to

is

: By End recursion

0000 0000 0000 0000

0199 0199 0111 0199 Split Add 711
to list
End recursion

0009 0000 0000 0009 Add 0000 to list
;:‘.{mli Recursion

alt.

This example displays all of the critical elements of our second algorithm, the use of both the 1 and d
ttjlhxmzt‘ionst_i:o nchcikeve collapses, the use of the v and r window sets to achieve implicit recursion without
e use of a stack.

Like the first algorithm we have proposed, this aigorithm achieves improved performance by
recognizing blocks of constant value, and in doing so not only achieves ordered retrieval but also
serves as a compression algorithm. Ultimately, the significance of the second algorithm is as a
compression algorithm.

2.3.4. Extensions Upon the Second Algorithm
As we have seen, our second algorithm improves upon Lewin's algorithm by the use of more

sophisticuted versions of the multiread function. There are several variants upon the second
algorithm which attempt to improve its performance even more by extracting further information. We
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shall see that optimal compression is achieved by an algorithm which is NP-hard, but that less
sophisticated algorithms may result in improvements in special cases.

2.3.4.1. Selective Splitting

Let us consider a set of addresses (0901,0010). Although this set consists of only two window sets,
our second algorithm shows little improvement in preformanceover Lewin's original algorithm. In
comparison, the set {(0190,1000), is decomposed into the two window functions by the second .
algorithm in three steps, one split and two collapses. Although the two examples are of the same
complexity, the performance of.&e second algorithm varies radically. The reason is that the latter set
contains two contiguous window sets, whereas the former contains twn non-contiguous window sets
which™ are intersperaed. Since our second algorithm is designed to achieve ordered retrieval, it
employs recursive splits which divide the search space into contiguous window sets. Algorithms
which select the order of the recursive spliting in r::ronse to some strategy may achieve improved
compression at the cost of abandoning ordered retrieval.

Selective splitting algorithms are of increased complexity since the implementation of the recursive
splitting requires the explicit use of a stack.

Unfortunately, the decomposition of a ﬁiven set of addresses into a minimal combination of window
sets is identical to the problem of othima minimizing a logical function in the sum of products form,
a problem which is known to be NP-hard. Thus optimal compression of arbitrary data may only be
achieved at the cost of unacceptable degradation of performance. Although it is not possible to always
achieve optimal performance, algorithms employing carefully constructed heuristics may approach
optimal performance under practical conditions. : . The
most obvious strategy for selecting recursive splits is the use of an exhaustive search of all possible
;})lit; that may be employed. Although ensuring optimal results, the exaustive search also results in

P cqm%lexity due to the combinationally explosive number of permutations of splits that must be
examined. -

By limiting the degree to which we look ahead, and then selecting the combination of splits that
results in the best results, we may limit the complexity of our search, yet immprove upon our
compression in some cases. Unfortunately, the improvement in compression performance seldom
justifies the considerable increass in overhead resulting from such strategies.

2.4. Applications

We now consider several potential applications for both our algorithms and the multiread function.
Besides the obvious application to associative memory, applications exist in the monitoring and
control of parallel architectures and network systems, and most importantly image decomposition and
analysis. By providing a geometrical interpretation of our algorithms, we illustrate the utilit{vof our
second algorithm and 1its relationship to several well known image compression algorithms. We also
present several variants of our second algorithm which implement existing compression strategies in
a highly parallel fashion.

2.4.1. Associative Memory

Associative or Content Addressable Memories (CAM) are memory units which select data elements
based upon various properties of tne data itself, as opposed to conventional Random Access Memories
(RAM) vhich select data elements by their location, as described by an address. CAM memories
would have consiserable advantages over conventional RAM memories in many applications, such as
database query, memory management, artifical intellezence, genome sequencing, electronic warfare,
and, air traffic control(30,31). Highly sophisicated CAM implementations may be considered parallel
computer architectures in their own right. Despite considerable effort(30,31] electronic
implementations of CAMs have proven impractical, with the exception of niche applications such as
memory management.

Optical implementations of content addressable memories have been the subject of considerable
effort[3-5,28,32-35]. Four major lines of assault have been taken: Holograms intrinsically display
simple associative behavior which may be ¢oupled with their potentially immense information storage
capacity to produce, simple best match or key search associative memories{32]. Optically
implemented neural ~ets also display associative behavior which may be coupled with other
properties of neural nets to achieve desired tasks(33,34]. Highla interconnected optical architectures
either fixed or dynamic may be used as CAMs (in fact the HOPLA may be interpreted as a fixed

Page 20




storage CAM)(3-5]. Finally, simply parallel collections of identical processors may be used to
implement highly sophisticated associative memories in a manner similar to that of electronic
implementations of CAMs(35]. Our algorithms may be used to considerably augment architectures
employing this final strategy.

Conventional digital associative memories, or content addressable memories, operate
simultaneousl);fperforming various search operations upon a block of memory containin‘g various
values. By performing operations simultaneously, it is possible to search large blocks of data for
various properties very quickly. Such memories essentially constitute a special purpose parallel
architecture for information retrieval of information. The bulk of the operations performed are simple
identical logical operations which are performed simultaneously upon every word of data within the
memory in either a bit serial or a word serial fashion. Such operations are easily iniplemented within
simrly ‘parallel Single Instruction Multiple Data (SIMD) machines, and several optical
img ementations have been proposed(35,36]. But certain associative memory operations require
glo allty_p:erall:.l logical functions to operate successfully. It is these global functions which are of
current interes :

Certain associative searches, such as the search for the minimum value within a memory, cannot,
by definition, resuit in the elimination of all values within the memory (i.e. there is always a
minimum value). Such searches cannot be implemented by purely employing operations which
operate upon each word of data independentlg. The reason for this is that such independent
operations could simultaneously eliminate from the search every remaining value under
consideration. [t is necessary to employ a global function to monitor the simply parallel search
function, so as to ensure that at least one value remains under consideration after every parallel
search operation. A variety of global monitoring functions exist, each with varying levels of
complexity and sophistication. Not surprisin?ly, the multiread function and its variants which have
been described in section 2.2 are of considerable utility in this regard.

In order to illustrate the utility of the multiread function for such associative search functions, we
present a %’acﬁcal algorithm for the extraction of the minimum value from a bit serial associative
memory. The specific algorithm is an extension of one proposed by Morozov(3] for use on optical
compuiers.

The algorithm is as follows. We progressively examine each bit position from the most significant bit
to the least. If the value of a given position is identical for all elements of the list we discover nothing
and skip to the next less significant bit. In the case where the bit values differ, the list elements which
have a 1 in the position under examination are greater than the with a 0 in the same position and
thus are eliminated from the list and the next less significant bit is examined. If at any time there
only exists one remaining element to the list this is obviously the minimum and we may halt further
examination. If we have more than one remaining element to our list when we have examined the
least significant bit the remaining elements are minimum and equal. His algorithm allowed these
operations to proceed in parallel using the operator method.

Morozov's algorithm is illustrated in figure 2.1. The masked area is indicated by a bold line. The

shaded area indicates the situation where all remaining numbers have a value of 1 at the bit under
consideration.

Given a list of 2™ binary numbers m bits long we define A, ; as the ith bit of the jth number. We
then construct a table qj and initalize all elements to 1 (true). We then follow the procedure below:

1. Let i=m
2. For all j=0...n-1 let pj=A; j AND g;.

3. If one and only one value of p; remains true then the position of the true value denotes the unique
minimum. Halt and return the address of the true (1) value.

4. If all values of pj are false (0) then discard J otherwise let q=D;-

5. Decrement i by one. If i=0 then there are mu tiple positions where the same minimum occurs each
designated by pj=1 for that position. Otherwise . epeat the process from step 2.
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By examining figure 2.1 we may see the means by which this algorithm works. If we examine the
most significant bit of our list of numbers it is obvious that numbers with a 1 in the most significant
position are greater than those without, and thus may be excluded from the list of candidates for the
minimum. If we proceed to the next most significant bit we may use the same criterion to eliminate
candidates. But if all values remaining in our list of candidates have bits of value 1 at the column
under consideration our criterion fails and we must skip our elimination at this cycle. Steps 2 and 4 of
our procedure implement the elimination and check skip phases of our algonthm. The qj table serving

to indicate membership in the candidate list. QObviously if a single position remains on our candidate
list, it is the minimum and we may halt immediately and eliminate useless cycles. Step 3 implements .
this phase of our algorithm. Finally it is just as obvious that if we cycle through all of the columns of
the list and still have multiple positions the values still in the list are equal and minimum. Step 5 of
our procedure implements this phase of our algorithm. By varying the operations performed in step 2,

a broad range of different searches (maximum, greater than value, less than value, closest hamming
distance to value, etc.) may be performed

With the exception of step 3 all of operations within this algorithm are simply parallel and may be
implemented ugon' a range of simply parallel optical architectures. Step 3 on the other hand is
intrinsicaily global in nature. We may implement step 3 via the use of the multiread function. If we
apply the multiread function as defined within section 2.2.1.4. to the vector p

w0=(S oI
wl=[S oI

we obtain the window set w. By examining w we may determine whether there are any true values,
and if so, if there exists only one true value. We may distinguish these results in the following
manner:

1. If wis the null set (i.e. wO0=wl=1), then there are no true values.
2. If w contains variable bits (@) (i.e. w0#{w1]) then there exist a multiplicity of true values.

3. If w only contains contains constraint bits (0,1) (i.e. noat[ﬂl];) then there is only one true value and
it is located at the address w!l.

Thus the multiread function .3 sufficient to provide the needed global information for this algorithm.
Although closely related logical functions may be employed to obtain the same results (see Appendix
A), the multiread function has the added advantage of supporting ordered retrieval.

If the associative search algorithin terminates with multiple equal minima, we may employ Lewin's
algorithm or our extensions to extract an ordered list of their positions. Such an ordered retrieval
provides a rapid method of converting the results generated by the associative search algorithm from
a sparse collection of flags distributed across a large store, to a compact sequential list well suited for
output.

2.4.2. Parallel Processor and Network Monitoring

Several commonly used architectures for parallel processors have topologies based upon the
relationships between the addresses assigned to each processor. Both the multiread function and our
proposed algorithms may be employed to extract usetul information about processor activity within
such architectures.

One common example is the hypercube architecture. This architecture consists of 2™ processors,
each processor connected to m other processors with a toppology identical to that of a unit m-cube.
Each of the processors has an unique m bit address. Each processor is connected to the m processors
with addresses which are a hamming distance of one from the address of the current processor. Such
an arrangement has many well known advantages, such as redundancy, simple routing, and a
maximum distance between processors of m intervening processors.

A 2™ processor hypercube network may be split into two independent 2M-1 processor hypercude
sub-networks, and each of these networks may be similarly subdivided. The list of addresses for any of
these independent sub-networks may be described as a window set. Thus it is conceivable that the
multiread function, and our proposed algorithms may prove useful in the task of processor allocation.
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One possible scenario for the use of our methods is as follows. Consider an algorithm for which the
task for each processor requires a differing number of cycles to accomplish. Once a processor has

finished a task it laf idle. If we construct an 2™ long vector p of flags with a flag corresponding to
each processor which is set to true if the processor is active, and false if the processor is idle. It we
perform the multiread function upon p we obtain the expression'w which describes the smallest sub-

_ network that is still active. By generating the difference between the window set of all processors (all
"@"s) and w we obtain a set of window sets which ennumerate a partial list of idle sub-networks which
may be allocated to other tasks. If we complement p and perform our second a}f‘orithm ugon it, we
obtain a list of all idle sub-networks which may be allocated for other tasks. Although the second
algorithm is more comprehensive, the multiread function used alone is faster and consumes a fixed
number of cycles. - : '

If necessary, we may accelerste the operation of our second algorithm for this process by
terminating recursive descent when size of the the search space r falls below a set value. This would
discard sub-networks too small to be useful, including individual processors. Selective splitting
algorithms may also prove useful in avoiding the bias toward contiguous window sets within the
second algorithm.

Many of the properties illustrated within the above exampie may be applied to other architectures
and network switching systems that use similar interconnection schemes. Schemes which use
window sets (under a different name) to broadcast information to multiple processors have been
proposed for SEED architectures(28]. Thus it is quite conceivable that our algorithms may find
application in multiprocessor and network management.

2.4.3. Image Decomposition and Compression.

Although we have proposed several other applications for our algorithms, it is image decomposition
and compression which is the most promising. When the our second algorithm is extended to
problems involving multidimensional data, it is seen that its results have intrinsic geometrical
meaning. Furthermore, it may be shown that these resui.s are closely related to the well known
bintree, quadtree, and, octtree representations of images and volume. Finally we shall show how our
n;eth_t;ﬁs may be used to arrive at globally parallel implementations of well known quadtree
algorithms. :

Within this discussion, we shall primarily consider images consisting of black and white bitmaps, -
that is, images with bits that are either black (false) or white (true). We shall then consider
extensions upon our basic algorithms in order to handle grey scale and color images.

2.4.3.1. Two Dimensional Extensions of the Multiread Function.

In order to extend our algorithms to two dimensions, it is necessary to devise an a;:ipropriate
mapping between a two dimensional bitmap and a one dimensional vector of flags. Various different
mappings result in differing &ometrical interpretations of the results of the multiread function and
the window set function. We shall consider a range of different mappings and the resulting
interpretations.

Let us consider 20V2x2nv2 pixel black and white image (we assume that m is even. This image is
stored within the matrix I, y asasetof boolean values, white being denoted by true (1) and black by

faise (0). We must then map this image to and from a 2™ boolean vector p in order to process it using
ou:'l ailgorithms. We may describe the mapping in terms of the operations applied to the indices of p
and [: )

Pitx,y)*Ix,y

LxGi),y()=Pi
where i is the index for p and x and y are the indicies for L.
2.4.3.1.1. The Raster Scan.

The most obvious mapping is the raster scan, which maps pixe!s from left to right and then top to

bottom as per figure 2.2. The functional dependence of the index k is k(x,y)=x+2 2y. Since we have
selected an image with dimensions which are a power of 2, the high m/2 bits of k are equal to y and
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the low m/2 bits of k are equal to x. For ~xample if x=1010 and y=1100 then k=11001010 (all
quantities binary). :

The segregation of bits within the raster scan order, leads to a very interesting property; the window
sets generated by the multiread function are segregated as well, and we may divide the result of the
window function into two separate expressions which govern the constraints imposed upon the x and y
indicies separately. Thus if we refer to the upper left hand example in figure 2.3, we see that if we
perform the multiread function upon the image shown the result is w=11990009. If we then
superpose the window set prescribed by w (the cross hatched region), we see that the result forms a

‘square block within the imatgf that encloses the true pixels within it. The remaining examples within

figure 2.3 indicate various other possible window functions enclosing various pixel configurations. We
see that the windows are rectilinear, and if not contiguous, periodic, and the dimensions and
periodicity of the windows are powers of two. Even more varied patterns may result in larger images,
such as periodic sequences of periodic rectangles, although these seldom occur in practice.

This interpretation allows us to visualize the operation of the multiread function. We may liken the
multiread function to an "elastic” frame which when placed within an image, collapses down to the
frame with the smallest area that contains all of the true pixels within the image. Of course, the
resulting frame is a window set and is thus constrained to have sides with lengths that are a power of
two. The utility of the multiread function becomes readily apparent, when it collapses, it eliminates
from the search space the empty background sections of the image.

2.4.3:1.2, Space Filling Curves.

The raster scan mapping displays geometrical significance only when the width of the image
selected is a power of tw.. Furthermore, window sets which are contiguous in two dimensions do not
retain their continuity when mapped to the p vector. A matter of some concern given the weakness of
our algorithms with regard to the detection of discontinuous window sets. It would be much
preferable to employ a mapping which avoids these problems. Space filling curves have been
employed with considerable success in mapping multidimensional data to one dimension{37-40], their
use in image proccessing and compression(40-41] for the same purpose is well known. Within this
section, their application to the current algorithm shall be shown.

A space filling curve is a parametric curve with an argument which continuously varies between 0
and 1 and which visits every point within a unit area (or multidimensional volume). For any given
value of the argument there exists a coordinate corresponding to that point along the curve, and for
any coordinate there exists a correspond.:.g argument for the function. Thus the space filling curve
maps a continuous area (or multilimensional volume) to a ¢ontinucus unit length., In addition the
space filling curve exhibits locality, that is, two points which are nearby in the unit area will generally
be nearby in the unit length.

Given a discrete grid of values, such as an image consisting of pixels, it is possible to map this
matrix to a vector using an ap?roximation of a space filling curve. Algorithms to generate such
approximations(37-39]) are well known, and are well suited for generation and use by digital
computers.

A good example of such curves is the Hilbert curve (figure 2.2) an example of the family of curves
known as Peano curves. The Hilbert curve is especially well suited to our use, since it maps a
2m/2xom/2 grid to a 2™ line. An algorithm which generates the appropriate mapping and its inverse
using only simple bitwise operations{37].

Hilbert curves are well suited for use in our algorithms, in that they map contiguous window sets
from images to sequential window s¢ets in the p vector. Additional advantages to the use of the Hilbert
curve, is that it is well defined and understood, and that it is readily extended to higher dimensions.

An alternative to the use of the Hilbert curve is to interpose the bits associated with the x and y
coordinates to generate the value of k(x,y) (i.e. x=1111,y=0000,k(x,y)=01010101). This mapping is
known as the Morton order and it is commonly used within image processing applications{42]. Like
the Hilbert curve, they map contiguous winavw sets from images to sequential window sets in the p
vector. The advantages of the Morton order are that the mapping algorithm is considerably simpler
than that required for the Hilbert curve, and that the orientation of the path is the same for each level
of recursion. The multiread and window set function for the Morton order and the Raster Scan Order
differ only in the order of the output bits, which are interspersed in the same manner as described

ve.
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Several other close variants of the mappings described above exist, and shall be described when we
consider issues of the physical implementation within section 2.6.

2.4.3.2. Algorithms.
2.4.3.2.1. The Second Algorithm in Two Dimensions.

Within section 2.3 of this chapter we have described a formulation of the second algorithm in a
rigorous and abstract manner. Within the current section we present a geometrical interpretation of
) the second algorithm, which shall illustrate the utility of this algorithm for the compression of images.

As we have noted in the previous section, we may view the output of the multiread function as an
“elastic” frame which collapses down to the smallest window set that encloses all of the true (light)
values. The 1 and d functions employed within the second algorithm operate in a similar manner.
The 1 function is identical to the multiread function, and thus encloses all of the true (light) pixels.
The d function operates upon the complement of the image, and thus encloses all of the false (dark)
pixels. The collapse of either 1 or d eliminates a background region which is respectively all dark or
all light. Essentially, bg emg}oiing both functions we obtain a window which collapses upon the
section of the image within which a mixture of light and dark pixels exist. By recursively applying
these functions it 1s possible to collapse this window until the entire image is subdivided into disjoint
light and dark window sets or differences of window sets. This forms the basis of our image
decomposition algorithms. -

Of course, as we have noted in section 2.3, there are six possible outcomes which may occur when
the 1 and d functions are applied, we now illustrate the geometrical interpretation of each outcome
within figure 2.4.

In the first case both 1 and d collapse, indicating that the light and dark regions split into two
dlil?g)int window sets (the left and right halves in this case). The window set for the light region is
sufficient to describe the entire image and no further steps are necessary.

In the second case only the d function collapses (to the lower right quadrant) , implying that the -
remainder of the image is a light background. We record the light background as the difference of the
search space and the window indicated by the d function. We then repeat the process with a search
space limited to window indicated by the d function.

[n the third case only the 1 function collapses (to the lower right quadrant), implying that the

remainder of the image is a dark background. We discard this background and repeat the process
with a search space limited to the window indicated by the 1 function.

_ In the fourth case the d function returns a null set, indicafing that the entire image is light. We
record the search space window set and halt.

In the fifth case the | case returns a null set, indicating that the entire image is dark. We halt.

In the sixth case neither function collapses, the light and dark pixels are sufficiently interspersed so
as ttiio t.rll':Ot hav; albackground as such. We recursively split this image in half and repeat the procedure
w1 e two halves.

Figure 2.5 illustrates the decomposition of an image in this fashion. In this specific case, the
decomposition consists of an alternating series of collapses of the 1 and d function. As we may see, the
search space rapidly contracts as a result of repeated collapses. In addition, all but one pixel
effectively consists of "background” as we have defined it. Essentially, the second algorithm does not
seek blocks, it seeks backgrounds, or more accurately boundaries. C

The strategy we have outlined describes the application of the second algorithm to images with one
exception: the order in which we iglit the image when no collapse occurs. This order is dictated by the
mapping between the image and the p vector that we employ.

Figure 2.6 indicates the order of splitting which arises from the raster scan order and the Morton
order (the Hilbert curve order is essentially the same as the latter). In the case of the raster scan the
%&litting occurs along one axis until such splits are impossible and then proceeds along the other axis.

e Morton order, on the other hand alternates axes, bisecting the image each time. In the case of
images, the latter strategy is clealy preferable. Figure 2.7 indicates two simple images, the Morton
order decomposes both with equal ease, whereas the raster scan order is much less efficent when
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applied to the second image. This is essentially a geometrical formulation of the argument presented
in section 2.4.3.1.2 for the use of space filling curves. Of course, although the use of space filling
curves reduces the occurence of interspersed discontinuous window sets it does not eliminate their
occurrence. The simple checkerboard in figure 2.8, although consisting of the.two window sets shown,
results in worst case performance when decomposed by the second algorithm.

We have shown that the second algorithm, &roperly applied to an image, decomposes it recursively
into a series rectilinear blocks, even though the second algorithm was not initially formulated with
reference to geometry. : o«

2.4.3.2.2. The Second Algorithm in Higher Dimensions.

The second algorithm is equally well suited to the decomposition of "images” of higher dimensions.
An example of such an "image” is the series of cross sections generated by CAT scans. The
intgprgitaﬁon. of the operation of the algorithm in higher dimensions yields insight into its operation
in two dimensions.

Figure 2.9 indicates the decomposition of a periodic image by the second algorithm. The Morton
order is employed. As with the case of the decomposition depicted within figure 2.5 the process
consists entirely of collapses. The window sets which are employed with figure 2.9 are discontinuous
periodic window sets in two dimensions. If we interpret this image as fouT 4x4 cross sections of the
solid indicated, the window sets may be interpreted as contiguous three dimensional window sets.
Either interpretation is valid. We may interpret discontiguous window sets as projections of
contiguous multidimensional window sets. This interpretation implies that the multiread function
will collapse to the smallest window set that will enclose the true values, regardless of the dimension
of the window set. The concapt of dimension in either case is essentially an arbitrary assumption. We
. may regard our algorithms as essentially m dimensional and view all window sets as projections of
contiguous m dimensional window sets.

Although the multiread function is essentially independent of the dimension employed, the order of
splitting is not. The order of splitting employed within the Morton order is dependent upon the
explicitly two dimensional nature of the mapping. This results in an order of splitting which does not
alternate axes, but rather sylits the z axis repeatedly, and then alternates between the x and y axes.
This may be corrected by employing a three dimensional extension of the Morton order, which
intersperses bits of the x, ', and z indices. As in the case of the original Morton order, the multiread
functions of the raster scar: crder and both the two and three dimensional Morton orders differ only in
the order of the output bits. '

The above observations do not strictly hold for the Peano (Hilbert curve) order. Although the
Hilbert curve is self similar in shape, it is not self similar in orientation. The repeated rotations of the
primitive curves that compoca the Hilbert curve lead to non-periodic discontinuous window sets. Such
a property tends to supress collapses to windows which are discontinuous in the dimension that the
Hilbert curve has been generated. We may use the Pcano order for the compression of
multidimensional images, but we must employ mappings based on Hilbert curves of higher
dimensions{37,40). .

2.4.3.2.3. Quadtrees

We have shown how we may apply the second algorithm to decompose two and three dimensional
imaﬁea into a series of disjoint window sets. Within this section we shall discuss the application of our
results to image processing and compression. We shall show that the representation of the image
mented is closely relate:i to the well known quadtree image representation and its variants.

inally, we shall show how we may adapt the broad range of existing quadtree algorithms to highly
panllef implementations employing the multiread and window set functions.

Within the following discussion a series of terms associated with the field of data structures,
References [42] provide an excellent discussion of the field.

The bintrze is a well known imecge representation method (42) which expresses an image in terms
of a hierarchy (or tree) of leafs. In terms of our notation (assuming the use of either the Morton or
Peano order), each leaf consists of a continuous window set. If a leaf contains onl{ light pixels it is
called a white leaf. If a leaf contains only dark pixels it is called a black leaf. If a leaf contains both
light and dark pixels it is called a grey leaf (or a node). Leafs are organized in a hierarchical structure
known as a tree, each leaf may be split into two leafs (in precisely the same manner we split the
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search space), the two resulting leafs are called children of the the initial leaf, and the initial leaf is
called the parent of the the two resulting leafs. The leaf that contains the entire image is called the
root and has no parent. Each black or whité leaf terminates the descent of the tree, that is, such leafs
do not have children. Each leaf may be given an address, one of the most common systems of
addressing employs the same notation as the window set expression with the @ digits deleted (for the
sake of clarity we shall retain the @ digits). Figure 2.10 illustrates the structure of a bintree.

It is possible to list the contents and structure of a bintree in two ways. The first method is to list
the addresses of both the black and white leafs in order(42]. The second method is to list the color
(black, white, or q:y) of every leaf in prefix order{42]. The prefix order is a means of assigning a
specific order to a hierarchical structure. In our notation, the prefix order may be defined as follows:
leafs are visited in numerical order (replacing @ with 0) , in the cace of leafs of differing size the larger
leaf proceeds the smaller leaf (i.e. 0000 < 0000 < 0010 < 100@). We may define the order of
traversal recursively in the following manner, visit the root of the tree, traverse the tree beneath the
first child in the prefix order and then traverse the tree beneath the second child in the prefix order.

There exists a broad range of image processing algorithms that operate upon the bintree(42]. The
utility of algorithms that employ the bintree representation are twofold: The first is that the
hierarchical structure of the bintree reveals the interconnection of the various regions of the image.
The second is that expressing an image in terms of the leafs of a bintree results in a representation
with far fewer elements than a pixel representation, reducing the volume of the data that must be
manipulated. This second property also ensures that compact representations of the bintree, such as
the two noted above if properly encoded, result in a compression of the image.

Given the definition of the bintree in terms of the window set notation we have employed, it is.not
surprising that the second algorithm may be modified to decompose images into bintrees. In fact, only
two modifications of the second algorithm are required to obtain an algorithm which results in a
bintree representation. The first modification is to limit the collapse of the | and d functions to window
sets which are continuous. This may be achieved by examining the results of | and d and if the results
are not cnntinuous exranding them to a continuous window via the method outlined in section 2.2.1.5.
This assures that all window sets employed within the algorithm are contiguous, since the two
operations which modify the extent of window sets are the recursive split which already divides a
window set into two continuous window sets, and collapses, which we have just limited to contiguous
blocks. The second modification 1s to recognize that the difference of two continuous window sets
resuits in two regions, a region which proceeds the window set which has been subtracted, and a
region which follows it. When decomposing such a difference into individual windows as per section
2.2.1.5., it is necessary to place the components in the proper order. This requires that we retain the
portion of the difference set which follows the window set which has been subtracted, so as to place it
1n proper order, that is, after the contents of the window set which has been subtracted. This may be
achieved by the use of a stack.

The first of the above modifications, limits the preformance of the second algorithm by limiting the
extent of the collapses that may occur. If the loss of performance is unacceptable, the original
algorithm may be empioyed in conjunction with postprocessing to generate the associated bintree.

Although the bintree is a powerful means of image representation, it has one major failing, the leafs
that compose it have three possible configurations: A square, a rectangle which is twice as broad as it
is tall, and a rectangle which is twice as tall as it is broad. This considerably complicates certain
image processing algorithms that employ the bintree. A close variant of the bintree, the quadtree,
solves this problem g; eliminating the rectangular leafs. For this reason, the quadtree is often more
useful than the bintree.

We now define the dtree in terms of window set notation. Like the bintree, the quadtree is
composed of leafs, which are continuous window sets with a size which is a power of four, i.e. they
have an even number of variable bits(@). Black, white and grey leafs are defined in the same manner
as a bintree. Like the bintree the leafs of the quadtree are organized in a tree structure, with each leaf
having a %aorent (except the root), and four children as opposed to two in the case of the bintree. Each
leaf ma split into four children. this split may be achieved by applying our conventional split
twice. Each leaf may be given an address identical to its window set expression. The prefix order is
defined identically. The contents of the quadtree may be listed in the two fashions that a bintree may
be. Figure 2.11 illustrates the structure of a quadtree.

An image ex&ressed in terms of the black and white leafs of a quadtree has an interesting
interpretation. Given that all leaf: are squares with dimensions that are powers of two, it is possible
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to interpret leafs as pixels of varying resolution. In this interpretation, the quadtree viewed as a
representation of the image in which each feature is depicted with the coarsest resolution possible.
This explains the utility of the representation, in that algorithms are not forced to deal with large
numbers of pixels within large constant areas. The potential for compression is also readily apparent.
An unexpected advantage of this method is that a tally of the number of leafs of each possible size
results in a histogram known as the complexity spectrum which is useful in distinguishing various
classes of images[45]. .

Another highly useful property arising from the variable resolution of the quadtree representation is
that it is possible to store the pixels in order of coarseness. Such a so called ?rogressive representation
effectively first reconstructs a coarse resolution image and then progressively refines the resolution of
the image. Such a representation has the utility of presenting an intelligible image of degraded
resolution if the representation is truncated at some point. Such a truncation may be intentional, or
as a result of errors in transmission or storage. .

As with the bintree, the second algorithm may be medified to decompose imalges into quadtrees.
Unlike the bintree case, the modifications r:guired considerably more involved. Not only must the
results of the 1 and d functions be constrained to results that correspond to quadtree leafs, but the
recursive. split operation and the decomposition of difference sets into window sets must be
reformulated. We shall defer the discussion of the resulting algorithm to the following section.

‘As with the modifications adapting the second algorithm tc bintree extraction, the modifications
noted above reduce the performance of the second algorithm. Given the greater constraints imposed
upon the collapse of the search space in this modification, the performance of this modification is also
lower than that of the bintree variant. This loss of performance may be ameliorated in three possible
w;!s: The results of the original second algorithm may be converted to a quadtree form, a potentially
difficult task. The bintree variant of the second algorithm may be employed and the well known
algorithm for the conversion of a bintree to a quadtree{42] may then be employed to convert the
results. The bintree variant of the second algorithm may be modified to preform the conversion of the
bintree to a quadtree as the bintree is extracted. This latter strategy is the most promising, but a
practical formulation has not yet been achieved.

Although it is possible to employ the variants of the second algorithm to decompose an image into a
guag:ltree representation and then process that result, it is also possible to perform image processing
uring or instead of decomposition. A large proportion of the algorithms which empluy quadtrees
gemte by traversing the quadtree and gat.henng] information or performing operations upon leafs in
e process. The quadtree variant of the second c:esori\‘.hm essentially consists of an accelerated prefix
traversal of the quadtree which is being constructed. It is possible to use the | and d functions and the
method of recursive splitting to address the leafs of the quadtree of an image without explicitly
extracting the quadtree. Since our methods address the image in a parallel associative manr.er there
is no penalty in accessing the image directly. Such direct access algorithms may prove useful in tasks
employ the quadtree re‘presentat.ion to obtain a single specific result, such as an image outline, or the
topological properties of the image. .

2.4.3.2.4. Depth First Compressior..

We now present an adaptation of the Depth First (DF) eompression al'gorithm for quadtrees. The
DF compression technique(45,46] simply encodes the results of a prefix traversal as a compact,
variable length binary code. This method achieves losslesa compressions on the order of 3:1 to 15:1
depending upon the content of image and may be extended to the lossy compression of grey scale

images.

It is possible to describe a quudtree in terms of a combination of parenthesis and 0 and 1 values.
The method is to enclose each progressive layer of the quadtree in a pair of parenthesis. For example
we may consider the appropriate 2zpression for the quadtree depicted within Figure 2.11. For clarity
we compose the expression from the top down, denoting unfinished portions with a *:

&

(*111)
((0*0*)111)
((0(1101)0(0111))111)
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Although such a description method is sufficient to fully describe the structure of an arbitrary
quadtree, it is also redundant. Since the quadtree always branches into four elements, it is always the
case that each expression enclosed by parenthesis contains four elements. Each element either
consists of another expression within parenthesis or a simple value (0 or 1). Thus we may always
predict the location of the closing parenthesis ")". This means that the closing parenthesis may be
discarded without the loss of information. By doing so we obtain the DF exgression for a quadtree. For
example by deleting the closing parenthesis from the above example we obtain the DF expression for
the quadtree within figure 2.11:
((0(11010(0111111

As noted above the DF expression may alternately be viewed as a prefix order traversal of the
quadtree. In this case ( denotes a grey leaf, 0 denotes a white leaf and 1 denotes a black leaf.

As noted in the previous section, the quadtree variant of the second algorithm may be viewed as an
accelerated traversal of the quadtree associated with the image under consideration. The traversal
varies from a the prefix traversal due to the presence of collapses. In the absence of collapses, the
algorithm corres;ionds to a prefix traversal. If we record within a list a ( for every split we emplo‘\]r, and
a 0 or 1 for all black or white window sets (leafs) the list resulting from a decomposition is the DF
expression. The presence of collapses complicates matters since each collapse may correspond to a

rather complicated structure. We shall now discuss the reason for this.

The collapse function essentially skips layers which have only have a single grey leaf, and otherwise
contain all white or black leafs. For example, figure 2.12 illustrates the quadtree associated with an
image containing a single pixel. This image is decomposed immediately due to a collapse. In
comparison, the associated quadtree is quite complicated. Thus a collapse may correspond to a
descent of several layers along a branch of the tree. In order to enumerate the structure of the
skipped layers, we employ the set difference operation. The difference operation generates the
. difference set in prefix order, thus corresponding to a traversal of the skipped layers. Thus the set
difference operation may be used to generate the DF expression associated with a collapse.

In order to generate the DF ::Eression associated with a collapse, we must understand how the
difference set corresponds to a prefix traversal. We mag view the difference set operation, as a series
of recursive splits of the inital window set, where at each split, each of the three resulting window sets
which do not contain the window set which is being subtracted are added to the difference set.
Following the example of figure 2.12, we first split the initial window (the entire image) into four
parts (quadrants of the image) and add the first three windows inte the difference set. After the
second split we add the last three windows into the window set. With the final split, we add the first
two windows, and the last window to the difference set.

Fol](olvﬁllg our example, we compcse a parenthesis list of the quadtree from figure 2.12.
(111(*111))
(111((1101)111))

by deleting ) characters we obtain the equivelent DF expression

(111*
(111(*111
(111((1101111

As we may see, at each layer of deicent, we add one ( followed by three 0 or 1 values (whichever value
forms the background). Up to three of the latter values may occur after the point at which the list is
updated (this point is designated by a *). This complicates the formation of the DF expression, since

1 of the Rrevions operations have sequentially added to the DF expression. Handling collapses, on
the other hand, requires that information be written out of sequence. This problem may be corrected
for by storing the values in question on a stack, allowing us to defer the adding the values until the
point at which the values would be written in sequential order.

We now X;esent the algorithm for DF compression employing the multiread and window set
operations. with the second algorithm, the variables r and v denote window sets, while the |l and d
functions are the same as in the second algorithm. We employ a simple FIFO (First In First Out)
stack, which we call a write ahead stack, to handle non-sequential writes to the DF expression as a
result of collapses.
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1. Initialize both r and v to include the entire search space. The DF expression is set to blank.

2. Determine the values of 1 and d for the current value of r. For both 1 and d preform the following
operation. Locate the most significant occurrence of a @ value, set all less significant positions to a
value of @ (this limits results to continuous window sets). If there are an odd number of @ values
afterwards, set the least significant constant bit (0,1) to a value of @. (this limits results to square
continuous window sets, e.g. quadtree leafs).

3. If1is a null set then proceed to step 8. Append a value of 0 to the DF expression.
4. If d is a null set then proceed to step 8. Append a value of 1 to the DF expression.

5. If d is a subset of r then set the value of r equal to the value of d. Set the background value to 1.
Call the set difference subroutine. Proceed to step 2 unless d contains no @s. If d contains no Js,
append a 0 to the DF expression, proceed to step 8.

6. If 1is a subset of r then set the value of r equal to the value of 1. Set the background value to 0. Call
the set difference subroutine. Proceed to step 2 unless | contains no @s. If | contains no @s, append a 1
to the DF expression and proceed to step 8.

7. Find the two most significant positions within r with a value of @ and replace both with 0 values.
Replace the same positions within v with 0 values. Proceed to step 2. Append a ( to the DF expression.
Push four blank values " onto the write ahead stack. (This amounts to a recursive split, which splits
values into quadtree leafs)

8. Pop a value off of the write ahead stack and append it to the DF expression, Split the expression for
v into pairs of values, find the least significant pair of constant values which is not equal to 11.
Increment this pair by one and r:flace (i.e. 00 ->01, 01 -> 10, 10 -> 11). Proceed to step 2. If all
constant values are set to 1 then Halt. (This is a simple termination of recursion which takes into
account quadtree leafs.) :

Set Difference Subroutine.
1. Set a=r. Set ¢=0
2. If the background value is 0 then b=1 otherwise b=d.

3. Compare a and b. Form a list of the positions within a have constant bits and the positions of b
have variable bits. Split this list inco pairs. For example:

a= 10101199
b= 100009000
1011
10,11

4. Examine each pair in order of significance. For each pair append the appropriate table entry to the
DF expression and add the appropriate increment to ¢.

Pair : Agpend to Increment
value DF exp. ¢ by

00 ( 3

0 (x 2

10 (xx 1

11 (xxx 0

x denotes the background value (0 or 1)
5. Push a string of ¢ background values into the write ahead stack. Return to calling procedure.

This algorithm is essentially a straightforward variant of the second algorithm, modified to emplo

only quadtree leafs. As noted in the {)revious section, quadtree leafs must be split into four leafs
rather than halves, thus our methads for recursive splitting and recovery must operate with fourfold
splits, rather than the twofold splits employed within the second algorithm. Steps 8 and 9 achieve this
by operating upon bits in pairs. In the same fashion, the additions to Step 2 ensure that | and d may

Page 30




only collapse to quadtree leafs. This eliminates the possibility of 1 and d both collapsing, since both
would collapse to quadtree leafs, each of which only fill only one quarter of the search space, leaving
one half of the search space neither light nor dark. Thus we have eliminated steps to handle the joint
collapse of both 1 and d.

The set difference subroutine operates in the same fashion as the original algorithm in section
2.2.1.5. but employs bit pairs to ensure that the results consist of quadtree leafs. As we have noted a
write ahead stack is employed to maintain sequential writing of the DF expression. This stack is
pushed once during the set difference operation since the section written ahead merely consists of a
series of background bits of the same value. These values are popped and written each time recursion
terminates. Recursive splits push dummy values to the same stack to prevent the premature writing
of t,h% d:ata.ksAs with the second algorithm the actual recursion is achieved implicitly and without the
use of stacks. ~ , i

This algorithm has been successfully implemented in software, operating with serial
implementations of the multiread and window set function. The output and compression rates
achieved are identical with the original serial algorithms employed. Apendix A indicates the
performance in cycles and compression rates for the several test figures illustrated.

In successfully imrlementin the DF compression method with a augmented version of our second
algorithm we have illustrated both an algorithm which is useful in its own right, and a strategy for
the implementation of a broad range of potentially useful image processing algorithms.

2.4.3.2.5. Other Means of Image Compression

The next method of image compression that we shall consider is tiie direct use of the second
algorithm for imatge compression. As noted in previous sections, the bintree and quadtree variants of
the second algorithm suffer from reduced performance in comparison with the original algorithm due
to constraints upon the possible collapses that may occur. Thus if a sufficiently compact coding of the
listfot;:{)ilndow sets and difference sets is possible, the use of the original second algorithm would be
preferable.

The second algorithm, as previously described generates a list of light pixels in the form of window
sets and window set differences. Although such a list is less redundant than a serial list of address, it
still contains considerable redundancy. This redundancy arises from the fact that two subsequent
entries within the output will often only differ by several bit positions. This is to be expected, given
the physically adjacent nature of the two entries. Therefore it should be possible to further compact
the output of the second algorithm.

The most promising method for obtaining a more compact output is to generate a compact history of
the program flow during an image decomposition. Since such a history would allow us to reconstruct
the operation of the program, we would be capable of regenerating the output list generated by the
program, or directly regenerating the image itself.

In order to ensure maximal compression it is necessary to record the minimal information for each
cycle of the program. Thus we must examine each possible outcome and determine the most compact
means of recording the results.

In the case of cycles that result in recursive splits, it is only necessary to note that a split has
occurred, since the order of splitting i3 known and no other change to the program occurs.

In the case of cycles in which the search space is either all dark or all light (either | or d return the
null set) it is only necessary to note whether the window is light or dark and to note the termination of
recursion. It is not necessary to specif‘yhthe window set, since the extent of the search space r may be
inferred from the previous section:: of the program history.

In the case of a collapse of either the 1 or d function it is necessary to note which function collapsed
and the resulting window set. By necessity, the constant bits within the search space r have the same
values as the same positions within the collapsed set. Since the state of the search space is already
known during reconstruction, the common constant bits between r and the collapsing function are
redundant and may be discardec. In addition, if several collapses occur sequentially, it is not
necessary to note the function which collapses for those collapses which occur after the first. This is
ftguentzamm, as we have noted in section 2.3.3, sequential collapses must alternate between the | and d

ctions.
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Finally in the case of a collapse of both the | and d function, it is sufficient to treat this circumstance
as a combination of the callapse of one of the functions, followed by a filled search space.

We now present a modification of the second algorithm which implements this strategy. As with the
second algorithm, we shall use the two window sets r and v the former describing the search space,
while the latter is used to track the progress of recursion. It is important to note that r is always a
subset of v. We also introduce a boolean flag COLL whi¢h records whether a collapse had occurred in
the previous cycle. =

1. Initialize both r and v to include the entire search space. Set the value of COLL to false.

2. Determine the values of | and d for the current value of r. '
3. If 1 is a null set then proceed to step 9. Record a termination of recursion. If COLL is false record a
background value of white (1). Set the value of COLL to false.

4. If d is a null set then proceed to step 9. Record a termination of recursion. If COLL is false record a
background value of black (0). Set the value of COLL to false.

5. If 1 and d are disjoint sets then proceed to step 9. Record that a collapse has occurred. Record a
backround value of black (0). For each variable bit (@) position within w, record the contents of | at
that position. Record a termination of recursion. Set the value of COLL to false.

6. If d is a subset of r then set the value of r equal to the value of d. Record that a collapse has
occurred. If COLL is false then record a backround value of white (1). For each variable bit (@)
position within w, record the contents of d at that position. Set the value of COLL to true. Proceed to
step 2 unless d contains no @s. If d contains no @s proceed to step 9 and record a termination of
recursion.

7. If 1 is a subset of r then set the value of r equal to the value of | and proceed to step 2 unless |
contains no @s. Record that a collapse has occurred. If COLL is false then record a backround value of
black (0). For each variable bit (@) position within w, record the contents of | at that position. Sex the
value of COLL to true. If | contains no @s, append the value of | to the list of true values and proceed
to step 9 and record a termination of recursion.

8. Find the most significant position within r with a value of @ and replace it with a 1. Replace the
E‘%nfL p&s}tilon within v with a 1 Proceed to step 2. Record that a split has occured. Set the value of
alse.

9. Find the least significant position within v containing a value of 1 and replace it with a 0. Set the
value of r equal to that of v. I;n-oceced to step 2. Set the value of COLL to false. If there are no
remaining values of 1 within v Halt.

The contents of the compressed signal consist of an alphabet of six characters, three data characters
(0,1,0) and three characters which denote, respectively, splitting, collapse and termination cf
recursion (s,c,t). Such a large nuraber of characters (as opposed to the three characters required for
DF encoding (0,1,()) requires a more complex encoding scheme, which may limit the compression rate
of the algonthm. Employing fixed length codes leads to results that display negligible compression.
Ad hoc variable length codes have resulted in modest rates of compression (3:1-5:1). Given that each
of the characters of this alphabet have radically different probabilites of occurrence within the output,
Huffman coding is an attractive option. A fixed Huffman code could be simply implemented and could
promise considerable compression rates. Another promising option is to combine variable length
coding with run length encoding, since several characters are often repeated within the output,
specifically the s and @ characters. Although the algorithm described
above would appear to be a more elegant application of the second algonthm to the task of image
coding than DF encoding, the complexity of coding the output may limit the possible compression rate
possible. Clearly, further research is required.

2.5. Implementation of Qur Algori-hms
2.5.1. Introduction

In the previous sections we have defined the multiread function, the window set function, and the
Lewin algorithm and its varian s. In this section we describe the methods by which we may
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implement these algorithms upon a special purpose oi)tical computer architecture based upon the
HOPLA. We shall also discuss how various tf ysical sources of error may be addressed by the
modification of our designs. We shall also consider how error control and graceful degradation may be
integrated into our systems.

2.5.2. Implementation of the Multiread Function

Previously, we have formed definitions of the multiread function and the window set function in
terms of boolean matrices. As we have seen in chapter 1, such boolean matrix formulations may be
directly translated into control state operator implementations. Given that the HOPLA is a control
state olperatlg;' system, it is quite simple to translate our formulations into interconnect patterns and
control masks. '

Our strategy is as follows. We shall use the two dimensional mapping of the multiread function
formulated for image compression, to form a mapping from the input plane to the output plane of a
single stage implementation of an HOPLA. Such a single stage implementation is sufficient to
generate the multiread function. Once the interconnect pattern has been devised, it is then possible
to transform them into the appropriate control masks necessary to construct the desired HOPLA.

We have previously defined the multiread function in terms of boolean vectors as follows:
w0=(S pV
wl=(S' pJ
Where the matrix S is defined as follows:

m-1
k=Z 21§;
i=0 -

The output !li,k is connected to every inputpk for which the ith bit of the index k has a value of 1. In

the same fashion, the output ﬂoi is connected to every input pk for which the ith bit of the index k has
a value of 0. Thus the interconnect pattern for a specific input pattern is purely dependent upon its
index. The S matrix simply provides a convenient mathematical expression of this statement.

From this formulation, we may make several important observations: There are 2™ inputs and 2m
outputs. Each of the inputs is connected to half of the outputs, half belonging to the w! vector and half
to the w0 vector. Each connection pattern is unique, and all possible permutations are covered.
Conversely, each of the outputs are connected to half of the inputs, and any two inputs (except those
which are complementary, i.e. w0i and ¥1,) have a quarter of the inputs in common.

This inteconnect pattern must now be mapped into two dimensions. We exchange a 2™ long input

vector p for a 2M/2xom/2 input matrix I. The matrix I corresponds to the contents of the input matrix
of the HOLPLA. Given that in general the physical positioning of the outputs has no geometrical
significance, we shall not attempt to map the output in the same manner but instead continue to treat
the outputs by their name and index. Given a specific mapping k(x,y) of the indices x,y to k we may
then directly obtain the two dimensional interconnect pattern:

wl i:[iEjSi Jk(x ‘y)lx’y]'
W°i=l§ IS k(x,y Ix,y)
J

Note that the S matrix behaves as a three tensor in this case since its second index has been mapped
into two indices. The corresponding control masks are simply the matrix formed by the fixing the

value of i. Thus the centrol mask for the output wly is simply the matrix formed by S) k(x,y), while
the complement of this matrix forms the control mask for the output w°1-
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Previously we have discussed three different mappings into two dimensions, the raster scan order,
the Morton order and the Peano order. As we have noted previously, the raster scan order differs
from the Morton order only in the designation of the outputs, while the pattern of the interconnects
and the control masks employed are idge’r‘\tical. We now consider the interconnect patterns resulting
from these orders. '

Since it is nearly impossible to illustrate the three dimensional nature of the full interconnection
pattern it is best to illustrate the interconnection pattern in terms of the resulting control masks. The
control masks indicate the set of inputs which connect to the given output associated to the mask.

2.5.2.1. The Raster Scan and Morton Orders.

The raster scan order is the simplest order to describe, the mapping is quite simple:

k(x,y)=2™/2y+x

The control masks associated with this mapping are quite simple. Figure 2.13. illustrates the control
masks associated with nl for the case m=16. As the illustrations indicate, each the control masks
consist of equally spaced bands of black (0) and white (1) bars with widths which are a power of two,
oriented in either the x or y direction. The bar widths range from 1 to om/2-1 pixels wide. The Morton
order has identical control mask patterns, except that the order of the control masks is interspersed in
the manner described in section 2.4.3.1.2.

There are two major merits to this control mask pattern. The masks are exceedingly simple to
generate and model, allowing for simple verification and analysis. Secf)m’ill% each of the control masks
are separable functions, only displaying modulation along one axis. is gives us the option to
gendel:lat.toé ihe control masks using apertures that sacrifice resolution along the axis which is not
modula

Unfortunately these patterns also have a major disadvantage as well. They have sharply peaked
autocorrelation functions as a result of their periodicity. Such patterns are poorly suited for recordin
by Fourier transform holograpl;y, since the broad dynamic range of the object beam leads to a broa
variance of the object beam reference beam ratio{47]). Although this problem may be addressed by
various strategies that we shall consider in later chapters, it still complicates implementation.

Another disadvantage of the Morton order is that for a given input pixel, the number of cont ol
masks at which that pixel is on the boundary of a region, varies considerably dependinﬁ upon the pivel
position. For example the four central pixels are on the boundary of a region for all of the coritrol
masks, while there exist pixels which are on the boundar{ of a region for only four of the control
masks. Since the boundaries of regions within control masks are the areas most prone to crosstulk,
some input pixels are potentially far more prone to crosstalk than other pixels. It would be preferable
to have a system of control masks over which the number of boundaries encountered by each pixel is
t);g same. A connection scheme which addresses this problem is made possible by the use of Gray
code. :

A Gray code is a binary numbering scheme which has the property that the hamming distance
between any two values is always one. There exist several different codes of this form. It s always
gossible to convert a conventional binary sequence into a "canonical” grey code by simply preforming a

itwise exclusive or (XOR) between the conventional value and the conventional value shifted right by
one. We may perform this transformation upon the S matrix in order to obtain a grey coded version

we shall denote S*

S.mJ=SmJ
5%1j%8i+1 jXOR S;j i=l..m-1

If we employ the S* matrix instead of the S matrix within our interconnection schemne, we obtain a
different set of control masks. These control masks are quite similar to the control masks used in the
conventional morton order except that they are symmetrical about the center. These contrsl masks
have two useful g_roperties: Each pixel is on the boundary of a region in only two control masks. This
minimizes the effect of crosstalk, and distributes evenly the vulnerability of each pixel to crosstalk.
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The second feature is that the highest resolution of the control masks employed is half that of the non-
Gray coded control masks. -

The Gray coded mask zstem essentially corresponds to a different mapping of the p vector and the I
matrix. Being such, it functions equally well as an implementation of the multiread function. In
simulations, this order functions equally well as the Morton or Peano order for the decomposition of
images, and for DF compression.

2.5.2.2. The Peano Order.

~ The implementation of the multiread function em‘floyi? the Peano order mapping is scmewhat
more complicated. The ma;zging function k(x,y) is defined by the use of a well known algorithm

devised by Butz [37]. Given this algorithm we may generate the control masks for any given value of
m. Figure 2.14 illustrates the control masks for the ¢case m=16. As we may see the control masks

alternate between checkerboard patterns and irregular (although highly symmetric) patterns. The

square size for the checkerboard masks are powers of two. .

Unlike the Morton order, the control masks associated with the Peano order are not separable, nor
easily subject to analysis. In fact, the ﬁatterns resulting from the non-checkerboard masks are fractal.
This follows from the fact that the Hilbert curve is fractal in nature [48], and the contro! masks
consist of a mapping of a periodic function along this curve.

Although fractal structures display a high degree of self similarity(48], their autocorrelation
functions are considerably smoother than simply periodic functions. For this reason, control masks
displaying a fractal structure would be well suited for Fourier holography, due to their limited

amic range. Unfortunately, the checkerboard pattern control masks are highly periodic and thus
ill suited for tourier holography.

A Gray coded version of the Peano order is also possible, and its control masks are displayed in
figure 2.15. The most interesting property of the resulting masks is that they are all irregular fractal
patterns, and therefore well suited to Fourier transform holography. Simulations indicate that this
:lrder. t.iI: well suited for both the impiemeniativa of the secund algurithi and the DF compression

gorithm,

2.5.3. Implementation of the Window Set Function

In section 2.2.1.4 we presented a formulation of the window set function in terms of boolean
matrices:

qw)=((ST wO OR (ST wl)y

The interconnection pattern assocated with this equation is nearly identical with the interconnection
pattern required for the multiread function. The first difference that the inputs and outputs have

been exchanged. The second difference is that the control mask associated with the output wliin the

multiread function is now associated with the input w0i, just as the control mask associated with the
outpu* w"; is now associated with the input }xli.

It is possible to im&lement the window set function by empl‘c‘s,ving a variant of the single stage
HOPLA architecture that implements the multiread function. Within this variant, illustrated in
figure 2.16, an SLM containing the input is placed in contact with the POHM which normally
mediates the interconnection, and the input of an inverting Optical SLM (OSLM) is located at the
position normally occupied by the input SLM in the conventional N4 interconnect. Each pixel of the
input SLM within this system covers a facet of the POHM. Each of these pixels is associated with the
appropriate input value (w0 or wl) and is set to a clear state when that input is true, and an opaque
state otherwise, projecting the apﬂropriate control mask upon the OSLM. The OSLM takes the
superposition of the control masks projected upon it and inverts the values, generating the
appropriate window set at the output. One of the advantages of this system is that the interconnection
POHM is identical to that used to implement the multiread function.

2.5.4. Implementation of Lewin's Aigorithm and its Variants.

We may divide the implementation of Lewin's Algorithm and its variants into two parts; the
implementation of the | and d functions, and the implementation of a logical control unit. The laiier
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task merely consists of of the construction of a relatively simple finite automaton which serves to store
values and contral Fro am flow. In comparison, the practical implementation of the 1 and d functions
requires large scale global parallelism of the sort devised in this text. For this reason we shall
concentrate on the implementation of the 1 and d functions.

It is only necessary to implement both the |1 and d functions for our second variant of Lewin's
algorithm. If we only wish to implement Lewin's original algorithm only the | function is required. In
the same sense, it is only necessary to implement the | and fY functions in order to implement our first
algorithm and Lewin's original algorithm. Thus partial implementations of the 1 and d may still
retain some utility. .

2541. Implemeritation of the ] and d functions. .
In section 2.3.3 we defined the 1 and d functions in terms of their component values 19, ]}, 40 and g!:

19w, p)=(S g(w)TpI
(w,p=(S' gqw)Tpr
do(w,n_)=[S n(w)?lp.']'
dl(w,p=(S' gw)TpT

Where is g(w) the worst case window set function:
aw)=(ST w0 OR (8T wl)r

Given that we have expressed the four required functions in terms of boolean matrix functions it
would be possible to implement the functions by the use of four independent two stage HOPLAs. Such
an implementation would be quite wasteful, since a considerable degree of redundancy and symetry
exists between the four functions we wish to implement. By exploiting such features we may
construct an implementation which is much more efficient both physically and in terms of reduced
interconnection complexity.

The first step in implementing the desired functions is the generation of the worst case window set
function g(w), which is common to all four functiors. As we have shown in section 2.5.3. the g(w)
function may be implemented by the use of an appropriately illuminated POHM which projects
selected control masks upon an OSLM which thresholds and inverts the tKroject,ed maps, performin
the NOR function. We shall refer to this OSLM as the dissection SLM in that it its function is to bloc
the portions of the of the p vector that have been eliminated through splitting or collapse.

The second step in implementing the functions is to AND the q function with the p and p’ vector.
Such a function may be performed by optically superimposing the dissection SLM and the input SLM
which contains the p vector. We may evaluate both the g*p and qTp' products simultaneously by
superimposing an amplitude modulated dissection SLM upon a polarization encoded input SLM and
Aividing the resultant signal into the resulting orthogonal states of polarization. Such a scheme has
the advantage of simultaneousiy generating both results while employing the same hardware and
enedrtgy that would be used to generate either of the single products if a pure amplitude scheme were
use

The final step is to perform the multiread function upon the ,qu and ng' products in order to
obtain the | and d functions respecuiveiy. Within section 2.5.2. we have described how the multiread
function may be implemented by the use of the muiltiread function. Such a method may be used to
generate the | and d functions simultaneously by employing the polarization encoding scheme
described within the previous paragraph. Within such a scheme the conventional N4 interconnect
would be modified so as to pass through both the dissection and input SLMs, and then pass through a
polarization beamsplitter. The two resuiting outputs would correspond to the 1 and d functicns
respectively. Ideally such a scheme would best be imtglemented by mounting the dissection and input
SLMs in close contact. Unfortunately, it is unlikely that such a strateg?' would prove practical due to
the structure of most SLMs. Thus the the more practical method would be to optically superimpose
the two SLMs via the use of a relcy lens system. Such a scheme is illustrated in figure 2.17. In this
scheme, a reflection type N4 interconnect evaluates the dissection matrix which contains the q vector,
the resulting output rather than being detected is then relayed throuih a second N4 interconnect
configuration containing the input SLM which contains the p vector which is polarization encoded.
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The structure of the relay lens system is similar to the lens system used within POHM systems that
do not employ conjugate reconstruction{49]. The resulting signal is then split E)[y a polarization
beamsplitter and the two resulting wavefronts focus upon separate detector arrays. The two resulting
array outputs correspond to the | and d functions respectively.

The proposed implementation described above has been devised in such a manner as to minimize
the number of active components while maximizing the degree of interconnection. Within both stages,
each input is connected to half of the possible outputs. Within the second stage all of the light which
strikes the input SLM contributes to either the 1 or-d function (excepting the portion lost to
attenuation, scatter, diffraction, ete...). Unfortunately, although elegant by the above considerations,
the proposed implementation may prove to be too intricate to be practically viable. Such a scheme
would nf course be highly sensitive to misalignment of components as well as the culmative distortions
involved in passing through a double interconnect system. For this reason we shall now discuss how
wl'e ma{s simplify the configuration of the system at the cost of increasing the number of active
elements. ' ‘

The simplest alternative implementation would be to explicitly compute the two products qTp and

nTp' and then evaluate the multiread function for each product independently in order to obtain the |
and d functions respectively. Such a stratea' is somewhst related to the "dual rail" scheme described
in chapter 1, but differs in two respects; the two products are not true complements, and the two
products never appear together in the same logical expression. The advantage of this strategy is that
the evaluation of the multiread function proceeds in the same fashion as described in section 2.5.2.
employing a conventional HOPLA architecture. The disadvantages of this strategy are that a greater
number of active elements will be required, since it will prove necessalg to latch both the values of q
and p separately and then form the two desired products upon a third OSLM. If the two products are
generated simultaneously third OSLM will have to contain twice the number of active elements as the
size of p. If, on the other hand, the two terms are generated and evaluated sequentially, then the
number of cycles required for evaluation doubles. Of course if the system described is being employed
as an adjunct to an associative memory or an image processing system the hardware to explicitly
evaluate the desired products may already exist. :

The other alternative implementation of the 1 and d is to employ a folded version of the the
interconnection architecture which shall be discussed in section 2.6. This st.rateﬁy abandons the use
of the HOPLA entirely while employing a two stage architecture with a greatly reduced level of fan-in.
Although this stratesy may prove more practical for implementation by current active devices it is
much less flexible and global in the structure of its interconnections. .

2.5.4.2. Implementation of the Logical Control Unit (LCU)

Within this section we shall loosely sketch the implementation of the Logical Control Unit (LCU).
Our description shall not be as comprehensive as that of the | and d function, since the LCU may be
easily implemented employing conventional logical components. In fact it is assumed that the output,
consisting of the values xo and w! and the detected input values 10. 11, d0 and d! take the form of
electronic signals and are processed by an electronic logical control unit. This is due to the fact that
the great majority of the logical operations involved within the execution of Lewin's algorithm are .
involved in the evaluation of the | and d functions which demand highly parallel architectures to
implement. In comparison, the operations performed by the logical control unit consist of a relatively
small number of simple logical operations which are easily and quickly performed by electronics.
gél{?ss :i %ctical advantage in speed were possible, no advantage would come of implementing the

optically. .

We may divide the functions of the LCU into four major categories, storage, processing, program
control, and housekeeping. The LCU must store the values of the window set variables r and v as well
as latching the input and output values 1,d and w. In terms of processing, the LCU must be able to
perform bitwise logical and comparison operations between its various registers. The program control
consists of a finite state automation which directs the operation of the processing section and employs
the results and its previous state to determine the output generated by the LCU. Finally the LCyU
must $enerate the appropriate hardware control signals necessary to sequence the operation of the |
and d function evaluation hardware, a set of tasks that we shall refer to as housekeeping. Figure 2.18
sketches the proposed structure of the LCU.

The task of storage is the most straightforward. As we have noted above, it is necessary to
implement registers to store the variables employed within the algorithms (r and v), as well as latch
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" the input and the output of the LCU (I,d and w). We may implement these window set registers as

pairs of binary vectors (or words), employing the "x0,x1" encoding we have previously formulated. It-
is also necessary to add several temporary window set registers to hold the result of operations and

comparisons between registers. Finally, a pair of "constant” registers containing all true and all false

values should be implemented for convenience. . '

The Logical Processing Unit (LPU) of the LCU corresponds to the Arithmetic Processing Unit (APU)
of a conventional CPU, in that it preforms operations and comparisons between registers. The LPU
differs from a full blown APU in that it is considerably simpler since it only performs bitwise logical
operations and several special purpose functions.

The simplest functions that the LPU preforms are the bitwise logical operations. The LPU must be
able to perform the AND, OR, XOR and NOR functions between any two window set registers as well
as between the binary vector uYain that compose each register. As with a conventional APU after
every operation the LPU should set a flag indicating whether the result register is zero (all false)
allowing for the LPU to be used in comparison operations.

The other function that the LPU must greform is to strip the all but the most sifniﬁcant true bit of a
binary vector (which we shail call the STRIP operationg. This function is employed whenever it is
necessary to select the most significant bit in which a given value is located. The result cf this
function 1s a mask which may be used to "toggle” the most significant bit to a new value by the use of
the bitwise XOR function. This function may be implemented tg' the use of a cascade of logic gates
that propagate downward a supression signal activated by the first true bit. Such a logic circuit is
often known as priority logic, and is employed in associative memories (that do not employ Lewin's
algorithm) to suppress all but the first (with regards to address) responder to a search. Such circuits
may be implemented quite simply, but operate more slowly than bitwise operations.

Finally, within some variants of our second proposed algorithm, it is necessary to limit the range of
ssible window sets to those which generate continuous addresses. Within section 2.4.3.2.4. we have
escribed an operation (which we shall call the LIMIT operation) that maps an{ given window set into
the smallest continuous window set which is a superset of the original. Such an ogeration may be
implemented within the LPU as a hardwired logic circiut similar in form to the STRIP operation.

The LPU described above is should be sufficiently general to implement both I ewin's algorithm as
well as all of the extensions and variants proposed within this chapter. If only one algorithm is to be
implemented the design of the LPU may be considerably simplified by .eliminatin% whatever
operations, data paths and registers are not needed. The speed of such a specialized LPU may be
enhanced by hardwiring the bulk of the required operations. The cost of such a design is increased
gate redundancy. ’

The proinﬂg control unit most closely resembles the control logic of a conventional CPU. The
Erogrgm control unit directs the flow of data to and from registers and controls the operation of the
PU in response to inputs generated by the comparison operations of the LPU. In essence, the
program control unit contains the "program” that implements the desired algorithm. Such a
program” more closely resembles a single complex machine code instruction than a machine language
program in memory. The closest analogy is to microcode, the program hardwired within a CPU which
implements its machine language.

The actual form of the program control unit is dependent upon the degree of flexibility required. If
the impleraentation of only a singla algorithm is desired, the program control unit may simply consist
of a hardwired finite state machine. If, on the other hand, several different algorithms must be
hmp_ig;lril:;ned, the use of a simple program based system may be employed to achieve greater

exibility.

Of course, the expiicit design of the program control unit is dependent upon the structure of the LPU
implemented. If a single algorithm is to be implemented, the simplification of both the LPU and the
program control unit will be considerable. In fact, the two units will be so closely linked as to be a
single circuit. On the other hand, a flexible control unit would require a flexible LPU as well.

The task of fenerating the output for the system is also handled by the LCU. The output generated
by Lewin's algorithm and sur proposed variations consists of a stream of addresses (Lewin's
algorithm), window sets (our first algorithm, and differences of window sets (our second algorithm).

ditionaliy. several status values must be generated to communicate prog]ram flow and completion.
The former task may be achieved by directing the contents of the | and/or d latches to a pair of output
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latches. In the case of an output consisting of a window or an address (which may be seen as a special
case window) a single latch is employed and the appropriate value is routed to it. In the case of a
window set difference, a pair of latches are employed, denoting the two window sets involved. In this
case both the values of 1 and d are emnployed, the order being dictated by the order of the difference.
The latter task, generating status values, is handled by the program control unit directly. At each
change of state, the control unit generates the appropriate set of status signals and activates the
appropriate single bit output latches. .

The task of housekeeping is quite similar to that of output and basically consists of §enerating the
appropriate signals to sequence the operation of the system. The task is best performed by the LCU,
since it also controls the program flow. As with output, the program control unit should perform the
task of generating the housekeeping signals.

Having described the functions of the LCU we now consider several practical methods of
implementing the functions of the LCU. For reasons previously noted, we assume that the LCU shall
be implemented electronically. Ideally, the LCU should consist of a simple custom, special purpose
processor. Obviously, the construction of such a unit is (at least initally) iﬁhly unlikely. Thus, it is
necessary to construct the LCU from off the shelf components. The basic issue in such
implementations is how much of the implementation takes place in hardware and how much takes
place in software.

One practical design strategy would be to employ a programmable logic device (such as a PLA or a
Field Programmable Gate Array (FPGA)) to construct a LCU. Such a solution although slower and
less elegant than a fully custom design, is eminently. practical and inherently flexible. Such an
implementation would be optimized for a single algorithm since it would be possible to-design LCUs
for each algorithm. . '

Another design strategy would be to program a conventional microprocessor or microcontroller to
emulate the desired LCU. Such ar implementation would be slower than a hardware oriented
implementation, but would be considerabiy more flexible. Since the primary loss in speed would arise
from non-standard operations (such as the STRIP and LIMIT operations), adjunct hardware which
preforms these operations may be used to accelerate operation. Given that the program to emulate
the LPU is relatively small, and only employs a small number of registers, very little memory is
employed for either the program or the operations. ‘At worst, a small stack must be employed. Thus, it
would be quite feasible to imglement the required program employing the ROM and scratchpad RAM
resident within most single chip microcontrollers.

The final optien would be to eliminate the LCU entirely, and to directly access the |1 and d evaluation
hardware. Such a scheme would be similar to architectures that employ associative memories as an
adjunct to conventional Von Neumann designs, Such a design would maximize flexibility at the cost
of speed. The primary advantage of such a design is that it could be used for applications of the
;n:lztiread function other than ordered retrieval, such as those described within sections 2.4.1. and

2.6.Folded Implementation of Lewin's Algorithm
2.6.1.Introduction.

Previously, we have shown the uiility of our extensions upon Lewin's Algorithm for flag algebra and
imlfe decomposition and compression. We have also shown how the two critical functions required to
implement these algorithms, the window set (or generalized addressing) function and the multiread
function, may be implementad using single stage Holographic Optical Programmable Logic Arrays
(HOPLA). e advantage of such implamentations is that they fully exploit the potential of the

HOPLA for global parallelism, result: . ‘entially immense throughput. Unfortunately, such
highly interconnected systems require . . : ns which are beyond the capacity of current active
optical components to deliver. Thus it - ‘. desirable to devise implementations which result in

reduced fan-ins while retaining hiy' * ve.  :h...ghput.

We now present a strategy for fulding the multread function into a two stage OPLA which reduces
the fan-in to the square root of the fan-in required for our sinFle staFe systems. Additional
advantages of this strategy includ the use of a simple architecture for the first stage and a scheme
for enhancing the parallelism of our algorithm.

2.6.2. Two Dimensional Folding




The basis of our folded scheme arises from the fact that when employing the Morton or raster scan
order with the two dimensional multiread function, the results are separable. That is, a given bit
within the result is eithor entirely dependent upon the distribution of the x or y coordinates of the
flags involved, but no* »cth. Thus if we were to OR the values of each row and column of the image
matrix together and periorm the one dimensional multiread function upon the the two resultin
"projection” vectors and then concatenated the two results together, we would obtain the multirea
function for the the entir= image matrix. Such a strategy clearly requires two stages, the generation of.
the projection vectors ans iheir storage within a thresholding optical latch, and the extraction of the
multiread function from ** 2 resulting vectors. : :

One way to interpret t!.2 use of row and column projections within the folded interconnection
scheme is to view them »3 primitives that may be used to compose the required interconnection
masks. Figure 2.19 illust) ztes the Morton order control masks for a 8x8 input matrix and a pair of
arbitrary row and column p~ojections. It is obvious that it is possible to compose all of the masks by
combinations of either rv or column projections. Thus the first staﬁe extracts the required
primitives and the second s..ge composes them into the desired control masks.

The advantages of this strategy are obvious, the fan-in required for each of the first stage elements
is stmply the size of the row .-’ column, and for the second stage, half that number. In comparison our
single stage scheme requires a fan-in corresponding to half the size of the input matrix. Thus, the
fan-in in the original scheme is directly proportional to the number of elements within the image
rrf\.atlrix. whereas within the folded scheme the fan in is proportional to the square root of the number
of elements,

The price paid for the reduction in fan-in is threefold, two stages of interconnaction are required,
many more active devices are required and a reduction in the level of interconnection results in a
prct)];:ortional reduction of the throughgut of the system. The increase in the number of active devices
1s the most easily quantified of these drawbacks. Since the outputs of the original and folded schemes
are identical, both the single stage and the second stage of the folded system employ the same number
of active devices. Thus the increase in the number of active devices within the folded scheme is due to
the units within the first stage. The number of active units within the first stage is identical to the
number of rows and columns within the image matrix which is proportional to the square root of the
number of elements within the matrix,

2.6.3 Implementation of the Folded Schome

The implementation of the folded scheme is of a considerably different form than that of the
original scheme. The interconnec.ions required for the first st:ige may be implemented with a pair of
perpendicular cylindrical lenses as per ﬁgure 2.20. The resulting pair of projections are then
thresholded by a pair of one dime1 sional OSLMs, which serve as the input to the second stage. The-
second stage unit simply preforms the multiread function upon the one dimensional input by means of
an optical matrix-vector multiplication architecture followed by a threshold and invert operation. The
fan-in of the second stage is equai to half of the length of the vector evaluated. Assuming a square
input matrix, this is equivalent to half the fan-in of the first stage.

It is possible to employ such a scheme to evaluate the 1 and d functions by taking the projection of
the input matrix and its complement and performing the multiread operation upon the respective
results. Such a scheme may be implemented by the use of polarization optics in the same manner as
has been suggested for our original design. Implementstion is simplified by the fact that a single
collimated beam propagates through the input and dissection SLMs. Although it would be possible to
use a folded scheme to generate the window set function, the simplicity, and relatively low fan-in of of
the original design may well prove more practical.

2.6.4. Parallel Evaluation Employing the Folded Architecture.

An unex‘pect.ed advantage of the folding scheme, is that it may be used to increase the parallelism of
Lewin's algorithm and its variants. is arises due to the structure of the projection functions
involved. Figure 2.21 illustrates several window functions which have projections which do not
overlap. Given the lack of overlar, it is possible to to employ a folded architecture to simultaneously
evaluate the first stage values of all of the illustrated windows simultaneously. The multiread
function may then be evaluated f: each pair of projections associated with an individual window set.
Although the multiread function must be applied individually to each individual projection, all of the
individual functions may be evaluated in parallel by an appropriately configured second stage. Since
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the the second stage of logio consists of a vector-matrix multiplier architecture, it is possible to -
reconfigure the interconnection pattern each cycle to preform the reciuired multiread functions as long

a sufficient number of output lines are available. Thus it should be possible to simultaneously

perform seéveral pending evaluations of the 1 and d functions for different window sets, as long as the

projections do not overlap. It is possible to check for such overlap by simply checking whether both

the row2a2nii 5column dependent window set expressions are disjoint via the operation described in

section 2.2.1.5. :

The. proposed parallel evaluation scheme addresses one of the principal problems associated with
Lewin's algorithm. That is, as the search as]pace window set w contracts, less and less of the hardware
is usefully employed. The use of the parallel scheme allows us to employ a much greater portion of
the hardware at any one time. An additional advantage arises from the fact that many smal] windows
may be evaluated simultaneously. Given that Lewin's algorithm spends the bulk of its time
evaluating small windows, for the simple reason that there are more small windows than large
windows, such a capability may be used to greatly accelerate the execution of the algorithm.

The primary disadvantage of the parallel execution scheme is that a considerable amount of
overhead may be required in order to schedule the order of evaluation for the windows involved and
control the interconnection structure of the second stage. It may be possible to minimize the required
gﬁerl};ead b; %electing an order of evaluation which is oriented towards diagonal components, such as

e Peano Order.

2.6.5. Generalization of the Folded Architecture.

Up to now we have considered the folded implementation of the multiread function in terms of a
concrete geometrical conﬁfguration which arises from the structure of the Morton Order. We shall now
generalize the concept of folding to take into account arbitrary order and dimension.

We shall begin by reco&!ﬁzinﬁ that the nature of the mapping between the input matrix I and the p
vector is immaterial to the evaluation of the multiread, 1,d and g(w) functions and consequently the
execution of Lewin's algorithm and its variants. Thus if we were to specify the structure of
interconnections for the two logical stages employed within the folded architecture, and then change
the order of mapping of the I matrix while retaining the same order of .nterconnection wij

vector the results will be identical. Of course, the geometry of the interconnection structure will have
been altered, which, in general, precludes of regular interconnection schemes. Of course, it is possible
to implement the resulting interconnection pattern using a two stage HOPLA architecture. Such an
il_tln&lz’ti‘nxmtation retains the limited fan-ins of the previous design while adding the flexibility of the

If we note that the variation in mapping order may simply consist of a rearrangement of bits, such
as is the case for the raster scan order and the Morton order, we may conclude that the selection of
row and column bits is arbitrary. Thus it is possible to designate any two arbitrary sets of bits as the
row and column values and then proceed to formulate a valid folded interconnection scheme.

As we have neted previous}{, the multiread function and Lewin's algorithm are entirely independent
of the dimensionality of the data employed. Consequently it should be ‘)ossible to extend the principle
of folding to higher dimensions. We may generalize the strateg of foiding in the following manner:
We first map the p vector into an » dimensional hypercube. We then select an axis and decompose the
hypercube into a set of a-1 dimensional hypercubes each of which are normal to the axis sclected. We
then OR together the contents of each of these component hypercubes to obtain each of the elements of
the grojection vectar for this axis. We then r‘:rpeat the process for each of the a axes of the hypercube
to obtain the a projection vectors required. We then evaluate the multiread function of each of these
projection vectors and concatenate the results to obtain the multiread function for the entire set of
data (the p vector).

As a concrete example, we consider the case of three dimensional folding. We begin with a p vector
with 64 elements, which may be mapped to either a 8x8 square or a 4x4x4 cube as illustrated in figure
2.19. We may represent the contents of the cube by the use of cross sections as shown in the figure. If
we employ the Morton order of mapping, the associated control masks consist of periodic planes of
widths which are powers of two ar.d are normal to each of the three axes. Thus, we may evaluate the
multiread function by forming the projection vectors for the three axes of the cube and evaluating the
multiread function of each projection vector. Each of the projection vectors may be obtained by the
cube into its component cross sections along the desired axis and ORing the contents of each cross
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:ﬁction into a single logical value which, in turn, becomes an element of the the projection vector for
at axis. -

Just as in the case of two dimensions, we may interpret the planes that we employ in generating the
multiread function as a set of primitives that may be employed to compose the desired control masks.
Figure 2.19 illustrates the cross sections of three of these planes, each normal to a different axis. We
may interpret the structure of these planes in cross section in the following manner. Two of the planes
form single pixel wide periodic bar patterns in the x and y direction which may be used to compose
control masks with periods smaller than that of the bar pattern. The third plane may be viewed as a
single extended pixel that may be used to form the control masks that have periods greater than the
bar patterns employed. '

Unlike the two dimensional case, folding schemes which employ folding into higher dimensions
cannot be implemented directly. The utility of such schemes is that they provide various
interconnection patterns which may be implemented upon two stage HOPLAs. Each a-dimensional
folding scheme 1s functionally identical, but employs a different number of active devices and a
different level of fan-in. Thus the dimension of folding a provides a design parameter which allows for
a tradeoff between the fan-in required and the number of active devices required. The fan-in and
number of active devices required for each stage of a two stage a-dimensionel folded implementation

of the ] and d function of a p vector of length 20:

First Stage:
Fan-In:
o(a-1)n/a
Active Devices:
agna+l
Second Stage:
Fan-In:
. _ oln/a)l
Active Devices:
4n

For a value of n=20

First  Stage Second Stage
a Fan-In Devices Fan-In Devices
1 1 2097152 524288 80
2 1024 4026 512 80
4 32768 256 16 80
5 65536 1€0 8 80
10 262144 80 2 . 80
20 ) 524288 £0 1 80

As we may see form the table above, as we increase the value oi'a we increase the fan-in and decrease
the number of active devices.

It is instructive to observe the results obtained for the extreme values of a, that is a=1 and a=n. In
the case of a=1 the p and p' are simply mapped to themselves in the first stage, while the second stage
simply consists of a non-folded single stage implementation of the multiread function. While in the
case of a=n, the interconnection pattern of the first stage is identical to that of a single stage non-
folded implementation of the multiread function and the second stage merely inverts the results of the
first stage. Thus, surprisingly. we may interpret our original implementation of the multiread
function as either not folded or folded to a maximal extent!

2.7. Error Detection and Handling.

Up to this point it has been assumed that the execution of the algorithms that we have described
proceed without error. Obviously, this is a false assumption, in that some degree of error occurs
within any physical system. For this reason, it is important to determine the nature and impact of
the presence of noise and error within our system and device means for its detection and correction.
2.7.1. Error Quantification
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The first task in addressing the issue of error is to to enumerate the various errors that may occur
and to determine the severity of their impact upon the system. Obviously it is necessary to to
determine which errors may occur before devising appropriate responses to them. But, it is equally
important to determine the probability of occurrence of the error and its severity of impact upon the
operation of the system. Such information is critical to determining the priority given to measures
intended to ?revent its occurrence. Additionally, information on the probability and severity of errors
may be employed within the design of the system in order to minimize the overall severity of errors
that may occur. Such a design tradeoff may actually increase the number of recoverable errors in
order to minimize the number of severe or fatal errors.

2.7.2. Error Detection

There exist several methods for respondinﬁ to errors that arise within a system. The first method,
error detection, employs redundancies within data to detect the presence of corrupted data and
prevent it from propagating through the system. The second method, error correction, employs
redundancies within corrupted data to determine the most probable form of corruption so that it may
be reversed. Finally, when errors are so extreme that they cannot be eliminated via correction or
repetition, the third method, graceful degradation must be applied. Graceful degradation is a strategy
which attempts to minimize the effects of error. Such a stratefy either employs less efficient
strategies that do not rely upon the corrupted data, or returns partial results.

Lewin's algorithm and our })roposed variants are well suited to the use of all three methods. This
arises from three features of the multiread function: The multiread function already contains a
considerable amount of redundancy, which may be employed for the purposes of error correction. The
multiread function operates upon flag addresses in such a manner that parity is, in some sense,
preserved. This allows for the use of error correction codes. Finally, as we have noted previously, the
multiread function employs self similar control masks with a sliding range of resolutions, which are
employed to progressively converge upon a flag or a block of flags. Such an arrangement is well suited
to graceful degradation schemes.

2.7.2.1. Error Detection Via Intrinsic Redundancy

The first line of defense against error is the intrinsic redundancy of the multiread function and the
further redundancy of the 1 and d functions.

The first form of redundancy manifests itself in the binary representation of the window set
expression. The binary represeniation of a window set consists of two binary vectors which are
denoted by the superscripts 0 and ! respectively. For a given bit position, if both vectors contain a
false value (0) then that position contains a value of @. It, on the other hand, one of the bit positions
contain a true value (1) then that position contains a constant value of either 1 or 0, depending upon
whether the true value is within the 1 or O vector. But if both vectors contain a true value (1) within a
given position, then an error has occurred. The sole exception to this situation is when all entries
within both vectors contain true values, since this corresponds to the representation of the null set.

Y]; _1fpay exploit the above redundancy to generate the following error test. A window set x is only
vala it:

x0x1+@%1)=0

Where 0 denotes a binary vector with all elements set to a false value. Such an error test may be
integrated into the appropriate input latches of the LPU. If an error of this form is detected, the
corrupted data must be discarded and error recovery invoked. The reason for this is that the g(w)
function will map such a result to the null set.

Another form of redundancy relates to the relationship between the 1 and d functions and their
relation to the search space w. As we have noted previously, the 1 and d functions are constrained to
several specific outcomes durin%‘proper execution of our second algorithm. Either, at least one of the
the functions must be equal to the search space, or, the results of the two functions must be a pair of
disjoint window sets whose union 1s equal to that of the search space. Such redundancy may be used
to trap errors by explicitly testin; forea\ese conditions. The two tests re%uired are: Whenever l(w) and
d(w) are evaluated the union of the two resulting window sets must be equal to the search space
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window set w. When the results l(w) and d(w) are both proper subsets of the search space window set
w the two results must be disjoint (i.e. have no intersection). These two tests are best implemented
within the algorithm and performed by the LPU. Corrufpt results detected by these two tests must be
discarded since such errors imply incomplete coverage of the search space by the 1 and d functions.

2.7.2.2. Error Correction Coding

In addition to exploiting the inherent redundancies of of our system, it is desirable to incorporate
additional redundancy for the explicit purpose of error detection and correction. Ideally such
redundancy should provide an improvement in error handling while resulting in a minimal increase
in the complexity of the the system .

For example, if we were to implement all of our interconnections in triplicate and selected results by
majority vote, the resulting system would be very resilient to errors. Unfortunately, the resulting
system would be more than three times as complex as the original. Under most circumstances such
added complexity would be prohibitive. 4

Error correction coding schemes, on the other hand, may be employed to incorporate useful
redundancies with minimal increases in complexity. Such coding schemes are most commonly used
within data storage and compression, and are less commonly employed within computational tasks.
The reason for this is that many arithmetic operations tend not to preserve the redundancies
employed within the code. Error Correction Codes (ECCs) have been successfully used within
electronic PLAs. We shall argue that ECCs are well suited for application to the multiread function
and the worst case window set function (i.e.:g(w)).

Consider the following error handling scheme employing (w) and d(w) evaluation hardware. We
first subdivide the input matrix into an array of equally sized disjoint cells each of which forms a
window set. For each cell we designate a single valid pixel, the position of which is determined by the
location of the cell that it is located within. We then mask all pixels which are not designated as valid
within our evaluation hardware.

The masking scheme described above could be used for error detection and correction in several
ways: A result which indicated a multiplicity of pixels within a single cell would obviously indicate an
error, since only one valid pixel would exist per cell. A result that indicated a single pixel at a location
other than a valid pixel location would indicate an error. The most probable correct result for either of
these errors would correspond to the designated valid pixel within the cell under consideration. Since
no two valid pixels could have adjacent addresses, any window set incorporating more than one
variable bit would be the result of an error. Finally, in some circumstances, a window set that
incorporated more than one cell would incorporate additional collapses that resulted from the
correlation of of the addresses of the valid pixels enclosed, the absence of which would indicate an
error. ‘

Clearly, the scheme proposed above would be exceedingly wasteful, given that the bulk of the pixels
within the hardware would be masked in such a scheme. But, it 1s possible to retain all of the
advantages of the masked system within a %actical scheme by retaining the same interconnection
pattern, and discarding the masked pixels. The resulting scheme would be functionally identical to
the masked configuration but would collapse each cell to the single valid pixel. Essentially such, a
configuration would augment the address of each pixel with additional bits that could be used to
validate the physical address. This is identical to the concept of error correction coding.

We shall employ the strategy of augmenting the address of each flag (pixel). to integrate error
correction coding into the multiread and window set functions. For simplicity we shall employ one of
the better known error correction codes, the Extended Hamming Code (EHC).

Given a consecutive sequence of (m-logg(m)-1)-bit binary numbers, Hamming code [50] appends
logo(m) code bits to each number in such a fashion as to ensure that any two numbers differ in at least
two bit positioris. Extended Hamming Code (EHC) appends one additional bit which ensures that an
two numbers differ at least three bit positions. We may define the number of bit positions in whicK
two numbers vary as their Hamming distance (for example the Hamming distance between 1010 and
0110 is equal to two).

Each of the check digits employed within the Hamming code are obtained by preforming an

exclusive or (XOR) of a designated set of bit positions within the number to be coded. There exist
several methods for designating which bits contribute to which check bit. The simplest method
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consists of employing a binary count to designate the bits. In such a method, the binary numbers
from 1 to 2M.1 are listed in a column. Any number which is a power of two is then eliminated. For the
remaining list, if the ith entry contains a value of one in the jtD bit position, then the ith bit position of
the number contributes to the jf-}'l check bit. For example we consider the case of m=8 where there are
four data bits (ag,a9,a1,aq) and three check bits (cg,¢1,¢q). We begin by listing the numbers from 1 to

8 eliminating powers of two (including 20=1) in a column:

3 0 1 1 a9
5 1 0 1 a)
6 1 1 0 ag
7 1 1 1 a3
2 | 0
The resulting formulas for the check bits are:
cg=ag XOR a; XOR a3

c1=ag XOR ag XOR a3
«2=a] XOR ag XOR aj

The additional parity bit ¢3 required to construct an extended Hamming code may be obtained by
XORing both the data and check bits together:

¢3=c2 XOR ¢1 XOR ¢g XOR a3 XOR a2 XOR aj XOR ag

There are two attractive features to this method of generating Hamming codes. The first is that the
same scheme may be extended to "3; number of data bits without reconfiguration by simply adding
addtional check bits and extending the list of numbers. The second feature is that the higher order
check bits are only influenced by the higher order data bits. This latter feature is particularly useful
for checking errors within large windows and graceful degradation.

Other methods exist for generating Hamming codes, the most notable of these employiniLinear
Shift Registers (LSRs). The advantage of such methods generally lies in simpler sical
implementation and positional separation of data and check bits. Unfortunately such methods do not
have the two advantages that have been cited for the method noted in the previous paragraph.

Once the formula for generating the check bits has been determined, implementation
straightforward. All that is necessary to do is to generate the check bits for each address and then
append these bits to the least significant portion of the address. The resulting augmented address
may then be used to form an augmented S matrix, which may in turn be used to construct the control
masks for the new configuration. A more intuitive method for obtaining the control masks associated
with the check bits is to XOR together the control masks associated with the address bits that
contribute to the check bit formula. The form of the multiread, 1,d and q functions are identical with
the exception that the augmented S matrix is employed.

All of our proposed algorithms will operate without modification emplo‘\"in functions augmented
with check bits. Even without modification, our intrinsic error correction checks shall be augmented
by the presence of redundant bits. Of course, it is necessary to incorporate some error checking and
correction procedures within our system to derive the full advantage from the incorporation of
Hamming code into our system. Such procedures are applied to the results of the 1 and d furctions for
each cycle. These procedures differ from traditional Hamming code checks in that they must be able
to handle the presence of variable bits (@) within window set results. Two rules determine the
handling of such variable bits. The first rule is that if any data bits contributing to a given check bit
are variable, it is not possible to verify the state of the check bit. The second rule is that if one and
only one (data or check) bit of any check bit formula is variable, then at least one of the bits is in error.

The an error detection scheme incorporating the two rules noted above requires two phases. The
first phase implements an independent conventional check of the two binary vectors that compose the
window set expression (i.e. 10 and 11 or d0 and d1). such a check consists of reconstructing each check
bit from the received data bits and comparing the result with the received check bit. Both checks will
validate constant bits due to the fact that the complement of a valid Hamming code is also a valid
Hamming code. Such a check detects errors when the bits involved are constant and also detects
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errors resulting from the presence of a single variable bit. The second phase of the checking process
detects the presence of multiple variable bits within each check equation and suppresses error signals
generated b& the first phase of error correction. This phase implements the first rule cited above. By
employing the combination of these two operations, it is possible to extract the maximal amount of
error detection information from window sets.

It is possible, given a sufficient amount of error detection information, to engage in_.error correction.
Error correction is possible when the hamming distance of the constant bits exceeds the number of
errors detected. Such a curcumstance is most likely when the window set is quite small (on the order
of one to four flags in size). Since such error correction schemes .

The implementation of the two phase error detection scheme is straightforward. The operations
{eqt}zlired may be implemented within the LCU in the form of discrete logic associated with the input
atches. 3 : '

The implementation of the first phase consists of connecting each check bit and its associated data
bits to a common XOR gate. A true (1) result indicates an error condition associated with the
corresponding check bit. Such check circuitry should be independently implemented upon the two
binary vectors (0,1) which compose a window set representation.

The implementation of the second phase is somewhat more complex. The first step in the
implementation is to perform a bitwise NOR operation upon the two component binary vectors of the
window set register of interest. The resulting binary vector contains a true value (1) within each bit
position which contains a variable bit (@) within the window set expression. The second step in the
implementation is to route each check bit and its associated data bits to a circuit which returns a false
value if more than one of its inputs is true. The resulting outiut is false when a the presence of
variable bits renders error detection employing the g:')ven check bit invalid. The final step of the
second stage is to use the results of the circuits noted above to suppress error signals generated by the
first phase when such signals are invalid. This is achieved by individually ANDing the result of the
second stage for each check bit with the two signals for the same bit generated by the first phase.

The final step within the error detection process is to OR tog‘%;.hher the various error detection lines
and feed the result to the process control logic within the LCU. When this line generates a true output
then the algorithm must initiate error handling procedures.

Obviously, error correction codes other than Hamming codes may be employed within our
application. éerger, m-of-n and Fire codes are well suited to use within PLA architectures, and may
prove superior to Hamming code in the long run.

2.7.3. Error Handling

When an error occurs it is necessary to discard the corrupt data and obtain correct data before
proceeding with the execution of the algorithm. Valid data may be obtained by either repeating the
process that obtained the data or by attempting to correct the corrupted data. If it is impossible to
obtain valid data by either means, it is then necessary to proceed without such data in a manner that
minimizes the effect of the missing data. Such a strategy 1s known as graceful degradation.

2.7.3.1. Error Correction Through Repetition.

The simplest means of recovering from random errors is to discard the corrupt data entirely and
repeat the evaluation process. Such a strategy is effective as long as the error rate is sufficiently low
that repeated errors aro rare. As the error rate increases, the number of repetitions necessary to
obtain a correct result increases as well. At a certain errcr rate, there will be a strong probakilit
that a corrupted result will defeat the error detection systam employed, resulting in an undetecte
error occuring. Thus, it is necessary to limit the number of repetitions allowed to a small number.

2.7.3.2. Error Correction Through Coding

Another method of correcting corrupted data is to employ the error correction codes that we have
incorporated within our functions. Given a sufficient number of valid check bits (those which have not
been suppressed by the second pt.ase of our error detection scheme) it is possible to determine the
most probable correct result from the corrupted data. As with error detection, a sufficicntly high oit
error rate will overwhelm such error correction schemes allowing undetected errors to propagate
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through the system. For this reason it is inadvisable to employ such methods when bit error rates
exceed a prescribed value.

Error correction is possible when the set of valid check and data bits forms a set of correct codes
with a hamming distance §reater than the number of detected errors by one. Correction is achieved
by replacing the corrupted code with the correct code which is the shortest distance from it. The
precise method for determining this corrected code is dependent upon the means by which the original
code has been generated. In the case where all check bits are valid, Hamming code is capable of
correcting one bit error and extended Hamming code is capable of correcting up to two bit errors.

The primary utility of error correction within the current design is to augment the reliability of
single flag (or pixel) results. Such a capability is particularly useful when the error encountered is
systematic, arising from an effect such as crosstalk and thus not amenable to correction through
repetition,

2.7.3.3. Graceful Degradation

When it is possible to detect an error but it is not possible to eliminate it through correction or
repetition it is necessary to proceed with the execution of the algorithm without the data in question.
The strategy of graceful degradation seeks to minimize the impact of such errors by the incorporation
of appropnate error handling procedures. The first line of assault for such strategies is to proceed
with less efficient algorithms that do not require the erroneous data. If such measures fail, then a
strategy of containing the effects of such failures so as to allow for the continued execution of the
algorithm. In such a strategy, the portion of the result obscured by the error is labeled as corrupt and
the best aproximation to the result is given. Our proposed algorithms are well suited to the
incorporation of graceful degradation strategies. '

The first strategy for employing graceful degradation within our algorithms is to ignore erroneous
collapses. Given that collapses of the search space only accelerate the execution of our algorithm, the
failure of a collapse to occur merely results in a reduction in the efficiency of the algorithm. In the
case of our two proposed algorithms there is also a commensurate decrease in the efficiency of
compression due to the fact that smaller blocks are employed to encode flags. -

In the case of the second algorithm such a strategy may take an interesting form. If either the l or d
function goes into a state of persistent failure, the the algorithm will rely solely upon the other
function for a source of collapses. Such an event amounts to the degradation of our second algorithm
to either our first algorithm or Lewin's original algorithm depending upon whether the failing
function may still generate null set results. Such a form of persistent failure might conceivably result
from an asymmetnc implementation of such functions.

In the case of situations where error rates are sufficently high as to defeat error detection or
indicative of systematic error it is necessary to terminate evaluation of the portion of the input under
consideration. In the face of such a termination it is the role of graceful degradation strategies to
contain the effects of such an error. Such containment of failure is easily achieved within our
algorithms due to the recursive nature of both the algorithms and the functions employed.

When errors that preclude further evaluation are encountered within our algorithms, the
appropriate response is to record the current search space in the form of it's window set and designate
it as indeterminate and terminate recursion. This allows the algorithm to proceed with the next
search space while indicating the laocation and extent of the error encountered.

The impact of such indeterminate data depends upon the nature of the application in which it is
employed. In the case of ordered retrieval, it is necessary to locate the missing flags by alternative
means. Such a task is simplified Ly the fact that the location of the missing flags is constrained by the
window set associated with the indeterminate value. In the case of image decomposition and
compression, on the other hand, this amounts to the conversion of a lossless decomposition to a lossy
decomposition. The presence of indeterminate data corresponds to a loss of detail within portions of
the im;ge. Within limits, such a loss of information may be tolerable within imaging applications.

If, under a given set of circumstances, the bit error rates for the evaluation of our functions bevond a
iven resolution are prohibitive, then it is possible to operate our system at a lower resolution without
ardware modification. The only modifications required consist of add'usting the thresholds of the

active devices upward to compensate for the brighter logic signals, and disabling the least signifigant
bits of the functions, which are associated with the lower resolutions. In this fashion we may
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dynamically reconfigure the structure of our system in such a manner as to provide some level of
functionality under arbitrarily hostile conditions.

2.8. Conclusion

We have described the multiread function and its application within Lewin's algorithm. We have
proposed extensions upon Lewin's algorithm that accelerate the task of ordered retrieval as well a
providing the potential for compression. We have shown that these algorithms allow for the efficent
parallel quadtree decomposition of images as well as several other practical applications. We have
shown that these algorithms inherently display global parallelism and are well suited to
implementation upon our proposed HOPLA architecture. Finally, we have proposed a means of
"folding” the multiread function, a strategy which allows us to limit the fan-in required for the system
while allowing for extended parallelism.

Chapter 3
Experimental Overview
3.1.Introduction.

Within this chapter we shall out.ine our program of research. We shall describe our objectives, and
‘review the state of current research. . .

The basic expremental objective of the current project is to evaluate the practical limits of global
architectures, and specifically the HOPLA architecture. In order to achieve this objective, various
configurations of HOPLAs shall be constructed and evaluated under various conditions. A special
emt?h?sis shall be given to the relationship between the performance of the system under low levels of
optical power.

In order to reach these objectives, four major tasks must be preformed: A POHM printer must be
constructed in order to generate the N4 interconnect required for the computer. The N4 interconnects
of various configurations must must be reconstructed, evaluated, and calibrated to ensure proper
operation of the intended computer. Proper basic operation of the computer must be verified and, the
preformance of various configuations of the computer must be compared. Finally the operation of the
computer must be evaluated under declining levels of optical power. Due to the nature of these tasks,
it is anticipated that this cycle will need to be repeated several times to obtain our desired results.

At the present time an initial version of the POHM printer has been constructed, and initial results
are being collected and evaluated. The current status of this work shall be described followed by a
description of the current direction of research. This shall be followed by a rough schedule of research
which is yet to be done. Finally, the anticipated results of the research and their implications for the
future shall be discussed.

3.2. Status of Current Research:

A this time a holographic laboracory has been established at the USAF Photonics laboratory Griffiss
AFB. An initial PO printer has been constructed and has shown fully automatic operation. Initial
POHMs have been made and are inder initial evaluation. A hiﬁh contrast Spatial Light Modulator
(SLM) is available and shall be introduced to into the system shortly, allowing for initial computer
operation and evaluation.

3.2.1 The POHM Printer:

In order to generate a Holographic Optical Programmable Logic Array, it is first necessary to
construct a means of generating an arbitrary N4 interconnect of the appropriate dimensions. A Page

Oriented Holographic Memory printer serves both as the means of generating an N4 interconnect, as
well as the framework of the interconnect itself.

The operation of the N4 interconnect which we shall employ within this system has been described
within previous chapters. A schematic diagram of the the interconnect is given in figure 1.5.

As we have noted previously, the N4 inteconnect employs an array of adjacent Fourier transform
holograms each of which contain t'1e image of a different control mask. Each image projects back upon
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the input SLM. When these holograms are simultaneously illuminated by a reconstruction beam
cmugate to that of the original reference beam, they project all of the control masks upon the input
SLM. It is the function of the POHM printer to generate this array of holograms.

Within our experiment, the POHM printer, and the N4 interconnect which implements the HOPLA
employ the same optical system. This configuration has been selected for two reasons: It allows us to
minimize the duplication of scarce and expensive resources, and it greatly simg/lliﬁes the problem of
alignment. Given this configuration, once a successfully operating POHM printer has been
constructed, it is relatively simple to convert it to an associated HOPLA system. 5

In order to generate the required holograms, the POHM printer must automatically record a series
of Fourier transform holograms. Each of these holograms differ in content and optical configuration..
The POHM printer must thus be both capable of controlling the various aspects of hologram exposure,
and of changing its optical configuration for each hologram recorded.

The exposure of each separate hologram within the POHM differs in three respects; The control
mask is different, the location of the hologram is different, and the origin of the object beam is at a
different location. Each of these changes must be addressed by the POHM printer in a different
manner. Changing the control mask sim%ly consists of changing the content of the SLM within the
system. The location and extent of each hologram is controlled by an aperture which prevents the
hologram from being exposed over the entire plate. The location of each hologram is changed by
shifting the location of this aperture. Finally, in order to change the location of the point source that
forms the origin of the object beam, it is necessary to employ an optical fiber to generate the point
source. Moving the point of origin of the object beam then simply a matter of moving the position of
the output end of the optical fiber.

3.1.2.1. Design Issues.

At the present time, a POHM printer employing fixed transparencies has been sucessfully
constructed at Rome Laboratory end is undergoing preliminary analysis. An electronically addressed,
high contrast version of a 256x256 SIGHT-MOD Magneto-Optic SLM is currently being integrated
into the system to’ E{)ovide for fully automated operation. We shall now review the design and
con;truchﬂ_ ion olf tgis HM printer. Throughout this discussion we shall consider the various design
tradeoffs involved.

We shall divide our description of our POHM printer into three major divisions, the issues related to
;.‘htla optical design of the system, the mechanical design of the system and the recording of the
olograms.

3.1.2.1.1. Optical Design Issues.

In the previous chapter the basic constraints upon N4 interconnect systems, and consequently,
POHM systems implementing such interconnects, were considered. Within this section we shal
consider 1ssues related to the practical optical design of the POHM pri...er.

Figure 3.1 illustrates the %ptical layout of the POHM printer. The recording geometry of the system
is a variant of the quasi-Fourier-Franhofer hologram. The reference and object beams emplo
independent optical trains. The system empioys a collimated reference beam 1n order to simplig
conjugate reconstruction. In cor.trast, the optics object beam tolerates a considerable degree of
aberration, since the conjugate reconstruction employed in the interconnect should cancel out such
aberrations(2]. Another notable feature of the optical system is the use of optical fibers for beam
routing.

The system employs Spectra Physics 2025 water cooled argon ion laser emitting a single line
linearly polarized beam at a waveiength of 514nm. The laser incorporates an oven heated etalon and
a Littrow mirror to achieve operation in a single longitudinal mode. The laser employs current
feedback as opposed to power feedback since it has been observed that the former mode of operation
minimized pointing variation while maintaining relatively good power stability.

Tuning of the laser is complicated by the lack of a scanning Fabry-Perot interferometer for the
observatiop of the output spectra. Tuning is achieved by maximizing both the intensiti and visibility
of the fringes generated by the output of an unbalanced Michelson interferometer. The presence of
mode ho?pmg 1s detected by long term monitoring of the interferometer fringe pattern. The coherence
length of the laser is verified by observing the visibility of a deep scene transmission hologram of a
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retroreflective measuring bar. Measurments obtained in this fashioh ‘ndicate a nominal coherence
length of roughly one meter. This indicaces the need for more accurate tuning of the laser to obtain
true single mode operation.

The laser employed must be mechanically isolated from the rest of the optical system, since it
vibrates considerably. This is achieved by mounting the laser on a table separate from the remainder
of the optical system and routing the beam to the system by the use of a single mode polarization
preserving optical fiber. Figure 3.2 illustrates this arrangement. The laser beam first exits the laser,
gasses through an electro-mechanical shutter, then passes through a half-wave retarder plate, and

nally enters a fiber coupler which injects the beam into the optical fiber. The shutter is located on
the laser table, since it is also a considerable source of vibration. The half wave plate aligns the
polarization of the beam to the birefringent axis of the optical fiher. At the output end of the fiber the

eam is decoupled and collimated and then passed through a polarizing beamsplitter in order to
ensure linear polarization. .

The output beam generated by the above arrangement is subject to power fluctuations arising from
several sources. The primary source of the fluctuations originate within the laser, both directly from
the variation of output power, and indirectly due to variations in beam pointing resulting in
fluctuations in fiber coupling efficiency. Additional variations in couplins efficiency result from
various fiber optic effects, such as internal reflection(51], cladding modes, and residual birefringence.
At best it is possible to minimize the various sources if fluctuations. The graph in figure 3.3 indicates
the variations in power encountered in normal operation. In order to compensate for these
fluctuations it is necessary to monitor the power fed into the main system. This is achieved by
givertigg a small portion of the beam entering the system into a monitoring detector as shown in

gure 3.1. .

The main optical system consists of two separate paths, the reference beam path and the object
beam path. The actual division of the incoming beam into the iwo paths is achieved by employing a
g:larization type variable beamsplitter. This allows us to continuously vary the critical reference

am-object beam ratio.

The layout of the reference beam path is quite simple. The beam is first directed through a detour
in its path in order to ensure the matching of the optical path length with that of the object beam
path. The beam then passes through a diffraction limited collimator. The beam is expanded to a
diameter of 50 centimeters. The resuiting collimated beam then impinges upon the holoEraphic plate
at an angle of 30° to the normal. This angle was selected since a beam incident at a sharper angle
would intersect the mounting hardware of the object beam optical system. .

Many Fourier transform hologram recording schemes employ a reference beam which originates as
a point source at the plane at which the transparency is located. The advantage of such a scheme is
. that the reference and object beams share a common optical system and the incident angle of the
reference beam may be greatly reduced. Such a scheme is not employed in the current system for two
reasons. The first spmblem with such a scheme would be the difficulty of mounting the reference beam
fiber within the SLM housing. The second problem is that the reference beam generated would
inevitably posses a measure of aberration. Such an aberrant reference beam would greatly complicate
reconstruction of the resulting hologram, especially when a conjugate reconstruction beam is
employed as is presently the case.

The configuration of the object beam path is considerably more complex than that of the reference
beam. Thus we shall divide our discussion of this path into two sections, tiie fiber optical portion, and
the conventional optical system. It is necessary to employ fiber optics in order to Le able to shift the
focal point of the object beam for each exposure.

We shall first discuss the fiber optic portion of the object beam path. The beam is first coupled into
an optical fiber in a manner identical to that of the the arrangement used to transfer the laser output
to the main optical system. /s in the previous arrangement, a half wave plate is employed to ensure
that the polarization of the beam is aligned garallel to the birefringent axis of the optical fiber. At
the output end of the fiber the beam exits directly from the fiber, the end of the fiber effectively
serving as a pinhole type spatial filter with a numerical aperture of 0.1. The actual emission from the
end of the fiber approximates the form of an expanding elliptical gaussian beam. This is a result of the
anisotropic structure of the fiber core necessary to maintain polarization. It is the tip of the output
end of the fiber which forms the ongin of the object beam for the conventional optical system.
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The remainder of the object beam path consists of a conventional optical system. Figure 3.5

presents a detail of this system. This system is identical to the N4 interconnect except that the
propagation of the beams invelved are conjugate to those of the interconnect. The function of the
séystem is to first collimate the expanding beam emitted from the optical fiber, then illuminate the
SLM or transparency containing a desired control mask, and ﬁnall% focus the resulting object beam
upon the holographic plate. The system achieves this by the use of three lenses, each of them a plano-
convex lens of the same focal length, which 1is, in this case 150 mm. The first lens, located directly
after the end of the optical fiber, operates as a field lens. It serves to steer the beam towards the
center of the second lens, as well as slightly increase the divergence of the beam. The field lens is
necessary to prevent vingetting within the system. The second lens serves to collimate the expanding
beam. The collimated beam then propagates through the SLM arnd its associated polarization
analysers. The third lens then focuses the resulting beam onto the holographic Y‘late. The focal plane
of the system is displaced from the holographic plate by a short distance (roughly 8mm), in order to
achieve a more uniform distribution of energy at the recording plane. .

Although'it would be optimal to place the second and third lenses in the optical system in near
contact with the SLM or transparency within the system, this is not possible due to the physical
configuration of the SLM employed.

The object beam optical system described above is subject to considerahle abberation, especially in
off axis operation. As we have noted previously, these aberrations should be cancelled out by the

" conjugate reconstruction employed within the N4 interconnect.

The object and reference beam paths recombine at the holographic film plate. An aperture is
located immediately in front of the film plate to prevent each hologram from exposing the entire plate.
Scatter from this aperture must be minimized since it contributes noise to the holo%:-am bein
recorded. The aperture currently employed consists of a thin aluminum shim painted with flat blac
paint. The edge of the hole is stripped of paint in order to eliminate irregular scatter from individual
E:int particles. The agerture is nearly in contact with the plate so as to ensure the greatest overlap

tween the object and reference beams. :

3.1.2.1.2. Mechanical Design Issues

We now consider the mechanical issues associated with the POHM printer.- As we have noted
previously, both the location of the object beam focal point (which consists of an optical fiber tip) and
the plate aperture shift for each of the many holograms recorded within a POHM. It is therefore
necessary, between exposures, to move both the fiber tip and the aperture to the appropriate locations
for the next exposure. This is achieved by the use of an automated micropositioning system. This
system is integrated with the general control system which controls and monitors the other acive
components of the system, such as the laser, the shutter and the SLM. Both the object beam fiber tip
and the plate aperture are mounted on micropositioner systems. Both of these systems consist of
Kilnfr linear x-y positioners arranged to operate along a plane normal to that of the optical axis of
the object beam optical system. All of the micropositioners are of the stepper motor type, and have a
nominal resolution of one micron. Each of the four micropositioners is under the independent control
of the controller computer.

The automated exposure systein controls the motion of the micropositioners during an exposure
sequence. Previous to each exposure, both the fiber tip and the aperture are moved to their prescribed
locations for that exposure. The system then waits for a set period of time. This delay allows for the
vibrations induced by the motion of the micropositioners to damp out. The system then exposes the
hologram, and then moves the fiber tiy and the aperture to the next prescribed position.

3.1.2.1.3. Holographic Design Issues.

Within this section we shall consisder the desiﬁ issues which are associated with the process of
?nemting the holograms recorded by the POHM. These issues not only concern the fabrication of the
ho%og'ram itself, but also concern the control of the environment to ensure optimal recording of the

olograms.

The first issue we shall consider is the control of the environment. In the recording of any hologram,
a variety of environmental factors such as vibration and air currents stron?ly influence the quality of
the exposure. Such factors are random in their effects and, unless carefully controlled, may serve as
the predominant influence on the uniformity and diffraction efficiency of the hologram involved. Such
factors must be minimized by the proper design of the recording system.
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In order to minimize the effects of air currents the entire main optical system is surrounded by a felt
curtain. This curtian serves several purposes. It blocks air currents and it absorbs sounds within and
without the system. Finally, it serves to absorb scattered light within the system.

In order to minimize the effects of vibration the entire system is mounted on a vibration isolated
table. All components within the system are both damped and braced in such a manner as to
minimize vibration.

As noted previously, the laser employed within the system has been mounted on a separate table so
as to mechanically isolate it from the remainder of the system. This not only eliminates a major
source of .vibration within the system, but also a major source of heat and thus convection currents.

It is possible to monitor the overall stability of this holographic system by the use of real time
. holographic interferometry. In this technique a hologram ‘is recorded using the system. This
hologram is then processed and returned to precisely the same location that it was recorded in. When
such a hologram is then illuminated by both the on‘fginal reference beam and object beam, interference
occurs between the holographic reconstruction of the object beam and the object beam itself. By
observing the resulting fringes it is possible to determine the stability of the optical system.

By employing the above method with the current ?stem it is possible to make a qualitative
determination of the stability of the system.' Little or no short term variation in the fringes generated
in this manner has been observed under normal conditions, implying sufficient stability for the
recording of high quality holograms. .

As we have noted in previous sections, the power delivered to the optical system is subject to
considerable variation over time. Since exposure energy is one of the most critical factors associated
with the generation of holograms. it is necessary to compensate for such power variations. This is
achieved by employing an exposure control system which samples the power at regular intervals
during the exposure and integrates the results to determine the appropriate exposure time.

Exposure control is mediated by the main control computer. The comtﬂuter is directly connected to
the shutter system allo ’!l"g it to control the exposure time based upon the information arriving from
the monitoring system. The power of the main system is monitored by the use of a photodetector
which detects light split from the main beam by a weak beamsplitter as indicated in figure 3.1. The
signal from the photodetector is first amplified and then digitized by an analog to digital converter
integrated into the control computer. During an exposure, the control program regularty samples the
signal and numerically integrates the results in order to determine the total exposure energy at that
time. Once the exposure energy has reached the desired value the control computer closes the shutter
ending the exposure.

The next issue that we shall consider is the recording medium and frocessinF regimen employed for
the hologram. The current system employs conventional silver halide emuisions as the recording
medium. Once the holograms are recorded, they are processed with a tanning developer, a
rehalogenating bleach, and a weak colloidal developer to obtain a phase hologram.

This combination was selected for several reasons: The process results in highly repeatable results.
The sensitivity of the medium is very high . The resulting holograms display a high degree of stability
and are not subject to enviromental variations. The hologram recorded experiences minimal
distortion of its reconstructed wa-efront as a result of processing. Such advantages are obtained at
the cost of a lower diffraction efficency than would be obtained from other media such as dichromated
gelatin, or photopolymers.

Dichromated gelatin, and photopolymer smulsions were rejected on the basis of the relatively poor
repeatability and uniformity of processing, vulnerability to humidity and temperature, poor
sensitivity, and and the tendency «:f the medium to distort as a result of processing.

The specific emulsion employed 1t recording is AFGA 8E75 HD AHI Millimask plate film. This is a
silver halide and gelatin emulsion with a emulsion thickness of 6 um and an average grain size of
0.044 um. The sensitivity of the emulsion is 200 u.!.’cm2[52] at 514 nm and the resolution is greater
than 3000 lines’mm. The emuls on incorporates an antiha ation dye which attenuates internal
reflection, this
is augmented by a coating of #33 metal stripping paint applied to the back surface of the glass
substrate. The dimension of the plate employed is 63.5 mm square. No pretreatment is used.
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After exposure the holographic plate is processed in a three step process, the plate is first developed
with a tanning developer and then bleached with a rehalogenating bleach and finally re-developed
with a weak citric acid developer. The final result of this processing is a high efficiency hologram of
the phase type. The process achieves this result b{ first developing the plate, converting the exposed
silver bromide crystals. into ﬁlamentarg' or 'black’ silver in the conventional marner. The
rehalogenating bleach then converts the filamentary silver back into silver bromide crystals. The
resulting distribution of the silver bromide crystals is dependent upon the distribution of the
filamentary silver, which in turn corresponds to the exposure pattern. The irregular distribution of
these silver bromide crystals causes a modulation of the index of refraction forming a phase hologram.
The plate is then immersed in a weak solution of citric acid, and illuminated with a bright light. The
citric acid solution acts ar a weak developer, converting the silver halide grains into colliodial or
‘brown’' silver. This technique is known as redevelopment, and although it results in some
attenuation, it does improve the stability of the resulting hologram and reduce the degree of scatter.
The resulting hologram is then rinsed in desensitizing dye and dried.

There are several important features to this processing regimen. The first feature is that the
resulting hologram is a ;f> ase modulated volume hologram, and therefore capable of high diffraction
efficiency. The second feature is that unlike processes that employ fixes, or solvent bleaches, the
chemical content of the emulsion remains relatively constant. In tact, if the redevelopment process is
. eliminated, the processed hologram is identical in compesition to an unexposed plate. By minimizing
the variation in volume and content of the hologram during J)rocessing. the distortion of the emulsion,
and thus the recorded fringe pattern is minimized. This leads to minimal distortion of the holographic
inge during reconstruction. The third notable feature of the processing regimen is that the phase
modulation generated by the hologram is a result of the migration of the silver bromide crystals. Such
grain migration is limited in scope, resulting in little or no response to low spatial frequencies. In
essence the processing operates as a high pass spatial filter. Since the holographic fringe pattern
itself ;isl t:f a high spatial frequency, the high pass filtering essentially operates as a low frequency
noise filter. ' :

We now describe the specific processing regimen employed (chemical formulas will be given in
Appendix B): After exposure, the holographic plate is developed for 2 minutes in CWC2 developer.
Optimal results are obtained when development results in an optical density of 2. The plate is then
rinsed in ﬂowing water for 4 minutes. The plate is then bleached for 2 minutes in a Copper Sulfate
bleach. This is followed by another 4 minute rinse in flowing water. The plate is then placed in the
redeveloper solution and exposed to intense white light for 4 minutes. The plate again rinsed for 4
minutes in flowing water. The plate is then soaked for 4 minutes in a combined solution of Kodak
indicator stop bath and Kodak PhotoFlo 200. This step binds the indicator dye of the stop bath to the
remaining silver bromide grains desensitizing them, while the PhotoFlo 200 reduces the surface
tension of the solution to facilitate drying. All processing is done at a temperature of 74°F. Finally the
plate is then removed, and left to dry in still air.

Several variations of this processing regimen shall be explored in the future. The use of varying
development times shall be examined, as well as the use of P U? bleach. In theory(53] PBUQ bleach
results in less distortion, and results in holograms with greater long term stability. A comparison of
the merits of using redeveloper shall also be examined.

3.1.2.2. Reconstruction, Evaluatior and Testing.

Having described the design, construction and evaluation of the POHM printer we now consider the
reconstruction and evaluation of the holograms generated by the system. In addition we shall also
censider the use of the POHM printer to evaluate the performance of the recording media and
processing techniques.

Once a POHM has been generated, it must be reconstructed and evaluated. The reconstruction of
the component holograms of the P\YHM involves the use of a reconstruction beam conjugate to that of
the original reference beam. B{ employing this conjugate reconstruction the image of each control
mask reconstructs at the same location within the optical system as the original mask was located.
By reconstructing the hologram in this fashion, it is possible to evaluate the resolution, contrast,
uniformity, efficency and registration of the hologram. Withir our system, the reconstruction of the
POHM may be achieved by the use of the POHM printer. The POHM is placed back into the same
location as it was recorded at and then illuminated with a reconstruction beam conjugate to that of
the reference beam, as per figure 3.6. The holograms then reconstruct their control mask images at
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the plane of the SLM or transparency. The plate aperture may then be positioned to obscure all but
one of the holograms.

There are several methods for observing the resulting image. The simplest method is to replace the
SLM with a film plate in the same location and to expose the image upon it. The exposed plate may
then be developeg and fixed to obtain a photographic print of the reconstructed image. This image
may then be analyzed by microscopic examination or by the use of micro-densitometer scans.
. Another method is to image the reconstructed image upon a CCD camera. The resulting image may

. be continuously adjusted and monitored and may then be stored by the use of a frame grabber. These

advantages are gained at the cost of resolution, as well as a susceptibility to aliasing between the
control mask and the CCD pixels. c

As well as allowing us to examine the the quality of reconstruction of individual control masks, the
methods noted above also allow us to simulate the generation of the window set function g(w). As we
have noted in chapter 2, the same POHM that implements the multiread function for a given order
may be emploied to generate the corresponding window set function. By simultaneously
reconstructing the appropriate set of control masks it is possible to generate the logical complement of
any desired window set at the SLM plane. Thus by employing the appropriate masking of the POHM
and recording the resulting pattern at the SLM plane it is possible to evaluate the suitabilitfy of the
POHM for this task. Unfortunately, for the lack of an appropriate OSLM, the window set function
shall not be explicitly implemented.

In the the same vein, it is also possible to evaluate the registration of the control masks by
simultaneously tecording either identical or complementary control masks. In the case of identical
mask reconstruction the resulting image should be identical to the reconstruction of a single
hologram. In the case of complementary control masks, the resulting image should correspond to a
control mask with every pixel activated. In both cases a shift in the relative reconstruction position of
the two masks should result in a combined image that should clearly indicate the nature of the lost
registration. Such a method should detect both net translations and distortions of the two masks. The
advantage of this method is that it is unnecessary to register the projected image relative to the
position of the original mask location within the system.

Simple POHMs which have been generated by the use of the POHM printer, have been evaluated by
the use of the above methods. Film recordings of the single and multiple hologram reconstructions
have been successfully recorded upon the holographic plate film. The resulting images have not yet
been subjected to intensive analysis.

It is also possible to allow the image to propagate through the remainder of the optical system

allowing it to concentrate the light. This corresponds to operating a single channel of the N4
interconnect. If the SLM is absent the concentrated light gives us the practical efficiency of the
hologram. If we exchan‘ie the SLM for a moving aperture, such as a knife edge, we may compare the
resulting variations in the intensity pattern against those gredicted by theory. For example, the bar
patterns associated with the Morton order control masks should present a very d: tinctive pattern as
they are obscured by a knife edge -which is parallel to the bar pattern as per figare 3.7. Variations
from this pattern (adjusted for tae diffraction effects of knife edge) may be interpreted to obtain
information upon the overall uniformity, resolution, and registration ot the mask. In the same
manner, a square aperture may be used to evaluate the rezgonse of the control masks to a "pixel” of a
given resolution. The advantage of the above methods is their simplicity, in that they only employ a
single detector and simple aperture.

Using the initial POHMs recorded by the printer, the above methods have been used to measure the
{)zlz&z.ive difg'action efficencies of the component holograms. The results of these measurements shall
scussed.

Finally we shall consider the us2 of the POHM printer for sensitometery testing. The testing and
evaluation of various processing techniques under varying exposures is greatly facilitated by the use
of the POHM printer. The automate(ci‘ exposure system allows us to generate a large number of
holograms on the same plate, each with a different exposure energy. Furthermore by modifving the
configuration of the printer it is also possible to generate arrays of identical diffractionegratings and
arrays of uniformly exposed areas. Three configurations of the printer shall be considered.

The first testing configuration blocks the object beam entirely and ontlg e?oses the reference beam.
adi

Each exposure is made with the aperture at a different location, and wi fferent exposure energy.
The resulting plate consists of a series of positions that have been exposed to a uniform beam of light
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with a known exposure energy. The resulting plate when developed and fixed may be used to relate
exposure and density.

The second testing configuration employs the printer with the SLM and the third lens removed as
per figure 3.8. Each exposure is made mtﬁ' the object beam origin centered at the optical axis and the
plate aperture located at a different position. As in the case of the first test configuration each
exposure is made with a different exposure energy. In this case both the reference beam and the
object beam consist of stationary collimated beams. The resulting array of holograms, when
processed, all consist of identical diffraction gratings which have been recorded under differing
exposures. These gratings may be evaluated and used to relate the nominal diffraction efficency.

The third testing configuration simply consists of the POHM printer in its normal configuration. By
recording an array of identical holograms with identical exposures we may determine the effects of the
varying recording geometries upon the diffraction efficency of the resulting holograms. By recording
an array of identical holoa:ams with differing exposures, it is possible to roughly evaluate the
influence of exposure upon the practical diffraction efficiency. ' :

Obviously, all of the above testing configurations generate results which are subject to several forms
of systematic error which are dependent upon the position of each sample. These variations result
from the nonuniformity of the reference and object beams, and in the third configuration, variations
in the recording geometry. Thus it is always necessary to generate test plates with exposures of equal
intensity. Such plates may be used to determine the nature of such variations and, when possible,
calibrate for such effects. Even with calibration, some systematic error will persist. If the presence of
such errors is taken into account, the resulting data may be employed to optimize the recording
process.

Preliminary measurements relating density, relative diffraction efficiency and exposure have been
measured by the use of these techniques. Figure 3.9 displays the D-LogE curve for Millimask film
under the our standard processing regimen. Figure 3.10 displays the relative diffraction efficiency
versus exposure, for a set of holographic lenses. These initial results are highly suspect, since
problems involving coherence length and processing temperature had not been resolved.

3.3. Planned Research

Having described the status of our research so far, wa shall now describe the work which remains to
be done. We may divide the remaining work into two major tasks. We must construct an N4
interconnect and then we must evaluate its performance under a range of conditions. In order to
achieve the latter task it is necessary to devise appropriate test procedures which shall allow us to
rapidly evaluate the reliability of a given interconnect.

3.3.1. Constniction of the N4 Interconnect

Having generated a set of POdMs containing the appropriate control masks it is necessary to

construct the corresponding N4 interconnect. Such an interconnect essentially corresponds to the
operation of the POHM printer under time reversal as per figure 3.6. A reconstruction beam conjugate
to the reference beam simultaneously reconstructs the holograms that compose the POHM. The
conjuﬁate images generated by these holograms propagate "backwards" through the object beam
optical system, passing through the SLM and concentrating at the origin of the object beam for each
hologram. Given that the optical layout of the interconnect is, with the exception of the conjugate
reconstruction beam, identical to that of the POHM printer, it is possible to employ the same system
both as a printer and an interconnect. Within the current project we shall such a scheme, employing
a ombination printer/interconnect assembly. In order to allow operation as an interconnect, two
additions to the POHM printer must be made. A reconstruction beam path must be added and a
detector system must be located at the output plane.

3.3.1.1. The Reconstruction Beam System. .

The reconstruction beam path generates a collimated beam propagating in the opposite direction of
the reference beam. This is achieved by diverting the reference beam from its usual path and routing
it to a second collimator which generates the reconstruction beam as per figure 3.11.

It is possible to align the reconstruction beam by allowing it to Xropogate into the reference bsam
collimator. If the reconstruction beam is gr;operly aligned, it should pass t.hrouﬁh the reference beam
collimator pinhole and the resulting thin beam exiting the collimator should follow the same path as
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Page 55




that of the reference beam. Such an alignment procedure constrains both the transverse position (two
axes) and the direction of propagation (two angular axes) of the reconstruction beam.

Of course, the alignment of the hologram is equally important as the alignment of the reconstruction
beam. In order to ensure that the processed hologram is located in the same position as when it was
exposed, the printer interconnect employs a special plate holder, originally "designed for holographic
interferometry(54], which employs a system of three rods and three spheres to register the hologram
in a unique position. The accuracy of relocation is on the order of several microns. It is possible to .
verify the accuracy of relocation by simultaneously illuminating one of the holograms with both its
original reference and object beam. The interference of the reconstructed object beam and the original
- object beam result in a projected fringe pattern. The structure of this fringe pattern may be analysed
to determine the relative accuracy of the reconstruction.

The addition of the reconstruction beam path to the existing POHM printer is the only optical .

modification necessary to allow operation of the printer as a N4 interconnect. When operated as an
interconnect, both the reference beam path and the object beam path are disabled and all power is
diverted to the reconstruction beam path. In this mode of operation, the SLM is located at the input
Flane of the interconnect and functions as the input device. The output plane of the interconnect is
ocated at the same plane as the origin of the object beam. In order to sense this output it is necessary
to locate a detector system at th:s location, the implementation of which is the topic of the next
section.

3.3.1.2. The Detector System

As we have noted, the output of :he N4 interconnect consists of an image located at the same plane
as the origin of the object beam within the POHM printer. Such an image must be detected and and
processed in order for it to be useful. Within an optical computer such a function would ideally be
performed by an active optical, or optoelectronic device. Such a device would detect and process the
output signal, and generate an optical signal which is dependent upon the processed signal. In the
case of the HOPLA the processing involved takes the form of a threshold ang invert operation which
results in a discrete logical signal. In the case of outputs that contain a small number of outputs, such -
as the multiread function, it 1s possible to detect the output employing an array of photodetectors, and
perform the analysis and processing with electronics.

The primary objective of the current project is to evaluate the operation of various configurations of
a single stage HOPLA. For this reason the nature of the signal at the detector plane is more
important than the processed signal. Therefore, the output signal is detected electronically, digitzed,
and then processed by the control computer. The advantaFe of this technique is that it collects the
maximal amount of data on the state of the system, while allowing for the maximum amount of
flexibility in the analysis of the data.

We shall now describe several possible arrangements of a detector system and compare the merits
and disadvantages of each scheme. There exist three major schemes for implementing the detector
:zstem: We may employ an array of discrete detectors, one for each output channel. We may image

e entire output plane upon a detector array and analyse the resulting image. Finally we may employ
a single detector which moves to each output channel in turn.

The most obvious arrangement “or the detector system is to employ an array of discrete detectors,
one for each output channel. Th: advantages of this scheme are that it would provide for rapid
operation of the detector system and that it would most closely resemble a practical implementation of
the HOPLA architecture. The drawbacks of such a scheme are its complexity and inflexibility. Each
detector would require an associated amplifier and either a thresholding element and a latch, or if
analog results were required, an associated sample and hold circuit. In addition, in order to collect
analog data, it would be necessary for the Analog to Digital Converter to sequentially address the
sample and hold circuit for each channel.

The complexity of the detector array scheme is further complicated by the need to calibrate the
individual detectors, support circuitry and threshold mechanism. Such a task is simplified within a
production system in that the tareshold may be adjusted to compensate for variations in the
sensitivity and linearity of the dectector support circuitry. In comparison, within an experimental
system it is necessary that each detector and circuit is calibrated to an identical sensitivity, so as to
allow for the accurate measuremeat of the incoming signal. For the same reason it is necessary to be
able to adjust the threshold mechanism so as to provide for differing thresholds for each position
during the development of the system. :
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Obviously, within a fixed desigr. intended for production, few of the disadvantadges cited apply. A
fixed configuration detector array with inteﬁrated thresholding circuitry would be ideal for production
s¥ster}rlls(.l Irregularities of production could be compensated by electronically adjusting the thresholds
of each detector.

A more flexible means of detecting the output of the HOPLA is to image the output plane of the
system by employing a detector array with a resolution much higher than each output location. The
rgsulaﬁing image may then be calibrated and analyzed within software in order to determine the output
signal. . . .

The primary advantages of such a strategy are its ease of implementation, flexibility, and diagnostic
capabilities. Such a scheme may be implemented with a combination of an “off the shelf' CCD camera
with integrated readout electronics and a sufficently powerful control computer. Since the regions
associated with each output bit are defined within software, they may be arbitrarily rearranged by
modifging the analysis program. Finally since such a scheme returns an image of the output plane, it
may be used to analyze the effects of aberration, diffraction and crosstalk upon the system.
Additionally, such as strategy may be implemented by using any imaging detector system including;
Charge Injection Devices (CIDs), intensified CCDs, and Photon Imaging Detectors (PIDs). Such a
range of different detectors allow for a range of sensitivities and speeds sufficient for most
experimental work.

The basic disadvantage of such systems is that the amount of computation necessa
calibration and analysis exceeds that of the system that implements it. Although such a flaw is fata
within production systems, it has little impact upon the use of such a scheme within an experimental
system. The disadvantages encountered within the use of this strategy within experimental systems
are the increase in noise associated with the use of such arrays, and the added complexity of the
optical system. Due to the complications of addressing such detector arrays and the presence of dark
current noise with each pixel of the array, such a detector scheme is likely to be subject to greater
noise than a system employing a sintile detector. In addition, the size of most detector arrags
employed within imaging are smaller than the optimal size of the output plane of the HOPLA. By
g-educingdthe dimensions of the output plane, the effects of crosstalk arising from diffraction effects are
increased.

Within the current project, imaging detector arrays shall be employed for detection within relatively
high light levels. : :

The final option for a detector system is to employ a single optimized detector mounted upon a

micropositioner stage which shutties between the location of each output bit. Such a strategy -

operates so slowly that it is only applicable for use within experimental systems. The advantages of
such a scheme are simplicity, flexibility and accuracy. A single well calibrated detector may be
mounted upon the same micropositioner which is used to move the focal point of the object beam
during the recording of the POHM. The route that the micropositioner takes is identical to that of the
object beam focal point during recording. The sensitive area of such a detector may be modified by
exchangirﬁthe aperture of the detector. Such a strategy is clearly as flexible as that of the recording
system. There are several advantages to employing the same detector for each measurement. The
properties of the detector employed may be rigorously determined and such properties shall apply to
each measurement. In addition, a far more complicated detector may be employed than coulg be
contemplated for a detector array. The dimensions of such a detector may even exceed that of the
spacing of the output bit positions, a configuration physically impossible within a detector array
strategy.

Within the current system, shurtling detector systems shall be employed for precise measurements
of output levels and for low photan count measurements. Pin-diode detectors are currently being
integrated into the system for use with moderate light levels and a photon counting photomultiplier
tube and support circuitry are on order.

3.4. Outline of Future Research

At this time, the bulk of the ground work associated with the construction of a working HOPLA
architecture has been achieved. Within this section we shall describe the work that remains to be
done in order to implement an operational HOPLA architecture and evaluate its performance.

3.4.1. The POHM Printer.
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At the present time the POHM printer has shown successful automated operation with fixed
transparencies. The remaining task is to integrate the SLM into the system and evaluate the
preformance of the resulting system. The evalauation of the 256x256 SIGHT-MOD magneto-optic is
nearly finished and integration into the system is anticipated shortly. The automated exposure
software is presently being modified to allow the image upon the SLM-to be modified previous to each
exposure.

The schedule for the integration of the SLM is as follows. The SLM and a set of film polarizers shall
be inteérated into the optical system. As set of POHMs shall be recorded with identical control masks
but differing levels of exposure. The resulting holograms shall be evaluated in comparison with
identical exposures performed with fixed transparencies of the same control mask. The resulting
holograms shall be compared with a POHM employing the same exposure for each facet. Each facet
shall then be reconstructed at the input plane and evaluated for resolution, contrast, and efficienc
and the presence of vingetting within the system. The film polarizers shall then be replaced wit
Glan-Thompson prisms and the process repeated. .

Once the optimal configuration and exposure of the system has been achieved, a POHM
incorporating varying control masks shall be recorded at a constant level of exposure. Once this has
been achieved, each facet of the resulting hologram shall be analyzed for resolution and contrast. If
necessary, variations in efficiency and contrast resulting from variations in regularity and spatial
frequency shall be compensated for by changes in exposure and reconfiguration of the control masks.
Once uniformity has been achieved, POHMs containing control masks for the multiread function shall
be recorded. Several POHMs each with a different mapping order shall be recorded.

3.4.2. Operation and Evaluation of the HOPLA.

Once a Set of POHMs containing the required control masks have been generated and evaluated, it
is possible to construct and evaluate a HOPLA which implements the multiread function. As noted
previously, by simply disabling the reference and object beams within the POHM printer and
;_ntrodéxcing a reconstruction beam conjugate to that of the reference beam the desired HOPLA may be
ormed.

Once the HOPLA has been constructed it is then necessary to evaluate the performance of the unit.
In order to do this it is necessary to evaluate the response of the unit to various inputs displayed upon
the SLM and evaluate the relative intensity of signals noise and crosstalk. Once reliable
measurements of these quantities have been taken it is possible to determine the optimal
configuration of the control masks and set the associated thresholds for each of the output bits. It is
then necessary to use the HOPLA to evaluate the multiread function for various applications and
determine the reliability of the system. Finally it is necessary to determine the lowest light level at
which operation is possible.

The appropriate testing regimer. for the HOPLA consists of the following steps for each output bit.
The output should first be measured with the SLM all light and all dark. These two tests measure the
maximum and minimum light levels encountered for each output. The next test is to measure the
output bit with the SLM set to the complement of the control mask. Such a pattern should result in
the maximum intensity anticipated for a false signal since the effects of input and output crosstalk are
maximized in this case. The next test is to measure the results of a progression of window sets which
converge from the entire control mask to a single pixel. Such a test measures the range of intensities
associated with a true value ramfintg from the maximum value to the possible value. This regimen
should be repeated both with all facets of the POHM illuminated and with a each single facet
illuminated. This latter test may be achived by the employing the movable aperture used during
recording within the POHM printer.

At this stage within the evaluation process, it is possible to empirically set the threshold values for
each output bit. After this has been done, the next phase of the regimen is to evaluate the response of
the HOPLA to various inputs. Given that each pixel constitutes an input to the system, it is
impossible to evaluate the response of the system to every possible combination of inputs. Therefore it
is necessary to determine a serie: of input test patterns that serve as representative samples of the
input anticipated.

We propose that a set of test patterns may be obtained by the following method: Form a set of masks

from the following three sets; the control masks employed within the multiread function implemented,
the control masks from a differing mapping of the multiread function, the control masks generated by
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a mapping determined by the output of a Maximal-length Linear Shift Register (MLSR). The latter
masks obtained by employing an S matrix generated by the output of a MLSR, which to all statistical
tests appears to be random[50]. A valid test pattern may then be obtained by randomly ANDing a
given number of control masks from this set (with care taken not to use complementary masks). Each
group of masks provides a differing feature to the test pattern. The presence of control masks of the
same order of mapping as the multiread function ensures that collapses will occur, ensuring that the
output pattern contains information. The presence of control masks with a mapping other than that
of the multiread function supply regular Fattems that do not, necessarily result in collapses. Finally,
the presence of MLSR generated control masks supply random patterns. The results of each test
%%:%Lrg may first be determined by the use of simulation, and then verifiad by evaluation on the
The next stage of evaluation is to run a lar%: series of random test test patterns of the type
described above and evaluate the reliability of the HOPLA involved. The three measures of reliability
to be evaluated are, the absolute error rate, the error detection rate, and the portion of detected errors
that may be corrected by the various means previously ci

The final stage of the evaluation process consists of employing the HOPLA to evaluate the multiread
functions for our various algorithms. Lacking the means of directly generating the I(w) and d(w)
functions it is possible to simulate their operations by the use of the appropriately masked and
inverted portions of the input matrix I. The input for these algorithms may include both images and
randomly distributed flags of varying densities. The error rate encountered within this phase of the
regimen shall most likely be lower than that of the prevous stage. The reason for this is that the
recursive nature of the algorithms that we employ progressively eliminate from consideration various
portions of the functions employed for the length of each recursive descent. :

3.4.2.1. Evaluation of the HOPLA at Low Light Levels
Once the operation of the HOPLA has been evaluated at moderate light levels by the methods

described within the previous section it is then necessary to evaluate the operation of the HOPLA
under decreasing light levels. Hypothetically, the sole absolute limit of reliable operation of the
HOPLA is the shot noise limit. If che contrast of the SLM and POHM components are sufficiently (on
the order of 1000:1) reliable operation may be achieved with less than a thousand photons per true
sisgnal. Given that each output bit represents the result of 32,768 logical operations (assuming a
256x256 input SLM) an HOPLA operating at these light levels would perform more than one logical
o“eration per photon propogating througﬁ the system. While counterintuitive, such computation is
physically possible. This is a result of the fact that the probability distribution at the output plane of
the HOPLA is proportional to the intensity pattern generated by a classical electromagnetic wave

ro;aagatiw through the system {6]. Caulfield (6] has dubbed such operations as Wave Particle

uality (WPD) computation and argues that they mﬁy operate at lower energy limits than
conventional computation. Successful operation of of the HO
arguments.

PLA at such levels should validate such

- The first stage in the evaluation of the HOPLA system at low light levels is to enclose the system in
an "dark box" a.light tight, baffled enclosure designed to minimize the presence of background light
arising from sources within the laboratory and from scatter within the system. In addition, a system
of baftles (55] should be incorporated within the system. The light for the reconstruction beam may be
introduced into the system via a shielded fiber optic link.

Once the system has been appropriately enclosed, the next step is to employ the appropriate
shuttling detector to measure the jutput of the system at the output plane. At the intermediate level,
between the moderate light leve.s employed within the previous section and the photon counting
regime, a paired pin-diode detector system, which electronically divides the signal from the output
and a :Signal split off form the ligl.t source[56], may be used. Within the photon counting regimen, a
Photo-Multiplier Tube (PMT) system may be employed. When employing the PMT system the output
of the laser should be chop J' in order to minimize the effects of noise. Furthermore, the system
should employ the reciprocal counting strategy. Within such a strategy, the quantity measured is the
amount of time necessary to gather a fixed count. The advantage of such a strategy is that since the
number of counts measured is constant, the associated shot noise is equally constant. Such
measurements may be thresholded by comparing the time period measured, with the amount of time
necessary to integrate a proportional amount of energy from the light
source.

Once the system has been reconfigured for low light level operation, we may repeat the testing
regimen described within the previous section. Since the speed of measurement of the system shall be
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limited by the use of a shuttling d_tector, an emphasis should be placed upon the use of the random
test patterns of the previous sect'on. The reason for this is that such random patterns cover the
largest possible range of operation with the least cycles.

Finally, when reliable operetion is no longer possible at a given light level it is possible to degrade’
the system to a simpler, lower 1esolution system by the methods described in section 2.7. By
employing such a strategy it is possible to determine the minimum light level for reliable operation of
a range of system of varying complexity.

3.5. Conclusion

Within' this chapter we have described our experimental work to date on the implementation of a
single stage massively interconnected HOPLA implementing the multiread function. We have also
described the schedule of research for the completion of this project. :
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Appendix A

The table below displays the gemnent information on the compression of the attached figures. Both
* the DF bintree and the DF quadtree compress:ons employed the grey coded Peano order.

DF Bintree

Image . cycles collapses Compression
Jessica 4850 2679 3.69:1
RADC 5522 3199 3.11:1

Test 1042 - 651 16.86:1
UAH 3086 1892 - 5.20:1

DF Quadtree .
Image cycles collapses . Compression
Jessica 4266 2157 5.18:1
RADC 5273 2638 4.24:1

Test 1092 367 22.15:1

UAH 3211 1363 6.84:1
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Appendix B: Chemical Formulary
CWC2 Developer :

Part A:

20 g Catechol

10 g Ascorbic Acid
10 g Sodium Sulfite
50 g Urea

11 Distilled Water
Part B:

60 g Sodium Carbonate
11 Distilled Water

A working solution is formed by mixing equal quantities of A and B before use.

Source: D.J. Cooke.and A.A. Ward, "Reflection-Hologram Processing for High E(liciency in Silver-
Halide Emulsions”, Applied Optics Vol. 23, p 973, (1984)

Copper Sulfate Bleach

'35 g Copper Sulfate

10 m! Acetic Acid
110 g Potassium Bromide

11 Distilled Water

Source: J. Blythe, "A Novel Approach To Colour Processing”, Wavefront Vol. 2, No. 3, p.23, (1987)
Re-Developer #2
10 g Ascorbic Acid

1 1 Distilled Water

Dilute with water 40:1 for working solution.

Source: N. Phillips, "Bridginﬁ the Gap Between Soviet and Western Holograpy”, Handout at Lake
Forest College Holography Workshop II, July 1990
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Figure 2.5
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Figure 2.7
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Figure 2.8
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Figure 2.10

Page 83




W0
I
M
i

M
i

Figure 2. 11
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Figure 2.12
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Figure 2.15
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Figure 2.16
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Figure 2.19
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Laser Power (Arb. Units)
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Figure 3.4
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Figure 3.7
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Optical Density
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Efficiency (Arb. Units)

08

06

0.4

02

|

'lJO 1000
Exposure(microjoules/cmz)
Figure 3.10

Page 103

10




nq13 ~~
._o_._zco._:_:. .g

.-ou.:_ﬂm weag uoyeziiviod o

101318

F74 B
- W) .

J9zh|vuy uogyez)a

aNI911

]

ned
sydeslojog
\\\

-

11°¢ aandiy

b

J0y2e0q
Jojuen Jaaeg

104




MISSION
OF
ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary
program in researck, development, test, and technology
transition in support of Air Force Command, Control,
Communications and Intelligence (C3I) activities for all
Air Force platfornms. It also executes selected
acquisi ion programs in several areas of expertise.
Technical and engineering support within areas of
competence is provided to ESC Program Offices (POs) and
other ESC elements to perform effective acquisition of
C3I systems. In addition, Rome Laboratory's technology
supports other AFMC Product Divisions, the Air Force user
community, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research
programs in areas including, but - not 1limited to,
communications, command and control, battle management,
intelligence information processing, computational
sciences and software producibility, wide area
surveillance/sensors, signal processing, solid state
sciences, photonics, electromagnetic technology,
Ssuperconductivity, and electronic
rcliability/maintainability and testability.
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