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Abstract 
An optical time-division multiple-access (OTDMA) network architecture has been pro- 
posed which has the potential of avoiding electronic processing of signals at the aggregate 
network bandwidth. New specifications for the optical components used in this OTDMA 
network architecture will be required before a practical system is realized. 

In this report, we present a model of the OTDMA architecture that relates parame- 
ters at the tevice level such as carrier mobility, physical geometry, charge trapping, and 
carrier-concentration to system-level performance measures such as bit error rate and 
noise margin. We present mathematical models of the devices in the system. These 
models are interconnected into a system-level Monte Carlo simulation model of the OT- 
DMA architecture. 

The photoconductive AND device, a critical component in the OTDMA receiver, 
is modeled as a time-varying circuit element (conductance) in a microstrip transmission 
line. Device-level physics of the photoconductor is incorporated into the microstrip model 
via a time-varying conductance. 

We base the simulation model of the AND device on the explicit second order Adams- 
Bashforth formulation. Alternative simulation modeling approaches, including feed- 
forward artificial neural networks, are also used with excellent results. Simulation of 
the OTDMA network is in good agreement with our approximate analysis, in addition 
to laboratory measurements. 
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1    Introduction 

The large potential bandwidth of optical fiber — theoretically on the order of 20 x 1012 

Hz — cannot be realized by simply replacing the existing communications medium with 

optical fiber. To fully utilize the potential bandwidth of optical fiber in multiple-access 

applications such as local area communication networks and high speed computer in- 

terconnects, the large aggregate bandwidth of the network must be processed optically. 

This avoids the "electronic bottleneck" imposed if the network is implemented electroni- 

cally. The bottleneck results because the network must process data at the rate N x BE, 

where N is the number of users and BE is the bandwidth limit for electronic processors. 

Thus, the data rate of each node in the network must be reduced by a factor of N for an 

electronic network implementation. 

One approach which has the potential to achieve this objective is based on time- 

division multiple-access [1]. Critical devices to implement such an optical time-division 

multiple-access (OTDMA) network include a high contrast ratio photoconductive AND 

device, a rapidly tunable optical delay device, and high bandwidth electro-optic mod- 

ulators. Recently, a rapidly tunable OTDMA coder was demonstrated at the Rome 

Laboratory Photonics Center [2]. Good performance for 64 100 Mb/s channels was ob- 

served. A 5 Gb/s 50 channel OTDMA network has also been demonstrated in the [3], 

although this implementation is ultimately limited by the bandwidth of the preamplifier. 

In this demonstration, a photoconductive AND device with a contrast ratio of 2 

was used, thus requiring high bandwidth electronic processing at the detection filter 

in the receiver — imposing a potential electronic bottleneck, but still providing large 

throughput. 

Higher contrast ratio configurations using photoconductive AND devices have been 

reported [4, 5]. However, these high contrast ratios were achieved by the use of electronic 

devices operating at the aggregate network bandwidth. We show in the sequel that a low 

contrast ratio significantly impairs system performance. 



Other degradations which affect performance of the network at the system level in- 

clude crosstalk from adjacent channels, timing jitter due to noise and crosstalk, timing 

offset due to small length variations of the fiber, interference caused by crosstalk in the 

tunable coder switches, relative intensity noise in the laser, and thermal and shot noise 

in the receiver. These impairments all increase the bit error rate (BER) of the system. 

In general, the BER of the system is a function of the physical devices used in the sys- 

tem as well as the system architecture. The relationship between device level parameters 

and system level performance (such as BER) is typically not straightforward, and is thus 

not analytically tractable. Many times in these cases, simulation is a viable alternative. 

In this report, we present a model of the OTDMA network architecture that relates 

parameters at the device-level such as carrier mobility, physical geometry, charge trap- 

ping, and carrier-concentration to system-level performance measures such as bit error 

rate and noise margin. The effect of other degradations such as timing errors and de- 

tection filter bandwidth, as well as device parameter values on system performance are 

also studied. This is accomplished by developing mathematical models of the optical 

and electronic devices in the system which are suitable for discrete-time Monte Carlo 

simulation at the system-level. 

These simulation models are interconnected into a system level simulation model of 

the OTDMA architecture. We demonstrate some of the capabilities of the simulation 

model through a number of examples at both the device and system-level. In this report 

we focus on the photoconductive AND device, since its performance is critical to the 

OTDMA network. Both analytical and simulation-based analysis of the effects of non- 

infinite contrast ratio on BER performance of the system are presented. Using simulation, 

we also determine the system noise margin — a measure of the system's immunity to 

noise — as a function of the detection filter bandwidth and timing error. 

Usually the description of devices used in communication systems involves solving a 

set of simultaneous, nonlinear, partial differential equations. Unless some simplifications 

can be made, such detailed models are often too time consuming to be useful in a system- 

level simulation where the nonlinear device is just one of many subsystems. Therefore, 



higher-level models are needed that approximate the input-output behavior, without 

necessarily resorting to the fundamental physics of the device [6]. 

The literature on the characterization of nonlinear functional includes the work of 

Volterra, Wiener and others. Using the Stone-Weierstrass theorem it can be shown that 

a given nonlinear functional under certain conditions can be represented by a corre- 

sponding series such as the Volterra series or the Wiener series [7, 8, 9]. Despite their 

theoretical importance and the insights they offer, such representations have not received 

wide application in the identification of large classes of practical nonlinear systems. 

Because of the importance the photoconductive AND device has on overall OTDMA 

system performance, we investigate simulating devices and subsystems that are origi- 

nally described by nonlinear differential equations (NLDE). Such nonlinear models are 

widely used in the systems and the control literature, usually in the form of state-space 

representations and state equations. 

Models based on directly solving detailed differential equations can be too time con- 

suming to be useful in a system simulation where the nonlinear device is just one of 

many subsystems. For simulation applications nonlinearities are more efficiently repre- 

sented as a functional relationship or in tabular form. Due to the computational burden, 

the increased complexity, and the stability problems imposed by directly simulating the 

NLDE, it is often desirable to compute and implement non NLDE based models [6]. 

One family of such models are those based on the Volterra or the Wiener series [7, 8]. 

As mentioned in [9], such approaches suffer from the rapid explosion of the possible 

combination of terms as the order of the polynomial increases. In the multivariable 

case, beside the increased complexity of the formulation one also has to cope with the 

dramatically increasing computational burden in training as well as in on-line simulation 

run time required by such models. 

Explicit input-output, block simulation models for nonlinearities have been proposed 

for specific cases of communications devices and subsystems [6]. However, there still 

is a need for a more general, robust methodology for modeling nonlinear subsystems, 

especially for the purpose of efficient simulation.   Here we investigate an alternative 



modeling and simulation paradigm that involves artificial neural networks (ANN). We 

use this ANN technique to model the photoconductive AND device, and compare its 

accuracy and efficiency to the NLDE-based model. 

Our goal is to propose a way to exploit the large available amount of neural network 

architectures and learning methods in order to improve the simulation efficiency of com- 

munication systems involving nonlinearities. Whereas recent work has focused on the use 

of ANN for the identification and control of dynamical systems ([10, 11] and references 

within), we focus on using ANN to identify nonlinear systems for simulation purposes. 

The growing wealth of neural net structures and techniques presents an appealing family 

of modeling tools not only to the control but also to the simulation practitioner. 

Our comparison in Section 4.3 indicates that ANN-based block models can be prefer- 

able to direct differential equation-based models in terms of generality, robustness and 

run time efficiency. At the price of some initial overhead for training, such block models 

can be advantageous especially for simulation studies involving repetitions of lengthy runs 

at the system level. Furthermore, in cases where training data can be obtained without 

formulating a NLDE model, the ANN-based approach has additional advantages since 

it eliminates the time and effort required to formulate the NLDE model. In some cases, 

the last argument could be the dominant reason for using ANN. 

The experimental results obtained from using feed-forward ANN to simulate a two 

input optoelectronic AND device are in good agreement with the corresponding differ- 

ential equation model, and indicate significant run time savings over the linear multistep 

integration method, both at the device- and at the system-simulation-level. 

An interesting conclusion from this work is that to reduce the I&D filter bandwidth 

in the receiver to the bandwidth of an individual electronic processor, the contrast ratio 

of the photoconductive AND device must be much larger than 2:1 for a laige network. 

Also, for the device studied in this report, at Gb/s speeds, device geometry has a much 

stronger influence on the contrast ratio than other device parameters. 
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Figure 1: Block diagram of the OTDMA system. The ith transmitter and jtlx receiver 
are shown. 

2    System Description 

A block diagram of the OTDMA network discussed in this report is shown in Fig. 1. 

Narrow pulses of width r and repetition period T, where T = NT,, Tt is the slot width, 

and N is the number of users, are generated in this system by a mode-locked Nd:YLF 

laser. Thus, the laser generates one pulse per frame. The pulses are distributed to each 

transmitter and receiver via a 1 x N splitter. A fixed-transmitter system is shown, where 

each transmitter has a unique address, determined by the time delay of the transmitter 

output signal. A receiver selects the desired transmitter by appropriately adjusting the 

delay of the incoming clock pulse. A self-clocked architecture has been proposed [12] 

which avoids the need for a separate fiber for the clock pulses, but achieves this at the 

expense of increased receiver complexity. 

Each transmitter input is an electrical binary data stream, operating at the frame 

rate, which modulates the optical clock signal. The modulated optical pulse is then given 

a unique delay corresponding to the transmitter's address. A passive star distributes the 



signal from the N transmitters to the N receivers. Electrical data is assumed to be 

binary, and ideally, the modulator output in each frame interval consists of a pulse of 

width r delayed to the transmitter's slot. A transmitted "1" or "0" for a given frame 

interval is designated by the the presence or absence, respectively, of this pulse. 

To detect the received optical signal, the receiver must perform an "AND" operation 

between the output of the star coupler and the delayed clock pulse to distinguish data 

in the desired slot from adjacent slots. The electrical signal at the AND output is then 

amplified, filtered, sampled, and thresholded to determine whether the transmitted bit is 

a 0 or 1. We assume here that the detection filter is an integrate-and-dump (I&D) filter, 

although the simulation model described in the sequel is more general. 

When coupled with an I&D filter with bandwidth less than the aggregate network 

bandwidth, the finite contrast ratio can result in significant crosstalk from adjacent chan- 

nels. The severity of this crosstalk depends heavily on the actual values of I&D bandwidth 

and the contrast ratio. 

3    AND Device Modeling and Simulation 

3.1    Mathematical Model 

The photoconductive AND device in the OTDMA network consists of two photocon- 

ductors connected in series. There are several models to describe photoconductors 

[27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. A commonly used approach is to model 

the photoconductor as a time-varying conductance connected in parallel with a capac- 

itance [39]. This approach neglects retardation effects, time dependent capacitances, 

nonlinear effects from semiconductor-metal contacts, velocity saturation, and details of 

the relaxation kinetics of the optically generated carriers. Since our simulation concen- 

trates on temporal responses on the order of 10-50 picoseconds, these limitations are not 

a problem. The benefit of this model is that it is simple and can be easily incorporated 

in the network simulation. Also, as will be shown, the numerical results are consistent 

with experimental data obtained at Rome Laboratory Photonics Center. 

6 
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Figure 2: Schematic representation of a photoconductive AND device in a microstrip 
transmission line. The signal laser pulse is focused on the first gap. The clock laser 
pulse is applied to the second gap to sample the signal and perform the demultiplexing 
operation. 

A schematic representation of the photoconductive AND gate is illustrated in Fig. 2. 

The device parameters for the low noise Fe-doped InGaAs photoconductive AND gate 

art as follows: electron mobility pn = 6000 cm2/Vs, hole mobility fty = 300 cmJ/Vs, 

carrier lifetime rn = TP = 20 ps, dark resistance 1/G0 = ** kfl, and gap capacitances 

C, = (72 % 0.05 pF. The laser pulse has a Gaussian temporal shape with a duration 

of 2 ps and an energy of 250 fj which uniformly illuminates the gap. The electron 

trap concentration, nt, is estimated to be 1011 cm~s, the electron capture rate of the 

electron trap, CH, is 10_l s-1, and the electron emission rate from the electron trap to 

the conductance band, En, is 5 x 1010 cm1/«. 

The photoconductive AND gate is represented by two series-connected photoconduc- 

tors, each consisting of a time-varying conductance G(t) ir parallel with a capacitance 

C embedded in a transmission line, as indicated in Fig. 3. V,(t) is the dc bias voltage, 

Vr(t) is the reflected wave, Vt(t) is the transmitted wave, C\ and Cj are the capacitances 
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Figure 3: Lumped circuit representation of the photoconductive AND device. 

of the detectors, G\(t) and Gilt) are the photoconductancc of the detectors, and Z0 is 

the microstrip impedance, assumed in the sequel to be Z0 = 50 0. 

A general expres ion for the conductance G(t) can be derived from the rate of dissi- 

pation of electrical energy in the photoconductor and Ohm's law. By assuming a uniform 

carrier distribution, the conductance G(t) can be represented by 

G{t) = j{nefin + pep,) + G0 (1) 

where n is the electron concentration, p is the hole concentration, A is the cross section 

area, L is length of the photoconductor, and GQ is the dark conductance of each photode- 

tector. The physical processes governing electrons and holes includes photogeneration, 

recombination, trapping and sweep-out. Since the excess carrier lifetime is less than the 

sweep-out time, we have neglected the sweep-out time. However we have included the 

effect of the trapping of carriers in deep-level impurities. The time constant for the return 

of the carriers from the deep levels to the bands can be quiet long, which causes a long 

tail in the pulse response of the device. Because the electron mobility is much greater 

than the hole mobility, we consider only electron trapping. The continuity equations for 

electrons and holes, as a function of the temporal variable t, can be written as 

in 
dt 

dnt~ 
=   £nnf - Cnn(nt - n,") 

(2) 

(2) 



where 0(t) is the laser pulse with Gaussian shape, nf is the negatively charged electron 

trap concentration, hw is the photon energy, rn and TP are lifetimes of the excess carriers, 

H is the thickness of the photoconductive film, W is the width of photoconductive film, 

nt is the electron trap concentration, C„ is the electron capture rate, and En is the 

electron emission rate. Considering the effective load Z0 of the transmission line and the 

traveling-wave nature of the electrical signals, the response of the device can be described 

in term of incident, reflected, and transmitted waves, as illustrated in Fig. 3. Since the 

distance between the two gaps is very small compared to the wavelength, the reflections 

between the two gaps can be neglected. Starting with the approach used by Auston [39], 

but neglecting reflections between the two gaps, the equations relating the capacitive 

charge Q(t) and transmitted wave Vt(t) are found to be: 

m = dQ.jt) | frfr) | Q2(t) | cw)Qi{t) (5) 
ZQ at 2Z(jGi      2ZQCJ        CJ 

m   =   dQ7(t) |   Qt(t)  |   qa(t)   | G*(t) 
ZQ it zZo(->\     2ZoC>i        C] 

m = vi{t)-m-QM (7) 

where (?i(0 and Qi(t) are the instantaneous charges on the gap capacitances, and C\ 

and Ci are the gap capacitances. 

These equations, with initial conditions, were solved numerically by the Runge-Kutta 

method. The material parameters were initially selected based on experimental values 

and then modified slightly to match the experimental data. The only factor that required 

a significant modification from the initially set value was the incident power density that 

generates electron-hole pairs. After taking into account the physical geometry of the 

fiber/detector coupling, optical reflections, and the finite thickness of the photoconductive 

thin film, an additional factor of 0.06371 was necessary to compensate for additional losses 

due to cabling and cladding modes. 
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Figure 4: Temporal responses observed in the laboratory and obtained from our simula- 
tion model of the photoconductive AND device. 

A comparison of the temporal responses observed in the laboratory and obtained 

from our simulation model for the photoconductive AND device is shown in Fig. 4. The 

parameter values given above were used in the simulation. The laboratory measurements 

were taken at the Rome Laboratory Photonics Center. 

Calculated values of Vt(t) versus time, for the parameter values given above, are 

shown in Fig. 5 (solid line). Starting at t = 0, the simulation relaxes to a stable state 

determined by the 19 Kft dark resistance. The first pulse occurs at 200 ps when both 

gaps are simultaneously excited by laser pulses (1,1 state). Tbe second and third pulses 

correspond to one gap illuminated while the other has no laser pulse (1,0 and 0,1 state). 

The dashed curve does not include trapping effects. The solid line includes trapping 

effects and corresponds quite well to the experimental data. Note that in both cases the 

contrast ratio is approximately 2:1. 

Four different cases using two different laser pulse energies, 50 fj and 500 fJ, and 

two different bias voltages, 0.5 V and 4 V, are plotted as shown in Fig. 6. The output 

voltage response increases with increasing laser energy or increasing bias voltage. The 

10 
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Figure 5: Temporal response of the photoconductive AND device, without electron trap- 
ping (dashed), and with electron trapping (solid). 
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Figure 6: Temporal response of the photoconductive AND device for different values of 
laser energy and bias voltage. 
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Figure 7: Temporal response of the photoconductive AND device for different values of 
capacitance. 

dc components (leakage currents) increase with bias voltage as expected. Again, the 

contrast ratio for the AND device is approximately 2:1 in all cases. 

Keeping all conditions the same except for the capacitance of the two gaps, a com- 

parison is shown in Fig. 7 for the cases (Ci = 0.05 pF, C2 = 0.5 pF); (Ci = 0.5 pF, 

C, = 0.05 pF), and (Cx = C2 = 0.5 pF). 

The fixed contrast ratio of 2:1 can also be explained by examining the form and 

symmetry of equations (5), (6), and (7). Here the equal contribution of Qt(t) and Qi(t) 

to the total voltage drop across the device is evident. Increasing the capacitance of 

both detectors lowers and broadens the pulses but the contrast ratio is still 2:1. An 

asymmetry in capacitance changes the relative response of the (1,0) and (0,1) states but 

overall the contrast ratio deteriorates. Reducing the capacitance of both gaps improves 

the frequency response but does not improve the contrast ratio unless the capacitive 

impedance XjwC becomes much larger than the resistance. In this case, the AND device 

would then be modeled by two resistors connected in series, resulting in contrast ratios 

other than 2:1. 

12 



In summary, a simple but accurate model for the photoconductive AND gate has 

been developed. Simulations using the model agree well with the experimental data and 

have been useful in understanding the performance and limitations of the optical AND 

gate. For example, the contrast ratio is fixed at 2:1 because of the device geometry, 

not material parameters. Alternative device geometries should be explored in order to 

improve the contrast ratio. 

3.2    NLDE Simulation Model of the AND Device 

In order to evaluate the performance of the overall OTDMA architecture in question, 

an appropriate simulation model of the AND device has to be embedded within a larger 

system. For this purpose, certain nonlinear differential equation (NLDE) solution meth- 

ods are more amenable than others. Specifically, we had to restrict our focus on models 

that accept input samples and produce output samples at regularly spaced intervals [6], 

as opposed to typical adaptive step-size methods (e.g., Runge-Kutta above). 

We based our simulation model on the state equation representation from (2) through 

(7) and considered linear multistep methods. Despite the superiority of implicit meth- 

ods in terms of accuracy and stability, we focused on explicit methods because of their 

smaller computational burden and their implementation simplicity (see Jeruchim, et. al 

[6] and references within). We applied the second order Adams-Bashforth method (AB2), 

summarized as 

where h is the time step (or sampling interval), y* is the solution at time k, and the dot 

denotes time-derivative [6]. According to the AB2 formulation, and excluding trapping 

effects, the update equations for (2), and (4) through (6) become 

»»Mi - »M + jM-— + T^Lm) - (-— + ]ci5w}1        (8) 

n,l+,   =   ^ + 5W__ + j__)_(___ + __l| (9) 

PlMl   ~   ^+2[3(~1- + ^XW)-{—rT +h^LHW)] (10) 

13 
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Equation (1) leads to 

4 
Gi,*+i   =   j(«i>+ie/i„ + pi,*+1e/ip) + G0 (14) 

Gj.fc+1   =   j(n2,fc+ie/in + pj,fc+1e/ip) + Go (15) 

and (7) is implemented as 

lfc+i - Vi)fc+1 - — - _ (16) 

When trapping effects are taken into account, the additional update equations for the 

negatively charged electron trap concentrations (from (3)) are: 

nti,k+i   =   nti,k + 2 $(E"ntiJ> ~ C»niAnt - nf1 J) - {Enn;lih_x - C«»i,n(n, - n;1Jtiffj] 

n72Mi   ~   nti,k + ^lHEnn;iih - Cnri2,k(nt - n;ik)) - {Enn~7M_x - Cnn,,k-i(nt - n;3kl$] 

and (2) yields 

Är„   »i,A ,      Ohk niMi   =   ^k^'j[K~'^ + ^^)-2((Enn;l<h-Cnnlth(nt-n;uh)) (19) 

~t—^~ + Äuji'jyJfr) + (£"nri,*-i - C»»t>-i("« - «Ti>-i))l (20) 
A                      n 

~^~^T + hJlHW^ + ^nn«"»>-i - Cnn^.i(n, - n^J)] (22) 
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We implemented these update equations directly into our simulation model. 

The integration time step h is crucial for the stability and accuracy of the solution. In 

choosing h we used the following heuristic method [6]: Compare solutions using time steps 

h and h/2 and accept the solution if the error for both time steps is within acceptable 

tolerance. If the error is too large or too small, increase or decrease appropriately the 

time step, until an appropriate time step is found. 

When simulating a device governed by NLDE as part of a larger communication 

system, the step size required to yield acceptable stability and accuracy may be much 

smaller than that dictated strictly by aliasing (i.e., bandwidth) considerations. Since 

the duration of simulations depends directly on the sampling interval, this may impose 

severe computational limitations, especially if the entire simulation is controlled by a 

single time step. A typical solution to this problem is to use, whenever possible, a smaller 

time step internally within the device, and a longer time step for the entire system. This 

is referred to as multirate simulation. In our case, we had to use an internal time step 20 

times smaller than the external time step, in order to maintain acceptable stability and 

accuracy for the AND device model and at the same time keep the total computation 

requirements for the entire OTDMA system within acceptable limits. For this multirate 

implementation, we used linear interpolation at the input of the AND device and simple 

decimation at its output. 

4    Alterative Modeling using Artificial Neural Net- 
works 

4.1     Simulation Modeling of Nonlinear Devices 

Many devices and subsystems in communications can be modeled by nonlinear differential 

equations (NLDE): 
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where y(t) is the output and x(t) is the input of the device or subsystem. Following the 

discussion in [6], after isolating the highest derivative 

y{k)(t) = t[y(t),y,y,---,y{k-1)(t)} + *(t) 

we can formulate the state equations 

9i =y 

92 = y 

9* = y 

that lead to the generalized form 

q = f(q) + x (23) 

This also allows for multiple input devices or subsystems. In discrete time, the interval 

[0,T] is subdivided into a set of sampling points 

*„ = 0,   tN = T,   tn+1=tn + h,    n = 0,l,...,N 

In order to evaluate the performance of the overall communication architecture being 

studied, an appropriate block simulation model of such devices has to be embedded 

within a larger system simulation. For this purpose, certain NLDE solution methods 

are more amenable than others. Specifically, focus is restricted to models that accept 

input samples and produce output samples at regularly spaced intervals [6], as opposed to 

typical adaptive step-size methods (e.g., Runge-Kutta). Linear multistep methods [13,14] 

are most often used in such cases: 

p j> 

i=0 t=-l 

where a,, 6, and the order p define the type of integration formula. Multistep methods 

can be explicit or implicit (see [6] and references within for details). 
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The integration time step h is crucial for the stability and accuracy of the solution. 

The following heuristic method can be used in choosing h [6]: Compare solutions us- 

ing time steps h and h/2 and accept the solution if the error for both time steps is 

within acceptable tolerance. If the error is too large or too small, increase or decrease 

appropriately the time step, until an appropriate time step is found. 

When simulating a device governed by NLDE as part of a larger communication 

system, the step size required to yield acceptable stability and accuracy may be much 

smaller than that dictated strictly by system-wide aliasing (i.e., bandwidth) considera- 

tions. Since the duration of simulations depends directly on the sampling interval, this 

may impose severe computational limitations, especially if the entire simulation is con- 

trolled by a single time step. A typical solution to this problem is to use, whenever 

possible, a smaller time step internally within the device, and a longer time step for the 

entire system. This is referred to as multirate simulation. Multirate operation involves 

converting to a higher sampling rate at the input of a subsystem (interpolation), and 

accordingly converting to a lower sampling rate at the output of the subsystem (decima- 

tion). Of the two operations, decimation is simple but interpolation can be considerably 

more difficult, the main difficulties lying with the design of the interpolating filter [15,16]. 

As mentioned above, detailed differential equation models can be too time consuming 

to be useful in a system simulation where the nonlinear device is just one of many 

subsystems. For simulation applications nonhnearities are more efficiently represented as 

a functional relationship or in tabular form. The authors in [6] refer to such input-output- 

type models as nonlinear block models, generally divided in two groups, instantaneous or 

memoryless models and models with memory. 

Due to the computational burden, the increased complexity, and the stability prob- 

lems imposed by directly simulating the NLDE, it is often desirable to compute and 

implement non-NLDE based models. Such models are basically explicit input-output 

nonlinear systems with memory: 
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where, for practical purposes, the memory length M is assumed finite. These models 

require some computation up-front (before the simulation) and trade off some accuracy 

for increased stability and reduced complexity during the simulation. The obvious ad- 

vantage for such representations is that they operate at the lower, system-wide sampling 

rate, instead of the much higher device rate that a NLDE-based model requires. Fur- 

thermore, in most cases, they do not introduce solution stability problems. Finally, if 

chosen properly, the number of arithmetic operations they require per time step, can be 

significantly smaller. 

Some common simulation modeling strategies involving block models with and with- 

out memory, both baseband and bandpass, are described in [6]. Block models for specific 

communication devices and subsystems such as TWT amplifiers and phase-locked loops 

(PLL) are also discussed in [6]. 

One family of such models are those based on the Volterra or the Wiener series [7]. 

Approximate Volterra models of finite order and memory can be constructed by collecting 

a series of input-output samples from the original device (e.g., from the NLDE) and then 

solving a system of equations, or in some cases, directly from the differential equation 

description of the original system [8]. 

Another general way to represent systems, both linear and nonlinear, is the Kolmogorov- 

Gabor polynomial [17] shown below: 

y = a0 + £ o,x, + £ £ •w*«'*i + • • • (24) 
• »    j 

where y is the output and x is the input to the system. Gabor et al.  [17] proposed a 

learning method that adjusted the coefficients of (24) by minimizing the mean square 

error between each desired output sample and the actual output. A similar approach has 

been presented in [18]. 

As noted in [9], the approaches described above suffer from the rapid explosion of the 

possible combination of terms as the order of the polynomial increases. The number of 

samples needs to be very large, which for practical purposes can be difficult to achieve. 

They also require repeated presentation of the training data or infinite sequences. 

18 



In the multivariable case, beside the increased complexity of the formulation one also 

has to cope with the dramatically increasing computational burden in training as well as 

in on-line simulation run time required by such models. 

In the following section we focus on another interesting modeling paradigm involving 

artificial neural networks. 

4.2    Application of Feed-Forward ANN 

Artificial neural networks (ANN) are emerging as a computational technology with the 

potential of a significant contribution to many application areas. Current applications 

range from pattern recognition to optimization and scheduling [19]. Although still a 

field of very active research, ANN are now entering a phase of a certain maturity, in 

software and hardware implementation aspects, as well as in the domain of mathematical 

formalization. 

As a generic definition, an ANN is a highly interconnected computational network 

specified by three elements, namely a set of processing elements (nodes or "neurons"), 

a topology of weighted connections between these elements, and a learning law for up- 

dating the connection weights. There are several types of neural networks, with different 

structure, dynamics and learning methods, and with different strengths particular to 

their application. Here, keeping the large number of available neural network structures 

and learning rules in mind, we restrict our attention to feed-forward, back-propagation 

ANN and their application to the efficient simulation of communication systems. More 

sophisticated neural network architectures and learning algorithms could certainly also be 

considered, with potential additional advantages. However, that remains as the subject 

of future work. 

An example of a simple, one-hidden-layer, feed-forward ANN is shown in Fig. 8. Based 

on the back-propagation training algorithm such networks can be trained using correct 

input-output patterns to represent virtually any nonlinear function [20, 21, 22]. 

An application area of specific interest to the communications systems engineering 

field is that of function approximation, taking the form of system identification tech- 
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5. 5, 4. 5. 

Figure 8: An example of a one-hidden-layer, feed-forward ANN. Wjk and to,-,- are connec- 
tion weights, Ifc's denote inputs, Z.'s denote outputs, and Vj's denote the outputs of the 
hidden nodes. 

niques (see the recent papers [10, 23, 24, 25] and references within). Furthermore, neural 

networks can be used not only to identify but also to control dynamical systems [10, 11] 

Our focus here is not on control but on simulation of communication systems. We 

discuss her« an alternative modeling and simulation paradigm that involves ANN. We 

propose ways to exploit the large amount of existing network architectures and learning 

methods in order to improve the simulation efficiency of communication systems involving 

nonlinearities. Whereas recent work has focused on the use of ANN for the identification 

and control of dynamical systems, we focus on using ANN to identify nonlinear systems 

for simulation purposes. The growing wealth of neural net structures and techniques 

presents an appealing family of modeling tools to the simulation practitioner. 

The underlying idea is to train a neural net to "mimic" the behavior of nonlinear 

device or subsystem. To avoid the multir&te problems of the NLDE-based blocks, the 

ANN block model has to operate at the lower, system-wide sampling rate. The ANN 

block model can also possess memory in the form of tapped-delay lines, one per block 

input. Training patterns can be obtained from the standard numerical solution to the 

NLDE, or from experimental measurements, and training can take place using back- 

propagation techniques, until the desired degree of matching between the required and 

the actual output of the network is obtained. 
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Figure 9: Schematic illustration of use of ANN in parallel to a simple block model, in 
order to compensate for residuals. 

An ANN can also be used to improve the simulation accuracy of simple block models. 

In many cases, based on a priori knowledge or experience, we can start the modeling 

process by approximating the given subsystem by a simple, computationally efficient 

block model, say an FIR linearity or a memoryless nonlinearity followed by a linear 

system or another simple combination of linear and nonlinear blocks. In such cases, initial 

analysis may show that although some operational characteristics of the original device 

are preserved other characteristics are not. One way to compensate for the residuals (i.e., 

differences) while maintaining computational efficiency is to use an ANN "in parallel" 

to the simple block model, as illustrated in Fig. 9. Such an ANN can potentially be 

kept at minimum size and memory requirements while significantly improving the overall 

accuracy by approximating the residuals. This is further supported by our empirical 

observations in Section 5. 
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4.3    Issues and Comparisons 

We compare here the neural net-based simulation approach to the linear multistep (LM) 

integration technique, in terms of application complexity and simulation efficiency. We 

base the comparison and trade-off study on a multilayer feed-forward ANN. Similar anal- 

yses can be performed for other types of ANN. Our comparison examines computational 

burden as well as accuracy and stability issues. 

Here we assume that an accurate NLDE model already exists. Clearly, in cases where 

such a model is not readily available, and where direct training data can be obtained 

efficiently, the ANN-based approach has many additional advantages. 

4.3.1    Runtime 

Any run time comparison between the two alternative.approaches has to include both 

computational requirements during the system-level simulation, and cc mputational over- 

head before system-level simulations are performed, in order to construct the device or 

subsystem model. 

Clearly, no "off-line" computational overhead is involved when using the direct dif- 

ferential equation integrator, except maybe for the time required by the trial-and-error 

process to find the maximum acceptable time step h. A block model for the subsystem 

in question can be constructed directly based on the standard approach described in [6j. 

On the other hand, the ANN-based block model has to be appropriately trained before 

system simulations are run. Such training would typically involve generating a number 

of "correct" input-output patterns from the corresponding differential equation model 

or experimental measurements, and executing the back-propagation learning algorithm 

until acceptable accuracy (usually measured in terms of a normalized mean-squared er- 

ror) is obtained. The number of learning iterations (training epochs) required depends 

in general on the nonlinear operation performed by the subsystem in question. 

The strength of the ANN-based block model is mainly in the actual system-level 

simulation run time, as illustrated by the following approximate analysis: A feed-forward 
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ANN with L hidden layers, N; nodes in wie ith hidden layer, I inputs and 0 outputs 

requires 

multiplications 

additions, and 

IN, + £ N;Ni+l + 0NL 

(/ - \)N, + £(# - l)AT1+i + 0(ATr - 1) 

E^ + o 
calculations of the sigmoidal function per output sample. Assuming that each sigmoidal 

calculation is equivalent to S multiplications, the total number of multiplications becomes 

IN, + £ NiNi+l + ONL + S(£ ft + 0) 

Denote the total number of calculations above by TXNN- 

Let us assume that state equation (23) involves the equivalent of JV^ multiplications 

and NA additions. Then, using the explicit second order Adams-Bashforth method as an 

example, the LM numerical integration method requires 

2NU+Z 

multiplications and 

2*4 + 2 

additions per time step h. Denote the resulting total number of calculations per internal 

time step by Tut• Other explicit methods involve a similar number of operations, while 

most implicit methods require many more operations per time step, since they also include 

the solution of a set of nonlinear equations per step (requiring evaluation of Jacobians, 

etc.). 

Assume further that the solution to the differential equation requires a time step h 

that is R times smaller than an acceptable system-wide sampling interval T,. Denote the 
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number of calculations required to simulate the rest of the system by TSYS Per output 

sample. There are again two cases: If we elect not to employ multirate sampling when 

using the differential equation model, the overall system has to be simulated at a rate of 

l/h. The efficiency improvement of the ANN implementation over the LM method then 

becomes 
R(TLM + TSYS) ,0_V 

Kl ~ ~T~—Tr  (25> lANN +*SYS 

with ÄJ as R when TSYS > TANN and TSYS > TLM. 

In the second case, when multirate sampling is employed, the efficiency improvement 

becomes: 
D      R(TLM + TIP) + TSYS ,0fiX 
Ri = r IT — '26' *ANN + *SYS 

where T//> is the additional computation due to the use of the interpolation filter at the 

input of the differential equation block model. 

When, as suggested in Section 3, the ANN is used "in parallel" with another block 

model (e.g., an FIR filter) requiring computation TBM» (26) becomes 

R - R(?LM + TIP) + TSYS /„y\ 

TBM + TANN + TSYS 

From the above equations we see that the ANN implementation is clearly more ef- 

ficient in the first case, while in the latter cases it still has the potential of being more 

efficient when Ä>1, TBM «« small, and RTLM > TANN- 

4.S.2    Accuracy and Stability 

Taking the solution to the set of differential equations as the "correct" response of the 

subsystem in question, the LM methods can exhibit superior accuracy, given an ap- 

propriately chosen time step h. Their appealing characteristic is that they allow for a 

more direct control of truncation error, via the choice of integration method and time 

step, as opposed to the ANN implementation whose behavior is based on the anticipated 

"generalization" of the network's training. 
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However, LM methods can be affected by stability problems, related to the propaga- 

tion and growth of error at successive time points [6, 26]. In general, stability will depend 

both on the integration method and the problem. In contrast, the ANN approach does 

not introduce solution stability problems. 

4.S.S    Overall Comparison 

In terms of generality and robustness of the simulation approach, ANN offer an attrac- 

tive alternative to standard NLDE implementation algorithms, that avoids the issues 

of sampling rate and stability, possibly in exchange for a somewhat reduced accuracy. 

LM solutions can be both accurate and stable for a small enough h, while ANN imple- 

mentations trade off some accuracy for simulation speed and immunity versus stability 

problems. 

In terms of simulation r in time we observe the following: At the device level, the 

above analysis indicates that unless the state equations of the nonlinearity are extremely 

simple, the ANN block mode) is more efficient (after training). 

At the system level, a comparison is meaningful only if multirate sampling is used, 

otherwise the system model including the ANN block is much more efficient, as indicated 

by (25). 

When multirate sampling if used, one has to consider the savings per output sample 

described by (26) or (27) multiplied by the length of the required simulations times the 

number of anticipated repetitions versus the overhead involved in initially training the 

ANN. This is summarized in the overall efficiency improvement ratio 

R   -      "H"S{R(TLM + TJP) + TSYS} ,M) 
3     NH Ns [TBM + TANN + TSYS] + TTR 

{    ' 
where Ns is the number of srmples per simulation run, NR is the number of repeated 

runs, TBM — 0 if the ANN is used alone, and TJR is the computational cost of training the 

ANN block model. Clearly, if the savings in (26) or (27) are significant and if the block 

model in question is going to be used extensively in repeated simulations, the trade-off 

between training and run time savings expressed by (28) can dramatically favor the use 

of the ANN-based models. 
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4.4    ANN for OTDMA System Simulation 

The AND device is modeled using the differential equations given earlier, with L = 5 

(im, W = 5 /im, H = 1.4 /im, /in = 6,000 cm2/Vs, /tp = 300 cm2/Vs, r„ = rp = 20 ps, 

1/Go = 19 kfl, nt = 1016 cm"3, Cn = 10"5 s'1, En = 5 x 1010 cm3/s, d = C2 = 0.05 pF, 

Zo = 50 fi, and Vi = 2.0 V. For improved accuracy and stability the AND device uses an 

internal time step of 0.25 ps. 

To construct an ANN-based computation model for the AND device, we assume that 

the device can be modeled reasonably well as a nonlinear device with finite memory. We 

then have to decide on the fixed memory length, M (that also determines the number of 

inputs to the ANN), as well as the structure of the ANN to use (number of layers, number 

of nodes in each layer, etc.). We use hidden nodes with sigmoidal nonlinearity and a linear 

output node. Then a number of input vectors (each vector a number of samples equal to 

the memory length, one vector for each device input) and corresponding output samples 

have to be obtained for regularly spaced intervals, using the numerical solution of the 

NLDE. The network is trained using the back-propagation algorithm, until an acceptably 

low mean square error (MSE) between the required and the actual output of the network 

is obtained. After training, the network weights are fixed and the ANN takes the place of 

the AND device in the simulation, using a tapped-delay line for each device input port to 

feed input samples corresponding to times k,..., k - M + 1 to the network, at each time 

instant k. Therefore, at each time k the network uses 2 x M input samples to produce 

an output sample. 

Here we use single hidden layer ANN with 40 input nodes (memory M = 20 per 

device input) and 10 hidden nodes. 

As an example of another modeling approach, we also approximate the behavior of 

the AND device (with charge trapping effects not taken into account) by the summation 

of two FIR filters (one for each device input) and an ANN "in parallel" that compensates 

for the residual error, as shown in Fig. 10. For our example, we chose the FIR filters to 

have MFIR - 34 taps, based on the "impulse response" of the AND device (the output 
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Figure 10:  Simulation block model of the AND device as the summation of two FIR 
filters (one for each device input) and an ANN that compensates for the residual error. 

of the device when an impulse is applied to one input while no signal is applied to the 

other input). Therefore 

TBM = 2X34 + 2X33 + 2 

Figures 11 and 12 both illustrate the accuracy of the ANN-based models. Fig. 11 

compares the output of the NLDE solution versus the output of the trained ANN for 

a series of input impulses different from those used for training. Fig. 12 compares the 

output of the NLDE solution versus the output of a two-input FIR system plus that of 

of the trained "parallel" ANN, for the same series of input impulses used for training. 

In all cases, we used 165 training input-output patterns, taken from a time interval 

of 1000 ps in the response of the device to a series of impulses applied to its inputs. 

Training was stopped in each case when additional iterations did not significantly reduce 

the training MSE, typically after about 4,000 epochs. 

We have restricted our focus to a simple network and learning algorithm in order 

to demonstrate the principle of the methodology. Recent research in neural networks 

offers methods to reduce network size to a minimum and thereby reduce computational 
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Figure 11: To illustrate the accuracy of the ANN-based model we plot the output of 
the NLDE solution versus the output of the trained ANN for a series of input impulses 
different from those used for training. 
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Figure 12: To illustrate the accuracy of the second ANN-based model we plot the output 
of the NLDE solution versus the output of a two-input FIR system plus that of of the 
trained "parallel" ANN, for the same series of input impulses used for training. 
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ANN ANN FIR FIR + ANN    1 
M = 20 M = 20 MFIR = 34 M = 10 

40 Input Nodes 40 Input Nodes 20 Input Nodes 
10 Hidden Nodes 10 Hidden Nodes 8 Hidden Nodes 

(No Trapping) (Trapping) (No Trapping) (No Trapping)   [ 

Runtime pei Epoch 0.6 s 0.6 s - 0.3 s           | 

f        Test NMSE 8.78 x 10-4 8.39 x 10"4 4.1 x 10-"    j 7.74 x 10"4      | 

Addition Ratio 1.95 3.12 10.96 3.41 

Multiplication Ratio 4.12 5.36 31.2 6.6 

Table 1: Runtime per training epoch, resulting accuracy, and computational requirements 
for the ANN-based models. The last two rows give the ratio of numerical operations 
required by the NLDE model over the numerical operations required by the respective 
block model, per system-wide (i.e., external) time step. For comparison, we include the 
case where the combined FIR niters alone approximate the behavior of the AND device 
(MFIR is the number of taps in each FIR filter.) 

overhead and improve generalization (i.e., improve simulation accuracy on new data) 

[40, 41,42]. In addition, cross-validation techniques can be used to determine the optimal 

time to stop training. With this technique, training is completed when the error on a 

separate test set just starts to increase [43]. Methods for improving generalization are 

particularly valuable when the training data are "noisy" and there is not a great deal of 

training data available. 

The required run time per training epoch, the resulting accuracy, and the computa- 

tional requirements for the ANN-based models are shown in Table 1. The normalized 

mean-square error (NMSE) is the MSE divided by the mean-square value of the test 

patterns. Table 1 also includes the ratio of numerical operations required by the NLDE 

model over the numerical operations required by the ANN model, per system-wide (i.e., 

external) time step. This ratio gives an indication about the run time speed-up factor 

obtained when using the corresponding ANN-based model. In the table, we included the 

case where the combined FIR filters alone approximate the behavior of the AND device. 

In our multirate implementation the simple linear interpolation and decimation added 
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another 4 multiplications and 3 additions per internal time step h, hence 

TIP » 0.035TLAf 

when charge trapping effects are included in the device model, and 

TlP « 0.0497^ 

when charge trapping effects are not included. An approximate expression for the number 

of calculations performed for the OTDMA simulation model is found to be 

TSYS » 0MTLM 

and 

TSYS * 1.19TLAf 

for the two cases above, respectively. 

Taking into account the multirate ratio R = 20, equations (26) and (27) yield the 

results in Table 2 showing RTIM/TANN, RI, and the experimentally determined R3 for 

each case. Here, an addition is assumed to take as much run time as a multiplication, 

and a calculation of the exponential function (required in the sigmoidal nonlinearity of 

the ANN nodes) is assumed to take 8.5 times longer than a multiplication. These results 

agree well (also considering computational overhead in the block simulation package) 

with our experimental comparison of run times between the OTDMA system simulation 

using the NLDE block model and the OTDMA simulation using the ANN block model. 

Based on the parameter values above, and on the experimentally measured values of 

Ä|, Fig. 13 shows the speedup ratio Ä3 versus the total number of receiver decisions, for 

three cases: Memory of 20, 10 hidden nodes, NLDE with charge trapping effects; memory 

of 20, 10 hidden nodes, NLDE without charge trapping effects; and ANN parallel to FIR 

filters, memory of 10, 8 hidden nodes, NLDE without charge trapping effects. In all 

cases, the ANN-based models result in efficiency improvement over the standard NLDE 

numerical integration when more than 1,000 or 2,000 receiver decisions are involved. 

Such a number of simulated decisions is rather common, e.g. when estimating bit error 

rates (BER) of less than 10"'. 
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ANN 
M = 20 

40 Input Nodes 
10 Hidden Nodes 

(No Trapping) 

ANN 
M = 20 

40 Input Nodes 
10 Hidden Nodes 

(Trapping) 

FIR + ANN 
M = 10 

20 Input Nodes 
8 Hidden Nodes 
(No Trapping) 

RTIM/TANN 3.16 4.37 5.26 

Ri 2.95 3.97 3.73 

Measured Äj 2.325 2.75 3.169 

Table 2: RILM/TANN, ÄJ> and the experimentally determined R2 for the ANN-based 
models in Table 1. 

5    OTDMA Network Performance Analysis 

We now turn our attention to performance analysis of the OTDMA network as an entire 

entity. Both analytical and simulation -based techniques are used to evaluate performance 

of the network as a function of device and subsystem parameters. 

5.1    Crosstalk Analysis 

The effect of crosstalk from adjacent channels (or slots) in the OTDMA frame using a 

photoconductive AND device with noninfinite contrast ratio for demultiplexing is pre- 

sented in this section. A block diagram of the receiver showing the photoconductive 

AND device, pre-amplifier, I&D filter, and decision functions are shown in Fig. 1. As- 

suming integer integration time-intervals, pulse widths which are less than the slot time 

T$ (no intersymbol interference, or ISI), and ideal timing in the receiver, it is possible to 

analytically determine the BER due to crosstalk, neglecting all other noises and degra- 

dations. Including other impairments would complicate the analysis and require Monte 

Carlo simulation, as discussed in a later section. 

Let the integration time interval for the I&D filter following the AND device be defined 

as /, where / is an integer number of slots. We let R denote the contrast ratio, and A 

be the integrator output over one slot assuming a coincident 1 and 0. The value of A is 

determined by the amount of leakage current in the AND device, i.e., noninfinite contrast 
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Figure 13: Speedup factor R3 versus the total number of receiver decisions, for three 
cases: Memory of 20, 10 hidden nodes, NLDE with charge trapping effects; memory of 
20, 10 hidden nodes, NLDE without charge trapping effects; and ANN parallel to FIR 
filters, memory of 10, 8 hidden nodes, NLDE without charge trapping effects. 

ratio. Thus, the I&D output for coincident l's would be given by RU. A truth-table 

for the AND device under these assumptions is shown in Table 3. Note that this table 

assumes no timing offset between the two input optical pulse signals. 

In a photoconductive AND device with finite contrast ratio, data in adjacent slots 

introduces crosstalk and at a minimum reduces the noise margin of the signal at the 

integrator output. In more severe cases, crosstalk introduces bit errors, even in the 

absence of other degradations. 

Integrating over a larger number of slots (larger /) will increase the deleterious effects 

of crosstalk. This is in conflict with the constraint that the electrical processing of the 

detected signal should ideally not require processing at the large aggregate bandwidth of 

the network. Translating this constraint to the design of the I&D filter requires that the 

integration time interval (/ slots) should be made as large as possible — preferably equal 

to the frame interval 7 = NT,. This would also greatly simplify the timing requirements 

of the receiver. 
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Data Clock Integrator Output 
0 0 0 
0 1 U 
1 0 U 
1 1 RU 

Table 3: Truth-table for photoconductive AND device with leakage, for all combinations 
of coincident l's and O's. The third column gives the output of the I&D niter following 
the AND device. The integration interval is one slot. 

Thus, there exists a tradeoff between the integration time interval and the contrast 

ratio R required to ensure a minimum level of BER performance. In this section we 

derive the minimum contrast ratio of the AND device, Amm, that ensures no errors due 

to crosstalk for a given /. 

Within a frame, the I&D filter output y(t) is given by 

y(<)= fx(a)da (29) 

where x(t) is the I&D input signal and t0 is the start time of integration. 

A decision is made each frame by comparing y(Td) to a decision threshold level 9, 

where Tj is the decision time at the end of the integration period, immediately before 

the integrator is reset. The BER at the output of the I&D filter is given by 

BER = l-P[yo(Td) < 0) + \p[yt(T4) > 0) (30) 

where the "0" and "1" subscripts denote conditioning of y(Tj) on a transmitted data bit 

equaling 0 or 1, respectively. Equiprobable O's and l's are assumed. 

The value Ä„„n to ensure no bit errors due to crosstalk can be determined by con- 

sidering the worst-case, noiseless, minimum separation condition between the two sets 

of I&D output amplitudes corresponding to transmitted 0 and 1 data bits, respectively. 

Assuming that the integration interval is an integer number of slots, /, this minimum 

separation condition occurs when the desired channel data bit equals 0 with the / — 1 
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Figure 14: Conditional probability mass functions of the integrator output, y(Tj) con- 
ditioned on a transmitted 0 and transmitted 1 in the desired channel. The integration 
interval is 5 slots and the contrast ratio is 5.5. 

adjacent channel data bits all equal to 1, and when the desired channel data bit equals 

1 with the 7 — 1 adjacent channel data bits all equal to 0. Of course, other crosstalk bit 

patterns are possible, and the conditional probabilities of occurrence of these patterns 

can be calculated. The conditional probabilities corresponding to the possible output 

levels of the I&D filter for the specific case of I = 5 are shown in Fig. 14. The contrast 

ratio in Fig. 14 is 5.5. 

As can be seen from the figure, the maximum value for yo(Tj) — IU and the minimum 

value for yi(Tj) = RU. Thus, to guarantee unambiguous detection in the noiseless case, 

max{y0(7j)} < nun{yi(T,f)}, thus requiring 

7<Ä (31) 

From (31) /£„;„ = /. This is an important result — for one thing (31) shows that to 

avoid crosstalk induced bit errors, the contrast ratio must be larger than 7, the number 

of slots in the integration interval of the I&D filter. Since the bandwidth of this filter is 

inversely proportional to the integration interval, the inequality in (31) sets a minimum 

bandwidth for error-free performance assuming no noise. Thus, it is desirable for 7 to 

be as large as possible (with I = N being the largest value). Note that in this analysis 
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Figure 15: Conditional probability mass functions at the integrator output conditioned 
on a transmitted 0 and a transmitted 1 in the desired channel with two levels of overlap 
(n„ = 2)   The integration interval equals 7 slots. 

we only consider the integration time interval in units of integer numbers of slots. The 

simulation analysis discussed in the sequel investigates integration intervals of arbitrary 

length. The contrast ratio R is, however, a real number. Therefore, R = 2.1 for I = 2 

would satisfy the inequality. 

From this analysis it can be seen that a modest improvement in contrast ratio will not 

provide significant reduction in the bandwidth required of the I&D filter in the receiver. 

5.2    Nonzero Bit Error Rate due To Crosstalk 

Violating the inequality in (31) results in bit errors due to crosstalk, even in the absence 

of noise and other degradations. The net effect is that at least some levels at the I&D 

output overlap, i.e., cross the decision threshold, and result in errors. If the probability 

of occurrence of these overlapping levels is sufficiently small, this approach could be 

exploited to relax the requirement on contrast ratio and integration time interval. We 

briefly present some results using this idea, and show that it is only feasible for large I. 

The conditional probabilities corresponding to the possible integrator output levels for 

the case 7 = 7 and R = 3.5 are shown in Fig. 15. This results in two levels overlapping, 

thus introducing bit errors due to crosstalk. 
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/ ■•wntn,» BER 
50 46 8.8 x 10-14 

20 16 3.8 x 10-5 

7 3 1.1 x 10-1 

Table 4: Table of BER values and minimum contrast ratios for three different values of 
the parameter /, the integration interval in slots, assuming two integrator output levels 
overlap (n„ = 2). 

Once again assuming no timing errors, and that the integration interval is an integer 

number of slots, /, we can compute the BER due to crosstalk. Realistically assuming that 

the data bits in the I slots are independent, y{Td) conditioned on the transmitted data 

value is a binomially distributed random variable. Let n„ be the number of amplitude 

values of yo(Td) which overlap with values from yi(Td). We are still assuming that the 

I&D filter interval is an integer number of slots /. 

Because of the symmetry of the two conditional distributions the BER for the case 

with overlapping amplitude values is given by 

BER-EfV)0-5'-1 (32) 

assuming no noise, and that the decision threshold is set to an optimal value, given by 

8 = f (/ + R). 
The relationship between contrast ratio and n„ is given by 

/ - 2n. < R < I - 2n„ + 2       where   / > 2n, (33) 

Tabulated in Table 4 are BER values when n„ = 2. Thus overlapping output values 

for the transmitted 1 and transmitted 0 cases does relax the requirements on contrast 

ratio when compared to the case where there is no overlap (and thus nc bit errors due to 

crosstalk). This can be seen from the inequality in (33). Letting Ämin,« be the minimum 

contrast ratio allowed by (33) for a given overlap n„, we have that A«,»«,, = Rmin - 2n». 

This benefit is achieved at the expense of increasing the BER due to crosstalk. 
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As can be seen from Table 4, the BER due to crosstalk does not become acceptable 

until the integration interval is large. Therefore, the contrast ratio must still be very 

large before this technique is practical. 

5.3    Crosstalk in the Tunable Delay 

The receiver selects a transmitter by delaying the clock signal to the desired transmitter's 

slot within a frame. A variable-integer delay line OTDMA coder has been demonstrated 

experimentally using 2x2 LiNb03 optical crossbar switches [2]. Crosstalk in the 2x2 

sections results in attenuated versions of the clock signal being shifted to all adjacent 

slots within the frame. Also, the power of the clock pulse in the desired slot is reduced. 

The net result is a further degradation in performance. Specifically, the crosstalk energy 

from adjacent slots is increased at the I&D output. 

Let 7 denote the optical power gain factor in the desired paths within a 2 x 2 crossbar 

switch, and ß be the crosstalk gain factor. Thus for a signal c(t) at either input port, 

7c(t) is output at the desired output port, and ßc(t) is transferred to the other output 

port, this latter term represents crosstalk. 

An m stage switch provides 2m_1 possible addresses (delays). One extra switch is 

used to route the signal to the correct output port. It can be shown that the desired 

path gain will be fmc(t), and the crosstalk terms will be of the form fhß*c(t — tj), where 

ti is a delay corresponding to one of the adjacent slots, and m = i + k. Every adjacent 

slot will contain one of these crosstalk terms. 

A worst-case analysis assumes that all adjacent crosstalk terms are set to the largest 

possible value. For m even, this is ßmc(t). For m odd, the largest value for a crosstalk 

term is /Sm_J7,c(!t). For the 2x2 LiNbCh *■•»«* in the Rome Laboratory demonstration [2] 

crossbar switch crosstalk power was no 20 dB, yielding 7 = 0.99 and ß = 0.01. 

For the LiNbOj switch, the net erl on >;-^e? performance is minimal, but could be 

significant for devices with more crosstalk, and should be included in the system analysis 

for these cases. 
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5.4    Simulation Results 

In our implementation of the entire OTDMA architecture we assumed N = 8 users (i.e., 

8 slots per frame). Lawr pulses were modeled as pulses of Gaussian temporal shape, 

with standard deviation .'.' ps, and energy equal to 2.5 x 10-13 J. Both the slot under 

observation (the 5th slo' Ji our case) and the remaining slots, were assumed to contain 

binary digits, with 0 and > being equiprobable. Information bits for the slot under study 

and among all slots were ; osumed independent. The system-wide sampling interval was 

set to 5 ps, corresponding *o 40 samples per slot, and 320 samples per frame. 

Losses in the fiber, the passive star and the electro-optic modulator, as well as the 

tunable delay line cross-talk were incorporated in the laser pulse energy. 

As before, the AND device was modeled using the differential equations given earlier, 

with L = 5 pm, W = 5 pm, H = 1.4 /im, /tn = 6,000 cm2/Vs, fip = 300 cm'/Vs, 

rn = rp = 20 ps, 1/Go = 19 kfi, nt = 1015 cm"3, Cn = 10"5 s"\ En = 5 x 1010 cm3/», 

d = C2 - 0.05 pF, Z0 = 50 I), and V- = 2.0 V. The differential equation model was 

implemented using the AB2 update formulas from above. For improved accuracy and 

stability the AND device used an internal time step of 0.25 ps. 

The receiver consisted of an I&D filter of variable duration, so that the effects of 

the integration period on the performance of the system could be studied. The same 

clock pulses used to select the chosen slot at the AND device, were also used to center 

the integration interval around the required slot. The I&D filter produced one output 

sample per frame. These output samples were then compared to a threshold 6, to decide 

whether a 1 or a 0 had been received. 

Extensive initial simulation runs showed excellent agreement with experimental re- 

sults obtained at the Rome Laboratory Photonics Center. 

In the absence of noise sources in our model, we focused on measuring receiver noise 

margins as a function of other parameters in the system. Denote the output of the 

I&D at time k by y*. Denote the correct information bit at time k by 6*. Let a - 

nxinfc{yi,given that 6* = 1}, and b = max^y*, given that 6fc = 0}. If a < h then error- 

free detection is not guaranteed by any threshold setting, and a non-zero bit error rate 
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Figure 16: Noise margin as a function of integration interval (in slots). We observed 500 
frames for each point. The noise margin goes to 0 as the integration interval approaches 
the contrast ratio, 2.0. 

(BER) results, even in the absence of noise. On the other hand, if a > b then error-free 

detection is possible by setting b < 8 < a. Clearly, if noise is present, the larger the 

difference d = a - 6, the more immune the system is to receiver errors. We call d/I the 

noise margin at the receiver, where / is the I&D interval in slots. 

Recall that the contrast ratio of the AND device was estimated to be approximately 

equal to 2.0. Also recall that our analysis showed that error-free detection is not guaran- 

teed for integration intervals longer (in slots) than the contrast ratio. We demonstrated 

the effects of I&D interval length on the noise margin, by running a simulation of 160,000 

samples (500 frames) for each I&D interval, ranging from 1 to 2 slots, and measuring 

each time the receiver noise margin. The results, as illustrated in Fig. 16, validate our 

analysis, and show that the noise margin goes to 0 as the integration interval (in slots) 

approaches the contrast ratio, 2.0. As predicted, for integration intervals longer than 2 

slots, the noise margin was zero, and detection errors were unavoidable. For example, for 

an integration interval of 2.5 slots, we estimated a BER of 0.243, based on 500 observed 

frames. 

Timing and synchronization are important issues in digital communications, especially 

in a multiple-access environment. For the system under consideration, correct timing of 

the received clock signal is of great practical interest, since under realistic conditions even 
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Figure 17: Noise margin as a function of clock offset (in slots). We observed 500 frames 
for each point. The effect of the clock offset is most dramatic for the longer integration 
intervals. 

small inaccuracies in the length of the optical fiber can lead to significant delays at the 

receiver. To study the effects of unwanted delays of the clock signal on the performance 

of the receiver, we measured the noise margin for a variety of clock offsets. We used 500 

frames per simulation run. The results are illustrated in Fig. 17. Clearly, the effect of 

the clock offset is most dramatic for the longer integration interval cases. Due to the 

effects discussed in the previous paragraph, as the integration interval becomes longer 

the margin for timing errors becomes smaller. Note that a clock offset of 0.75 slots in 

the figure corresponds to a time differential of 0.75 x 5 ps =s 4 ps. This differential could 

result from an error of less than 1 mm in the length of the optical fiber. Thus, the data 

presented in this section can be very useful when designing a practical system. 

6    Conclusions 

We have presented a model of the OTDMA architecture that relates parameters at the 

device level such as carrier mobility, physical geometry, charge trapping, and carrier- 

concentration to system-level performance measures such as bit error rate and noise 

margin. The model is used to in Monte Carlo simulations of the OTDMA network to 

determine bit error rates, and noise margins as a function of I&D filter bandwidth and 
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timing error. 

In addition, have presented a simulation methodology that uses ANN to build and 

efficiently implement block models of nonlinear devices and subsystems within larger 

communication system models. We illustrated how ANN can be used in conjunction 

with simple subsystem block models in order to improve the simulation accuracy of such 

block models. 

The usefulness of the ANN methodology was illustrated by showing run time sav- 

ings ranging from a factor of two to a factor of three in the simulation of an OTDMA 

architecture that involves a two input optoelectronic AND device. 

An interesting conclusion from this work is that to reduce the I&D filter bandwidth 

in the receiver to the bandwidth of an individual electronic processor, the contrast ratio 

of the photoconductive AND device must be much larger than 2:1 for a large network. 

Also, for the device studied in this report, at Gb/s speeds, device geometry has a much 

stronger influence on the contrast ratio than other device parameters. 
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