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I. INTRODUCTION

Reported below are the results of a study carried out at the Center for Communicaticns

and Signal Processing Research, at the New Jersey Institute of Technology, between April 1.

1992 and June 30, 1993. This research is a continuation of previous research performed during

the same period in 91/92 [1]. The aim of the research is to further analyze and evaluate the

performance of a fast algorithm known as the "bootstrapped algorithm." Historically, the

idea of the algorithm as a way for cancelling interferences was first proposed by the principle

investigator in 1981 [2], and later it was used for cancelling cross polarization in satellite

communication [3] and in the microwave terrestrial radio line [4-6].

The bootstrapped interference canceler is principally composed of two separate cancelers.

each using the output of the other canceler as its reference (desired signal) input. In fact.

such a structure performs as a "Signal Separator" rather than an interference canceler. Since

for its operation there is no need for a reference signal. it is sometimes justifiably called a

"Blind Separator."

Three different structures were proposed in [1], namely, the Backward/Backward (BB).

the Forward/Forward (FF) and the Forward/Backward (FB). They are depicted in Figures

1, 2, and 3. The different weights of these two-input/two-output separators can be controlled

by minimizing the output power or minimizing the absolute value of the cross correlation

between the two outputs.

During the first phase of this report [1], the steady state behavior of these separators was

examined. It was shown that under acceptable conditions they converge to a state which

represents the desirable signal separation. The effect of additive noise on the performance

of the separator was also studied in [1].

It was also demonstrated that extensions of all three structures to multi-input/multi-

output are possible. Such extensions are particularly important in multi-channel communi-

cation, such as Code Division Multiple Access (CDMA) applications or neural networks.

.... ....... .... .. ... .... I



Some preliminary work on the applicability of the algorithms was also performed and

some results were presented. Special emphasis was put on the usage of the three structures

in handling dually-polarized signals where we examined the error probabilities of the boot-

strapped cross-pol cancelers for M-ary QAM signals. Their performance was compared to

other kinds of cancelers known in the literature.

It was concluded that the bootstrapped algorithms have many useful properties which

make them excellent candidates for use as signal separators or interference cancelers when

other algorithms have difficulties. In some cases, it clearly outperforms other algorithms.

In particular, it was demonstrated that the algorithm has the property of converging to

its steady state, where signal separation occurs, much faster than other algorithms. Unlike

other algorithms, the speed of convergence does not depend on the signals' power ratios and.

hence, does not depend on the eigenvalue spread of the input correlation matrix.

During the current phase of the research we continue to examine other properties and

advantages of the algorithm. We propose and study some applications to communication

systems.

First, it is stated that the different structure exhibits a different level of complexity.

particularly when it is used in very high frequencies, as in microwave communication. They

presents different delay path to the signals and, hence, have different system bandwidth.

This raises the question of existing complexity - bandwidth trade-off.

For every control system the question of stability of the steady state point is always

asked. This is of particular interest with the bootstrapped algorithms, as they are highly

nonlinear.

Clearly, when one proposes an adaptive algorithm, it is crucial to suggest an adequate

real-time realization of the recursive control of the weights. Two methods of dynamic con-

trol are studied. One uses orthogonal perturbation sequences and is applied to the Back-

ward/Backward structure and controlled via the power-power criterion. The other uses
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weights dithering with a PN sequence and is applied to the Forward/Backward structure

and controlled via the power-correlator criterion.

Delay controlled structures of the bootstrapped algorithms were also proposed in [1). In

this report we further study these structures and examine some of their applications. For the

multi-input/multi-output application, we obtain new results in blind separation of signals

when the environment is dispersive.

Possible applications of the algorithms are numerous. Two of such applications are in

the fields of blind equalization and CDMA. In the second field, which will be studied further

in the future, we will present some ideas which, although they are not implement with the

bootstrapped algorithm, would become a basis for comparison with these cancelers as they

are applied in CDMA systems.

Section (2), below, is a technical summary of the study performed in this phase of the

research and its results. Detailed reports on which this summary is based are given in the

appendices of this document. Each appendix covers a specific part of the research and is

written in a way that can be read independently of the other parts. Section (3) contains the

conclusions and recommendations for further studies.
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II. TECHNICAL SUMMARY

2.1 Bootstrapped Algorithm - Separation of Two Superimposed

Signals

Figures 1, 2, and 3, the configuration of the three bootstrapped algorithms for separating

two superimposed signals,

=i(t) = a111(t) +a 1212(t) +hi(t) (1)

x 2 (t) = a21I1(t) + a2212(t) + n2(t), (2)

where xl(t) and x2(t) are the received superimposed signals at the first and second channels.

respectively; I,(t) are the two data signals such that for i=1,2 Ii is an M-ary signal from set

1±1, ±3,...±(v/M - 1)}; and aij i=1,2 are channel coupling.

The performance criterion used in controlling the algorithm weights are, respectively, the

power-power, correlation-correlation and power-correlation. A detailed discussion of these

criteria and their corresponding steady state values is given in [1 of Appendix A] and the

effect of noise on these values is given in [1 of Appendix B]. Note the insertion of the dis-

criminator, which is crucial in obtaining unique steady state points.

2.1.1 Bandwidth Complexity Trade-Off

Comparing the steady state performance for the three systems [1 of Appendix A] showed

that the symmetric B/B and F/F correlation systems have identical output signals and

signal-to-interference ratios, while the asymmetric B/F system has slightly different out-

put signals and signal-to-interference ratios at its output ports. Nevertheless, they are all

equivalent in that the desired signal separation is ideal provided certain conditions or as-

sumptions are valid; specifically, when the effects of added noise, quantization error, and

non-zero circuit delay are assumed to be negligible.

An examination of Figure,1-3 illustrates that the three configurations require different
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levels of hardware complexity. The F/F, correlation-correlation scheme is expected to be

the most complex since it requires correlators with zero offsets, while the B/B. power-power

scheme is the least complex. Also, the three canceler systems have different signal paths

through the individual circuits and, thus, when they are applied for separation of dually

polarized signals directly at microwave frequencies [51, or high I.F. frequencies (as in a dual

polarized microwave terrestrial link [41), different system delays are expected. Therefore, in

Appendix A of this report we present a thorough study of the effects of these delay differences

on the performance of each of the different cross-pol separator configurations. In particular.

we analyze and discuss system bandwidth limitation due to these delays. For each of the

three different schemes, we study the effect of delay on the optimal weights, on the outputs'

powers and ratios. These effects are presented in terms of the autocorrelation of the two

signals as well as the mixing ratios at the superimposed inputs. Using the relation between

autocorrelation and signal bandwidth, we estimate the different separator bandwidths and.

hence, we obtain the level of signal bandwidth limitation that each separator shows. These

bandwidth limitations are presented in the form of a lower bound on the depth of cancellation

as a function of both signals' bandwidths and system delays. The results obtained in this

research are summarized in Tables 1-4 of Appendix A.

Based on these results, a practical example from a typical 14-18 GHz microwave circuitry

shows that in the design of a B/F power-correlation separator, one can obtain as much as

20dB input-output improvement in the signal-to-interference ratio (in corresponding to a

40dB signal-to-interference ratio at the output when the input cross-pol ratio Ja121 = 1a2 d "

0.1 or 20dB), when the signals' bandwidths are of the order of 500 MHz. On the other hand.

with the same assumption regarding the accuracy of the delay timing, we can achieve almost

"34dB improvement (54dB output signal-to-interference ratio), if the signal's bandwidths are

only 100 MHz.

The B/B power-power scheme can handle only a small bandwidth. In fact, the power-
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power scheme might be applied with reasonable success in lower frequency low bandwidth

applications. For example, if the frequency band is in the 4-6 GHz range then the delays are

of the order of 1 ns. so that 20dB input-output improvement in signal-to-interference can be

accomplished with approximately 8 MHz. If the cancellation is performed in the 70 MHz IF

frequency then the ir/4 wavelength delay needed for the in-phase-quadrature weighting will

restrict the delays to greater than 3.5 ns. If we assume delays of 5 ns, the bandwidth will

be limited to approximately 2 MHz. Notice, however, that the power-power scheme requires

much simple hardware than the other two schemes, so that the hardware complexity band-

width trade-off is exhibited.

2.1.2 Stability Consideration

In every control system, adaptive or non-adaptive, one is always concerned in finding

whether the steady state optimal weight solution is stable or unstable. For a linear dynamic

system this is done by examing the eigenvalue of the corresponding weight control equation.

It is of interest to examine and classify the steady state point of the three structures proposed

in [1 of Appendix A]. However, since the control equations for the bootstrapped algorithms

are highly nonlinear they require special attention. This is done in Appendix B of this report.

For each of the structures, we first derive the steady state equilibrium points for the no

noise case. These are respectively;

1. The Backward/Backward, Power-power Scheme

a12 A a21 A
W1 2optl - -r 1  W21optl - a -r (3)

a22 all

all a 1 a22 aand W12opt2 - =---- -- w21opt2 = -- =: _-- (4)
a 2 1  r2 a 1 2  r 1

2. The Forward/Forward, Correlator-Correlator Scheme

a12 A a 21 A
W1 2optl -- -= -rI W2 1optl -- r2 (5)

a 22  all
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all a a22A 1
and W12opt2 == - W21opt2 -- = - (6)

a 21  r 2  a 12  rI

3. The Forward/Backward, Power-Correlator Scheme ( assuming 2L #2 );

a 1 2  a 21
Wopl=-all --- =-r2  (7)

a22( ) W2 opt all
a1 l a2 2

and;
a l l  a 22  1

W12 opt2 =2- -22 ap - =- (8)
a 2 1(1 a) a12 r-

a21a12

The stability parameters are found by linearizing the control equation around the equi-

librium point of equations (3) to (8). This linearization process leads to a matrix differential

equation of the form

X = AAw (9)

where Aw = [A•w1 2 ,Aw 2 1]T and

X = [OXi(wI 2 + Aw 1 2, w21 + Awu21 ) 1X 2(w1 2 + AW1 2, w21 + .w2)]r
X- aW12 aW21

(10)

where a2X I 02X
a2 Iopt1-- 12  pt aW1 2 aW2 1 opt

A= (11)
192,12 0 2 X21

.51opt 2 Iopt3w 124W 21 opt 0wu21  p

The functions Xl(., -) and X2(-, .) are different for each structure. They represent the de-

riving term for the weights' recursive equations and depend on the criterion used. Therefore

(9) describes the change in time of the weights deriving terms from an initial Aw_ away from

7



the optimal weights. If for example the eigenvalue of A are all negative, the weight deriving

terms X(., .) and X 2(., .) will decrease to zero and, hence, to the steady state point. etc.

The stability of equilibrium points depend on the eigenvalues of matrix A. Considering

the characteristics equation of the matrix A from JAI - Al = 0, we can find the eigenvalues

of A by solving

A2 - bA + c = 0 (12)

where

a2xl 2 X2
b = OW2 Wopt 49W opt (13)

C i2 X11 2 X2 a2 02X
c = - opt aw 2 1W opt 1Wopt 0W120W21 Wopt' (14)

The nature of the eigenvalues of A in the complex plane, or equivalently the relation

between b and c defined in (13) and (14) determines the classification of the equilibrium

point.

After finding the matrix A for each of the three structures and for both equilibrium points

of equations (3) to (8), we determine the condition for the stability of each structure. For

the symmetric power-power and correlation-correlation, it was found that Wjopt (Eq. (3) and

(5)) are stable provided that the step size p is positive and the effects of the discriminators

are such that

621612 > 611622 (15)

That is, the discriminator always favors different signals at different outputs. Under the

same conditions, the other equilibrium point wlopt is an unstable saddle point.

For the power-correlator scheme, a stable wlopt occurs if beside the condition in (15).

the effect of the second discriminator is such that it is more pronounced than the cross-pol
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power;
621 _E{II2(n)} (a12 ) 16- (16)
622 E= {I?(n)}k all"

2.1.3 Dynamic Studies

With any adaptive algorithm, one first tries to define the performance criterion that the

algorithm would seek to optimize, by finding the control weights which give the optimal

performance. However, in a real time variable environment condition, the designer must

devise a suitable algorithm which recursively would try to reach the steady state optimal

weight values. For the bootstrapped algorithms, recursive procedures were suggested to

simultaneously control the two weights. They require the knowledge of the gradient of the

output power (when minimum power criterion is used) or the gradient of the square of

correlation between outputs (when minimum correlation is sought). Instead. one may use an

estimate of the gradient. Such possible estimation is the sample value of the gradient. Also a

direct real-time measurement of a gradient of a random variable is difficult if not impossible.

particularly if this is performed with signals of very high frequencies as in communication

applications.

Without direct measurement, we present in this report two techniques for reaching the

optimal weights with a recursive weight-updating procedure using estimates of the gradients.

With the first technique, the estimates of the gradient are obtained by applying two orthog-

onal perturbation sequences to the two weights simultaneously. With the other technique.

the weights are dithered with PN sequences. These are described next.

2.1.3.1 Dynamic Study of B/B Power-Power Scheme Using Orthogonal

Perturbation Sequences

Figure (4) presents a Backward/Backward, power-power scheme of a cross-pol interfer-

enre canceler controlled by orthogonal perturbation sequences. Two such sequences pi(n)

and p2(n) with an amplitude A (taken to be sufficiently small) are added to the current

9



weight w12 (i) and w21(i). The two outputs are then multiplied respectively by pl(n) and

p2(n). The results give a measure of the corresponding change of the output powers.

In Appendix C of this report, we analyze the control structure of Figure (4). We show

that the estimate of the gradient obtained with the perturbation method, converges in the

mean to the actual gradient and, hence, the weights converge in the mean to the optimal

weight. This is shown by examing the dynamic behavior of the error between the estimated

weight and its desired optimal value. The condition for such convergence is also stated.

2.1.3.2 Dynamic Study of B/F Power-Correlator Scheme Using Weight Dithering

with PN Sequences

Figure (5) presents a Backward/Forward, power-correlator bootstrap separator with

weight dither control. A PN sequence is added to the weight wc. The output power of

y1(t) is multiplied after eliminating the DC component by the PN sequence. A low pass

filter smoothed the control signal before it was added recursively to the previous weight

value.

In Appendix D of this report we analyze this dither control structure. Since a possible

candidate for such scheme is a microwave dual channel separator, we prefer to use the analog

presentation of signal instead of the discrete one. Therefore, we examine the change in the

weights versus time instead of checking convergence of the recursive equations. We found

that under certain conditions which relate signals' power, system gain and dither magnitude

the dither control results in weight steady state value that gives signal separation. However.

depending on the magnitude of the dither, some small interference residue is retained. This

sensitivity of the quality of separation to power of dither and other systems is also studied.

10



2.2 Bootstrapped Algorithms - Wideband Signal Separators

In [11, we performed some preliminary study in applying the bootstrapped algorithms to

wideband signals. There, we suggested structure whose controlled elements are delays in-

stead of complex weights or digital filters. Two applications of the wideband structures are

considered in Appendices E and F of this report.

Figure (6) describes the scenario where two wideband sources are received by an array

of two sensors. The outputs of the two sensors are:

zi(t) = sl(t - D1 ) + s2(t - D2 ) + el(t)

z2(t) = s 1(t-+-D1 )+s 2(t+D 2 )+e 2(t) (17)

where si(t) and s2(t) are the signals radiated from the 1st and 2nd sources respectively. el(t)

and e2(t) are the additive noise processes in each of the sensors and Di is given by.

d
Di = d sinOi i = 1,2 (18)

2c

d is the distance between the sensors, c is the propagation velocity and Oi , i = 1.2 is the

bearing of the ith source. We assume that the random signals sI(t), s2(t), el(t) and e2(t)

are mutually statistically uncorrelated.

In fact, the model described above is applicable to many communication and signal pro-

cessing problems which can be put in three groups: bearing estimation (source localization).

source separation, and interference cancellation.

"* For bearing estimation (source localization) one is interested in b 1 and b 2 and not in

the signal estimates 91(t) and 9 2(t). In this application, particularly in active radar or

sonar, much is known about sl(t) and s 2(t).

"* For source separation, the objective is to get the cleanest possible version of .51(t) and

s 2(t), while D1 and D2 are nuisance parameters. Indeed, in some cases there is some

11



prior knowledge about 01 and 02 which can be used to restrict the possible values of

D1 and D2.

9 For interference cancellation, the objective is to get a clean replica of one of the signals,

say sl(t) while the other signal, as well as D, and D2 are nuisance parameters which.

in some applications, are partially known.

In Appendix E of this report we present adaptive systems which receive zl(t) and z2 (t)

at the input, deliver as output signals y1(t) = SI(t) and y2(t) = . 2 (t), and simultaneously

provide the estimates of D1 and D2 from which the bearings of the two signals 01 and 02 can

be derived. However, in order to enable separation, some information (statistical or physical)

about the signals si(t) and s2(t) is required. This information will be utilized in the design

of the control loop. It enables initiation of the separation procedure. If further information

is available (such as knowledge, for example, of one of the two bearings) the same algorithm,

which then bootstraps itself, will result in performance improvement.

Two different configurations of the delay control bootstrapped separation algorithm are

given in Figure (7); for the Backward/Backward and Forward/Forward structures. They

are examined using small-error analysis of the outputs spectra. It is shown that while both

configurations are able to perform simultaneous source separation and delay estimation (and

hence direction-of-arrival), they exhibit several differences.

1. In the ideal situation, i.e.. when kpl = "i - Di =, (-ri is the controlled delays) is zero for

i=1,2. The BB configuration provides undistorted versions of the signal waveforms.

while the FF configuration decouples the signals but provides, at the outputs. a filtered

version of them. Therefore, if an exact replica of the source signal is needed. the BB

configuration is to be preferred.

2. In the presence of additive noise, the FF configuration provides better estimates of
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the unknown source directions (the delays) than the BB configuration. Thus, the FF

structure is better for direction of arrival (DOA) estimation.

3. The BB configuration exhibits difficulties in the presence of noise when applied at

baseband.

In comparison to narrowband separators, we conclude the following:

1. The F/B configuration can only be implemented in the narrowband case.

2. Unlike the narrowband, when the B/B separator is used in the broadband case. decor-

relation cannot be replaced by minimization of the output powers.

3. If the signals are only known to be uncorrelated and have the same spectrum, then, as

in the narrowband case, a discriminator is needed to achieve separation. If. however.

their spectrum K. known to be different, then such a discriminator is unnecessary.

In Appendix F of this report we present a noval approach for rejecting a broadband

interference from unknown direction when received by an array of two sensors. Two config-

urations of such an approach are presented. Both perform perfect interference cancellation

when the input signal-to-noise ratio (SNR) is large enough, and do it much faster than LMS

canceler. However, additive noise causes performance degradation to both. It is shown that

no general claim can be made about the superiority of one configuration with respect to

the other. The output signal to interference-plus-noise ratio (SNIR) depends on the spatial

separation between the interference and the desired signal, as well as on the interference-to-

noise ratio (INR), in a different manner for both configurations. This appendix also contain

guidelines for the choice of one or the other configuration in different scenario.
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2.3 Bootstrapped Algorithms - Multi-Input, Multi-Output

Separators

In many applications such as in neural networks and signal separation in multi channel

CDMA, there is a need for multi-input,multi-output separators. Extension of the two-

input/two-output separators was suggested and its performance was examined in [1 of Ap-

pendices E & F]. However, emphasis was put on nondispersive channel. In Appendix G of

this report, we studied the performance of the backward/forward structure when it separates

multi-signal composites in a multi-channel dispersive environment.

2.4 Bootstrapped Algorithm - Other Applications

Beside the application of the bootstrapped algorithm to cross-pol cancellation which was

considered in [1] and in this report, initial work was performed in this phase of research in

two important applications, blind equalization and spread-spectrum multi-signals separation.

The first is important particularly in time division multiple access (TDMA) and the other

in code division multiple access (CDMA) communications.

Decision feedback is generally preferred to other equalization methods. as it can com-

pensate amplitude distortion with minimal noise enhancement. This structure is therefore

used in our research. Decorrelation of the equalizer output is taken as performance criterion.

As such this is a noval way of equalization which demonstrate many advantages (see Figure

(8)).

In Appendix H, we show that this blind equalizer converges to correct equilibrium despite

error propagation. It is also shown, using simulation, that the algorithm converges to the

right equilibrium regardless of the initial condition, and, hence it is globally convergent.

In Appendix I of this report we included the results of research within adaptive scheme

which separates two CDMA signals (see Figure (9)). Although it does not show bootstrap-

ping phenomenon, it is rather different from the other canceler schemes in that it contains
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decisions in the cancellation path. This study would be used in the future as a reference for

comparison with the bootstrapped scheme for CDMA signal separators.

III. CONCLUSIONS AND RECOMMENDATIONS

In the period of this report we continue to analyze and evaluate performance of the boot-

strapped algorithms. As in the previous year's work, reported in [1]. we considered the

three different structures, the B/B, the F/F and the B/F. It was then concluded tnat the

algorithms result in signal separations. Also noted that unlike other algorithms, the speed

of convergence does not depend on the signals' power ratios and hence does not depend on

the eigenvalue spread of the input correlation matrix. Furthermore. the algorithms do not

require supervisory reference and, hence, deserve to be named blind signal separator.

In this research, we first considered the question of bandwidth each of the three structures

can tolerate. It was found that both the F/F and the B/F can be made reasonably wideband

if it is used at microwave or higher band. The B/B is quite limited in bandwidth. The

former structure require correlator in its implementation while the later require only power

measurement. hence, we concluded on complexity - bandwidth trade-off.

The question of stability was also addressed. Linearization around the steady state point

led us to conclude that values of optimal weights which result in signal separation are stable

points.

Two schemes of real-time control of the weights were proposed. one uses orthogonal

perturbation sequences and the other weight dithering with PN sequences. Both showed

satisfactory results in that the weights converge in-the-mean to their optimal values.

Using delay control for wideband application, we show that the algorithms could perform

simultaneous spatial separation of wideband signal while estimating their direction of arrival.

It was also shown that delay controlled bootstrapped structure can successfully be used to

cancel wideband interferences.
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In the extension to multi-input/multi-output, we show that the algorithms can be used

also to handle dispersive environment.

Finally we note that the previous research dealt mainly with dual channel cross-pol in-

terference. This report contains some results related to the problem of blind equalization of

digital data. It also contains an adaptive canceler for CDMA, which would become basis for

comparison in future research when the bootstrapped algorithm is used.

The work carried out led us to make number of recommendations for further

study.

a. Adaptive Algorithms - Impletementation

We suggest further study of the theoretical and practical aspect of implementing the

bootstrapped algorithms. In particular,

"* Suggest specific control strategies to adjust the weights/time delays of the bootstrapped

algorithm for the two-input/two-output configuration.

"* Study convergence properties of the algorithm for the multi-input/multi-output case.

Specifically, we will determine the feasibility of using dithering of the weights to improve

convergence and enable time-multiplexing of control hardware.

"* Continue to investigate the link between eigenvalue spread and performance of the

bootstrapped algorithms.

b. Application to Signal Separation in Satellite Communication

"* Further examine the possibility of cross-pol cancellation in satellite communication

channels. Extend the current results obtained with M-ary QAM dual polarized signal

to other possible modulation schemes.

"* Develop the algorithm for handling signals such as frequency hoppers.
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e Examine the effect of multipath of signal separation performance.

* Improve the quality of separation of code division multiplexed signals.

c. Adaptive Blind Equalizer

Bootstrapped algorithms in particular the minimum correlation schemes, are good can-

didates for blind equalizer, therefore, we propose

"* Investigate the application of the bootstrapped algorithms to the blind decision feed-

back equalizer.

"* Study the performance of such a scheme and compare it with the performance of the

blind feed forward equalizer and the regular (non-blind) decision feedback equalizer.

"* Examine convergence property of the algorithms.

"* Examine ill convergence of the algorithm, and the conditions for false lock.

d. Application of Neural Networks

The bootstrapped algorithms can be applied as a new leaning paradigm and topological

structure for designing a new class of neural networks. This new class of neural networks has

the potential to revolutionize and improve various existing applications in the field of neural

networks. Fast convergence, the self-organizing property, and reference signals which are no

longer required, are among the major advantages that should be verified and investigated.

In particular, we propose

* Map the bootstrapped algorithm onto a neural network framework. The resulting

network, which belong to the class of recurrent self-organizing neural networks, will be

referred to as the generalized.
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"* Demonstrate supremacy of the bootstrapped network in terms of performance, conver-

gence and stability of the network will not only be demonstrated through simulations

but we will attempt to prove it analytically as well.

"* Explore potential applications including channel equalization, separation of superim-

posed signals, pattern recognition and prediction.

e. Demonstration Modules for Signal Processing Workstation It is important to

try and build software modules for each of the applications suggested. It is proposed to use

COMDISCO Signal Processing Workstation (SPW) version 3.0. for these modules.
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APPENDIX A

BOOTSTRAPPED ADAPTIVE SEPARATION OF TWO

SUPERIMPOSED SIGNALS -

BANDWIDTH COMPLEXITY TRADE-OFF

by

Yeheskel Bar-Ness

I. INTRODUCTION

Three different bootstrapped systems were introduced in [1] for the purpose of cross-

polarization (cross-pol) interference cancelation and signal separation. They differ by the

criterion used to determine the performance index for realizing the optimum weight, gain and

phase for each canceler module (e.g., minimization of each of the interfering signal powers

at the output separately or the correlation between the two different outputs). The three

systems: power-power, correlation-power and correlation-correlation cancelers are shown in

Figures 1-3. A detailed steady state analysis of these separators is included in [2]. It was

shown in [2] that each of these cancelation arrangements results in a power separation (a

highly desired signal-to-interfering signal ratio at both output ports).

Since there is no need for a supervisory reference signal in the form of a training sequence.

decision feedback, etc., these separators are in the category of blind separators. Comparing

the steady state performance for the three systems showed that the symmetric power-power

and correlation-correlation systems have identical output signals and signal-to-interference

ratios, while the asymmetric power-correlation system has slightly different output signals

and signal-to-interference ratios at one of its output ports. Nevertheless, they are all equiva-

lent in that the desired signal separation is ideal provided certain conditions or assumptions

are valid; specifically, when the effects of added noise, quantization error, and nonzero circuit

delay are assumed to be negligible.

29



Since the introduction of the bootstrapped idea for signal separation (power-power) in

[3], the three different bootstrapped scheme has been proposed and implemented for dif-

ferent applications. In particular, the power-correlation scheme was used in dual channel

downlink cross-pol canceler operating over the COMSTAR satellite system [1]. Later, the

same scheme was included in the design of the cross-pol canceler for dual-channel terrestrial

u., microwave radio communication [4]. The power-power scheme, on the other hand,

was proposed for tactical communications application in [5]. Other references related to

the performance of the bootstrapped signal separator (interference cancelation) including

extension to the multi-signals case are contained in [61-[9].

Independently during the mid-eighties, a group of European researchers addressed the

separation problem, in particular, for neural networks applications (see [10] for reference to

these works). Recently, a third group of signal processing researchers applied a similar idea

to speech signal separation [11].

Examination of Figures 1-3 illustrate that the three configurations require different levels

of hardware complexity. The correlation-correlation scheme is expected to be the most

complex since it requires correlators with zero offset, while the power-power scheme is the

least complex. Also the three canceler systems have different signals' paths through the

individual circuits and thus, when they are applied for separation of dually polarized signals.

directly at microwave frequencies [1] or high I.F. frequencies as in dual polarized microwave

terrestrial links [41, different system delays are expected.

The purpose of this paper is to examine the effect of these delay differences on the

performance of each of the different cross-pol separator configurations. In particular. any

bandwidth limitation due to these different delays is analyzed and discussed.

In the next three sections of this paper, we consider, respectively, the power-power. the

power-correlator and correlator-correlator schemes. In each section we study the effect of

these delays on output powers. Power ratios are considered next. In particular, the lower
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bound on system bandwidth is estimated and used to calculate the bounds on input-output

improvement in signal-to-interference ratios. Assuming uniform input signal spectra, the

actual system bandwidth and the improvement signal-to-noise ratios are calculated. Finally.

in section V the results are summarized and compared. Numerical examples are depicted

to show the suitability of the different schemes to different applications. It is important to

emphasis that in our analysis we will use the assumption that delays are quite small relative

to the signals' correlation times.

II. THE POWER-POWER SCHEME

Figure 1 depicts the separator structure termed power-power. That is. the corresponding

separator weights are chosen to minimize the powers at the two outputs respectively. In this

section, we will examine the effect of system delays on the optimal weights. on the outputs'

power and ratios and finally conclude with the level of bandwidth limitation as a result of

these delays.

2.1 Effect of System Delays on the Optimal weights

Directly from Figure 1, we can write

vp(t) = s(t - nr) + bn(t - r1) + )cs(t - -- 2) + 3n(t - 27,- - 2)

+ai3vp(t - 27, - 2r 2 ) (1)

where we used, uV(t) = s(t) + bn(t),v 2(t) = cs(t) + n(t) as the two inputs (in complex

notation), b and c are complex valued with 1bJ2 and icd2 as the input interference coupling

ratios. 71 and r2 represent the path delays as they are depicted in Figure I. a and 3 are

the complex weights controlled by the two processors. The signal s(t) and n(t) are assumed

to be zero-mean uncorrelated stationary complex processes. In cross-pol signals separation
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applications I b I and I c I are much smaller than one. Using (1) we can easily find

Ivp(t) - a~vp(t - 2ri - 2-r2 )12 = (1 + IatI 2)p - 2Rea1[a.]RP,(2ri + 2r 2 )

= (1 + ICl 2)131 2 + 2Real[/3c]R.(,, + r2)

(Jb1 2 + 1#12)I2 + 2Real[Ijb]R,(rT + r2) (2)

where the overbar stands for the expected value and &,(r), R.(r) andR,(r) are the auto-

correlation function of the output stochastic processes u(t), the signal s(t) and the signal

n(t), respectively and P = I VP(t) 12.

Equation (2) can be rearranged to become,

Ii - aI2p + 2Rea1[ac](P- &,(2T1 - 2r 2 ))

= I1 + 3c121S-12- 2Rea1[3c](JS2- R,(r, + r2))

+ I'd + b121n12 - 2Real[VbI(Irs12 - R,,(ri + r2)). (3)

Notice that when r, = r2 = 0 (ideal case) then

e 1 1 +,3C12SI + 10 + bJ2Jn2-(4I13Ii+I+I ~ 2  i (4)

The same equation was obtained in [2]. There, we showed that optimal weight, 3 = -b

and perfect cancelation of the n signal results. However, for ri and r2 # 0. if we assume

Jai << 1 and 131 << 11 then the second term on the left hand side of (3) can be neglected.

For the same reason the second term on the right hand side might be neglected, particularly

if r7 + 72 is sufficiently small, leaving

I1 + 3cJ12•' + 1I + bI2"InI- 2Real([b']( (,,(r, + r 2 ))

where

A,(r) =-In'- &(r) (6)

'Such assumption on I a I and I 3 I is reasonable in cross-pol applications where in I b I and I c 1<< I and
when the weights are close to their optimal weight
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and the asterisk denotes complex conjugate.

To find the optimal value of the weight 0 we equate to zero the derivative 2 of the output

power after processing by the discriminator; PI, with respect to 0:

8OP_ 2(1 - aO)[(1 + F3 c)(a + c)'6. 1 s{--+ (b + $)*(1 + ad)6,1 Il - (b+ a'3b') A(\,(r1 + )]
08 11 - a014

(7)

where bI and 6,, depict the effect of the discrimination network at output P and the

derivative of a real function P with respect to a complex variable 3 is defined by dP/d3 =

aP/8 /3 R + jOP/83t, OjR and ý3t are the real and imaginary part of 3 and j = fT.
From OPOO/8 = 0 we get after certain manipulation

(a + c)"6,1t19 2 + b(1 + ab)*6.1tnIJ - b6,,1(lnJI - R,(r, + r2 ))

c(a + c)o6,1 s12 + (1 + ab)'6, 1 I-Jn - a&b*6,, 1(JnJ - R,,(r1 + r 2 ))

(a + c)" I.tls-- + bbnl(R,(r 1 + r2) + ab°5l InJI/)
c(a + c)*6.1Jsl + &,51n 2 + abbn6IR.(rl + 72 )

Notice that in contrast to the ideal case we cannot easily conclude that perfect cancelation

of the n signal take place.

Using similar steps we obtain, for the output at the other port,

__ n- + aIc+ 121312- 2Real[ac](A,(7r + r2))
Q i -a312  

%9)

where

A.(r) = •;2- R.(i) (10)

When 7, = r2 = 0 (ideal case) then

Q = 11 + c1 2 n + Ic+a12 112 (11)11 - a012tl

21n obtaining the complex derivative of a real function A = id+e6l 2 with respect to the complex variable
6 we used the simple general rule dAld6 = 2e*(d+ e6)
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From equating to zero the derivative of the output power after processing by the second

discriminator, Q, we have

(b + 3)6.2 jnj2 + c(1 + c/3).2j1I1 - c6 82(Is12 - R,(r1 + r2))
alop -- b(b +/3)6b.2lnl 2 + (I + cO3)*6, 2 jsl - cOýO6b2(Ust2 - R,(r1 + r2))

(b + O3)6. 2jn(2 + c6.2(R,(ri + r2 ) + c 3*b, 21S) (12)
b(b + /3)6z2 n-2 + 6,21s'2 + c/3"5, 2R,(r1 + r 2 )

where &2 and b,2 show the effect of the discriminator at output Q.

We notice in (8) and (12) that aop and 3o, depends on r, +r 2. To examine this dependency.

we define

/3op = 13o+E1  (13)

alp = a,+E2 (14)

where 00 and ao are the corresponding optimal weight when r1 = T2 = 0. It is easily

noticeable from (8) and (12) that /3o = -b and al = -c. In which case a perfect cancelation

of the interferences at both ports is obtained. Also, it was demonstrated in [21 that these

values will be attainable by the system if a search algorithm is used. and appropriate signals*

discrimination networks are implemented.

Using (13) and (14) will result in a set of nonlinear equation in f, and e2, which become

linear if we neglect certain second order terms. Using the smallness condition on c and b.

and the fact that r1 + -r2 are quite small relative to signals' correlation times (but not zero).

we finally find in Appendix A-1 the approximate solution for these linear equations. namely

b(1 + bc)-5 1 - c-(l + bc)b,1 (A8 (rt + r2 )/A,,(r 1 + r 2))

q = (1 -cb)(p/5, 2)jn•2/A',(r1 +Tr 2 ) (15)

c(1 + bc)*b8 2 - b'(1 + bc)b,62 (A.(r, + r2 )/A\(7 1 + r2)) (16)
S-(1 -- Cb)(p/•b.)jSI2 /,A(rT + T2)

where

=/34 - 6312 (17)
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It is obviously assumed that p 6 0. Notice -hat in Lne case where =r = 0. A, (r, +r 2 ) =

An(r, +r2) = 0 and hence F- = 0 and e2 = 0 is the unique solution for the linearized equation

in f and E2. This solution corresponds to the perfect cancelation case.

2.2 Effect of System Delays on Outputs' Powers and Ratios

Thus far we have considered the effect of the system delays on the optimal weights. To

find the effect of this delay on the power outputs and the outputs power ratio and therefore

on the depth of cancelation, we first notice from (5) together with (13) that the power of

the s-signal.

II - cb6211 + cEl/(1 - cb)I 2Isr2

11 - a312

Using (15) and the fact that I c 1<< I and I b 1<< 1 one can show that ce1/(1 - cb) can be

neglected leaving

P, ISi-' (18)

From (5) the power of the n-signal is given by,

Pn= 1 + bl'fnP - 2Real[Ab']An(r, + r2)

1 + bIfl-b + 21b 2An (rl + 72 ) (19)

In the last step we applied the results established in Appendix (A-2) namely: Realf3b'] :_

-1bl 2. Using 3 + b = f- and (15) for e1 into the corresponding terms of (5) we end up with

S 1 b(1 + bc)r6i 1 - c'(1 + bc)b,6(A,/A,) 2 21bJ2Pn•=!-~l[Il + (n•.•n~ 20)
11-a312  (1 - bC)*(P/b52)jnj 2/A. '' t'-)

Also, in the interest of brevity and when it is clearly understood we sometimes drop the

dependence of the A's on the delay rl +r 2 . Notice that the first term of (20) depends inversely

on (jnj2/An) 2 while the second one depends inversely on (Inl 2 /An). From the discussion in

Appendix (A-3), we conclude that for almost all values of Ini2/A,•, (20) is dominated by the

second term of its left hand side.
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The s-signal to n-signal power ratio is obtained form (18) and (20) with the aforemen-

tioned conclusion,
11 - bcI'lIln/A.(r, + T2)(_./P 21bJ2 IS 12/In 12. (21)

But 11 - bc12 - I and if ITS2/Hnl 2  1 1 then

(Ps/P.)dB = (InI'"/A,((Ti + T2))dB - 3 dB - Ibi~ (22)

That is, the input-output improvement in the s-signal to the n-signal is upper-bounded by

10 log [(1/2)1n12/An(-r + T2)].
Because of symmetry we conclude easily, by using (8) for the Q port, that

1 - bct (23)

1 CO"+ bC)6 2  b(1 + bC)-- 2(An/A,) 2 C12
Q. a/312 [1 (1- Cb)s(p/6,. 1 )ISI2/A, Si2 + - tS1A 57 2)

Using the same previous argument, we end up with

Qn1Q.cI 2 /A.(-ri +r 2 ) [TI _ýTJ- (25)
21C12

Also since 11 - bcI2 - 1 and if 1n12/Is`2 = 1 then

(Q./Q.)dB = (IS1 2/A.(-r" + 72))dB - 3 dB - IcdB (26)

That is an input-output improvement of 101og(1/2)lsI 2 /A,(ri + r2 ) in the n-signal to the

s-signal power ratio. Clearly when r, = r2 = 0 (no delay) we have an infinitely large im-

provement which corresponds to the ideal perfect cancelation.

2.3 Bandwidth Limitation

Most of signals communicated via dual polarization are of very wideband nature. There-

fore it is very important for these applications to estimate the separator bandwidth. To
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obtain the system bandwidth limitation, we first notice using Taylor series expansion that.

for example:

A,(rT + 72)= In-' - R.(0) - (Ti + 'r2) R. (0) - (1/2)(rl + -r2)2 R. (0) -... (27)

where the dots stand for the derivatives with respect to rl + r2. The autocorrelation function

is an even function so that R1, (0) equal zero. Also Rn(0) = In"-, and (27) reduces to

A,,(r 1 + r2) = -(1/2)(r7 + r2)2 Rn (0). (28)

Using the Wiener-Khintchin, eiation [111 we get

A,,, (-ri + r2) 1 (/2)(ri + r2)2L [S,(f)ej2",rT df

(Ti + 7.)2 rV4
- 2 W" (27rf)2 S',(f)df (29)

where Sn(f) represents the two-sided spectral density of the n signal process and TV, is the

bandwidth (without loss of generality the signals are assumed at baseband). Using (29),

A•(i- 1 + r2) can be upper-bounded as follows:

A, ) ( ( + )2 (27rW,,')2 JS(f)df

(Ti1 +• 7.2)2(W)2 30)(r 2 7r W ) 2 T"• . (30)
2

On the other hand, if the signal spectral density is approximately uniform in (-VV,, IVFI)

then, Sn(f) = jnj2/2Wn. Substituting this value of S,,(f) in (29), we obtain

A~r+r) (7- + 72)2 Jn2 rn 2VAn2 I+-2 _w(27rf) df

(,rl + 7r2) 2 (9w)2(31)
(7rVn2 nF (31)

6

Substituting (30) in (21) we get

P. / > II -bc + 2)1.1) (32)
P/ P1"27rw(71 + -r2)
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and for the uniform spectral density signals we obtain

(p/p) 311 - bcl 2  1 ]2 (-3

=I ) Ibi2  [21rW.(rj + r2 )] 'S /''I'2). (33)

Clearly in order to minimize the effect of the systems' delays on the performance, we
I

must require r, + r2 << 1

27r Wn
Similar argument leads, for the other output, to

SI1- t• 1 2;](-/•

Q >/Q, >_n l [2W(r+ (34)

for a signal s(t) having any form of spectral density limited to a bandwidth WV. If s(t) has

approximately uniform spectral density then

(Q.IQa)U -bcl[ 12-w.(s-+ (35)
IC12  2~rW 3(,r1 + r 2)]HI)

Equations (32) and (34) might be written as

A PS/P,, Ii - bcI2
f =6 P. ./i ln -i > 1 _bC2(36)

' 1SI 2/1bI 2Tn12 - (27rWn(-r + r2))2

Q ___/Q_ I1 - bc12

nl--•/icl�l2S-2 - (2irW 5 ('r1 + r2))2 (37)

where yt and yq represent the input-output improvement in signal-to-interference ratio at P

port and Q port respectively. For signals having uniform spectral density we have

311 - bc12  (38)
7 p" = [27rW.(nr + r2)]2

311 - bc12  (39)
%" - [2rW.(r, + r 2 )]2 "

As an example, let I1 - bcl = 1, W, "- W, = 100Mhz. Then, for an improvement of

at least 20dB (corresponding to the 40dB signal-to-interference ratio at the output when

I b- Icl - 0.1), r1 + r2 must be less than 0.16 nanosecond.
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When the signals' spectral densities are approximately uniform, then r1 + r2 must be less

than 0.27 nanosecond. These values of delay are obviously difficult to accomplish. On the

other hand, if r, + r2 •- 12 nanoseconds (values which are practically reasonable) then W,

would have to be less than 1.3 MHz or about 2.25 MHz if the signals' spectral densities are

known to be approximately uniform.

III. THE POWER-CORRELATION SCHEME

Figure 2 depicts the separator structure termed power-correlation. That is, the corre-

sponding separator weights are chosen to minimize the power at one output and the corre-

lation between the two outputs. This section will follow the same steps performed for the

power-power scheme in the previous section.

3.1 Effect of System Delays on the Optimal Weights

From Figure 2 we can write

v,(t) = s(t - rl) + bn(t -rl) + 3cs(t - r2 - 71 /2) + 3n(t - 7, - 71/2)

+ac3s(t - 2r 2 ) + afibn(t - 2r 2 ). (40)

Using the definition of P we obtain after rearranging terms,

P = Ivp(t)I 2 = I + ,3(a + c)lV 12 - 2Real[3c(js 2 - R,(71/2 - 72)) (41)

-2Rea1[a3](js-- - R,(r1 - 2r 2 )) - 2I112 Real[cof'](S - R,(r 1 /2 - 72))

+Ib + 0(1 + ab)12iZ1'2 - 2Rea1[/3b'(In12 - R, (7 1 /2 - 72))

-21b12 Real[ai31(TnI2- R,(r1 - 2r2)) - 23p12 ReaI[ad3(jn - R,(7 1 /2 - 72)).

For r7 = r2 = 0 (ideal case) we get

P = 11 + 3(a + c)I2 s-F + lb+ 3(1 + ab)12 -J (42)
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in agreement with the result of [2]. However, if we assume that Ibi and Ici are much smaller

than unity, as is the case for signal mixtures obtained from depolarization of dually polarized

signals, and Jai and 1,31 are constrained to a value which is very small compared to unity, the

second, third, and fourth terms of the left hand side of (41) can be neglected in comparison

to the first term, particularly if ri - 2r 2 is sufficiently small, leaving

P = Ii + /(a + c)lhs-p + lb+ 1(1 + ab)I'Ini2- 2Real[/b1](ln• 2
- R&(r/2 - 72))

- 2lbI2Real[a/3](1n12 - Rn(r, - 2r2)) - 210 12Rea1[ab](lJ-2- Rn(r 1 /2 - 72)). (43)

To find the optimal value of the weight 3 we equate to zero the derivative of the power

of this output after processing by the discriminator; Pi, with respect to 3

api
i (a + c).,IS12 +0 I a + c 12 6s,1812 + o11 + 2b l . 1I• + b(1 + ab)*-bnIn 2

-2bbnl(lnl - Rn,(r 1/2 - r2 )) - 2Jbl2•aOb 1 (ln12 - Rn(7 1 - 2r 2 ))

-4$Real[ab]6,,(Jn 12 - R,,(dn/2 - T"2)) (44)

where 6,1 and b,, are the effects of the discriminator on signal s and signal n. respectively.

From 8P,/10 = 0 we obtain

- - b(1 + ab)*bijn'2 + (a + c)*b,,ISJ2 - 2b•, 1 (A(,(rj/2 - r 2 )) - 21b12a 6a((A,(7-1 - 2r 2 ))
1I + abJ26,bnlni 2 + Ia + c126 ,11sI2 - 4Real[ab]6,bi(An(ri/2 - r 2 ))

b(1 + ab) 6biJnj2 + (a + c)rb,6I 1Tj - 2b(1 + 2ab)"bn1(A,,(ri/2 - r 2 ))

11 + abj26,binl 2 + Ia + c12baIs1 - 4Rea1[ab]bn1(An(ri/2 - r2)) (45)

where we approximated In"' - R,(ri - 2r 2 ) by 2(InJ2- R,(r 1 /2 - r2)).

For the Q port we notice that

vq(t) a=s(t -T2 -r1 /2) + abn(t - 72 - -rl/2) + cs(t - r.) + n(t - 71 ) (46)
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and

Q = IV.(t)12 = ICa + c121s12 - 2Real[ac']A,(-ri/2 - r2)

+11 + ablC2ln 2 - 2ReaI[ab]A,,,(ri/2 - r2). (47)

When r = r2= 0 (ideal case) then

Q = ja + clFFs+ 11 + blj 2  (48)

is in agreement with the results in [2]. However, under the regular smallness condition

assumed previously, we can neglect the last term in (47), particularly if ri/2- T2 is sufficiently

small, leaving

Q = ja + c12 S- - 2Real[ac]jA,(rj/2 - r2 ) + 11 + abl2T'- (49)

Also, from Figure 2

Q2 = 2vqi(t)v;(t)j = Al12  (50)

v., contains the effect of the discriminator at output 2.

Where using (40) and (46) we find in Appendix A-4, (P-12):

A = (a + c)6,21s'' - a6, 2A,(ir 1/2 - r2 ) + 3"la + c125,2R,(Tr/2 - r2 )

+2j*IP.[ac']b.,2A.(ri/2 - r2) + 3"11 + abf26. 2R.-(r1 /2 - r2 )

+2j3Im[ab]Ebn 2A(TrI/2 - r2 ) + b*(1 + ab)b5, 2 ln'2

-albI 2 6.2A.(r 1/2 - r2). (51)

Close to the optimal solution, a = -c. it is plausible to assume that Real[ýJa + cj2] <<

Real[(ce + c)] and Imag[/3la + c12] << Imag[(a + c)]. Therefore we can neglect the third

term of (51) in comparison to the first. Also since rT/2 - r2 is assumed to be very small.

then one can neglect the last term of (51) in comparison to its preceding term. leaving

A = (a + c)6,2 S12 - ab,2A.(r 1/2 - r2 ) + 2j03"f5,2[ac'jA,(r,/2 - r2)

+/011 + ab126 2R,(ri/2 - r 2) + 2j3'"I[ab]b2A(7j - 2r 2 )

+b"(1 + ab)b,2jnl 2 . (52)
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Equating A = 0 gives us the optimal value ap3

op- - (1 + ab)(b + i(1 + ab))•6. 2Ini2/6.2IsJI

-2j0*Im[aC]6ir2A.(TI/2 - 72)/b. 21S12

--2jI.[cib]b.62A,(ri/2 - r2 )/6.2IS12 (53)

where we used in12 - &(ri/2 - r2) and [sJ 2 -_ R,(ri/2 - r2).

We notice from (45) and (53) that 0,,p and ap depend on rj/2 - r 2. To examine this

dependency, we define,

-oP = 3l + Eb (54)
1 +ab

Cop ao+L 2  (55)

where 3o and ao are the corresponding optimal weights when r 1/2 - 72 = 0. It can be shown.

using (45) and (53) that in this case Oo = -b/(l+ab) and a0 = -c, and a perfect cancelation

of interferences is obtained.

As in the case of the power-power canceler, by using (54) and (55) we get a set of

nonlinear equations which can be linearized by neglecting the second order terms in E, and

C2. In Appendix (A-5), we present the arguments and the analytic steps used to derive this

linear set of equations. The solution of this linearized set is further simplified by nsing the

regular smallness condition on Ibi and Icl to obtain (see (P-20) and (P-21))

2b(1 - bc)-6, 2 - 2jIm[cb],j,(bn2 /n•,)) (56)
(1 - bc)*(pIbji)Ini 2 /A,(ri/2 - r.)

C - 2jIm[cb]bni + 2b*(1 - bc)l(5
S (1- bC)(p/6, 2 )lsj 2 /.A,(r,/2 - r 2 )

where ,bi and b.,,, i = 1. 2 represent the effect of the discriminator networks (p is assumed

non-zero). Notice that if r1 /2 = T2 , A,(r 1/2 - r2 ) = 0, then f = 0 and F-2 0 is the unique
3 1n fact there might be other conditions other than A = 0 which lead to minimizing Q2 of (50). However

if the delay are sufficiently small then applying the arguments in [2j we showed that if certain smallness
conditions apply then, A = 0 is the only condition that implies minimum Q2.

42



solution. This corresponds to the ideal, perfect cancelation case.

3.2 Effect of System Delays on Outputs' Powers and Ratios

To find the effect of the system delay on the power outputs and the outputs ratio and

hence on the depth of cancelation, we first notice using (43) together with (54) and (55),

that
1-bc + , 2 (258P, = c + b 1 112- + (58)

and

P b+ 3( I + C, ÷b)1 2 Fn12- 2Real43bI(InI - R,(r 1 /2 - r2))

-21bI 2Real1[3a(InI- R,(ri - 2r2))- 21/3I 2Rea1tab](jnin' - R,,Ir,/2 - 7,)).

Applying (P-22) of Appendix (A-6) we get

P = Ib+ 3(1 + ab)12Tn-+ 21312(n-P-R.(r,/2- r2))

-2Real[(*,lE(In-- - R,,(T/2 - 72)) - 21bI2 Real[a3(1n12 - R,(71 - 2r2)). (59)

It is clear that because 131 ý- Ib then IbJ2Real[aI] <_ IbIjajIl312. Therefore if JEI, << I3! then

Real[OeiJ << 1,312 the third and fourth terms of (59) might be neglected in comparison to

the second term leaving

P, = Ib±/3(1 + ab)121-n + 2131 2A,n(r,/2 - r2). (60)

Using b + 3(1 + ab) = q, and (56) we end up with

2b(1 - bC)*b 52 - 2jIm[cb](b.2/n2I1~) 2 ___ n2 (1
PF -F In 1- (61)
1i - bc-2(p/lb,)InlI' I n12+ I, /,\

where we defined

An = An7(r1 /2 - r2) = Inl- - R,(r 1 /2 - r2)

and used 1312 -_ Jb1 2.
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In the interest of brevity we sometimes do as we did in (61), drop the dependence of the

A,(ri/2 - r 2) and A.(ri/2 - r2 ) on the delay ri/2 - r2. However, to distinguish these A's

from the previously defined ones, we use primes. Notice that the first term of (61) depends

inversely on [n'2/,A\1 2 while the second depends inversely on nk-2/A". But A" depends on

ri/2 - -r2 so that InI2/A" can easily be made very large. From the discussion in Appendix

(A-7) we conclude that for In 2/A" moderately greater than unity (> 1.41), (61) is dominated

by the second term.

Therefore s-signal to the n-signal power ratio is given by

jn2/,,-r/2- r2 ) -

P/P_ 21b/I = (Isl2/Inl2) (62)

When Is12/InI 2 _ 1, then

(P./P,)dB = (In- 2l, A(r 1/2 - r2))dB - 3dB - IbIdB. (63)

That is, the input-output improvement in s-signal to the n-signal is upperbounded by

1Olog(1/2)nI2 /An(rl/2 - r 2).

For the other port we have from (49) together with (55)

Q, I1 - bc2 InI- (64)

and

= Ia + c12TS- 2Realfac1A 3 (i-/2 - r2)

~~~2 ! c1± cIA, (r, /2-) (65)

where we used Real[crc] = - +cl +Real[cC 2] -Ic12 (see similar argument used in obtaining

(19) in Appendix (A-2). But by (55), a + c = C2 and together with (57) we write

12jI"[cbl6(b) + 2b'(l - bc)bnl 2 IS-2 21cl 2  (6

(I Is) / + isI2/I--- 1sl1 (66)
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where we defined

= A,(ri/2 - r2) = IS- R.(ri/2 -,r 2 ). (67)

From the discussion in Appendix (A-8) we conclude that for almost all Is12/A', (66) is

dominated by its second term. Therefore the n-signal to the s-signal power ratio is given by
_S2A(r/ - 2) - iQ/Q -1 21C12 (I-I2/[sl1). (68)

When lnl2/ls2 - 1, then

(Qn/Q.)dB = ([S--/A,(rI/2 - r2))dB -3B - ICldB. (69)

That is. the input-output improvement in the n-signal to the s-signal is upperbounided by

10log(1/2)SJ2 /A,(r 1 /2 - r 2 ).

3.3 Bandwidth Limitation

By comparing (22) and (26) to (63) and (69) we conclude that despite the difference in

hardware implementation between the power-power and power-correlation scheme. a similar

relation governs the effect of the delays on the output power ratio. Nevertheless. while the

first scheme depends on A(rl + r2 ) the second depend on A(rl/2 - r2 ). Similar calculations

which lead to (32) and (34) gives, for this case,
1 [1PI/Pn I 2[rW(Ti12 -)] 2 (IS-2/IJn) (70)

Q-1Q-.~r 2 I-](nl11)(1
Qm/Q3 Ž- C1 2rW(,(ri/2 - r2)

where W,, and W, are defined as before. Equation (70) and (71) represent a lower bound

on the performance for any kind of signals' spectra. For the uniform signals' spectra we get

(see (33) and (35)),

3 1
( Th./ W( / = )(1S12/ln12) (72)

(Q-/Qo). =' T2jW 2 2/s). (73)

IC12[27rW(i/2 -2)

45



As an example, let WK = W, = 100MHz. Then for an improvement of at least 20dB.

r1/2 - r2 must be less than 0.16 nanoseconds. In practice, we can take r, = r2 = 6 nanosec-

ond. If we can adjust the difference to 5% of each delay (0.03 nanosecond) then we can

obtain at least a 20dB improvement for as much as a 500MHz bandwidth, or better than a

34dB improvement (corresponding to a 54 dB signal to interface ratio at the output when

1b1 = Icl = 0.1) a for 100MHz bandwidth.

IV. THE CORRELATION-CORRELATION SCHEME

Figure 3 presents the separator structure termed correlation-correlation. That is. one

separator weight is selected to minimize the correlation between one output after it is pro-

cessed through a discriminator network and the other output and vice versa for controlling

the other weight. In this section we will follow the same steps used for the other structures.

4.1 Effect of System Delays on the Optimal Weights

From Figure 3, we can write,

Vp,(t) = s(t - -ri) + bn(t - ri) + 3cs(t - r2 - r2/2) + 3n(t - r2 - rl/2). (74)

Therefore,

p = (t) 2 = lb + 3421-nF - 2Real[Ab"].(ri/2 - r2)

+ 11 + ý3c21sl2 - 2Real[3c].A,(r,/2 - 7.) (75)

where A,(r) = IS2 - R,(,-) and A,(r) = Jn'2 - &(r).

When 71 = r2 = 0 (ideal case) then

e= Ib+d12112 + I1+3c1 + (76)
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in agreement with the results in [2].

Also from Figure 3, we have

vq(t) = n(t - r1 ) + cs(t - ri) + abrz(t - 72 - ri/2) + as(t - 72 - rj/2) (77)

so that

Q = IV-(t) = Ic + aIli + 2Real[acc]A.(ri/2 - r2)

S+l +abl2nF-- 2Real[cb]A,,(ri/2 -- r.). (78)

Thq control loops operate on the correlators' outputs P1 and Q2 respectively,

as shown in Figure 3,

P, = Iv,,I(t)v;(t)12  __ 1- 1 2 (79)

where one can easily show that

A1 = (c + a)'(1 + c3)6lst2-- (a" + 3lc12)A,(r1/2 - r2)6,1

+(b + 3)(1 + ab)•,jni-l2 - (3 + a*Jb12)A,(rl/2 - r2 )•, 1  (80)

with 6,,, = Fn-i•-hjnP2 and 6,1 = -ýr/IsI2. n, and s, reflect the effect of the discriminator

on output 1.

Similarly

Q2 = jvq2(t)v;(t)12 = IA212 (S1)

with

2= (b+ 3)-(1 + crb)b,21n- 2 - (3 + alb12)A,(T/2 - 7-)b,2

+(c + a)(1 + cda)'b, 21S- 2 - (a + 3"[c12)A,(rl/2 - r2 )6, 2  (82)

and 6,2 = 72s/ sI2 and 6 n2 = -'•/Tn,. n2 and s2 reflect the effect of the discriminator on

output 2.
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To find 03, we must equate 8PI/1/OR and 6P,/,931 , simultaneously to zero. Again follow-

ing the same arguments used in [2], and provided the delays are sufficiently small, one can

show that aPl/8 $R = 0 and 8P1 /do/ = 0 if and only if A, = 0. similarly aop is obtained by

equating A2 to zero. From A, = 0 we get

= - b(1 + ab)0t5•iIn 12 - c"IbI2A,,(ri/2 - r2)b,,, + (c + a)06,,1Is12 - a'A,(rl/2 - r2)6,1
(1 + ab)6b, In12 - A,,(r/2 - r2)6b,, + c(c + a)-.lsI2 - Ic 2 A,(ri/2 - r2 )6, 1

(83)

From A2 = 0 we obtain

C(l + C3)%2•s2s _- ,3*cJ2 )A,(ri/2 - r2)bs 2 + (b + 3)bn21nj-2 - 3*A,,(r 1 /2 - 72)62
aop =-- (1 + c0)*b,2 Isj 2 - A,(7 1/2 - r2 )b,2 + b(b+ 3)*6, 2 1n 2 - IbP2A=(Ti/2 - 7 2 )6, 2

(84)

To find the effect of delay r1 /2 - T2 on the optimal weights we define

,o.p = 3o+,e (85)

aop = ao+ f2(86)

where 3o = -b and c0o = -c are the optimal weights when r1 /2 - r2 = 0.

Again, by using (85) and (86) in (83) and (84) we get two nonlinear equations in f and

e2. These can be linearized by neglecting second order terms in El and f2. The resulted set

of linear equation is then solved (see Appendix A-9) to finally obtain

-b(1 + bc)(

(1 - cb)'lnl 2 /A,,(ri/2 - r2 )

E-c(1 + bc)(

(1 - cb)pjsl"2 /A,(r 1 /2 - r2)

Notice that if rl = r2 then f- and 62 are zero and we have the ideal perfect cancelation case.

4.2 Effect of System Delays on Outputs' Powers and Ratios

To estimate the effect of the system delay on the power outputs and the outputs ratio

we first notice, using (75), that

P, :_ 11 + (89)
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where the last term in (75) was neglected due to the fact that Icl is assumed less than unity.

131 is restricted to less than unity, and, particularly, for Tr1 /2 - r2 small. A.(rl/2 - r2) is small

in comparison to [Is'. Using (85) with 10 = -b, (89) becomes

Po = I1 - bC + cell-S2

- I _ bc212 . (90)

Also from (75) by using (P-9),

P4  I lb + 312F'JF - 2Real[$bi]A=(ri/2 - -r2)

Ib+,3121n/" + 21b12(A,,(ri/2 - r2 )). (91)

But b + .3 = el and together with (87)

1b(+bc) 2 21b12

S-(1 - b 1)2n/-',/A(ri/2 - r 2 ) InP/IA.(ri/2 - r2 )

It is easy to notice that if IbcI << 1 then (92) is dominated by its second term. Therefore.

the s-signal to the n-signal ratio is given by

11 - bc 2 inl2/A\4(ri/2 - r 2 )
_ 21b62 (jSj2/jnj2). (93)

Notice that this is exactly (21) obtained for the power-power scheme. except for the depen-

dence of A,, on 71/2 - r2 instead of on r1 + 7 2 . Comparing it with (62) obtained for the

power-correlation, we notice the small difference due to the inclusion of I1 - bcj2 _ I in (93).

Both in (62) and (93). A,, depends on rj/2 - r2. Because of the symmetry we get by using

(78) and implying similar steps and arguments;

Q. I I - b,:l'lnl (94)

c(1+b) 21c12 29
bC (1 -bc)1

2/A,(ri/2 - T2) I- + isl-/,t,('r/2 - r2) (95)

and
II - bc"'sI/A,(ruI2 - r2 )i- -

21c12 lln2/1S12). (96)
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Equation (96) is exactly the same as (25) obtained for the power-power scheme except for

the dependence of A,,. It differs slightly from (68) obtained for the power-correlation ;(-Leme.

3.4 Bandwidth Limitation

Disregarding the small differences between (93) or (96) and (62) or (68) respectively (11 -Ix "-

1), then (70) and (71) are lower bound limits on the output signal-to-interference ratio. In

the case when 'lhe signals' spectra can be approximated by uniform spectra limited to band-

widths, W,, and W, for the n-signal and s-signal respectively, then (72) and (73) obtained for

the power-correlation scheme are also in effect for the correlation-correlation case. Therefore

the numerical examples used there are also valid for the correlation-correlation scheme.

V. SUMMARY OF RESULTS AND CONCLUSION

In this section the different results obtained in this paper are summarized. These are as

follows:

1. The optimal weights 3op and caop of the three schemes with delays r, and r2 are shown

in Table IA.

2. The corresponding zero delay optimal weights 3 0 and a0 are given in Table lB.

3. The effect of circuits delays on the optimal weights (Table 2) are represented through

E, 3,p - ý3o and E2 = cap - ao, except for the power-correlation scheme where

E= (I + a - ýo).

4. The effect of circuits delays on the output power ratios are shown in Table 3.

5. Input-output improvement in signal-to interference power ratios are shown in Table 4.

6. Output power ratios as a function of signals' bandwidths and circuits delay are shown
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in Table 5. For the case when the signals' spectral densities are assumed uniform. then

the output power ratios are 5dB above the lower bound values shown in Table 5.

The effects of nonzero hardware delays on the performance of the three different cross-pol

cancelers were examined in this paper. Firstly, the effects of these delays on the optimal

weights were considered and the variations from the ideal zero delay case were obtained.

Secondly, the output powers and power ratios at each of the canceler ports were exhibited

as a function of the actual circuit delays. Depending on the different configuration. differ-

ent forms of dependence resulted. In particular, we notice that while in the power-power

scheme the performance depends inversely on rl + 7 2 , where ri and 7 2 are delays of the

summation and cancelation paths respectively, the performances of the power-correlation

and correlation-correlation schemes depend inversely on rl /2 - r2 . Finally, using the relation

between the signals' autocorrelation and spectral density we could estimate the lower bound

on the depth of cancelation as a function of both the signals' bandwidths and system de-

lays and hence establish bandwidth limitation due to system delays. For the case when the

signals' spectra are approximately uniform and limited to W, and W, respectively for the n

signal and the s signal, we shcw the output signal-to-interference ratio as a function of these

bandwidths, the system delays, the input power ratio and the input cross-pol ratios. Using

the power-power scheme. the output signal-to-interference ratio depends inversely on 71 + 7.),

for the other two schemes it depends inversely on 71/ 2 - 72 . Since this delay difference can be

made very small, these cancelers are preferable and yield good cancelation over a much wider

signal bandwidths. The relative delay difference r7/2 - r2 can be held to under 0.3 ns for

values of r, and 72 ý- 6nsec (as one may expect for a typical 14-18 GHz microwave circuitry).

Using these values in the design of a power-correlation or correlation-correlation systems.

one can obtain as much as 20dB input-output improvement in signal-to-interference ratio

(corresponding to 40dB signal-to-interference ratio at the output when input cross-pol ratio

Ibi = jcl = 0.1 or 20dB) when the signals' bandwidth are of the order of 500MHz. On the
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other hand, with the same assumption on accuracy of the delay timing we can achieve almost

34dB improvement (54dB output signal-to-interference ratio), if the signal bandwidths are

only 100MHz. Similar examples show that the power-power scheme can handle only a small

bandwidth if rl = r2 is of the order of 6 nanoseconds. However, the power-power scheme

might be applied with reasonable success in lower frequency low bandwidth application. For

example, if the frequency band is in the 4-6 GHz range then r, and r2 are of the order of

1 ns, so that 20dB input-output improvement in signal-to-interference can be accomplished

with approximately 8 MHz. If the cancelation is performed in the 70 MHz IF frequency

then the ir/4 wavelength delay needed for the in-phase-quadrature weighting will restrict the

delay r to greater than 3.5 ns. If we assume r1 = -r 2 = 5ns the bandwidth will be limited to

approximately 2MHz. Notice, however, that the power-power scheme requires much simpler

hardware than the other two schemes, so that the hardware complexity bandwidth trade-off

is exhibited.
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VIII. APPENDICES

A-1

Substituting (13) in (8) and (14) in (12) we obtain, respectively;

-(1 - cb)I3I•i + b(1 + be - bC2)An(Ti + r2 )6 1  1)

c6, 11s1 2e + (1 - cb + bf2) *6lInI2 - b*(- 2 - c)A*A(TI + r2 )6( 1

and

-(1 - cb)Inl2e;,5 2 + b(1 + bc - bel)*A,(Tr + r 2 ),5,2
bbn21nI2• q,- ( 1- cb +- bet)*6,n2 S12 - e*(,El- b)*A.(,i +- r2)6.,2

These two equations can be linearized by neglecting the second order terms that contain -2

and e2 Ef, namely;

((1 -cb)'6njI-n 2  + b'c'6jAn(rT- + r 2 )lf- + [(1 - cb)6,,•I 12 + b An(r71 + 72)If;

= b(l + bc)66.,An(rl + r 2) (P-3)

([(1 - cb)'6.21312  + b*c*6, 2A,(T + 72))f 2 + [(I - cb)6 2 InI2 + ICl 2A, (-r + 72 )]f

= c(1 + bc)*652A.(ri + r2 ). (P-4)

(P-3) and (P-4) also contain the effect of the two discriminator networks 6 ,,, 6s1, 6l,2 and 6,2.

For simplicity of notation, we sometimes use In,,I 2 = 6bnlnl2 , In212 = bn21nnl2,' Is 2 = 6b'13-2

and 1I3212 = 8,2[512. Equations (P-3) and (P-4) can be written as

(1 - cb)"Inu 2 + b*ct 1 An(r, + r2 ) (1 - cb)Is 1
2 + Ib126 bn,An(r 1 + 72)

(1 - cb)"n 2  + Ic126, 2 A8(-r + r2 ) (1 - cb)Is212 + bc6s2 A,(r 1 + 72)

x [:I = [ ):6nlAn(71 + 72) (P-5)
2C'(1 + bc)6 2As(ri + r 2 )

If Ibi << 1 and r, + r 2 is small enough then it is reasonable to assume that

Ibl 26,,1 An,(r 1 +r 2 ) << Real(1 -cb) Is1 2 . Similar argument implies that Ic12 6b2(A.(r, +r 2 )) <<
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Real(l - cb)fln 2 12. Also An(r 1 + r,2) <~< InV, and A.-r + r2) << IS2 So that the second

te-.ms in all the matrix elements can be neglected. Thus (P-5) becomes

r(1 - cb)*raij 2  (1 - Cb)IS,1 2 1 f,~ b(1 + bc)6,11 A,1 (r1 + 72) 1 P6
[(1 - cb)Irz 2 12  (1 - Cb)mS212  f; I I= .C*(1 + bCp5, 2A3(,rl + r2)J (P6

The solution of (P-6) is given by

b(1 + bc)6bnl - c'(1 + bc)bi(A,(,ri + r2)/An(,rl + 7-2)) P7
= (1(I- cb)*(P/6. 2)InI2 /An(r +,r2) P7

E = c(1 + bcP6b.2 - b'( + bc)bn2(An(r 1 + ir2 )/A,(r1 + r2))
(I - cb)'(p/bni)IS12/A,(,ri +.1 r2)

where

P = 6 s2bnl -
6 ,1 bn2

A.(- + -r2 = S12- R.(r1 + r 2 )

An(TrI +r2 ) = InI 2 - R(ri +-r2).

A-2

By definition of ~3,

3b' = -bI 2 + fib'

and using (P-7)

Elb' = Jb12(1 + bc)e5,, 1 - (jbct2 + b'c*)b1 (A\./A,)
(1 - c)(/.)n2

-fbi2 +cqb = - (1 - cb)JIbi2 P/b3 2)FnI2IAn + lbj( + bc).5n1 - ( jbcj + b~c')6,1(A,/A,,)
(1 - cb)*(P/b,2 )jnj2/Ani

_ ~ ~ ~ ~~~n \ni(p62 IIf, -6 c 2
3 ( 8 ))) + c-b-(ibjI(Pf6 2)Inj2I\,~ + Jbj2 6,n1
(I - Cb)'(P/6. 2)jn! 2/AnI
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For simplicity of notation, we dropped the argument of A, and A.. If ri + r 2 is sufficiently

small so that nr- 2/A. >> 1 then we can assume I ct26,,(A•,/A) - bjI << (P/b,2)In2/ An and

Jb126n., < < JbJ2 (p/b.2)fn'•2/A,,.

Therefore,

-jbj 2 + f1b" = -1bJ 2 - b-c'6tAI/A,
(1 - cb)'(pI6,2 )-jjl /An

Because jnj2/A, >> 1 we conclude that,

Real[3b1] = Real[-1bl2 + ,Elb] -1bl 2 . (P - 9)

A-3

To compare the magnitudes of the two terms in (20), we notice that both terms are

monotonically decreasing with Hnl2/A-,. For kz2IAn' very large the second term is larger than

the first. Cross over occurs (i.e., the value for Inj 2/A, below which the second term becomes

smaller than the first) for

i-n12/n, = Ib(1 + bc) 6bl - c-(1 + bc),5,,(A,/,\,,)I 2

1n12 lA?1 - Cb1 2(Pl )221b, 2  (P - 10)

By its definition jnr2/An > 1. Equality occurs only when r1 or r2 is sufficiently large. For

71 = 72 = 0 nV/An ---+ o. It is easy to show that if

11 + bcl(Ibi,, 1 + IcI6 8,(A,/An)) (P - 11)

11 - cbl(Pl/,2)

then the right hand side of (P-10) is less than unity so that for almost all values of In2/IA\,

(20) is dominated by the second term. Since 6& < 6,1 - 1, A,2/An1 = 1 p " 1 and IbI

Icj << 1, then (P-1l) is easily satisfied.
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A-4

From (50)

A = vql(t)v;(t)

and using (40) and (46) we obtain after some manipulation.

A = (a +c)6 821s12 - Q6 2 (As(-ri/2 - 2)) + 3¶a + C12 ,2R 8(ri/2 - 2)

+O~C~b2(A(-r/2- -r2)) -,/?cab, 2(R,(rjI2 - r2) - R( - 2T2 ))

+ý,J1 + abI2 bn 2R,1(riI2 - r2) + 4*ab6,,a(JnJ2 - R,,(r 1 /2 - r2))

JXaubb.2(&(-rI/2 - -r2) - & r - 2r2))

+b'(1 + ab)bn2InI2 - ajbj 2 bn2(1ni2 - R,.(rt/2 -r72)).

Combining terms and using the approximation ~In2- R,(T1 /2 - 2) = Rn(r 1 /2 - 2) -R, -

2Tr2) and ~IS2 - R,(,ri/2 - -r2) = R.(nr/2 - r2) - R.(71 - 272) we obtain.

A = (a +c06,21S12 -a6, 2(A,(r 1I2 - r2)) + ja + C12 b2R5 (-r1/2 - -2)

+2j*OrIm[aC'lb2 (As(-ri/2 - 72)) + Y?!1 + abj*6n2 (R,(7j/2 - 2)

+2j1 ?-Imn[abIn 2(An(Tij/2 - r2)) + b'(1 + ab)bn2jnj2

-ajbI25bn2(A\n(-ri2 - Tr2)). (P-12)

A-5

Using (54) in (53) we obtain..

(1 + ckb'6 8 2 IS12 2 = -(jII + abI2 bn2InI + L's + c~(+ b'(v, + un) (P - 13)

where

v, = 2JIm[(QCThbs2 (Xs(7i/2 - 72))

and

Vn= 2jImn[Qb]6m2(An(ri12 - r2)).

By using (55) and rearranging term, (P-13) becomes
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(1 + ab)*6,2S1j 2.C 2 - 2jb*I,,,[, 2C'],- 2 (A,(ri/2 - "2)) - 2.VbI,.• ( 2bJ6, 2 (A.(-,/2 - "2))

+{11 + abl 26,T,,2T7l + 2jIm[e2C,6 2 (.(,.,/2 - r2)) - 2jIm,.[(-c + , 2)b1b,. 2(A.,(r'/2 - '2)) },

= -2jI.[Cb1b6 2(A.(r/2 - r2)). (P-14)

Since A,(rl/2 - r2) and A),(rl/2 - r2) is much smaller than Is12, it's reasonable to assume

that both the real and imaginary parts of the second and third term of (P-14) are much

smaller than the correspouding parts of the first term. Neglecting these terms as well the

second order term in el and C2 we get;

(1 -bc)61 2 I 2 + {f1 - b.2 2+ 2jI..[Cbin2A.(rj/2 - r2)}f

= -2jI(Cb]6,. 2An(Tr/2 - r2). (P-15)

Using (45) and recognizing that f = b + 0(i + ab) we get after some manipulation

-(I - bc)(a + c)6, 21s''1 2 + 2b(1 + a&b" + 2jabI2)6n2 A,(rl/2 - r2)
11 + abJ26bn 21nl 2 + Ia + c121s1 2 - 4Real[ab]6. 2A,,(ri/2 - 72)

By neglecting 21ab12 at the numerator, using a + c = E2 and neglecting the second order

terms in el and E2 we obtain

I1 - 2bl•6b,1-•, + [(1 - bC)Is- 2 _- 29bI266,A,(r 1/2- r2)l- ;

= 2b(1 - bc)6b 1•A.(r 1 /2 - T2 ). (P-16)

Equations (P-15) and (P-16) are a set of linear equations in f- and f2, which can be written

in matrix form;[11 - Cbl 2bnllnj2 (1 - Cb)b 8iI312 - 21bbIn6,An(-ri/2 - r2) ][e
Ii - cb 26 ,2Tn12 • -2jII.[Cb16n 2An(7T/2 - -r 2 ) (1 - cb)6,2 TS 2

2b(1 - bc)6*A•,,(r 1/2 - r2 )

2jI.[b]CJnzAn((r1/2 - r 2 ) J (P-I1)

If b << I and r, /2- 2 are sufficiently small then 2IbI26 njAn(r 1 /2- •2) << ReaI( 1-bc)6bLSI 2 .

With this in mind the solution of (P-17) is given by
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=(1 - bc)(2b(l - bc)-b.2 &jjs1 2 A.(,rj1 2 - -r2) - 2jjm[Cb~bI5 8 2jj42IfA.(Ti/2 - -)
(1 - bc)I1 - bcI2(pjnt 2 jsI 2 ) + 2jI.[cb1Isj1An(rj/2 - r2)

(P-18)

11 _ bcJ2[-2jI,[cb]6,bnn2 A•,A(rI/2 - r2 ) - 2b8(1 - bc)b,6i6 2 •nj 2A",(ri/2 - r 2 )]

(1 - bc)'*1 - bcI 2(pjni 2Isl 2) + 2jI,.[cb]6uibn.2IsjIA,(,r/2 - "2)

(P-19)

In obtaining (P-19) we used the assumption that the real of 2b(I - bc)*An(rl/2 - r 2) is much

smaller than 11 - bcj2TJ 2 and the imaginary part of 2b(I - bc)'I,[cb]AX,(71/2 - r2 ) is much

smaller than the real part of b(1 - bc)'11 - bcl2T2 n. The second term at the denominator of

(P-18) and (P-19) can easily be neglected in comparison to the first so that we can write

2b(1 - cb)J6, 2 - 2jIS[cb6b,(b6n2 6i)(P20

11 - cbI1 (p/b~j)Inj2/A,(r 1/2 - r2)(P2)

2jIL[cbj6b, + 2b( 1 - bc),(-

1= -- cbi2 (p/6l 2 )isI- 2/A.(Tri/2 - r2) (P-2I)

A-6

From (54) we have

± +/ab = -b + E,

1=31f2 + I/3i 2ab = 3(-b + e 1 )

I012Real[abl = -_p1I2 - Real[,3b] + Real[i'fl]

0I3I2Real[ab] + Real[3b] = -_3p2 + Real[3"f ]. (P-2-)

A-7

For InI 2/A' very large the second term of (61) is larger than the first. The second term

becomes smaller than the first only if

2b(l - bc)'6 2 - 2jmI,[cb,5,,(6b,216,,) 2 > J-nj./, " (P - 23)

1 1 - bC12 (p/6", )V2-Ibj > nI/.(P-3
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Now if
IL - bc[IbI6.2 + I,,[cb]6sit( 6 2/6u,) ) ~j14I.< Clb-ll.41 (P - 24)11 - bCj2(p/b•)

then the left-hand side of (P-23) is less than C. But lnj2/A' is greater than unity, (in fact since

A,1 is a function of r1 /2 - r2; it can easily be made greater than some constant C). Therefore

if (P-24) is satisfied then (P-23) cannot be satisfied, for all A' such the InI2/A, > C, and

the second term of (61) dominates the first. Since bl < 6 .2,p =- 1 and Ibi = Icl << 1 then

(P-24) is easily satisfied for C slightly greater than 1.41.

A-8

First we write (66)

Q 2jI,[cb]b6,t + 2b6(1 - bc)e5,,1 2 2c12  (P15

(1- bC)p(',\/A1,\)(l"2/A,) + S 12/-5

If the two signals have approximately similar statistical properties and bandwidths, then

with varying the delay, A'/A" remains approximately constant. Therefore, the first and sec-

ond terms of (P-25) varies inversely proportional to ([I/A)2 and Ts-2/A' respectively. Thus

applying the same argument of A-7 the second term of (P-25) dominates the first.

A-9

Using (85) and (86) in (83) and (84) we obtain respectively, after algebraic manipulation

_-(1 - bc)IsI26,if - b(1 + bc - bC2)OA,(-r/2 - r 2 )b,5, - (biC12 + c" - E)A\(7 1/2 - 72)6,1

c1.sI 26,1f; + (1 - cb + bf2)'lnl2&, - A(i(r-/2 - r2)b,,1 - Ic12A,(7 1/2 - r2),1

C2 -(1 -bc)'n1 -c(1 + bc- cf)*A, (T/2- r2)7 2 -0(cb!2 +b'-•;)A.- 72)b,2
E2-bjnj~b,~ 2 f + (1 - eb + Cfi)m4~j~b82 - A,(rI/2 - T 2)t532 - IbI2A,(,r1/2 -726,

By neglecting the second order terms that contains elf and f2f, we can reduce these equa-

tions to the following linear set of equations,
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[(1 - bc)In 2 ,, - A.(Tl/2 - r-)b.1 - IcJ 2A,(ri/2 - r 2)b].iIi

+ [(1 - bC)I•-•26, - A.(r•/2 - r2)b.l - Ib12A(-ri/2 - 7)lf;

= -b(1 + cb)-A,,(r'/2 - r2)6,,1 - c*(1 + cb)A,(r 1/2 - -r.)6.1

[(I - bc)SI'6.2  - A.(T/2 - -2)6,2 - Ibi 2A.(r 1/2 - T2 )6.21-2

+ [(1 - bc)ln-2 - A,,(r 1/2 - r2 )b,, 2 - Ic12A.(ri,2 - 72)6,21j7

= -c(1 + cb)A'.(ri/2 - r2)6. 2 - b'(1 + cb)Adi/2 -,r2)6,,2

or in matrix form;

((1 - bc)'In-2 - A')6,,1 -kcI-A',, ((1 - bc)1s1''- A')6b1 - bl-A'&,t ] ]

((1 - bc)lnI-2 - A')bn2 -IcI 2A'3 6, 2 ((1 - bc)s3"- - A'),, 2 - Ib--A'6. 2 JL;

-b(1 + bc)*A'n6b - c*(1 + bc)A'631
= (P-26)

-b(1 + bc)*A 6,,2 - c*(1 + bc)A6,b I

where A' stand for A(r1/2 - r2). If JcI << 1, 6,1 < bl then Ic12b6., << In126,,i. particularly

if FsJ-' ! InI'' and r1/2 - T2 is very small in comparison to the signals' correlation time. Also.

71/2 - r2 small implies A" << hIn2. This leaves (1 - bc)*1nj 26ni and (1 - bc)1s126, 2 at the

diagonal of the matrix in (P-26). By similar argument we can neglect in the off-diagonal

terms the A' and A' term in comparison to ku2 and IS12 respectively. Thus (P-26) reduces

S(iI -bc)*fnI 2 &51 (1 - bc)[sF-6,j I E1
(1 - b~c)-Wnllb2 (( - bc)1-j6,2 b2
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= -b(1 + bc)-A,,bRl - co(1 + bc)A'b61  P-7

L-6(1 + bc)OA'6,, - C*(1 + bc)MA J,

whose solution is given by

= b(1 - bC)(1 + bC)1sI12A,,(r 1 /2 - r2) (P-28)
11 - c 111 1

C2 -c(1 - bc)(1 + bc)ilnl 2A,(r 112 - r2). (P-29)
= 11 - CbJ213121n12

In the derivation of (P-28) We Used; P = b.bl- b316n2  with b,1 < b,2 and 6,2 < 6,1,

Ib2nI2A' bnlb, 2  is of the same order as IcFIIA' 16 2  ctb nlb,,i62 + c-jbI2A' A)<n,,i6

«c~I~s~ApbICbI2l~w~62  <«bjCbj 2TS-A n b~bI2J~ 152  «bIS2A'p. Sim-

ilar assumptions were applied in the derivation of (P-29).
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input #1:LIN

V,(W)= s(t) +b n(t) ---- -- -- -- -- -- -)-

input #2:-- - - - -

V2(t)= cs(t) + n(t)a

Figure 1. Power-Power Bootstrapped Cross-Pol Canceler.
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y

x,,(n)

Figure 2. Power-Correlator Bootstrapped Cross-Pol Canceler.
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x I(n)v
, (n)

x,2(n) ••--' 2n

Figure 3. Correlator-Correlator Bootstrapped Cross-Pol Canceler.
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APPENDIX B

BOOTSTRAPPED ADAPTIVE SEPARATION OF TWO

SUPERIMPOSED SIGNALS -

STABILITY CONSIDERATIONS

by

Abdulkadir Ding and Yeheskel Bar-Ness

I. INTRODUCTIONS

In a previous study [1], we found the equilibrium points for the weights of the boot-

strapped algorithm. The question which arises is whether these equilibriums are stable

steady state points. We will answer this question for the three schemes of the bootstrapped

algorithm, the power-power, correlator-correlator and power-correlator. separately. WVe will

restrict our discussion to the case of no noise; that is the dual channel noises E{n'(n)} and

E{n2(n)} are zero. Also, for the sake of simplicity, we will consider the signal to be real.

This is the case, for example, when the transmitted data is an M-ary signal. From Fig.1.

the channel response in the no noise case is.

x 1(n) = a1jI,(n) + a1212(n)

x2(n) = a2 1iI(n) +a 2212(n) (1)

where xj(n) and x2(n) are the sampled received signals at the first and second channels

respectively. Ii(n) i = 1,2 are the inputs of the channel. which are taken to be real.

equally likely distributed from the set {1±c, ±3c,.... ± (V.V7l - 1)c} and c is a constant which

determines the distance to the decision boundary from each signal location. Also, we will

assume in this study the channel co-pol and cross-pol responses to be real. that is.

a 12  a 21- =rl ,. --=r 2  (2)
a 22  all
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ri, r2 denote the magnitude of the normalized cross-pol interference (XPI) constants of one

channel onto the other.

If. EQUILIBRIUM POINTS

2.1 The Power-Power Scheme

With the arrangement of the power-power cross-pol canceler (XPC) of Fig. 2, the canceler

outputs, y1(n) and Y2(n) are given by,

Yj (n) = x,(n) + X2 (n)w, 2  (3)W1--w2w21

Y2(n) = X2(n) + xz(n)w21  (4)

1 - w1 2w 2 1

Substituting for x1 (n) and X2(n) from (1), we get

Ii(n)(at, + wt2a~n) + I 2(n)(a1 2 + w12 a22 )yi(n) = 1 1W1(5)
1 - w~2

y2(n) = 11(n)(a2l + w21aii) + 12(n)(a22 + w21a12 ) (6)

1 - w12W21

For this scheme the control algorithm simultaneously minimizes the output powers P and

Q. In fact it simultaneously searches for oE{yId(n) 2}/4w92 = 0 and

aE{Y2d(n) 2}/Ow2l = 0, where E{.} is the expected value and Yld, Y2d are the outputs of the

discriminators. Finding the zero derivatives can be done by successive use of the following

recursive equations, provided that 1 - W 1 2w21 # 0.

t+I i aw12 -- W12 @ TW7 E{yj'd(n)21 (7)

i/+l i 1

W21  = w2 1 + /42 E{!4d(n)2 } (8)
w2

where 1L and /2 are the constants which determine the stability of convergence. The dis-

criminators enforce a change in the powers of the 11 and 12 signals by b5 j where i=1.2 refers

72



to the two outputs Yj and y2, respectively, while j=1 refers to signal I, and 12, respectively.

Due to the assumption that the channel responses and the signals are real, w1 2 and w21 are

also real. Clearly, the equilibrium points must simultaneously satisfy the following equations

PiL 0Pd(w2,wW21) 9- a E{Yld(n)} -= 0 (9)

ONI(w2, w 21 ) A2 a. E{yzd(n)2 } = 0, (10)192 W21 5W21

where by using (5) and (6), we get the power at the output of the discriminators:

(6lE{I (n)}(all + w12a21)i + 612E{I2(n)}(n) 2 + wl2a22)
P(W2, W21) =(1 -- U12W21) 2

(11)

621 E{I2(n)}(a2l + w21a,,)' + 622E{I•(n)}(a 22 + w2 ,a,2)2
QI(W2, U21) = (1 - W12U1) 2

(12)

w 12,,0 and w21opt are taken to be the steady state value of these weights from (7) and (8).

respectively. That is, they satisfy (9) and (10). Taking the derivative of (11) and (12) with

respect to w12 and w21 and multiplying with the convergence constants respectively we get:

(1,9P 1(1 W) 21A, 16, 1E{I1(n)}(a,, + w, 2 a 2 l)(a2i + w.2 a, )49OW12 (1 - W,2W21)13I

+ 612E{If(n)}(a12 + w12a 22 )(a22 + w21a 12)] (13)

Ql(w 12, w2 1) _ 21A2 bE{I2(n)}(a,, + w12a2,)(a2, + wU21 a,)

09W2 w1 ( - w12w 2 1)3 I I

+ 622E{I2(n)}(a, 2 + w12a22)(a 22 + w2ja 12 )] (14)

Note that without the inclusion of the discriminator the two equations in (13) and (14) are

dependent. If the discriminator is chosen such that 611622 9 621612 then (13) and (14) are

independent. These solutions determine the equilibrium points for (7) and (8). Writing these

equations in matrix formLiE{1I(n)} ,i 2E{I2(n)} (all + w12a 2 1)(w2,a,, + a2 l)
= [(15)

621E{Ij(n)} 6EfE{I(n)} (a12 + w12a2A)(w 2,a, 2 + a-22 )
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we notice that if 611622 # 612621 these equations are independent. Therefore (13) and (14)

become zero if and only if

(all + w12a2 1)(w2lau + a21 ) = 0 (16)

and

(a1 2 + w12a22 )(w2jal2 + a22) = 0. (17)

There are two solutions for w12 and w21 (assuming 92 # 2n).
all an 1

(1) ---- a12 - - -w 2-= -r 2  (18)
a22  all

(2) W12opt2 - - l - 2opt2 = -- - (19)
a 21  r2  a 12  ri

2.2 The Correlator-Correlator Scheme

From Fig. 3, the outputs of the canceler can be written as,

yi(n) = x 1(n)+w 1 2x 2(n)

Y2(n) = X2(n) + W21Xr(n). (20)

Substituting (1) in (20), we get

yi(n) = Ii(n)[ai + wj 2a 21] + 12(n)[a12 + w12a22]

Y2(n) = Ii(n)[a2 l + w2 iajj] + !2(n)[a 22 + w2iaI 2]. (21)

The control algorithm simultaneously minimizes the output correlation powers C1 =

A2(w 1 2, w21 ) = [E{VYd(n)y 2(n)}] 2 and C 2  B 2 ((w12, w21) = [E{yl(n)y2d(n)}] 2. It simulta-

neously searches for OCI(W1 2 ,W 2 1 )/OW1 2 - 0 and 0C2 (w 1 2 ,w 2 1 )/aW2 1 = 0, where Yid and

Y2d are the discriminator outputs. This can be performed by successive use of the following

recursive equations.

?.i+1 i i

12 = w12 + AI-'--- [a(w 2 , w)1 2 (22)

21 2 19W-21 ((23)
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where Ai(w 1 2, w21 ) and Bi(w 12 , w21) are the correlation between the output of channel I.

and the output of channel 2 after discrimination, and vice versa, respectively. That is:

Ai(w 1 2, W20) = E{Yid(n)y2(n)} = b5iE{I2(n)}(a•i + w12a 2i)(w 21 a,, + a2,)

+b12Ejl'(n)}(al• + w12 a22)(w21a12 + a 22 )

(24)

B, (w, 2, W2) Efyj(n)YUd(n)} = 652 1E{IJ2(n)}(all + wj 2a21 )(W2 iaii + a2 1 )

+6nbE.{ I2(n)}(a1 2 + w12a 22 )(Uw21a 12 + a22 ).

(25)

Notice again that for equations (21) and (22) to be independent, discrimination effects 6,,

are necessary.

The optimum weights can be obtained from

Cw ) - M1pi (W12w W21).41(wl,2w21) = 0 (26)

a~ W12  aWl2

aC 2(w12 , W21) 0 2 = 0. (27)
IL2 a0w21  ws2 Bi(wt2 ,W 2 1). Bi(w,2 ,w 2 j)

It was shown in (11 that for (24) and (25) to equal zero simultaneously. it is necessary to

have Ai(W 12 , w 21) = Bi(w 12, w21) ` 0. simultaneously. Therefore, equations (24) and (25)

are simultaneously zero if and only if Ai(w 1 2, w21 ) and Bj(,, 12 , w2j) equal zero. The optimum

weights Wi2opt and W210pt are found by equating (24) and (25) to zero, respectively. Except

for the normalization (assumed non zero) these equations are the same as (13) and (14) so

that the two possible optimum weights are the same as in the power-power scheme.

2.3 The Power-Correlator Scheme

From Fig. 4 , the canceler outputs are

yi(n) = xr1(n)(1 + W 1 2 w 2 1 ) + w 21 X2 (n)

Y2 (n) = x 1 (n)w 2 + X 2 (n). (2S)
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Substituting (1) in (28), we get

yi(n) = II(n)[au + w12(aul + w2na 1l)] + 12(n)[aU + wu,(a22 + w2 1a 1 2 )] (29)

Y2(n) = II(r&)(a21 + W2 iaul] + 12(n)(ja2 + w21a12]. (30)

In this case, the control algorithm simultaneously minimizes the output power P2 =

E{yld(n) 2} and the correlation power Q2 = B2(w12, w21) = {E{yi(n)Y24 (n)} 2 . It simultane-

ously searches for aE{yl,(n)2 }/Cw' -= 0 and 8B2(w12 , w21)/dw2 = 0, where y1d, Y2d are the

discriminator outputs. This can be performed by successive use of the following recursive

equations.
Wi+1 = i(1

12 = W2 + Al P2(w12, w21) (31)

Wi+1 = i

21 W2 1 + I 2A-•-Q2(w12, W2 1 ) (32)

where ;I and / 2 are the constants which determine the stability of convergence. From (29),

we write the power at the output of the channel 1 discriminator

(w 12, W21 ) = 6uE{I?(r)}[ajj+ W12(an + Wnaii)J 2

+6, 2E{II(n)}[a,2 + w1 2(a 2 2 + w2 1 a1 2 )]2  (33)

and the correlation between the output of channel 1 and that of channel 2 after discrimina-

tion;

B 2 (w 12 , w 2 1 ) = 625E{I•(n)}[ai + w 12 (a 21 + w21 a1 1)][a 21 + w 2 1ajj]

+622E{I1(n)}[a12 + w12(a22 + w2 ,a 1 2 )][a2 2 + w2ja 1 21. (34)

Taking the derivative of (33) with respect to w12 and and multiplying by the convergence

constant M1, we get;

AP2(w12, w2 1) = 2 A,['61 2E{u1 (n)}[ali + w12(a 2l + w2lall)](a 21 + w2 iall)
P1 aw 12

+612E{I22(n)}I[a12 + W12 ( a22 + W21 a12)I[a22 + W21 a1211.

(35)
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From the definition of B 2(w 12 , w2n), we have Q2 (w 12, w21) = (B 2(w 1 2, w21)) 2 , therefore,

A2 / A2, W21) = 2A 2B2 (w12, w2 1)a.-•B W(12 , w21 ) (36)a2 w2l W2

Similar to the correlator-correlator scheme, we showed in (1] that (36) becomes zero if and

only if B2 (w1 2, w21) = 0. Writing (34) and (35) in matrix form and equating the result to

zero;

,E (JE{I2(n)} 612 E{I2(n)} (a1l + W12(a 21 + w2 iai))(w21 aij + a21 )
E=1 (37)

62 1E{I'(n)} 522E{I2(n)} (a12 + w12(a22 + w21a12))(w 2 ia1 2 + a22) 0

We notice that if b11622 # 612621 these equations are independent, so that (34) and (35)

become zero if and only if

(all + w12(a21 + w2 iaji))(w1iaui + a21 ) = 0,

and

(a 12 + W1 2 (a 22 + W2 1a 1 2 ))(W 21 a1 2 + a 22 ) = 0.

There are two solutions for w 1 2 and w21 (assuming s. # 2n);

a 12  a 21  -r2 (38)
W12°ptl - a 21al2  W2 iptl -all (

alia 22

and;
a l l  a 22  -(39)

W12opt2 a 2 1(1 a 22 all) W21pOt2 a12 ri

a 2 1 a 1 2

III. STABILITY PARAMETERS

Equations (7) (8), (22) ,(23) and (31), (32) are all nonlinear in w12 and w21 . Therefore

to classify the equilibrium points of these equations , we will consider a small deviation from

the equilibrium points, i.e, by varying w12 and w21 to Wi2opt + Aw1 2 and w 2opt + Aw 21.
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respectively with Aw1 2 and Aw 21 very small. For Aw1 2 and Aw21 small, any differentiable

function X(w 12 , w21) satisfyingx " = 0 can be approximated by

MX1 (Wl2op, + Aw 1 2 , W21,,t + AW 21) a 2 X,

i3W12  - W12  opt

d2 X+ aw�a2 1" [WPt*w21 (40)

iX 2 (w12 + Aw 12, w 21 + Aw21 ) a 32 ,2 X .2 AW12

3w 21  = w1 2aw 21  opt
aW21 

(41)+ .T.--2" WoptAw (4)
0t21

where

Wopt = [W12opt, W21 0 ptIT. (42)

In matrix notation

=AAw (43)

where Aw = [Aw12 , Aw2 1]T and

X = [3X,(w 2 + AW12, w21 + Aw 21 ) aX 2(w12 + AW12, W21 + Aw 2,)]T

(44)

where
'9W¥ 02 XWop 1

2 W°Pt w1 209w 21 iOPt

A =(45)

,2X 2  a2X2O~o20w, lopt aW2-- 'opt
aWl 2aW21 2W~ w 1 Wt

The stability of equilibrium points depend on the eigenvalues of matrix A. Considering

the characteristics equation of the matrix A from JAI - Al = 0, we can find the eigenvalues

of A by solving

A2 - bA + c = 0 (46)
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where

5a2X 1  92X2  (47)

w12  opt 8W21  opt

a2X X 2X2  a2 X1 a 2.Xi
C = aW2 opt 8 wopt 8w 128w 21 'Wopt w1;aw 21 opt" (48)

12  a229,0W1 4W292

The nature of the eigenvalues of A in the complex plane, or equivalently the relation be-

tween b and c defined in (47) and (48) determines the classification of the equilibrium point.

Next, we intend to find the different entries of A for the different bootstrapped schemes.

3.1 Stability Parameters of The Power-Power Scheme

Here, XI(w 1 2, w 21) and X2(w12, w21) are given by AlPl(w12, w 21) and ji2Q1(w 1 2 , w 21).
.V ( r)

respectively from (13) and (14). First notice that for any rational function in x. f(x) v-'

df (x) D(x)lN-E -- ,/x)-Dz

=dx D 2 (Z) dzIN(z)=o

dN(x) 1

dx D(x)

Using this relation in (13) and (14), we get

A 2 p,1 (w, 2 , W2l) 1__2g, _ _E_ 12 (_n_) }
•t1  aw12  "'opt -- (1-- W 2 optW2 1opt)3

(a 21 + W2 loptall)a2l + 612E{I2(n)}(a 22 + w 2 1optal2)a22 )] (50)

, 2 Q, (W1 2 , W21) 2o(2ptE{(n}
w1 W(1 -- w 2 optW2 Iopt

(all + w120pta2I)all + 622E{I2(n)}(a 12 + w120pta22)a 1 2]_ (51)

Substituting for -opt from (18) and (19) in (50), we obtain respectively

/I, aw•2  "-opti = -Im (1 _- rl--) 2  (2IL2 P(w 1 2 , w 21 ) = 2, 6 uE{Ij° °(n)}a•, (53)
aW*2  Wopt2 " --1)2

r1r 2
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and substituting F.Opt from (18) and (19) in (51), we obtain respectively

A 2 Qi(w12,wu)1  = 2 b2 E{I2(n)}a', (54)aw2Q o,2 (1 - r-r2 )-
A 2 Q(w 12 ,w21 ) 622EI(n)a 2  (55)

aw21  Wopt2 = 1 (55)
21( 1 - 2

rlr2

Similarly by applying (49) to (13) and (14) with respect to w21 and w12 respectively
a2P, (W12,W_21)i 2A,[6EI()

aw 21Ow 12  opt (1 - W 2optW21opt)3

-(a,, + W12 opta2j)aii + 612E{I,(n)}(aI 2 + Wi2opta 22 )al 2] (56)

.3a2Ql(w1 2 , w 21 ) 2A 2  [62 iE{I•(n)}
aw 210w 1 2  opt (I -w12optW21opt)3

-(a21 + W2 loptal)a2i + b22E{I2I(n)}(a 22 + w 2 10ptal2)a22]. (57)

Also, substituting (18) and (19) in (56), we obtain respectively

12 P1 (wI 2 , w 21 ) 2 6nE{Ij2 (n) }ai
aw 2 18w1 2  IWot = (1 - rjr 2 )2  (.8)

92 p, (WI 2, W 1), b12E{I2(n)}a'I2  (59)Alt 4w 210w1 2  W opt 2  = G - (2
(1 - r•)2

rl r2

and using (18) and (19) in (57), we obtain respectively
a2Q,(wlwz .•2 • )}a2

A2 W12,W21) I Woptl = 9 ' 62 2 EI(n)• - 2  (60)49W1aW21(1 - rir2)
02Q,(wW21)= b2jij E{I2(n)}a•.(

# d wi1 24w 21 1 wopt 2  22 1(61)
(1 - _)2

rjr2

Using (52) and (54) in (47), we can calculate boptl and by using these equations together

with (58) and (60) in (48) we can calculate Coptl.

Let It = A2 = it, then for the first equilibrium point (wI optlW21ptI), we have.

bw 1ptli (I 1 o--) rwrhave
boptl = (1 i )2 [62)aijE{I1(n)}I + 6(2 a22 E{I 22(n)}] (62)

C4pt = 42 a 22 a 2 EJ122(n)JEJ 2 (n1,rc - 622611). (63)
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For the second equilibrium point, by using (53) and (55) in (47), we calculate bopt 2 and

by using these equations together with (59) and (61) in (48), we calculate Copt2;

bpt2= 2( 1  [e 22a2 EE{I'(n)}l + 6laiE{jI(n)}1 (64)
(1 - 26 1

r, r 2

- a12aE{I'(n)}E{I(n)1(61612 - 6,1622)- (65)Copt2 1=4a EI()}{jn)(wi
( -_ )4

rlr 2

3.2. Stability Parameters of Correlator-Correlator Scheme

For this scheme, X1 (w12 , w21) and X 2 (w1 2 , w21) are respectively. uI P(wL12. w21 ) = 1 ,.42(w, 2, U2)

and 92Q1 (w12, w21) = p1 B2(w12, w21).

Now,

J6 L.
2 p,(W12, W21) _ 21aA, A(WI 2, W21)\ 2 + Iw2 )a2.A, (W12 , W21) (6

12OW2 W1

/1 -w2 2ta~ ")-• + A1 (w1 ,, w21 ) j.• (66

In section 2, we concluded that for the optimum weight, we must have

A,(w12, w 21 )Wopt = 0. Therefore, (66) results in

a 2P,(w 2 , w21 )1  ( aA,(w12 , w21 ) 2

'9 2 opt 9w12  IWopt) (67)

and
a2OP(w12, W21) oaA,(w 12 , w21 ) aAj(tw12 i t1: 21)

111 '3W210W 1 2  IWop: 029W21 owpt_. , ° (68)

Similarly for Q1 (wI2 , w21)

2Q (w12, 2OW21)1Wop A = Bi (WI 2, W21Wopt, (69)
# i• w x w2 ) opt ) 1/-W opt,2

and

a2Q1 (w12 , w 21)1  tB 1(w92, W21)w 8B(wI 2, w 21)
1 02 9w 21 w912  wopt = 2o2 dw 2 , opt Ow1 o (70)

Also using (24) and (25), we can write,

9A,(w, 2, w2 j) = 6 1E{hI(n)}a2 i(w21 a1 1 + a21)
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+b12E{I 2(n)}a 2 2 (w2 iaI2 + a22 ) (71)

aA,(w,, W21) = 6iiE{jI(n)}aji(wi2 a2 i + all)
43W 21

+b12E{I 2 (n)}a12 (w,2 a22 + a12 ) (72)

8B,(W2, W21)= -62E{I2(n)}a 2 1(a2I + w21a,,)

8W12

+b22E{j 2 (n)}a 22(a2 2 + w21a12 ) (73)

8Bi(W12 , W21) = 6b2 E{Ij2(n)}aiI(wW2 a2 I + al)
aW 2 1

+, 22E{I 2 (n)}aI2(wI 2a22 + a12 ). (74)

Using (67) together with (71) and substituting (18), (19) we get respectively, for the two

equilibrium points,

a2 p,(W12, W21) =2IkE{n)a 2 (- ri 2)AI-P( a Wl~w 12 1Woptl -- 2M, [b12EjI2(n)}a22(1 - rlr2)]2 (75)

.92 P(W 2, W 2 1 ) 2 E 2 1(1 _ 2A1. 'M Ow, Wopt2 = 21*,[,,Efi (n~l~a21l l ]r (76)

Similarly using (69) together with (72), we get

8.20Q 1 (W1 2, W2 1 )Wl =Wpl- 2I,, [6nE{Il2(n)}a~i(1 - ri r 2 )]2 (77)

, 2Q,(w1 2, W21 ) 6,2 ()}2(1 112
9w2 o = 2122

r21r

Also, using (68) and (70), we obtain respectively, for the two equilibrium points.

82p, (w,,, w,, )
Al' 92p , (W 2 'W opt) = 21L'[E{iJ2 (n)}E{I,2(n)}a 21a 2

aW12 09W21  opti 1 =2

"(I - rir 2 ) 26 1 2bll (79)

42 P,(w1 ,,W 2,) 2E 2
A 1  8 awlOw 21 1Wopt2 -- [n(n)}aI2a2,

1 )266,,bl (80)
rl r 2

A 2Q,(w12 , W21) 222 2, 2

W1 l2ww 21  opti = 2

•(1 - rir 2 )62 16 22  (81)
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82 Q1 (w12, w21 ) 2 2 •2
112 aw 12 4w 2 1  1Wopt2 = )}a'2a21

•(-- 1--!•)2621622. (82)

r1  (82

Finally, using (75) and (77) in (47), we calculate blopt and using these equations

together with (79) and (81) in (48), we can calculate Cloptl.

Let At = A2 A j, then for the first equilibrium point,

bloptl= 2#(1 - rjr2 )2[(6122E{I2(n)}a 2 )2 + (6b2 E{II(n)}a 2)2] (83)

Clopti = 4#2[El(n)}E{In)}a• 1 a• 2 (1 - r 6r2)]2621612(612621 - 451622).

(84)

Similarly, for the second equilibrium, using (76) and (78) in (47) and (80). (82) in (48),

we can calculate blopt2 and C1opt2, respectively;

bjopt2 = 2A(1 - aiIa2j)2 [(biE{I'(n)}a',)2 + (622 E{I(n)}a 2 )2} (85)
a 1 2 a1

Cloptl = -4p 2 [Ej2(n)}EIU2(n)}a22a 2,(1 -aa 22] 2622611(4512621 -!L1622).
a12 a 21l

(86)

3.3. Stability Parameters of The Power-Correlator Scheme

For this scheme, XI(wI 2, w21 ) and X2(w1 2 , w21 ) are given by PiP 2 (wI 2 , w21 ) from (33) and

.2 Q2(w1 2 , w2 1 ) = I1B2(w1 2, w2 1 ) from (34), respectively.

From (35)

a2 p 2( w1 2, 2W21 ,uE{I2(n)}(a2I + W2loptal)2

1w2

+b 12E{I2(n)}(a 22 + W2 jopta12)j. (87)

and from (36)

09Q2(w12,w21) ridB 2(w1 2 ,W2 1 ) 2 21)2B2(w 1 2 w21 )

d2Q2 w12 W 2l 42 + B2(w 12, W1) 2 3 (88)
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But in section 2, we concluded that at the optimum weights, we must have

B2 (w1 2,w 21)lwopt = 0. Therefore, (88) becomes;

As 2Q2( W12, W21) 21 2 OBAW2, W(1) \2aW2 Ow1 {optl - a2 w2l ]optl).(9

From (34) we find that (

aB2(W12, W21)2aW, 21 ) = b21E{I'(n)}[a, 1 + w12a11(aI 2 + w2 jaia)]

22Ef{2{(n)}[a 2 + W12a12 (a22 + W2 1 a 1 2)] (90)

9B2(W12, W21) = 621E{Jj 2(n)}(a 2 l + w2lau) 2 +622E{II(n)}(a 22 + w2 lac 2 )2. (91)
aW12I

Substituting (38) and (39) in (87), we get, for the two equilibrium points.

Al a wp 2 (W2,W21) -- 2AS6i 2E{I2(n)}a, 2(1 - rlr 2 ) 2  (92)

JAIa'P2 (W12,,W21) -W 2A6iE{I'(n)}a 21 ((1 _ 2.
a'i 0w•2  Wopt2 = 1 2 (93)

Similarly (90) in (89) together and using (38) and (39), we have for the two equilibrium

points.

'92a2Q2 ( W 2, W21) 1W2A2 bE'IJ 2 ( a2 1 - b22E{I2(n)}Ia 2 ]2  (48w] 2 opt1 - 1 212,EI(n)}a - Ea(94)

92Q2 (w, w,21 ) 22 2 (n)}a 2I 2 .
A2 IWo 2/,u2[-b52 E{I'(n)}a, + 62EI• 2 (95)

21l opt2

Also taking the derivative of (35) with respect to w21, we get

a2 P2 (w1 2 , W21 ) = 21, [6biE{II(n)}[aI + 2w1 2(a2 , + w21a, 1 )aii]

+.i 2E{I2(n)} [a12 + 2w12 (a22 + W21a12)a212 ] (96)

Substituting (38), (39) in (96), we get respectively.

O2 P2 (w12, W2 1 )a~ w1 Ow, IWoptl - 2#i[,uE{I•(n)}a•1 - 6i1E{I(n)}a•2 ] (97)

2P2( w12, w21 )
Sw,, 1 2 4w,2 1  IWopt2 - -2At[blE{I?'(n)}a -b"2 E{I1(n)}a 2 ]" (98)
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From the definition of Q2(wI 2, w21) and (36), we have,

2 Q2 (W 2 , W21) [B 2(W 2 W2 1) B(w 12 , W21) +49B 2(w12 , w 21)] (99)
P2 aw 2 14Ow 12  = aW21  W12

But at equilibrium point, B2(w1 2, w21) is equal to zero and we get,

tPB2 aQ 2(W1 2,W2 1  , aB2 (w12 , w2) 9B2 (w12 , w21 ) (100)
9W21(w 1 2  opt) I 2 aW21  optl 4w 12  optl"

Using (90) and (91) in (100) together with (38) and (39), we get respectively, for the two

equilibrium points

Q2(wI 2 wW2 1 ) =W 2A 2[62 1E{I•(n)}a', - b22E{I (n)}a 22492 w12aW21 lopt I 1 1

•6 2 2E{f I(n)} a 2 (1 - r1r,) 2  (101)

a2 Q2(w1 2, W21)°1

22 2 -2

•62 EE{I,(n)})a,(1 - ). (102)
rvr2

Finally using (92), (94) in (47) , together with the definition of X , and X 2 for this scheme,

we calculate b2optl and by using these equations together with (97) and (101) in (48). we

calculate C2optl-

Let A, = A2 =,a, then

b2opt 1 = 2A 1t612a22 E{jI(n)}(1 - rlr2)2 + [62 1E{(2(n)}aI - 22EI2(n)}a I1: ]

C2optl = 4A2E{II(n)}E{I (n)}ajia22 (1 - rir2

1 1- b22 E{fI.2(n) Ia'2 (6l.2  - 611622)- 13

For a second equilibrium point of (39) we calculate b2opt2 by using (93) and (95) in (47)

and by using these equations together with (98) and (102) in (48), we calculate C2optl. If

Al = -P2 = -, then;

b2opt 2 = 2A a,[a2EI2(n)}(1 a22all) 2 + -6 2,IE{ I(n)}a i +6 22E{I(n))al 2

?1
1 121 1''J' a21a12

c.opt2 = 4p'E{I2(n)}E{I a12  ( aa2) 21

12 2= 2 -A 2 1 a 1 2

[6E i~n)}aI -b 22E{I2(n)}ai2](62 1612 -611622). (104)
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IV. STABILITY CONDITIONS

From the characteristics equation in (46), the two eigenvalues A, and A2 are related to b

and c as they are defined at the two equilibrium points;

The stability condition can be summarized as follows,

"* If c < 0, the eigenvalues of (46), A1 and A2 are both real and A• 2 < 0. Since one of

the eigenvalue is positive, then the equilibrium is unstable.

"* If c > 0 ,the two eigenvalues are either both real or complex-conjugate pair. and

AIA2 > 0. Both eigenvalues (if they are real) or their real part (if they are complex)

are negative if b < 0, positive if b > 0. Therefore, the system is stable if c > 0 and

b < 0 and unstable if c > 0 and b > 0.

"* If c = 0, then one of the eigenvalues is zero an the other one is equal to b and the

system is unstable [21.

4.1 Stability Conditions for The Power-Power Scheme

The equilibrium points for this scheme are given by (18) and (19). First, for c at the

first equilibrium point to be positive, we must have from (63); b21612 > b11022 and for b to

be negative, we must have from (62) 1 < 0. These two conditions will result in convergence

of the algorithm at point (18). However, from (64) and (65) these conditions will result in

divergence at the second equilibrium point in (19) (saddle point).

4.2 Stability Conditions for The Correlator-Correlator Scheme

The equilibrium for this scheme is the same as the previous scheme and given by (18) and

(19). Again at the first equilibrium point it is convergent if b21612 > b1 22and P1, P2 or A are

negative. This results from the signs of cl and b1 given in (83) and (84), respectively. The

same condition leads to divergence as a result of the signs of cl and bl given in (85) and (86).
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4.3 Stability Conditions for Power-Correlator Scheme

The equilibrium points for this scheme are given by (38) and (39). For c2 at the first

equilibrium point in (103) to be positive, we must have from (38) that;

1. 621612 > 611622, and

621 {,n), 1~
-~i> I-J22. 622 E{I?(n)} 'al'l

and for b2 < 0 to be negative, we must further have A,, A2 or j be less than zero.

For the second equilibrium point from (104), the same conditions lead to divergence.
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APPENDIX C

BOOTSTRAPPED ADAPTIVE SEPARATION OF TWO

SUPERIMPOSED SIGNALS -

DYNAMIC STUDY OF POWER-POWER SCHEME

USING ORTHOGONAL PERTURBATION SEQUENCES

by

Abdulkadir Ding and Yeheskel Bar-Ness

I. INTRODUCTIONS

In a previous report [1], we studied the steady state behaviour of the different configura-

tions of the bootstrapped schemes. In each scheme, the computation of the optimal weights

require the knowledge of the channel model as well as the signal and the noise powers.

Alternative procedures to find these optimal weights are to use recursive relations. These

recursive algorithms were presented in [1] Appendix A for power-power, correlator-correlator

and for power-correlator schemes. All these recursive procedures require knowledge of the

gradient of square of the output powers or the gradient of correlation between the outputs.

In this repl rt, we will present a dynamic analysis of the power-power scheme. That is a

backward/backward structure whose weight is controlled via minimizing the output powers.

respectively. We will present a technique for reaching the optimal weights with a recursive

weight-updating procedure using estimates of the gradients. The estimate of the gradients

will be obtained by applying two orthogonal perturbation sequences to the two weights

simultaneously, and measuring the corresponding changes at the two output powers P and

Q of the power-power scheme.
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II. THE SEPARATOR'S SYSTEM AND PARAMETERS

2.1 The Channel

The received signals sampled after matched filters, are taken to be;

xi(n) = anil(n) + a12 12(n) + nl(n)
(1)

z 2(n) = a21I 1(n) + a221 2(n) + n2(n)

where x1 (n) and x2(n) are the sampled received signals at the first and second channels

respectively. Ii(n) and ni(n) are the corresponding signals and noises at these outputs such

that Ii I= 1,2 are M-ary signals from set {.± 1,1-3,....-(v'M"-1)} and aj i.J = 1,2

are real channel couplings. n1(n) and n2(n) are assumed independent samples of zero mean

Gaussian with;

E{n3(n)} = o,, i = 1,2. (2)

2.2 The Canceler Outputs

From Fig. 1, the outputs y1 (n) and y2(n) are as follows

y, (n) x, (n) + X 2(n)w12(n)
1 - w12(n)w21(n)

y2(n) X 2z(n) + xi(n)w21(n)
1 - W12(n)W21(n)

Substituting for x1 (n) and x 2(n) from (1) we get the outputs after the discrimination at

the n th instant of time, respectively,

Yld(fl) - v' j11II(n)(a "+ w12(n)a 21 ) + .v2/5I-2(n)(a12  + w12(n)a 22) + n 1(n) + n2(n)w 1 2(n)

1 - wr2(n)W21(n)

(4)

Y2d(l) = ~~v 21I(n)(a 2l + w21(n)au) + V/522I 2(n)(a 22 + w21(n)a12) + n 1(n)w 21(n) + n2 (n)

1 - w12(n)w21(n)

(5)

where 6bi i, j=1,2 is the effect of the discriminator at output i on the power of signal j.
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Also, from Fig. 1, we can write the weights w12(n) and w21 (n) as a sum of a nominal

value w 12 (i) and w2l(i) plus perturbation sequences pi(n) and P2(n) whose magnitudes are

A. That is

w12(n) = wi 2(i) + Ap1 (n) (6)

w21(n) = w21(i) +Ap 2(n). (7)

2.3 Approximate Canceler Outputs

In ref([1] Appendix A), we found that, in the no noise environment the optimal weights

are; w 2 1opt = _ 224- and W12opt = _-=.'

Given that the cross-couplings J ! << 1, then.

w1 2 (n)W2 1 (n) << 1. (8)

The assumption in (8) will be used to simplify the analysis of dynamic study. With this

approximation, we can write (4) and (5) as

yld(n) ;• [F/1II(n)[al + w,.(n)a 211 + •fb7 12(n)[au2 + w12(n)a 22]

+ni(n) + n2(n)w1 2(n)] (1 + w12 (n)w 21(n)] (9)

Y2d(fl) 2z [F+ iIi(n)[a21 + W2l(f)allj + f72I2(n)(a22 + W2+(n)al 2 l

+n2(n) +ni(n)w2 1 (n)] [I + w 1 2.,(n)wu:(n)]. (10)

2.4 Mean Output Powers

In the steady state, using (9) and (10) respectively, we can write the mean output powers

with weights fixed at w12 and w21; P(w12.W2 1 ) = Ejy'd(n)} and Q(W12,W21) = EIY2d(n)}.

respectively,

P(W12, W21) 2 [5,IE{It2n)}(a, + w12a2l)2 + 6• 2E{f2(n)}(a 12 + w12a22)2

+E{n2(n)} + E{n'(n)}w 2 (1 + W121V()'-

Q(w 12 , w21 ) Z [62 iE{t2(n)}(a 2l + w21aij)2 + b2 2E{I2(n)}(a 22 + w21a12 )2

+E{n2(n)} + E{n2(n)}w+i](1 + w12w21) (12)
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where E{(.)} denotes the expected value of (.).

2.5 Optimum Weights

The optimal weight vector; Wopt -- [W12opt, W210 pt]T which minimizes the mean output

powers P and Q are found by taking the derivative of P and Q with respect to w12 and w21

and equating the result to zero, respectively.

From (11) and (12), we get respectively,

(3P(W12, Wo21)

49P W 1, 2 ) = 2[6iE {I,(n)}1((1 + W12W21)'(a 11 + W12 a72 fla2 1&w~l 1 2

+(1 + w12w21)(aj + w12a2)2w21)

+l2EIE{I2(n)} ((1 + ••)W2) 2(a12 + W12a22)a22

+(1 + W12W21 )(a12 + W12a2 )2 W2) +Efn2(n)}(1 + w12w222)w2 2(2 +W (3

2 (1+ w12W) 21W12 + (1 + wV12W21 )w 2 U21 ).(3

and

dQ(w12, w21) 2[ E{I2(n)} (1 + W12W21)'(a 2 I +
49W 21

+(1 + w12w21)(a21 + w21all)2w 12 )

+b2Ef ,2(~j (I+ W12 W21)2(a22 + W21a1 -2)a12

+(1 + w12w21)(a 22 + W21 a1 2)01 W 2) + E{n'(n)}( 1 + W12W21 )W12

2 + W12W21 ) +21 + + 2 1  2  1)] (14)
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III. GRADIENT DESCENT

An alternative way to get to the optimum weights is to use gradient descent method.

With this technique, the weight vector at time i+1 is computed by using the gradients of

(13) and (14) according to the following recursive relation,

12 =W 2 -/A j E{y'd(n)2} (15)

wi+l i a . 2

W21- =W 21 - /A2 '3WE{y1d(f) 2 1• (16)

3.1 Gradient Estimation Using Orthogonal Perturbation Sequences

The use of random search and weight perturbation techniques for gradient estimation in

adaptive systems have been reported by many authors ([2], [3]). In this report. we will follow

Cantoni's gradient estimation definition [3] in which the estimate of the gradient is obtained

by perturbing the weights (different sequence for each weight) simultaneously with different

orthogonal perturbation sequences and correlating the outputs with the same sequences.

That is, the estimates of the gradients of the outputs are obtained from

i (i+l)N

g(i) = yd(m) p,(m) 1 = 1,2 (17)
m=iN+l

where y' (m) and y2d(m) are the instantaneous powers of the outputs after discriminator:

g1(i) and g2(i) are taken as the estimates of the true gradients given in (13) and (14).

respectively.

The perturbation sequences pl(m) are each taken to be periodic with period N and size A

which assumed a positive real constant and are much smaller than unity. Different sequences

are mutually orthogonal and zero mean over N cycle. For normalization, we divide by the

sequence period N to obtain unit average power. Therefore, such sequences will satisfy the

following,

1N I k=N
N ,Pk(n)pt(n) = 0 = 1,. (18)

n=1

EZp'( 9) = 0 1=1,2.. (19)
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and for higher moments

1{ N ' 1 k = I and if both v and x are even (20)-E ==pr(n I W) 0 k 96 1 or if atleast one of them is odd. (0
n1=1

It is possible to find such a family of sequences that yield an unbiased gradient estimate

(for example, the rows of Hadamard matrix [3]) .

For updating the weight vectors we use the estimated gradients g1 (i) and g2(i) as follows

W12(i + 1) W1 2 (i) - A9g(i) (21)

w21(i + 1) w21(i) -pg2(i) i = 1,2,.. (22)

and after each recursion step the weights are operated on by

w1 2 (i + 1) = clip(w1 2 (1 + 1)) (23)

W,,(z + 1) = clip(w,1(i + 1)) (24)

where, clip(.) is a clipping function such that

w IwI <a
clip(w) = wa (25)

and IA is the constant which determines the stability of convergence. The clipping operation

ensures that each weight is bounded by a constant a to be less than one so that the desired

equilibrium point, is reached.

3.2. Gradient Estimates, g1(i) and g2(i) for the Power-Power Seperator

From (17), we write the expected value of gradient estimates conditioned on the weights.

1 (i+})N
E{jg(i)Iw(i)} = N" E{y,(m)Iw(i)} pj(m) 1 = 1.2. (26)

Substituting (9) in (26), and taking the expectation of both sides conditioned on the

weight vector w(i), we get

E{gl(()Iw()} =,E{I(m)}(aN + w12(m)a 21 )'
(N =NN+,1u
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+b12E{I22(m)}(aI 2 + W12(M)a 22)2 + Eln1 (m)2}

+Eln'(Tn)}W22(M)] [1 + W12(m)W21(m)] 2 PI (M) (27)

and

E {9 2 (*) IW 0)} 1+ [621EI(M)I(a2i + W21(m)aul)2

±622 E{N2(m)}(a22 + W21(m)a, 2 )2 + Efn2(m)2 }

+Ew12(m ] [1m+1p2(m) (28)

where W1 2 (M) and w 2 1 (m) are the perturbed weights and related to the nominal values w12(i*)

and w,21(z*) by equation (6) and (7). Using these relations and the orthogonal properties of

the perturbation sequence stated in (18) to (20), we find in the of this report,

Ejgj(i*)Iw(i)} 2 2[6 1 E{1 12()([1 + w1~~21(i)]2 [all + W12(ia.211a2l

+[1 + W12(i)W2i(i)Itaii + w12(i)anl(i)12 W21(i))

+bl 2 E{I22(')}1 (ti + W12(i)W2l(I)] 2 [a12 + W12(1)a22 ]a'22

+[1 + W12(i*)W 21(i)I[al 2 + 1(a212W10

+Ejn(i)[ + W12(i0W21 (zi)]W 21(i)

+E~n(i)}([1 + W12(i)W21(i)]W 12(')

+[1 + W12(i)W2l(*)]wl2(i)W21(') )]. (29)

From a similar evaluation as well as exploiting symmetry properties between Yld(m) and

Y2d(m), we get for the expected value of gradient estimator 9 2 (0) conditioned on wiz':

Ejg2(i')Iw(i)} = 2[6b2 1E{I'2(i*)}([1 + W12(i*)W21 (i)12 [a2 l + W2l(0aijaijal

+[1 + W12(iOW21(i)][a21 . + W2l(i)alll2 W12 (1))

+b2+Ewu2i(w21(i)z [a 2 2 + W2 1 (i')a, 2]a, 2

+[1 + W12(i0W2l(i)][a 2 2 + W2l(i)aI212 1w2 (i'))
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+E{n'(i)}([ + wu(i)w2 1 (i)]w12 (i)

+En2(i)} ([l + w12(i)w2(i)] 2 w2u(i)

+[1 + w12(i)w2(i)]wI2j(i)w 2(i))] (30)

IV. CONVERGENCE IN THE MEAN

In this section, we will investigate the convergence in the mean of the recursive relation

in (21) (22) to the optimum weights. We will also find an upper bound for the step size A

with which such convergence in the mean will occur.

4.1 The Error's Mean

Convergence in the mean of weight vector; w(i) = [w1 2 (i), w2 1 (i)JT to optimum Wopt =

[W12 opt, W21optIT, means

ira E{w(i)} = w (31)

We first define a weight error vector at time i as e(i) = [el(l), e2(i)]T, with

el(i) = w 12 (i) - W120pt (32)

e2(i) = w21(i) - W21opt. (33)

We know that at the optimum weights, the gradients of the mean output powers P and

Q are equal to zero, i.e

4w 1 2  1wopt = 0 (34)

-9Q(w12, w21)

aw 21  1Wopt = 0. (35)

Subtracting the optimum weights W12opt and W21opt from both sides of (21) and (22).

respectively and the gradients in (34) and (35) from the estimate of the gradients g, (i) and

g2(i) in these equation respectively, we can write,

w12 (i + 1) W1 2opt = w12 (i)- W1 2opt -A1[g,(i) (P(w 12 ,w2 1) Wopt] (36)

W21(i + 1)- W21 0pt = w21 (:) - W210pt - A 1g2 (i) - (w12,W21 )1 ] (37)
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By using the definition in (32) and (33) in (36) and (37), respectively, we write.

e1(i+I) = ei(i)-u 11(i)- dP( ,Wopt2 1) (38)

[g( Aq [92' w9 W p (39)e2(i + 1) = e1(i)- opt(i)- Qwt

In order to investigate the convergence in the mean, we take the expectation of (38) and

(39) conditioned on the weight vector, w(i). We get,

E{e,(i + 1)Iw(i)} = E{el(i)jw(i)} - A [E{g,(i)Iw(i)}

-E{ P(w12, w21) }IWO-) (401)
iw 1 2  oPt

E{e2 (i + 1)Iw(i)} = E{e 2(i)Iw(i)} - A [E{g 2(i)Iw(i)}

"0w2 1  opt

4.2 Approximate Terms for the True and Estimate Gradients

In the case when the cross coupling constants I9.LI and 11,1 are -10 to -[3 dB then

w1w2W2« 1 , and we can approximate the true gradients from (13) and (14), by:

aE{ wd( n )2 } Wopt 2 2[6 E {I 2(n)}[(a ij + W j2opt(a,1 )a,, + a j, jopt]

aW12aopt IoIt.

+#12 E{12(n)}[(al 2 + a22Wl 2opt)a., + ai2 LLwiopt]

+E{n1(n))W210 pt + E{nl(n)} w 1 2 pt (42)

and

{ wY (n)2  opt 2 b21 E{I2(n)}[(a2 l + allw 2,opt)aai + a•jW12 0pt]

+622E {I 2 (n)}[(a22 + a12W21opt)a 12 + a 2 W,20 1opt

I()w210pt + E{ni(n)}Wi1opt]. (43)
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Similarly, under the assumption that E{I I(n)}I = E t2(i)} jand E{n'(n)j=-Ejn2(:)} k =

1, 2, then, the estimated gradients can be approximated from (29), (30) to get

Ejgj(i')Iw(I)} ;z 2[6ujE{Ij'(n)}[(ajj + a21WI2(i'))a2I + aV21w~~

+b12E{I22(n)}[(a1 2 + a22W12 (i))a 22 + al 2W21(i)

+Efn'(n)}W21(i) + E{n'(n)}wi2 (I)] (44)

and

Ejg2 (i)jw(i*)} ;z 2[6'2 iE{I'(n)}((a.2i+ allW2 1(i))a1  +a a~w2 1 -EI(

[(a2 + a,2 w21(i*))a, 2 + a 22WI 2(i*)]

+E{n 2(n)}Iw2l (i) + E (n 2(n)}IWu(i)] (45)

Subtracting the true gradients in (42) and (43) from the estimate Ogradients in (44) and

(45) ,we get respectively;

Ejgi(i)Iw(i')} - aE~y1 ld(n)2 } 1Wop 2 [6iiE{Ij2(n)1 2 1[W 2 1(z) - W 210pt]

bjuE{Ij2(n)}a [1[w 2 (i) - w 2opt] + 612E{I2 1 (n)}a 2[WI2 (i) - W120pt]

+612 E{I2'(n)}aI2[W21(i) - W1t]+ Ejn'I(n)}[W21() - 20t

+Efn 2(n)}[WI2 (z*) - w 20pt], (46)

E1g 2 (i)IW(i)} - 8E1W~n 2  2[b2 iE{I?(n)}a~i[W21(1) - W210ptl

S2jE{I1
2(n)}a' 1 [WI 2(i) - W12 1 t + 22E{'()a 2 w 2 i - W 2 0 pt]

+62 2E{I22(n)}a, 2 [W21(i*) - W2iopt] + Ejn1(n)}[w2j(i) - lot

+E~n'(n)j[W 12(*) - W12Opt]] (47T)

Using (46) , (47) in (40) and (41) respectively, we have

E{el(i + 1)jw(i)} (1. - pa)Eje1 (i0jw(i*)}

-psbEje 2 (*)IW(i')1 (48)
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E{e2 (i + 1)Iw(i)} = -,.cE{ei(i)Iwt(i)}

+(1 - j.d)E{e2(i)Iw(i)} (49)

where

a = 2[612E{I,(n)}a 2 + 6uE{I2(n)}a;i + E{n2(n)}I (50)

b =2[6uE{I I(n)}a 1 +61 2E{II(n)}a 2 + E{n2(n)}I (51)

c = 2[622E{I(n)}a 22 + 6,2 E{IEj(n)}a21 + E{n2(n)}] (52)

d = 2(621E{I (n)}a•1 + 622E{I((n)}aa2 + E{ni(n)H. (53)

In matrix notation, we can write

E{e(i + 1)Iw(i)} = (I - pA)E{e(i)Iw(i)} (54)

where I and A are the identity and the weight error matrices, respectively.

A = b (55)c d]

Taking the expected value of (53) over the weights.w(i) we can write .

E{e(i + 1) = (I - jAA)E{e(i)}. (56)

If II - AAAlI < 1 then limi_ E{e(i)} -- 0. Therefore, we can establish an upper bound

for the convergence constant a
1

0 < A < (57)A\max

where Amax is the maximum eigenvalue of the weight error matrix A.

V. RESULTS

Using a computer, we simulated nondispersive fading channel and employed a power-

power canceler to eliminate the effect of cross-pol interference. Perturbation sequences
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used in the computer simulation are chosen from the rows of Hadamard matrix (i.e P =

[1,-1,1,-1,..] and p2 = [1, 1,-1, -1, 1,1,..]).

The block diagram of the power-power canceler using perturbation sequences in the con-

trol algorithm is given in Fig. 1. We applied two independent uniformly distributed bipolar

data to the nondispersive channel. Then, corrupted data is applied to the canceler. In Fig.

2, the interference power residue versus the data sample is given for -14 dB cross-pol interfer-

ence with the perturbation length N=8 and different perturbation magnitudes A. The same

experiment is done for different perturbation sequence sizes and depicted in Fig. 3. The

results depicted in these figures aforementioned are the average of four random experiments.

VI. CONCLUSION

In this report, we studied the dynamic analysis of the power-power canceler by using

orthogonal perturbation sequences in the control algorithm. The results of the computer

analysis shows that as the perturbation magnitude is reduced, the interference power residue

decreases. Also, as the perturbation sequence length is increased a smooth estimate of the

gradient is obtained, but the convergence time takes longer, as expected.

We conclude perturbation sequences can be used effectively in cross-pol interference can-

celation.
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Figure 2 Effect of different perturbation magnitudes on convergence.
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Figure 3 Comparison of different perturbation lengths on convergence.
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VIII. APPENDIX

Let

E{9 1 (i)jw(i')} 4 E{gii(z')jw(i)} + E{g12(i)IW(Z*)}

+E(gi3 (i')IW(i)} + E1g14 (0)1W(i)}I (P-i1)

where gj1k k = 1.-.4 are the different four terms in (27). For the sake of simplicity. we

evaluate (27) term by term.

That is;

Ejgii~~jwVA m11EN+I1 (all + w)12 (m)a21 )
2

'[1 + W12(mn)W 21(M)] 2pl(m) (P-2)

E 120W1 NA 1: (a12 + w12(m)a22)

4[1 + W12(M)W 21 (M)12p, (M) (P-3)

.Efgl3 (i)IW (i*)} A Ejr&2(i)} (i+1)N

NVA - F [1 + W12(m)W21 (m)12P1(M) (P-4)
m=iN+1

E~g4()Iwi) A Eln 2(i)} (i+l)N

NVA m~N~ 12(M)[1 + W12(M)W 21 ()p() (P-3)

where we also used the fact that the random sequences !1(i*) and nj(i) 1 1. 2 are

stationary.

Using (6), (7) in (P-2), we can get;

E~g~~i)w~i) = iiE{Ij2(i)} (i+,)N

NA E (all + [wr2(i) +Ap 1(m)]a 21)'

I+ [w, 2(1) + Api(m)HW21(i) + Ap2()~lm

NA F, X 11(m)X 12 (m)P1(m) (P-6)
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where,

Xu(m) 1 (all + [w1 2(i) + Apj(m)]a 21 )2  (P-7)

X 12( m) (1 + [w12(i) + Ap,(m)[w2 1(i) + Ap2(m))] (P-8)

As a function of the perturbation pl(m) and p2(m), we write (P-7) and (P-8) as

X11(m) = A + BApI(m) + CA'pj~m)pjrm) (P-9)

X12(m) = D + EApi(m) + FAp2 (m) + GA2p1 (m)p 2(m) + HA2p1(m)pi(m)

+IA 2 p2 (m)p2 (m) + JAp 1(m))p2(m)P(m) + KA3p2(m)p 1(m)pI(m)

+A4 pi(m)pl (m)rP2 (m)P2(m) (P-10)

where,

A = [all + a21w2 (i)]2  (P-11)

B = 2a21[au + a21wI 2(i)] (P-12)

C = a2, (P-13)

D = [1 + w12(i)w,2(i)1 2  (P-14)

E = 2(1 + w12 (i)w 21(i)Jw 21(i) (P-15)

F = 2[1 + w12(i)w 21(i)]w 12(i) (P-16)

G = 211+2w1 2(i)w 21 (i)] (P-17)

H = wt4(i) (P-18)

I = w12 (i) (P-19)

J = 2w 12(i) (P-20)

K = 2w21(i) (P-21)

Therefore, from (P-6), and by using the orthogonal properties of the perturbation se-

quences p,(m) and p2 (m), we get
Eg(w() =6E{I(i)} [(AE + BD)AN

NA
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+(AJ + BH + BI + CE)A3 N + (B + CJ)AsN] (P-22)

For A << 1 the second and the third terms in the parenthesis is small in comparison to

the first and we have,

E{gn(i)Iw(i)} . 6niE{I'(i)}(AE + BD) (P - 23)

with A, B, D and E defined in (P-11) , (P-12) , (P-14) and (P-15) respectively. Therefore;

E{giw(i)Iw(i)} : 26iiE{Ij(i)}[[all +a 2 Iw1 2(i)12[1 + w12 (i)w21 (i)]w21 (i)

+[all + a2lwI2(i)]a 2 i[l + w1 2(i)w21(i)12] (P-24)

Similarly, using (6) and (7) in (P-3), we get,

E~ 2( )[ w i) =612E {II22(i)}I (i,+ WN
E1g12(*)IW(i)} = NA E X13(m)X 12(m)pI(m) (P - 25)

A mn=N+l

where,

X 13(m) ' (a 12 + [w12(i) + Ap1 (m)]a 22 )2  (P - 26)

and X 12 (m) as in (P-10).

As a function of the perturbation p1(m), we write (P-26) as

X 13 (m) = A1 + B1Apj(m) + CIA 2p (m)pi(m) (P - 27)

where,

Al = [a12 + a22w1 2(i)]2  (P-28)

B1 = 2[a 12 +a 22w1 2(i)]a2 2  (P-29)

C, = a 22. (P-30)

Therefore, from (P-25) and by using the orthogonal properties of p1(m) and p.2(m), we

get,

Ejg12(i*)IW(i)} = 452E{I2(i)} [(AIE + BD)AN
NA

+(AIJ + BH + BiI + C1 E)A3 N + (BA + C1 J)A5 N]. (P-31)
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For A << 1, the second and the third terms in the parenthesis is small in comparison to

the first and we have,

E{g12 (i)Iw(i)} .t 612E{jI(i)0(AjE + BID) (P - 32)

with A,, B1 , D and E defined in (P-28), (P-29), (P-14), (P-15), respectively. Therefore.

E{gj2(i)jw(i)j} - 26blE{II(i) } [[a12 + a22w2(z)12[l + W1 2(0W2I(0jW2 I(i)

+[a2 + a22Wl2(i)]a 2211 + w12(i)wu(i))]. (P-33)

Again, using (6) and (7) in (P-4) , we get,

E2•() (i•lN

E{g13(i)Iw(i)} = E• ,(i) +1,X 12(m)pI(m) (P - 34)

with X 12 (m) as in (P-10).

Applying the orthogonal properties of the perturbation, we get

E{ 13 ()W() ; E{nA(i)} (EA + JA 3 )N. (P - 35)

For A small the second term can be neglected and using (P-15) and (P-20) in (P-35). we

get;
E{g13 (i)w(i)} 2t 2E{n (i)}[1 + W12 (i)0W 2 (i)]wt(i). (P - 36)

Finally, using (6) and (7) in (P-5), ,e get,

E{j 1 4(i)0w(i)} = E,=2 X14 (m)X 12(m)pI(m) (P - 37)
NA m:iN+1

where;

X14(m) A [w12(i) + Ap 1 (m)12

w12(i) + 2wI2(i)ApI(m) + A2pi(m)p1 (m) (P-38)

and X12(m) as in (P-10).
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Again applying the orthogonal properties of the perturbation, we get

E 4()IW() E{n2
2(i)} [[Ew 2 (i) + 2Dw1 2(i)]AN

+fE + 2w, 2(i)H + 21w1 2(i) + Jw12(i)],\ 3.V

+(J + 2wj 2(i))A 5N. (P-39)

With the same approximation in (P-33), we can write

E~ w)2 E{n2(i)}[2D + Ew, 2(z)]w,2(z). P-40)

With D and E defined by (P-14) and (P-15). respectively. Therefore.

E{g1 4(i)Iw(i)} ;z 2E{nI(i)}[[1 + w1 2(i)w21(i)] 2

+[I + w, 2(i)w 21(i)]w 21(i)wI 2(i)]wW1(2). (P-41)

Combining the four terms from (P-24), (P-32), (P-36) and (P-41) in (P-1). we write.

E{gi(i)Iw(i)} = 2[,61,E{I(i)}([l + w1 2(i)w21 (i)]2 [a,, + W12(i)a 2 ,]a21

+(1 + w12 (i)w21 (i)[ai, + w12(i)a 2,(i)12w 21(i))

S([1 + W12(i.*W2 1(i)]1'[a, 2 + W12(,)a22]a22

+[i + w12( i)w 21(0i)[a 12 + w12( i)a 2212 ,(i))
+Ejn 2(')1[1 + w12 (i)w21 (i)]w21 (i)

+E{n(i)} ([I + w12(i)w 21(i)]'w,,(i)

+[1 + W12(0W21(i)w 2(i)U; 21(i)) (P-42)

Similar lengthy manipulation can be applied to obtain the estimate of the gradient of

Q with respect to w21 . However, due to the symmetry, we can obtain Q(wv2 . w•.) from

P(w, 2, w21 ) by taking 12(i). n2(i). a22, a2 ,, w21 respectively instead of 11(i). n,(i). all. a12.

w12 and vise versa. Also, replacing 611 and 612 by 622, 621.
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Applying these changes and replacements to (P-42) we get,

E~g2(i)Iw(i)} = 2 [b6uE{Ij(i)} ([ + W12(')W21(i)12 [anl + W2n(Oaijaill

+[1 + W12(i0W2i(i)][a2I + W1(i0ajj(I)I2 W120))

+622E{I22(i)} ([1 + W12(i21 (i)12 a22 + W21(i')al2 ]a1 2

+[I + W12(i')W21(i)]Ea 22 + W21(i)a1 212 W12(i'))

+E~n,()[ + W12(i)W21 (i)]W12(i)

+E~n2(i) ([1 + W12(i)Wu(i)W 2 1ui

+11 + W12(iOW210 w (i)W12('))]. (P-43)
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APPENDIX D

BOOTSTRAPPED ADAPTIVE SEPARATION OF TWO

SUPERIMPOSED SIGNALS -

DYNAMIC STUDY OF POWER-CORRELATOR SCHEME

USING WEIGHTS DITHERING WITH PN SEQUENCES I

by

Ruth Onn and Yeheskel Bar-Ness

ABSTRACT

This report considers the dynamic behavior of a blind signal separator, suggested and

study by on of the author (Bar-ness). In this implementation, the error functions, which

are derivatives of easily calculated functions, are estimated by adding a dither series to the

weights. The resulting differential equations are analyzed. Constraints, imposed on the

various parameters by the need for stability in the control loops, are found, as well as the

sensitivity of the output to the interfering input.

'This work was presented at CISS held at Johns Hopkins University, March 1993.
This work was partially supported by a grant from Rome Air Force Lab, (AFSC), Griffis Air Force Base.

N.Y., under contract F30602-88-D-0025, Task C-2-2404.
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I. INTRODUCTION

The topic of blind signal separation has recently been attracting vast interest among

researchers [1,21. Three structures of two signal blind signal separator were suggested in

[3]. They can be adaptively controlled by either output power minimization and/or output

de-correlation. It was shown that, in the absence of noise, these criteria lead to total signal

separation. The research group at the Center for Communication and Signal Processing

at NJIT has been examining this separator, analyzing both its theoretical aspects and its

practical applications. This work has resulted in a few journal articles dealing with the

bandwidth-complexity tradeoff [4], the question of noise effect [5], spatial separation of wide-

band sources [61, etc. Application to satellite and microwave digital communication links

were also examined [7,8]. Recently some results were obtained in applying the blind separator

to decision feedback adaptive channel equalization.

This paper considers the dynamic behavior of these separators. In order to obtain a

gradient of the output power needed to control the weights, a pseudo-random sequence is

used to dither the weights. Minimizing the magnitude of the correlation between the two

outputs is effected directly by forcing the correlation to zero.

As was shown in [5], one of the structures, called Forward/Forward, must be controlled by

correlation zero-forcing. Another structure, termed Backward/Backward, can be controlled

by either minimum power or correlation zero-forcing.

In this paper we will concentrate on a two input two output configuration. with the

Forward/Backward structure, see figure. One weight will be controlled by minimum output

power, while the other by zero-forcing of the correlation between the two outputs. Dynamic

behavior of the other two structures can be similarly analyses.

Following the notation in [51 the two inputs to the interference cancelled are given by:

xi(t) = s1 (t) + a1S2(t)
x2(t) = a2 1 (t) + s 2(t)
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where a, and a 2 are unknown complex numbers, sl(t) and s2 (t) uncorrelated signals. The

separation is attempted by applying complex weights w, and w2 to the inputs to obtain

(possibly scaled) estimates of the signals.

MO = y1 (t) = XMt) + wIX 2 (t)

g2(t) = y2(t) = w2zI(t) + X2(t)

Based on considerations of complexity and bandwidth, error functions are chosen to control

the separating weights. Estimates of the error functions are integrated to form the weights.

In this implementation a dither series is added to the weights, and the error functions which

are derivatives of easily calculated functions are estimated in this way. Thus. the weights

are composed from the controller output u,, and the dither sequence w,

w, = W + n n= 1,2 (1)

The dither sequence is scaled by a small constant it, chosen so that

S<< IWCl n = 1,2 (2)

The complex dither sequences, w n = 1,2, are produced from two uncorrelated pseudo-

random sequences by staggering the real and imaginary part.

wD(t) = wflR(t) + jwD(t) n = 1,2

where j is the square root of minus one. Thus

E[wDK(t)WD(t)] = 0 for K,L= R,I

where E [.] is the expectation operator. This implies

E [w1(t)w 2(t)] = 0
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II. THE POWER CORRELATOR DITHER CONTROLLED SIGNAL

SEPARATOR

This scheme of separating the signal involves a trade-off between complexity and band-

width [4]. It is composed of two loops, one is controlled by the power in one of the outputs.

the other by the cross-correlation of the two outputs. The power controlled weight, which we

deal with first necessitates estimating the derivative of the power function with respect to the

controlled weight. The second weight is controlled directly by the sample cross-correlation.

and therefore no dither has to be added to it.

2.1 The Power Controlled Loop

The output, the power of which controls the first weight is

yI(t) = (1 + wI(w 2 + a2 ))s, + (a, + w1 (1 + aw 2 ))s 2  (3)

Substituting (1) into (3) and dropping the dependence on t we have

y, = (14+ (w,c + j,,,,,)(W2 + a2))31 +
(a, + w, + wf')(1 + aW 2 )32

= 1 + wC(w 2 + a2 ))S1 + (a, + wc(1 + aw 2))32+

+A ((w + a2)S1 + (1 +a 1i2 . 2 w'

Where we used (2) to disregard entries with it'. Taking the power of Y, gives

1(1 + WCI(W 2 + a2))s, + (a, + w,(l + aIw 2))52 i +
+21AR [((I + WC(•2 + a2))SI + (a, + w,1(1 + aIW2 ))S 2 )

((w; + a;)s + ((1 + a~wc')$;)WD)

where the superscript " denotes the complex conjugate and R (-) denotes the real part. When

we average the power over a proper time period, we can assume that 7, 73 = 7,"-2= 0. thus

lyj2 = 11 + W i( 'W2 + a2 l 2 Is,1 + jai + w{(1 + aIW 2)1 2 IS21*2

2 [((1 + WIC(W2 + a2))(w; + a;•)Is 12 +

(a, + wc•( + aIw2))(1 + a;w;)2T12)•w•-1
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This signal is passed through a capacitor which we will assume ideally suppresses all entries

that do not depend on wD or wn"

1Y1 -- "IAc = 2j [((1 + wc(w 2 + a2 ))(wý + ah)lsl i2 +

(a, + wC(1 + aW2))(1 +a;w;)Fs-212) wDf]

Taking the product of the above with the dither w, gives

e= 2ti ((I + w,(w 2 + a2))(wC" + a)S 112 + (5)

(aI + wC( 1 + a Iw 2 ))(1 + a w')T12) + (6)

,, ((I + u{*(w; + a))(w2 + a2)I 112- + (7)

(a + wc.(1 + a;w))(1 + aWl2)TIs2) (• (8s)

We used IwDI 2 = 2, which follows directly from the definition of the dither signal.

The control signal is next passed through a filter with the response

WC -g
1+ 7P

where p is the Heavyside differentiation operator. Note that (wM)2 = -2jw1 wfp We will

choose the time constant r in the filter to be such that the time average -2j(u4 wD',) can be

substituted for (wD) 2.

d 1l2 1SI2+ +aw2fs1])'=
(1 + ry + 2gjA [lw 2 + a2 + + a(9,,2.2

-2g/1 [(W2 + a2 )'ISTF + a 1(1 + a,)WISi•l + (9)
2]A[LW2 + a2j 1u 21S12+ Ii11+ w2T271 Wi (WIRIw 1) 4.(10)

-2gi[(W 2 + a2H) I 2 a( +aW2 )FS2 r (tVIRW 1) (11)d

The operator notation was replaced by the regular d notation. The terms in (9) through

(11) have the following interpretation. The first term is the desired one. for in the steady

state, when dwC = 0. it leads to

- 2g/1 [(w2 + a-2 )-T' + ai(1 + aIw 2 )*S2 2]
I + 2glAG
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with

G = 1� + a21iFS F + 1I + aIw 2I 2 (12)

This is the optimal solution for the power controlled weight, provided

I << 2gpG (13)

(see [31 equation (30)). The rest of the terms, as well as the dither added to w, will cause

degradation of the separation, relative to the optimal value predicted in [3].

These must be held to an acceptably small level. The terms in (10) represent the cross

coupling of the real and imaginary parts of wC, and thus affect its dynamic performance. In

(10) the coupling is weighted by the correlation between the real and imaginary part of the

dither sequence w.

Taking into account at first only the contributions of (9) and (10) we obtain the following

differential equation

dwI = -(1 + 2gpG)wc - 2#gA(wwD )w(14)7 Tt 1 I I IR 1(14)

The differential equation (14) can-be written in vector form

d r -~ "[1 + 2g1LG 2gs(W~w iD 1 1

Tdt [ C [29pM(wDR w D) 1 + 2gAG W J

-2g•s ((Wa + +I)I]• +(2u + a2)8IS +
-2gA (a, + ji 2 )

The eigenvalues of (15) are given by

A, = I + 2giG(1+ (ww) (16)

A2 = 1+ 2glG(1 - (wIw )) (17)
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Thus the system is stable only if
(WD WD

1+ 2gliG > 2gpG(w Iwf1j

and taking (13) that means

1>(wRwf1 ) (18)

The term in (11) is expected to affect mainly the steady state response of wC. We are

especially concerned in how it affects the sensitivity of il to s2. Thus we define yli and Y12

as follows

y1 (t) = y11s 1(t) 0+y 12s2(t) (19)

yu(t) = I + uC(to2 + a 2) + AWD (w2 + a2) (20)

y12(t) = al+uw(l+alw 2 )+uw'(1 +alw2) (21)

Rearranging (9) and (11) we have

C -2gp [(w2 + a2)*IS +12 + al(l+ a+w2)' S2
Wi + rp + 2gpG

+ -2gA [(w2 + a2)T S112 + a*+ aw 2 )T2 ] IwfRw (22)
1 + rp + 2gliG

Substituting (22) into (21), and using the definition of G in (12), we get

Y12(t) a, - 2gu(w; + a;)(1 - ala2)151 2

I + rp + 2gliG

+ -2gj [(W2 + a2)S 12 + a;(1 + aW 2)L52121 ( + al w2 )WRwD11)

1 + rp + 2gtG

+ muw (1 +alw 2 )

To get the sensitivity we are seeking we will consider E [yu12].

E [IY1 121 = at - 2gMz(w; + a;)(1 - aia2 IS1j 121

+ a•(1 +aiw 2 )1 [2 E 1 + rp + 2gLG2

"+ 2 A2 1 +ajw 2 12

121



To evaluate (23) we will use the fact that the sequence chip rate -1 is much greater than the

closed loop bandwidth. We will approximate the sequence by Gaussian noise with the same

power density value of 2,-•watts over the closed loop bandwidth. For a low pass filter, the
he-rtz

two sided noise bandwidth equals the reciprocal of twice its time constant. Therefore

(WWD ] 1 2'T(I + 2pgG)

+ l+rp+2gAG J (1+2AgG)2  2r

SrT 1

1+ 2AgG

Substituting in (23), the equation reads

E [Fyi212] a, a- 2gp(w + a)(1 - ala 2)sj 2 12 (24)
1 1 + rp + 2gliG
47rTg2M2

+ x (25)

11 + a1w 121(w2 + a2 )[ISj 2 + a(I + alw2 )s)2 12

1 + 2/igG

+ 2ju211 + aiw 2 12  (26)

The expression in (24) dominates the right hand side of the equation. Under the assump-

tion I << 2g,,G it will yield

E [1u1212 =(w + a)(1 - aia2)11121G2

Which is exactly the one in [3]. (25) represents the effect of non-zero chip duration. and will

be made small by making the chip duration as small as possible. It will increase with Ag.

(26) imposes the limit on the size of g. This will make obtaining a large jig hard without

a large g. The size of g is in turn limited by considerations of stability, which will come up

if the loop is not simply first order.

2.2 The correlation controlled loop

In this loop the weight is controlled by the average power in the sample correlation

between the two outputs, IFy';•2 . As is proven in [3], the relevant signal in the derivative of
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the power is the cross-correlation itself, thus we do not need to add a dither component to

w2 . The averaging time constant is chosen such that the output depends only on the power

in the signals s, and s2.

The inputs of the correlator are the two outputs of the circuit. Recall

yj' = ((s, + aIs 2 )(1 + wIw 2 ) + (a 2s1 + s 2 )wl)"
= s;(wC(w; + a2) + 1) + s;(w7(a;w; + 1) + a;)

Y2 = (si + alsi)w 2 + (a 2s, + S2)
= Sl(w2 + a 2) + s2(alW2 + 1)

Averaging the product of the two inputs gives

7;7 [sill (wý(w + a;) + 1)(w 2 + a2 )+
Is212 (w(a;w; + 1) + a;)(aIW2 + 1)

Due to the averaging the terms that involved s;s2 or s.s; will null.

This is the error signal e2. It is passed through a filter with the response of • andl+rp)

thus w2 obeys the differential equation

d

+drt-W = -9 (w7(w3 +a;)+J)(W2 +a 2 ) (27)
+182 12 (wl*(a;w; + 1) + a;)(a Iw2 +1)

The steady state response will be

Ist 2 (wý(w; + a) + 1)(w 2 + a2 ) + s1212 (w7(a~w; + 1) + a)(aIw2 + .)

w 2g(28)

Provided g is chosen large enough, the right hand side of (28) will be almost zero. This will

give us the expected response for w2.

To study the dynamics of (27) around the solution, w2 = -a 2 we will linearize the

equation. Let f = w2 + a2. We will assume e small enough. so we can disregard entries with

2.

d 1-ldt = -(1 + g(1i712 + Fs21F Ia1 2))E - g1s 212 (w~a1 (1 - ala 2)'f + w~a'(l - aja 2)(2)
+a2 - gIlS2 2 (1 - aia2 )(a; + wý(1 - aja2 )')
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To obtain results on the stability of (29), it can be represented in vector form. The matrix

in this representation has the following eigenvalues

A2 = •(1 + gjS + gjiJa2 l2I)
A2 = •(i +9g 2 +g2-- ja~ 2 +g 12 R(wa;(l - aa 2 )))

A, is obviously always negative. A2 is also negative provided

1 +glS112 +91S2 12 jai 2  > IR(wia;(1 - aja2 )) I
g912 12

Thus, the equation is stable if a is not too small.
13212

The steady state response of E is

Es = 1-(1 +(+gjS 12 +g1--12jai l2 ) x (a2-g[ 21(1 -a1 a2 )(w,(1 -aia 2 )+a,))
+ A-'AS 2' 12 a'(1 - aia2 ) x • (wl(a2 - g212(1 - ala 2 )(w,(I - aja)+a,)')) (30)

Using (30) and g >> 1 we can get

AI = AA2 [(JSi1 + Is1l2 1l1 2)x ( 2 12 (1 - aa 2 )(w I(I - aa 2 ) + a,)) (31)
+jls 2 12-a1 (1 - ala2),x (wIG(- 12(1 - aja2 )(w1 (1 - aja2 ) +a,)*))

If we now assume that wi f " we will get that the steady state E is very small. Thus

if 6 = wi + << 1, (29) will become

1s1 2 f- j2F (1-=ajd 'E* + Is2 12 6PR((ai(1 - ala2)') = - I. - aia2  (32)
S, -Kin I - afa 2 126"

From (32) it is clear that kiE will get smaller with 161, and will do so in a reasonable pace.

proviq ki- is not too large.
is, l1
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III. CONCLUSIONS

Using the proposed model for the weight controller, we obtained a differential equation

for the constant part of the first weight, wc from (14)

r =d c (1+ 2guG)wc - 9jgA(WDWf~WC

- 2gA [(2, + a2 )IS1 2 + a 1(l + aIW2 fiTSF

where, G = 1w2 + a2j12 + +1 + aIw 2 12" 12 , wD' is the dither sequence added to the

weight, and (.,-) denotes the time average of the product.

For the weight w2 we examined its behavior in the vicinity of its steady state. w'2 = -a 2.

By letting c = w2 + a 2, and assuming f << 1, we showed that £(t) is controlled by the

following differential equation (29)

d la,_ 12)"-r• =- (1+ g(0S + IS212a' ))e

- 2gjS 2 wjR(a,(I - aa 2 )lf)

+ a2 --1S2 12 (1 - aja 2 )(aj + w7(1 - ala 2)')

Studying the differential equations in (14) and (29) we obtained the conditions for con-

vergence in the mean of the weights and their steady state values. We also studied the

sensitivity of the quality of separation to the power of the dither and other system parame-

ters.
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Figure 1 A diagram of the Forward/Backward bootstrap blind signal separator with

dither control.
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APPENDIX E

SIMULTANEOUS SPATIAL SEPARATION AND

DIRECTION-OF-ARRIVAL ESTIMATION OF

WIDEBAND SOURCES USING

BOOTSTRAPPED ALGORITHMS '

by

Hagit Messer and Yeheskel Bar-Ness

ABSTRACT

This paper presents two versions of a novel adaptive algorithm for simultaneous spatial

separation and direction finding of two wideband, uncorrelated sources received by two

separated sensors. The algorithm provides estimates of the sources (direction of arrival -

DOA) and outputs two signals which are filtered versions of the source signals. We describe

the different configurations of the separation system and study sensitivity of the two signal

estimates to the accuracy in estimating the DOA of the sources. We show that perfect

separation is achieved even if the DOAs are not perfectly estimated. at the cost of degradation

in the output signal-to-noise-ratio. Then we propose implementation of an adaptive control

algorithm and we discuss the steady state performance in the presence of an additive noise.

We compare the complexity, performance and noise immunity of the two versions of the

proposed algorithm.

'This work was partially supported by a grant from Rome Air Force Lab, (AFSC), Griffis Air Force Base,
N.Y., under contract F30602-88-D-0025, project E-21-T49, Task C-2-2404.
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I. INTRODUCTION

Fig. 1 describes the scenario where two sources are received by an array of two sensors.

The outputs of the two sensors are:

zi(t) = s 1(t- D1 ) + s2(t- D2 ) + eI(t)

z 2(t) = sl(t + Dl)+ s 2(t+ D 2 ) + e2(t) (1)

where si(t) and s2(t) are the signals radiated from the 1st and 2nd sources respectively. ei(t)

and e2(t) are the additive noise processes in each of the sensors and D, is given by,
d

Di = dsin9i i = 1,2 (2)
2cs

d is the distance between the sensors, c is the propagation velocity and 0, . I = 1. 2 is the

bearing of the ith source. We assume that the random signals s1 (t), s2(t), el(t) and e2(t)

are mutually statistically uncorrelated.

In this paper we present adaptive systems which receive z1(t) and z2(t) at the input,

deliver as output signals yl(t) = i 1(t) and y2(t) = .i 2(t), and simultaneously provide the

estimates of D, and D 2 from which the bearings of the two signals 01 and 02 can be derived.

However, in order to enable separation, some information (statistical or physical) about the

signals si(t) and s2(t) is required. This information will be utilized in the design of the

control loop. It enables initiation of the separation procedure. [f further information is

available (such as knowledge, for example, of one of the two bearings) the same algorithm.

which then bootstraps itself, will result in performance improvement.

In fact, the model described in this paper is applicable to many communication and

signal processing problems which can be put in three groups: bearing estimation (source

localization), source separation, and interference cancellation.

9 For bearing estimation '(source localization) one is interested in b, and b2 and not in

the signal estimates .i(t) and . 2 (t). In this application, particularly in active radar or

sonar, much is known about si(t) and s 2(t).
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* For source separation, the objective is to get the cleanest possible version of si(t) and

s2(t), while D1 and D 2 are nuisance parameters. Indeed, in some cases there is some

prior knowledge about 91 and 02 which can be used to restrict the possible values of

D, and D2.

* For interference cancellation, the objective is to get a clean replica of one of the signals.

say sl(t) while the other signal, as well as D1 and D2 are nuisance parameters which.

in some applications, are partially known.

If the signals sl(t) and s2(t) are narrowband signals, centered around a known ;o, then

a complex envelope notation can be used and Eq. (1) can be written as

,1 - e-JoD1 s+ e-joD2 2 +e 1

z2 = eDisi +eJ" 2s2 +e 2  (3)

so the unknown model parameters are represented by the complex constant all = ex×:.( -jI'oDi).

a 12 = exp(-jwoD 2 ), a21 = a, 1 = exp(jwoD 1 ) and a22 = a!2 = exp(jwoD 2). Eq. (3) can

then be written in a matrix form: z = As.+ e, where A is a matrix which is a function of two

unknown complex parameters. The linear separation problem resulting from (3) was studied

and discussed in many papers[1-5] and bootstrapped algorithms, similar to those proposed

in this paper, were shown to be useful in its solution. However, such problem formalization

is not applicable for wideband signal environment, where Eq. (3) is no longer a proper rep-

resentation of Eq. (1). In such a case, the received signals are not a linear function of the

unknown model parameters, and the model is inherently non-linear. We will show that the

bootstrapped principle used in narrowband signal separation can be adapted to solve the

wideband separation problem.

The wideband DOA estimation problem, that is of estimating D, and D2 in Eq. (1),

has attracted many research efforts in the last decade or so. Different algorithms for DOA
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estimation were proposed, very few of them are adaptive. However, the estimation of the

source signals is rarely considered. Our proposed algorithm can be regarded as an adaptive

wideband DOA estimation algorithm as well as a signal separator and, in particular. a

wideband interference canceller

The paper is organized as follows: We first study the different bootstrapped configu-

rations, we discuss the topology of possible two-inputs two-outputs linear systems which

contain variable delay lines and summers only, and we present two configurations for which

separation of the signals sl(t) and s2 (t) is achieved if and only if the variable delays equal

D1 and D2 of Eq. (1). In Section 3 we study the sensitivity of these two structures to the

deviation of the variable delays from the desired solution. We present a small-errors analysis

of the second order statistics of the outputs, which shows the separation performance of the

adaptive algorithm in a tracking mode of operation. We prove that with both configurations

source separation is guaranteed in this mode of operation. Section 4 discuss the adaptive

algorithm from the theoretical and practical points of view. We show that if the two signals

to be separated do not have exactly the same spectrum. then the algorithm converges to a

state of total signal separation with only ambiguity in assigning an output to a signal. We

also discuss the effect of additive noise on the steady-state performance of the proposed two

versions of the algorithm. Section 5 presents a comparison of the two configurations of the

bootstrapped algorithms, draws guidelines for the question of when to use each of them. and

emphasizes differences between the proposed algorithm and the one developed for narrow-

band sources. Important issues such as stability of the algorithm, rate of convergence. etc.

are studied in an ongoing research.
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II. THE DIFFERENT CONFIGURATIONS OF THE DELAY CONTROL

SEPARATION ALGORITHMS

We suggest that the delay-control separation system consists of pure delay lines and

summaLion devices only. In the steady state the delays in this system are the estimates

of the delays in the mixing models (Eq. (1)); that is r, = 151 " 72 = b 2. The outputs

of the system, yl(t) and y2(t), are used to control the delays r1 and r 2 , following certain

optimization criteria.

The frequency-domain mixing model of Eq. (1) can be described by the matrix

M(•)= e-j•°D, ejwD2 ]2 = func(DI, D2 ) (4)

In open loop, the separation system is a linear system having the transfer function matrix
H(w) = ()HI(w) H 1 2 (W) ] func(r1 , r 2 ) (5)

H~w)- H21 (W) 1122(W)j()

Now, since

Y(wj) = H(w)Z(w) = H(w)[M(u;)S(w) + E(w)j (6)

then perfect separation of the signals si(t) and s2 (t) is achieved if the matrix T(;)

H(w)M(w) is a diagonal matrix.

If narrowband signals are assumed (such that the model of Eq. (3) is valid), three different

bootstrapped separation structures can be used [2]. These structures are the backward-

backward (BB) configuration. the forward-forward (FF) configuration. and the backward-

forward (BF) configuration [3]. When adapting the bootstrapped principles to the wideband

case we found that the BF scheme must be excluded, if the filters Hi(w) and H 2(w) (see

Fig. Al) are required to be pure delay lines (see appendix A).

The BB structure discussed in this paper is a special case of a feedback topology structure

introduced in [41 for separation on N source signals using an array of M > N sensors. It is

shown there, that this structure is a feedback implementation of the least-squares estimates
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of the source signals, if the direction of arrivals of the sources are perfectly known. This

paper considers the special case where M = N = 2. However, its results for the BB

configuration based on the topology presented in [4] and the control algorithm of section 5

can be generalized to any M > N. The generalization of the FF configuration is still to be

studied.

For the two separation structures, the backward/backward and the forward/forward, we

first find the transfer function matrix H(w) and use it to exhibit the output power spectrum

matrix, and its properties. From [6],

Svy(w) = H(w)Szz(La)H"(w) = T(,,)S,,(w)T'(w) + H(w)Se,(uJ)H*(u) (7)

where T(w) = H(w)M(w) is the transfer function matrix between the signals to be separated

and their estimates.

2.1 The Backward-Backward Configuration

Fig. 2.a depicts the basic structure of the BB configuration. The transfer function matrix

of this system is given by:

HB(W =[ejd? 2  -e 1-HBB( 2) 2sinw(r1 - r2 ) - e-w1 (8)

Using Eq. (4) we have

TBB(W) = HBB(W)M(W)

1 [sin a(D , - r2 ) sin ,(D2  - -2) ](9)
sinw(r - -r 2) sinW(r 1 - DO) sinuJ(r1 - D2) J

From Eq. (9) (and Eq. (6)) it is easy to see that if r7 = D, and r2 = D2 , then TBB(W) = I and

a perfect separation of the signal is achieved. The output signals are then y1(t) = s1 (t)+ hi(t)

and y2(t) = s2(t) + ii2 (t) ; where ha(t.) and h2(t) contain no signal components.

The system of Fig. 2.b is exactly equivalent to that of Fig. 2.a. However, if one can

tolerate the outputs to be a delayed versions of the signals to be separated, p1(t) and p2(t)
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can be regarded as the outputs of separation system, which is somewhat less complex than

that of Fig. 2.b. For the system of Fig. 2.a, the transfer function matrix between and ý is

given by,

- -BB (W ) =[ 
1 -e-J2w• 2

-2jsinw(ri _ r 2 ) [-eJ2wT 1

= 2sinw(w -- r2) --e 2)-T1j+W2 e-(-'1) (10)

and

I e-3 "'• sinw(D - r2 ) e -- ',J sin.;(D4 - r2)

sinw(rj - r2 ) eJ"2 sinw(r1 - Dj) eJwr2 sin(r 1 - D:)

"tBB(W) is a diagonal matrix for rl = D1 and 72 = D2 , but it is no longer the identitv matrix.

I.

Assuming that the signals to be separated are uncorrelated, wide sense stationary (WSS)

processes with power spectral density (PSD) Si(w) and S2(w), respectively, the PSD matrix

of the outputs of the BB configuration is given by:

Sw) si w( -7)(S ( ) si n( -1 -. I) sin w(D 1 - r2)
+i 2 S2(w, sinw(D 2 -T2) sinw(r 1 -02)

sin w(r-r 2 ) sin u'(r 1--r2 )
SBB(L,;) Si (w) ~~sinw•tr, -D0j) sin w( D -r2 + 2W iwri•)sn"(r-

)sinw(-"l-'2) sinw(r 1 -r 2 )j. t.sin w(D2-72) sin -(-I -D2) s, (L,,\t sinw(ri -OD ) ) 2 sin w(r - D-z)
L +Si 2 ( •-) 2) sinw((r1-12) ssinw(rt-Di) ) + S2(w)( sinw(rWr2)

+ V(w) c o -cosw(r - -r2 ) 1
2sin 2 w(7 -_ r2 ) 1 -cosw(Cri - r2 ) 1 I

Eq. (12) is derived from Eq. (7) using Haa(w) and TBB(W) of Eqs. (8) and (9). where we

assumed that the noise processes are uncorrelated and have equal spectra Se, (') = S., (w) =

N(w). It can be shown that SBB(w), which is related to HtBB(w) and tBB(w) of Eqs. (10)

and (11) is very similar. The only difference is that the off-diagonal terms are multiplied by
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From Eq. (12), the output PSD at one of the outputs, say yl, is given by,

S( = S1(W)(snwD_- r2))2 + (, sinw(D 2 -r 2 ) )22 N()
sin(w(rn - r2 ) sin w(r - r2 ) + 2sin2 (rl - r2 )

and a similar term for the power spectral density of the other output. The cross spectrum

between the outputs consist of three terms each related, respectively, to the signals to be

separated, sl(t), 32(t), and to the additive noise. Note from (13) that at the output. y1(t)

the term related to si(t), for example, can be viewed as having resulted from passing si(t)

via a filter with transfer function si nw(D 1 -•-) This transfer function is highly non-linear in

the unknown parameter(s) and their estimate(s). Therefore, although a pure delay line is

a special case of a linear filter, the problem discussed here is very different from the linear

model in [5-7] and in [8], where the unknown linear filters are assumed to be rational (FIR

or MIR) filters of unknown coefficients.

Also note that the possibility of rl = r2 must be avoided, and that at w = 0 the output

noise term diverges. Therefore, this BB configuration can only be used with band-pass sig-

nals that impinge on the array from directions not very close to one another.

2.2 The Forward-Forward Configuration

Fig. 2.c depicts the basic structure of the FF configuration. The transfer function of this

system is given by,

[ eU --e'r 1 = -2jsinw(r" - r2 )HBB(W) (14)
HIFF(W) --- _eJwrT eJW1.1

Using Eq. (4) we have,

TFF(W) = HFF(W)M(W)= -2j[ sin w(DI - r2) sin w(D 2 - r2) ]

sinw(r1 - D1 ) sin w(r1 - D2 )

(15)

Note again that if r, = DI, r2 = D2 the two signals are indeed separated. However. each

of the two outputs rather than being a delayed version of the corresponding input, consists
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of superposition of delayed versions of the separated inputs. In fact, yl(t) = s1(t - z1) -

s1 (t + A) + fi(t) and y2 (t) ="s 2(t - A) - s 2 (t + A) + i 2 (t), where A = D, - D2 and iij(t)

and fi2 (t) contain no signal components. Thus the separated outputs are distorted versions

of the input signals, and for applications where such a distortion cannot be accepted, the

BB configuration should be used. On the other hand, if the signals' waveforms are nuisance

parameters and one is mostly interested in the unknown delays D, and D 2, then the FF

configuration of Fig. 2.c, or its equivalent simpler version Fig. 2.d can be used. [n the

system of Fig. 2.d, the outputs p1(t) and p2(t) decouple the inputs if D, = r, and D2 = -r2,

so ý1(t) contains no part of s2(t) and p2(t) contains no part of si(t). Both outputs, however.

contain distorted versions of the decoupled inputs.

The power spectral density matrix for the FF configuration is given by (see Eq. (7)).

From Fig. 2.c,

Si(w) sin 2 w(D 1 - r2 ) Si(w) sinw(r1 - Di) sinw(D 1 - r2)
+ S2 (w) sin2 w(D 2 - r 2) + S 2(w) sinw (D2 - r2 ) sin w(r 1 - D2 )

SFF(w) = 4
S1(w) sinw(r1 - DI) sin.w(D1 - 72) S,(w) sin 2 (DI- r")

+ S 2(w) sin w(D 2 - 72 ) sin w(( 1 - D2) + S 2(w) sin2 ,;(7r - D2 )

+ 2N(w) [-CsW(1 - 72) ]=4sin2 w(7 1 - 72)SBB(W) (16)

By comparing (16) with (12) we notice that the power spectrum and cross spectrum of the

outputs of the BB and FF configurations differ only by 4sin 2 w(r1 - r2 ). The FF config-

uration can be regarded as containing zeros-only, or FIR system, while the BB has poles

and zeros, or [IR system. As such, the FF configuration can handle low-pass signals too.

and is not sensitive to situations wherer, = r2. Also notice that the BB configuration can

be looked upon as an FF configuration, followed by a 2 x 2 system with a transfer function

matrix -ri- --_I, where I is the 2-dimensional identity matrix.
4 smn w(/? -,r2)
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III. SMALL-ERRORS ANALYSIS OF THE OUTPUT SPECTRUM

In both FF and BB structures, r1 = D, and r2 = D2 result in perfect separation of the

source signal. If D, and D2 are unknown, they should be estimated. To study the effect of the

estimation errors on the separation performance of the two configurations we next find the

cross-spectrum of the outputs under small error assumption; (i.e., ItpiI = It, - DI << IDi,

i = 1,2).

3.1 The Output Power Spectral Density Matrix

We look at the linear approximation of the output power spectral density matrix. i.e.:

SY(W) = S11(w) 144=102--0 +01(ai[ uj k10=0~2=01 + V)2[ 99SYAw) I *1=W2=01 (17)
di 1  4902

where 4''1 = r, - D1 ,and 02 = r2 - D2 are sufficiently small.

From Appendix B we know that the linear approximation of Eq. (12) is

[ S(�S )(I1 - 0 w) (?IkSI(w) - Vk2 S2 (W)) (A) 1
SBB(WG) • [(•IS$(1 ) - ?P2S2(WJ))Smn(wA) S 2 (W)(I + •2)2fg~w)

1 tg(wa)(-01 + 02) - cos(W%)

N(w) + w(1 + cos2(WA))(-- 1V1 + W2 )+ 2 sin2(p.)- cos(•/.A)
Co (A)_1+I2 2gw2si+f(I +0 -cos2(w ))(-+ + W2) 1 2+ - (-01 + V2)

(18)

where A = D,- D 2. Similarly, for the FF configuration, applying Eq. (17) on Eq. (16)

yields (see Appendix B):

Si (w)[sin 2 (wA) - ,P2 wsin2(wAz)] wsin(wA)(,PSi(w) - W2S2(w))
SFF(W) z 4

w sin(w.A)(iiS,(w) -- i, 2S2(w)) S2(w)[sin 2 (wa) + k'lw sin 2(wA)]

+ 1 (01 - 0'2)w sin(w1) - cos(€,'L) 1
+ 2N(w) [('i - i02 )w sin(wA) - cos(wA) 1

(19)
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Note that for both configurations, small errors in the estimates of D1 and of D2, such that

I ' I "• 0, 1 v-" ;z: 0 but not identically zero, still guarantee separation of the two signals. The

power spectral density of each of the outputs (diagonal elements in (18) or (19)) contains a

filtered version of only one of he signals (plus noise).

From Eqs. (18) and (19) we notice that:

1. For ?bl = 02 = 0 the signals sl(t) and s2 (t) are separated so that at yi(t) we have no

component of s2 (t) and at y2(t) we have no component of s1 (t). This holds in both

configurations and is still true if ip1 ;t 0 and 02 z 0. However while for v1 = Lý2 = 0

the output of the BB configuration consists of an exact replica of the input signal. for

01 ; 0 and 02 - 0, this separated signal is a filtered, distorted replica of the input

signal. For the FF configuration the output signal is a filtered version of the input.

when 0, and rp2 are almost zero (small errors) or exactly zero.

2. If N(w) 0 (no additive noise), then w, = 02 = 0 guarantee uncorrelated outputs

(SY2(w) = 0 in both configurations). If neither wi nor W2 is zero the outputs are. in

general, correlated.

3. In the presence of noise, the outputs are correlated even if ip, = W2 = 0.

3.2 The Output SNR

With perfect delay estimation; 11 =W2 = 0. the output signal-to noise ratios for the two

structures are given, respectively, by
S BB fw Si(w)dW

SNRBB - f N S(") dw (20)
fW2 sin• (wa)

SNR F. = 2fw St(w)sin2 (wA)d)

fw N(w)d(
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where W is the processing bandwidth. The inputs SNR are given by;

SNR- = fwSi(w)dwwS)V = f =(w)dw 1,2 (22)

We notice that for both configurations, the cancellation of the other signal (interference)

causes degradation in the SNR -the output SNR is worse than the input SNR (but,

hopefully better than the input SINR - the signal to interference plus noise ratio!). From

Eqs. (20) and (21) we see that as A = D1 - D2 is smaller (the spatial separation between

the sources is smaller), the output SNR is smaller. Notice, however, that the output SNR

is different for the two configurations.

For the case of flat spectral density, Si(w) = P, and N(w) = Pv over ao - W/2 < [wI <

wo + W/2, we have for the inputs SNR, SNR =- = pi, i = 1, 2 and for the outputs SNR

is (see Appendix C),

SNRBB 2piW pi (cos AW - cos 2wo) z =, (23)
SNR, f=~ w - ,inw ;W=

U4m(mA)

SF sin W A

SNRof W a ['+2 sin 2(wiA)d.,=p,(l-cos2wo/-F-' ) i= 1.2 (24)

Notice that if W < wo (a narrowband assumption), Eqs. (20) and (21) yield.

S B 2Si (wo) F;t:2Si (w0) sin 2 WoASNROB ISV(G") SNRFF

S' N(wo)

=> SNRFF = SNRoBB = 2sin2 woASNR', ; i = 1.'2 (25)

That is, under perfect separation and narrowband assumption, the outputs SNR is the same

for the two configurations, while, as can be seen from Eqs. (23) and (24), in the wideband

case it can be very much different. Also notice that in the narrowband case. the outputs

SNR satisfies SNRo, = ySNR, where 0 < y < 0.5, so the SNR degradation is, at least 3

dB. In the wideband case, depending on the relative bandwidth, the maximum degradation

in SNR can be smaller. Clearly, due to the perfect cancellation of the other signal at each of
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the outputs, the outputs SNR are the same as the output signal-to-interference-plus-noise-

ratio (SINR). Eqs. (23)-(25) show that the outputs SINR is a function of the input S..VR

(not the input SINR, which is smaller) and of the weighted spatial separation between the

sources, A.

As suggested by Eqs. (18) and (19), the output SNR in a "small errors" scenario, i.e.,

w, ;: 0 and ý'2 • 0, are different from those obtained with no errors (w, = ?L2 = 0). even

though in both cases the signal-to-interference ratio (SIR) in the two outputs are infinite

(perfect separation).

"The important conclusion from this subsection is that when signal separation is achieved.

the "cost" in degrading the output SNR can be severe. Unless the other signal (the interfer-

ence) input SNR is high. it is not guaranteed that the output SNR is indeed larger than the

input SINR (signal to interference + noise ratio), even in the ideal case where iz1 = L' 2 = 0.

IV. OPTIMIZATION CRITERIA AND SEPARATION ADAPTIVE

ALGORITHMS

A signal separation problem similar to the one addressed in this paper. and which is

highly related to a multi-channel identification problem, is widely considered lately under

different names and/or scenarios (e.g. [81). Most optimization criteria used for controlling

the algorithms are related to the assumptions that the signals to be separated are statistically

independent and that at least one of them is a non-Gaussian process[5-7]. Based on these

assumptions a family of higher-order spectra (HOS) optimization criteria are proposed. The

spatial separation problem addressed in the present paper is often related to cases where the

signals to be separated are both Gaussian (e.g.. passive localization in sonar). The signals

can be assumed uncorrelated (or statistically independent) but no higher-order cumulants (or

spectrum) can be used as optimization criteria. Decorrelation of the output signals. which is

indeed a necessary condition for separation when no additive noise is present. can be used as
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an optimization criterion. In the sequel, we study how outputs' decorrelation can be made

a sufficient condition for source separation in our problem. This is a special case of [81. in

which the outputs' decorrelation criterion was used for any linear-filtered combination of the

two signals. However, the case we study, where the combination filters are pure delay lines.

is of special interest because of the related applications. Also, the non-linear dependencies of

the filter(s) on the unknown parameter(s) r make the use of existing results in our problem,

far from being trivial.

Assuming that the inputs are zero-mean processes, that no-noise is present (N(a) = 0),

and that r, 0 r2 , then from Eq. (12) or (16) we conclude that for both BB and FF

configurations the output signals are decorrelated if and only if

S1 (w) sin w¢ sinw(A - 'k2) S2 (w) sinwW 2 sinw(A + wl) : V•a (26)

It is simple to note that (26) will be satisfied for every w and hence the outputs will be

decorrelated if 01 = 02 = 0. On the other hand if •P # 0 and V2 # 0 we want to find

conditions under which this equation is satisfied, for any 4.

With the small errors approximation of Eq. (18) or (19), we get. instead of Eq. (26)

IPISI(W) = 0'2S2(w) (27)

Since wý1 and 'V2 are to be constants (in the steady state of any algorithm). Eq. (27) is

satisfied for ipj # 0, V2 # 0 if and only if S1 (w) = aS 2(w). That is

If the signals have the same spectral shape, the outputs can be decorrelated with

?Pi and 02 being non-zero, but small, only if ?,l /?k2 = 1/P12, P12 being the power

ratio between the signal st(t) and the signal s 2(t).

If Si(w) # aS2(w), the only solution to Eq. (27) for every w is wi = V2 = 0. Thus, we

conclude that, at a small error scenario, then if the input spectra are of different shape (and
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that N(w) = 0). a necessary and sufficient condition for *1 = 0 and WP2 = 0 is decorrelation

of the output signal.

Is this result valid also if no small-errors assumption is used? Given that S,(•) # aS2((),

then beside ?kl= -2 = 0 (26) is satisfied only if

1. 0Pi = 0, 1',2 9 0 and A = -0, = 0 which is equivalent to D, = D2.

2. Il = 0, 0j2 6 0 and A = lTP = 0 which is again equivalent to D1 = D2.

3. A + 01' = 0, A - 0P2 # 0 which is equivalent to A = 02 = -- l. This condition leads

to r, = D2 and r2 = D1. That is, signal separation in the opposite direction (y1 (t) is

proportional to s 2(t) and y2(t) is proportional to si(t)).

This ambiguity is inherent in the model identification problem[e.g., 8].

Thus, a proper criterion for separation of two uncorrelated Gaussian signals of

different spectra is decorrelation of the separation outputs.

If the signals have the same spectral shape (so S1(w) = aS2(w)), a discriminator, which

exploit slight prior information about distinuishability of the signals to be separated. can be

used to trigger the algorithm as suggested in [1] for narrowband signals.

4.1 Decorrelation Algorithm

Decorrelation can be performed both in frequency domain (imposing Sy,."(,:) = 0.V,.)

or in the correlation-lag (time) domain ( imposing Rya,(a) = 0.Va) 2 . Because of availabil-

ity of hardware components, we are interested in time domain algorithms. The algorithm

adaptively controls T1 and r2 to reach of outputs decorrelation. That is, we need to solve two

delay control equations simultaneously, in order to obtain their unique solution w1 = -2 = 0.

2Notice that for the two configurations (BB and FF) the frequency domain requirements result in the
same equation, while the time domain requirements are inherently different.
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The time domain decorrelation criterion introduces an infinite number of equations in the

form:

E{y 1(t)y 2(t-a,)} = R1 (ai,r 1 ,r 2 )=0 -o < a, < 00 (28)

(E stands for statistical expectation). For any choice of a, and a 2 we can solve simultaneously

Rv, (al;rl,r 2) = 0 (29)

R,1•,(a 2 ;T1 ,r 2 ) = 0 (30)

for rT and r2. The choice of al, a 2 should be such that Eqs. (29) and (30) are linearly

independent.

Under small-errors conditions and no-noise assumption, then using Eq. (18) for the BB

configuration, Eqs. (29), (30) become:

- sin(wA) -sn(w) = 0 (31)
0 sin(wS() sin(wl)

00 wS(W) wS2(w) eJWa2 d• =0 (32)

7i -. o sin(wz~) e a2 J-0o sin(wA) e(2

If a1 $ a 2 then cos wal = cos Wa2 only for discrete point of w which has a measure zero on the

real axis w. Therefore, we have coswa l 3 coswa 2 on set of intervals with a positive measure,

and hence the set of equations (31) and (30) are linearly independent. Finally we conclude

that if the algorithm brings the controlled delays to the vicinity of 01 = P2 = 0. then the

algorithm converges to these values. Similar argument apply to the FF configuration and

equation (19).

The proposed control algorithm is depicted in Fig. 3. From which we note that it reaches

a singular point only if R1 t(ai) = 0 and similarly for r'2. Assuming that w0 is the center

frequency of the processing bandwidth we suggest, as a rule of thumb, to choose a, = 0 and

a 2 =-- .
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4.2 Practical implementation considerations

1. Practically, a, and a2 in Fig. 3 can be changed during the adaptation. The choice of

these delays may have great effect on the rate of convergence, even if the steady-state

values are the same. This subject is worth further investigation.

2. For the BB configuration and the narrowband case, decorrelation criterion can be

replaced by minimization of the output powers[3]. In the more general wideband

case, one can show (see Appendix D) that decorrelation of the outputs is a sufficient

condition, but not a necessary one for minimum power, so that minimum power criteria

can not replace decorrelation. In particular, for the delay control case since the output

power is given by,

Pi = 0 Sv, Y,(w) dw I-= 1,2 (33)

a necessary condition for minimum power is = 0, 1 0 j i,j=1,2 for which it is

sufficient to have:

S =0 ; -riSY2 1 = 0 ; Vw (34)
aTr2 Y1!Irl 34

From Eq. (12), with N(w) = 0, we get,

a 2w( sin w(rl - Di) sin w(D1 - r2)
i972 sin= [S(rw - r2) sin(w(i) - r2) sin(nr 1 - r-)

sinw(D2 - r2 ) sinw(r, - D2 )
+ w(r1 - r2) sinw(r1 - r2 )

2w27- 5Y2 Y (W) (35)
sinw(r1 - r2)

and similarly,

-Ssin(r - r2)(36)
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We see that imposing decorrelation of the output signals (S., ,(w) = v, (;) = 0, for

every w) is equivalent to imposing Eq. (34). Using Eq. (35) or Eq. (36) in Eq. (33) we

have, hPave (-1)'_oo wSyi,(w) dw ; 4j I=1.2 (37)
-jr, = 7JT sinw(rl - '2)

Thus, decorrelation of the outputs, i.e., S,,11 2(w) = 0 for all w, is sufficient, but not

necessary, for minimum power. Therefore, the criterion of minimum power used in the

narrowband case, does not necessarily leads to the desired separation in our case. [A

special case is that when Sy, (w) = constant, i.e. - the cross spectrum is flat over the

frequency band of interest then decorrelation is a necessary and sufficient condition for

minimum power].

3. In practice, decorrelation of the outputs 01 and 92 in Figs. 2.b and/or 2.d is sufficient for

separation, and therefore these outputs can be used as inputs to the control algorithm

of Fig. 3. If one can bare constant delay of the outputs then the part of the scheme

which uses 9, as inputs to produce yj can be removed, resulting in a simpler separation

scheme.

4. The optimization criterion used assumes no noise (N(w) = 0). However, the noise can

have dramatic effect on the performance of the algorithm as in the narrowband case

[3]. We discuss this effect under the "small errors" assumption:

By comparing the off-diagonal entries of Eqs. (18) and (19) we see that at u', - Oa. 2 • 0

the cross-spectrum function of the separator output is approximately zero for the two

configurations as long as N(w) = 0 and sin(wA) # 0. However, the effect of the

additive noise is dramatically different for the two schemes. The average cross-power

noise for the FF configuration is given by,

N1F = -1./2 2N(w)[cos(wA) + (02 - 01)w sin(wA))]dw (38)
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while for the BB configuration it is given by

1 c N0"(w)___
B N(= [cos(WA) + (102 - 1) sin(,) )(1 + cos2 (..&;A)]dw (39)

12 =2r i-2 o 2sin (wA)

We mainly notice that in the cases where A is small (which is related to a -high

resolution" scenario) the effect of the noise on the performance of any output is more

dramatic in the BB structure than for the FF one. As in the case of narrowband

signals[3], the presence of an additive noise causes bias to the estimates of D, and D2.

If we let r, = b 1 and r2 = b2 be these estimates:

D= 1 = D, + 1  (40)

2= b2 = D2 + 62  (41)

then el and E2 are non-zero mean random processes. Their mean is proportional to the

average cross-power noise of Eqs. (38) and (39), and is larger for the BB configuration

than for the FF.

V. CONCLUSIONS AND DISCUSSION

In this paper we presented two bootstrapped-like algorithms for spatial separation of

wideband sources. We show that by seeking decorrelation of the outputs of either a sym-

metric feedback or a forward structure we achieve both separation of the source signals and

estimation of their relative delays. An adaptive bootstrapped algorithm for such output

decorrelation is proposed and its performance for source separation is evaluated using a

small error analysis. We show that if tracking is achieved (i.e.. r1 _ D, and r2 :. D2 ). per-

fect separation of the source signals is performed at the cost of increasing S.VR and signal

distortions. These distortions can be compensated for by standard equalization methods.

The effect of delay estimation errors caused by the presence of additive noise at the inputs

is studied and is shown to be potentially harmful.
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Two different configurations of the algorithm, denoted by BB for backward-backward and

FF for forward-forward, are discussed. While both are able to perform source separation

and delay estimation, they exhibit several differences :

1. In the ideal situation, i.e., when i/1 = 1ý2 = 0, the BB configuration provides undis-

torted versions of the signal waveforms, while the FF configuration decouples the

signals but provides, at the outputs, a filtered version of them. Therefore. if an exact

replica of the source signal is needed, the BB configuration is to be preferred.

2. In the presence of additive noise, the FF configuration provides better estimates of

the unknown source directions (the delays) than the BB configuration. Thus. the FF

structure is better for direction of arrival (DOA) estimation.

3. The BB configuration exhibits difficulties in the presence of noise when applied at

baseband (see (39)).

In comparison to narrowband separators [1-3], we conclude the following:

(a) The mixed forward-backward configuration [2] can only be implemented in the

narrowband case.

(b) Unlike the narrowband in the broadband case decorrelation cannot be replaced by

minimization of the output powers, when backward-backward separator is used.

(c) If the signals are only known to be uncorrelated and have the same spectrum.

then, as in the narrowband case, a discriminator is needed to achieve separation.

If, however, their spectrum is known to be different, then such a discriminator is

unnecessary.

Further study of the control algorithm under different scenarios is currently being pur-

sued. Also under current examination is the question of generalization of the separation
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algorithm to N inputs and M sensors, M > N. For this it was already shown in [4]

that the BB configuration can be naturally generalized and it results in a least-square

estimate of the signal waveforms. The generalization of the FF configuration and of

the control algorithms is still ongoing.

VI. APPENDICES

Appendix A

The transfer function matrix for the FB configuration is given by (see Fig. A.1):

I + H1(w)H 2(W) -H2(W)
H(1) = (A - 1)

-Hi(w) I

Thus, T(w) = M(w)H(w); the transfer function matrix between the signals to be separated

and their estimates are:

[ e-jwDi e-jwD2

T(w) = H(w)
ejwDl ejWD2I

[ e-jwD,(I + Hi(w)H 2 (w)) - Hi(w)e- jD -H 2 (w)e-J,,D + e-J 0 21

eJwDl(l + H1 (w)H 2 (w)) - HI(w)ejwD2 -H 2(w)ejwD1 + eJwD. (

For signal separation we need T(w) to be diagonal, so one needs:

H2 (w) = ejw(Di-D2) (A-3)

111(w) = eJw(DI-D2)(l + Hi(w)ej-(D-D2)) (A-4)

or

H i(u) = eJw(D -D ) -
1

1 - e2w(Dv-D2) e-;w(D1-D2) - ejw(D1-D2) -- 2j sin w(D1 - D 2 )

2sinw(D1 - D2 ) (A-5)

Notice that Hi(w) can not be implemented by a simple pure delay line, so the FB structure

cannot be considered if this constraint is valid.
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Appendix B

From Eq. (16).

, S(W) sin 2 .. (PI - T2 ) Sj(w)sinw(T - Dj)sin..i.(D - r2)

+ S2(w) sin 2 w(D 2 -Tr2 ) + S2(w) sin w(D 2 - r 2 ) sin.;4Ti - D2 )

SF-F(W) =4

S,(w) sin w(r1 - DI) sin w(DI -,r 2 ) S, (w) sin 2 u(ri - DI)

L +2(wsin(D-72 )sinw(-r1 - D2) + S2 (w) sin 2 w(r1 - D 2 )

I 1 Cos w(rl -Tr2)

+ 2N(w;) -O(T r)1(B-I1)

Thus

SFFW) wI=i'2O = 4Si (w) sii 2 (WA) + 2N(w) -2N(w) cos(wA) 1[ -2N(w) cos(wzA) 4S2(w) sin2 (wA) + 2N(w)J

[ i 2(a S1(w) 0 1 +2N(w) [ 1 -cos(wA)1

4si2(A)I*0 S2 (W) ] I. COS(WA.) 1 J
(B-2)

From Eq. (B-i)

0 wcosw(Ti - DI)sinw(D1 -r2ý'(,

aSFF(Uw) 4 + uj.sin w(D2 - 7 2 ) cosa(Ti - D 2 ) S 2 y

w JCos w(T1 - DI) sin u(Di -T72) S,(w) 92w sin L(ri -DI) cos w (-, - DO)S, (,)

+iw sin w(D 2 - T2) Cos w(T1 - D 2 ) S2 (W) +2w sin w(ri - D2)COS W(71 - D:!)S2(ý,:

0 ~w sin w(rI -72

+ 2N(w)[

(B-31

so

asFU)0 2wSin(wA)ow)S 2(U;)

lSFW wsin(wA)SI(w) 2wsin(wj~oA)S2(w) l
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0 asin(wuja (B-4)

Also,

aSFF~w - 2 uwS.2(w) sifw(D7 -2) cosd(D2 - 2) a~S.,(w) cos 4A(D 2 -' 2 ) sin-,(71 - D2

dar 2  - wS, (w) sin uj(Til - DI) cos w(Di - r2

- jwS2(w) cos w"(Dz - r2 ) sin w~ri - D-.) 0

0 -,a ~.siny.(r 1 - r2))

+ 2N(w) 
0B

I.-wsin(Y(ri - r-2))0

and

a7-2-Ia2 sna&0 1a -2NY)A
(B - 6)

Therefore, from Eqs. (17), (B-2). (B-4) and (B-6)

SFF(WJ) :: SFF("W) IaS,1wWO 
=0W+ W2 (vz0 +W2

0 S1(w) o 1r -osOA)

±w1 si~w~)45(0 + 2N,(w)

~p~wsn~wA) 8SI(w) cos.~al 4S.2(uJ) + 2N(wa)1

4S2(,,) + 2.,V(.,;) 0 B7

1. .....5 1.. ... ..



Alternatively,

4SI (w) sin2 (wA) + 2N(w) -2N(w) cos(wAz)

-4wS 1 (w) sin 2(wzA) 1'2 + w sin(wA)(W~'i(4S1 (w) + 2N(,,))

S FF (W) =-2N(wj) cos(uwA) - iL'2(4S 2 (w) + 2N(w)))

+ u. sin(w,;) (7k,(4S, (w) + 2N(w)) 4S 2(LO) sin2 (wzA) + 2N(w)

L - lk 2 (4S2 (w) + 2N(w))) + iPlw4S2(w) sin 2(wA)

S[ S(w) [sin 2 (WA) - Lasin2(wzA) 02 1 w sin(u.,)(4'1 SI(w) - 742 S 2(W))1

- [wsin(wL%)(4'1 Sj(u.) - iL'2S2 (W)) S2(wa)[sin 2 (w~l) + w sin 2(wAX) w~'I

± 2Nw) [1 '-'Sin(UWz~(ý1 -W~2) - COS(W41)1

+ NU)Iw sin(w~l)(i4'1 - 702) - COS(WA) II
(B-8)

Notice that yi(t) contains only si(t) and noise and Y2(t) contains only S2 (0) and noise, so

under linearization the signals are separated.

For the BB configuration, we use the fact that S19B(w) = .---- SFw.Therefore,

about 01 = 0, iP2 =0:

SBB(wJ) SF( 1w=v= + U I d9SFF(w,) =
4 sin' w(ri -,r 2 )FF/ ~ W 4 sin2(w)4) 9-rl'P=P=

2w c05 (wiA)s
-4 sin 3 (Uw,) k1=W2=OI

+ W 2[- 2 ~ O9SFF(W;) + 2 cos(w.; ) SFF(W) K1I=V2=Oi

SBB(LW) - 1 SFF(W) + 2w cos wA F(-)IIý20(0 ,k2
sin 2 (U;) sin 3(WzA) 112 - 1 +l
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0 S25 +sn1( wII(; - IP2 S2(uw) 2S2(ýa) cos(wjA) wi

+ rNuj
+2w cos(wL,;) S, (W) S20 +-~ V)2)

sin(wA) 0 2W

+2N(w)2w .cos(WZA) [ 1 -cos(WzA) 1-I+2
+ sin3 (wa.) -cos(WZA) (W

~~~~i~A f1w{-~)' }1 S tP 5(U) W2 .S 2 (U;)

=1 S{ISI (wJ) - 2S2(P)1 S2(W){1 + 2~w 2}

r2 c 2 2 w",Ii,

T{M)( t-St(j)(i-12) 1 - p( sin(u;A) 7,"(- -A)1

+ (0I - 0 2 + 2 A .

~TA) -g~wA)(B-9)

Therefore,

S w)l- 2' 1 (PS L'; 122( )E S ( w ) 1 tg (w A) -s in ( w A ) ( ' 5 w - 2 2 ~ ~ )

SBS2(W(+W)
-;(is~j 0 2S2(Uw)) S2(g(1 a + W 2 ) j

2"t(2 -?A) W1 2 (1 + coS 2 (ý.hA)'

+tg(WA) - 'iinI- (wa)

iV(w) - COS(WLA)

Ts-in 2(wia) (01~-02 w (I1+ COS2(WzX))
-cos(w.A) 

I + 2w (W.2 -~t

(B-l0)

Here also, the small error (4'i ;:t 02ý- 0) guarantees separation each of the output contains

one signal only (plus noise).
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Appendix C

From [9]:

f sin 2 zdz = ½(z - sin xcosz) (C-i)

f -•-1-rd = -cot . (C-2)

Therefore,f+W/ .2 &( fa+W/2) 1in sn 2 (wA)dW = -- " sin 2 xdx = (AW- sinA(2wo + W)
Jw-, W1/2 Aa("-W/2) 2A s

1 W sinA•W.
+ -sinA(2wo - W)] = -- [1 - cos2woA .s-i AW (C-3)

Also,

rw+W/2 1 d _ 1 f 4(,o+W/2) 11 cos A(wo + W/2) cos A(,o - W/2),
W/-w2 sinf Aw A ]a(-o-W/2) -si A snA( sin A(wo - W/2)

sin A(wo + WW W- iw9
1 in•o -- T-) _________

2. -=- W

sin A(wo + M) sin A(wo - sin A(wo + E) sin A(,o - )

= 2 wsin WA (C-4)WA cos A W - cos 2AwO(C4

Appendix D

In a general backward configuration, yi(t) = zi(t) - h3(t) * y3(t) (see Fig. B.1).

The impulse response of the filter, h(t), is a function of an unknown parameter (to be

controlled) say 02. Thus,

yt)=zt)-0 h2(7)Y2(t- r)dr = zi(t) - 00h(,r, O2)2(t - )d-r (D - 1)

The output power is given by P1 = E{ Y2(t)}. A necessary condition for minimization of the

output power is- -t = 0, That is:a62
19Pt0 a E{22(t).•} 19yI(t) 0f-

o0-E{y,(t)} = =- E{2yi(t) 9(zi(t) - h(r, 2 )y2 (t -
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- 2E~y1 (t) (0 8h(r '02) y2 (t - r)dr = -2j ak(r,02) Ely(t)Y2(t - r)}dr}

LOO 092  fW 5 2

- -2f. 9h(,02) .(r)dr (D-2)

S002

From Eq. (D-2) we see that 4, 1 (r) ; 0 is a sufficient, but not a necessary condition for

"" = 0: i.e.. decorrelation guarantees minimum power, but not the other way around.
602
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Figure 1 The model of the spatial signal mixture.
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2

(b) (d)

Figure ? -'-e different structures of the delay control separators - (a', ,.- basic BB

structure. (b) the modified BB structure. (c) the basic FF structure. (d) the modified FF

structure.
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y2(t) AVJdt IAYY2(C(2) •2Y_.=~ ~0 T Jdt •'=°2 :

Figure 3 Possible implementation of the adaptive control algorithm.
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Figure Al The topology of the FB structure.
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system

_ 2(t)
Figure B1 The general feedback structure.
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APPENDIX F

BROADBAND INTERFERENCE CANCELATION USING

A BOOTSTRAPPED APPROACH'

by

Yeheskel Bar-Ness and Hagit Messer

ABSTRACT

In this paper we present a novel approach for rejecting a broadband interference from

unknown direction when received by an array of two sensors. Two configurations of such

an approach termed "bootstrapped-based algorithms" are presented. Both configurations

perform perfect interference cancelation when the input signal-to-noise-ratio (SNR) is large

enough, and do it much faster than the common LMS interference canceler. However. addi-

tive noise causes performance degradation to both. It is shown that no general claim can be

made about the superiority of one of the configurations with respect to the other. The out-

put signal-to interference-plus-noise-ratio (SINR) depends on the spatial separation between

the interference and the desired signal, as well as on the interference-to-noise ratio (SNR),

in a different manner for both configurations. The paper provides guidelines for the choice

of one or the other configuration in different scenarios.

'This work was presented at ICASSP '93.
This work was partially supported by grant from ROME (AFSC, Griffiss Air Force Base, NY) under

contract F 30602-88-D-0025, Task C-2-2404.

161



I. INTRODUCTION AND BASIC THEORY

A common problem in many fields (e.g., communication, radar, sonar, EM etc.) is the

need to cancel a spatial interference in the presence of a desired source. The conventional

approach to solve this problem is based on the LMS algorithm [1]. For narrowband signals,

the LMS algorithm is used to adapt complex weights so as to minimize mean square error

between the array output and a reference signal. For canceling an interference from an

unknown direction when no reference is available a, minimum output power criterion might

be used. It was shown by Compton [21 that this criterion leads to power inversion. That

is, if the input signal to interference ratio (SIR) is p. then the output SIR is 1/p. Bar-Ness

et. al developed a class of "bootstrapped algorithms" [3-51 that perform perfect interference

cancellation independent of the input SIR. In this paper we use the boot-strapped approach

for broadband interference cancellation, where the complex weights of the narrowband case

are replaced by pure delay lines. Unlike the narrnwband one, in this case the open-loop

system is a non-linear function of the weights (the delays), resulting in inherent differences

between the narrow band and the broadband. However, following the Bar-Ness approach

we developed two configurations of a broadband interference canceler; both perform perfect

interference cancellation when no additive, thermal noise is present.

The two bootstrapped configurations for broadband interference cancellation denoted by:

backward-backward (BB) and forward-forward (FF), are depicted in Fig. 1. zi(t) and z2(t)

are the outputs of the two sensors and are assumed to be:

zi(t) = s(t - D,) + i(t - D,) + el(t)

z2(t) = s(t + D , ) + i(t + D,) + e2(t) (1)

where s(t) and i(t) are the desired signal and the interference signal, respectively, radiated

from bearings 0, and 0j, el(t) and e2 (t) are the additive noise processes in each of the sensors
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and d d

D$ = d sin0, and Di = d-sin O (2)
2c 2c

where d is the separation between the sensors and c is the propagation velocity. We assume

that the signal direction, 0., which is the look direction, is known, while the interference

direction, Oi is unknown. The same system can be used for separation of two sources [6]. It

can be shown that the signal denoted by Y2(t) in Fig. 1 is an estimate of the interference

waveform. In our special case, we are only interested in the estimating the desired signal

waveform. This is given by the output yl(t). We assume that the random signals s(t), i(t),

el(t) and e2(t) are mutually uncorrelated, wide sense stationary Gaussian processes. with

power density spectrum (PDS) S(w), 1(w), and El(w) = E2(w) = N(w), respectively. Based

on this assumption, the PDS matrix of the signals yl(t) (the output) and y2(t) in the BB

configuration of Fig. la is given by:

SBB(W) =

S(,,W) + l()(,,,a_,w t•"Ji.,.W-,) si,,.,W-,Dj

-cosw( D s-r) mV.r
sinw(Di--r) sinw(D.-i)d sinw(D,-D,) )2

rw~sinw(Ds-'r) sinw(D.-r) I(U)(sinW(D,-'r)

+.N(W,)T [ I - cos w(D - r)2 sin2 w(D. - -r) -cos w(D, - -r)

(3)

'From Eq. (3), the output PDS, from which the output signal to interference plus noise

ratio (SINR) can be calculated for any r:

SY,(W)=S +w)( sinw(D -))2 + N(w) (4)
sin w(D, - r) 2sin2 w(D, - r)(

Similarly, it can be shown that the power density spectrum matrix for the FF configuration

of Fig. 1.b is given by

SFF(w) = 4 sin 2 w(D. - r)SBB(w) (5)
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ZFrom this equation we see that the power spectrum (and cross-spectrum of the outputs) of

the BB and FF configurations differ only by 4sin2 wa(D, - r). The transfer function of the

BB configuration includes a pole at w = 0 and therefore cannot process baseband signals,

while the transfer function of the FF configuration is a zeros-only one. As such, the FF

configuration can handle low-pass signals too, and is also not sensitive to situations where

D, = r. Notice that the BB configuration can be regarded as an FF one, followed by a 2 x 2

system with a transfer function matrix 'I , where I is the 2-dimensional identity4 sin2 L(D ,-r)

matrix.

Eq. (3) suggests that decorrelation of the outputs y1 (t) and y2(t) is a reasonable opti-

mization criterion for interference cancelation. If no noise is present (N(W) = 0) then by

imposing decorrelation of y1(t) and y2(t), i.e., by controlling r so that the off-diagonal entries

of the first matrix in Eq. (3) are zero, a perfect interference cancellation is performed. Based

on this idea, the control algorithm in Fig. 1 is chosen to be decorrelation of its two outputs.

That is, the voltage controlled delay line v-,ich implements r is controlled by the output of

an integrator, whose input is the correlation of y1(t) and y2(t). Therefore, the steady-state

value of r is that for which the off diagonal entries of Eq. (3) are zero for all w. In the next

section, we present a comparative study of the two canceler structures.

II. THE CONTROL ALGORITHM

The algorithm described in the last section is extremely non-linear in r. To make the

theoretical analysis traceable, we assume that the error. o = Di - r is small and we take

the linearization of equations (3) and (5) to be about p = 0. The control algorithm in the

two configurations is determined by the cross correlation between the output y1(t) and Y2(t),

which is the inverse Fourier transform of their cross-spectrum, S12 (W). In general, it can be
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described by the differential equation:

d~r
t7 = kR 12(0; 7) = kE{yI(t)Y2(t)} (6)

where k is a constant and R12(a; r) = E{y1 (t)y 2(t - a)} is the cross-correlation between the

outputs. Under small errors assumption, this cross spectrum is given by:

SFF(w) z Owsin(wA)[41(w) + 2N(w)] - 2N(w) cos(wA) (7)

where % = D, - Di. Also

S12(,) . SZ F(-) + .wco2 (=) (8)
4 sin 2 (wA) +Nw sin (WA)

In this case, the non-linear differential equation (6) is linear in r and, for k = 1. is given by:

27rL =-F OFF w sin(wA) [41(w) + 2N(w)]du;
dt o-

+2 f I N(w) cos(wA)dw (9)00

2rddBB _ fB (w sin(wA~)[41(w) + 2N(w)]
dt - 'kB o\ 4sin 2(wa)

+ N(w) cos(A) - + 2 [00 N(w) cos(wzA)&
s+n3(wz) f 1-00 4sin2 (wA)

(10)

For the special case where the spectrum of all signals is flat, that is. S(W) = S. I(w) = I and

N(w) = N in the band, and zero elsewhere, the approximated control equations become:

7r dF -OFF( + 2p) WO+_2sin(w )dw
2N dt = inF&l

+ 'cos(wA)dw (11)

2r dB( 2+ cos2(wA) + 2 pr + )dw
N dt r - 4 sin(YsA) sin2(wz

+ +" cos(U.,A) (12)
O--6 sin 5
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where wo0 = 27rfo is the center frequency and W = 27rB is the bandwidth of the processing

band. In Fig. 2 we present T = Di - 0 as a function of time as derived numerically from Eqs.

(11) and (12). In both cases the separation between the sensors is d = 30m. DA = 25nSec

and A = 18nSec. In Fig. 2a pi = 60dB (high INR), fo = 3.005MHz and B = 5.99MHz.

In Fig. 2b pI = -30dB (low INR), fo = 12.75MHz and B = 24.5MHz. In both cases,

the BB configuration (the dashed line) converges faster than the FF configuration (the solid

line). However, due to the presence of the additive noise, the algorithms don't converge to

the true delay (Di = 25nSec in our example) so there is a bias in the estimate of the un-

known delay Di. This bias is larger for the BB configuration in both cases depicted in Fig. 2.

III. OUTPUT SINR, DISCUSSION AND CONCLUSIONS

From Eq. (4) we see that indeed, if the algorithm converges to 0 = 0. the interference is

completely rejected. For any other 7r 3 Di, the output signal-to-interference-plus-noise-ratio

(SINR), for the case of flat-spectrum signals, is given by:

SINR B = 2 psW 1 (13)
LV- '28sw(Ds-?

21+2p, sinz • .- r) ,(3)

WO+T sin2 w(D, - r)dw

SINRor Ps 2•0- (14)
W + P I fo_.W sin w(Di - r)dw

where p,= is the input signal-to-noise-ratio. However, under a small-errors assumption.,

this output SINR become,

SINROB 0 2P8W (15)
Izo- M 2 sin (wA)

SINR FF JW : Ps 0- 2 --wsin(2 )dw (16)

,From these last two equations we see that, in both configurations, the output SINR is not

a function of pl. That is, if 7 is closed to Di, it is sufficient to guarantee that no compo-
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nent of the interference appears in the output y1(t). Notice, however, that the interference

rejection causes reduction in the SNR. That is, the bias in the estimate of D, resulted from

the presence of additive noise causes only degradation in output SNR (relative to the input

SNR p,) while leaving the output SIR (signal-to-interference-ratio) infinite, provided that

it is kept small. As shown in the numerical examples, although both configurations of the

proposed algorithms guarantee interference rejections, there are differences in their perfor-

mances: rate of convergence, bias, region of operation (bandwidth etc.). These differences, as

well as quantative comparison of the proposed approach with the equivalent LMS canceler.

are now under ongoing research.
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Figure 2a Delay estimation of Di as a function of time. For FF configuration (solid lines) and

for BB configuration (dotted lines), D,=4.33 10-8 sec (known) Di=2.5 10-8 sec (unknown).

1=4 10-'s Watts/Hz, N=4 10-21 Watts/Hz B=5.99MHz (fi=IOKHz. f2=6MHz) resulted

bias for FF=-5.57 10-14 sec for BB=-1.79 10-1' sec.

170



x10-8 Tme history behaviour delay esdmanon - FF & BB
2.7

2w a 4e-024 Wat/Hz
nw = 4e-021 Watv-Hz

2.,Method ODE23 ft = 500000 Hz

Sf2= 2.5e+007 Hz

2.5 1 --- ------ ------- -------- -- . . . . . d - 4 .3-ý-0- -S-o .--- -

d2= 2-e-00M Sec

bff -1.24e-009 Sec
2-.4 bbb = ý-3.53ýe-009 ýSec "

2.3

2.23-

2.1t
0 0.5 1 1.5 2 2.5 3

Integranon time points x10 5

Figure 2b Delay estimation of Di as a function of time. For FF configuration (solid Lin es)

and for BB configuration (dotted lines), D,=4.33 10-8 sec (known) Di=2.5 10-8 sec (un-

known). 1=4 10-24 Watts/Hz, N=4 10-21 Watts/Hz B=24.5MHz (fl=500KHz. f 2=25MHz)

resulted bias for FF=-1.24 10- sec for BB=-3.53 10-9.
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APPENDIX G

A FORWARD/BACKWARD BOOTSTRAPPED STRUCTURE

FOR BLIND SEPARATION OF

SIGNALS IN A MULTI-CHANNEL

DISPERSIVE ENVIRONMENT I

by

Abdulkadir Ding and Yeheskel Bar-Ness

Abstract

This paper proposes a new multidimensional adaptive algorithm with Forward/Backward

bootstrapped structure for dispersive channel environment. It is an alternative multi-signal

separator where the loop-bandwidth of the signal separator structure and steady state per-

formance are crucial. It separates superimposed convolutive multi uncorrelated signals. The

Bootstrapped adaptive algorithm which does not require a training sequence employs the

minimization of output signal correlations as optimization criteria. The control algorithm is

set for the multidimensional case. The learning process of the 2 dimensional signal separator

using computer simulation is investigated and compared to that of the least mean square

(LMS) algorithm for different cross channel eigenvalue spreads.

'This work was presente at ICASSP '93.
This work is supported by grant from ROME Air Development Center (AFSC, Griffiss Air Force Base,

NY under contract F30602-88-D-0025, Task C-0-2456).
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I. INTRODUCTION

Special structure multi-loop separators of multi-channel superimposed signals sometimes

termed "bootstrapped separators" have been discussed in the literature. Applied to the two

signal case and non-dispersive channel, three structures of this canceller were introduced

[1]. These were referred to as Forward/Forward (FF), Backward/Backward (BB) and For-

ward/Backward (FB) (or, according to the performance criterion used, they are termed:

correlator/correlator. power/power, and power/correlator, respectively). One or the other of

these structures proved to be useful in practical application of cross-polarization cancellation.

e.g satellite communication and microwave radio. Applied to digital communication with

high M-ary QAM dually polarized signals, it was recently shown [2] that the bootstrapped

separator outperforms other signal separators including the LMS (least mean square). The

average symbol error probability on both signals was shown to be much lower, which clearly

indicates that the bootstrapped separators result in deeper cancellation of the undesired

signal in spite of the fact that no supervisory signal is needed. Furthermore. due to the

feedback properties of the bootstrapped structure, it was shown [3] that the learning process

is shorter than that of the LMS algorithm, particularly at low signal-to-interference ratios.

Bandwidth-complexity trade-offs of the three structure are discussed in [4]. It was found

that, particularly when it is applied as a blind separator at very high RF (radio frequency)

such as in dually polarized satellite or microwave terrestrial communications . the FB struc-

ture has the best system bandwidth complexity trade-off when compared to the other two

structures.

Recently, the FF and BB structures of bootstrapped blind signal separators have been

considered as signal separators in a dispersive environment [5,6]. But. while the first can

tolerate a wide system bandwidth it requires twice as many channel equalizers as the. FB

structure. On the other hand, the BB structure can use simple power measuring devices

to control the weight and requires no complex channel equalizer. However, it is verv much

174



limited in handling wide bandwidth signals.

The main purpose of this paper is to present stochastic convergence and steady state per-

formance of the Forward/Backward structure and compare it to that of the LMS algorithm.

Without loss of generality, and for simplicity, the analysis is done with a two input-

output separator. After introducing the structure of the forward/backward scheme of the

bootstrapped separator, the optimal control weights will be presented and shown to lead to

a total separation of the two input signals in the noise-free case. Stochastic approximations

are employed to show convergence in the mean of these weights to their predicted optimal

values. The performance of the FB bootstrapped separator for a dispersive two inputs-two-

outputs interference channel with a different signal-to-interference ratio is compared to that

of the LMS algorithm.

II. CHANNEL MODEL AND PROBLEM STATEMENT

A discrete time model of an N-dimensional dispersive interference channel is given by

x(n) = H(n) * 1(n) + n(n) (1)

where - denotes convolution and H is an (NxN) channel matrix. I is an (Nxl) information

vector assumed to be independent and identically distributed sequence and n is an (Nxl)

white Gaussian noise and x is the received signal vectors. respectively.

1 ... hIN(n)
H [= f (2)

hNi(n) ... 1

The channel responses are assumed to be slowly time varying finite impulse response

(FIR). That is, the channel interference filters are assumed to vary slowly with respect to

the signal L(n) rate and to be less than unity in magnitude.hij (n) j ij = 1,2..N

are transversal filters. ho,, hA, ..h are cross channel filter tap coefficients. The diagonal

coefficients hiiI = 1,2.. N are assumed to be unity.
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Our objective is to find a multi dimensional bootstrapped adaptive algorithm structure

that will diagonalize the channel matrix H without using a training sequence and compare

its convergence with that of an LMS algorithm.

III. LMS AND BOOTSTRAPPED ADAPTIVE SIGNAL SEPARATORS

3.1 Multidimensional LMS Adaptive Signal Separator

The traditional LMS algorithm which minimizes the error E{e2 e2 + ..e,}2I - 2+.vJN at the output

of the separator Fig. 12 can be used as a multidimensional signal separator.

The error at each output is given by

N

e1(n) = xr(n) + Z: wit * x,(n) - 1,(n) (3)
j=1

where

""+i * X1(n) = E w'xj(n - m) (4)
m=0

and w9., w1t,..wfit are the tap weight of the wit transversal filter. From (3) we write

oe.. =m2Ei{ei(n)xj(n -n)} m = 0. 1..(M U - 1) (3)

The recursive stochastic weight updating algorithm to search for the optimum weights is

given by,

w(n + 1) = w' (n) -.ei(n)x 2(n - m). ,.j 1.2...V

ei(n) = yi(n) - ii(n) 1 : j (6)

where L,(n) is the reference signal vector, obtained by the help of the training sequence or

some other decision feedback means.

21n order to have the same number of weight as in the bootstrap structure wi were taken to equal unity
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3.2 Multidimensional Forward/Backward Bootstrapped Signal Separator

From Fig. 2, it can be easily shown that the output is given by;

S-1
y,(n) = x,(n)- Zw,k * zk(n)

N

- * yj (n) (7)

where wi,*y,(n) as in (4). The z-transform of the tap weight vector is wi3(z) M., - I W(,) ~- -M.

Denoting each tap weight vectors as the entries of a matrix, we define two (NxN) weight

matrices
W12" WIN

Wupper - 0 W2N (8)

.0 0 i

1 0 .. o

Wiowe,= -w 21  10 (9)E-WN1 -WN2

Using (7) together with (8) and (9), we can write

W~pper * y(n) =Wtower x(n) (10)

Let the z-transform of the signal separator output vector y(n) be given by

Y(Z) = Wuppet(Z)'Wiowet(z)X(Z) (11)

It can be shown that in aa no noise condition, the suggested bootstrapped recursive algo-

rithm will result in a matrix N(z) = W-pp,. (z) Wowe,(z)H (z) whose off-diagonal entries are

zero.

3.2.1 Optimal Weights

For simplicity, in the rest of the analysis we show the optimal weight vectors for two

dimensional signal separation in the absence of noise. The optimum weights that minimizes
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the output correlations are obtained by requiring

RvJ y,(k) = E{y1(n + k)y3 (n)} = 0,; i J jj = 1,2..N (12)

For II(n) and I2(n) identically distributed zero mean independent sequences we have

RI,(k) = ai, I = 1,2 (13)

Hence by using (11) we get for the cross-power spectrum

S•YI(z) Y 2,[1 + WV12(z)[W21(z) - H21(z)]l[H 2 1(z-') W2(-')]

+ o-[Hi2(z)[1 + w1 2(z)w 2 ,(z)] - wV12(:)][1 - H 12(-')WV2 ,(Z')] (14)

There are two optimum adaptive weight vector solutions that make the cross power spectrum

in (16) to be zero. They are respectively,

WotI (z) = [WT opt2(Z), W'oV20 (.)]

H I2 (z)

=[l - H 21(z)HI2 (z) (

Wop 2 (z) =[ - HH1 2(Z)1 (16)
1-H21 (Z) H 2 (Z) H Z

Using the desired solution (14), the outputs of the two-dimensional signal separator are given

by

Y(z) = N(z)I(z) (17)

where

[1z 0 118N(z) = ~ 0 1 - H12 (Z) H 21(z) (18)
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3.2.2 The Search for the Optimal Weights

The control algorithm simultaneously minimizes the output correlations f(y (n))yi (n -

m) i,j = 1..N i Z j, m = 0, ..(M23 - 1), where 1XI, is the number of filter taps in w,. The

optimum weights can be found by successive use of the following recursive equations

wm(n + 1) = wm7(n) - Af(y,(n))y,(n - m)

i~=1..N i':j', m=0,1...M,~-1 (19)

where f(y) = y3 is an odd nonlinear function and u is the stability convergence constant.

IV. SIMULATION

The inputs li(n) i = 1,2..N to the channel are taken to be binary ± 1 with equal

probability. The simulation is realized for a two dimensional channel, where the cross channel

filters h 12(n) and h2l(n) are chosen to be 3 taps raised cosine, with h(n) = ![I +cos( 2.(n-2))]

n=1,2,3, and W=2.9 [9]. To the outputs of the channel, a Gaussian white noise with signal-

to-noise ratio (SNR), of 40 dB is added. The two outputs of the channel are used in one

hand as inputs to a 4-tap LMS. and to the forward/backward bootstrapped adaptive signal

separators in the other. The results of 500 Monte Carlo runs are given for for different cross

channel coupling ratios, between the ith and jth channel inputs defined as

SIR= E I (n)
k2 E{fI,'(n)}2 I(F "I.

where k is varied to get the required SIR. We took signal attenuations hi, = I and interfer-

ence filter coefficients hij to be of same value. By setting all the tap-weight vectors initially

to zero, and providing a constraint 1 - H12(z)H 2, (z) 0 0 we search for the optimum Wont1.

The learning processes of LMS algorithm and the forward/backward bootstrapped algorithm

are compared for different cross channel coupling levels.

In order to compare the two algorithms with the same number of adaptive filters. the weight

vectors wil = w22 for LMS are taken to be unity, that is w~i = [I,0..0 ]T.
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V. RESULTS

In this section, we present the results of the computer simulations for different SIR. In

Fig. 3 and Fig. 4, we present the interference of the power residue. The learning curves with

input SIR = 10.0, 7.6 and 5.6 dB for LMS and F/B bootstrap respectively. The convergence

constants, used were 0.08 and 0.04 for F/B bootstrap and LMS, respectively. These con-

stant values were chosen to be slightly less than their maximum allowable values. In Fig.

5 we compare the output power residues of the LMS to those of the bootstrap. Note that

output Y2 of the bootstrap has high residue due to co channel distortion as is reflected in

(17). Channel equalization will reduce this distortion and make power residue comparable

to that of output yl.

VI. CONCLUSION

From this study, we conclude that forward/backward structure of the bootstrapped al-

gorithm might be proposed as a multi-signal separator. However, some. but not all, of the

outputs of the separator require channel equalizers. For total signals separation, h12(n)

and h2n(n) are FIR filters, , then the adaptive filters. w 21(n) and w 12 (n) must be FIR and

IIR adaptive filters, respectively (see Fig 1). For the system to be stable we must have

1 - H 12(z)H 21(z) : 0. That is. there should be no solution on the unit circle. It is clear

from Fig. 5 that the Forward/Backward separator outperforms the LMS separator despite

the fact that the reference signal was not used in the former.
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APPENDIX H

BLIND DECISION FEEDBACK EQUALIZATION

USING THE DECORRELATION CRITERION

by

Raafat E. Kamel and Yeheskel Bar-Ness

ABSTRACT

A new blind equalization algorithm is presented which is based on decorrelating the equal-

izer's output. The algorithm is used with a decision feedback structure. The performance of

the new equalizer on nonrecursive channels is illustrated. The resulting equalizer is globally

convergent.

'This work will be presented at Mini Conference Globecom '93 Nov. 1993.
This work was partially supported by a grant from Rome Air Force Lab, (AFSC), Griffis Air Force Base,

N.Y., under contract F30602-88-D-0025, Task C-2-2404.
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I. INTRODUCTION

Adaptive equalization has been used to mitigate inter-symbol interference (IS!) in high

rate data communication systems. Conventionally, the process is initiated by sending a

training sequence which helps the equalizer adapt to the unknown channel characteristics.

At the end of the training period, the equalizer operates in a "decision directed mode." That

is, the detected data is used as a reference in the adaptation.

Blind equalizers are those which do not require a training sequence. Such equalizers

are important in several data communication scenarios, such as multi-point networks [1] or

fading channels where sending a training sequence is inappropriate.

It is important to emphasize that existing blind equalizers are the finite length linear FIR

type, whose tap gains are updated by minimizing a cost function that merely depends on

the channel response and the statistical properties of the transmitted sequence. Therefore.

the quality of the resulting equalization depends directly on the level of IS at the output of

the channel.

Most of the previous research on blind equalization was devoted to designing cost func-

tions for updating the equalizer's weights. The first known blind equalization algorithm was

introduced by Sato [2]. The cost function used by Sato was generalized by Godard into

a class of algorithms [1] which involved higher-order statistics of the transmitted sequence.

Later it was found [31 that the Sato and Godard algorithms suffer from ill-convergence. They

converge to local minima and, hence, are incapable of reducing ISI.

Clearly to eliminate ISI, using linear equalizers, one must achieve the channel inverse.

Such an equalizer is called a zero-forcing (ZF) equalizer [4]. The ZF equalizer is known

to enhance noise at frequencies where the channel spectrum has high attenuation. This is

undesirable for channels that are subject to frequency selective fades, e.g., radio channels.

On the other hand a finite length linear equalizer can only approximate the inverse channel

response, and for the non-minimum phase system the inverse filter is unstable.

188



The above factors have motivated researchers to use the decision feedback equalizer

(DFE), depicted in Fig 1, which can compensate for amplitude distortion with minimal

noise enhancement [5]. In fact. with this equalizer structure, the forward filter C(z) need

not approximate the inverse of the channel and. thus, it avoids noise enhancement. The

feedback filter D(z) is used to remove part of the ISI caused by previously detected symbols.

In this paper we restrict ourselves to nonrecursive channels [moving-average (MA) models],

since we are interested in frequency-selective radio channels, i.e.. radio links with multipath.

Extension to a more general channel is also possible.

Conventional DFE uses a preamble during a training period and switches to a decision

directed mode during data transmission. Using the decision directed mode in blind equal-

ization is not advisable since, if the initial eye is closed (i.e.. the initial error rate is high),

the equalizer can converge to equilibria that are far from removing ISI.
A

Ak Ak

Forward
Filter Dz

Feedback
Filter

Figure 1 Decision Feedback Equalizer.

This paper discusses a blind equalization algorithm for use with the decision feedback equal-

izer. This algorithm is based on decorrelating the sequence at the input of the slicer. We

show that this algorithm converges to the correct equilibrium despite error propagation. The

paper does not discuss the effect of noise on the performance of the equalizer. In section 2

we introduce the criterion and algorithm used for the blind decision feedback equalizer. In
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section 3 we discuss the dynamics of the proposed algorithm and show the effect of error

propagation on the performance of the algorithm. An example is given in section 4 and

conclusions in section 5.

II. THE DECORRELATION CRITERION AlN D ALGORITHM

The channel and equalizer model under consideration is shown in Fig. 2. The cascade of

the transmit, channel, and receive filters is modelled as an FIR filter with impulse response

N

h(n) = I + Zh6(n -1)

where 6(-) is the kronecker delta. In the above equation we normalized relative to the first

cursor (h0 ). A more general model would merely differ by a gain. We also assume that the

input Ik is a binary white sequence with a zero mean. The channel's output is thus given by

N

Xk Ik +Z/klk:,,

Figure 2 Channel and DFE model.
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We assume the channel is slowly changing with time and the receiver has perfect carrier

and timing information. Referring to Fig. 2, the input to the slicer of the decision feedback

equalizer, Ak, is given by

Ak = Xk- Ai_-W
=I,,+I',,.HA',, 1 W, 4')
= k k- IH -- kk--L

where Xk is the output of a moving average (MA) type channel of order N + 1 and is given

by
N

Xk = I,, + hjkj

-k.k-I is the vector of the past N decisions

k_= 1-[Ak.. Ak-- 2 ,.-k-N].

The prime stands for transpose, It k is the vector of past transmitted information bits

Irk_ = [Ik-1, Ik-2,'", Ik-N],

where Ik-, takes values from the binary alphabet {-1, 1} with equal probability. W and H

are the equalizer and channel parameter vectors respectively;

W' = [wI, W2,..-, WN]

H' = [hih 2,.-. , hN].

Multip'. eq. (1) by Ak- 1, the vector of past slicer's input, where

Ak-I = [Ak-1, Ak-21.- Ak-N]

to obtain

AkA =-I Ik-jAk- 1 + Ak-,l_'2H - W. (2)
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When taking the expectation of (2), the first term vanishes since

E { Ak.,.mIk_.,} = 0 for m > n,

as Ak does not depend on the future data inputs. It can also be shown that

E{Ak,,k_,A } = 0 for m > n.

Therefore,

( AkAk-1

AkAk-2

A4kAk-,v

_ 0 Ak-2-2 ... Ak-2lk-,v h2

0 ... Ak-NIk-NV hN

0 Ak-2Ak.--2 ... Ak-2Ak-N W2

0 0 Ak-NAk-N WN

(3)

The last entry of (3) can be written as

AAk_,V = AkNI.khN - IAk_..NIWN.

From (1) we get

Ak-..NIk-N- 2  2

Therefore

A Ak-Nv = hN - IAk-.NIWN
hN - AkAk-NV

t IN =--k-

= hN -- AAN, (4)
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where it can be shown that

IAk-n11 Vfl.

It is clear from eqn. (4) that WNV = hN iff AkAk...N = 0, i.e., Ak and Ak-... are decorrelated.

Next, consider the (N - 1)th entry

AkAk-N+1 = Ak-,+1Ik--N-hN-1

+Ak-,V+14kNhN - Ak-...+,Ak-iV+IWNV1

-Ak...N+1Ak-NWN.

But Ak-..N+Iik-N+i = IAk...N+11 = I and Aý-N,+lIk-N- = a[= 1. Furthermore. if wN = hN

then

AkAk...N+1 = hN.... - wN...1 + Ak...N+1 (IkN1 - Ak-.N) hv

= hN..... - wN-.. -, Ak-.N+zek-Nvhjv,

where e, I - Ak. We can also show that

AkAk...N+1 = hjl -jWN.1 + 2qk-...hN (h + wj),

(5)

where qk Plek #6 0}. For the mth entry we have

________N

A~Ak,'Im, = Ak-mTk .mh. + 1: hjAk-....mI-
i=in+1

_ _ _ IV

-wmlAk-.l.m - Z wjAk...mAk-i-:
i=m+1

Following the above argument and assuming w, = hi for i = m + 1..., N then

_______N

AkAk-.m =hm - Wm + L hiAk-.m (Ik-i-Ake
=+1

= hm -WM + E IhiAk..mek-i.t
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It can also be shown that

N

AkAk-., = h,. - w. + 2qk-i hi (hi-, + wi-.).

(6)

To summarize, we combine (4), (5) and (6) as

AAk-N "= hN - wN

AkAk-V+l "= 2qk-lhNhN(hl + w1 ) + hlN.- - WNi.-

AkAk-,N+2 = 2qk-NvhvN((h2 + w2 ) +

2qk-,N+jhjNv-(hj + w1) + hZV-2 - WN-2

AkAk-1 = 2qA;-k.vhN(hN-1 + WNj-1) +

2qk-N+l hN..-l(hN-2 + WN-2)

+''"- + 2qk-2h2(h, + w) + hi - wi.

(7)

The above equation is based on the assumption that the previous weights converged to

the correct channel parameters. It is clear from (4) that WN = hN iff AkAk-N = 0. Further

if qk-N is zero, i.e., Ak-N was correct, then WN.-1 = hN-1 iff AkAk-,N+l = 0. Similarly one

can proceed and reason that if the N - m previous decisions

(Ak--.N+,, m = 1.... N - 1) were correct then w, = h, for m = 1,.... N iff A.•A_,, = 0.

This leads to W = H together with A,,._,,, m = 1,..- N being correct. We have from (1)

that Ak is the correct decision and, hence, following similar reasoning Ak+,, for m > 0 will

be correct. This means that if we reach zero probability of error, the algorithm will continue

to be at steady state of no ISI, provided that Ak is decorrelated with the previous N slicer

inputs.

If, on the other hand, some of the previous decisions were erroneous, then the algorithm
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is still in the transient state. The behavior of the algorithm in the transient state and its

convergence to a zero probability of error will be discussed in the next section.

To control the weights in order to decorrelate Ak's we use the steepest descent method.

Any stochastic gradient algorithm can be expressed as

k+1 kc :x >..~wi = w +f(-) for (8)

where u is the constant of adaptation and f(.) is called the error function of the algorithm.

The roots of the error function determine the steady state of the algorithm values to which

the weights will converge.

The previous discussion suggests using AkAk-, as an error function for the algorithm.

An appropriate error function in eqn. (8) would be f(AkAk_,) such that f(0) = 0 i.e. f(x)

should have a root at zero. Since the roots of the error function represent the equilibrium

points for the algorithm, some of which might not be the optimum. an error function with

a distinct root at zero would be preferred. Therefore, a possible function would be

As a result, one can write eqn. (8) as

k+1 k~i 4  owi+ = wi + AAkAk-i for i = 1,-.., N.

In a practical implementation one would estimate the expectation by its current realization.

leading to the stochastic difference equation,

wkid+ = wý + #AAk-i for Z - (9)

It is clear from the above analysis that the algorithm in eqn. (9) will converge in the mean.

i.e., the mean value of wi will converge to the channel parameter hi.
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III. DYNAMIC BEHAVIOR

In this section we examine the dynamic behavior of the proposed equalizer. We use the

probability of symbol error, qk,, at instant k as a performance index. A difference equation for

qk is developed, which can be solved together with the weight update equation to determine

the probability of decision error as a function of time index k. The derivation given in this

section can be extended to a general order N moving average type (MA) channel. However,

for the sake of simplicity we consider an order 3 MA channel. (The same channel will be

used in the simulation described in the next section.)

The channel output Xk at the kth instant is given by

Xk = Ik + hlIk-i + h2Ik-2, (10)

where h, and h2 are the channel parameters. From (1) the slicer's input is given by

Ak = Xk...1 - W1A- - W2k Ak... 2
= Ik_, + huIk-2 + h21k-3 - W _ - (k -_,

(11)

where we have used the superscript k in the weights w, and w2 to emphasize their dependence

on time, since we are studying the transient response of the algorithm. Using eqn. (11) we

will determine the probability of correct decision (qk) as a function of the index k. Using

the total probability theorem, one can write

qk = P{,Ak 74'k- I

= P{Ak 6 Ik-_ I Ak- : # Ik•2, Ak•2 # Ik-3}qk-Iqk-2

"+ P{Ak 0 I'k- I Ak-1 3 Ik-2, Ak-2 = Ik-3}qk-lpk-2

"+ P{Ak # 45_I I AIk- 1 = Ik-2,Ak_2 $ Ik-3}pk-lqk-2

"+ P{Ak $ Ik- I Ak-1 = Ik-2, Ak-2 = Ik-3}Pk-_Pk-_,

(12)
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where we have

P{Ak j4 # k-i I Ak-I #6 Ik-2, Ak-.2 #Ik-3}

(- I 1- > (h2 +W2k) }
+41 l+(h, +uW2k)) ¾(3

+ k-2 > h +(~k)I

and;

P{Ak 0 4...i I Ak I#j Ik-2, Ak-2'= Ik-3}

(P2 k-2> (k)
(2 1 2  Ihi + wiI}

+ P{Ik-2> 1h +w (~~k))

Also,

P{Ak :0 'k-I I Ak-.I = -2, Ak-2 $ Ik...3}

~ J~. 1 +- (h2 + W2('))
+ k-2 > 1h, - w (k)Ij

and

P{A,. 0 Ik-I Ak-i = Ik-2, '4 k-2 =Ik-3}

1 -1(h2-w(k))}

1 + (h2 _ W2k))
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Substituting the above in equation (12)
.(k) . (k))

qk = qk-1qk-2fl(h1,h2, wl W2

+ qk-p k-2f2(h1, h2, wlw , ))

+ pk-lqk-2f3(hQ , h, l,", w k))
S(k) (k), w1)

+ p&-1p&-2f 4(hi, h2, w , W) ()

where pk is the probability of a correct decision. Eqn. (17) is a second order difference

equation, which depends on the channel parameters h, and h2 and on the current equalizer's

weights wk) and Wk2. For the more general order N, channel eqn. (17) will take the general

form

qk=f(q-,"",q-N, hl,"",hN, wI'' ,w )(18)

The instantaneous probability of error may be computed recursively using eqn. (18), weights

update eqn. (9), and the appropriate initial conditions for the probability of error. Eqn. (18)

is highly nonlinear; therefore, only low-order channels are numerically tractable for showing

the convergence of qj, to zero.

IV. ILLUSTRATIVE EXAMPLE

In studying the dynamic behavior of the blind decision feedback equalizer and examining

the convergence of qk in eqn. (17), we will consider two approaches.

In the first we will use the mean of the weights, i.e., the expected values of w k) and wWk).

The controlling algorithm will be

(~k+l) =(Wk)
I I + sAkAk.A. for i = 1, 2, (19)

and by substituting from eqn. (6) we get

(~k+1) (k (k+ph-u~)2 = W +(2 )W
wk+) = W + p((h, - w) + 2qk- 2h2(h, + 1lk))).
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Thus, the result of numerical analysis will show the behavior of the algorithm in the mean

sense. While in the other approach we use the stochastic control of eqn. (9) directly.

As an example, consider the non-minimum phase response of

H(z-') = I + 0.5z-' - 1.44z- 2 ,

and depict in Fig. 3 and Fig. 4 the probability of error q, as a function of k. The initial

probability of error used was q-2 = q-1 = 1, (qo = 1). In Fig. 3 we used eqn. (19) for

updating the weights, while in Fig. 4 we applied the stochastic estimate of the correlation

as in eqn. (9)

0 .6  
T ,0.4. t q ,"

0.2 1-w "

0,

-0.2-

0.04
-O.6

-1.2. F

-1.6 1I J •

0 50 100 150 200 250 300 350 400 450 50
itraltiom

Figure 3 Probability of error for eqn. (19)

.415 q

-I.5 .11

-2 I

0 50 100 150 200 250 300 350 400 450 500

Figure 4 Probability of error for eqa. (9)

199



With both approaches we notice that qk, converges to zero after a certain number of

iterations. Therefore, all the q terms in eqn. (7) vanish and the weights wi will converge to

hi iff AkAk., for i = 1,2. From Figs. 3 and 4 one would note that the probability of error

qk approaches, zero even before the equalizer convergence.

The channel above was used in a computer simulation. The weights of the feedback

filter wi and w2 are depicted in Fig. (4), the adaptation constant used was / = 0.01. In

this simulation the weights were initialized to zero. Fig. (4) shows that the equalizer's

weights converge to the channel parameters (in this case w, = 0.5 and w2 = -1.44). Next.

by varying the initial settings of the equalizer weights, we show that the algorithm always

converges to the right point (0.5,-1.44) regardless of the initial condition. Fig. (5) shows

the trajectories for the different initializations and shows that the decorrelation algorithm is

globally convergent for the channel under consideration.

2

1.5

0.5

-0.5

r
-1.5 "

-2
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

w1

Figure 5 Admissibility
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V. CONCLUSIONS

In this paper we introduced a new criterion and an algorithm for blind equalization. The

algorithm was used in conjunction with a decision feedback equalizer. It decorrelates the

data sequence at the input of the slicer. It was shown to converge to the optimum irrespective

of the initial error rate.

Because of the feedback structure the equalizer does not suffer from noise enhancement

as the linear equalizer does. A simulation example of a dispersive non-minimum phase chan-

nel was given to illustrate the convergence of the algorithm. With an adaptation constant

, of 0.01 the algorithm converges after 200 iterations. The simulation also shows that the

algorithm converges to the optimum point regardless of the initial setting.

VI. APPENDIX

Claim 1 The probability density function fA.(') of the random variable Ak defined

in eq. (1) is an even function.

Proof

The input to the slicer in eq. (1) Ak is given by

N

Ak = Xk ---- IAi
t=1
N

= Ik +Z(hIk.a-,Wi~4k..). (A.I1)

If we denote the set of all correct decisions by A' and the set of all incorrect decisions by A".

i. e.,

a'- {A1 : A1 = I,}

A" = {jA : Aj = -,}
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then the input of the slicer in (A.1) can be written as

Ak = Ik+ (hi -wi) Ik-j+ • h~iI-.(A.2)

From the above equation one can see that Ak can be expressed as a sum of independent

random variables. Therefore, the probability density function (pdf) of Ak is the convolution

of the individual pdfs, thus,

fAk = A, * Conv,_,,f:h.-w,)h,_. * Conv.:A,_,A,,f~h.+w,)Ik,,-i (A.3)

where Conv A,' and Conv iA_,,A" are the convolution of the probability density functions

of the corresponding random variables in the summations of eq. (A.3). Since Ik's are random

variables taking values of -1 and 1 with equal probabilities we have

1fj~(x -(6(x+1) +6(x- 1))
=() (b(x + h, - w1 ) + b(z - h1 + w,))

2

= (6(x + hi + wi) + 6 (z - hi - wi))

The convolution equation in (A.3) can be transformed into a product form by using the

Fourier Transform

:a •.lI r ,j),. H :,+.,. (A.4)
i:AA,_,cA* :4k ,A

where 'y% is the Fourier Transform of the pdf of the random variable X. Therefore. we have

7'A,(W) =cos(w)

-(h.-w,),_,(uj) =cos((h, - wi)w)

r(h.+w,•_,(w') =cos((hI + w,)w).

Now we consider the product terms in eq. (A.4). The first term,

cj-o"A' a,
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where IA'I is the cardinality of the set A' and ais represent all the possible sums and differ-

ences among all (hi - wi) such that Ak-,EA'.

Similarly, for the other product term in eq. (A.3) one can write,

1II F~h+~,4.w) 91"1 E cos(61w),

where IA"I is the cardinality of the set A" and bis represent all the possible sums and

differences among all (hi + w1 ) such that ,-_,EA".

As a result eq. (A.4) can be written as

F4h (W) = COS(w) 9 l cos(aiw) A cos(bjý)

= cos(w) -- _2 Z•cos(aiw) cos(bi) since 1.4'1 + I,4"l = .
Sa. bj

= cos(w ). cos((ai + bi)w) + cos((a, -b:).)
"- a, 6,

1• = cos(W) • 1- _
=)N c- cos(4iu),

-Ci

where ci represents all the possible pairwise sums and differences of a,s and bs. Further, one

can write

- ;7N -- E• COS((Ci +t OW)U)+ COS((Ci-' •) A5

Ci

Taking the inverse transform of eq. (A.5), we can write the pdf of .4 k as

fAk) = 2-- Z (b(x--ci--1)-+6(x+ ci +-1)+-6(x--c,+1) -6(x. -c, -1)). (A.6)

Therefore, the pdf of Ak is an even function, and it also exhibits half symmetry about ±1.

Claim 2

E{Ak-mAk-.n = 0 for m > n

Proof:
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Consider the joint cumulative distribution function (CDF) of Ak....Ak-n U?*Z FA,_,A,_(x, y)

FA,,AnXY = P{Ak...m :5 X, A 5 ýY}

= P{Ak-.. 5 Xz,A!k-n :5 Y I Ak- = Ik-n IP

+P{Ak-, m XZ,Ak...n < Y I Aic-. = -Ik-n~q

= P{Ak-..m :5 X, Ik- !5 Y I Ak.... = Ik-n IP

+P{ Ak-m :5 X, 'Ik..n :5 Y I Aik... Ikn q

where p is the probability of correct decision and q is the probability of incorrect decision.

F41 (x,y) = P{Ak...m < X I Alkn =Ik...n}P{Ik..n Sý Y *4-n = Jk-,,jP

+P{Ak-,m !S X I Ak-..n = Ilk-n}P{-Ik-, Ký Y I .4k- = -Ik-}q

= P{Akm, :5 XA- = Ik-n}P{Ik-n Ky Yj A- = Ik-ni

*+P{Aicm <5X,Atk-n = -Ik-n}P{-fk-... Y I *4-n = -Ik-n}

(A. 7)

since Ak-m is independent Of 'k-n for m > n. By definition

P{IIk-n. :5 Y I Ak-n. = Ikc.n} = J 6(I.& - 1) P I'k-n = -n = k-n}

+01A. + 1)P{Ik-.. = 1 A~k-ri = -hndA.

(A. 8)

Now. from eq. (1) we write

Acn= 'k-n + Yk....t

where
N

From the definition Of . 4 k,

P{Ak...n = 'k-n I 'k-n = 1) = Plsgn(Ak-.n) ='k-n I'k-n =1
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= Pjsgn(l + Yk-...) = 1)

= P~- 0

Similarly,

= 1 k-n = Ik-. I I}-= P{Y&...n < 1}.

However from Claim 1 of this appendix the pdf of Ak and, hence, of Ak.... and Yk-" is even.

This leads to

P;k,= 'k-n I Ik-n P{Aik-n, = 'Ik-n I 'Ik-. (A.9)

Now, using Bayes law,

P{I-n k-n= I-n} P{A-n= 'k-n I Ik-..y = QPI = 1}
P{I~c...n I Ain = '-ni = 'k-n

Pj~-n -1 A-n Iknj= Ik-. I Ik-n = 1}P{Ik-n 1

=jk- 'k-n

Therefore, by using eq. (A.9) we get

=11 k = Ik-n} =P{Ik.. -1 I Ak- = Ik-n} I

Hence, we can write

P <yk- :5 Y =k Iic-n} =0 +J6~ l)+ 6  + 1)) dp

=FIk-n(Y). (A. 10)

Similarly, it can be shown that

P{-k- : YI Ak-n Ik-n1 = 11"(601 -1) +6(i + 1)) dI

Substituting eqs. (A.10) and (A.11) in (A.7), we get

FA~tmPAk-n(x, y) =P{Ak...m : X, Aic.n =knFIInY

+P{Ak-~,n :5 XAk..n = Inj4(Y

=FA-,-,(X)FIk-(Y).
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Therefore, the joint pdf of Ak-,Ak-,n is given by

fAhj.n.Ak-.%

Hence,

E{Ak-.nAk-n} E{Ak-m}E{Ik-n1

=0.

Claim 3

Ik-.mik-n = n 54m

Proof:

We have

F~hn~kM(XY)= P{Ak-...5~X,Ik-,vn S !}

= P{IIk-...m Y, A- :5 X I Ak-n = Ik-..} P{Ak-.n = k-ni

+ P{IIk-m 5 Y, <kn X j Ak-n = 4lk-f}P{Ak-n = Ilk-nl,

= P{IIk-.m 5<Y, Ik-n < X I Ak.... = 'k-n }Pk-n

+P{Ik-m :5 Y, Ik-n •ý X IAk...n -Ik-nlqk-n-

'k-rn independent of 'k-n for m 54n

F~'~z~) =P{Ik.... :5 Y I Ak-n Ik-n}P{Ik-n X' I Ak-n = 'k-n lPk-n

+P{ 'k...n :5 Y I Ak..n = lk..n}P{-Ik...n !5 X j I Ak-n = -'k-ni qk-n*

Using eqs. (A.9) and (A.10), we get

FA k-nIk(X, Y) P{IIk...m :5 Y, Aic.n = Ik-n- I} Flk..-n.-,(X)

+P{ik-n :5 !/,Ak-n = I--II,,,X

= l,.-m(y)Fi'k.x) (A. 12)
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Therefore, from eq. (A.12), we can conclude that

Ak-..Ik-m T k-rnIk-,i.

=0 (A.-13)

Claim 4

E{IAkIl= for every n (A. 14)

Proof:

The pdf fIA,.I of the random variable IAkI can be expressed as

AAA.I(( fAký(X) + fA,(. X) Xr > 0
fh~) I0 X< 0

= 2fAh,(x) x>ý:0

since fAA,(x) is an even function.

Substituting from eq. (A.6)

={0 X <0.

The above equation is symmetric about x 1. therefore the mean

E{IAktl = L.

Claim .5

For mn j n Ak-.mAk-nO0

m=n j2_1

Proof:
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Assume m < n, then

FAjjrA =- P{Ak-...S~X, Ai-,.,5 -Y}

=P{Aik-... X, < ,A...n Y I A-m = k-rn }Pk-mn

+P{Ak-. :5 X,Ai/...n S<Y I Aik..m = -Ik-rnlqk-rn

=P{Ak-n. S X, Ik-rn <Y I Aik-.m = !k-rn}Pk-m

+P{A&.~ <5X, 4-Ik- : Y I Aki-rn = 4-rn }qk-m.

Ak-n depends only on 'k-r for m > n, hence, it is independent of all Ik-rn with m < n.

Therefore,

F A = P{kn: X IA;k-rn = Ik-r}P{ ik-rn-I <ýY I Ak-m = 'k-rn Pk-m

+P{A&c-n :5 x, I Aik-m = -Ik-m}IP 4 -k-rn :5 y, I Ak-m = -Ik,-vn qk-m

= P{ Ak-.n :5 x.Ak-.. = Ik-m}P~f k-rn <U I A4k-m = Ik-vn}

+P{Ak-n x,Ak-m = -Ik-rnlP{ Ik-m •5 Y, I Aik..m = -Ik-m}.

By using eqs. (A.9) and (A.10), we get

FA/t-mjkn = f {Ak-n !5 XiAk-r = !k-m}IFh...mn(Y/)

+P{AkA:• :5 X-Ak-m = 4Ikm}FJk-m(Y)

, ii-(X)Fikrn(Y)* (A. 15)

Therefore,

AkrnAk...n = Ak..nIk...r...

= 0. (A. 16)

For m > n, a similar proof can be shown by conditioning on Ak-.. instead.

For m = n. since the pdf of Ak.... is even, it follows that

Pjkn= 1) = P{Ak- = -1}
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From the above, it is straightforward to show that, for m = n,

A2n= .1

Claim 6

For m+ <i<N

Ak-mek-i = Ak-m (k-,i - ,kk-i)

= 2qk-i (hi-m + wi-.),

where qk-i is the probability that Ak-i # Ik-t-.

Proof:

Note that

Akmek-_ = Ak-m IT-i - Ak-,nAk-i.

From eq. (1),
N N

Ak-m = Ik-.. + 1 - L wiAk.-i.
j=1 j=1

We consider each term separately:

N .N _

Ak-.m-k-, = Ii_,,mIk-i + Z hjIk-,,-jI- -' wjAk-,,m-jIk-.i

The first term in the RHS is zero, since i > m. Similarly, the summation in the second term

is j = i - m. Using the result in Claim 3 the terms in the second summation are all zero

except for j = i - m. Therefore,

Ak-.,mlk-i = hi-,m - wi-,,mAk-Ik-g. (A.17)

Now, consider

N N

AkmAk-i, Ik=-,AAk-, + E hjIkm,,,j Ak., -i wj3Ak-m-j Ak-,.
j=1 j=-
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Using Claim 3, the first term is zero. Furthermore, using the same claim, the only non-zero

term in the first summation is j = i - m. On the other hand, using Claim 5 the only non-zero

term in the second sum is j = i - m.

Ak-,,,lk-i = hi-,Ak-,IW-i- Alk

= hi-,,•k-ilk-i - wi-,,. (A.18)

Combining eqs. (A.17) and (A.18), we get

Ak-,,ek-, = (hi_,,m + w,.,.,) (1- ._,l-_')

= 2qk-i (h-,, + wi-,,) (A.19)

Claim 7

1(-I +-(h+wkk))kh l + l+W(+w)lk_..) >01
+ (Ph2 2 1+ (h2I P {Ik- 2 > 1 -(h + l } + p I{Ilk -_ I > 1 + h2 W2( A 20

21h, + vu, Ih + w1 i )
Proof:

Define P as

-pAP 1 {(-I +±(h, + W~k)Ik,_ + (h, + W('))1 2)>.1 2 > 0}.

Then

p ( ~( (-i1 + (h, + )_ + (h2 + W4k))) > 01

+ P{(-l + (h, + w(_))Ikl - (h2 + W(k)) >o})

If (h, + w(k)) > 0, then

S1- (h2 + W +1 1- (h2 + W2)
2 P{Ik-1 > (k) (+k(P{Iki> h )
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If, on the other hand, (h, + w("}) < 0, then

1 I 1 - (h (uk)l({ lh (k)

2 1-(h, + 1- (h2 + u;(k)

= P{Ik- > - (+) }+(P{Ik- > (h2 + w
= h+ (k) hi+ k)

The last step follows since the pdf of Ik-I is an even function. Therefore. combining the

above

+{(h, + w(k))Ik-_ + (h2 + w ))I_2) > 0}

I l-(h 2 + W2)11 1I+ (h2 + W2')
= {k~ 2 (\~ Ii k)I 1k > (h~uk)I
= •P{k-,> 1h, + wikt + 1_ h, + wk) I
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APPENDIX I

ADAPTIVE TWO-STAGE DETECTION SCHEME

IN SYNCHRONOUS TWO-USER

CDMA SYSTEMS'

by

Zoran Siveski and Yeheskel Bar-Ness

ABSTRACT

An adaptive two-stage scheme for a synchronous, two-user CDMA environment with

unknown received signal energies is presented. It consists of a tandem of the matched filter

front-end followed by the interference canceler whose weights are adjusted by an adaptive

algorithm. The error probability was evaluated analytically, and it was shown that the

receiver provides satisfactory performance in the near-far scenarios.

'This work will be presented at Milcom '93.
This work was partially supported by a grant from Rome Air Force Lab. (AFSC, Griffiss Air Force

Base, NY under contract F30602-88-D-0025, Task C-2-2404.
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I. INTRODUCTION

A conventional single-user detector implemented in the Code Division Multiple Access

(CDMA) system consists of a bank of filters, each one matched to the signature sequence

of the particular user. The sampled output of each matched filter, besides the desired

signal, contains the residual interference from all other users. Careful choice of the signature

sequences can reduce the amount of interference if the received signal energies are similar.

However, the presence of a strong interference often makes it impossible to detect the weak

user, a condition referred to as a near-far problem. In [1] a receiver that is optimum in

the multiuser interference environment was proposed and shown to provide much improved

performance. The improvement comes at the expense of high computational complexity. A

class of suboptimum receivers that uses decorrelating detectors and which is based on the

linear transformation of the sampled matched filters' outputs was considered in [2] and [3].

Another approach for suboptimum multi-user detectors with low complexity was proposed

in [4] and [5], where, in order to perform detection of the desired user, tentative decisions op

information bits of all other users are made. The estimate of the multiple access interference

is then obtained and is subtracted from the desired signal. The performance of some of

these is close to the performance of the optimum detector, particularly when the power of

the interferers increases, they become indistiguishable. These schemes. however, have to

perform an estimation of the received signal energies. knowledge of which is required for the

detectors' proper operation.

In this paper a two-stage detector similar to one proposed in [.31 is considered, except

that the received signal energies are not assumed to be known. and therefore the canceler's

weights are adjusted adaptively. A simple iterative algorithm is proposed in order to control

the weights in the second stage of the receiver. The output error probability is computed

and compared to the one of the conventional receiver, the decorrelating detector, and the

detector in [.51.
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II. TWO-STAGE ADAPTIVE DETECTOR

In this paper we restrict ourselves to a two-user synchronous CDMA receiver shown in

Fig. 1. It consists of two stages: a matched filter front-end followed by a dual interference

canceler with the forward-forward structure. The received signal x(t) can be written as:

X(t) = bi(i) V74i s,(t - ZT) + bb,(0(V/ýs2 (t - iT) + n(t) (1)

where bi,b 2 E {-+.+1} are users' data bits, and A, and .42 their respective energies. un-

known to the receiver. The signature sequences sl(t) and s 2(t) are known to the receiver, each

having same duration T as a data bit. Denoting the normalized crosscorrelation parameter

of the sequences as p we have:

rs2(t)dt = 1, j 1,2 and
0 jn

o=si(t)s2(t)dt p < 1 (2)

The additive noise n(t) is Gaussian, with a zero mean and a power spectral density of No/2.

In the ith bit interval the sampled outputs of the first stage are:

X I(i) = ýri bi (i) + pVA'2b2(i) + ni(i)

x 2(i) = /.42b 2 (i) + pF4A b,(i) + n2(i) (3)

where ni(i) and n2(i) are zero mean Gaussian random variables which can easily be shown

to have variances of N0 /2. and the crosscorrelation pNo/2. (For the sake of brevity, time

index i is omitted from most of the expressions in the text.)

The first stage bit estimates are defined as:

;I = sgn[xu] and b2 = sgn[x 2] (4)

yielding the two outputs of the second stage:

Yi = Fl ibi + plF2b2 - wjl2+ ni

215



Y2 = F4 262+ pv/ubl -w2k + n2 (5)

The control algorithm simultaneously minimizes the output powers E{yI} and E{y'}.

The optimum weights are obtained by using an iterative search:

W dE{yl} . = 1.2 (6)

w '-- w dwi

where p represents the convergence and stability rate constant. The optimum weights that

minimize the output powers are the steady state values obtained from:

dE{y} d 2E{(x1 wlb)2

dw - dwi ( -

= E{(x - wl2)(-;2)} = 0

and

dE{y2} d 2
21__ = -E{(X 2 - W2bi) 1 (7)

dw 2  dW 2

= E{(z2 - W2ý,)(-;,)} = 0

and are expressed as:

W10 = V~flIEbib2} + p Fi2Elb2 ;.2} + E~nb 2}

W20 = FA-2E~b2b + pyF'iE{bibI} + E{n 2b1 } (8)

The joint statistics appearing in the above expressions are evaluated in terms of the system's

parameters and are presented in the Appendix. After substituting the optimum weights the

canceler outputs become:

Y10 = F [bi - E{b21

+ pFA2 [b,2 - Ef b2b2 }b2] + Elnb2 } + n,

Y20 = FA2[b2 - Ejb2bi}b] (9)

+ pV/H; [bi - E{bib1 }b1 1 + E~n2 ;1} + n2
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ZFrom the above expressions one can conclude that if the bit estimates of the sampled

correlators' outputs were almost perfect (i.e., b; :z bi and 62 = b2), the decision variables at

the canceler output become interference free (i.e.. yio 2z .vI4b1 + ni and y20 -, .V42b, + n 2 ).

The error performance of each user will be determined by their respective input signal-to-

noise ratios, SNR1 = AI/No and SNR 2 = A2/.V0 only. This scenario requires a svstem with

a rather low spectral efficiency (small p), and occurs whenever both SNRs are large enough

and are approximately equal.

If the power of one of the signals is large enough in comparison to the other such that.

say p2SNR 2 > SNRI, ý will continue to be an almost perfect estimate of &2. Referring to

(8), wio i px/Th2, and the output I will again be interference free. However. the signal xi

will now be dominated by the interference from user 2. and bl will mostly be estimated as

b2. By observing (8) again, one can see that it will cause w2o : v'42, which is obviously

larger than wjo. This results in the total cancelation of the desired signal 2 in the second

output, which is expected because of the power inversion effect of the canceler. The decision

variable of user 2 becomes y2 m, pv--Aibi + n 2, yielding to the disastrous output performance.

An easy and logical remedy to such a problem may be obtained by adding a constraint

to the iterative algorithm, such that, at any bit interval,

w1(i) = min{wi(i).w 2(i)} j = 1.2 (10)

The restriction effectively prevents an increase of the weight that affects the signal with the

very large input SNR; the one that does not need the interference canceler in the first place.

The effect of the constraint can be observed if, under the same assumptions described above.

the larger of the weights, w02, is replaced by the smaller one, w01 - pvr'42, resulting in the

second output, Y2 : (1 - p)VTb 2 + pVA-'ibi + n2 . This certainly will not be worse than the

output that results when no constraint is imposed. The amount of improvement depends on

the desired component to the residual interference ratio at the output, [(1 - p)/p]2ASNR.

Another possible constraint considered was in "disabling" the canceling loop that contains
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the larger weight element, such that

max W1 (0), W2(0)} = 0 (1

In the above scenario, it means w2 = 0, which corresponds to detecting the data bits of

user 2, the one with the larger input SNR, directly from the correlator output.

111. ERROR PERFORMANCE

The error probability at the canceler's output is evaluated as follows. The bit estimates

at the output are defined as:

bi = sgn~yi] and b2 = sgn[Y2 ] (12)

The two-user output error probabilites P01,(E) and PAW(E are the conditional error prob-

abilities averaged over bl, &2, and ;2, and over b1, 62, and ;1, respectively. For user 1:

Pb,1=. E6 ~Pr 1b1 i n error jbi.6 b2, 621

=~[Pr(ni >F11- PFiI 2 b+wio 6 2 )

+Pr(n1 <j441 - pF\/2b.2 + wvio62)I

[Pr~fl1 > F 4 1 + PV--2 -tv 1 0. n <FV12 + PV.1_1

+ Pr(ni > F4/ T- pF2- wio,n 2 <-F2 4)

+ Pr(n, > Fyi - pF4 +w1on 2 >- -V'4+ pV/'41] (13)

Similarly, the error probability Pe, for user 2 is:

k[Pr(n2ý> V42 + Pfiý- W2 0 , ni 4 F2

+ Pr(n2 >FA/ -pjAI-W2 0, ni < - FAI + pj4)
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+ Pr(n2 > +p +w 2oni > I + II

+ Pr(n2 > FA 4- pJA,+W20, ni > -FI+pA,](14)

When the constraint from either (10) or (11) is taken into account, the weights w10 and

w20 in the above expressions should be modified accordingly.

Numerical results from the computation of the error probabilities are presented as func-

tions of signal to noise ratios and the crosscorrelation coefficient. The error performance

of the conventional receiver is also presented in order to illustrate its vulnerability to the

near-far problem. In addition, the error curves for the decorrelating detector and the system

presented in [5I, where the exact knowledge of the received signal energies was assumed. are

included for comparison.

The error probability curves are plotted versus the difference of the two input SNRs.

ASNR = SNR 2 - SNRI, with SNRI kept cnstant. Three different crosscorrelation coef-

ficient values. p = 0.7, p = 0.5, and p = 1/3 are considered; the first corresponding to the

high bandwidth efficiency system. As mentioned previously, a constraint on the weights is

also added to prevent possible cancelation of the larger desired signal component at one of

the outputs.

In Fig. 2 we use p = 0.7 and ASSNR in the range from -4 dB to 12 dB. As expected.

the performance of user 1 is virtually the same regardless of the constraint strategy used.

The error performance of user 2, with no weight constraints imposed. is very poor as could

have been predicted. Marginal improvement occurs at high values of AS.VR when the

constraint from (10) is imposed. However, by using the constraint from (11) instead, excellent

performance for both users is achieved, which is even better than the results in [5].

Fig. 3 is the same except for p = 0.5. Here we observe that the constraint from (10)

provides better performance of user 2 than with the previous value of p. Again. as expected.

the performance of user 1 is virtually the same as in [5]. This is a result of the factor

[(1 - p)/p]2 being greater for this case.
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Fig. 4 depicts the case for p = 1/3. Without the constraint on the weights, there is a range

of the values of ASNR for which the system performs very well. Notice the deterioration in

performance of user 2 for very high ASNR due to the circumstances (p2 SNR 2 > S.NR 1 )

mentioned in the previous section.

With the constraint from (10) in place, the performance of user 2 matches the one ob-

tained in [5]. There is a slight performance degradation for user 1 over a limited range of

ASNRs when the constraint is imposed.

IV. CONCLUSION

A two-stage detector for multiple access systems that does not require knowledge of the

received signals' energies was proposed and analyzed. It incorporates an interference can-

celer whose weights are obtained by an iterative algorithm. It was shown that the receiver

has comparable error performance in near-far situations to similar receivers that assume the

knowledge of the signal energies.

V. APPENDIX

E{bibi} Eb1,b2 {blsgn(j T'Alb, + pvAb2 + ni]}

1 bi [Prjni > - bi- pf4iýb2
bl ,b2

- Pr f{ni < -.F,41 bi - V b.

=i-QjVo 529) Q(JTVfY)

E{bj62} = Eb,,h {blsgn[•F2b 2 + p /A4ibj + n2l}

I - bi n > -jbe- pF4bi
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-Prn 2 < -FAA- pV-b+}

Q( , 12 Vr'A)Vb2+"V2

7No2 V No / 2

lnjb} E Enisgn(Fob2 + pFjb- + n2 )}

- E f0L P b njf.1,, 2dnidn2

,1'00 n nf2 - 2dnidn2 ]

F p 2 . , 2 + A

fl 21 IP2 JV[ e_( 2 e-

where:

Q(X) = j 0 0 e-2/2 dt

and:

f 2 + n 2n - 2pnin2
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Fig. 1 Two-suag receiver for two syucbranoin usivn
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Fig. 2 Error probabilities for users and 2 with p= 0.7 and SNR1 8dB
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Fig. 3 Error probabilities for users 1 and 2 with pO 0.5 and SNR -8dB
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Fig. 4 Error probabilities for users 1 and 2 with p=I/3andSNRI =8dB
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