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| Effects Of Ground Reflection On
| Frequency Modulated Signals

1. INTRODUCTION

It is well-known that radar detection is often adversely affected
by ground reflections [Evans. 1966: Smith and Mrstik. 1979]!-%,
Although several techniques have been devised to alleviate this problem
there are still situations where the problem can be acute. Particularly
in low-angle radar tracking. the problem is sometimes irremediable
[Barton, 1974]°. The fact that the ground surface is almost always
irregular introduces further complications and demands careful study
[Papa et al, 1983]%. It must be noted here that all studies thus far on
the effects of ground reflections have been restricted to conventional
pulsed radars. However, chirp radars use frequency modulated signals and
the effects of ground reflections on such signals may be quite different
from those on ordinary pulsed signals. This report concentrates on the

effect of ground reflections on frequency modulated signals.

2. DESCRIPTION OF THE PROBLEM

. The geometry of the problem is shown in Figure 1. The ground is

represented as a perfectly conducting random surface whose mean

Received for publication 12 June 1992
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coincides with the xy-plane. Moreover the surface is assumed to be
isotropic and smoothly varying in slopes so that the Kirchhoff method
may be used for analysis.

The main quantity of interest to us in this report is the average
power of the signal received by the chirp radar. There are four
contributions to this quantity as shown in Figure 1. The target is
assumed to have unit reflectivity. Both the target and the radar antenna
are assumed to be isotropic. The ground reflection that we refer to in
this report is the specular reflection or the coherent reflection.

Let f,(t), fo(t), f3(t) and f,(t) represent the received signals
corresponding to the four cases shown schematically in Figure 1. The
angle between the coherent ray and the z-axis is denoted as © while the
reflection coefficient associated with this ray is denoted as R. With
these notations we have the relation

£5,(t) = R £(t+D) (1)
where D is the delay caused by the path difference between the direct
signal (Figure la) and the ground reflected signal (Figure 1b). Also it
is clear that

f3(t) = £,(v) (2)
For the same reason

£,(t) = R® £, (t+2D) (3)

Thus the received signal f(t) is related to f;(t) as

2

£(£) = £,(t)+ 2R £, (£+D) + R® £, (t+2D) (4)

Hereinafter we shall use capital letters to denote Fourier transforms of

corresponding signals. For example




pl(w) -- £ dt fl(t) exp(iwt) (5)

is the Fourier transform of the signal fl(t). Fourier transformation of

Eq.(4) leads to

F(w) = l 1 + 2Re 6D  p2,~120D ] F, () (6)

The signal transmitted by the chirp radar f,(t) is a linear

frequency-modulated pulse defined as:
£ (t) = exp[ - i(wt +.5 mfz)]' for [t] = T
0 I c ) o

l

where o, is the angular carrier frequency, T, is half the pulse width,

(7)

0 for || > T
o

and m is the parameter determining the extent of frequency modulation.
On reception the signal passes through a matched filter whose

transfer function H(w) is given as
i 2
H(w) = exp [ = Tom (wc - w) ] . (8)

This results in an effective pulse compression [Cook, 1960: Cohen,
1987]3-%. Denoting the signal after this filtering as g(t) and its

Fourier transform as G(w),

G(w) = H(w) F(w) (9)




On substituting Bq.(6) into Eq.(9)

Gw) = Gy(w) + G (w) e 1wD, G, (w) o 12uD (10)
where

co(w) = H(w) Fl(w) (11a)

G, () = 2 H(w) R F () (11b)

Gy(w) = R? H(w) F, (@) (11c)

Inverse Fourier transformation of Eq.(10) leads to

g(t) = go(t) + g, (t+D) + g,(t+2D) (12)

Notice that gy(t) is the direct signal while g, (t+D) and g, (t+2D) are
the ground reflected signals with delays D and 2D respectively. Quite
often in practice these delays are very small and are much less than the
pulse width of the signal. This inevitably results in an interference
pattern that can be detrimental to radar detection and tracking. Clearly
this problem is most acute when g;(t) or g,(t) is of the same magnitude
as go(t). For this reason, a significant part of this report will be
devoted to the study of g;(t) and g,(t) for various kinds of rough
surfaces.

In Section 3 we study the direct signal (Figure la). As mentioned
above there are two ground reflected signals :- g;(t) and g,(t). One
ground reflection is involved in g;(t) where=as g,(t) undergoes two such
reflections (Figure 1d). These reflections are indeed coherent

reflections and they invariably depend on the statistical



characteristics of the surface under consideration. In fact the coherent
reflection coefficient R is given as x(vz) [Beckmann and Spizzichino.
1963]7 where y is the characteristic function and v, = 20)‘/%‘/5; cos® .
We consider several statistical distributions and in each case study the
characteristics of ground reflected signals. The characteristic
functions of the four statistical distributions considered in this
report are given in Appendix A. The corresponding coherent reflection
coefficients are given in Appendix B. Section 4 is devoted to the
analysis of g;(t). For each statistical distribution, explicit
expressions are derived for gl(t). In Section 5 similar expressions for
gy (t) are obtained for normal and exponential distributions. The
results thus obtained are studied in comparison to one another in

Section 6. The conclusions are presented in Section 7.

3. DIRECT SIGNAL

Since we have assumed that the target has unit reflectivity. the
direct signal f,(t) is identical to the transmitted signal f,(t) apart
from the time delay. which depends on the range. For the analysis in

this report. this time delay is irrelevant. We therefore let f;(t) =

f,(t). Thus
T, ~
Fi@) = [ dat exp (- i(u_t+0.5mt?)) e ¥F (13)




It follows from Eg.(lla) that

8o(t) = %ﬂfn d H(w) Fy(w) e 19F

° i 2y - iwt
- 2—:‘.-—1‘ dwexp(-z;-(wc-w) )e @
To 2.y 1
.-'Jl: dr exp(-i(wcf+0.5 nr )]e"’r
o
To )
-z—i-exp (—Zit—wcz) { dr exp (—i(wcr+0.5 mr )] A (14)
o

where
A, = f.’ dw exp (- = (wz" 2w )- iw(t- 1)]
1 _3 2m c

- [Zm )'5 e in/b exp [ il_i;_ (wc- nt + mr)2 ] (15)

On substituting Eq.(15) into Eq.(14) and evaluating the integral we

obtain

go(t) - [-2-%- )'5 exp [ i[ .5mt2- w,t = n/4 ) ] 2 'fo sinc [mTot] (16)

Thus the direct signal has the anticipated sharp peak at t = 0 and a 4 dB
pulse width of ii‘Lo Noting that the pulse width of the transmitted

gignal is 2T° we see that the ratio of pulse compression achieved is

2
2nT, /n.




4. GROUMD REFLECTED SIGHAL I

Taking the inverse Fourier transform of Eq.(11b) we get

1 - it
. g (t) = Zr‘_{ dw 2R H(w) Fj(w) e @ (17)

We note that the reflection coefficient R for a normal distribution is
nondispersive since its statistical characteristics are symmetrical.
However. in applications, one notices that many surfaces do not possess
this property. To study such situations we consider as examples three
other distributions that have asymmetric characteristics. The reflection
coefficients R associated with these statistical distributions are given
in Appendix B. Below we analyze each case for the ground reflected

signal I.

4.1 Normal Distribution

Substituting Eqs.(8)., (13) and (B3) into Eq.(17) we get

gl(t) - 5%— f dw 2 exp [ -.Sazw2 - Ei_ ( w0, w]2 ]

. { dr exp ( = ior -.5imr4 iwr - iwc] (18a)

: . f dr exp (- iw 7 '.51m12] A, (18b)




where we have used Eq.(B3) which gives R= exp(-O.Sazmz) for the

reflection coefficient,

a=2(u°e°)°'socos 0.

02 1

A2 - _ £qu exp[ - ( 2 " Im ) 02 - 1[ t—r - wc/m ] ]

-[ t/po )'5 exp[ - Z%; wc/m +r— t )2 ] (19)
and vhere
2, 1
po = .5a” + oo (20)

Substituting Eq.(19) back into Eq.(18) and simplifying, we obtain

g (t) = (a’po)—'s exp[ - % w: - -4%; (t-w/m )2 ] A, (21)
where
To
Ay = _ { dr exp ( - airz- blr] (22)
o
im 1
a, m S—— g (238)
1 2 apo
and
by =w (1+51—)-3% (23b)
1 2p0m 2p1

10




The integral in Eq.(22) may readily be expressed in terms of error

funcrions as follows

2
A3 = 0.5 ( w/al ] 0.5 exp[ ::1 ]

Ao R ] - A Cremt) ]} ao

o 2a1

Thus the explicit solution for the ground reflected signal I for a
normal distribution of the ground surface is contained in Eqs.(21)., (23)

and (24).

4.2 Exponential Distribution

From Eqs.(8)., (13), (BS) and (17) we get

[} (o (7]
51“’"% Jaw 2 325 e"l’['ii—(“’c""]z]

To
.- { dr exp ( - iwcr -.51m72- iwr - fwt )

o

- oo [-ael]

TO
. Jr' dr exp (- fur -.5iwr’ ) A, (25)
o

11




where

vhere

b= wh/m +r-t-a

Integration of Eq.(26) results in
: b2 x 2
A& = - exp [iz;-J p exp( - 2aﬂl ] erfe ( 1J(2a)ﬂ1 ]

wvhere

U Lo

Jea]

Substituting Eq.(28) in Eq.(25)

Ol
Plor

By, =0.5 { [

8™ - e[~ o]

To
. f dr exp ( - iwr -.Sinr2 ]
-7 c

o

2

exp [ i—%; - Zaﬁi ] erfc ( 1/(Za} ﬁl )

Use of Eq.(27b) leads to the simplified form:
Q
1 i 2 1

g(®) ~-3 ‘*"[’iﬁ""c * 17 ] As

12

(26)

(27a)

(27b)

(28)

(29)

(30)

(31)




where

01 - wc/n -t-a (32)
To
As - _ { dr exp ( - inr(ti-c))
o
exp [~ 2082 | exte ( 1/T0)8, ) (33)

It does not appear possible to express A; in terms of known functionms.
But we note the following. Since W~ mt- ma » mr in our domain of

interest, namely, To S t, if TS T, it is clear that

exp [— 2..8: ] erfc ( 1,/(2a)ﬂ1 ] is a slowly varying function of T. We

therefore approximate it by its mean value

exp [- 2aﬁ§ ] erfe ( iﬂ’i?)pz )

where

pmos{[m-2]es [ 2]] a0

When this approximation is used. Eq.(33) becomes

Ag = exp [— 2:3% ] erfc ( if(f;)ﬂz ) Ag (35)
where
To
AG - f dr exp [- imr(t+a)) ‘
- 2'1'°s:lnc( n'l'o(t-b-c)) (36)

13




Thus from Eqs.(31). (35). and (36)

2

Q0
-1 R S - 1

;1(t:) = a ‘“F[ 2m “c +14a ]

- exp [- 2062 | erfe ((1/2008, )
* 2 T, sinc ( aT (t+a))

4.3 Rayleigh Distribution

Using Eqs.(8), (13), and (B6) in Eq.(17) we get

51“)'?:" [ aw 2 exp [—1/,&,-_2%_(‘%_”)2]

. { 1 + i/xaw erfec (- iaw) exp (- ;2«02) }

To 2
. I dr exp (- iwcr =.5imr"+ fwr - iwt ]
-To

1 _ i 2
“x Pl wc]

T,
o [Car e (- tur -stwe®) (1341, 4+ 1)

o
where

I1 - f dw exp[ fw(r- t)- ii- ( wz- 20wc) - iJ;;uJ

I2 - f dw exp[ iw(r- t)- Ei- t wz- 2wwc]]

- ®
. 1/;;w exp ( - 1Jk;w - ;2w2

14

(37)

(38)

(39)

(40a)

(40b)




1 - few oxp[ tw(r- ©)- - (0¥ 200 )]

. i[row exp (— 1/xow - a2u? ] erf(- iaw) (40¢)

I, and I, may be readily evaluated in terms of elementary functions as

follows:
.5
I1 - (2:!) exp[ - in/b + i% ( w/m+r-t- Jxa ]2 ] (41)
2
b b
-~ 2
12 - - fax m exp[ qu ] (42)
a, 2
where
a, = 324—2:— (43a)
by=-1{w/m+r-t-/ra) (43b)

It turns out that I; can be expressed in terms of a confluent

hypergeometric function,

2
- _2a 3 1.3 3. a _2
I,=-- 7315 '1[2'2'2-2-,'4,] (44)
a, 2 2
where
®  ® (a) (b) k .2
. ’. - k+2 k z C
'l(avboc'c nzof) L Z (c)k (c,)z Kl L1 (45)
k=0 =0
- L(atk)
(a)k T(a) (46)

15




With these results we can write g;(t) as
1 i 2
8,0 = 1 exp[- 520 2] 19+ 3, + 3y (47)

where

To 2
Jl = _ f dr exp (- iwcf -.5imr ) I

¢ t=1.23 (48)
To
J; is readily evaluated as
.5 2 -
J1 - (2::] 27, exp[ - ix/4 + 1% 02 ] sinc [ (t+Jxa ]nTol (49)
02 - v~ mt - n/xa (50)

After some rearrangements J, may be written as

2

0
~ f1} 1 2
g = “(n) 15 oxe[ 7oom2) B (51)
2a 2
2
where
To 2
B = f dr (mr4Q,) exp(- a.r’=-b f] (52)
2 3 3
and where
1, _im
&=t (53a)
0
8,
~2 i
ao - a + om - (53¢)

16




On evaluating the integral in Bq.(52),

b
p-ew o] 0y +ap)

vhere

3, = 34 {exp[-a3(-1‘°+2:—:] .s]

3
-exp[-a3('ro+-2;:—) 5]}
ip = [“z‘-?%; %(fs) >
[erf{ Jag [T+ %]} - ctf{ Ja, [— T+ ;:—:

It is apparent that the integral in J; is too complicated for analytic
evaluation. But since u%/h -t - J;; »r in - To sr,ts=s Towe note that

q& is a slowly varying function of T in the domain of the integrand.

This enables us to approximate

s 1.3 3 3% b
Vl [ 212 ' 213 : —;; ’ Z;; ] by its mean value
2
. [2 ;.zz_’f.__f‘.z.]
112222 a, 432
Thus
-2 ~2 02
J__b_a_.,[é 1.3 2._0_-_2]A
3 1.5 11l2'2'2"'"2"' a,"' 4a 7
a, 2 2

]

\
/

|

(54)

(55a)

(55b)

(56)




wvhere

To 2
A.’ - f dr exp (- :lucr =.5imr )

()
- exp [i -2-:-:—] % (x/u] -3 (- 1)

[

K [ s/ as) (10 /m ) ]

- orf [ Sfm (14+1) (- T+ /m ) ] } (57)

Bquation (47). together with Egs. (49). (51). (54). (55). (56). and (51)

provide the explicit solution for the g, (t).

4.4 Skew-Normal Distribution

Substituting Egs.(8)., (13), and (B8) into Eq.(17) we have

o - [ azen [~ g (o 7]

e [1(2)0 pap o]

. { o exp( -.5a12 wz ] erfc[ - 7%— a,w ] )
+ ) mp( “.5&22 02 ) etfc[ - 7‘;*- aw ] I

To 2 .
. f dr exp ( - i(dcf =.5imr"+ fwr - iwt ] (58)
- To

18




Let
81(1:) - sl(:) + sz(c) (59)

vhere

sl(t)-z—:--f'dUZexp [- %+ (o ©)?]
czm e [1(2)7° @ ap o]

+ o) exp( -.50,2 W? ) erte| - 7 o ]

» J ar exp (- fo 7 -.5imro+ for - fwt ) (60a)
- To

sz(t)-%_i dw 2 exp [-ﬁ— (wc--wlz]
.Z%exp [i [%]5 (al-az)w]
-9 exp( -.5c22 w? ] erfc[ 7%— azw]

To 2
. f dr exp [ - iwcr =.5imr"~ iwr ~ iwt ] (60b)
- TO

- 19




Let us first consider s,(t). The RHS of Eq.(60a) may be rearranged as

follows.

o9 To
320 = T

oy dr exp ( - iwcf -.Si.nr2 ) A

(61)
- To 8

where

As - f dw exp [ - ii_ ( w,~ w]2+ iw(r- t)]
* exp [ -.Sal2 w2 +i ( % )'5 (al- az) w ] erfc[ - 7%— ajv ]

@«
- exp [ - ii— wcz ] ) £ dw exp ( - plwz- q,@ ] erfc( 7@ )

(62)
and where
- P - .S( 012 +i/mJ (63a)
“e 2 5
q =~ 1 [m—+(;]' (al-az)-l-f-t] (63b)
and
7y =~ e /)2 (63¢)

The integral in Eq. (62) may be represented in terms of the

hypergeometric function mentioned earlier.

20




rmom [l ] { ()% o 3]

2
L R 3, _n LN
s l2rziae2iTh g / (64)

Substituting Eq.(64) into Eq.(61) and rearranging we get

2
-59 _ i 2. e
sl(t) - ,5( ﬂpl) P exp[ 2m “c “P1 ] A3(a1. bl)
oy
2
* Smo exp[ = ©, ] A9 (65)
where
W
c 21.5
o=+ ()7 @ a)-t (69
a, = .25/p, + i.5m (672)
51 - .Sﬂ/pl + iwc (67b)
and
To
Ag - _ f dr exp ( - iwcr -.Simrzl
o
79 n? g
}; Wl[%-%;%'%“L-a—l] (63)
pl, P P

Note that A3 is the same integral as in Eq.(22) - Only the variables are

now different. Here the result may immediately be obtained from Eq. (24).

21




In the integral in Eq.(68) we may employ the same approximation as
before. namely. identify the slowly varying part of the integrand by its

mean value. To be more specific,

3 1.3 2.-_

q"’l[z'z'z'z' p'lcpl]

c-saw [2.1:2,2,.0 __sﬁ]

1 2'2’2’2' pl’ apl (69)
Thus

v v 2

1 3 1.3 3._1L __a
Ag=-i8—95¥% |2:2:2°3} pl'lspl]A7 (70)

P

Equation (65) along with Egqs.(70) and (57) provides the solution for
s, (2).

We note from Eq.(60) that the integrand in s,(t) is very similar in
structure to that in s;(t). Thus the procedure for evaluating s,(t) is
identical to that of s;(t). We therefore omit the steps and simply

present the results.

2 b
- -5%2 _ 4,2 o, "2
sz(t) '25( a2p2] e *PLIT 2m Y% 4p2 + 4a2 ]

[ erf{ Jaz [ T + Egg- ] } - erf{ Jh2 [— T+ Egg— ] } ]

2 2
5% Ty 3 1 3 3 T g2
- .25 0 (m)™ 7T5(1+1>‘1[§'E:§»5='T-zp—

N

erf [ .5/m (140 ( T+ /m) |

- erf [ S/m (1+8) (~ T 4w _/m ) ] } (71)

22




wvhere

a, = .25/p2 + i.5m

b, = .50/p, + iv_
2

P, - .5( a, +1/m)

12 - 1“2/J2 |

This completes our derivation for g;(t).

5. GROUND REFLECTED SIGNAL-II

On taking the inverse Fourier transform of Eq. (1lle)

g,(8) = 1= [ B @) Fw) e

(72a)

(72b)

(72¢)

(724)

(73)

In this section we evaluate Eq.(73) for two cases - normal distribution

and exponential distribution.

23




5.1 Normal Distribution

Substituting Eqs.(8), (13) and (B3) into Eq.(73) we have

B -5 Ja

¢ exp[ - 5&— (u:- w) - 0292 ]

To
. f dr exp {- iwcr -.51m12+1wf } (74)

On comparing Eq.(74) with Eq.(18a) we can immediately write down the

regult as

g,(t) = .5 g (t,27) (75)

5.2 Exponential Distribution

From Eqs.(8). (13), (B5) and (73) we have

® - iow
1 i 2
gZ(t) T T2k _ £ dw { ;_ iow } exp[ " 7m (97 @) ]

To
o f dr exp {° 1wcr -.51m12+iw(r- t)2}

. f dr exp {- io r ~.5imr"s By (76)

24




wvhere

B, - fdw{-iw e [-L(,,,-z 2410(r- ]
1 2 - 1o0 xp 7m % wc) w(r= t)

- 25 oxp { .251x +.2515%/a }
[

« [ (2)°°- 1ap,exp(- a8D) erte(1s,/a) | an
wvhere
S - b - (783)
; By = el*/4 [ % + i ] (78b)

Substituting Eq.(77) into Eq.(76) and simplifying we get

2

8)(8) = =7 exp {2stn-5h o2+ stam} [ (9P949,] o9

where
To \

9 - f dr exp {- imr (t+2a) s (80a)

To J's \

3, =~ 1a [ “dr exp \- imr(t+2a)y

- To

- B, exp(- af; ) erfe(if,/a) (80b)
0, - 0= e (80¢c)
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Let us first consider the integral in Eq.(80b). Notice that
crfc(iﬂzqﬁ;) is a slowly varying function of t and hence may be

approximated by its mean value 32 exp(~ lﬁg ) erfc(iﬁzla) « Here

Q
SRR 7L N (e R | (81)
By-e [Za *;]
Thus
32 -- iaﬁz exp(- aﬁz ) orfc(i?zja) ’1 (82)

31 is readily evaluated as
31 -2 To sinc( n(t+2;)T° ) (83)
Putting all these together

1 / __i 2 \
gz(t) - —Ez- exp | .25ix 7 “e + .5103m !

[ (2):%- 18, exp(- B3 ) erfe(1B, /@] 4, (84)

6. DISCUSSION

In Sections 4 and 5 we have calculated the ground reflected
signal of the chirp radar generated by four different statistical
distributions. In this section we analyze these results and offer some

physical interpretations. We first look at GRS-I.
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6.1 Ground Reflected Signal - I

For normal distribution g;(t) is given by Eqs.(21) and (24).
Although it is elementary to compute this expression to obtain a
numerical value, the present form does not offer a physically
transparent picture. In other words. the characteristics of the results
are not immediately evident from the expressions in Eqs.(21) and (24).

One way to gain insight is to examine the local behavior. Recall
that the signal haz a pesk at t = 0. Moreover our primary interest is
in the study of the relative amplitude of the ground reflected signal
with respect to the direct signal. We therefore look at the case when

t = 0. We further simplify our task by restricting our attention to the

region where a?mz < 1. Thus to a first order in o?mg
g (® =2 ()71 [1-.5%3 (85)

Note that am®, is the Rayleigh parameter. Hence a?mg < 1 refers to the
small roughness region. When am,= 0 . that is. when the surface is

perfectly smooth, Eq.(85) reduces to

18,(0) = 2T ( 20/x) °° (86)

Algso from Eq.(16) we see that

181 = T, ( 20/%) 3 (87)
This implies that

18,(0)] = 2 |gy(0)] (88)
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From Appendix B it is clear that when amcso. R=1, hence it follows

that
zl(t) - 2‘°(t) (89)

Thus it is seen that Eq.(85) is in agreement with Eq.(89). Also. Eq.(85)
suggests that | g; (0)] should decrease with increasing a®,. This is in
sgreement with the physical fact that the coherent return should
decrease with an increase in surface roughness.

We turn our attention now to the exponential case. As before we

look at the special case when u?mg

a first order in az

< 1l and t = 0. It turns out that to
mg. | gl(O)Iexp has the same expression as Eq. (85).
This means that to a first order in azmg. coherent returns from
normally distributed and exponentially distributed surfaces are
identical.

It is apparent that the results obtained for surfaces with Rayleigh
and skew-normal statistics have fairly complicated structures. Even
from a computational point of view the resulting expressions in the
above cases are unmanageable. It turns out that for parameters
appropriate for our problem the series representation of the
hypergeometric function is not suitable for actual computations. Unless

further study of these special functions are undertaken the value of

these results may not be fully appreciated.

6.2 Ground Reflected Signal - II

Consider the results obtained for normally distributed surfaces.

When t = 0 and azmg < 1 we have
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18,(0)] = T, ( 20/x) S {1-2 czu: }- (90)
Notice that when awo, = 0, Eq.(90) leads to
18,(0)| = 1g(0) ]| (91)

which agrees with the physical fact that g,(t) = gy(t) when am, = 0.
Apart from having all similar characteristics as the corresponding
I81 (0)] we note from Eq.(90) thatlgz(OH decreases much faster with aw,

than (g, (0)].

6.3 Numerical Results

Figure 2 is a plot of the computed results for GRS-I. More
specifically it is a plot of | g;(t)/gy(t)| versus t. The parameters
chosen are to an extent arbitrary but at the same time pertinent to our
problem. The solid lines and the dotted lines correspond respectively to
normal and exponential statistics. The main signal centered around t=0
is the compressed pulse. The rest are sidelobes. When @ = 0.01
(Figure 2a) the normal and the exponential results coincide and
| 8;(t)/gg(t)lgaxy = 2. Since @ = 0.01 corresponds to aw, = 0.015
both these results are in agreement with our predictions. When
& = 0.07 or aw, = 0.104 (Figure 2b) we still see that the normal and
exponential results coincide. But notice now that the amplitude of the
coherent signal is reduced. For further increase in o we note that

| sl(t)lso(t”normal decreases faster than | gq(t)/gg(t)) The

exponential-
point to note is that in some situations these results can be quite

different from one another.
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In Figure 3 we have plotted GRS-II. Recalling the fact that for
an, = 0, g,(t) = 2g,(t) we have appropriately chosen the scale so that
the results for g,(t) may be easily compared with those of g;(t). It is
evident that g,(t) has all the characteristics of g;(t). But notice that
the rate of decrease of | g;(t)| with aw, is much higher than that of
| 83(t)l - a fact clearly in agreement with our predictions.

In applications. one often models the ground as a normally
distributed surface. This is primarily because such a model facilitates
easy analysis. But there is growing experimental evidence that
contradicts this assumption. For example, terrain and a large class of
sea surfaces do not have the symmetric roughness geometry of a normally
distributed rough surface. To be more precise, the valleys are often
more shallow and the hills more steep.

The exponential distribution is a good candidate for an asymmetric
rough surface. The results obtained in this report bear out that the
assumption of normal statistics can be meaningful only when aw, is
small. Otherwise this assumption can lead to significant errors.

The exponential distribution is a rather extreme case of asymmetric
distribution. A model more suitable for application is the Rayleigh
distribution. For terrain, perhaps the most appropriate distribution to
use is the skew-normal. Further study of the results pertaining to these

models is left for future work.
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7. CONCLUSION

In this report, the effects of ground reflections on frequency
modulated signals were studied. 9n recognizing the detrimental effect
on target detection caused by interference due to ground reflections our
primary objective is to compute the relative amplitude of the ground
reflected signals with respect to the direct signal. Four different
surfaces are considered for the analysis of the ground reflected
signals. Among them the normal distribution has symmetric
characteristics while the other three are asymmetric. Due to the
nonlinear nature of the matched filter, the received signals for various
types of ground have quite different characteristics. Notice that the
coherent reflection coefficients of the four surfaces have distinct
frequency dependences. Explicit analytic expressions for the ground
reflected signal I are provided for each of the four types of surfaces.
For the sake of illustration we have compared the ground reflected
signals for exponentially distributed and normally distributed surfaces.
It is observed that when the Rayleigh parameter is very small the two
results are very close to each other. For larger Rayleigh parameters the
results are quite different from each other. This means that the
universally accepted Gaussian model may at times lead to significant
errors. We conclude therefore that for the study of scattering from
rough surfaces a careful choice of the statistical distribution

appropriate for the problem is essential.
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) Appendix A
Characteristic Functions

In this appendix we consider four statistical distributions and

obtain their characteristic functions. The characteristic function %(q)

is defined as:

x(q) = [ a& p(&) exp(iqf) (A1)

where p(§) is the probability density function of the height of the

randomly rough surface. The rough surface has zero mean and a root mean

square height of a.

Al. MORMAL DISTRIBUTION

-.5 2
p() = <2 o [ 5] (A2)

c 2"2
x(@ = exp (- .5¢%%) (A3)
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A2. EXPONENTIAL DISTRIBUTION

p(€) = { % exp (- (§+a)f0) 5 €2-0
0 ; € <~0 (AQ)
= iqo
e

x(q) = T-ig (AS)

A3. RAYLERIGH DISTRIBUTION

per - 25 [‘f"’%‘c’_]°""{"°"”'2 [“%‘L]z}

!
c
g

L4

for ¢ 2 - 2¢

0 otherwise

(A6)
wvhere

cz -1-n/b (A7)

x(q) = exp[-im]

2c

{1+i’%€-qerfc [“i’L;:A] exp ('('Sq”/c)z] (A8)
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M. SKEN-NORMAL DISTRIBUTION

exp [ - .5 (e - a)/al)zl ;€2 a

p(§) -
X)O
1 21 .
T, P [ - .5 (€ - 2)/0,) ] ce<a  (a9)
where
a = (2/x)"> (0,~ ) (A10a)
o= .5(01+v2) (A10b)

x(q) = —-2: exp (iqa)
I e (__ 5 22 ) £ [ _i ]
1 oy exp -390, } erfe 7:.,_- 99,

+ o, exp (— .5q20§ ] erfc[ - % 99, ] } (A11)
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Appendix B
Coherent Reflection Coefficient

The :oherent reflection coefficient R is given by Beckmann and

Spizzichino [1963]7 as
R = x(vz) (B1)
where

v, =2 (e, 0% @ cos @ (B2)

Since the characteristic functions for various statistical distributions
are given in Appendix A the corresponding reflection coefficients may

readily be obtained as follows.

Bl. NORMAL DISTRIBUTION

R = exp (- 0.50202) (B3)
where

G cos © (B4)

R= 2 (B5)
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B3. RAYLRIGH DISTRIBUTION
R = exp ( - i/xaw ]

. [ l+i/xaw erfc(iaw) exp(- a2u? ) ] (BS)
where

~ .5
a= () % cos ¢ (87)

B4. SKEW-NORMAL DISTRIBUTION
R = %; exp[ 1(2/«)'5 ( o= a2] w ]

. 1 21 exp( - .5 ai wz ) erfc [ - %5 a,w ]

+ o, exp( - .5 ag w2 ) erfc [ - ii @)W ] } (B8)
where
.5
a = 2 (poco) o, cos 0 (B9a)
a, = 2 (poco)'5 g, cos [} (B9b)
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go (t)
81 (v)

82 (t)

characteristic function
reflection coefficient
delay in time for the ground reflected signal

frequency modulation parameter

~ transfer function of the matched filter

angular frequency

angular carrier frequency

pulse width of the transmitted signal

confluent hypergeometric function
angle of incidence

direct signal
ground reflected signal-I

ground reflected signal-1II
rms height of the rough surface
2( Ro€o )0'5 G cos O

05 o (1 -025%)7"

z(uoeo)o'soi cos® ; i=1,2
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