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ABSTRACT

CAC(Q) CERs estimate the Cumulative Avuee Cost At total production quantity Q.
The CAC(Q) equation form is given by

CAC(Q) = a(Q)b fN()

where Q is total quantity and f(X) is a function of physical ar - vance

characteristics. At first glance the equation simply looks like a learning curve. However, h ,

coefficient b will capture the learning curve effect and al.y other quantity related effxts, suchIN

as degree of automation. Values for b are in the -.2 to -.4 range which is less than a 90%

learning curve typical of Solid Rocket Motors.

The logic behind the CAC(Q) equation is that the best data is the total constant year

cost and the total quantity procured. Any other data, even individual lot buys, will have

anomalies. To attempt to build CERs with lot data or derive theoretical first unit costs (Tls),

introduces noise into the data that masks the true relationships. This is especially true when

learning analysis on individual data points is very noisy, (e.g., derived learning curves with

slopes greater than one, poor learning curve fits, etc.).

In this paper the application of the CAC(Q) technique to Solid Rocket Motors is

described. Three equations having different cost drivers were derived, all with good fit

statistics. Techniques for selecting among these three "good" equations are also described

and derivation ofTl is demonstrated.

Charles A. Graver
Damon C. Morrison
Tecolote Research, Inc.
5290 Overpass Road, Bldg. D
Santa Barbara, CA 93111
(805) 683-1813



PREFACE

This paper contains excerpts from "Cost Estimating Solid Rocket Motors vdith Thrust
Vector Control", CR-067, Tecolote Research, Inc., February 1993. This is referred to as
Reference 3. Proprietary Data has been removed so that it could be presented at the DoD
Cost Analysis Symposium. The paper has also been shortened by removing some of the
conversions contained in the original paper. The resulting paper focuses on the development
of CAC(Q) CERs, selecting between them, and deriving a T1 cost.
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INrRODUCTION

1.1 P [ R F
Tecolote Research has been investigating solid rocket motor costs for the United

States Army Space and Strategic Defeiise Command (USASSDC) Cost Analysis Office
(CAO). In a previous study we developed Cost Estimating Relationships (CERs) for rocket

propulsion recurring manufacturing costs. This effort was documented in CR-0540, October

1991 (Ref. 1).

The CERs reported in Ref. 1, while significant in the statistical sense, left much to be
desired. First, the data set was very small. It consisted of 13 motors from eight DoD

procurements. The focus on recurring manufacturing costs meant that we had to use CCDR

data. Only 13 data points could be found that had CCDRs.

Furthermore, the data set appeared to have two strata. Seven motors had Thrust

Vector Controls (T!C) and the remaining motors were part of missiles that had aerodynamic

controls, most often actuator-driven fins. The TVC motors tended to be larger and performed

strategic missions, while the aerodynamic missile motors were smaller with tactical missions.

In addition, the control costs for the aerodynamic systems could be separated from the motor

costs, as the fins and the actuators were located in the aft section of the missile. On the other
hand, part of the TVC controls are an integral part of the nozzle, and that part of the control

cost could not be separated from the motor costs. Hence, the data set contained strategic
motors with partial control costs and tactical motors without control costs.

It was not surprising, therefore, that attempts to develop CERs that estimated the

Theoretical first unit cost (TI) were not successful. The differences in definition between
tactical and strategic motors added to the variation inherent in many TI CER developments.

However, we were successful in developing equations that estimated the cumulative average
costs at total buy quantity, "Q." These equations are referred to as CAC(Q) equations.

Thc logic behind CAC(Q) CERs is that the best data is the total constant year cost and

the total quantity procured. Any other data, even individual lot buys, will have anomalies.

I



So to attempt to build CERs with lot data, or derived TIs, introduces noise into the data that

masks the true relationships.

The CAC(Q) equation form is shown below. At first glance, it simply looks like a

learning curve, with f(X) representing sorie function of physical and performance

characteristics X that are hypothesized to explain the cost. However, the coefficient b on the
total production quantity Q will include not only the learning curve effect, but also any other

effect that is associated with quantity. The best example of another quantity-related effect is

the degree of automation. The manufacturer will automate a production line more when a

large total production quantity is expected. For these large production buys, the average cost

at total production quantity is less than it would be if automation were the same for all data
points in the data set. This, in turn, leads to a value for the coefficient b that is much less

than that for a typiz.al learning curve. Values in the -.2 to -.4 range are common. While part

of the coefficient value represents learning (-. 152 for a 90% learning curve), the rest is due to

automation or some other quantity-related cause.

CAC(Q) = a(Q)bf(X)

The practical consequence of CERs with this form is that you cannot directly

calculate a TI. Putting a I in the equation for the value of Q is not an estimate of TI. It is

only an estimate of the TI cost if you are going to produce only one unit and never any more.

In effect, you would have no automation and a much higher cost. As a result, the reader is

cautioned as follows: DO NOT ENTER 1 FOR Q TO ESTIMATE A TI COST.

The correct way to calculate a TI cost is first to calculate a cumulative average cost at
total production quantity and then to convert that cost to TI by applying a learning curve
with an appropriate slope. An example of this calculation is given below.

Suppose the CAC(Q) equation in thousands of dollars is given by the following,
where IT is total impulse in thousands of pound-seconds.

CAC(Q) = 61.353(Q)-0.5299 (rr)0 .660 7



Further, suppose that you want to estimate the TI cost of motor X, which has a total
impulse of 700K pound-seconds, and that you are going to produce 1000 motors. Finally,

assume a 950K learning curve. Then the cumulative average cost for 1000 units is

CAC(1000) = 61.353(1000)- °.5298 7000.6607= $119.7K

TI is then found by

CAC(1000) = TI(1000)-0.074 or TI = $1 19.7K/.6 = $199.5K

The CAC(Q) equation form was applied to the solid rocket motor data set in Ref. 1
with significantly better results than those achieved with the TI form CERs. For -xample,
the Root Mean Square Error (RMS) for the TI equations ranged from 72% to 84%. Fo the

CAC(Q) equations the RMS error dropped to around 64% and also identified an outlier.
When this outlier was removed, the RMS error dropped to 27%.

However, the coefficient on Q appeared to be too high. Typically, this coefficient
was less than -.5. Our concern was that the results may be spurious. We managed to tie

strategic and tactical motors, (partially) with and without control costs, into the same data set
because all strategic motors had smaller total production quantities than the tactical motors.
The fear was that the equation form would give wrong results if used to estimate the cost of
high total quantity strategic motors (above 600) or low total quantity tactical motors (below

2000).

To examine this concern, we recommended in Ref. 1 that the data be stratified and
separate equations be built for the two strata. If the value of the coefficient b is thereby
reduced to the more practical -.2 to -.4 range, then the individual strata equations should be
used to project into this middle total production quantity range of more than 600 strategic
motors and fewer than 2000 tactical motors.

The purpose of this study was to report on the results of developing CERs for the
strategic motors with TVC. The results are significantly better than those achieved with the
Ref. I data set.
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1.2 1AIA SET SELECTION

The first consideration in this investigation was to pick the data set. Stratifying the

Ref. I recurring manufacturing cost data set left only seven data points at most, and one of
those was suspect. "i hat motor had a recurring manufacturing to recurring production cost

ratio that was completely out of the range of the other data points. Its value is 0.396, while

the average of the remaining six motors is 0.752 with a range from 0.669 to 0.804. With such

a small data set, the results would be tenuous at best.

The data set size could be expanded to seven if we investigated recurring production
costs instead of recurring manufacturing costs, as we could add the suspect data point. This

wasn't much of an improvement in database size.

However, we have recurring production costs for other motors from previous studies,

and we were able to find recurring production costs on 22 strategic motors with TVC. This

wider data set offered real potential to build a useful and robust CER. This data set was

selected for the study.

1.3 ORGANIZATION

The recommended equations are presented in Section 2. They are CAC(Q) equations

that estimate the recurring production costs. Three equations are presented along with
examples of their use. In Section 3, we examine the three equations and give our advice as to

which equation to select. Conclusions are reported in Section 4.
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2
RECURRING PRODUCTION EQUATIONS

2.1 EQUATION FORM

The 22-point data set was used for CER development. All of the data points are

strategic motors with TVC. The costs are in thousands of FY88 dollars and include the

motor and TVC. They also include Systems Engineering and Program Management (SEPM)

costs and, hence, are typic? 1 of a subcontractor cost to the prime.

The equation form that we used is

CAC(Q) = aQb(SIZE)c(NUMBER NOZZLES)deDi fD2

where a, b, c, d, e, and f are coefficients to be estimated, Q is the total production quantity to

be procured, CAC(Q) is the cumulative average cost in thousands of FYRS dollars, and DI

and D2 are dummy variables for material type, defined by

Material Type DI D2

Kevlar (Composite) 1 0

Titanium or Glass 0 1

All Other (Steel) 0 0

The equation form incorporates Total Qantity, Size, Number of Nozzles, and

Material Type. Three different size variables were investigated. These are Tetal Weight,

Nozzle Weight, and Total Impulse. All of the size variables produced statistically significant

results. These are summarized on the following page:



STATISTICS

Sample Size 22
Degrees of Freedom 16

RMS error 18.4% - 19.1%
Adjusted R2 91.84% - 92.75%

Coefficient t Statistics All significant

b values -0.29 to -0.36

As can be seen, the results are very good for each of the size variables. The problem

then becomes one of choosing between three good equations. This will be the subject of

Section 3. CERs for each of the size variables are given in Sections 2.2, 2.3, and 2.4

respectively. An example of each equation use is also given,

2.2 TOTAL WEIGHT EQUATIO
The tota1 weight ent ation is given by:

CAC(Q) = 29.045Q- .338 7 TW°*512 6 NN°'6 16 7 (1.6680)DI (1.3867)D2

where

CAC(Q) = Cumulative Average Cost in thousands of FY88 dollars

Q = Total Production Quantity

TW Total Weight in pounds

NN =- Number of Noziles

D1 Kevlar stiatification variable

D2 Titanium or Glass aratification variable

The significant statistics for this equation are summarized below:

Data Points 22 R-Squared (Adj) 91.84%

Degrees of Freedom 16 F Statistic 48.30

Standard Error (SE) 0.2267 RMS Error 19.1%

6



Coefficient Significance

Probability
Variable Coefficient t-Statistic Not Zero

Intercept a 5.OA 1.000
Q b -5.41 1.000
TW c 9.46 1.000

NN d 6.96 1.000

DI e 3.21 0.995

D2 f 2.56 0.979

Data Ranges:
71 < Q _5 2249

3200 < TW _ 107000

1 <NN <4

One date, point, Motor 14, exhibits a 32.6% error and is listed as showing an unusual

value in the outlier analysis. All the other data points are estimated within 32%. Percentage

errors for each of the data points are given in Section 3.2.

As c':n be seen from these statistics, te total weight equation is highly significant.

Furthem ,,e coeffi,,;ient on Q is in the acceptable range, with a little less than half of the
quantity I ievoted to learning curve slope (-0.i52 for a 90% learning curve).

As an example of using the equation, assume that we want to estimate the motor cost
of missile X, We are going to produce 1000 motors. The Total Weight is 700 pounds, with a

single nozzle weighing 30 pounds. The material to be used is Kevlar. The Total hnpulse is
300 thousand pound-second,.



The cumulative average cost of 1000 motors is given by

CAC(Q) = 29.045(1 000). 3387(700)0° 126(1)0.6167(1.6680)1(1.3867)0

which, after performing the arithmetic, equals $ 134K.

To calculate a TI cost, one cannot use a Q value equal to one, but rather one must

assume a learning curve slope in conjunction with the CAC(Q) results at total production
quantity Q. Assuming 90%, we have the following:

CAC(1000) = Tl(1000) -o-'s 2 or TI = 134 K/.35 = 383K

2.3 NOZZLE WEIGHT EOUATION

The nozzle weight equation is given by

CAC(Q) = 97.453Q- 2S 93NW592 .rN4774(1.7553)D(1.2601)D2

where

CAC(Q) = Cumulative Average Cost in thousands of FY88 dollars

Q = Total Production Quantity

NW = Nozzle Weight in pounds
NN - Number of Nozzles

D! = Kevlar stratification variable
D2 = Titanium or Glass stratification variable

The significant statistics for this equation are summarized below:

Data Points 22 R-Squared (Adj) 92.75%

Degrees of Freedom 16 F Statistic 54.73

Standard Error (SE) 0.2138 RMS Error 18.9%



Coefficient Significance

Probability

Variable Coefficient t-Statistic Not Zero

Intercept a 8.50 1.000

Q b -4.85 1.000
NW c 10.13 1.000

NN d 5.42 1.000

D1 e 3.77 0.998

D2 f 1.92 0.927

Data Ranges:

71:5 Q5 <2249

90 <.NW < 1540

1 <5NN<4

Two data points, Motors 14 and 8, exhibit a 30.8% and 50.1% error, respectively, and

are listed as showing an unusual value n the outlier analysis. All the other data points are

estimated within 26%. Percentage errors for each of the data points are given in Section 3.2.

As can be seen from these statistics, the nozzle weight equation is highly significant.

Furthermore, the coefficient on Q is in the acceptable range, with a little more than half of the

quantity effect devoted to learning curve slope (-0.152 for a 90% learning curve).

As an example of using the equation, assume that we want to estimate the motor cost

of missile X. We are going to produce 1000 motors. The Total Weight is 700 pounds, with a

single nozzle weighing 30 pounds. The material to be used is Kevlar. The Total Impulse is

300 thousand pound-seconds.

The cumulative average cost of 1000 motors is given by:

CAC(Q) = 97.453(1000)-0.2993(30)0.s929(1)0.4774(1.7553)1(1.2601)0

9 .



which, after performing the arithmetic equals, $1 74K.

To calculate a TI cost, one cannot use a Q value equal to one, but rather one must

assume a learning curve slope in conjunction with the CAC(Q) results at total production

quantity Q. Assuming 90%, we have the following:

CAC(1000) = TI(looo) "° . 5 2 or TI = 174K/.35 = 497K

2.4 TOTAL IMPULSE EQUATION

The total impulse equation is given by

CAC(Q) = 77.595Q-0 ,3597 TIO-50 NN0 6h'6 (1.4433)DI(1.2939)D2

where

CAC(Q) = Cumulative Average Cost in thousands of FY88 dollars

Q Total Production Quantity

TI Total Impulse in thousands of pound-seconds

NN = Number of Nozzles

DI I Kevlar stratification variable

D2 = Titanium or Glass stratification variable

3 he significant statistics for this equation are summarized below:

Data Points 22 R-Squared (Adj) 92.65%

Degrees of Freedom 16 F Statistic 53.94

Standard Error (SE) 0.2153 RMS Error 18.4%

In



Coefficient Significance

Probability

Variable Coefficient t-Statistic Not Zero

Intercept a 7.79 1.000

Q b -6.07 1.000

TI c 10.05 1.000

NN d 7.26 1.000

DI e 2.36 0.969

D2 f 2.13 0.951

Data Ranges:

71:5 Q:5 2249
600 5 TI 27000

I : NN _4

No data points show an unusual value in the outlier analysis. All the data points are

estimated within 32 .52%. Percentage errors for each of the data points are given in Section

3.2.

As can be seen from these statistics, the total impulse equation is highly significant.

Furthermore, the coefficient on Q is in the acceptable range, with a little less than half of the

quantity effect devoted to learning curve slope (-0. 152 for a 90% learning curve).

As an example of using the equation, assume that we want to estimate the motor cost

of missile X. We are going to produce 1000 motors. The Total Weight is 700 pounds, with a

single nozzle weighing 30 pounds. The material to be used is Kevlar. The Total Impulse is

300 thousand pound-seconds.

The cumulative average cost of 1000 motors is given by:

CAC(Q) = 77.595(1000).0 3597(300)0.501(1)0.6116(l.4433)1(1.2939)0



which, after perfrorming the arithmetic, equals $1 32K.

To calculate a TI cost, one cannot use a Q value equal to one, but rather one must

assume a learning curve slope in conjunction with the CAC(Q) results at total production

quantity Q. Assuming 90%, we have the following:

CAC(1000) =TI1000)-0.S2 or TI = 132K/1.35 = 377K

12



3
SELECTING A CER

Three very good equations were presented in Section 2. The only difference in form

is the size variable. How does one choose a CER from the equations based on Total Weight,

Nozzle Weight, or Total Impulse? In this section, we address this question by examining the

traditional statistics (3.1), comparing the fit for individual data points (3.2), and seeing how

well the equation estimates smaller motors (3.3).

3.1 TRADITIONAL STATISTICS
A number of statistical measures are presented for each equation in Sections 2.2, 2.3,

and 2.4. Infonnation on how well the equations fit, and hence can predict, are summarized in

these statistics. We have selected four for comparison. These are shown below.

STATISTICS

Equation Based O. __

Total Weight Nozzle Weight Total Impulse

R2 (ADJ) 91.84% 92.75% 92.65%

Standard Error 0.2267 0.2138 0.2153

RMS Error 19.1% 18.90/ 18.4%

Number of Outliers 1 2 0

From these statistics, it ppears that the Total Impulse equation is marginally better.

Most significantly, it has no outliers. Its RMS Error is best, and it has the second-best

standard error and Adjusted R2.

However, from a statistical point of view, there is really not much difference between

the three equations. The choice, therefore, may depend most on the inforniation available to

the cost estimator. Are estimates of all three size variables available, and what confidence is
there in their values? For example, Nozzle Weight is often not available as early as the other

two.

13



3.2 ANALOG

Another means of choosing is by analogy. In this case, one selects a motor that is

most like the one being estimeted. The equation that has the smallest percent error for the

selected motor is the one that is preferred.

Percent errors for all the motors in the database are given in the table below.

Separate entries have been made for each of the three equations. A positive entry in the table

means that the equation estimated high. A negative entry means that the equation estimated

low. Thus, for example, Motor I is estimated low by 8.9% using the total weight equation.

PERCENT ERROR

Equation Based On
Motor Total Weight Nozzle Weight Total Impulse

Motor 1 -8.90 -16.46 -8.73
Motor 2 -13.55 -5.37 -7.98
Motor 3 -2.77 -6.43 -2.85
Motor 4 -15.48 1i-.19 -16.55
Motor 5 -16.07 -11.38 -10.91
Motor 6 27.87 24.50 24.42
Motor 7 24.92 21.52 23.50

Motor 8 1.97 50.13 -7.40
Motor 9 27.00 -14.88 32.52

Motor 10 12.21 1.96 13.95

Motor 11 -26.44 -25.19 -23.59
Motor 12 1.93 -9.10 1.12
Motor 13 -17.23 -10.42 -14.56

Motor 14 -32.60 -30.78 -29.01
Motor 15 13.85 9.51 11.06

Motor 16 22.50 25.99 20.54
Motor 17 -6.78 1.09 -6.61

Motor 18 8.57 14.64 4.92
Motor 19 31.06 11.43 32.07
Motor 20 -24.23 -8.81 -27.54

Motor 21 18.28 3.48 16.35
Motor 22 "' _14.36 22.94 12.10

14



If the booster that the analyst needs to esdimate is most similar to the Motor 21, then

the equation on Nozzle Weight seems to be best. It overestimated the cost by 3.48%.

3.3 EXTRAPOLATIONESTIMAING
A third means of choosing between equations arises when the motor to be estimated

faiis outside or nearly outside the range of the data. This iV true for most of the mot( rs being
considered for TMD and NMD applications. These motors tend to be at the low end of the

database, i.e., they are smaller than most or all of the motors in the data set. The relevant

question, then, is how well does the equation estimate when extrapolating to smaller motors.

To test this, we ordered the motors in the database by the size variable. We then
dropped the smallest motor from the database and refit the equation with the remaining 21

data points. We then predicted the cost of the smallest motor. In this case, Motor 20 was

smallest for Total Weight and Total Impulse. Motor 19 was smallest for Nozzle Weight.
The Total Weight equation predicted Motor 20 cost low by 34.6%, while the Total Impulse
equation predicted low by 39.4%. The Nozzle Weight equation predicted the Motor 19 cost

high by 17.7%.

Note that we refer to these calculations as predictions rather then estimations. This is

to denote that there is a prediction being made, as the data point in question is not in the
database. This is different from the percent error calculations made in regression analysis,
where the estimate is in reality a measurement of how well the equation fit the data point, as

the data point was part of the database. In this sense, predictions made from the extrapolation

estimating technique are a real estimate of the error that one would ,encounter.

We repeated the process described above until the sample size remaining reached 11,

which still allowed 5 degrees of freedom. At each step, the smallest remaining data point

was dropped, the equation refit, and the most recently dropped data point predicte.

Although predictions of all the dropped data points could be used, concentrating on the one-
step predictions has some statistical advantages. For example, it can be shown under the

normal regression theory assumptions that the one-step predictions have statistical properties

similar to the database residuals in regression theory. For more about this technique and the
statistical properties, see Ref. 2.

IS'



Results of this analysis for the 11 smallest data points are summarized in the

following table. The percentage error entries in the table represent overestimates if positive,

and underestimates if negative. The number in parentheses is the sample size from which the

estimate was made.

PERCENT ERROR IN PREDICTION
(Sample Size Used in Prediction)

Equation Based On
Motor Total Weight Nozzle Weight Total Impulse

Motor1 * * 

Motor 2 * * -13.5 (11)
Motor 3 10.8(11) * *

Motor 4 -23.9 (19) -11.1 (16) -22.1 (19)
Motor 5 -22.6(15) -3.1(13) -17.9(14)
Motor6 * *

Motor 7 31.1(14) 35.6(12) 29.3 (15)
Motcr8 4 *

Motor 9 47.6(12) -21.6(15) 53.6(12)
Motorl1 * * *

Motor 1 * *

Motor12 * *

Motor13 1 *

Motor14 "1 4
Motor 15**

Motor 16 - 68.4(11) *

Mylotor17 I-15.1 (20) 3.2 (20) -18.9(17)
Motor 18 7.8(18) 51.3(14) -4.1(20)
Motor 19 36.0(17) 17.7(21) 30.5(18)
Motor 20 -34.6 (21) -6.9 (19) -39.4 (21)
Motor 21 31.8 (13) 22.3 (17) 19.3 (13)
Motor 22 14.6(16) 34.9(18) 5.5 (16)
Sum 83.5 190.7 22.3
Average 25.5 25.1 23.1
Weighted Average 24.7 22.8 22.8

ST - -. ---. -- * . 0 A.-* 0 A



The sum of the percent errors is an indication of bias. In regression theory, the sum of

the residuals is always zero. In extrapolation estimating, this is not the case because the data

is never in the database when the regression is performed. The closer the sum of the percent

errors is to zero, the less bias. In this case, all three equations tend to over predict, but the

Total Impulse equation shows the least bias. The average percent error is calculated on the

absolute percent errors. Here all three equations are similar, with Total Impulse performing
best. A weighted average is also calculated. Sample size is used for the weight, thus giving

greater weight to predictions from the larger databases. Again, all three equations perform

similarly, but Total Weight is the worst.

Using extrapolation estimating, it still seems that the Total Impulse equation is the

best. It has lower average error and less bias.

Another factor favoring the Total Impulse equation is the stability of the coefficient

on the size variable. The coefficient starts at 0.5081. As data is removed, the coefficient gets
as low as 0.4788 an I as high as 0.5574. There is no real pattern to the variation, and the

coefficient value of sample size 11 equation is 0.5034. Contrast this to the coefficient

behavior for the Total Weight equation. It starts at 0.5126, gets as high as 0.5721, and

finishes for sample size 11 at a low of 0.4921. Worse yet is the Nozzle Weight coefficient,
which starts at 0.5929 and gets consistently smaller until it reaches 0.3887 for sample size 11.
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4
CONCLUSIONS

The investigations reported in this poer were very successful. As stated in Section 1,
the results from Ref. 1, though statistically significant, were suspicious. Our concern was

that we had tied together two separate populations by using the CAC(Q) equation form and
that using the equations to estimate large production strategic motors or small production

tactical motors would give misleading results. The solution was to build a motor CER with
TVC for the strategic motor population. We h3pothesized that if the coefficient on the total
production quantity Q was increased from the -.5 range to the -.2, -.4 range, then the CER

would be much more reasonable for cost estimating.

The need for a larger data set forced the study to concentrate on a 22 data point set of
recurring production costs instead of a 6 data point set of recurring manufacturing costs. This
allowed us to develop three size-based CERs, all with significant statistics and coefficients on

Q in the acceptable range. Furthermore, the statistics for these CERs were much better than

those in Ref. 1.

It is our conclusion that the stratification of the data set into motors with TVC was the
reason that we obtained these good results. It is our recommendation that these equations be

used, instead of those in Ref. 1, to estimate motors with TVC in general and especially when

the total production quantity is expected to exceed 600.

The three equations differ only in the size variable. There is an equation based on (1)
Total Weight, (2) Nozzle Weight, and (3) Total Impulse. Three ways of selecting the best of

these equations are given in Section 3. One of these techniques is based on how weil the

equation performs when trying to estimate motors smaller than those in the data set. It was

shown that the equations have an average error of around 23 to 25 pcrcent when predicting

smaller motors outside the data set. In general, the Total Impulse equation seems best.

However, the statistical quality of the three equations are very close, and the availability of

good input specifications for Lhe size variable may be the most important reason for choosing
among the equations.



A final word of caution when using these equations. They are CAC(Q) equations and

hence estimate the cumulative average cost at total production quantity. Do not enter one for

quantity unless you are estimating a motor with only one production unit. If you do enter one

for Q, your estimate wi!! be high whenever more than one unit is produced and/or production

tooling has been bought. The proper method to calculate TI costs was presented. This

shows the analyst how to correctly calculate a TI cost from the CAC(Q) cost equations in
Section 2.
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