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Fusion of Range and Luminance Data

from Laser Radar Systems

Griff L. Bilbro

November 8, 1993

Abstract

In this project, a technique was developed for computing an op-
timal description of some physical scene by using global optimisation
and Bayesian techniques to combine correlated outputs of diverse non-
linear sensors. Two laser range/intensity imagers were considered, but
the major application was to obtain the best known restorations of
very noisy PD-, Ti-, and T2-weighted Magnetic Resonance Images by
fusing the information in all the input images.

1 Foreword

Sensor fusion is an automatic technique for describing some single thing
or event by combining relevant data from several sensors. Sensor fusion is
becoming more important as more sensors are integrated with computers.
The general objectives of sensor fusion are three:

1. To reduce noise,

2. To increase the extent or detail of the information, or

3. To tolerate faulty or missing data.

This report is restricted to an imaging application, but our formulation
was consciously developed to be more general as will be discussed after imag-
ing.
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1.1 Imaging Application

For imaging, the objective is to is to usefully combine several nonlinearly re-
lated, incomplete, distorted, or noisy signals to obtain an improved restora-
tion or reconstruction of the true scene. This imaging problem is easiest for
pixel registered images, which in this case is multiple image restoration to
remove noise without degrading sharp edges. We considered three imaging
applications for sensor fusion.

1. The T-i-Services Laser Radar, a time-of-flight imaging ranger with five
channels: coarse range, fine range, intensity, doppler, and passive IR.

2. The Odetics range camera, a triangulation imaging ranger with two
channels: range and luminance.

3. Commercial magnetic resonance imaging system, a radio-frequency im-
ager in three dimensions controlled by user-specified echo time TE and
repetition time TR, with three channels: proton density, single nuclear
relaxation time Ti, and nuclear pair relaxation time T2.

We formally addressed each problem in the first year, but settled on the MRI
application, item 3, because of the widespread use of these diagnostic medical
systems and the resulting availability of data.

1.2 General Formulation of Sensor Fusion

We developed a general formulation of low-level sensor fusion as minimization
problem. Find the optimal estimate of an unknown measurement, scene, or
dataset f, given a prior expectation V[fe] of f and several incomplete, noisy,
or distorted observered images Gm[f] of f. We model f as a 2D or 3D
array of scalars or vectors. Image formation for channel Gm is modeled as a
functional of the unknown f. We considered several noise models, including
Poisson, Rayleigh, and additive zero-mean Gaussian, although the following
report is restricted to additive zero-mean Gaussian, which we model as a
random image n. for each channel.

We model V as a functional of the unknown f. We considered a smooth-
ness prior in terms of the Laplacian E.(V2,f) 2 as well as the quadratic vari-
ation. We considered a flatness prior in terms of the sobel E.(V.jf). We
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also considered priors that limit the search to a specified interval of values.
The following report restricts itself to the last two.

The resulting problem is then to minimize the objective

H[f] = E rIlg- - Gm(f)II2 + I t,[f]
mm p

over all possible values of the measurement, scene, or dataset f. The fol-
lowing report restricts itself to the problem of Magnetic Resonance Image
Restoration.

2 Statement of the Problem Studied

We studied the specific problem of optimally combining several nuclear Mag-
netic Resonance Images (MR images) to obtain the best possible description
of human tissue. We formulated this multiple image optimization problem
mathematically as follows.

Let G be a measured vector-set of images

G• = [g (1)1,

&c =

where d is the number of channels in the vector-set, and where g9,i represents
the c-th channel value associated with the i-th pixel.

Using similar notation, let S(F) represent the undegraded ideal images as
a deterministic function of F where F are the undegraded ideal basis images,
and let N represent additive noise such that G = S + N. Note that

F.= {f,,,, . (2)

4= [f.,,.lh,,.,

where p is the number of basis images in the vector-set, and where 4#,i
represents the value associated with the i-th pixel of the 4'-th basis image.

4



2.1 Bayesian Model

In Bayesian restoration, the most acceptable result is the result with the
highest probability of occurrence. Let F be an estimate of F. Bayes' rule
gives the posterior distribution [81 of F given the data G as

P(GIF)P(]F)
P(FIG) = P(G) (3)

That is, the conditional probability of occurrence of a specific restoration f'
given the data G is equal to the conditional probability of occurrence of the
data G given the specific restoration f times the probability of the occurrence
of the specific restoration F divided by the probability of the occurrence of
the data G. We refer to P(GIF) as the "noise term", and it describes the
noise distribution. P(F) is called the "prior term" and it describes the a
priori distribution which can be chosen using a priori knowledge about F.
Obviously P(G) is constant and independent of F, so in order to maximize
the posterior distribution, we need only maximize P(GIP)P(P).

2.2 Physical Model of MR Images

The function S(F) is given by the physical model. In this work, one simplified
nonlinear image formation model [11] is used.

c, =-- pi exp (-TE./T2 ) {1 - exp (-TRI/T 1 J)} (4)

where p, T2 and T1 are basis images of C# where 0& = 1, 2, 3, respectively.
TEc and TR. represent the echo time and relaxation time used during acqui-
sition of the c-th data image. T, and T22 are nuclear relaxation times, and p
represents iroton density, contributions due to proton flow, and MR1 system
gain. Most brain tissue is perfuse with slowly moving blood, hence the data
should not be subject to large variations in proton flow. This work does not
address the effect of proton flow. Our data was acquired with MRT system
gain held constant for all scans.

Note that this physical model is undefined and exhibits singularities in
the gradient when T, or T2 equals zero. T i and T2 are real, positive and
bounded below in time, but using a noninfinitesimal step size during gradient
descent requires that T, and T2 be constrained in code, otherwise negative
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values of T, or T3 might occur, causing numerical overflow. Because of this,
a constrained optimization technique is required to find a global solution in
the minimization process.

2.3 Global Optimization with Mean Field Annealing

Mean Field Annealing (MFA) is based on Simulated Annealing (SA) and
derives its power and generality from that popular optimization procedure.
MFA differs from SA by analytically approximating the relevant Gibbs dis-
tribution rather than stochastically simulating it. SA works by gradually
cooling an on-going stochastic simulation of a Gibbs distribution. Mean field
theory provides a deterministic approximation to a Gibbs distribution which
also can be cooled in the same way to produce a Mean Field Annealing
(MFA) algorithm. Many SA algorithms can be converted to analogous MFA
algorithms that run in 1/50 the time required by the SA version[13, 1, 9, 2].
However because it is an approximation, MFA does not inherit any guarantee
of convergence even when the analogous SA does converge.

In earlier work we[l, 9, 2] showed that simulated annealing could be ac-
celerated with the mean field approximation. In this approach the important
structure of P is approximated with a more convenient distribution Po for a
sequence of falling values of T. In this section we provide an information-
theoretic procedure for studying a given difficult P using an essentially arbi-
trary easy PA by minimizing the entropy of P0 relative to P, or equivalently,
the cross-entropy or Kullback-Leibler[10] distance between P0 and P. This
information-theoretic procedure leads to our previously successful approach
based on the theoretical tools of statistical physics.

Assume we have another positive but otherwise arbitrary distribution
Po[a,m]. It is useful to choose Po to be easily analyzed and to have adjustable
parameters represented by some vector m. We rewrite Po

PO[8,ml = -exp(-Uo[s,,m]/T), (5)

where Zo = fdsexp(-Uo[a, m]/T) which in general depends on m through
U0.

The entropy of Po relative to P is

R= dsPo[.,m]In Po[,m], (6)
Pfa]
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where we have suppressed the dependence of R on the vector of adjustable
parameters m. Using Equation 5, we rewrite Equation 6 as

R - Jd exp(-Uo/T)(-UoIT - In Zo + UIT + in Z). (7)

We define the average with respect to Po of a function O [s] as

(4)= f dJexp(-Uo/T)/Zo

and obtain

R = -4 (Uo - U) - In Zo + In Z. (8)

We define F0 = -TInZo and F = -TInZ and obtain

R = (Fo - F + (U - U0)), (9)
It is known[10] that R[m] _ 0 with equality holding if and only if Po A P.

Here T is also positive so that

F _. A0 + (U - Uo), (10)

which is the basis of our mean field approximations to discrete, continuous,
and even problems with both discrete and continuous variables.

The mean field approximation is obtained by minimizin Equation 9 with
respect to m to find the tightest bound in Equation 10; mean field annealing
involves tracking the minimum from high to low values of T[12]. In the case
of discrete ai as in graph coloring or binary image restoration[4] it is useful
to choose

-* Uo=.->jni.,, (11)

but in the present context of problems with continuous o. the simplest useful
choice[9, 2] is 1

U0 =1E(z,-mi)2 . (12)

In either case the in are real.
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3 Summary of the Most Important Results

We have discussed three important results

1. The formulation of low-level sensor fusion as an optimization problem
that admits prior expectation in a rigorous Bayesian sense

2. The application of Mean Field Annealing (MFA) to the problem of
sensor fusion

3. The development of a specific algorithm with produces the best known
restorations of Magnetic Resonance Images

4 Publications and Technical Reports

This project has resulted in four publications.

1. A journal article reporting on MFA for as a general technique and for
image optimization problems specilically[3]:
Griff L. Bilbro, Wesley E. Snyder, Steven J. Gamier, and James W.
Gault. Mean field annealing: A formalism for constructing GNC-like
algorithms. IEEE Tranaactiono on Neural Networks, 3(1), 1992.

2. An conference presentation and subsequent proceedings publication of
the specific MRI problem studied[7]:
Steven J. Gamier, Griff L. Bilbro, James W. Gault, Wesley E. Snyder,
and Y. S. Han. Magnetic resonance image analysis. In SPIE Proceed-
ings Vol. 1904: The SPIE and IST Conference on Image Modeling,
1993.

3. An journal publication that formulates the specific MRI problem as a
sensor fusion and global optimization problem and reports state-of-the-
art[6]:
Steven J. Gamier, Grif L. Bilbro, James W. Gault, and Wesley E. Sny-
der. Magnetic resonance image restoration. Journal of Mathematical
Imaging and Vision, 1993. Accepted for publication.

4. A second journal article (currently in review) discussing refinements of
the technique[5]:
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Steven J. Gamier, Grif L. Bilbro, James W. Gault, and Wesley E.
Snyder. The effects of various basis image priors on mr image map
restoration. Journal of Mathematical Imaging and Vision, 1993. In
review.

In addition we are preparing a clinical article for the medical literature in
conjunction with radiologists at Bowman Gray School of Medicine.

5 Participating Scientific Personnel

Mr. Stephen F. Gamier
Mr. Michael McCormick
Dr. Griff L. Bilbro
Dr. James W. Gault
Dr. Wesley E. Snyder

S. J. Gamier earned the Masters degree.
S. J. Gamier has finished his PhD thesis research and expects to earn his

PhD degree early in 1994.
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