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Lucio Maestrello
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ABSTRACT

Formulations for predicting dynamic and acoustic responses of a finite plate flush-mounted
on an infinite baffle subject to turbulent and mean flow excitations are presented. In deriv-
ing these formulations, the effects of stretching due to in-plane force and coupling between
structural vibration and acoustic radiation are taken into account. The resulting equation
governing plate vibration contains cubic nonlinearities. To obtain an approximate solution,
the plate flexural displacement is expanded into orthogonal base functions. The unknown
coefficients associated with base functions are determined by solving a set of coupled nonlin-
ear integral equations using Galerkin's method. A stability analysis is given using the basic
existence-uniqueness theorem. In particular, stable conditions for a linearized system are
obtained using the Routh algorithm. It is shown that structural instabilities can be induced
by fluid loading and mean flow. Two unstable mechanisms are found to be attributable to
added damping and stiffness due to acoustic radiation. The effect of added damping in-
creases linearly, while that of added stiffness increases quadratically with the Mach number
of mean flow. Finally, the cross-power spectral density functions of plate flexural vibration
and radiated acoustic pressure are derived and expressed in terms of the cross-power spectral

density function of turbulent flow.

'This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-19480 while the author was in residence at the Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681.
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INTRODUCTION

Responses of elastic structures subject to turbulent and mean flow excitations have

long been of great practical engineering importance, for example, in the design of aircraft

and in the reduction of aerodynamic noise transmission into an aircraft cabin. Experi-

mental and theoretical investigations on turbulent flow and its interaction with an elas-

tic structure have been carried out by many people, for example, Ludwig 1 , Corcos2 '3,

Maestrello4 '5 , Maestrello and Linden6, Farabee and Geib 7 , Martin and Leehey 8 , Yen et

al. 9 , Ffowcs Williams 10 , Gedney and Leehey1 1 , Farabee and Casarella12, etc. Most of

the early work, however, has focused on the behavior of linear systems. Recently, with

the development of modern computational facilities, nonlinearities in an elastic structure

and in acoustic wave propagation can be accounted for, and the dynamic response of

an elastic structure subject to a turbulent boundary layer excitation can be calculated

13,14directly . Nevertheless, the physics involved in interaction between turbulent flows

and vibrating structures is still not well understood, and usually cannot be revealed by

direct numerical simulations.

In this paper, we derive an analytical formulation for calculating the dynamic and

acoustic responses of a finite plate clamped flush to an infinite baffle under the excitation

of turbulent flow, with the structural nonlinearities due to stretching of in-plane force

taken into account (see Section I). Because of the presence of nonlinearities and coupling

of structural modes to the radiated acoustic pressure, closed form solutions cannot be

found. In order to obtain an approximate solution, the plate flexural displacement is

expanded into the orthogonal base functions in the plate's longitudinal and transverse

directions. The unknown coefficients associated with these base functions are determined

by Galerkin's method. These are done in Section II. In Section III, we present an analysis

of structural instabilities induced by fluid loading and flow. The objective of this stability

analysis is to gain physical insight into this complex problem by relating the instability
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phenomenon to the physical quantities possessed by an elastic structure. For steady-state

responses, we demonstrate that the cross-power spectral density function of the plate

flexural displacement can be expressed as the cross-power spectral density function of

turbulent flow (see Section IV). Based on the plate flexural vibration response, we can

then derive a formulation for calculating the cross-power spectral density function of the

radiated acoustic pressure (see Section V). Some concluding remarks are made in Section

VI.

I. PLATE EQUATION

Assume that a plate of length L and width b is clamped on its edges to a rigid and

infinitely extended baffle. On one side of the plate, the flow is turbulent, with boundary

layer thickness 6. Outside this boundary layer, the fluid moves at mean velocity U (see

Fig. 1). The other side of the plate is assumed to be vacuum, so that the effect of fluid

loading acts on one side of the plate only.

To carry out the analysis, we make the following assumptions: (1) the amplitude of

the plate flexural vibration is small, so that the boundary layer will not be significantly

altered; (2) the turbulent boundary layer is stationary in time and homogeneous in space,

so that the pressure fluctuations can be expressed as a cross-correlhcion function which

decays with spatial and temporal separations and convects downstream with the flow; and

(3) the pressure fluctuations exerted on the plate surface due to a turbulent boundary layer

and due to radiated acoustic pressure are additive.

Under these conditions, we can write the equation governing the plate flexural vibra-

tion as

D/ 82 + 02 \2 ,,(z,yt) fh 2 w(x,y',t)

2& 2  +2

-- -p(,y,0,i), (1)

2



subject to the boundary conditions

w(O,y,t) = w(L,y,t) = w(x,o,t) = w(x, b,t) = 0, (2a)

= x LW - - 0. (2b)

In Eq. (1), the quantity D = Eh 3 /12(1 - p 2) is the plate flexural rigidity, E the Young's

modulus, p the Poison's ratio of the material, h the thickness, pp the mass density, y

the structural viscous damping coefficient, w the plate flexural displacement in the z-axis

direction, and N. the stress resultant in the z-axis direction due to stretching of plate

bending motion15

N,(y,t) = -f [ OW( t) ]2 dx. (3)

The effects of the stress resultant in the y-axis direction N. and that in the tangential

direction N,, are assumed small compared with N., and are therefore neglected in Eq.

(1).

The term on the right side of Eq. (1) depicts the excitation forcing field due to

turbulent flow. Inside the turbulent boundary layer, the quantity P can be expressed as

an integral representation,16 with a volume integral representing the contribution from

distributed quadrupoles, plus a surface integral representing the effect of sound reflection

and diffraction on the surface.17 However, the stress tensor18 in the volume integration

contains quantities that are unknown until the entire flow field is solved, which is not

possible in most engineering applications. Hence, a different approach must be taken.

Note that the effect of turbulent flow is to excite a structure and generate sound.

Therefore we can assume that the pressure fluctuations acting on the plate surface P can

be expressed as a sum of two parts

AX, y, , 0 = Pr(X, Y, 0, 0) + AT, Y, 0, 0, (4)

3
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where pr represents a forcing field which exerts the same amount of pressure fluctuations

on the structure as the turbulent boundary layer, and p depicts the effect of acoustic

radiation. Here we assume that the forcing field PT is random in nature, but stationary

in time and homogeneous in space. Therefore pT can be described by a space-time cross-

correlation function and determined experimentally. The function p satisfies the convected

wave equation outside the boundary layer. Solution for p can be facilitated by introducing

a potential function which satisfies9

V2- _- ( + U(zYzt) = 0, (5)

subject to the condition of continuity of normal components of the fluid particle velocities

at, strictly speaking, the interface between the turbulent boundary layer and mean flow.

However, it is impossible to determine this interface exactly because the flow beneath it is

turbulent. To simplify the problem, we set this interface at the plate's nominal position

so that the boundary condition becomes

O(Y,(zt) ( ( + U w(x,y,t) (8 E A;
=Z =0 1 0 Wt- ý,t otherwise; (6)

where A stands for the plate surface area, U is the mean flow speed, and c is the speed of

sound of the fluid medium.

Solution for q can be obtained by taking a temporal Fourier transformation of Eqs.

(5) and (6) into the frequency domain, followed by a spatial Fourier transformation into

the frequency-wavenumber domain. Once the frequency-wavenumber domain solution that

represents an outgoing wave is obtained, the frequency domain solution of 4 can be ob-

tained by taking an inverse spatial Fourier transformation

=(z,y,z,w) -- G ZI 10) + U8) t(2(x•,y',w) d# dy', (7)

4



where the symbol ^ over a function, say, 0 implies a Fourier transformation of that function

defined by

= jI (1 (8a)

f 0 = J (xy,t)e-wt dt. (8b)

The quantity G in Eq. (7) is a Green's function. For a supersonic flow, the acoustic

pressure is nonzero only when the field point ' is inside the Mach cone. Hence we obtain 6

G(,xzl', y ', 0) = i2vrcos{ik[M(X - XI) + R,Upe,]I/(M 2 
- 1)} (9)

R.uperv/Mi -- 1

where R.•.,.. is the distance between the source and receiver inside the Mach cone

RaSper = V(X - XI) 2 - (M2 - 1)[(y - y1)2 + zI] (10)

Accordingly, G for a subsonic flow can be written as

s2wreih[(,-f')+R..J/(1 -M')
•'(Xt Yl, ZI y',O7) = (11)

where

= -/(z - zI)2 + (1 - M2 )[(y - yI)2 + z2] (12)

where M is the Mach number of the mean flow.

The frequency domain solution for the radiated acoustic pressure is then given by

A(zylzOw) = #(0, Yz,w). (13)

The corresponding solution for the acoustic pressure on the plate surface in the time domain

p(X, y,1, t) can be obtained by taking an inverse Fourier transformation of ^P.

5



Interchanging the order of integrations with respect to the frequency and spatial

domains, and carrying out the integration with respect to w first, we obtain

p(-IYIO~t) = P22 ffL [ (1 +9 Usuper ) 02W(xXI IIti dx'dy'
ý-2r- J[ 0Rsxper'./M -ýT &1 2 J i

+ (P.)2 fL[ TpM 1 ow(x', y',°t') (1 + UOEmoper) &W(X', Y' 't] di'dy'
(27r) R 0 RerperTT]WI -9t

poU 2 f fL[ Ts.per Ow(x', YIto ddy (14)

(2ir) J J .[ Rsu Virv 1 OX'

for supersonic flow. The integrands in Eq. (14) are to be evaluated at the retarded time

T = t - Atsuer, with At defined as

Ats.mpr = k[M(x - x') + Ramper]/(M2  (15)

The quantities E.,,.r and Tamper in Eq. (14) are given by

Os1e =] ~ 1) I 1ao°., - (M2 - 1) L Ro.e, M(1)

Tper = Z )- (16b)

Similarly, for subsonic flow we have

p~z~t)= p 6 (L, (l+UO..b) 0C2W(ZY',t')1 l dp
Allyt =(2.r)2 J 10 J [R.6 v 1 =, 0,'2J

pU (f (L[ Tam &O(x',y',t') (I + UOe.m) 2W(X- ',' t#) 1
+ (2w)2J J 0 R, b M 2 &1 R, 6Vf -'M VI

POW b L T ~omb &(X',Y'IIti')1
(27)2 1  [R.,bl,/FTA? 2  Ox dxldy', (17)

where •r = t - At.,, with At.,6 defined as

Atemti = k[M(z - z') + R,,,i]/(1 - M 2 ). (18)

.6



The quantities a1,b and bs.b in Eq. (17) are given by

1 (X - X')
()Bub .. M M I (19a)

- (XR-I(.2 (19b)

Substituting Eq. (4) into (1), we can rewrite the plate equation as

a02 2\)2(,Yt 2 _____Y__ Ow(X,Y, t) 0 2 W(X, y' t)

YX_2 X2  +t7&

= -p(, Y, 0, t) - p(,, y, ,t), (20)

where pT and p are fullyr defined.

II. GALERKIN'S METHOD

Equation (20) represents a nonlinear, integral-differential equation. Analytical so-

lutions to such an equation cannot be found in general. Hence in this section, we seek

approximate solutions via Galerkin's method.

Let Wk(x) be the kth eigenfunction for a clamped plate in the longitudinal (x-axis)

direction and Wv(y) be the ith eigenfunction in the lateral (y-axis) direction given by

Wk(X)= 0 k [sin(Atx/L) - sinh(Atz/L)] + [cos(Akx/L) - cosh(Akx/L)], (21a)

Wr(y) = oj [sin(Ay/b) - sinh(Ay/b)] + [cos(A,y/b) - cosh(Aiy/b)], (21b)

where ao is the kth modal ratio defined as

sin Ak + sinh A(
cos Ak - cosh Ak'

where Ak is the corresponding kth eigenvalue determined by

cos Ak cosh Ak = . (23)

For example, A1 = 4.73, A2 = 7.8532, and A3 = 10.9956. For a large k, AX --* (2k + 1)7r/2.

7



It is noted that the eigenfunctions Wk(x) are orthogonal to each other

J L { IL, k=1; (24)
0 =O, k j41

However, the products of Wk(x) and its derivatives are not necessarily orthogonal.

Similar relationships also hold true for Wi(y)
Wi•)W (y y= b, i =j; (25)( L0, i 3 j.

Next, we expand w(x,y,t) in terms of the orthogonal base functions {W(x)} and

{W(y)} which satisfy the boundary conditions, Eq. (2),

w(X,y,t) = {fW(X)} T [C(t)]{W(Y)} (26)

where {W(x)} and {W;7(y)} represent column vectors containing the normal modes Wk(x)

and Wi(y), respectively. A superscript T in Eq. (26) indicates a tri-sposition, and [C(t)]

represents the matrix consisting of the unknown coefficients associated -with {W(x)} and

{W(y)}. Physically, the jth column vector {C'} represents the amplitude of coupling

between all the normal modes in the x-axis direction and the jth mode in the y-axis

direction.

To facilitate the derivation of solution formulation, we also expand pT(x, y, 0, t), which

represents the forcing field due to a turbulent boundary layer, by {W(z)} and {*l(y)}

pT(z, y, 0, t) = {W(X)} T [f(t)]{ fi (y)} (27)

where [f(t)] represents the amplitude of the excitation forcing field.

Substitute Eqs. (26) and (27) into (20), multiply the resulting equation by {W(x)},

integrate over x from 0 to L, and then multiply the equation by {fWf(y)}T and integrate

over y from 0 to b. This procedure then leads to the following matrix equation

[1]["] + [I-i]CI + I[][C] = [f], (28)

8



where [§], [*], and [X] consist of sub-matrices [$"], [pd], and [x"], respectively, which

represent the effects of coupling between all the modes in the x-axis direction and the jth

mode in the y-axis direction. The elements of each of the sub-matrices [$"], [Pi], [xI,

and [E'j] can be written in the following general forms

°i= pph6,6bk

+iPO fbL fb ( 1+u () ()W (')Wt(x) dz'dy'dxdy (29a)
(2w)211 J R

+i()= b 6 j ol J J(27r)2 bL

TWk((') - (1 + UOW) ~(x') ]7(,(y')Wj(y)Wj(x)dx'dy'dxdy (29b)R 0•I

S= D {[(4)4 + (L) ,],,,6 + b- , W ihu)/ W,'(x)Wi(z)d}

2 b , L ob L T OW-(''

(27r) 2 bM 010 (29c)

-i Eh bf' LffL[1 F n'~t ( aWk(X')1 ]2
2k' = 2Jo E Ck(1w,(Y) 5 dx '

xWii(Y)fvj(y) -X2.WI(x)dxdy (29d)

where 6i, and bk1 are Kronecker deltas. For a supersonic flow, we can simply replace

quantities R, e, and T in Eq. (29) by R.uper, Oeuper, and Tsuper given in Eqs. (10) and

(16), respectively. Similarly, for a subsonic flow, we can replace these quantities by Rsub,

e.,b, and T.,b given by Eqs. (12) and (19), respectively.

Physically, the matrices [11, [%P], [X], and [E] in Eq. (28) reflect the effects of mass,

damping, and stiffness per unit area of the plate, respectively. In particular, the quadruple

integrals involved in the elements of the sub-matrices C', ', and X4- represent the effects

of added mass, added damping, and added stiffness per unit area due to the radiated

acoustic pressure field, respectively. The elements t are nonlinear and contain quadratic

9.... ..... .. .... .... . ... . .... . . .



powers of the unknown -oefflcients {Cj}. Note that in this case coupling occurs not only

through nonlinearities, but also through added mass, added damping, and added stiffness

due to acoustic radiation.

The elements of the sub-matrices [fi.] on the right side of Eq. (21) are given by

f= -.: 1M). (30)

Note that in order to simplify the problem, we have assumed that the time delay At

is negligibly small in the derivation of Eq. (28). This assumption is permissible if the plate

has a finite size and if the time required for an acoustic signal to traverse the plate surface

is substantially less than the typical period of the signal.

III. STABILITY ANALYSIS

Equation (28) represents a system of coupled, nonlinear, integral equations. Because

of the presence of nonlinearities and coupling between structural vibration and acoustic

radiation, the amplitude of the plate flexural vibration may become unstable under certain

circumstances. Therefore a general stability analysis is given below.

Equation (28) shows that for N longitudinal modes and M transverse modes, one

need solve an (N x M) x (N x M) matrix equation. Solutions to such a matrix equation

are extremely involved. For the purpose of illustration, let us consider only one mode in

the y-axis direction and two modes in the z-axis direction. Thus, Eq. (28) reduces to a

2 x 2 matrix equation. The stability of such a system can be analyzed by examining the

homogeneous part of that equation

[c]{f} + [P]{C'} + [X]{C} - [,_{C) = 0 (31)

10



where the elements of matrices [,], (T], [x], and [r1 are given by Eqs. (29), with the

superscripts omitted for brevity. In particular, the elements of the matrix [=] are quadratic

in C and can be written as

=-k, = (ekICi + CkIC 2 )2  (32)

where the elements of eki and Ckk are defined as

E L L w 2(x')dx' j W(y)dy (33a)

Eh = L JL L W'2(X)dzj T, 4(y)dy (33b)

with indices k and I varying from 1 to 2.

Now we use the basic existence-uniqueness theorem1 9 to analyze the stability of the

system defined by Eq. (31). First, let us rewrite Eq. (31) in the following way

{Cj = [a]{6f} + [f]{ C} + [v]{C} (34)

where matrices [a], [P], and [v] are defined as

[a] = [f]-1 ['] (35a)

[9] = -[4]-[x] (35b)

[,1 = [11-1[4 (35c)

where [(-]-I represents the inversion of the mass matrix.

Next, we define new variables

Y, = C, (36a)

Y"2 = 61 (36b)

3 = C'2 (36c)

Y4 = C 2 . (36d)

11



Substituting Eq. (36) into (34), we obtain

{f} = (J[A] + J[B]) {Y} (37)

where {Y} is the time derivative of JY} given by {y}T = {y 1,y 2,ys,y}, JI•A is the

Jacobian of the linear part of Eq. (34) defined by

-0 1 0 01
J[-A]=(011 C 912 a112 (38)0 1

21 a121  #2 a~2 C(22

where aj and &~I are given by Eq. (35). Similarly, J[B] in Eq. (37) is the Jacobian of

the nonlinear part of Eq. (34) defined by

( + Y) o ( oY 01• )
0 0 0(

[(C2 + Cly)2 0 (e22• + C2Y3)2

where ekI and Ckl are given by Eq. (33).

The stabilities of the system defined by Eq. (37) can now be examined by solving

for the equilibria obtained by setting the left side of Eq. (37) to zero 19

(J[A] + J[B]) {Y} = 0. (40)

In general, for a nonlinear system with cubic nonlinearities there are multiple equilibrium

positions, 2 0 and the plate flexural vibration may become chaotic self-excited oscillations

in the presence of mean flow.

For simplicity, we demonstrate in what follows a stability analysis of a linearized

system obtained by omitting the nonlinearities in Eq. (37)

{f k) = J[A{Y). (41)

12



Without loss of generality, we can assume a form of solution for {Y} as

{Y} = {Y}e'I (42)

where {7} represents the amplitude of {Y}.

Substituting Eq. (42) into (41), we can derive the characteristic equation for the

eigenvalue A

EliAj = 0 (43)
j=O

where flj are given by

1o = #11022 - #12#21 (44a)

01 = Cilln22 + 02211n - Ct12 0 2 1 - a 2 1#12 (44b)

02 = OtIni22 - Ct2,G21 - Oil - 622 (4c)

03 = -Cin - 0122 (44d)

04 = I(44e)

The stability theorem for linear systems21 states that a linear system is stable if

and only if the roots of the characteristic equation all lie in the left half-plane, excluding

the imaginary axis. To determine whether the polynomial given by Eq. (43) has all its

roots in the left half-plane without actually solving for all the roots, we use the Routh

table,22, 23 and derive four parameters for the polynomial given by Eq. (43). For the

roots of this polynomial to be confined in the left half-plane, excluding the imaginary axis,

these four parameters must all be strictly positive. Such a requirement yields the following

four conditions

no > 0 (45a)

Is > 0 (45b)

( 2 %I - 0i > 0 (45c)
1(fl2 fs - f01 ) - flofl > 0. (45d)

13



Consequently, the linearized system, Eq. (41), is stable when all four conditions given

by Eq. (45) are met. As an example, let us consider the first two conditions. Substituting

Eq. (44) into (45) yields

4D11*22 + 22*11 - 012*21 - 0219 12 >o (46a)
C'11422 - 412'621

XIIX22 - X12X21 > 0. (46b)
'@11'22 - t12A21

where $i,, Pi., and X.j represent the mass, damping, and stiffness per unit area of the

plate and are defined in Eq. (29). In particular, ,i, includes the added mass, *iP includes

the added damping, and X.j includes the added stiffness induced by acoustic radiation. If

the effects of fluid loading and mean flow are neglected, then ,i, = 'ij =- 0, for i # j,

so the inequality in Eq. (46a) is automatically satisfied. Also, since the stiffness matrix

is predominately a diagonal matrix, the inequality in Eq. (46b) always holds true. Thus

without fluid loading and mean flow, a linear system is always stable. Equation (46) thus

shows that when the effects of fluid loading and mean flow are large enough to change one

of the inequalities given by Eq. (46), then the amplitude of the plate flexural vibration

may grow exponentially without a bound.

One advantage of the stability analysis discussed above is that it allows one to relate

the structural instability phenomenon directly to the physical quantities possessed by an

elastic structure. In a following paper, we will use this stability analysis to analyze the

mechanisms of structural instabilities under various fluid loading and mean flow conditions.

In particular, we will plot stable charts so that we know when and why an elastic structure

may become unstable.

IV. EXCITATION FORCING FIELD

In the preceding section, we presented a general stability analysis and, in particular,

derived stable conditions for a linearized system. In this section, we consider the steady-

state response of a fin plate excited by a turbulent boundary layer.

14



It has been shown that the plate flexural displacement w(x, y, t) can be expanded

in terms of the orthogonal base functions {W(X)jT[C(t)1{WV(y)} along the x- and y-axes,

respectively, where the coefficients [C(t)] are determined by Eq. (28). For convenience in

the derivation, let us assume that [C(t)] can be expressed in terms of a solution matrix [E]

[C(t)J = [C][f(t)J (47)

where [6] is independent of time t and can be determined numerically, [f(t)] represents

the forcing excitation- due to a turbulent flow. The elements of each of the sub-matrices

[f'"(t)] are given by Eq. (30).

Since the turbulent boundary layer is random in nature, one must rely on the statis-

tical properties of the turbulent flow. However, in many applications a turbulent boundary

layer can be assumed to be stationary in time and homogeneous in space, so that it can be

described by a space-time cross-correlation function which decays with spatial and tempo-

ral separations and convects with flow at velocity U. Based on the mathematical model

developed by Maestrello, 4 ' 5 we can express the ensemble average of the cross correlation

of the excitation forcing field due to a turbulent boundary layer as

•(PT, , 0,t)4•(X' I ' , 0,e)) --rf• o,, r)

-(p2,) K'2AqqII"1~II(B (48)
q=1 K, + [Ue,/(U)]'2(e - U.) 2 J

where superscript * indicates a complex conjugation, ý = x - x', Tq = y - yf, 7 = t - t',

6 is the boundary layer thickness, A1 = 0.044, A2 = 0.075, A3 = -0.093, A4 = -0.025,

K, = 0.0578, K 2 = 0.243, K3 = 1.12, K4 = 11.57, a, = 501(Cf--R), here C1 R is the

equivalent incompressible Reynold's number, a2 = 0.26, Ue is the free stream velocity, and

(p2 ) is a measure of the mean square intensity of the forcing field.

15



The corresponding cross-power spectrum can be obtained by taking a Fourier trans-

formation of f (,, 0, r). Evaluations of this Fourier transformation can be facilitated by

the residue theory, and the result is
4

Pf(C, 17, 0, w) = (F)(6/U.)e)+-lI(1 f)e-Ivi/(2)e-fW/1U -iE -K /U (49)
j=1

Next, we rewrite the ensemble average of the cross correlation of the forcing field rf

with PT expanded in terms of the base functions

rf(ct,0,r) = IW(X)}T[•lW(X')}, (50)

where [F] is the cross-correlation matrix defined as

[F] = ([f(t)] {W(y))}{I(y')} T [f*(tI)]T ). (51)

The corresponding cross-power spectral density function can be obtained by taking a

Fourier transformation of Eq. (50)

Pf( , ,0,w)=f{W(x)} T i( /-[f]&w+dT){W(r')1. (52)(27r,,• T.=I I~ '}

Equating Eq. (52) to (49) and using the orthogonality properties of the base func-

tions, we can obtain the cross-power spectral density matrix whose (m, n)th element is

given by

f L iL 4 • 2 t q~ e/ .~ ~ ~ / . 6

rf"k =/+ jo / ) E:: I 2A+q - )) wk(x)w,(x')dx'dx. (53)I
0 q=1~ Kf2 + [U./1(U6)] 2(f - Ur)2 I

Once this is done, we can proceed to derive a cross-power spectral density function

for the plate flexural vibration response. First, let us define a cross-correlation function

for the plate flexural displacement

r.(t, 7, r) = (w(z, y, t)w•(•T,',, ')). (54)
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Second, we expand w(z, y, t) into the orthogonal base functions using Eq. (26) and replace

the coefficient matrix [C(t)] by the solution matrix [6]. Doing so leads to

( 7,r) w(x)} T [e][F[, T {w()} (55)

The corresponding cross-power spectrum of the plate flexural displacement is thus found

tobe

p(' 17, ,W) = w(X)}T'[C]
× ,W(0o)}T • [_,*]T{W(Xz)}, (56)

PfklCO 1, ,w){ W(Xo)}dTo dXo

where Pfkl(( 1, 0, W) is given by Eq. (53).

Equation (56) demonstrates that the power spectral density function of the plate

response is directly related to the power spectral density function of the excitation forcing

field due to a turbulent boundary layer. The auto-power spectral density of the plate

flexural displacement can be obtained simply by setting Y = = 0 in Eq. (56).

V. RADIATED ACOUSTIC PRESSURE

In thib section, we derive a&formulation for estimating the power spectral density

function of the radiated acoustic pressure based on plate flexural vibration responses. First,

let us define a cross-correlation function for the radiated acoustic pressures measured at

two different points in the fluid medium

r = (p(z,y,z, t)( x',y',z',t')), (57)

where p* is the complex conjugate of p given by Eq. (14) or (17), deper ding upon whether

the fiow is supersonic or subsonic. Next, we replace p in Eq. (57) by its Fourier trandor-

matim paar

(P(X, , z, )pe (z', y', z?, t') I f L((z, Y, zW) (-z, y', z,, WT))e' de-it dwdw'. (58)
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-The frequency domain solution for the radiated acoustic pressure j can be obtained by

substituting Eq. (7) into (13)

P(zYIw) ((iW + U±) f G(x, o, ZIY,,1,0)

In a similar manner, we can write

P*--I yI z W _P( &j) w+ U f J ' JG*(T, Y#ZIJ2 , Y2, 0)

x (iW + UL) t*(X2,Y 2 ,W)dX2dY2, (59b)

where G* is the complex conjugate of G defined in Eq.(9) for a supersonic flow or (11) for

a subsonic flow.

Substituting Eq. (59) into (58) and rearranging terms, we obtain

(P(I , ' )P ( #I z-2 fjb LjL j0oo

(_+ + UW + -,ý) ~,y ~xyOG(-, 'XY,0
(-s+UF- (.' U-t

x(iW + U-) (iw + a ((Ti,(x1 ,,W)tb*(X 2 ,Y2 ,W'))

xe-ihIie"/t' dwdW'dIdX2dYIld2, (60)

where the triangle-bracketed term on the right side of Eq. (60) can be rewritten as

(t(XI, Y s)t•"(X2, Y2, W'))
1 0 0, t, )W*(X,, Y2, t2))C-" ei'/h at] dt2

Tir- f'O f 0 r.('.','-"-(-)",'

=f t r (e', 6(',w') ' 6(w - w')dr', (61)
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where V' = X - X2, 171 - YI -y-2, and =- t= - t 2. In carrying out the integration with

respect to t 2 in Eq. (61), we have used the definition of the cross-correlation function r,

(see Eq. (55)) and the property of the Dirac delta function.2 4

Substituting Eq. (61) into (60) and using the definition of the cross-power spectrum

for P., we obtain
2 b fb L J Loo

(pxy~~~pz,','t')-(21r)4 101010 _

iW+ U~)(. + U-) G(xT,y,zITi ,sfl,O)G*(xI,Y5', ZIX2,Y2,O)

where Pw(f',?7',w) is given by Eq. (56).

The cross-power spectral density function for the radiated acoustic pressure can now

be obtained by taking a Fourier transformation of Eq. (62). Using the property of the

Dirac delta function, we can carry out integrations with respect to r and w exactly and

obtain

SbrjL•

'•-(2-w-4 0 JO 0

+ s)(/t'+ U p G(z, y, zjxj ,ysIO)G*(x', Y', z'IT2, s2, 0)x(-iw U 80 U8

X + Ut) i+ U -) Pw(1',7f ,w)dX, dX2 dyI dY2 . (63)

Equation (63) shows that the cross-power spectral density function of the radiated

acoustic pressure is directly related to the cross-power spectral density function of the

plate flexural displacement. If we substitute Eq. (56) into (63), we can obtain an explicit

formulation for P in terms of the cross-power spectral density function of turbulent flow.

It is emphasized here that turbulent flow is random in nature, and therefore deter-

ministic formulations for calculating the resulting structural and acoustic responses cannot

19



be found. The formulation given by Eq. (63) represents a new way of estimating the radi-

ated acoustic pressure from an elastic plate excited by turbulent flow. In deriving Eq. (63),

the effects of coupling among structural modes, radiated acoustic pressure, and turbulent

flow are all taken into account.

VI. CONCLUDING REMARKS

The cross-power spectral density function of the radiated acoustic pressure from a

finite plate subject to turbulent flow is obtained and expressed in terms of the cross-power

spectral density function of the turbulent boundary layer in an explicit form. In deriv-

ing this formulation, the effects of stretching due to in-plane force and those of coupling

between structural vibration and acoustic radiation are taken into account. A general sta-

bility analysis is given by using the basic existence-uniqueness theorem. In particular, the

stable conditions for a linearized system are derived by using the Routh algorithm. Two

sources of instabilities are found to be attributable to the added damping and stiffness due

to fluid loading and flow. The effects of the added damping and stiffness increase with the

Mach number of the mean flow, the former increasing linearly and the latter increasing

quadratically.
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Figure 1. Schematic of a finite plate subject to turbulent and mean flow excitations.
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