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ABSTRACT

The need to search effectively for objects presents itself in many civilian and military

applications. This thesis develops and tests six heuristics and an optimal branch and bound

procedure to solve the heretofore uninvestigated problem of searching for a Markovian moving

target using multiple searchers. For more than one searcher, the time needed to guarantee an

optimal solution for the problems considered is prohibitive. The heuristics represent a wide

variety of approaches and consist of two based on the expected number of detections, two

genetic algorithm implementations, one based on solving partial problems optimally, and local

search. A heuristic based on the expected number of detections obtains solutions within two

percent of the best known solution for each one, two, and three searcher test problem

considered. For one and two searcher problems, the same heuristic's solution time is less than

that of other heuristics considered. A Genetic Algorithm implementation performs acceptably for

one and two searcher problems and highlights its ability, effectively solving three searcher

problems in as little as 20% of other heuristic run-times.
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IXECUTIVI SUMMARY

A. BACKGROUND

The need to search effectively for objects presents itself

in many civilian and military applications. Civilian

applications include the search for lost hikers, endangered

animal species, and shoals of fish. Military applications are

vast and were a driving force in the early days of Operations

Research during World War II.

Effective models for search problems must cope with the

behavior of a moving target, which is unknown in general, as

well as searcher limitations, such as speed, endurance,

detection range and precise navigation. This thesis develops

and tests six heuristics (approximate methods) and a branch

and bound procedure (guarantees an optimal solution) to solve

the heretofore uninvestigated problem of searching for a

randomly moving target using multiple searchers.

If the way a given target is expected to move and

detection probabilities associated with friendly platforms

when searching for such a target are obtainable, the

algorithms developed in this thesis are useful. These

algorithms recommend paths that, if followed by the friendly

units, result in the maximum probability of detecting the

target.
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1. APPROACH

The problem of finding the best paths to follow for the

maximum probability of detection is a very hard problem. This

is because the number of alternatives grows quickly with

problem parameters, such as the amount of time available to

search and number of friendly searching units.

This thesis develops good approximate algorithms that

avoid prohibitive run-times. This capability allows the

algorithms to support real-time field requirements.

C. ACCOMPLISHMhNTS

The various approximate algorithms developed in this

thesis were tested against twenty seven problem instances.

One of the heuristics based on maximizing the expected

number of detections obtains solutions within two percent of

the best known solution for each one, two, and three searcher

test problem ccnsidered. For one and two searcher problems,

the same heuristic's solution time is less than that of other

heuristics considered.

A Genetic Algorithm Heuristic performs acceptably for one

and two searcher problems and highlights its ability,

effectively solving three searcher problems in as little as

20% of other heuristic run-times.
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I. INTRODUCTION

A. PROBLEM DEFINITION

The need to search effectively for objects presents itself

in many civilian and military applications. Civiliar

applications include the search for lost hikers, endangered

animal species, and shoals of fish. Military applications

are vast and were a driving force behind the work of the

Operations Evaluation Group in the early days of Operations

Research during World War II [Ref. 1: preface].

Effective models for search problems must cope with the

behavior of a moving target, which is unknown in general, as

well as searcher limitations, such as speed, endurance,

detection range and precise navigation. Aiming for

generality, in a controlled way, many authors consider a

randomly moving target where the dependency between "legs" of

the target motion is Markovian. This thesis develops and

tests six heuristics and an optimal branch and bound procedure

to solve the heretofore uninvestigated problem of searching

for Markovian moving targets using multiple searchers.

B. PROBLEM FORMULATION

This thesis extends the single searcher model proposed by

Eagle and Yee [Ref. 2] to multiple searchers. Both single and

multiple searcher models use discrete time with a single

1



target's motion modeled as a Discrete Time Markov Chain. The

target is constrained to a single cell within a grid each time

period, and has its movement alternatives, between time steps,

restricted to adjacent cells. The initial probability

distribution for the target and the target's Markovian

transition matrix are assumed known.

The initial positions for the searcher(s) has to be

specified. The searcher(s) has the same type of movement

restriction as the target and a limited time to search. The

search path's effectiveness is the cumulative probability of

detection along the searchers' path(s) and detection occurs

with a specified probability when the searcher and target

occupy the same cell. Each time period, the probability

distribution for the target throughout the area is Bayesian

updated for non-detection.

An appropriate formulation for the multiple searcher

problem, an extension of the single searcher problem of Eagle

and Yee [Ref. 2], follows the introduction of appropriate

notation.

1. Path Constrained Formulation (PDF)

Indices

i, i', k = cell,

j = searcher,

t = time step (t = 1,2,...,T),

2



= path (where w(t) is the cell occupied

at time t).

Data

aij = detection rate in cell i, for searcher j.

The probability of detection in a given

cell is 1 - exp(-aij)

9= set of all feasible target paths,

C1 = set of cells adjacent to cell i ,

p= probability of target following path w,

sj = starting cell for searcher j at time zero.

Variables

Xi.wct).j~= One, if searcher j moves f:om cell i,

at time t-1, to cell w(t) at time t

and zero otherwise.

Formulation

Objective Function

Maxj [1-E()jC

3



Subject to:

i it

•1,VjVt (2)

[i:i' ec] keC1

The formulation maximizes the probability of detection

within the set of feasible paths Q, subject to the constraints

that:

1) Each searcher's initial search effort (t=l) must be in
a cell adjacent to the starting position;

2) Each searcher can move at most once between time
periods. Since the maximum objective function value is
sought, the exclusion of this constraint could result in
multiple paths for each searcher;

3) All search effort has to be done within the set of
adjacent cells, at any time step, for any given searcher.

Changing PDF's objective function to maximize the expected

number of detections (see Eagle and Washburn [Ref. 3]) for

searchers who search "blind" until time T, provides an upper

bound on the solution to PDF as shown by Martins [Ref. 4].

This also simplifies the PDF formulation since explicit

enumeration of all possible paths is not needed. The

4



"principle of optimality" therefore holds and the problem can

be solved as a shortest path problem. The simplified

formulation (EDF) follows the introduction of appropriate

notation.

2. Expected Number of Detections Formulation (ZDF)

Indices

i, i' = cell,

j = searcher,

t = time step (t = 1,2,...,T).

Data

Pdil = detection probability for searcher j in

cell i (1 - exp(-aij)),

Ci = set of cells adjacent to cell i

PTit = probability of target being in cell i at

time t with no update for unsuccessful

search (P{f(t)= i}),

sj = starting cell of searcher j;

variables

Xijt= One, if cell i is visited by searcher j at

time t and zero otherwise.

5



Objective Function

Max X1jjPdijPTi.

Subject to:

SXi /jz = 1 Vj (4)

XiJ t 1 , Vj ,Vt (5)

Xiit1 X i/i, Vi , Vj ,V t > 1 (6)
i 'ECi

This formulation maximizes the expected number of

detections along the path, subject to the constraints that:

4) Each searcher's initial search effort (t=l) must be in
a cell adjacent to the starting position;

5) Only one cell can be assigned to each searcher during
each time step;

6) Each searcher can only move to an adjacent cell.

6



C. PROBLDM DIFFICULTY

Trummel and Weisinger in their 1986 "The Complexity of the

Optimal Searcher Path Problem."[Ref. 5] show that the path

constrained search problem for a stationary target is NP-

complete. An example highlights the problem's complexity. A

single searcher using five time steps to search a nine cell

problem has approximately 1,024 feasible paths to choose from.

The same problem with 10 time steps has about 1,048,576

feasible paths. This problem with three searchers has about

1.15 x 1018 feasible paths. The path constrained search problem

with multiple searchers is at least as hard, and by being so,

the main thrust of this thesis is the development,

implementation, testing and evaluation of relatively fast and

robust heuristics. These heuristics should be well suited for

practical applications like tactical decision aids.

D. THESIS OUTLINE

This thesis develops, analyzes, and tests six heuristics

for the multiple searcher path problem: two are extensions of

the heuristics proposed by Martins [Ref. 41, a genetic

algorithm, a hybrid genetic algorithm that incorporates other

heuristics, a heuristic based on solving partial problems

optimally, and a local search method. This thesis also

develops an optimal branch and bound procedure extended from

Martins [Ref. 4].

7



The specific organization of this work is as follows.

Chapter II presents a literature survey on related problems.

Chapter III details each heuristic. Chapter IV provides

detailed computational comparisons between the heuristics

applied to a set of test problems using one, two, and three

searchers. Finally, Chapter V presents conclusions.
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II. PROBLDA BACKGROUND

The operations research literature contains numerous books

and published articles on stationary target problems. The

consensus of the research community is that the framework for

these problems was laid down by the United States Navy

Antisubmarine Warfare Research Group in 1942 in response to

the Atlantic German submarine threat [Ref. 1]. Subsequent

work by many researchers took the stationary target problems

into a mature state where solutions are available for the most

common problems and improvements are hard to find [Ref. 61.

The case of a lone searcher looking for a single moving

target has also been widely studied and can be divided into

two major classes: Two-sided search and One-sided search.

Two-sided search problems are concerned with the

possibility that the target is aware that a search effort is

being carried out against him and attempts to avoid detection

or capture. Game Theory is the natural tool here (see Thomas

and Washburn [Ref. 7], and Eagle and Washburn [Ref. 3]). One-

Sided search problems assume either the target is not aware of

the search or the target needs to accomplish its own task and

it is not willing to evade the searcher. Through this

reasoning the idea of a Bayesian probability distribution and

update of the target's position is straightforward. The One-

sided search problems are usually further divided as Optimal

9



Density or Optimal Path Problems. Both groups in more recent

work have dealt with the target motion being modeled as a

Discrete Time Markov Chain and the "continuous search" in each

time step being modeled by an exponential law of detection.

Optimal density problems tend to be easier problems than

optimal path problems since integrality or adjacent movement

constraints can be dropped. These problems are well suited to

situations when the searcher and target speeds differ by more

than an order of magnitude. Brown [Ref. 8] made important

progress in optimal density problems by developing an

algorithm that solves the moving target problem as a sequence

of stationary target problems. Washburn [Ref. 9] gave a

counterpart algorithm for the discrete search effort case as

did Stone et. al [Ref. 10].

Optimal path problems with the characteristics described

above are tackled by Stewart [Ref. 11,12] using an optimal

branch and bound procedure. Eagle's branch and bound approach

[Ref. 2] was first to obtain bounds by using the Frank-Wolfe

algorithm to solve a problem where integrality restrictions

are relaxed. Martin's branch and bound algorithm [Ref. 4]

uses the maximum expected number of detections to provide

bounds.

Another interesting model for Optimal Path Problems is the

continuous time and space case where the constraints on the

searcher's motion are given by a set of differential equations

10



that the searcher's path has to obey. Ohsumi [Ref. 131 is a

good example of such a model.

According to Weisinger et al [Ref. 14] in their survey,

125 references are available for one-sided search problems and

61 to search games but none are listed for the multiple search

problem or team effort under the same modeling assumptions

(the subject of this thesis).

11



Ill. ALGORITOMIS

Seven algorithms (six heuristics and one exact procedure)

are developed to determine the path that maximizes the

probability of detecting a randomly moving target using

multiple searchers. This chapter introduces the network

structure common to all algorithms and then describes each

algorithm using pseudocode.

Eagle and Yee [Ref. 23 use a network structure with nodes

or cells as locations where the searcher can allocate his

effort during one time step. If the searcher is in cell i at

time t, at time t+l he can only search cells adjacent to cell

i (denoted as Ci). The state of this system can be

represented by a sequence of cells/nodes from time one (t=1),

until the last time step available to the searcher (t=T). The

searcher's effort results in a feasible path, w. The

objective of the problem is to find a path that, if followed,

maximizes the probability of detecting the target.

The multiple searcher version, developed here, employs the

same network structure with an expanded state space to account

for extra searchers. The difference is explained using an

example. Suppose two searchers are initially stationed at

cell 1 and C, = {1,2,4). At the next time step (t=i), each

searcher has a separate choice for the next move resulting in

the possible combined states of {(1,1), (1,2), (1,4), (2,1),

12



(2,2), (2,4), (4,1), (4,2), or (4,4)}; where the first

(second) entry is the location of searcher 1 (searcher 2).

Table I shows the effect of increasing the number of

searchers.

Table I State Space Examples

Number of Starting Position Possible Positions
Searchers (States) at Time

One

1 (1) (1), (2), or (4)

2 (1,1) (1,1),(l,2),(1,4),
(2,1) , (2,2) , (2,4),
(4,1), (4,2)or(4,4)

3 (1,1,i) (i,1,I), (1,l,2),
(1,1,4), (1,2,1),

(1,2,2),...,(4,4,4)

A. DESCRIPTION OF HEURISTICS

1. Local Search (LS)

Local search (see Papadimitriou and Steiglitz [Ref.

15]) is a basic approach used to solve combinatorial

optimization problems. This thesis includes it as a benchmark

of how well a simple heuristic performs on our test problems.

An implementation of local search with random restarts applied

to the multiple searcher problem is easily explained using the

pseudocode below. The pseudocode employs the notation PD for

probability of detection.

13



1 Repeat

2 Create a feasible searcher path, Wold

3 Compute PDold of W01 d

4 PDbext 4- PD01d , (Jbest e- (old

5 For t - 1 to (T-2) Do

6 Wnew <- Wold

7 For each cell i e C1 where j=w,..(t)

9 For each cell i' e Ci

10 O)ew(t+2) <- i'

II If Wnew feasible compute PD,,w

12 If PDnew >= PDold

13 PDo0 d < PDnew I Wold <- Onew

14 next i'

15 next i

16 If PD01d >: Prbest go to step 4

17 Until exceed number of restarts or time limit

18 Return path that yielded the highest PD

2. Heuristic_1 (El)

Martins [Ref. 4] develops a heuristic (Heuristic_1)

based on the expected number of detections. The redefined

network structure allows this heuristic to also be used for

multiple searchers. The pseudocode below employs the

shorthand Path(t) to store the cells occupied by the searchers

14



at time t on the path chosen by Hi and ED for the expected

number of detections.

1 Path(O) <- Initial cell of searchers

2 For t = 1 to total time steps available (T) Do

3 Let Path(t-1) be the searchers' cell

4 Find path w maximizing ED for t,...,T

5 Path(t) = w(t)

6 Update the probability mass for the target

7 Compute PD when searchers follow Path

8 Return Path and PD.

The complexity of this algorithm is O((Number of

Cells) (Ci)N(T)2), where N is the number of searchers.

3. Heuristic_2 (H2)

Another heuristic (Heuristic_2) developed by Martins

is easily extended to incorporate multiple searchers. This

heuristic expands on Hi by basing the next node added to the

searchers' path on more than the path with the maximum ED.

Specifically, H2 generates a path for every possible single

next move, extends the path to T using the maximum expected

number of detection criterion, and picks the path with the

largest probability of detection. The pseudocode below fully

explains H2 using PD(wi) for the probability of detection

associated with path wi.

15



1 Path(O) <- Initial cell of searchers
2 For t - 1 to Total time steps available (T) Do

3 Let Path(t-1) be the searchers, cell

4 For all cells i C CPth(t-,) Do

5 Find path wi maximizing ED for t+1, ... , T,

where w, (t) = i

6 Compute PD(wi)

7 Path (t) = k such that PD (WO = Maximumi PD (wi)

8 Update probability mass of target given Wk(t)

9 Compute PD following Path

10 Return Path and PD.

This algorithm complexity is 0((Number of

Cel JS2) (Ci2) N(T ) 2) .

4. Genetic Algorithm (GA)

Genetic Algorithms (see Goldberg [Ref. 161 and Holland

[Ref. 171) are self improving algorithms that work by means of

natural selection, or survival of the fittest. A crude

implementation of a genetic algorithm to the multiple searcher

problem provides an introduction to basic operators and

characteristics of such algorithms. Each step of this crude

implementation is then expanded into the form used for the

computational work reported in this thesis.

16



1 Randomly create a population of n feasible paths

(gold)

2 URew < -

3 For generation=l to maximum number of generations

4 While insufficient number of paths in Qe.

5 Select two paths (WlIW 2 ) from gold

6 Apply Cross-Over on wl and W2 to form new

path

7 Apply Mutation operator on the new path

8 Calculate PD for the new path and add to

Unew

9 gold 'Ce- Ow, gne -

10 Return path that yielded the highest PD

One of the characteristics of Genetic Algorithms is

the need to set run-time parameters, such as the population

size, the probability of cross-over, the probability of

mutation, and the number of generations. This painful process

is automated in the Genetic Algorithm implementation of this

thesis. Values described below are empirically chosen to be

robust across a variety of problems which may limit the

efficiency of the algorithm for particular cases.

The Genetic Algorithm literature refers to a

population as an ordered collection of problem variables (in

our case paths) and its associated fitness (PD). We allow

the population size to •ary between generations subject to a

17



maximum respectively of n = 200, 400, or 600 paths for the

one, two, three searcher problems. (Again, all run-time

parameters are empirically derived to provide good performance

across a wide variety of problems.) The size of the initial

population is calculated as:

C1 * [C2 * ln(Number of Cells) * /;(7)

where C1 and C2 are constants that take the values one and

seven for the one searcher problem, three and five for the

two searcher problem and six and five for the three searcher

problem.

Careful creation of the initial population ensures

that every path in that population is distinct. As a general

rule, the more diversity that exists within a population the

greater ability of Genetic Algorithms to evolve in improving

directions. To improve the best path in the initial

population, the LS heuristic (steps 5 to 15 only) is used on

the path.

The new population size adjusts based on the following

statistic of the previous population:

0 PDbest PDWrst
(0.5 ,* ( ( es) - ( wo ) )()

2 2 -1) *101; (8)
PDaverage + F

where e is a very small number. The value of the statistic is

added to the initial population size. This simply computed

statistic provides an indication of how skewed the population

18



is towards the more likely poor paths. (Of course, to

calculate the actual skewness coefficient a time consuming

step of finding the median would have to be conducted.)

Adding its value to the initial population size increases

(decreases) the number of paths when the population tends

toward poor (good) paths.

Step 5 of the GA pseudocode selects paths from the old

generation to create the new generation. A simple and

widespread way of picking individuals is by "roulette wheel

selection" which advocates randomness but controlled so that

only the fittest survive. This concept is applied by randomly

picking individuals with probability equal to the V(PD of the

path) divided by the sum of /(PD of all the paths in its

population). The square root function allows enhanced

discrimination between very good and very bad paths but

reduces discrimination between paths with high PD. Within any

new generation the three best paths from the previous

generation are left unchanged guaranteeing the best path

encountered so far survives. The Genetic Algorithm literature

[Ref. 18] refers to this process as elitism.

The most important operation to be executed on the

newly selected paths is the crossover (step 6) which

probabilistically creates a random mix of the two parent paths

(perhaps leaving a parent intact). This is done in an attempt

to obtain good characteristics of both paths used to create

the child. It is a random mix since the time where the
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crossing takes place is uniform and randomly chosen between

one and T. Specifically, given the crossing time t' and two

parents w, and w2, the child is i where

ta(t) - w1 (t) for t z t', and

w(t) - w2 (t) for t > t'.

For example, suppose in a single searcher problem, that two

paths are selected (1->2->3 and 1->4->5) and that time two is

randomly chosen. The resulting path, if feasible, is 1->2->5.

As in life, every new born child has the opportunity

to evolve by acquiring characteristics that are not inherited

from his or her parents. The mutation operator (step 7)

serves this role by probabilistically changing path cells.

However, guaranteeing feasible mutations is not easy for path

constrained problems. Consider the resulting path from the

example above, 1->2->5, and let C, = {4,2,1}, C2 = {5,3,2,1},

C4 = {1,5,7} and C5 = {8,6,5,4,2}. The mutated value at the

second location on the path (currently 2) must be contained in

both C1 and C.. Possible values are therefore only 4 and 2.

As generations progress, decreasing the probability of

cross-over and increasing the probability of mutation, which

is the pribability that the cross-over (mutation) operator is

used, 4ýrnpirically improves the Genetic Algorithm's

performance. An initial high cross-over probability provides

for a diverse population. Increasing the probability of

mutation helps avoid the tendency of the best individual

converging to a local optimal. The initial probability of
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cross-over (mutation) is 0.5 (0.2). The probabilities are

adjusted each generation in the following three ways which, in

the order presented, provide a continuous change, a change

based on convergence, and a change based on the potential of

the previous population:

"* The addition (subtraction) of 0.03 to the mutation
(crossover) probability,

"* The addition (subtraction) of NumberOfReps/20 to the
mutation (crossover) probability where NumberOf Reps equals
the number of generations having the same best path,

"* The addition (subtraction) of the result of equation (9)
to the probability of crossover (mutation) where PDbst,
PDworst, PDaverage are taken from the previous population and
C3 equals 10 (20)

PDbet ýPDwos
(0. 5 * ( ( es) - P w_( 2 )

ln( 2D (9)
PDaverage + E

C3

After these three terms are algebraically added to the

previous probability of cross-over (mutation), the final

value, if outside the bounds for the operator, is then rounded

to the appropriate interval limit. The upper and lower limit

of cross-over (mutation) are 0.8 (0.8) and 0.4 (0.1),

respectively.

Every three generations, a further attempt to

diversify and improve the population of paths is made. It is

explained in the pseudocode below.
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1 If NumberOfRep < seven then

2 If generation is even

3 Apply LS on best path

4 else

5 Apply LS on second best path

6 else

7 If generation is odd

8 Apply LS on third best path

9 If NumberOfRep > ten

10 Apply LS on forth best path

11 If (top 10% of paths are not distinct)

12 Replace nondistinct paths

probabilistically with a new random path.

Step 12 above replaces replicated paths according to a

Diversity Parameter. The Diversity Parameter in this

implementation has an initial probability value of 0.5 and

upper (lower) bound of 0.7 (0.2). Its value is adjusted using

equation (9) with C3 = 10.

Another step taken to diversify the population, aimed

at the poorest group of paths, is to randomly generate a new

path to replace any path that shows PD less than 20% of the

best path. Equation (9) with C3 - 10 adjusts the value of 20%

within 10% and 30% between generations.

When the NumberOfRep is greater than 11 (the best

solution has not changed for 11 generations), the first one
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third of the population is decimated and replaced by random

paths. Decimation takes place only once in our implementation

and the NumberOfRep is discounted four after its application.

A number of stopping conditions terminate the GA heuristic

when exceeded: maximum number of generations (Number of

Searchers * 100), maximum amount of run-time (Number of

Searchers2 * ln(T) * ln(Number of Cells) * 3 minutes),

NumberOfRep greater than twenty.

5. Hybrid Genetic Algorithm (HGA)

The HGA algorithm is the GA which includes in the

starting population the three heuristic solutions produced by

Hi, H2 and the path that provided the maximum expected number

of detections.

6. Moving Horizon (MH)

The MH algorithm uses divide and conquer, one of the

three basic solution paradigms. The MH heuristic is based on

empirical and theoretical evidence which suggests it requires

significantly more than twice the time to solve the same

problem having ten time steps compared to five time steps.

Our MH heuristic breaks the true problem into subproblems

(problems consisting of less time steps) which are optimally

solvable within a reasonable amount of computer time.

Empirically, aiming to get very good solutions without

expending an unacceptable amount of computer time, this
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implementation computes the horizon length(H) by means of

equation (10).

Lln(Numbez of Cells) + "* ; (10)

The horizon length is limited to eleven for the single

searcher and to six for the two-searcher problem.

The MH pseudocode uses Path1 s(t) and Path0 (t) for cells

contained on the path of the initial solution and partial

optimal solution respectively.

1 Compute horizon length (H)

2 Compute initial Solution (IS) using H1

3 For k - I to T-H

4 Solve the subproblem for t = k to k+H

optimally

5 If PD = 0 then

6 Path(k) = Pathrs(k)

7 else

8 Path(k) = Patho(k)

9 Update the Probability mass for the target;

10 Compute PD when searchers follow Path;

11 Return Path and PD.

B. OPTIMAL BRANCH AND BOUND ALGORITHM

Using the redefined network, the branch and bound

algorithm of Martins [Ref. 4] solves multiple searcher

scenarios optimally. The algorithm is O((CiN)T) thus being of

24



limited use for most practical applications. Nevertheless, it

is a reference against which the precision of the heuristics

can be measured for most single searcher and some multiple

searcher problem instances presented in Chapter IV.
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IV. INPLDITUATION

All algorithms are implemented in Pascal and run on a

486/33 personal computer. This hardware choice is likely to

be in any probable user's inventory. Another issue favoring

the choice of this machine is greater precision offered for

ordinary data types using the Borland Pascal 7.0 compiler.

The Pascal compiler currently available on the Naval

Postgraduate School mainframe (the machine used by Martins)

has five less digits of precision for type Real and three for

the type Double. The precision affects random number streams

used intensively by GA. With less precision, the streams of

pseudo-random numbers become more correlated thus degradinG

the performance.

The test problems investigated in this thesis are the same

9, 25, and 49 cell problems presented in Martins [Ref. 4].

The initial position for target and searcher(s) and the

searcher(s) probability of detection are also as in Martins

(Ref. 41. When multiple searchers are present, their initial

position is the same. The target motion is the "wandering

around type." This motion, implemented as a discrete time

markov chain, mimics the motion of ballistic submarines on

patrol or polar bears looking for food. Of the problems

available in the literature, this target motion seems to

provide the greatest algorithmic challenge. See Eagle and Yee
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[Ref. 2] for a description of how the transition matrix is

derived.

Four basic characteristics (number of searchers, number of

cells, number of time steps, and each searcher's probability

of detection) are varied to values shown in Table II.

Possible permutations of the number of cells, time steps, and

probability of detection produces 27 test problems (shown in

Table III) for each algorithm to solve with each number of

searchers.

Table II Test Problem Variables

Searchers Cells Time Steps Pd

1 9 4 0.33212

2 25 12 0.63212

3 49 20 0.93212

Our implementation allows more than one searcher to search

the same location at the same time. The random search law is

used, which allows the detection rates of the N searchers to

be added. For example, suppose searcher 1 and 2 are searching

the same cell at the same time step and searcher 1 (2) has a

0.5 (0.8) probability of detecting the target given they are

both in the same cell. Then the detection rate for searcher

1 (2) is al (a2) where 1-e-01=0.5 (1-e - 2=0.8). The total

detection rate becomes a=al+a2 or 0.69+1.61=2.30 and the

overall probability of detection is 1-e-2=0.90.
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Table III Problem Numbers

Problem Cell4 Time Steps Pd

1 9 4 0.33212

2 9 4 0.63212

3 9 4 0.93212

4 9 12 0.33212

5 9 12 0.63212

6 9 12 0.93212

7 9 20 0.33212

8 9 20 0.63212

9 9 20 0.93212

10 25 4 0.33212

11 25 4 0.63212

12 25 4 0.93212

13 25 12 0.33212

14 25 12 0.63212

15 25 12 0.93212

16 25 20 0.33212

17 25 20 0.63212

18 25 20 0.93212

19 49 4 0.33212

20 49 4 0.63212

21 49 4 0.93212

22 49 12 0.33212

23 49 12 0.63212

24 49 12 0.93212

25 49 20 0.33212

26 49 20 0.63212

27 49 20 0.93212
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A fictitious scenario fitting the test problem

descriptions follows. Suppose a diesel submarine is observed

by an S-3 Viking during an Anti-Submarine Warfare (ASW)

operation to screen the USS "Eisenhower" as she transits to

South Africa. The submarine's course would take it into the

territorial waters of Brazil. The time and coordinates of the

contact are transmitted to concerned authorities in Brazil.

The Brazilian Navy opts for dispatching a Search and Attack

Unit (SAU) composed of two Frigates ("Independ~ncia" and

"Uniao").

The area of interest is divided in 25 cells according to

the sensors' performances, distances involved, and the

transition matrix chosen represents a "wandering around" type

of target motion. Figure 1 illustrates the scenario.

Figure 1 Possible Scenario
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A. COMPUTATIONAL PERFORMANCE

1. One Searcher Results

Figure 2 shows the probability of detection achieved

by the six heuristics and the optimal branch and bound

procedure for each test problem using a single searcher. This
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Figure 2 Solution Values For The Single Searcher Problem.

figure highlights the superior performance of all the

heuristics when time is not considered. The only exception

being LS which is included as an indication of how well a

simple heuristic performs. Table IV shows the percentage away

from the best known solution achieved by each heuristic.
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Table IV Percentages Away From The Best Known Solution
Obtained By Each Heuristic For The Single Searcher Problems.
Starred problem numbers indicate optimal solutions.

Proble Hi 32 NH GA Bak LS

1. 0 0 0 0 0 0

2" 0 0 0 0 0 0

3" 0 0 0 0 0 0

4" 1 0 0 0 0 2

5" 1 1 0 1 0 2

6" 0 2 0 1 0 2

7 0 1 0 1 1 3

8 1 1 0 1 1 2

9 2 1 0 1 0 1

10, 0 0 0 0 0 0

11* 0 0 0 0 0 0

12" 0 0 0 0 0 0

13" 0 1 0 1 0 9

14* 0 3 0 0 0 9

15" 1 4 0 0 1 8

16 1 1 0 1 1 7

17 1 3 0 1 1 12

18 1 3 0 1 1 11

19" 0 0 0 0 0 0

20" 0 0 0 0 0 0

21" 0 0 0 0 0 0

22" 0 0 0 1 0 55

23" 0 2 0 2 0 53

24" 0 7 0 2 0 51

25 1 1 1 0 1 30

26 1 2 0 1 1 27

27 2 3 0 2 2 25
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Run-times differ significantly as shown in Figure 3

where BB is limited to 60 minutes. LS run times are limited

to 15 minutes or until a number of restarts exceeds the

population size of GA.
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Figure 4 Expanded Run-Times For Single Searcher Problems

From Figure 4 and Table II it is clear that Hi

outperforms the other heuristics in run-time and always obtain

a solution within two percent of the best known. The MH

heuristic uses a maximum of 11 time steps for the horizon

which provides superior performance as indicated in Table II

but with increased run-time as indicated in Figure 4.

2. Two Searcher Results

The same set of 27 problems is solved for the two

searchers case. The complexity of this instance grows

exponentially with the number of searchers. However, it gives
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more insight on the capability of each of the algorithms

proposed here to deal with real world problems. Figure 5

shows results achieved by each individual heuristic. Optimal

solutions are not obtained due to excessive computational

requirements. The nine cell problem with eight time step and

two searchers had to run for almost five days before obtaining

the optimal solution.
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Figure 5 Heuristic Solutions For Two Searcher Problems.

Table V provides detailed information on heuristic

performance and clearly shows MH provides superior solutions.
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Table V Percentages Away From The Best Known Solutions
Obtained By Each Heuristic For Two Searchers Problems.

Problem EI H2 MR GA LS

1 0 0 0 1 0

2 0 0 0 0 0

3 0 0 0 0 0

4 0 2 0 2 6

5 1 2 0 1 3

6 1 3 0 1 3

7 0 2 0 1 4

8 1 2 0 1 2

9 1 1 0 1 1

10 0 0 0 0 0

11 0 0 0 0 0

12 0 0 0 0 0

13 0 1 0 4 21

14 1 3 0 4 18

15 2 3 0 3 20

16 1 4 0 1 20

17 2 5 0 2 16

18 2 6 0 1 15

19 0 0 0 0 0

20 0 0 0 0 0

21 0 0 0 0 0

22 1 0 0 32 65

23 0 7 0 13 70

24 0 6 0 20 69

25 0 2 0 2 42

26 0 7 0 3 40

27 0 7 0 2 34
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However, Figure 6 illustrates that the run-time necessary to

obtain these results is significant.
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Figure 6 Running Times For Two Searcher Problems.

The solution times for problems 19 to 27 are distorted

due to a limitation of the Borland Pascal 7.0 compiler which

does not allow single data structures to exceed 64k. A number

of programming changes are conducted to overcome this

limitation which results in slower execution.

Once again the lower end of the time scale is expanded

to better illustrate the running times of the fastest algorithms.
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Figure 7 Expanded Running Times For Two Searcher Problems.

From Figure 7 it is transparent that only H1 and GA keep a

reasonable run-time for two searchers. It is seen that H1

performs exceptionally well for its limited investment of

time.

3. Three Searcher Results

Only Hi and GA exhibit reasonable run-times and

quality solutions for one and two searchers and are therefore

the only heuristics employed to solve three searcher problems.

The 9 and 25 cell problems (problem numbers 1 to 18) are used

in testing. Due to memory limitations associated with the
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Pascal compiler used, the 49 cell problems could not be solved

without extensive reprogramming. Figure 8 presents the

objective function values that GA (H1) obtains for problems 1

to 18 (1 to 15) . It is clear that both heuristics obtain, for

all practical purposes, the same results. Even though the

optimal solution to these problems is unknown, it is

reasonable to believe Hi and GA produce quality solutions due

to past performance.

Figure 9 presents the run-time for both heuristics.

It is clear that only GA maintains a reasonable rate of growth

in its run-time with the addition of searchers.
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V. CONCLUSIONS

This thesis develops and tests effective heuristics to

solve the path constrained multiple searcher problem. For

more than one searcher, the time needed to guarantee an

optimal solution for the problems considered is prohibitive.

Heuristic Hi obtains solutions within two percent of the best

known solution for each one, two, and three searcher test

problems considered. For one and two searcher problems Hi's

solution time is less than that of other heuristics

considered.

The GA heuristic performs acceptably for one and two

searcher problems and highlights its ability solving three

searcher problems; obtaining solutions equivalent to Hi using

less than 20% of Hi's run-time.

Our empirical work suggests heuristics can solve the path

constrained multiple searcher problem both effectively and

efficiently. Given the myriad of estimated parameters needed

to model this problem, obtaining an optimal solution with

respect to these estimates does not guarantee better true

performance. Hence, a heuristic solution is recommended for

practical applications.
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A. SUGGESTIONS FOR FURTHER RESEARCH

The results of this thesis identify other related areas of

research that deserve further attention. The topics follow:

"* Other test scenarios that are not considered in this
thesis could illuminate other traits of the problem
overlooked by the proposed test cases. As an example,
further research could investigate the case where the
target can hide.

"* The solution to the model proposed by Eagle and Yee [Ref.
2] and used in this thesis can be verified by means of
simulation.

"* The multiple searcher path constrained problem studied in
this thesis is NP-complete, but a similar problem, solved
by Eagle and Yee [Ref. 2], which assumes that the search
effort is infinitely divisible, is relatively fast to
solve. A study analyzing the trade-off between the effort
to solve the multiple searcher problem versus Eagle's
relaxed problem could identify the conditions under which
each of the methods is preferred.
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