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GLOSSARY

a-FAULT. (10) A fault activated by the baseline program (see S-FAULT).

A-SPECIFICATION. (9) The highest level specification typically produced by thp
contracting organization to define a system (see MIL-STD-1521).

ABSORPTION LOSS. (11) Attenuation or retention of electromagnetic energy passing
through a material, a shield. Absorption loss and reflection loss contribute
to total shielding effectiveness (SE).

ACCESS. (18) The process of a transmitting bus user obtaining control of a data
bus in order to transmit a message.

ACTION INTEGRAL. (13) The action integral is a critical factor in the production
of damage. It relates to the energy deposited or absorbed in a system. This
energy cannot be defined without knowing the resistance of the system. The
instantaneous power dissipated in a resistor is IR and is expressed in watts.
For the total energy expended, the power must be integrated over time to get the
total joules, watt-seconds. By specifying the integral of i(t) 2 over the time
interval involved, a useful quantity is defined for application to any resistance
value. In the case of lightning, this quantity is defined as the action integral
and is specified as i(t) 2dt over the time the current flows.

ACTIVE FAULT. (10) A fault that can produce an error (for some input) while
executing the current program.

ACTUAL TRANSIENT LEVEL. (13) The actual transient level is the level of
transients which actually appear at the system interfaces as a result of the
external environment. This level may be less than or equal to the transient
control level but should not be greater.

ADDRESSING CAPACITY. (6) The number of components addressable by the protocol
used on a given data bus.

ADVISORY CIRCULAR. (18) An external FAA publication consisting of nonregulatory
material of a policy, guidance, and informational nature.

AIR TRANSPORT AIRCRAFT. (18) Aircraft used in interstate, overseas, or foreign
air transportation.

AIRCRAFT LIGHTNING INTERACTION. (13) An encounter with lightning that produces
sufficient current within or voltages along an aircraft skin or structure to
pose a threat to the aircraft electrical/electronic systems, as a result of a
direct lightning attachment.0



AIRWORTHINESS STANDARDS. (18) Parts 23, 25, 27, 29, and 33 of the Code of
Federal Regulations, Title 14, Chapter 1, Subchapter C.

AMBIENT. (16) The substance which absorbs heat from the heat sink.

ANALYTICAL REDUNDANCY. (7) The use of software algorithms which use known mathe-
matical relationships between different sensors for sensor failure detection and
replace most of additional redundant sensor hardware,

ANALYTICAL ROOT SOLUTION. (4) Information obtained from the roots of the
characteristic equations of the airplane model such as short-period or phugoid
frequency response.

ANGLE OF ATTACK. (4) Angle between the longitudinal axis of an aircraft and
the direction of movement.

ANODIZE. (11) A preparation by electrolytic process that deposits a protective
oxide, insulating film on a metallic surface (aluminum). The oxide defeats
electrical bonding. Alodine and iridite finishes on aluminum are conductive.

ANTAGONISTIC QUALITY FACTORS. (17) Quality Factors with conflicting attributes.

APERTURE. (11) An opening, such as a nonconductive panel joint, slot, or crack,
allowing electromagnetic energy to pass through a shield.

ARCHITECTURE. (18) The design and interaction of components of a computer
system.

ARTIFICIAL INTELLIGENCE. {16) The characteristics of a machine programmed to
imitate human intelligence functions.

ASSURANCE ASSESSMENT. (4) Procedures whose purpose is to ensure that a proposed
system functions according to design specifications.

ASYNCHRONOUS MESSAGES. (6) Electronic signals with transmission times that are
not known a priori. These may include priority signals requiring immediate
access to the bus.

ATTACHMENT POINT. (13) A point of contact of the lightning flash with the
aircraft.

AUDIO FREOUENCY (AF). (11) The spectrum (20 to 20,000 Hz) of human hearing,
often defined as extending from approximately 20 Hz to 50 kHz and sometimes to
150 kHz. Audio noise is nuisance hum, static, or tones from power line 400 Hz,
switching regulator and digital clock harmonics, or HF, VHF transmitter
frequencies.

AUTOFEATHER. (16) To automatically and swiftly feather the propeller when the
engine fails to drive it.

AUXILIARY PROGRAMS. (10) Software executed occasionally.
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AVALANCHING LATENT FAULTS. (10) The successive activation of latent faults.

AVIONIC. (18) Electronic equipment used in aircraft.

R-FAULT. (10) A fault not activated by the baseline program (see a-FAULT).

BABBLING TRANSMITTER. (18) A bus user that transmits outside its allocated
time.

* BACKSHELL. (11) Metal shell connecting circuit shields or overbraid to an
electrical connector.

BACKWARD RECOVERY. (9) Restoration of the system to some previous known correct
state and restarting the computation from that point.

BALANCED CIRCUIT. (11) A signal, acting line-to-line, between two conductors
having symmetrical voltages identical and equal in relation to other circuits
and to ground. "Differential mode" is line-to-line; "common mode" is line to
ground.

BALANCED CONFIGURATION. (18) A bus using the HDLC protocol that connects only
primary stations.

BANDWIDTH (BW). (11) Frequencies bounded by an upper and lower limit in a given
band associated with electronic devices, filters, and receivers.

BASELINE PROGRAM. (10) A set of continuously executed software modules.

BENIGN FAULT. (10) A fault that cannot produce an error while executing the
current program, regardless of input, but may prbduce an error for some other
program.

BIDIRECTIONAL DATA BUS. (18) A data bus with more than one user capable of
transmitting.

BINARY SEARCH. (17) A searching algorithm in which the search population is
repeatedly divided into two equal or nearly equal sections.

BIT-ORIENTED PROTOCOL. (18) A communication protocol where message frames can
vary in length, with single bit resolution.

BIT TIME. (6) The time it would take to transmit one bit. Usually this is
"blank" time when nothing is being transmitted. One nth of the bus speed (i.e.,
on a 1 kHz bus, the bit time is 10-3 seconds).

BITS. (17) Binary digits.

BLOCK TRANSFER. (6) A data transfer mode allowing the transfer of variable
length data blocks.

BOND, ELECTRICAL. (11) Electrical connection at two metallic surfaces securely
joined to assure good conductivity often 2.5-mO maximum for electrical/elec-

3



tronic units and 10 for electrostatic dissipation or safety. A "faying surface"
bond maintains contact between relatively large or long surfaces. Inherently
bonded parts are permanently assembled and conductivity exists without special
preparation: such as with welding, brazing.

BRAID, OVERBRAID. (11) Fine metallic conductors woven to form a flexible conduit
or cableway and installed around insulated wires to provide protection against
electric fields and radio frequencies. Best when peripherally connected to
backshells. A grounding strap/jumper may be made of braid.

BRIDGE. (18) A BIU that is connected to more than one bus for the purpose of
transferring bus messages from one bus to another, where all the buses follow
the same protocol.

BROADBAND. (12) A frequency spectrum which is wide compared to the bandwidth
of the device used to detect it.

BROADCAST. (4) Transmission of messages to all terminals without reference to
the identification of the receiving station or terminal.

BROADCAST CAPABILITY. (6) The capacity to transmit messages to all terminals
simultaneously.

BROADCAST DATA BUS. (18) A data bus where all messages are transmitted to all
bus users.

BUFFER. (18) Memory used to hold segments of the data transferred between
asynchronous processes.

BUS. (18) A conductor that serves as a common connection of a signal to multiple
users.

BUS CONTROLLER. (18) The electronic unit that is designed to control the bus
communication of all users for a centrally controlled bus.

BUS INTERFACE UNIT. (18) The electronics that interface the host CPU of an LRU
to a bus medium.

BUS MESSAGE. (18) A complete set of bits that can be transferred between two
bus users.

BUS NETWORK. (18) The collection of all BIUs and bus media associated with one
bus.

BUS OVERLOAD. (18) The condition that exists when the time it takes to transmit
outstanding messages on a bus exceeds the time allotted for those transmiLsions.

BUS USER. (18) Any LRU attached to a bus.

BYZANTINE RESILIENCE. (5) A fault tolerant process which is tolerant of
intermittent faults that can send good information part of the time.
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CABLE OR HARNESS. (11) A bundle of separate, insulated, electrical circuits,
shielded or unshielded, usually long and flexible and having breakouts,
terminations, overbraid, and mounting provisions completely assembled.

CABLEWAY. (11) A solid metallic housing (liner, foil, coating) surrounding and
shielding insulated electrical conductors. Also called conduit, tray, or
raceway. Crosswise or transverse openings or breaks in the metallic cableway
cause noise voltages to be transferred to internal wire circuits.

CANARD. (16) A tail-first aerodyne, usually with auxiliary horizontal surface
at the front and a vertical surface at the back.

CAT IIIa LANDING. (6) One of several landing categories defined in FAR 91.
CAT MIIa implies the need for an instrument landing approach.

CENTRAL BUS CONTROL. (18) The bus control approach where a single electronic
unit attached to a bus controls all the communication of the bus users.

CENTRAL CONTROL. (6) Control from one master, whether stationary or non-
stationary.

CERTIFICATION. (18) The process of obtaining FAA approval for the design,
manufacture, and/or sale of aircraft and associated systems, subsystems, and
parts.

CHARACTER-ORIENTED PROTOCOL. (18) A communication protocol where messages can
vary in length, with single character resolution.

CHARGE TRANSFER. (13) The integral of the current over its entire duration,
i(t)dt, in coulombs.

CHECKSUM. (18) An error detection code produced by performing a binary addition,
without carry, of all the words in a message.

CHORD. (4) The straight line segment intersecting or touching an airfoil profile
at two points.

CLOSED-LOOP. (18) A system where the output is a function of the input and the
system's previous output.

CODE. (17) The subset of software which exists for the sole purpose of being
loaded into a computer to control it.

COMMAND/RESPONSE. (6) "Operation of a data bus system such that remote ter-
minals receive and transmit data only when commanded to do so by the controller.
(MIL-STD-1553 Designer's Guide, 1983, p. 11-3.)

COMMAND/RESPONSE DATA BUS. (18) A data bus whose protocol initiates each data
transfer with a command and terminates the transfer after a proper response is
received.
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COMKON MODE IMPEDANCE. (11) Impedance or resistance shared by two or more
circuits so that noise voltages/currents generated by one are impressed on the
others.

COMMON MODE REJECTION. (Il) The ability of wiring or an electronic device to
reject common mode (line-to-ground) signals and maintain fidelity of differential
mode (line-to-line) signals.

COMMON MODE SIGNAL. (11) Identical and equal signals on input conductors or at
the terminals of a device relative to ground.

COMPLEMENTARY QUALITY FACTORS.. (17) Quality Factors with interrelated
attributes.

COMPONENT DAMAGE. (13) Condition arising when the electrical characteristics
of a circuit component are permanently altered beyond its specifications.

CONDUCTED EMISSION (CE) OR INTERFERENCE. (11) Voltage/current noise signals
entering or leaving a unit on interface conductors. Emission is the general
term, interference is undesired noise.

CONFIGURATION MANAGEMENT. (18) The precise control and documentation of the
configuration of an entity at any time during its development and deployment.

CONTENT ADDRESSING. (6) The system of identifying message recipients based on
information embedded in the message. This is in contrast to destination terminal
addresses.

CONTENTION PROTOCOL. (18) A protocol that allows users to randomly access the
bus at any time. When bus contention results, each user tries again to access
the bus without contention.

CONTROL (7) The physical relationship between various sensors and control
surfaces.

CONTROL REGISTER. (18) A register in an IC controller that receives commands
from a host processor.

CONTROL STRUCTURES. (17) Programming constructs which direct the flow of
control.

CORONA. (13) A luminous discharge that occurs as a result of an electrical
potential difference between the aircraft and the surrounding atmosphere.

COUPLING. (11) The transfer of energy between wires or components of a circuit
electrostatically, electromagnetically, or directly.

COVERAGE. (5) The conditional probability of the system successfully recovering
from a component fault and continuing to perform the intended functions
correctly, given the presence of the fault. Coverage is the measure of
effectiveness of a system's utilization of redundant hardware. Coverage can be
qualified and applied to many different components of a system and phases of
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recovery process. Examples include, fault detection coverage, fault isolation
coverage, latent fault coverage, senscr failure coverage, and memory failure
coverage.

COVERAGE. (7) The percent confidence level of a given analytical redundancy
fault detection and isolation algorithm for all types of faults.

COVERAGE. (9) The probability that when a fault occurs, it will be detected
and recovery from thW fault will be successful.

CRITICAL. (13) Functions whose failure would contribute to rr cause a failure
condition which would prevent the continued safe flight and landing of the
aircraft.

CROSS COUPLING (CROSSTALK). (11) Transfer of signals from one channel, circuit,
or conductor to another as an undesired or nuisance signal or the resulting
noise.

DAMAGE. (11) The irreversible failure of a component.

DATA BUS. (6,18) A system for transferring data between discrete pieces of
equipment in the same complex.

DATA BUS PROTOCOL. (13) The set of rules that governs the transfer of data
between data bus users.

DATA LATENCY. (3,18) The delay front the time when a piece of information becomes
available at a source terminal to the time it is received at the destination.

DATA LINK ASSURANCE OF RECEIPT. (6) The guarantee of good data through the data
link level.

DATA REASONABLENESS CHECK. (181 A check performed to see if a value of data is
within reasonable bounds for the given context.

dBoV. (12) Decibels referred to one microvolt. Zero db represents one micro-
volt.

DECIBEL (dB). (11,12) Decibel expresses the ratio between two amounts of power,
P1 and P2, at two separate noints in a circuit. By definition, the number of
dB - 10 log to the base 10 of (Pl/P2). For special cases, when a standard power
level P2 - 1 mW or 1 W or 1 kW, then the ratio is defined as "dBm," "dBw," or
"dBKW." Because P - V2/R and also I 2R, decibels express voltage and current
ratios. Ideally, t'ie voltages and currents are measured at two points having
identical impedances. By definition, dB - 20 log Vl/V2 and dB - log I1/I2. For
convenience, V2 or 12 are often chosen as 1 yV or 1 AA and the ratio is defined
as dB above a pV or dB above a pA when graphing emission or susceptibility
limits.

DECOUPLED MANEUVERS. (4) Changes in an aircraft's direction and attitude in
one axis without affecting direction or attitude in other axes.
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DEFULT DATA. (18) An alternative value used for a parameter whenever the normal
data is not supplied.

DESIGN ERROR. (4) A functional flaw resulting from a misinterpretation of the
specifications of the system.

DESIGN MARGIN. (13) The difference between the equipment transient design levels
and the transient control level.

DETERMINISTIC. (6) A system where all parameters are known, as opposed to a
statistical system where the outcome is subject to the laws of probability.

DETERMINISTIC PROTOCOL. (18) A protocol where all parameters are known so that
its various states are predictable in sequence and time.

DIAGNOSTIC FILTER. (7) An analytical algorithm which processes data from N
functionally related sensors. The data are used to estimate some sensor outputs
and assess the correct functioning of the sensors.

DIELECTRIC STRENGTH. (11) Voltage withstand capability that an insulating
material sustains before destructive arcing and current flow, usually expressed
in volts per mil thickness. Dielectric withstand voltage is the voltage level
at which insulation breakdown occurs.

DIFFERENTIAL MODE (DM) SIGNAL. (11) The signal in a two-wire circuit measured
from line-to-line.

DIGITAL DATA BUS. (18) A data bus that uses digital electronic signals.

DIRECT EFFECTS. (13) Any physical damage to the aircraft or onboard systems
due to the direct attachment of the lightning channel. This includes tearing,
bending, burning, vaporization, or blasting of aircraft surfaces or structures,
and damage to electrical/electronic systems.

DISSIMILAR REDUNDANCY. (18) The redundancy of systems that provide a redundancy
of function, but by a different form.

DISSIMILAR SOFTWARE. (18) Redundant computer programs that provide a redundancy
of function, but by a different form.

DISTRIBUTED BUS CONTROL. (18) The bus control approach where the total
communication control job is distributed across the bus users, each controlling
the communications during its period of responsibility.

DISTRIBUTED CONTROL. (6) Concurrent control from multiple points in the data
bus system.

DOUBLE FAIL-OPERATIONAL SYSTEM. (4) A quadruplex (or higher) redundant flight-
control system which is designed to incur failures in two redundant lanes (or
channels) before it fails.
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DUAL-DUAL ARCHITECTURE. (4) Two parallel dual computers with a voting plane at
the output of each dual computing lane.

DUAL FAIL-OPERATIONAL. (7) A reliability requirement placed on a system which
requires the system to be operational after two failures have occurred.

DUAL GROUND. (11) Equipment case ground/return through two independent circuit
paths to structure implemented in flammable zones and water leakage areas-each
path meeting electrical conductivity (resistance) requirements.

ELECTRIC FIELD. (11) High-impedance, radiated voltage field, positive or
negative, from a voltage source as contrasted to a low-impedance magnetic field
from a current source.

ELECTROMAGNETIC COMPATIBILITY (EMa). (11) Operation within performance
specification in the intended electromagnetic interference environment.

ELECTROMAGNETIC INTERFERENCE (EMI). (11) Conducted and radiated voltage/current
noise signals, broadband (BB) or narrow band (NB), that degrade the specified
performance of equipment.

ELECTROMIGRATION. (5) Drifting of metal atoms toward the cathode of a cathode
ray tube.

ELECTROSTATIC CHARGE. (11) Electric potential energy with a surrounding electric
field, uniform or nonuniform, moving or at rest, on a material.

EMISSION. (11) Voltage/current noise on a wire or in space. Broadband emission
has uniform spectral energy over a wide frequency range and can be identified
by the response of a measuring receiver not varying when tuned over several
receiver "bandwidths." Or, energy present over a bandwidth greater than the
resolution bandwidth where individual spectral components cannot be resolved.
Broadband (BB) may be of two types: (1) impulse and coherent varies 20 dB per
decade of bandwidth and (2) random or statistical, varies 10 dB per decade. A
narrow band (NB) emission or signal, sometimes called continuous wave, occurs
at a discrete frequency and does not vary with bandwidth.

EMULATION. (18) The duplication of the behavior of a system with a different
system.

ENVELOPE LIMITING. (4) General or additional limits imposed on the structural,
"g" limits, speed, attitude, etc. of the aircraft. In some cases, envelope
limiting imposes additional constraints on the envelope that cannot be exceeded
regardless of pilot inputs.

EOUIPMENT TRANSIENT DESIGN LEVEL. (13) The level of transients which the
equipment is qualified to withstand.

EQUIPMENT TRANSIENT SUSCEPTIBILITY LEVEL. (13) The transient level which will
result in damage or upset to the system components. This level will be greater
than the equipment transient design level.

9



E0UIVALENCE STATEMENT. (17) A FORTRAN statement which equates two variable
names.

ERROR. (4) A mistake in specification, design, production, maintenance, or
operation of a system causing undesirable performance.

ERROR. (8) A state of the system which (in the absence of any corrective action
by the system) could lead to a failure that would not be attributed to any event
subsequent to the error. (More accurately known as an erroneous state.)

ERROR MASKING. (18) The process of masking the presence of avionic errors,
possibly by using an electronic voter to override an erroneous input with the
values of substitute inputs.

EVENT, EXTREMELY IMPROBABLE. (4) An event with a probability of occurrence on
the order of 10-9 or less.

EVENT, IMPROBABLE. (4) An event with a probability of occurrence on the order
of 10' or less.

EVENT, PROBABLE. (4) An event with a probability of occurrence on the order of
10' or greater.

EXTERNAL ENVIRONMENT. (13) Characterization of the natural lightning environ-
ment with idealized waveforms for engineering purposes.

FAIL-OPERATIONAL. (7) A reliability requirement placed on a system which
requires the system to be operational after a single failure has occurred.

FAIL-SAFE. (7) A reliability requirement placed on a system which requires that
safe flight not be hindered even after a failure.

FAIL-SAFE. (18) A design philosophy that ensures that any failure in a system
does not result in an unsafe condition after the failure.

FAILURE. (4) The inability of a system, subsystem, unit, or part to perform
within specified limits.

FAILURE. {5) The deviation of system behavior from specifications (arithmetic
failure, storage failure, flight control function failure.)

FAILURE. (8) The situation when the external behavior of a system does not
conform to that prescribed by the system specification.

FAILURE, HARD. (5) Repeated use of the same input and initial conditions results
in the same incorrect response.

FAILURE. HIDDEN. (4) A failure that is not manifested at the time of its
occurrence.
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FAILURE MECHANISM. (5) Any situation that could produce an error condition.
Examples of failure mechanisms include metal migration, voltage overstress, and
lack of air-conditioning.

FAILURE, PERMANENT. (5) Repeated use of the same input and initial conditions
results in the same incorrect response.

FAILURE, SOFT. (5) Repeated use of the same input and initial conditions does
not result in the same incorrect response.

FAILURE, TEMPORARY. (5) Repeated use of the same input and initial conditions
does not result in the same incorrect response.

FAILURE, TRANSIENT. (5) Repeated use of the same input and initial conditions
does not result in the same incorrect response.

FALL-TIME. (12) The time required for pulse amplitude to go from a predefined
magnitude to a given level.

FALSE ALARM. (7) The declaration of a fault by a fault detection monitor or
algorithm when there is no fault.

FAULT. (4) An error in the operation of a system.

FAULT. (5) The phenomenological reason for a failure (open wire, stuck-at fault,
design fault, etc.). In general, any condition preventing a digital component
from correctly changing state when directed to change by input parameters. For
electrical components there is a one-to-one correspondence between faults and
failures. The situation is not so simple with digital circuits. For if the
circuit is S-A-l, any input causing a one output will be correctly processed;
a little like the stopped clock that is correct twice per day. For a processor
having a million or so logic gates, it is not possible to test for all the
combinations of input and output states.

FAULT. (8) The adjusted cause of error.

FAULT AVOIDANCE. (9) The attempt to prevent any software faults in the final
delivered product through disciplined software development practices, testing,
and IV&V.

FAULT CONTAINMENT. (6,9) The capacity of a system to prohibit errors and/or
failures from propagating from the source throughout the system.

FAULT CURRENT. (11) The maximum current (magnitude and duration) flowing through
a fault point. This current is equal to the supply voltage divided by the dc
resistance of power line leads, circuit breakers, and the current return in wire
or structure.

FAULT DETECTION. (6) The capacity of a system to determine the occurrence of
erroneous operation.
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F•ULT DETECTION. (7) The determination that a sensor is faulted by using a
software algorithm.

FAULT, HARD. (4) A defect in the hardware or software of a digital control
system that permanently affects some functional performance of the system.

FAULT INSERTION. (4) A testing technique used to obtain information about data
latency and built-in test coverage of a digital flight-control system.

FAULT ISOLATION. (6) The capacity of a system to isolate a failure to the
required level so it can reconfigure.

FAULT ISOLATION. (7) The determination that a particular sensor is faulted by
using a software algorithm.

FAULT, LATENT. (5) A fault which has not yet caused a failure. (For example,
a fault in a memory chip that is not being used for the foreground program or
in this particular mode of the system is a latent fault.)

FAULT, SOFT. (4) A transient defect in the software of a digital flight-control
system that can be overcome by error-correctable code or by recycling of power
to the computer system.

FAULT. STUCK-AT. (5) A logic signal which remains at zero (S-A-0) or one
(S-A-l).

FAULT TOLERANCE. (6,9) The capability to endure errors and/or failures without
causing total system failure.

FAULT TOLERANCE. (7) Accommodation of sensor hardware faults based on some type
of comparator scheme.

FAULT TOLERANCE. (18) The ability of a system to continue operation after a
fault, possibly in a degraded condition.

FAULT TOLERANT. (4,9) Software which continues to operate satisfactorily in
the presence of faults.

FAULT TOLERANT SYSTEM. (5) A system that continues to function although certain
components may have faults.

FAULT TREE ANALYSIS. (4) A top-down deductive analysis that identifies the
conditions and functional failures necessary to cause a defined failure
condition. The fault tree can be used to establish the probability of the
ultimate failure condition occurring as a function of the estimated probabilities
of contributory events.

FEDERAL AVIATION REGULATIONS. (18) Subchapter C of the Code of Federal
Regulations, Title 14, Chapter 1.

FILTER. (11) Device or unit that passes or rejects a frequency band and is
designed to block noise from entering or leaving a circuit or unit.
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O FINITE STATE MACHINE. (18) A state machine with a finite number of states.

FLIGHT CODE. (4) The application software of the digital flight-control system.

FLIGHT-CRITICAL. (4,7,18) A description of functions whose failure would
contribute to or cause a failure condition preventing the continued safe flight
and landing of the aircraft.

FLIGHT-ESSENTIAL. (4,18) A description of functions whose failure would
contribute to or cause a failure condition which would significantly affect the
safety of the airplane or the ability of its crew to cope with adverse operating
conditions.

FLIGHT-NONESSENTIAL FUNCTION. (18) A function whose failure could. not
significantly degrade aircraft capability or crew ability.

FLIGHT-PHASE CRITICAL. (4) A description of functions which are critical only
during certain phases of flight.

FLY-BY-GLASS. (16) Flight control system where fiber optics carry the signal.

FLY-BY-LIGHT. (4,16) Flight control system where fiber optics carry the signal.

FLY-BY-WIRE. (4,16) Flight concrol system with electric signaling.

* FORWARD RECOVERY. (9) Restoration of the system to a consistent state by
compensating for inconsistencies found in the current state so that the system
may continue processing.

FOURIER TRANSFORM. (12) A mathematical method for deriving the frequency
spectrum from a time dependent function.

FRAME. (18) A formatted block of data words or bits that is used to construct
messages.

FUNCTIONAL PARTITIONING. (18) The partitioning of system functions by placing
each group of users, which share a common function, on different data buses.

GATEWAY. (18) A bus user that is connected to more than one bus for the purpose
of transferring bus messages from one bus to another, where the buses do not
follow the same protocol.

GENERAL AVIATION AIRCRAFT. (18) The non-air transport civil aircraft.

GENERATOR POLYNOMIAL. (18) The polynomial code that is used to generate the
remainder in the division of the CRC check.

GIGABIT. (16) One billion bits.

GLASS COCKPIT. (9) Advanced state-of-the-art electronic displays utilizing flat
panel and/or cathode ray tube display technology for cockpit instrumentation.
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GLOBAL STATE. (18) A state that represents the condition of the entire network
being modeled, including senders, receivers, and the communication link.

GROUND. (11) A generic term having multiple meanings and indicating a circuit
return path or a voltage reference: not "zero" voltage reference. Four hundred
millivolts of noise voltage is common on "quiet" grounds. There are several
types of returns and references.

GROUND EFFECT. (4) Increase in aircraft lift when operating near the ground.

HALF-DUPLEX. t18) Bidirectional communication between two entities on a single
channel by each having a turn to control the channel.

HAMMING CODE. (18) An error detection and correction code based on the Hamming
distance.

HAMMING DISTANCE. (18) The number of bit positions in which two binary words
differ.
HANDSHAKING. (18) The reciprocal responses given by two electronic systems to

sequence the steps of a transfer of data between them.

HARD FAILURE. (12) A failure that requires a reset of the equipment.

HARDWARE. (17) The physical components of a computer.

HARDWARE-IN-THE-LOOP SIMULATION. (18) A partial simulation of a system; part
of the actual system is used in the simulation.

HAZARD FUNCTION. (8) The conditional probability that a fault is exposed in
the interval t to At given that the fault did not occur prior to time t.

IMMUNITY. (11) Capability of a circuit or unit to operate within performance
specification in a specified electromagnetic interference environment.

INDIRECT EFFECTS. (13) Voltage and/or current transients induced by lightning
in aircraft electrical wiring which can produce upset and/or damage to com-
ponents within electrical/electronic systems.

INDUCED VOLTAGES. (13) A voltage produced around a closed path or circuit by
changing magnetic or electric fields or structural IR voltages.

INITIALIZATION. (6) Setting the beginning parameters and values on system power-
up. For redundant systems this includes setting the initial configuration of
the system.

INTERNAL ENVIRONMENT. (13) The fields and structural IR potentials produced by
the external environment, along with the voltages and currents induced by then.

INTERRUPT VECTOR. (18) The address that points to the beginning of the service

routine for an interrupt. 1
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INTERRUPT VECTOR TABLE. (18) The table of interrupt vectors for all interrupts
serviced by a system.

ISOLATION. (11) Electrical separation and insulation of circuits from ground
and other circuits or arrangement of parts to provide protection and prevention
of uncontrolled electrical contact.

JOULE. (12) A unit of energy equal to one watt-second.

JUMPER/STRAP. (11) A short wire, strip, strap, or braid conductor installed to
make a safety ground connection, to dissipate electrostatic charge, or establish
continuity around a break in a circuit.

KILOBYTE. (16) One thousand bytes.

LABELED ADDRESSING. (6) The system of identifying message recipients based on
labels. This is in contrast to destination terminal addresses.

LATENT FAULT. (10) A fault which has not yet produced a malfunction. (In the
context of the single-fault model, benign and latent faults are equivalent.)

LIGHTNING FLASH. (13) The total lightning event in which charge is transferred
from one charge center to another. It may occur within a cloud, between clouds,
or between a cloud and the ground. It can consist of one or more strokes, plus
intermediate or continuing currents.

LIGHTNING LEADER STROKE. (13) The leader forms an ionized path for charge to
be channeled towards the opposite charge center. The stepped leader travels in
a series of short, luminous steps prior to the first return stroke. The dart
leader reionizes the return stroke path in one luminous step prior to each
subsequent return stroke in the lightning strike.

LIGHTNING RETURN STROKE. (13) A lightning current surge that occurs when the
lightning leader makes contact with the ground or an opposite charge center.

LIGHTNING STRIKE. (13) Any attachment of the lightning flash to the aircraft.

LIGHTNING STRIKE ZONES. (13) Locations on the aircraft where the lightning
flash will attach or where substantial amounts of electrical current may be con-
ducted between attachment points. The location of these zones on any aircraft
is dependent on the aircraft's geometry and operational factors and often varies
from one aircraft to another.

LIMITING. VOLTAGE/CURRENT. (11) Semiconductor components, diodes, Transorb, or
filter designed to clip and shunt to ground an applied transient or steadystate
voltage. Used to protect against noise frequencies, faults, lightning, and
inductive switching transients.

LINE REPLACEABLE UNIT. (18) An electronics unit that is made to be replaced on
the flight line, as opposed to one that requires the aircraft be taken to the
shop for repair.
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LINEAR BUS. (18) A bus where users are connected to the medium; one on each
end, with the rest connected in between.

LOW-PASS FILTER. (12) An electrical circuit which allows the passage of low
frequencies and prevents the passage of high frequencies.

MAGNETIC FIELD. (11) A radiated, low-impedance field having lines of "flux" or
magnetomotive force associated with an electrical current.

MALFUNCTION. (11) Failure or degradation in performance that compromises flight
safety.

MANCHESTER II MODULATION. (18) A non-return to zero, bipolar modulation of a
voltage that encodes bits based on the zero-crossing direction of the signal.

MEAN AERODYNAMIC CHORD (also mean chord). (4) The chord of an airfoil whose
length is equal to the area of the airfoil section divided by the span.

MEAN FAILURE RATE. (10) A measure of survivability defined as the reciprocal
of the mean time to system failure.

MESSAGE STRUCTURE. (6) The organization of both protocol and data information

in a message.

METRIC. (17) A measure.

MICRON. (16) One-millionth of a meter.

MISSED ALARM. (7) The failure of a fault detection monitor or algorithm to
detect a fault when there is a sensor fault.

MODELING. (18) Creating a system of mathematical equations that formulate all
the significant behavior of a system.

MODULE. (17) A unit of code which implements a function.

MONITORABILITY. (6) The capacity of the protocol to be viewed passively to
allow observation of the dynamics of the protocol.

MONOTONIC FUNCTION. (17) A function in which a certain change in the measure
always represents a certain change in the property being measured, where either
change is simply an increase or decrease in magnitude.

MULTIPLE BURST. (13) A randomly spaced series of bursts of short duration, low
amplitude current pulses, with each pulse characterized by rapidly changing
currents. These bursts may result from lightning leader progression or branching
and may be accompanied by or superimposed on stroke or continuing currents. The
multiple bursts appear to be most intense at the time of initial leader
attachment to the aircraft.

MULTIPLE STRIKE. (13) Two or more lightning strikes during a single flight.
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MULTIPLE STROKE. (13) Two or more return strokes occurring during a single
lightning flash.

MULTIPLE TRIP MONITOR..-(7) A fault detection algorithm which declares a fault
after the sensor output has exceeded a predefined threshold N times.

MULTIVERSION PROGRAMMING. (18) N-version programming.

N-VERSION PROGRAMMING. (18) The independent coding of a number, N, of redundant
computer programs that are run concurrently for the purpose of comparing their
outputs.

NANOSECOND. (16) One-billionth of a second.

NEGATIVELY STABILIZED. (4) Aircraft design in which the point of effective lift
is aft of the center of gravity.

NETWORK CONTROL STRATEGY. (6) The solution proposed by the designer in address-
ing his specific problem (design flexibility).

NOISE. (11) Conducted or radiated emission causing circuit upset, performance
disorder, or undesired sound.

NUMERICAL APERTURE. (6) The angle of acceptance of light from a light source
for a given fiber optic cable.

OBJECT CODE. (17) The translation of source code that is loaded into a computer.

OBSERVER. (7) An algorithm which models physical relationships between sensor
data and uses the data to provide fault detection for one or more sensors. This
is also known as a Luenberger observer or a signal blender.

OPERANDS. (17) The variables or constants on which the operators act.

OPERATORS. (17) Symbols which affect the value or ordering of operands.

OPTIMIZING COMPILER. (17) A computer program which, while translating source
code into object code, removes inefficiencies from the code.

OVERHEAD. (18) The message timing gaps, control bits, and error detection bits
added to some data to satisfy the data bus protocol.

PARAMETERIZATION CAPABILITY. (61 A measure of how well the attributes of the
protocol can be described by parameters.

PARI_. (18) An error detection bit added to a data word based on whether the
number of "one" bits is even or odd.

PARTITIONED. (18) Colocated hardware or software functions that are designed
so that 'adverse interactions between them cannot occur.
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PEAK RATE OF RISE. (13) The maximum instantaneous slope of the waveform as it
rises to its maximum value. Mathematically, the peak rate of rise of a function,
i(t), may be expressed as the maximum of d[i(t)]/dt.

PETRI MET. (18) A state analysis diagram that tracks the status of the state
transition conditions of a state machine.

PIN LEVEL TEST. (12) An EMC test in which voltage or current is applied directly

to a conductor at a connector pin.

POINT-MASS SIMULATION. (4) Same as state variables airplane model (q.v.).

POLLING. (18) A method whereby a CPU monitors the status of a peripheral by
periodically reading its status signals.

POLYNOMIAL CODE. (18) A sequence of bits that represents the coefficients of
each term in a polynomial.

POSITIVELY STABILIZED AIRCRAFT. (4) Aircraft design in which the effective
point of lift is forward of the center of gravity.

PRECIPITATION STATIC (P-static). (11) Electrostatic discharge, corona, arcing,
and streamering, steady state or impulsive, causing circuit upset, receiver
noise or component damage.

PREDICATE/TRANSITION NETWORK. (4) A bipartite graph (a type of linear graph)
to model concurrency between redundant concurrent events. Basically a modified
generalized petri net.

PRIMARY STATION. (18) An intelligent HDLC protocol user, usually used to manage
the access of other bus users to the bus.

PROGRAM. (17) A detailed set of instructions for accomplishing some purpose.

PROPAGATION DELAY. (18) The time it takes an electrical signal to travel from
its source to its destination.

PROTOCOL. (18) The set of rules by which all bus users must abide to access
the bus and ensure its specified operation.

Q. (12) The quality factor of a resonant circuit which is the ratio of the
energy stored to the power dissipated per cycle.

QUADRUPLEX ARCHITECTURE. (4) The use of four separate lanes (or channels) of
computer redundancy. Each lane can fail separately providing a fail-operational
capability for the digital flight-control system.

QUALITY MEASURE. (17) A repeatable, monotonic relationship relating measures
of objects (a set of numbers) to subjective qualities.

RADIATED EMISSION (RE). (11) Electromagnetic energy transmitted and propagated

in space usually considered as audio frequency or radio frequency noise.
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. RADIO FREQUENCY (RF). (11) Frequencies in the electromagnetic spectrum used
for radio communications extending from kilohertz to gigahertz.

RADIO FREQUENCY INTERFERENCE (RFI). (11) Electromagnetic interference in the
radio frequency range.

RECONFIGURATION. (6) The capacity of a system to rearrange or reconnect the
system elements or functions.

RECONFIGURATION. (18) The process of a system reassigning which hardware
pqrforms a particular function.

RECOVERY BLOCK. (18) A block of code executed upon detection of a fault to
recover from the erroneous condition that results.

RECOVERY CACHE. (9) The location used to preserve input values until the outputs
resulting from them have been accepted.

REDUNDANCY MANAGEMENT. (7) The computer processing which is needed to implement
fault detection and isolation algorithms.

REFERENCE. (11) 1. Structure, for electronics, shields, power. 2. A grid of
wires, solid sheet, or foil. 3. A wire from circuit to grounding block or case.
4. A wire from circuit to structure. 5. Shield tie. 6. Earth.

REGISTER. (18) A single word of RAM located within an IC controller that is
used for transferring data and control information.

RELAXED STATIC STABILITY AIRCRAFT. (4) An aircraft whose center of gravity is
behind the wing's point of effective lift.

RELIABILITY ANALYSIS. (4) A means of determining the probability of failure in
a system. Military flight-critical systems typically are required to have
reliability levels of 10-1 to 10., whereas civil flight-critical systems have
reliability levels of 10'- or less.

REMOTE TERMINAL. (18) The BIU portion of a MIL-STD-1553 bus user.

RESONANCE. (12) Resonance occurs in an electrical circuit when the energy stored
in the inductance is equal to the energy stored in the capacitance.

RETURN. (11) 1. Structure, for power, fault, and "discrete" circuits. 2. A
grid of wires, solid sheet, or foil. 3. A wire from circuit load back to source
or to case. 4. Circuit card "ground plane," also a reference and shield.

RETURN STROKE. (13) See lightning return stroke.

REVERSION MODE. (7) The high level of redundancy in a system having different
redundancy requirements for some sensors. Critical sensors may have a high

* level of redundancy while other sensors have low levels.
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RING BUS. (18) A bus where users are connected only to the two adjacent users
in a continuous ring; each connected to the next and the last one connected to
the first one.

RISE-TIME. (12) The time required for a voltage pulse to reach a predefined
magnitude from a given level.

ROBUSTNESS. (9) The ability of the code to perform despite some violation of
the assumptions in its specifications usually via substitution of an alternate
value and continuation of execution if a software fault is detected.

ROLLBACK. (9) Retrying the calculation in the event that a failure is detected,
under the assumption that some external condition may have changed thereby
resolving the anomaly.

SEALANT. (11) An applied substance enclosing and protecting the integrity of
a joint, fastener, or electrical bond from moisture, contaminants, oxidation,
and acid or alkaline corrosion.

SECONDARy STATION. (18) A simple HDLC protocol user.

SENSOR. (7) An instrument which measures a particular physical parameter. The
data output may be digital or analog and is utilized by the flight computer.

SENSOR. (18) Any transducer that converts the measurement of a physical quantity
to an electrical signal.

SEQUENTIAL LIKELIHOOD RATIO TEST. (7) A fault detection algorithm which is
based on two hypothesized density functions of no fault or sensor fault.

SEQUENTIAL PROBABILITY RATIO TEST. 17) See sequential likelihood ratio test.

SERIAL DATA BUS. (18) A data bus capable of sending only one bit at a time, in
series.

SERVICE SPECIFICATION. (18) The specification of the service provided by a
protocol layer.

SHIELD. (11) A conductive material, opaque to electromagnetic energy, for
confining or repelling electromagnetic fields. A structure, skin panel, case,
cover, liner, foil, coating, braid, or cable-way that reduces electric and
magnetic fields into or out of circuits or prevents accidental contact with
hazardous voltages.

SHIELD EFFECTIVENESS (5E). (11) The ability of a shield to reject electro-
magnetic fields. A measure of attenuation in field strength at a point in space
caused by the insertion of a shield between the source and the point.

MHIELDING. (12) Any metallic structure such as the aircraft fuselage or the
woven braid on a cable that provides protection against electromagnetic fields.
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* SIGNAL RETURN. (11) A wire conductor between a load and the signal or driving
source. Structure can be a signal and power return. Commonly, it is the low
voltage side of the closed loop energy transfer circuit.

SIMULATION. (18) An approximated representation of the behavior of a system
with a similar system.

SINGLE-ENDED CIRCUIT. (11) A circuit with source and load ends grounded to case
and structure and using structure as return.

SINGLE-POINT FAILURE. (18) A failure of a component that, by itself, causes
the failure of the system in which it is contained.

SINUSOID. (12) A wave form that follows the mathematical values of a sine
function.

SOFT FAILURE. (12) A failure which causes an alteration of data or missing
data.

SOFTWARE. (17) Computer programs and the documentation associated with the
programs.

SOFTWARE METRIC. (17) A measure of software objects.

SOFTWARE QUALITY FACTOR. (17) Any software attribute that contributes either
directly or indirectly, positively or negatively, toward the objectives for the
system in which the software resides.

SOFTWARE QUALITY METRIC. (17) (1) A measure that relates measures of the
software objects (the symbols) to the software qualities (quality factors).
(2) The measure of a software quality factor.

SOURCE CODE. (17) Code tilat can be read by people.

SPECIAL CONDITION. (18) A regulatory document that adds to, or otherwise alters,
the airworthiness standards for particular aircraft.

STATE-VARIABLE AIRPLANE MODEL (also point-mass model). (4) Fixed aerodynamic
variables are used in the solution of the equations of motion of the model
instead of using look-up tables in which each derivative varies with airspeed,
altitude, etc. The model performance is only accurate at or near the point in
the flight envelope for which the variables are chc en.

STATIC MARGIN. (4) The degree of instability in a relaxed statically stable
airplane,

STATION. (18) Bus user.

STATIONARY BUS CONTROL. (18) Bus control that is continually performed by a
single bus controller, or by one of its backups.
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STATUS REGISTER. (18) A register in an IC controller that holds the status of
the state of certain controller functions.

STROUD NUMBER. (17) The total number of elementary mental discriminations that
a person makes per second.

STRUCTURAL IR VOLTAGE. (13) The portion of the induced voltage resulting from
the product of the distributed lightning current, I, flowing through the
resistance, R, of the aircraft skin or structure.

STRUCTURE. (11) Basic members, supports, spars, stanchions, housing, skin
panels, or coverings that may or may not provide conductive return paths and
shields for electrical/electronic circuits.

STUB. (18) The short length of cable used to attach a single LRU to a data bus.

SUBROUTINE. (17) A self-contained body of code which can be called by other
routines to perform a function.

SUPER-DIAGNOSTIC FILTER. (7) An algorithm which provides all the capabilities
of a diagnostic filter. Additionally, it can isolate a specific faulted sensor.
At the current time, this is the most complex technique used to implement
analytical redundancy.

SUSCEPTIBILITY. (11) Upset behavior or characteristic response of an equipment
when subjected to specified electromagnetic energy. Identified with the point,
threshold, or onset of operation outside of performance limits. Conducted
Susceptibility (CS) applies to energy on interface conductors; Radiated
Susceptibility (RS) to radiated fields.

SWEPT STROKE. (13) A series of successive attachments due to sweeping of the
flash across the surface of the airplane by the motion of the airplane.

SYNCHRONOUS MESSAGES. (6) Messages transmitted at a known a priori sequence
and time or time interval.

SYSTEM EXPOSURE TIME. (4) The period during which a system may fail. This
period extends from the last verified proper functioning to the completion of
the next required performance.

SYSTEM FUNCTIONAL UPSET. (13) Impairment of system operation, whether permanent
or momentary (e.g., a change of digital or analog state) which may or may not
require manual reset.

SYSTEM INTEGRATOR. (18) The developer who has the responsibility to integrate

the various subsystems into a working system.

SYSTEM INTEGRITY. (6) The degree to which a system is dependable.

SYSTEM RELIABILITY. (5) The probability of performing a given function from
the some initial time, t-O, to time t.
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TESTABILITY. (6) A measure of how well the protocol supports completeness of
testing and the protocol's ability to produce repeatable or predictable results.

THRESHOLD, NOISE. (11) The lowest electromagnetic interference signal level
that produces onset of susceptibility.

THROUGHPUT. (6) The productivity of a data processing system as expressed in
computing work per minute or hour.

THYRISTORS. (16) Solid-state devices that convert alternating current to direct
current.

TIME CONSTANT. (4) Time required to double the amplitude of the divergent real
root in the pitch axis of the aircraft model.

TOKEN PASSING PROTOCOL. (18) A protocol that limits bus access to the user that
has just received the token word.

TRANSIENT CONTROL LEVEL. (13) The maximum allowable level of transients appear-
ing at the systems interfaces as a result of the defined external environment.

TRANSPARENT RECOVERY. (4) Correcting a soft fault without interrupting the
system's intended performance.

TRIBOELECTRIC CHARGING. (13) Static electricity produced on a structure from
* the effects of friction.

UNACCEPTABLE RESPONSE. (11) Upset, degradation of performance, or failure, not
designated a malfunction, but is detrimental or compromising to cost, schedule,
comfort, or workload.

UNBALANCED CONFIGURATION. (18) A bus using the HDLC protocol that connects one
primary and one or more secondary stations.

UNDESIRABLE RESPONSE. (11) Change of performance and output, not designated a
malfunction or safety hazard, that is evaluated as acceptable as is because of
minimum nuisance effects and excessive cost burdens to correct.

UNIDIRECTIONAL DATA BUS. (18) A data bus with only one user that is capable of
transmitting.

UPSET. (11) Temporary interruption of performance that is self-correcting or
reversible by manual or automatic process.

UPSET. (12) A condition in which the state of a digital device is uninten-
tionally altered, but may be! restored by automatic means or by operator
intervention.

UPSET. (13) See system functional upset.

VALIDATION. (4,11) Demonstration and authentication that a final product
operates in all modes and performs consistently and successfully under all Actual
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operational and environmental conditions founded upon conformance to the
applicable specifications.

VALIDATION. (18) The process of evaluating whether or not items, processes,
services, or documents accomplish their intended purpose in their operating
environment.

VERIFICATION. (4,11) Demonstration by similarity, previous in-service
experience, analysis, measurement, or operation that the performance,
characteristics, or parameters of equipment and parts demonstrate accuracy, show
the quality of being repeatable, and meet or are acceptable under applicable
specifications.

VERIFICATION. (18) The act of reviewing, inspecting, testing, checking,
auditing, or otherwise establishing and documenting whether or not items,
processes, services, or documents conform to specified requirements.

VOTING PROCEDURE. (8) An algorithm included in fault tolerant software which
uses the consensus recovery block method. It compares outputs of the n
independent versions and determines which outputs are correct by identifying
agreements among two or more versions.

WELL-BEHAVED FUNCTION. (17) A smooth mathematical relationship.
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ACRONYMS AND ABBREVIATIONS

A (17) Language Level
Am (6) Micrometer
As (18) Microsecond
Yj (17) Vocabulary of a Program
U, (17) Number of Unique Operators
r," (17) Minimum Number of Unique Operators
12 (17) Number of Unique Operands
f2 (17) Number of Different Input and Output Parameters
OM (6) Phase Modulation
i/E 0 (17) Average number of discriminations a person is

likely to rake for each bug introduced into the
code.

3-D (16) Three-Dimensional

A/C (11) Aircraft
A/L (3) Approach/Land
AAES (15) Advanced Aircraft Electrical System
ac I3,6,12,15) Alternating Current
AC (3,5,14,17,18) Advisory Circular
ACAP (13) Advanced Composite Airframe Program
ACARS (11,12) ARC Communications Addressing and Reporting System
ACES (13) Applied Computational Electromagnetics Society
ACK (18) Acknowledge
AGO (18) Aircraft Certification Office
ACS (16) Automatic Control System
ACT (11,12) Active Controls Technology
ACT (17) Analysis of Complexity Tool
ADC (11,12) Air Data Computer
ADF (11,12) Automatic Direction Finder
ADI (3) Automatic Direction Indicator
AE (6) Avionics Equipment
AE4L (5,13) SAE Subcommittee (Lightning)
AEEC (18) Airlines Electronic Engineering Committee
AEHP (13) Atmospheric Electricity Hazards Protection
AERA (16) Automated En Route Air Traffic Control System
AES-S (6) Aerospace and Electronic Systems Society
AF (11,12) Audio Frequency
AFBW (4) Augmented Fly-By-Wire
AFCS (11,12) Automatic Flight Control System
AFFDL (7,8,13) Air Force Flight Dynamics Laboratory
AFM (16) Advanced Fuel Management
AFSC (18) Air Force Systems Command
AFWAL (6,13) Air Force Wright Aeronautical Laboratory
AGARD (8) Advisory Group for Aerospace Research and

Development
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AHRS (6) Attitude Heading Reference System
AI (16) Artificial Intelligence
AIAA (5,6,9,15,18) American Institute of Aeronautics and Astronautics
AIM (18) Advanced Integrated MUX
AIR (18) Aerospace Information Report
AIRLAB (5,18) Avionics Integration Research Laboratory
AK (7) Altitude Kinematics
ALCM (13) Air Launched Cruise Missile
ALU (3,5,10) Arithmetic Logic Unit
AM (5) Amplitude Modulated
Aýi (6,14) Amplitude Modulation
AMSC (5) Document number prefix used by the Department of

Defense
ANSI (11,12) American National Standards Institute
AOA (4) Angle of Attack
AP (18) Application Processor
APU (11,12,15) Auxiliary Power Unit
AR (7) Analytical Redundancy
ARC (11,12) Aeronautical Radio, Incorporated
ARIES (3) Automated Reliability Interactive Estimation System
ARINC (3,6,18) Aeronautical Radio, Incorporated
ARP (17,18) Aerospace Recommended Practice
ARTERI (15) Analytical Redundancy Technology for Engine

Reliability Improvement
ASCB (6,18) Avionics Standard Communications Bus
ASDS (11,121 Airport Surface Detection System
ASEE (5,15) American Society of Electrical Engineers
ASME (5) American Society of Mechanical Engineers
ATCRBS (11,12,14) Air Traffic Control Radar Beacon System
ATF (16) Advanced Tactical Fighter
ATI (16) Access Time Interval
ATTR (5) Attribute
AWACS (14) Airborne Warning and Control System

A (17) Number of Bugs (Estimated)
B-dot (13) Derivative of the magnetic field with respect to

time
B-GLOSS (5) Gate Logic Software Simulator developed by Bendix
BAC (18) Balanced Asynchronous Configuration
BAT (17) Battlemap Analysis Tool
BB (11,12) Broadband
BC (18) Bus Controller
BCAC (18) Boeing Commercial Airplane Company
BCD (18) Binary Coded Decimal
BCI (12) Bulk Cable Injection
BFCS (18) Beacon Frame Check Sequence
BGU (10) Bus Guardian Unit
BIR (6) Benchmark Information Rate
BIT (6,15,18) Built-In Test
BITE (6,11,12) Built-In Test Equipment
BIU (6,18) Bus Interface Unit
BNR (18) Binary 0
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BOCP (18) Bit-Oriented Communications Protocol
BP (18) Basic Protocol
bps (6) bits per second
BUSY (18) Destination Busy
BW (11,12) Bandwidth

C (7) Comparator
C/I (5) Communicator Interstage
CA (18) Criticality Analysis
CAA (14) Civil Aviation Authority
CAD (5) Computer Aided Design
CAP (5) Collins Application Processor
CAPS (3) Computer Aided Production Simulator
CARE (3,5) Computer Aided Reliability Evaluator
CARSRA (3,7) Computer-Aided Redundant System Reliability

Analysis
CAS (11,12) Criticality Advisory System
CAST (3) Complementary Analytic Simulative Technique
CBD (5) Commerce Business Daily
CCITT (6) Consultative Committee for International Telephone

and Telegraph
CD (6) Collision Detection
cdf (8) Cumulative Density Function
CDU (11,12) Control Display Unit
CE (11,12) Conducted Emission
CE (17,18) Certification Engineer
CFR (17) Code of Federal Regulations
CM (11,12) Common Mode
CMC (18) Current Mode Coupler
,MOS (5,12) Complimentary Metal-Oxide Semiconductor
CONUS (14) Contiguous United States
CP (18) Combined Protocol
CPA (5) Central Processor - A
CPU (5,10,18) Central Processing UriL
CR (5) Contractor Report
CR (6) Command Response
CR/LF (17) Carriage Return/Line Feed
CRC (6,18) Cyclic Redundancy Check
CRMI (2) Computer Resource Management, Incorporated
CRT (11,12,16) Cathode Ray Tube
CS (11,12) Conducted Susceptibility
CSC (9) Computer Software Component
CSCI (9,17) Computer Software Configuration Item
CSDB (18) Commercial Standard Data Bus
CSDL (5,10,15) Charles Stark Draper Laboratories
CSMA (6,16,18) Carrier Sensed Multiple Access
CSMA/CD (6) Carrier Sense Multiple Access/Collision Detection
CT (2,6) Technical Center (designation used in FAA report

numbering scheme)
CTA (3) CAPS Test Adapter
CTA (5) Collins Test Adaptor
CTS (18) Clear To Send
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CW (13) Continuous Wave

D (17) Program Difficulty
DADC (6) Digital Air Data Computer
DARPA (16) Defense Advanced Research Projects Agency
DATAC (6,18) Digital Autonomous Terminal Access Communication
dB (6,12) Decibel
dBi (14) Decibels with respect to one milliampere
dBm (6) Decibels with respect to one milliwatt
dc (6,12,15) Direct Current
DC (18) Display Computer
DE (5) Diagnostic Emulation
DEFN (5) Definition
DET (18) Driver Enable Timer
DEV (5) Development
DF (7) Diagnostic Filter
DFC (7) Digital Flight Control
DFCS (3,4,7,16) Digital Flight Control System
DFDAU (11,12) Digital Flight Data Acquisition Unit
DFDR (11,12) Digital Flight Data Recorder
DGAC (14) Directorate Generale Aviation Civile
DISAC (15) Digital Integrated Servo Actuator Controller
DITS (6,11,12,18) Digital Information Transfer System
DM (11) Differential Mode
DM (6) Delay Modulation
DMA (5,6) Direct Memory Access
DMA (18) Direct Memory Addressing
DME (11,12,18) Distance Measuring Equipment
DNA (13) Defense Nuclear Agency
DOD (5,8,12,14,16) Department of Defense
DOE (13) Department of Energy
DOT (2,3,6,7,8) Department of Transportation
DR (17) Direct Ratio (Average)
DRB (9) Distributed Recovery Block
DS (17) Direct Score
DSP (3) Discrete Switch Panel
DTSA (18) Dynamic Time Slot Allocation

E (17) Programming Effort
E-dot (13) Derivative of the electric field with respect to

time
E-FIELD (11,12) Electric Field
E/E (11,12) Electrical/Electronic
E3 (11,12) Electromagnetic Environmental Effects
EADI (11,12) Electronic Attitude Director Indicator
ECAC (11,12,14) Electromagnetic Compatibility Analysis Center
ECM (14) Electronic Counter Measures
ECS (11,12) Environmental Control System
EEC (5,11,12,18) Electronic Engine Control
EED (11,12) Electro-Explosive Device
EES (18) Electromagnetic Emission and Susceptibility
EFID (18) Electronic Flight Instrument Display
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EFIS (11,12,18) Electronic Flight Instrument System
EFMA (3) Executive Failure My A
EFMB (3) Executive Failure My B
EFOA (3) Executive Failure Other A
EPOB (3) Executive Failure Other B
EFW (3) Executive Failure Word
EGT (11,12) Exhaust Gas Temperature
EHSI (11,12) Electronic Horizontal Situation Indicator
EIA (18) Electronic Industries Association
EICAS (11,12) Engine Indication and Crew Alerting System
EIU (16) Electronic Interface Unit
EM (5,11,12,13) Electromagnetic
EMA (15) Electromechanical Actuator

" EMAS (2,15) Electromechanical Actuator System
EMC (6,11,12,13,14) Electromagnetic Compatibility
EMCadt" (12) Electromagnetic Computer aided design
EME (14) Electromagnetic Environment
EME (11,12) Electromagnetic Effects
EMI (5,6,11,12,13,15,16) Electromagnetic Interference
EMIC (11,12) Electromagnetic Interference/Compatibility
EMP (11,12,13) Electromagnetic Pulse
EMR (5,14) Electromagnetic Radiation
EMUX {6) Electrical Multiplex
ENRZ (6) Enhanced Non-Return to Zero
EOF (17) End of File
EPR (11,12,15) Engine Pressure Ratio
EPROM (16) Erasable Programmable Read-Only Memory
ESD (11,12) Electrostatic Discharge
ESE (11,12) Electric (field) Shield Effectiveness
ESS (5,9) Electronic Switching System
ETDL (13) Equipment Transient Design Level
EUROCAE (14) European Organization for Civil Aviation

Electronics
EXCHNG (5) Exchange
EXP (5) Experiment

F/FA (18) Fault and Failure Analysis
FAA (ALL) Federal Aviation Administration
FADEC (6,15,16) Full Authority Digital Engine Controller
FAFTEEC (16) Full Authority Fault Tolerant Electronic Engine

Control
FAR (3,4,6,16) Federal Acquisition Regulation
FAR (17,18) Federal Aviation Regulation
FBL (15,16) Fly-By-Light
FBW (4,7,16) Fly-By-Wire
FCC (3,4,5,6,10,11,12,15,18) Flight Control Computer
FCR (5) Fault Containment Regions
FCS (4,5,10,16) Flight Control System
FCS (18) Frame Check Sequence
FD (7) Fault Detection
FDEP (11,12) Flight Data Entry Panel
FDFM (15) Fault Detection and Failure Management
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FET (5,16) Field Effect Transistor
F1 (5) Fault Insertion Circuitry
FI (7) Fault Isolation
FIAT (5) Fault Injection Automated Testing
FICA (15) Failure Indication and Corrective Action
FIIS (5,10) Fault Insertion and Instrumentation System
FIM (5) Fault Injection Manager
FIRE (5) Fault Injection Receptor
FM (5) Frequency Modulated
FM (6,14) Frequency Modulation
FMC (11,12) Flight Management Computer
FMEA (3,9,18) Failure Mode and Effect Analysis
FMECA (5,15) Failure Modes and Effects Criticality Analysis
FMECA (18) Failure Mode, Effects, and Criticality Analysis
FP (17) Function Point
FSM (18) Finite State Machine
ft (14) feet
FT (5) Fault Tolerant
FTA (18) Fault Tree Analysis
FTC (5) Fault Tree Compiler
FTMP (5,10,18) Fault-Tolerant Multiprocessor
FTP (5) Fault Tolerant Processor

G/E (13) Graphite Epoxy
GA (18) General Aviation
GaAs (6,16) Gallium Arsenide
GAMA (6,18) General Aviation Manufacturers Association
GCR (6) Group Code Recording
GE (5) General Electric
GEMACS (13) General Electromagnetic Model for the Analysis of

Complex Systems
GEN (5) Generation
GGLOSS (5) Generalized Gate-Level Logic System Simulator
GLOSS (5) Gate Logic Software Simulator
GNC (16) Guidance, Navigation, and Control
GPC (5) General Purpose Computer
GPS (11,12) Global-Positioning-System
GPWS (11,12) Ground Proximity Warning System
Gr/Ep (11,12) Graphite/Epoxy
GS (10) Glideslope

H-FIELD (11,12) Magnetic Field
HI (11,12) Fan Speed
HA (18) Hazard Analysis
HARP (5,18) Hybrid Automated Reliability Predictor
HDBK (5) Handbook
HDLC (6,18) High-Level Data Link Control
HERF 15,14,16,18) High-Energy Radio Frequency
HF (11,12,13,14) High-Frequency
HIRF (15,18) High-Intensity Radiated Fields
HOL (17) High Order Language
HSI (3) Horizontal Situation Indicator
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HSRB (6,18) High-Speed Ring Bus

HVDC (15) High Voltage dc
HW (18) Hardware
Hz (3,15,18) Hertz

I (13) Current
I (17) Intelligence Content
I-dot (13) Derivative of the current with respect to time
I/O (5,10,15,18) Input/Output
IAA (3) Integrated Assurance Assessment
IAAC (11,12) Integrated Application of Active Controls

Technology (to an Advanced Subsonic Transport
Project)

IACS (18) Integrated Avionic Computer System
IBM (5) International Business Machines
IC (3,18) Integrated Circuit

.ICAO (14) International Civil Aviation Organization
ICIS (5) Intercomputer Interface Sequencer
ICS (5) Intercomputer Sequencer
ID (5) Identification
ID (18) Identifier
IDG (11,12) Integrated Drive Generator
IEEE (5,6,9,17,18) Institute of Electrical and Electronics Engineers,

Incorporated
IFC (17) Information Flow Complexity
IFCS (18) Information Frame Check Sequence
IFF (14) Identification - Friend or Foe
IGGLOSS (5) Gate Logic Software Simulator (improved version

developed at NASA Langley)
ILS (3,11,12) Instrument Landing System
IMR (18) Interrupt Mask Register
INS (6,11,12) Inertial Navigation System Institute
IOPA (5) Input/Output Processor - Channel A
lOS (5) Input/Output Subsystem
IRS (11,12) Inertial Reference System
ISO (17,18) International Standards Organization
ITT (16) (Consultative Committee for) International

Telegraphy and Telephony
IV&V (9) Independent Verification and Validation
IVT (18) Interrupt Vector Table

JPL (5) Jet Propulsion Laboratories

K (6) Thousand
kA (13,16) Kiloampere
kHz (5,6,12,14) Kilohertz
km (6) kilometer

L (17) Program Level
, (17) Estimated Program Level

LAN (5) Local Area Network
LaRC (5) Langley Research Center
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LCC (11,12) Life Cycle Cost
LCD (16) Liquid Crystal Display
LED (6) Light Emitting Diode
LF (13) Low Frequency
LOC (11,12) Localizer
LPN (13) Lumped Parameter Network
LRC (6) Longitudinal Redundancy Check
LRRA (11,12) Low Range Radio Altimeter
LRU (5,6,11,12,13,18) Line Replaceable Unit
LSB (6,18) Least Significant Bit
LSI (5,18) Large Scale Integration
LTPB (6,18) Linear Token Passing Bus
LTRI (13) Lightning and Transients Research Institute
LVDT (3) Linear Voltage Differential Transducer
LVDT (15) Linear Variable Differential Transformers

m (6) meter
m (18) Original Address of Last Transmission
M (5) Mutual (when used with RLC)
M (6) Million
mA (3) Milliampere
MAADS (6) Multibus Avionic Architecture Design Study
MAC (4) Mean Aerodynamic Chord
MAFT (16) Multicomputer Architecture for Fault Tolerance
Mbps (6,16) Million bytes per second
MC (18) Mode Code
MCDP (11,12) Maintenance Control and Display Panel
MCFCS (18) Message Control Frame Check Sequence
MCP (11,12) Mode Control Panel
MDICU (3) Modular Digital Interface Control Unit
MDICU (4,5) Modular Digital Interface Conversion Unit
MDT (6) Mean Down Time
MFCS (18) Message Frame Check Sequence
Mflops (16) Million floating-point operations per second
MFM (6) Modified-Frequency Modulation
MFR (10) Mean Failure Rate
MHz (5,6,12,14,18) Megahertz
mil (11,12) One thousandths of an inch (0.001)
MIL (5) Military
MIL-HDBK (18) Military Handbook
MIL-STD (6,18) Military Standard
ML (18) Message Length
MLE (8) Maximum Likelihood Estimates
MLS (11,12) Microwave Landing System
MOS (5) Metal-Oxide Semiconductor
MPP (16) Massively Parallel Processor
MPSC (18) Multi-Protocol Serial Controller
MPX (5) Multiplex
ms (6,10,18) Millisecond
MSB (6,18) Most Significant Bit
MSE (11,12) Magnetic (Field) Shielding Effectiveness
MSI (5) Medium Scale Integration
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MT (18) Message Time
MTBCF (6) Mean Time Between Critical Failures
MTBF (9,18) Mean Time Between Failures
MTTF (8,10) Mean Time to Failure
MTTR (6,18) Mean Time To Repair
Mux (5) Multiplexed
MUX (4,18) Multiplexer

n (18) Address of User Performing Computation
N (17) Implementation Length of a Program
N (18) Maximum Number of Users

( (17) Estimated Length
N, (15) Low Rotor Speed
N, (17) Total Number of Operator Occurrences
Nj" (17) Minimum Number of Operators
N2 (11,12) Core Engine Speed
N2 (15) High Rotor Speed
N2 (17) Total Number of Operand Occurrences
N2- (17) Minimum Number of Operands
NA ;) Numerical Acceptance
NA (3) Normal Accelerometers
NADC (6,7) Naval Air Development Center
Naecon (5) National Avionics and Electronics Conference
NAECON (6) National Aerospace and Electronics Conference
NAND (5) Not AND
NASA [2,3,5,7,13,15,18) National Aeronautics and Space Administration
NASC (13) Naval Air Systems Command
NATO (14) North Atlantic Treaty Organization
NB (11,12) Narrow Band Signal
NCTS (18) Not Clear To Send
NEC (13) Numerical Electromagnetics Code
NEMP (5,12) Nuclear Electromagnetic Pulse
NHPP (8) Non-Homogeneous Poisson Process
nmi (14) nautical mile
NPRM (14) Notice of Proposed Rulemaking
NRZ (6) Non-return to Zero
NRZ-I (6) Non-return to Zero Inverted
NRZ-L (6) Non-return to Zero Dual Level
nsec (6) Nanosecond
NSWC (13) Naval Surface Weapons Center
NVS (8) N-version Software

OMEGA (11,12) Very Low Frequency Navigation
OMV (16) Orbital Maneuvering Vehicle
OS (5) Operating System
OSI (18) Open Systems Interconnection
OTV (16) Orbital Transfer Vehicle

P (10) Processor
P-Static (11,12) Precipitation Static
PAL (5) Programmable Array Logic
PAS (6) Pilot Assist System
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PAWS (5) Padi Approximation With Scaling
PBW (15) Power-By-Wire
PC (5) Personal Computer
PC (17) Processing Complexity
PCA (17) Processing Complexity Adjustment
PCS (16) Primary Control System
PCU (11,12) Power Control Unit
pdf (8) Probability Density Function
PE (6) Phase Encoding
pf (12) picofarad
PLA (15) Power Level Actuator
PLA (16) Power Level Angle
PMA (18) Parts Manufacturer Approval
PMS (5) Physical. Message Switch
PRF (11,12) Pulse Repetition Frequency
PROC (5) Processor
PROM (3,10,17,18) Programmable Read-Only Memory
psi (15) pounds per square inch
PVI (16) Pilot/Vehicle Interface
PWM (11,12) Pulse Width Modulation
PZ (15) Piezoelectric

QUAD (5) Quadruple

R (13) Resistance
R-C (12) Resistor-Capacitor
RADC (8,17) Rome Air Development Center
RAE (13) Royal Aircraft Establishment
RAM (3,5,10,16,17,18) Random Access Memory
RAT (6,18) Ring Admittance Timer
RB (8) Recovery Block
RBDCP (3) Reliability Block Diagram Computer Program
RCA (16) Radio Corporation of America
RCVR (5) Receiver
RDFCS (3) Redundant Digital Flight Control System
RDFCS (4) Reconfigurable Digital Flight Control System

(facility)
RDFCS (5) Reconfigurable Digital Flight Control System
RDMI (11,12) Radio Distance Magnetic Indicator
RE (11,12) Radiated Emission
REG (5) Register
REL (3) Reliability
REL COMP (3). Reliability Computers
RF (5,11,12,13,14,16,18) Radio Frequency
RFI (11,12) Radio Frequency Interference
RIM (18) Ring Interface Module
RIU (18) Ring Interface Unit
RL (13,15) Resistance/Inductance (Out of order in c.15)
RLC (5,13) Resistance/Inductance/Capacitance
RLCM (13) Resistance/Inductance/Capacitance/Mutual
RM (7) Redundancy Management
RNRZ (6) Randomized Non-return to Zero
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* ROM (5,10) Read Only Memory
RPV (ib) Remotely Piloted Vehicle
RR (18) Read Register
RRT (18) Ring Rotation Time
RS (11,12) Radiated Susceptibility
RS (18) Recommended Standard
RSS (4,7) Relaxed Static Stability
RT (5,18) Remote Terminal
RTCA (2,3,11,12,14,16,17,18) Radio Technical Commission for Aeronautics
RTE (18) Real-Time Executive
RTI (5) Remote Terminal Interface
RTS (18) Request To Send
RZ (6) Return to Zero

S (17) Stroud Number
S-a-O (5,10) Stuck at Zero
S-a-i (5,10) Stuck at One
S-GLOSS (5) Gate Logic Software Simulator developed by Stevens
S/A (11,12) Spectrum Analyzer
SAE (2,5,6,13,14,16,17,18) Society of Automotive Engineers
SAI (18) Systems Architecture and Interfaces
SAS (4,7) Stability Augmentation System
SC (18) Special Condition
,CC (18) System Configuration Controller
SCM (18) Software Configuration Management
SCP (18) Self-Checking Pair
SDF (7) Super-Diagnostic Filter
SE (11,12) Shielding Effectiveness
SEU (5) Single Event Upset
SG (18) Synchronization Gap
SHF (11,12) Super High-Frequency
SHRD (5) Shared
SIAM (15) Society for Industrial and Applied Mathematics
SIF (14) Selective Identification Facility
SIM (18) Serial Interface Module
SIR (18) Shared Interface RAM
SLRT (7) Sequential Likelihood Ratio Test
SMF (18) Self Monitor Function
SMOTEC (14) Special Missions Operation Test and Evaluation

Center
SO (17) Second Order (Average)
SPRT (7) Sequential Probability Ratio Test
SQA (18) Software Quality Assurance
SQF (17) Software Quality Factor
SQL (5) Software Query Language
SQM (17) Software Quality Metrics
SQPP (17) Software Quality Program Plan
SRS (17) Software Requirement Specification
SSA (18) System Safety Assessment
SSI (5) Small Scale Integration
SSP (3) Servo Simulation Panel
SSPC (15) Solid-State Power Controller
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SSS (17) System/Segment Specification
STANAG (14) Standardization Agreement (NATO)
STC (2) Supplemental Type Certification
STC (18) Supplemental Type Certificate
STEM (5) Scaled Taylor Expansion Matrix
STOL (16) Short Takeoff and Landing
str (6) string
SURE (5) Semi-Markov Unreliability Range Evaluator
SW (18) Software
SYN (5) Synch

T (17) Estimated Programming Time
T/R (6) Transmitter/Receiver
TACAN (14) Tactical Air Navigation
TASRA (3) Tree Aided System Reliability Analysis
Tc (18) Count Duration
TC (2) Type Certification
TC (18) Type Certificate
TCAP (13) Threshold Circuit Analysis Program
TCAS (11,12,16,18) Traffic Alert and Collision Avoidance System
TCL (13) Transient Control Level
TDM (6) Time Division Multiplex
TDMA (18) Time Division Multiple Access
TF (18) Frame Time
TFCS (18) Token Frame Check Sequence
TFEDF (18) Token Frame Ending Delimiter Field
TG (18) Terminal Gap
THT (6,18) Token-Holding Timer

TI (18) Transmit Interval
TLA (11,12) Thrust Lever Angle
T. (18) Wait Time for User
TMC (11,12) Thrust Management Computer
TMR (10) Triple Modular Redundant
TRT (18) Token Rotation Timer
TRU (15) Transformer Rectifier Unit
TSDF (18) Token Starting Delimiter Field
TSO (18) Technical Standard Order
TTL (5,11,12,13,16) Transistor-Transistor Logic
TV (14) Television
TWTD (13) Thin Wire Time Domain
TX (5) Transmit

U.K. (13,14) United Kingdom
U.S. (14) United States
UAC (18) Unbalanced Asynchronous Configuration
UART (15) Universal Asynchronous Receiver Transmitter
UHF (11,12,13,14) Ultra High-Frequency
UNC (18) Unbalanced Normal Configuration
UNIBUS (5) Universal Bus
UPS (15) Uninterruptible Power Supplies
USAF (16) United States Air Force
USB (16) Upper Surface Blowing

36



USEG (5) Unsegmented

V (17) Volume
V" (17) Potential Volume
V&V (18) Verification and Validation
V/m (14) Volt/meter
VHF (11,12,13,14) Very High-Frequency
VHSIC t6,16) Very-High-Speed Integrated Circuits
VLF (11,12) Very Low-Frequency
VLSI (5,6,14,18) Very Large Scale Integration
VLSIC (6,16) Very Large Scale Integrated Circuits
VOR (11,12,14,18) VHF Omnidirectional Range
VORTA/VHF (11,12) Omnirange/Tactical Air Navigation
VRC (6) Vertical Redundancy Check
VSI (11,12) Vertical Speed Indicator
VSV (15) Variable Stator Vane
VT (18) Validation Testing
VTOL (16) Vertical Takeoff and Landing

W/P (15) Fuel Flow to Burner Pressure
WAI (3) Warning Annunciation Indicator
WFM (15) Main fuel metering valve actuator sensor
WR (18) Write Register
WRU (11,12) Weapons Replaceable Unit
WSO (17) Weighted Second Order (Average)

XAB (5) Transmit Compare A B
XMT (5) Transmit
XMTR (3) Transmitter
XOR (5) Exclusive OR

ZM (6) Zero Modulation
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0
1. INTRODUCTION

1.1 Software Quality Metrics

Technological advances have led to smaller, lighter, and more reliable computers
that are used increasingly in flight applications. Federal Aviation Administra-
tion (FAA) Certification Engineers (CEs) are faced with certification of
aircraft that depend on this digital technology, and on its associated software.

When digital technology is to be used to perform some function aboard aircraft,
the designer documents the technology and the applicant presents a package to
the CE. Typically, the package might include design and test specifications,
test plans, and test results for the system. This package assures the CE that
the designer has properly developed and validated the system. Software Quality
Metrics (SQM) may be used during software development and testing.

SQM technology attempts to quantify various quality-oriented factors, such as
reliability and maintainability. The software developer determines the quality
factors that are important to the application. Software metrics that correlate
to these factors are used on the code to determine to what extent these factors
have been reached. Based on the results, the developer determines whether the
software meets the requirements set for it, and how well the srftware will
perform.

If SQM results are submitted to support a system to be certified, the CE should
understand SQM and their results and implications. This chapter shows the step-
by-step procedures for applying major SQM to avionic code. It shows the CE how
SQM are applied, analyzed, and evaluated. This chapter can therefore be used
as a reference to aid the CE when certifying avionic equipment or systems where
SQM were used.

1.2 Scope of this Chapter

This chapter only includes metrics that are based on code, and that apply to the
types of code used in avionic equipment. Metrics that are well substantiated
by empirical evidence receive an in-depth discussion. In particular, this
chapter applies and analyzes SQM based on three prominent families of software
metrics:. Halstead's, McCabe's, and Rome Air Development Center's (RADC).

Other SQM are included, but are addressed indirectly in appendices A and B. For
a full discussion on these other metrics, see the Technical Report, Software
Quality Metrics (N. VanSuetendael and D. Elwell 1991).

History metrics and metrics that cover all phases of the software development
process are not within the scope of this chapter. Both categories, however, do
warrant further investigation. In cases where an SQM falls in either of these
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categories, the analysis is limited to that portion of the SQM that addresses
the code phase.

Because SQM rely on statistics to indicate which software metrics correlate with
a quality factor, this chapter does not cover all possible combinations leading
to good correlations. The most accepted SQM are discussed. Acceptance is based
on what SQM experts have concluded from their correlational studies. Future
combinations of software metrics and quality factors are also addressed, since
the SQM components are presented independently in appendices A and B.

1.3 How this Chapter is Organized

Section 2 discusses the background of SQM, defines them, and defines the model
presented for analyzing them.

Sections 3.1, 3.2, and 3.3 summarize the results of the study and introduce the
certification problem addressed by the SQM worked examples.

Section 3.4 discusses SQM based on Halstead's software metrics as they apply to
developed avionic code. The SQM are calculated and analyzed step-by-step; then
their application to the certification problem is evaluated. Sections 3.5 and
3.6 follow the same format as section 3.4 using SQM based on McCabe's Software
Metrics and RADC's SQM methodology, respectively.

Readers interested only in how to apply the metrics of section 3 can read the
steps and skip the analysis boxes. Those readers who have an interest in
analyzing SQM should read the boxes that provide analyses for each step.

Appendices A and B contain data sheets that summarize the basic data a CE needs
to understand, analyze, and evaluate these and other SQM. Appendix A addresses
software metrics and appendix B addresses quality factors. Future SQM may
correlate the software metrics of appendix A with new quality factors.
Conversely, the quality factors of appendix B may be correlated with new
software metrics. These two appendices are organized so that new SQM can still
be analyzed.

Appendix C contains the software metric data on which the SQM calculations are
based.
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2. INTRODUCTION TO METRICS

2.1 Background of Software Quality Metrics

Computers play a primary role in industry and government. Because the hardware
of modern systems relies heavily on the supporting software, software can
critically affect lives. Many applications, e.g., flight critical systems,
mission-critical systems, and nuclear power plants, require correct and reliable
software. The increased importance of software also places more requirements
on it. Thus, it is necessary to have precise, predictable, and repeatable
control over the software development process and product. Metrics evolved out
of this need to measure software quality.

In the early 70s, Halstead maintained that an attribute of software, such as
complexity, is directly related to physical entities (operators and operands)
of the code, and thus could be measured (Halstead 1972 and 1977). Halstead's
metrics are fairly easy to apply. They are based on mathematical formulas and
are backed by over a decade of refinement and follow-on empirical study. SQM
based on Halstead's software metrics compose case 1 of the worked examples.

In the mid-70s, another researcher, McCabe, devised the Cyclomatic Complexity
Metric, a measure based on the number of decisions in a program. McCabe's
metric has been used extensively in private industry (Ward 1989). SQM based on
McCabe's software metrics compose case 2 of the worked examples.

At approximately the same time, researchers at TRW became interested in
measuring software qualities (Boehm et al 1978). The TRW team was responding
to earlier research on the subject by Rubey and Hartwick. This approach
considered software quality factors to be based on elementary code features that
are assets to software quality. This work was adopted by RADC of the Air Force
Systems Command. In 1977, RADC determined that software metrics were viable
tools. Software acquisition managers could use them to determine accurately
whether requirements were satisfied for new, delivered systems (McCall,
Richards, and Walters 1977). RADC's SQM methodology is used in case 3 of the
worked examples.

SQM based on these three software metric families are widely accepted. Recent
research focuses on refining some of the initial assumptions and on creating
new SQM.

In developing new metrics, theory often precedes empirical evidence. Today,
numerous companies are marketing SQM. Some do not back their measurement claims
with much independent research or empirical substantiation. Other companies,
however, have empirically validated their metrics. Many companies use their
metric systems to address all phases of the software life cycle.
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Metric researchers are split broadly into two camps: those who claim software
can be measured, and those who state that the nature of softuire does not lend
itself to metrical analysis. The latter group incluaes researchers who have
been disillusioned with the field, or who have mathematically "proved" that
software cannot be measured. To further split the former group, some are busy
refining existing metrics, others disproving parts of them. In any case, the
majority of researchers are concerned about software quality and the need to
quantify it.

Metric research is aimed at reducing software cost, keeping development on
schedule, and producing software that functions as intended. Additionally,
metrics are being developed to evaluate whether software accomplishes its
functions reliably and safely. In the present context, metrics can be used to
aid in the certification of avionic equipment and systems.

2.2 Definition of Software Quality Metrics

Before SQM can be understood, the terms need to be defined. A computer-based
system consists of a machine and its associated programs and documentation.
Hardware consists of the physical components of a computer. Software consists
of computer programs and the documentation associated with the programs.

Code is a subset of software, and exists for the sole purpose of being loaded
into the machine to control it. Code that can be read by people is source code.
The translation of the source code that is loaded into the machine is called
object code. This chapter addresses metrics that measure aspects of source
code. In this chapter, any reference to code is to be understood as a reference
to source code.

As used in the term, "SQM", quality modifies software. SQM measure whether
software is quality software. This measure is based on quality factors. A
quality factor is any software attribute that contributes either directly or
indirectly, positively or negatively, toward the objectives for t'-- system where
the software resides. A particular quality factor is defined, or singled out,
when it is determined that it significantly affects those objectives. Two
examples are software reliability and complexity.

Metrics is another word for measures. The most basic measure is a repeatable,
monotonic relationship of numbers to a magnitude of a property to be quan-
tified. As soon as such a relationship is defined, the one set is a measure of
the other. Repeatable means anyone will get the same results at any time.
Since the relationship is a monotonic function, a certain change in the measure
always represents a certain change in the property being measured, where either
change is simply an increase or decrease in magnitude. (Increasingly negative
numbers represent a decreasing magnitude. Although such a function is
consistently non-increasing or non-decreasing, it is not proportional. In
addition, it is desirable that the monotonic measure have a one-to-one
correspondence to the magnitude of the measured property so that it is not
possible for differing property magnitudes to give the same measure.

A more desirable measure is one where the magnitude of the property is reflected
in the measure by a smooth, mathematical relationship. This measure is
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considered well-behaved. The most desirable and common well-behaved measure is
a linear one, since any change in the magnitude of a property is proportionally
represented by the measure.

The magnitude of properties of cbjects can usually be measured, since a property
magnitude can almost always be expressed by a repeatable, monotonic relation-
ship. Further, these measures are usually well-behaved, and are often linear.
With respect to software, the objects are the printed symbols that represent
ideas. Well-behaved measures exist for these objects (see Curtis 1980, for more
details on measurement theory).

If a repeatable, monoto ic relationship c-)uld be established that relates
measures of objects (a set of numbers) to subjective qualities, the result would
be, by definition, a quality measure. SQM is the name given to a measure that
relates measures of the software objects (the symbols) to the software qualities
(quality factors).

All practical SQM establish rules for relating the software symbols to the
software quality factors. These rules are usually expressed as well-beh:ved
mathematical relationships. However, few of the SQM produce a completely
repeatable and monotonic measure of the software quality. Nearly all SQM in use
exhibit variability and lack of monotonicity in their results.

Nevertheless, practical, reliable SQM do exist. Their validity is based on the
statistical inference that can be applied to systems under development, drawn
from the analysis of systems in operation. Experiments must be performed tD
analyze how well the values produced by the SQM correlate to the quality it
claimed to measure. The strength of the relationship is expressed in terms of
statistical correlation or regression. Thus, each SQII has a population or a
sample space for which the measurement is valid, as well as a level of
confidence that can be attributed to it.

When the relationship between two randomly varying quantities is measured in
terms of correlation, the correlational coefficient, p, indicates how close the
relationship, if any, comes to being linear. It does not give any indication
of the coefficients of the linear relationship. A perfectly linear positive
relationship is indicated by p-1. A perfectly linear negative relationship is
indicated by p--l. A value of p-0 indicates that the two quantities are not
linearly correlated. Two quantities that are not correlated are not necessarily
unrelated. They may follow some nonlinear relationship (Hays and Winkler 1970).
Therefore, the correlational coefficient can establish the presence of a
relationship, but not the absence.

A particular SQM may claim that a software quality is linearly related to a
software metric. Correlational experiments may verify this with a value of
p-0.9. However, the proposed linear SQM relationship is still not necessarily
valid. In order to be useful as a relative measure, the slope of the linear
relationship must be confirmed. In order to be useful as an absolute measure,
the zero intercept of the linear relationship must also be determined. Thus,
"If the correlation significantly differs from zero and if the estimates are
generally c]ose to their actual counterparts, then one could convincingly argue40 the metric is valid" (Dunsmore 1984).
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When the relationship between two quantities is measured by regression analysis,
the relationship is addressed more directly. A slope, an intercept, and the
coefficient of determination, r 2 , are calculated. This coefficient is a measure
of the amount of variation in the dependent variable (quality factor) that may
be explained by the variation in the independent variable (software metric).
"A high coefficient of determination leaves less variability to be accounted for
by other factors" (Basili and Hutchens 1983).

In practice, the word "metric" is used loosely. It must be discerned from the
context whether the word is short for software metric or SQM. This is not
always clear, because many practitioners assume that the software qualities are
directly linked with the software objects. They use the word metric as though
the measure of the software object were the same as measuring the software
quality. In this chapter, the measure of the software objects will be referred
to as software metrics, and the measure of the quality factors as SQM.

2.3 The Software Quality Metrics Model

There are two categories of elements measured by an SQM. The software object
category contains directly measurable items: lines of code, conditional
statements in a program or module, and number of unique operators and operands.
The software quality factor category contains qualities software should possess
to some degree: reliability, maintainability, simplicity, and ease of use. The
two categories contain components for creating an SQM. Either category contains
only the raw elements which, by themselves, signify little. When measures of
the elements in the first category are combined (or "mapped") with elements from
the other, an SQM is formed.

Thus, a particular SQM consists of three components: software metrics, software
quality factors, and the mapping between the two. This relationship allows
scientists, programmers, and engineers to measure the quality of the software
being evaluated.

Practitioners emphasize the importance of agreeing on selecting quality factors
appropriate to the application. Selecting appropriate quality factors is
subjective. In the worked examples, each project's needs are identified first;
the quality factors are then chosen based on these needs.

This model is flexible because new SQM are produced simply by combining new or
existing software metrics with new or existing quality factors. The decision
whether a software measure successfully "correlates" with a quality factor is
subjective and depends on the needs of the application, the company sponsoring
the research, and other concerns.

2.4 Limits of Measurements

SQM can be applied to any readable set of symbols. However, the results of a
particular SQM will be meaningful only when the SQM is applied to the par-
ticular subset of symbols for which it has been prequalified. Thus, a metric
can be thought of as a function which has a certain domain over which it is
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defined. Outside that domain, the results are unpredictable, and therefore it
should not be applied.

Within the domain, the measure of a software quality is only as good as the
proposed correlation of the software quality to the software object measured,
as determined by experimentation. The domain is typically no larger than the
sample space of the experiments, although, if a sufficient number of experi-
ments are performed, the sample space can reliably project the properties of
the population. Within the domain, when a highly-correlated SQM is applied, it
typically does not measure absolute levels of the software quality.

An SQM is generally a ratio that is expressed as a unitless number. For
example, a high correlation is found between software maintenance time and the
number of decision statements in a program. If Program A has twice as many
decision statements as Program B, the time required to maintain A probably will
be double that of B (assuming previous experimental studies show a linear
relationship between the two entities). This type of result cannot specify a
unit, such as particular number of hours of maintenance. It is a relative
measure, only measuring trends. It does not assess software quality, but
improvements in quality. The improvement suggested by a doubling of an SQM may
actually represent an inconsequential improvement in absolute terms. The
measurement could simply indicate the software has improved from unacceptable
to barely passable.

If, however, the relationship has been calibrated by making comparisons to
software whose qualities are established by after-the-fact experience, then the
SQM does provide an absolute measure of software quality and will have units
attached to it. Such a metric can be used to assess levels of software quality.

Software metrics, in and of themselves, predict nothing. They simply measure
the state of the software at the time of measurement. For example, a par-
ticular code metric may indicate that, at the time of measurement, a module
contained a specific number of decisions.

On the other hand, when a software metric is correlated to a quality factor,
the SQM inherently predict some future state of the software. The quality
factors are only meaningful when the code is applied in a context. Code, as
printed on paper, exhibits no software quality. But in the context of' a
programmer having to read the code in order to change it, the presence of the
quality factor, maintainability, becomes evident. Thus, when an SQM measures
a software quality, it predicts that when the code is viewed in that context,
the code will exhibit that quality.

SQM indirectly address testing adequacy. Testing adequacy assumes that the
level of software quality desired is produced by testing for failures and fixing
them until the level is achieved. Clearly, SQM are helpful here. They provide
a quantitative assessment of the quality level of the software produced. This
assessment can be compared to the quantitative level specified. Testing is
objectively adequate when the specification is fulfilled. Without SQM, testing
adequacy is a qualitative decision.
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Specifying test coverage requirements is one way of assuring testing adequacy.
RTCA Standard DO-178A recommends certain types of testing for software in each
of the criticality categories. If all the test cases required by each type are
performed, testing adequacy is assured. While SQM do not address test coverage,
some software metrics address test coverage by implying the number of test cases
necessary. Adequate coverage would require that the count produced by these
metrics be met. This would not be sufficient to establish test coverage,
however, since the software metric does not address particular test cases.
Other software tools are specifically designed to generate test cases.

2.5 Metrics and Standards

SQM can be used to satisfy the requirements of some standards that apply to
avionics. Title 14 of the United States Code of Federal Regulations (CFR)
contains the Federal laws that apply to aeronautics and space. Chapter 1,
Subchapter C, Federal Aviation Regulation (FAR) Part 25, specifies the
airworthiness standards for transport category airplanes. In particular,
Section 25.1309 specifies that airplane systems and associated components must
be designed in such a way that the probability of their failure is not
excessive. Compliance with this design requirement must be demonstrated by an
analysis. SQM can be used in this analysis. This airworthiness standard
currently contains no Special Conditions to which SQM technology would apply.

The requirement of Section 25.1309 is stated in qualitative terms. The FAA
publishes formal guidelines for meeting the requirements of the CFR. One such
guideline, Advisory Circular (AC) 25.1309-lA, gives specific design and analysis
procedures and techniques which can be used to meet the requirements of Section
25.1309 of the CFR. Of particular interest for SQM is that this AC assigns
quantitative thresholds to the probability of failure that is acceptable. This
may make SQM even more useful for demonstrating compliance with Section 25.1309.
The FAA has also adopted the Society of Automotive Engineers' (SAE) Aerospace
Recommended Practice (ARP) 1834 as an informal guideline for the fault and
failure analysis of digital systems and equipment, as introduced in AC 25.1309-
1A. Some day SQM may be incorporated into these guidelines.

The certification process consists of determining whether avionic equipment and
systems comply with Section 25.1309. To support this determination, the FAA has
adopted the Radio Technical Commission for Aeronautics (RTCA) standard, RTCA/DO-
178A, "Software Considerations in Airborne Systems and Equipment Certification"
(1985), as another informal guideline. This standard recommends several
software design and analysis procedures that lend themselves to SQM application.

The software development standard, DOD-STD-2167A, incorporates the use of SQM
into the software development process. The requirements for reliability,
maintainability, availability, and other quality factors are to be specified in
the System/Segment Specification (SSS), as required by paragraphs i0.I.5.2.5ff
of the associated Data Item Description, DID-CMAN-80008A. Furthermore, the
software quality standard, DOD-STD-2168, recognizes that software development
tools will be used in the software quality program. The tools are to be
identified in the Software Quality Program Plan (SQPP) according to the
specification of paragraph 10.5.6.2 of the associated Data Item Description,
DID-QCIC-80572. 1
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SQM have become so widely used that they are now being incorporated into
national and international standards. Standardization of their application and
interpretation will make them more useful to the software engineering community.
The Institute of Electrical and Electronics Engineers (IEEE) has published
standards on several commercial software metrics in IEEE Standard 982. This
standard defines and explains the use of measures that can be used to produce
reliable software. Furthermore, the IEEE Computer Society has produced a draft
standard on an SQM methodology for the International Standards Organization
(ISO). The ISO plans to release this standard in 1991.

0
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3. PRACTICAL SOFTWARE QUALITY METRICS

3.1 Study Results

This study of current practical SQM revealed three families of software metrics
upon which most viable SQM are basea. In order to be a basis for a viable SQM,
these software metrics had to meet the following criteria:

1. The metric must apply to code.

2. The metric must apply to code used in avionic equipment and systems. This
code is usually written in Assembly, FORTRAN, Pascal, C, or Ada. Hence,
any metrics that apply to these languages were generalized to apply to
avionic code, Other metrics may also apply based on their universal
application to code.

3. The metric must be related to a known software quality factor. In some
cases, metrics are not correlated with quality factors, but can still help
programmers develop software. For example, a performance metric shows the
number of seconds a program takes to execute. The measurement determines
to what degree the performance deviates from an accepted value, but does
not measure the quality of the program,

4. The metric must be substantiated by independent experimental evidence.

Three additional families of software metrics include promising prospects for
viable SQM, but the software metrics and their relationships to software quality
factors require further substantiation. Each of the most established software
metrics of these six families is summarized on a Software Metric Data Sheet in
appendix A. Many other software metrics were encountered, but very little has
been published about them. They are not addressed here.

In addition, this study revealed numerous quality factors that represent the
concerns of software developers and users. Many of these are summarized on the
Quality Factor Data Sheets in appendix B.

Most importantly, this study identified practical SQM which consist of
experimentally verified relationships between some of the software metrics of
appendix A and the quality factors of appendix B. These SQM are listed in table
3.1-1.

The study also identified SQM which suggest a relationship between some of the
software metrics of appendix A and the quality factors of appendix B, but the
relationships require further substantiation. These promising SQM are listed
in table 3.1-2.

17-11



TABLE 3.1-1. VIABLE SOFTWARE QUALITY METRICS

Software Software Software Software
Metric Family Metric Quality Factor Metric Family Metric Quality Factor

Halstead N Maintainability McCabe v(G) Complexity
Number of Bugs Maintainability
Reliability Modularity

Modifiability
L Complexity Number of Bugs

Simplicity Reliability
Simplicity

V Complexity Testability
Maintainability Understandability
Number of Bugs
Reliability ev(G) Complexity
Simplicity Conciseness

Efficiency
V Conciseness Simplicity

Efficiency
RADC AC.1 Completeness

Conciseness through Consistency
Efficiency VS.3 Correctness

Efficiency
E Clarity (see Bowen, Expandability

Complexity Wigle, and Flexibility
Maintainability Tsai 1985) Integrity
Modifiability Interoperabitity
Modularity Maintainability
Number of Bugs Modularity
Reliability Portability
Simplicity Reliability
Understandability Reusability

Simplicity
Maintainability Survivability
Number of Bugs Usability
Reliability Verifiability

The appendices also contain software metrics and quality factors that are not
part of any of the SQM identified in the tables. They represent components that
are likely to be incorporated into subsequently proposed and developed SQM. By
including them, this chapter better prepares the CE for evaluating whatever SQM
an applicant may submit in a certification package.

3.2 Software Quality Metrics Application and Analysis

The CE should be able to understand, analyze, and evaluate any SQM that are
presented. Three examples of the application and analysis of some of the SQM
are given below. They present SQM based on each of the three most prominent
families of software metrics. The examples are step-by-step worked examples of
how a developer might have applied SQM to demonstrate the certifiability of some
computerized avionics. They are presented as three different solutions to the
same problem statement. An analysis of the application is interjected where
appropriate. The analysis sections are set off from the metric application
process by boxes. The data for the calculations can be found in appendix C.
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TABLE 3.1-2. PROMISING SOFTWARE QUALITY METRICS

Software Software
Metric Family Metric Quality Factor

Albrecht Function Complexity
points Maintainability

Modularity
Performance
Simplicity
Understandability

Ejiogu Sc Complexity
Maintainability
Modularity
Performance
Simplicity
Understandability

Henry Information Complexity

flow Maintainability
Modifiability
Modularity
Performance
Reliability
Simplicity

Understandability

In the problem statement and the worked solutions of this section, the following

qualifications apply:

* The context of the problem and solutions is fictitious.

The code analyzed is real flight control code, consisting of 143 modules,

writtenL;L LZ03 ft-; ,Lxnby lu

The flight control code was categorized by the developer into 59 essential
modules and 84 nonessential.

Two of the essential modules were copied, renamed, and arbitrarily
categorized as critical modules, for the sake of providing a more complete
example.

3.3 Worked Example Problem Statement

A flight control system submitted for certification utilizes software consisting
of 145 modules, 84 of which are classified as nonessential, 59 as essential, and

2 as critical. The developer calculated SQM during the implementation of the
code to measure the extent to which certain design and performance requirements
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had been met (RTCA/DO-178A, paragraph 6.2.4.2). The developer also used SQM in
the requirements coverage analysis and test coverage analysis (RTCA/DO-178A,
paragraph 6.2.5.3). The applicant submitted the SQM results to the FAA as part
of the implementation and testing assurance documentation.

From this documentation, the CE should determine whether

"* the software was developed according to a disciplined approach (RTCA/DO-
178A, paragraph 1.1),

"* the software was developed and tested by a process appropriate to the
software level (RTCA/DO-178A, paragraph 6.2.1),

the SQM-based requirements analysis substantiates that the associated
requirements are fulfilled (RTCA/DO-178A, paragraph 6.2.5.3.1),

the SQM-based test coverage analysis substantiates test coverage
(RTCA/DO-178A, paragraph 6.2.5.3.2), and

* the software will operate at the required level of performance.

Each of the worked examples demonstrates the process a developer followed to
use SQM in the software development project described. Each developer used SQM
that are based on a different family of software metrics. By observing the
process, the CE will understand how to evaluate SQM reports submitted in
certification documentation.

3.4 Case #1: Software Quality Metrics Based on Halstead's Software Metrics

In this case, the developer used Halstead's software metrics to assess the code
quantitatively. To do this, the developer followed the steps described in the
next section.

3.4.1 Metric Application and Analysis

Step 1. Specify the quality factors of concern and select the correlating
software metrics for code in each category of criticality.

Halstead Metric Application Analysis I

The correlation of the selected quality factor to the
selected software metric should be substantiated by previous
experimentation. Otherwise the SQM is based solely on
intuition.

a. This developer was only contracted to supply the software for this system;
another developer supplied the hardware. Therefore, the Software
Requirements Specification (SRS) required that the code be written as
efficiently as possible. It was estimated that if this were done, the
software would not demand more memory resources than the hardware contractor
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was to supply. The developer chose the Halstead Estimated Program Level,
L, as indicative of code size efficiency. It was specified that all modules
must be programmed to exceed a Halstead Estimated Program Level of 0.05.

Halstead Metric Application Analysis 2

Although it was a good idea to quantify the efficiency
specification, the developer did not refer to any experiments
that correlated the Estimated Program Level to object code size.
Furthermore, the level chosen as acceptable is based on previous
experience that was not stated in the certification
documentation. The CE should request further information to
substantiate the validity of using this SQM.

b. Since the code was expected to have about a 10-year operational phase,
maintenance would be an ongoing expense. Furthermore, it was anticipated
that code improvements would be requested on a fast turn-around basis.
Therefore, it was decided that a software metric that correlated to
maintainability would be used for all three levels of code. The software
measures, Lines of Code and Halstead's Volume, V, were chosen. Any module
that exceeded the initial calculation of the average value, plus one
standard deviation for its category, was to be singled out, possibly to be
reduced. The Halstead metric requires all of the basic counts of operators
and operands. From experience, the cost of performing these counts was
always recouped when maintenance is lessened for such a long operational
phase.

Halstead Metric Application Analysis 3

The relationship of maintainability to Lines of Code and
Halstead's Volume is well established by experimentation.
However, the CE can accept this SQM as a reliable indicator of
maintainability improvement only if the code being developed
belongs to the same population of code on which the experiments
have been performed.

The developer properly used this SQM to indicate which modules
should be improved because they would require abnormal amounts
of maintenance time. The developer did not propose any improper
claims of absolute times or levels of maintainability.

c. It was assumed that the effort to program each module would be a reasonable
indicator of the relative effort to debug. Halstead's Programming Effort,
E, was used to balance the workload during the debugging phase. Each
programmer who was to debug modules was assigned an approximately equal
number of Programming Effort units to debug.
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Halstead Metric Application Analysis 4 0
Halstead's Programming Effort metric has been shown to

correlate strongly to actual debugging times. Nevertheless,
because of variations in program complexity and programmer
capability, the developer was right to limit its use to
indicating the relative amount of effort required.

The CE should be sure that the experiments substantiating such a
relationship apply to the environment of this project.

d. Since no particular method is prescribed by RTCA/DO-178A for assessing the
testing adequacy of essential modules, Halstead's Number of Bugs metric,
B, was used to determine testing adequacy. Testing was considered adequate
when it uncovered the number of bugs estimated by B.

Halstead Metric Application Analysis 5

Halstead's Number of Bugs metric correlates well to the
actual number of bugs in the experiments done on this topic. If
those experiments apply to this code environment, use of the
metric would indicate a certain amount of testing adequacy.

e. Since the critical modules would be subjected to more rigorous testing, it,
was of particular interest that they rate high in testability. in
particular, the number of coding errors that would be discovered during
testing should be minimized, so that testing could focus on functional
performance. Therefore, before testing began, all critical modules had to
be coded so that Halstead's predicted Number of Bugs, t, was less than one.
Number of Bugs was used to measure testability.

Halstead Metric Application Analysis 6

* This is an innocuous use of an SQM. It may or may not have
saved the developer testing time. Either way, the quality of
the code was probably not impacted.

The CE can at least note that the development process was
subjected to the disciplined approach of quantitative control
(RTCA/DO-178A, 1.1).

The use of the Number of Bugs metric required that evaluation be performed
on the past work of the programmers working on essential and critical
modules. For each programmer, the typical number of discriminations per
bug, E0 , was obtained from this evaluation to be used in the Number of Bugs
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calculation. Furthermore, the programmers who produced bugs at a lower rate
were assigned to write the modules anticipated to require more mental
discriminations. The cost of the evaluation would be justified by the
testing adequacy assurance and testing effort reduction that would result
from reducing the number of bugs.

In addition to bug reduction, it was considered important that the
development process was followed by all programmers of essential and
critical modules. If any of these modules varied more than one standard

ýeviation from the mean value of Halstead's Estimated Program Level metric,
L, it was assumed that the programmer had not rigorously followed the
programming standards for that module. Compliance with this requirement
was taken as a measure of how consistently the programmers followed the
standards.

Halstead Metric Application Analysis 7

This is a reasonable way of using SQM to provide a
disciplined development process. Excessive variations in
compliance to coding standards would result in some modules
being overly-concise and others being too wordy. The Estimated
Program Level metric would detect these relative extremes,
although the absolute level may not have a particular meaning.

g. All essential and critical modules were to be swapped from Programmable
Read-Only Memory (PROM) into a certain protected area of the system Random
Access Memory (RAM) during execution. Since the development computer was
often tied up building system load modules, it was decided that Halstead's
Intelligence Content metric, I, would be used to indicate whether each
module would result in object code that would fit in the protected area,
whatever size that area would be.

Halstead Metric Application Analysis 8

This measure is only intuitively related to object size. The
relationship is based solely on the theoretical assertion that
the. Intelligence Content of a program does not vary when the
program is translated. Experiments have not substantiated how
well the Intelligence Content correlates to object size.
Whether or not it does, the quality of the code was probably not
impacted. A poor estimate primarily would impact the cost
incurred by the developer.

h. To help ensure the integrity of the critical modules, they should be kept
very simple. It was decided to limit critical modules to a maximum value
of Halstead's Program Length, N. The smaller, more numerous modules that
would result would incur more system overhead during run-time, but this was
considered to be a worthwhile compromise. Exceptions could be granted based
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on the peculiar needs of the modules that did not naturally meet this
limitation.

Halstead Metric Application Analysis 9

While the Program Length is strongly correlated to the
perceived simplicity of a program, the threshold is set somewhat
arbitrarily. Therefore, it is essential that those modules that
exceed it receive a special review to determine if the
constraint can reasonably be applied to them. The developer did
well to allow exceptions tu the Program Length maximum, in order
to accommodate those modules for which the limitation was
unreasonable.

Step 2. Specify the level of quality considered acceptable for each SQM.

a. For the code size Efficiency quality factor, the contract required 100
percent compliance to the specified Estimated Program Level as the
acceptable level of quality for all levels of code.

b. For the Maintainability quality factor, the developer required that at least
75 percent of the modules not exceed the limit, in either Lines of Code or
Volume. The values of the two software metrics for each failing module gave
an idea of what to fix to achieve compliance.

c,d. The Programming Effort metric and the Number of Bugs in the essential
modules were not correlated to quality factors so no goals were set for
them. They were simply used by managers to control and improve software
development.

e. For the Testability quality factor, the developer required 100 perzent
compliance of the critical modules to the Number of Bugs threshold.

f. For the Consistency quality factor, the developer required 95 percent
compliance. This applied only to the essential and critical modules.

g. The Intelligence Content was not correlated to a quality factor so no goal
was set for it. It was simply used by managers to control the size of the
product.

h. For the Integrity quality factor, the developer required 98 percent
compliance by the critical modules.

With these preliminary selections, development began. After the code was
written, the following metric steps were taken.

Step 3. Define the rules for determining that a word of source code is an
operator, as defined on the data sheet of appendix A. The rules may be contained
in a lookup table or may consist of rule statements. A word that does not
satisfy the r-,zes for an operator is taken to be an operand.
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Halstead Metric Application Analysis 10

The occurrence of an operator that was not anticipated by the
rules will inflate the operand count and deflate the operator
count. For instance, if the operator, CALL, occurs, but was not
put in the lookup table, it will be counted as an operand.

• An operator manifested in a way that was not anticipated by
the rules will inflate the operand count and deflate the
operator count. For instance, if the operator, CALL C, occurs,
but was only put in the lookup table in the form, CALL, it will
be counted as an operand.

* An operand that accidentally satisfies the rules will inflate
the operator count and deflate the operand count. This would
only occur if the rules were less stringent than the language
processor.

. The rules are necessarily different for every computer
language or language variation. They are very closely tied to
the rules used in the interpreter, compiler, or assembler. It
is assumed that the code has been translated, without error, by
one of them. Code from a different language processor will
produce unreliable results.

• Different people will probably define the rules differently.
The various sets of rules may produce similar results most, but
not all of the time.

For this case, the software metric tool, PC-Metric, was used to calculate
Halstead's software metrics. PC-Metric uses a reserved word file as a lookup
table of the words which are operators. In addition, other rules are followed.
Since the theory of operators and operands is based on algorithm implementation,
it does not apply to program comments and declarations. Thus, PC-Metric filters
out comments, and declarative keywords are put in the keyword file and flagged
that they are not to be counted. Typical entries in the reserved word file used
by PC-Metric to calculate Halstead's metrics on Z80 Assembly code would be as
follows:

2(
0)
2*
2+
2,
2-
2/
2 ADC
2 ADD
2 AND
1 ASEG
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where the "2" flags a countable operator, the "0" flags that the pair of
parenthesis operator is counted when the left parenthesis is encountered, and
the "I" flags ASEG as a declaration word.

Halstead Metric Application Analysis 11

The calculations produced by a software metric tool reflect
all the user-defined rules and all the decisions built into the
program code. The only way to ensure a repeatable, predictable
measure for comparison to some previous measure, is to maintain
configuration control of the software metric tool and of the
code being analyzed. Then, comparisons can be safely made only
between two measurements that claim to be produced by, for
example, PC-Metric, Version 1.3, on code successfully assembled
by the Z80 Assembler, Version 2.6.

To further ensure the accuracy of the measurements, it is
essential to use the software metric tool to analyze a test case
for which the values can be manually calculated for comparison.
This will ensure that the proper attribute is measured, and is
measured accurately.

Step 4. Define the segment of code that constitutes a module.

Halstead Metric Application Analysis 12

A module can be defined trivially as a single statement or as
the next smallest independent function, or a subroutine,
program, subsystem, or entire system of programs. 'In general,
the larger the module is defined, the smaller will be the
proportion of the number of unique words to the total number of
words.

A file was taken to be a module, since each file constituted a partition
categorized, for certification purposes, as nonessential, essential, or critical.
In general, this meant that a module was the same as an Assembly language
subroutine. However, many files contained internal subroutines and/or additional
external subroutines. In all cases, these were lumped together as a single
module. The code consisted of 145 modules, thus defined.

Step 5. Define the rules for detecting the beginning and ending of each module.
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0 Halstead Metric Application Analysis 13

A module whose ending is not delineated, or is delineated in
a way other than as specified in the rules, might be combined
with the next module. This combination would inflate the counts
for the first module and would cause the following module to go
undetected.

* A module Njhose beginning is not delineated, or is delineated
in a way other than as specified in the rules, might be combined
with the previous module or might be ignored. In either case,
it goes undetected.

N If any of the code accidentally satisfies the rules for
indicating the beginning or ending of a module, the counts will
likely be inaccurate.

. The rules are necessarily different for every computer
language or language variation. They are very closely tied to
the rules used in the interpreter, compiler, or assembler. It
is assumed that the code has been translated, without error, by
one of them. Code from a different language processor will
produce unreliable results.

• Different people will probably define the rules differently.
The various sets of rules may produce similar results most, but
not all of the time.

The first line of each file was assumed to be the beginning of the module. The
end was generated by the EOF (End-of-File). There was, therefore, little
ambiguity for meeting the chosen module definition.

Step 6. Segregate the modules into categories of nonessential, essential, and
critical so that metric results can be used to aid the different development
processes required for each category of code.

Following the guidelines of RTCA/DO-178A, the developer divided the 145 modules
into 84 nonessential, 59 essential, and 2 critical.

Step 7. For each module, count the total number of operator occurrences, N1 , and
the total number of operand occurrences, N2 . Also count the number of unique
operators and the number of unique operands, nj and n 2 , respectively. The data
sheets of appendix A give the definitions of each of these quantities. Also,
accumulate the measures for all modules in each category of criticality so that
metric results can be used to aid the different development processes required
for each category of code.
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Halstead Metric Application Analysis 14

The rules used to determine whether an operator or operand is
unique must take into account the possibility that a word of
code is to be interpreted as a different operator or operand, as
determined by the context.

Whenever functionally unique operators or operands are
represented by the same word of code, their respective count is
deflated. For instance, BASIC usually uses a comma as an
argument separator, but in parts of a PRINT statement, it is
also a format specifier.

* The rules used to determine whether an operator or operand is
unique must take into account the possibility of a single
operator or operand having more than one form.

In this case, two slightly varying forms of the same operator or
operand will be taken as the occurrence of two unique words,
thereby inflating the unique. count. This occurs in BASIC when a
variable name may have up to 20 characters, but only the first
eight are recognized. The full name and the first eight
characters constitute two acceptable forms of the same operand.

0 The values, q, and q2, are not additive quantities. Adding
the counts of unique operators or operands for sub-modules does
not give accurate counts for the module that they constitute.

PC-Metric accuunted for most of the problems associated with the first point of
analysis, mentioned above, by distinguishing between comments-, declarations, and
executable code. Within executable code, all unique operators and operands in
a module are almost always constrained to be unique in form by the interpreter,
compiler, or assembler.

In addition, PC-Metric had to distinguish between an asterisk in the first
character position as designating a comment, but in subsequent positions as being
the multiplication operator.

The second point of analysis in the previous analysis box was addressed by the
"0" flag used on the right parenthesis. This flag indicates that a right
parenthesis is not a unique operator, but is simply part of the left-right
parenthesis pair.

The counts and the derived measures for each module of the code are listed in
appendix C. The counts for each category of code are shown in table 3.4-1.
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TABLE 3.4-1. OPERATOR AND OPERAND COUNTS, BY CODE CATEGORY

Nonessential Essential Critical

71 129 157 28

'72 1,418 1,059 51
Ni 15,141 11,393 205
N2  11,602 8,676 160

Step 8. Calculate the various derived measures.

a. Calculate the Vocabulary, n, as follows:

'7 - 171 + n2 words

Halstead Metric Application Analysis 15

The vocabulary is not an additive quantity.

The values for each category of code were as follows:

Nonessential:

- 129 + 1,418

- 1,547 words

Essential:

- 157 + 1,059
- 1,216 words

Critical:

- 28 + 51
- 79 words

b. Calculate the Implementation Length, N, as follows:

N - Ni + N2 words

The values for each category of code were as follows:

Nonessential:

N - 15,141 + 11,602
- 26,743 words
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Essential:

N - 11,393 + 8,676

- 20,069 words

Critical:

N - 205 + 160
- 365 words

c. Alternatively, if the number of unique operators and operands is known,
the Estimated Length, N, can be calculated without counting all the
occurrences of operators and operands. It is calculated as follows:

- 171 10g 2171 + 12log2172 words

Halstead Metric Application Analysis 16

* This estimate assumes that every combination of operators and
operands of length 7 ,occurs only once in any program. This
means that repeated segments of code, as long as Y7 words, are
put into subroutines rather than in redundant code. If such
redundancy is present in the code, the Implementation Length
will be underestimated by the Estimated Length Equation.

The Estimated Length Equation also assumes that operators and
operands alternate without variation. Any code that does not
follow this convention will likely underestimate the
Implementation Length.

Whether or not these assumptions are reasonable, 'experiments
show that A yields a close estimate of the Implementation
Length, N.

a Because the Estimated Length Equation is nonlinear, adding
the Estimated Lengths of sub-modules would not be expected to
give .- i accurate Estimated Length for the module that they
constitute. Nevertheless, experiments indicate that adding the
lengths does give a fairly accurate estimate.

The values for each category of code were as follows:

Nonessential:

- 129 1og 2 (129) + 1,418 iog 2 (1,41 8 )
(129 x 7.011) + (1,418 x 10.470)
904 + 14,846
15,750 words
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Essential:

- 157 Iog 2 (157) + 1,059 iog 2 (1,05 9 )
(157 x 7.295) + (1,059 x 10.0485)
1,145.3 + 10,641.4
11,787 words

Critical:

l - 28 log2 (28) + 51 Iog 2 (51)
(28 x 4.807) + (51 x 5.672)
135 + 289
424 words

d. Calculate the Volume, V, as follows:

V - Nlog2v bits

Halstead Metric Application Analysis 17

* This metric calculates the number of binary digits required
to iniquely iepresent all of the operators and operands that
occur in a module of Length, N, and Vocabulary, q. It is not
primarily a measure of the size or complexity of the function
programmed, but a measure of the size of a particular
implementation of the function.

* Volume is not an additive quantity.

The values for each category of code were as follows:

Nonessential:

V - 26,743 iog 2 (1,547)
26,743 x 10.5952575
283,348.971 bits

Essential:

V - 20,069 iog 2 (1,216)

20,069 x 10.2479275
205,665.657 bits

Critical:

V - 365 log2 (79)
365 x 6.30378

2,300.88 bits
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e. Calculate the Potential Volume, V*, as follows:

V* - (2 + q2*)iog2(2 + '7*) bits

where 172* is the sum of the number of unique inputs and outputs for the
module.

Halstead Metric Application Analysis 18

* This metric calculates the number of binary digits required
to represent the function of a module in its most efficient
form, namely two operators (i.e., one that says "do the
function", and another that groups the operands with the
operator) and all the operands that the function requires.

* Potential Volume is not an additive quantity.

The number of inputs and outputs for the code is not known, so no
calculation of Potential Volume can be made.

f. Calculate the unitless ratio, Program Level, L, as follows:

V

Halstead Metric Application Analysis 19

* This metric calculates how efficiently the module is
implemented. As the Vocabulary and/or Implementation Length
decrease (s), the Program Level increases, i.e., the module is
written at a higher level because each word carries more weight.

* The Program Level is not an additive quantity.

The Potential Volume could not be calculated, so no direct calculation of
Program Level was made.

g. Alternatively, if the number of unique inputs and outputs is not known,
the Estimated Program Level, L, can be calculated from the basic counts,
as follows:

L - 2 172

th N2
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The values for each category of code were as follows:

Nonessential:

L - (2 x 1,418)/(129 x 11,602)
- 2,836/1,496,658

0.00189488848

Essential:

L - (2 x 1,059)/(157 x 8,676)
- 2,118/1,362,132
* 0.00155491538

Critical:

L - (2 x 51)/(28 x 160)
- 102/4,480

0.0227679

h. Calculate the Intelligence Content, I, as follows:

2 '12
x (Ni + N2 )log 2(1 1 + '72) bits171 K2

Halstead Metric Application Analysis 20

This metric simply calculates the product of the Estimated
Program Level (how efficiently the module is implemented) and
Volume (the size of the implementation) of a module. It
represents that constant quantity of information that is present
in any implementation of a particular function, in any language,
at any level. This quantity is basically an estimated Potential
Volume of the program; I and V* can often be used
interchangeably.

Intelligence Content is not an additive quantity.

The values for each category of code were as follows:

Nonessential:

I - 0.00189 x 283,349
536.9 bits

Essential:

I -0.00155 x 205,666
319.8 bits
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Critical:

1 0.02277 x 2,301
S52.4 bits

i. Calculate the Programming Effort, E, as follows:

E - V/L discriminations

Halstead Metric Application Analysis 21

This metric calculates the number of elementary mental
discriminations done by a programmer to reduce a preconceived
algorithm to a module of source code in a language in which the
programmer is fluent.

It is based on the assumption that, when writing a program, a
programmer selects each word of the program by mentally
searching a list of words from which to choose. Specifically,
the programmer performs a mental binary search of the vocabulary
of q words in order to select the N words used in the
implementation. Furthermore, each comparison (or mental
discrimination) in the selection process requires an effort
related to the difticulty of understanding the program. The
program difficulty is supplied by the reciprocal of the Program
Level.

This relationship indicates that the greater the Volume, or the
lower the Program Level, the greater the effort required to
write a program.

- Programming Effort is not an additive property.

Using L for L, the values for each category of code were as follows:

Nonessential:

E - 283,348.971/0.00189488848
149,533,323 discriminations

Essential:

E - 205,665.657/0.00155491538
132,268,070 discriminations

Critical:

E - 2,300.88/0.0227679
101,058 discriminations
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S j. Calculate the Estimated Programming Time, T, as follows:

E nlN2 (711og 2n1 + n2log2•2)1og 2,i
It - - - hours

3600S 7,200172S

Halstead Metric Application Analysis 22

* This metric calculates the time it takes to make the number
of elementary mental discriminations indicated for a program by
the Programming Effort. The Stroud Number, S, is the total
number of elementary mental discriminations done per second by a
person.

This calculation assumes that the programmer's attention is
entirely undivided and that the range of values found from
psychologic il experimentation, 5<S<20, applies to programming
activity.

* Estimated Programming Time is not an additive quantity.

Assuming a value for S of 18, the values for each category of code were as

follows: Nonessential:

I - 149,533,323/(3600 x 18)
2,308 hours

Essential:

I - 132,268,070/(3600 x 18)
2,041 hours

Critical:

I - 101,058/(3600 x 18)
1.6 hours

k. Calculate the Language Level, A, as follows:

A - L2V
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Halstead Metric Application Analysis 23

This metric calculates the efficiency with which algorithms
can be implemented in a particular language. For any module
written in the particular language, the Language Level should be
a constant, regardless of the Volume of the module or the
Program Level at which it is written.

Using L for L, the values for each category of code were as follows:

Nonessential:

A - (0.00189)2 x 283,349
- 1.02

Essential:

A - (0.00155)2 x 205,666
- 0.50

Critical:

A - (0.02277)2 x 2,301
- 1.19

i. Calculate the Number of Bugs, A, as follows:

B- V/E 0 bugs

where E0 is the number of discriminations per bug. E0 is determined by an
evaluation of a programmer's previous work.

Halstead Metric Application Analysis 24

Experimentation has found that 3,200 discriminations per bug
is a typical value.

The values for each category of code were as follows:

Nonessential:

- 283,349/3,200
89 bugs
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* Essential:

B- 205,666/3,200
64 bugs

Critical:

B- 2,301/3,200
0.7 bugs

Step 9. Calculate the SQMs defined in step 1 of this case.

a. Calculate the Efficiency quality factor, as follows:

- # of modules with L > 0.05
Efficiency - total number of modules % compliance

Halstead Metric Application Analysis 25

This metric is not a measure of efficiency, but the extent to
which the desired efficiency was present. This makes it a
measure of quality.

The value for the code can be calculated from the data in appendix C.

Efficiency - 42/145
- 29..0% compliance

Since 100 percent compliance was specified, the development process clearly
needed refining, if the code size efficiency goal was to be met.

b. Calculate the Maintainability quality factor, as follows:

# of modules that met the goal
Maintainability - total number of modules % compliance

The value for the code can be calculated from the data in appendix C. (The
noncompliant data are flagged with an asterisk.)

Maintainability - 119/145
- 82.1% compliance

Thus, the maintainability goal was met on the first check. Furthermore,
the 26 noncompliant modules were reviewed and several of them were reduced
in size.
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c. Based on the total Programming Effort units for the code, the 28 programmers

were assigned as follows:

Nonessential: 15 programmers

Effort per programmer - 149,533,323/15
10.0 million units

Essential and critical: 13 programmers

Effort per programmer - 132,369,128/13
= 10.2 million units

This assignment gave less than a three percent variation in programmer
load. Similar calculations were made to determine how many modules to
assign to each programmer.

d. Generally, for each module of essential code, testing was performed until
the predicted number of bugs was found. If less than one bug was predicted,
no testing was done. For some modules predicted to have bugs, none were
found. These were tested until path coverage was obtained.

e. Calculate the Testability, as follows:

- # of modules with A < 1
Testability - total # of modules % compliance

The value for the critical modules of the code can be calculated from the
data in appendix C.

Testability - 2/2
- 100% compliance

f. Calculate the Consistency, as follows:

# of modules with L within a
Consistency - total # of modules % confidence

The initial value for the essential and critical modules of the code can
be calculated from the data in appendix C. (The noncompliant data are
flagged with an asterisk.)

Consistency - 54/61

- 88.5% compliance

Four modules were refined to meet the 95 percent compliance required.

g. The Intelligence Content metric indicated that the module, ESSENT34, would
result in the largest object module. Therefore, the protected area of
memory was made 10 percent larger than the actual size of this module's
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object code. This size successfully containeu all the other essential and

critical object modules.

h. Calculate the Integrity, as follows:

# of modules with N < 250
Integrity - total # of modules % compliance

The value for the critical modules of the code can be calculated from the
data in appendix C.

Integrity - 2/2
- 100% compliance

3.4.2 Certification Conclusions

For certification purposes, it should be determined whether the metrics, as
applied, were indeed reliable indicators of the properties measured. It sho~id
also be determined whether such measures equivalently fulfill the requirements
of the certification guidelines. This determination can be based on the
experience of the developer, the experimentation performed by the developer, or
the experimentation that the developer references, as documented in the
certification package. It can also be based on the experience of the CE or on
reference by the CE to the handbook data sheets.

Eased on these inputs, the SQM performed Pre evaluated to see if they help the
CE answer any of the certification determinations posed in section 3.3. This
evaluation addresses each SQM in the order in which they were specified in step
1.

a. The code size efficiency SQM was used to substantiate that the software
requirements had been met. However, the relationship of L to object code
size has not been established by experimentation. Furthermore, it has not
been established that a program written with an Estimated Program Level of
0.05 is considered a very efficient program, or that the much lower vrlues
measured indicate that the .iodules are very inefficient.

Halstead Metric Application Analysis 26

The CE would likely conclude that this SQM does not fulfill
the requirements analysis recommended by RTCA/DO-178A, paragraph
6.2.5.3.1, for essential and critical software. This SQM does
not establish whether the efficiency requirement was or was not
met.

b. The use of the Maintainability SQM indicates that the v' veloper subjected
the code to a responsible, quantitatively controlled development process.
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Halstead Metric Application Analysis 27

First, the CE should compare this software development
project to those of the experiments on Maintainability. The CE
would then likely conclude that this SQM offers some assurance
that the software was developed by a process appropriate to the
software level, as recommended by RTCA/DO-178A, paragraph 6.2.1.

c. Since the debugging load was balanced using the Programming Effort software
metric, the developer maintains that it is more likely that the modules
are consistently debugged and that they operate properly. Otherwise, some
programmers would have been overloaded and their search for bugs would have
been truncated in order to keep or schedule.

Halstead Metric Application Analysis 28

First, the CE should compare this software development
project to those of the experiments on debugging times. The CE
would then likely conclude that this SQM offers some assurance
that the software will operate at the required level of
performance.

d. Since the testing of essential modules was regulated with the Number of
Bugs metric, the developer maintains that the modules are likely to have
fewer bugs than if this criterion had not been established.

Halstead Metric Application Analysis 29

; First, the CE should compare this software development
project to those of the experiments on the number of bugs found
during testing. The CE could then conclude that this SQM offers
some assurance that the software will operate at the required
level of performance. However, this metric is not as assuring
as others since it claims to be an absolute, rather than a
relative measure.

e. Since the critical modules met the Number of Bugs threshold, the developer
maintains that they are more easily tested than the other modules. Testing
will not be inhibited by undetected coding errors.

Halstead Metric Application Analysis 30

* First, the CE should compare this software development
project to those of the experiments on the number of bugs found
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during testing. The CE could then conclude that this SQM offers
some assurance that the critical code has been subjected to a
more demanding development process. However, this metric is not
as assuring as others since it claims to be an absolute, rather
than a relative measure. Particularly, the critical code
satisfied the absolute level, as coded. It is possible that the
nonessential and essential code would also have satisfied the
absolute level, as coded.

f. The developer used the Estimated Program Level to regulate the consistency
of the essential and critical modules with the programming standards.
Thus, their consistency was checked but the consistency of the nonessential
modules was not. Furthermore, this check resulted in improvements.

Halstead Metric Ap- Lcation Analysis 31

First, the CE should compare this software development
project to those of the experiments on Estimated Program Level.
The CE would then likely conclude that this SQM offers some
assurance that the software was developed by a process
appropriate to the software level, as recommended by
RTCA/DO-178A, paragraph 6.2.1. Regardless of the applicability
of the experiments, the SQM resulted in inconsistencies being
detected and corrected.

g. The Intelligence Content metric was not used in a way that relates to any
certification concerns.

h. Since the critical modules met the Program Length threshold, the developer
maintains that they have more integrity than the other-modules.

Halstead Metric Application Analysis 32

* First, the CE should compare this software development
project to those of thE experiments on Program Length. The CE
could then conclude that this SQM offers some assurance that the
critical code has been subjected to a more demanding development
process. However, this metric is not as assuring as others
since it was used as an absolute measure, rather than a relative
measure. Particularly, the critical code satisfied the absolute
level, as coded. It is possible that the nonessential and
essential code would also have satisfied the absolute level, as
coded.

This developer could not use SQM to substantiate test coverage, as defined in
RTCA/DO-178A, paragraph 6.2.5.3.2, because Halstead's softwarp metrics do not
measure anything that substantiates structural test coverage.
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In this example, the developer used both software metrics and SQM to analyze
the flight control code being developed. The metrics were applied in various
ways and for various purposes. In all cases, the metrics provided a quantitative
analysis of the software product. This analysis was used to assess, and
sometimes improve, the software development product and process.

3.5 Case #2: Software Quality Metrics Based on McCabe's Software Metrics

In this case, the developer used McCabe's software metrics to assess the code
quantitatively. To do this, the developer followed the steps described in the
next section.

3.5.1 Metric Application and Analysis

Step 1. Specify the quality factors of concern and select the correlating
software metrics for code in each category of criticality.

McCabe Metric Application Analysis 1

The correlation of the selected quality factor to the
selected software metric should be substantiated by previous
experimentation, otherwise the SQM is based solely on intuition.

a. This developer was concerned that the code developed would be easy to
maintain. Therefore, a software metric that correlated to maintainability
was used for all three levels of code. The software measure, Cyclomatic
Complexity, was chosen. Any module that exceeded the initial calculation
of the average value, plus one standard deviation for its category, was to
be singled out, possibly to be reduced. Since this metric is easily
calculated by a software tool, it was well worth the effort to calculate
it for all modules.

McCabe Metric Application Analysis 2

The relationship of maintainability to McCabe's Cyclomatic
Complexity measure is well established by experimentation.
However, the CE can accept this SQM as a reliable indicator of
maintainability improvement only if the code being developed
belongs to the same population of code on which the experiments
have been performed.

The developer properly used this SQM to indicate which modules
should be improved because they would require abnormal amounts
of maintenance time. The developer did not propose any improper
claims of absolute times or levels of maintainability. Since
the threshold is set somewhat arbitrarily, it is essential that
those modules that exceed it receive a special review to
determine if the constraint can reasonably be applied.
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b. Since the Cyclomatic Complexity of each module is a reasonable indicator
of the relative number of errors to debug, this measure was used to balance
the workload during the debugging phase. Each programmer who was to debug
modules was assigned an approximately equal number of Cyclomatic Complexity
units to debug.

McCabe Metric Application Analysis 3

McCabe's Cyclomatic Complexity metric has been shown to
correlate strongly to the number of errors found in program
modules (Walsh 1979; and Henry, Kafura, and Harris 1981).
Nevertheless, because of variations in program size and
programmer capability, the developer was right to limit its use
to indicating the relative amount of debugging effort required.

The CE should be sure that the experiments substantiating such a
relationship apply to the environment of this project.

c. Since critical modules require structural coverage analysis for assurance
of testing adequacy, the developer chose to perform a branch coverage
analysis to determine the test cases to use. The Cyclomatic Complexity of
each module was used to specify a number of test cases that would ensure
branch coverage. The developer recognized that it is sometimes possible
to satisfy branch coverage with even fewer test cases, but the ease of
calculating v(G) justified its use.

McCabe Metric Application Analysis 4

The Cyclomatic Complexity Metric does give a number of test
cases sufficient to ensure branch coverage but does not
guarantee that the developer chose the proper test cases.

RTCA/DO-178A, paragraph 6.2.5.3.2, recommends using structured
coverage analysis to ascertain which test cases constitute
testing adequacy of the elements of critical modules. This SQM
cannot be accepted as an equivalent (RTCA/DO-178A, paragraph
1.1) to the full analysis required, since it only establishes
the number of cases, not the validity of each case.

The CE can at least note that the developmcLL. process is being
subjected to the disciplined approach of quantitative control
(RTCA/DO-178A, paragraph 1.1).

d. Since the critical modules would be subjected to more rigorous testing, it
was of particular interest that they rate high in testability. In
particular, it was desired to minimize the number of coding errors that
would be discovered during testing so that testing could focus on functional
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performance. Therefore, before testing began, all critical modules had to
be coded so that the Cyclomatic Complexity was no more than 10. Cyclomatic
Complexity was used to measure testability.

McCabe Metric Application Analysis 5

This SQM is a particularly useful one. A study found that
not only was the number of errors positively correlated to v(G),
but that modules with v(G) greater than 10 showed a
disproportionate number of errors compared to those with v(G)
less than 10 (Walsh 1979). For the AEGIS Naval Weapon System
software, the absolute measure, v(G)-l0, was a threshold for
error prone modules.

e. The developer reasoned that the module size limitation and the testing
proposed were insufficient to uncover the complicated exceptions to simple
program control flow that results from unstructured programs. The developer
chose to measure the proportion of structured programming in the critical
modules with the Essential Complexity metric, and to use this as an
indicator of the module integrity. Not only would these modules be limited
to 10 branch conditions, but of the 10, the developer required that a
minimum of half of them be structured. This requires an Essential
Complexity of five, at most.

McCabe Metric Application Analysis 6

The Essential Complexity certainly measures the amount of
structure in the module control flow, but how strongly it
correlates to program integrity has not been established. The
developer based this choice on intuition. The CE should require
that the developer substantiate this relationship.

Step 2. Specify the level of quality considered acceptable for each SQM.

a. For the Maintainability quality factor, the developer required that at
least 80 percent of the modules not exceed the limit.

b,c. No quality goals were set for the debugging effort or the number of test
case metrics. These metrics were used as inputs into the management of the
software development process, rather than as a specification for the
product.

d. For the Testability quality factor, the developer required 100 percent
compliance of the critical modules to the Cyclomatic Complexity threshold.

e. For the Integrity quality factor, the developer required 100 percent
compliance of the critical modules to the Essential Complexity threshold.
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* With these preliminary selections, development began. After the code was
written, the following metric steps were taken.

Step 3. Define the rules for identifying and counting program control flow
conditions. The rules may be contained in a lookup table or may consist of rule
statements.

McCabe Metric Application Analysis 7

* The predicate portion of a conditional branch of program
control flow may contain more than one condition. The condi-
tions must be identified and counted, not just the predicates.

a Unconditional branching does not contribute to the count of
program control flow conditions.

. The occurrence of a conditional branch keyword that was not
anticipated by the rules will deflate the condition count. For
instance, if a CALL-on-carry-true occurs, but CALLC was not put
in the lookup table, this branch condition will not be counted.

. A conditional branch manifested in a way that was not
anticipated by the rules, will deflate the condition count. For
instance, if a CALL-on-not-zero-true may be abbreviated to
CALLN, but the lookup table only contains the expanded form,
CALLNZ, an occurrence of the branch condition in the form CALLN
will not be counted.

. In Assembly language, a jump to an indirectly addressed
pointer constitutes a case structure which has many branch
conditions. The number of unique modifications made to the
referenced memory location determines the number of branch
conditions produced in this manner.

0 A keyword that accidentally satisfies the rules will inflate
the condition count. This would only occur if the rules were
less stringent than the language processor.

a The rules are necessarily different for every computer
language or language variation. They are very closely tied to
the rules used in the interpreter, compiler, or assembler. It
is assumed that the code has been translated, without error, by
one of them. Code from a different language processor will
produce unreliable results.

8 Different people will probably define the rules differently.
The various sets of rules may produce similar results most, but
not all of the time.
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For this case, the software metric tool, PC-Metric, was used to calculate
McCabe's software metrics. PC-Metric uses a reserved word file as a lookup table
of which keywords delineate conditional branch predicates. In addition, other
rules are followed. Since this metric is based on program control flow, it does
not apply to program comments and declarations. Thus, PC-Metric filters out
comments, and declarative keywords are put in the keyword file and flagged that
they are not to be counted. Typical entries in the reserved word file used by
PC-Metric to calculate McCabe's metrics on Z80 Assembly code would be as follows:

1 ASEG
1 DEFB
A CALL
3 CALLC
3 CALLZ
A JP
4 JP(IX)
3 JPC
3 JPZ
A RET
3 RETC
3 RETZ

where the "3" flags a keyword/condition combination that delineates a statement
with a single branch condition, the "4" flags a keyword/condition combination
that delineates a statement with multiple branch conditions, the "A" flags an
unconditional variant of a keyword that often delineates a statement containing
a conditional branch predicate, and the "I" flags declaration words.

A case structure is the only compound predicate that Z80 code contains. PC-
Metric maintains an Extended Complexity Count for these statements. The Extended
Complexity count is equal to the Cyclomatic Complexity count, which counts all
the branching statements, plus the number of those branchihg statements that
contain multiple branch conditions.

McCabe Metric Application Analysis 8

The calculations produced by a software metric tool reflect
all the user-defined rules and all the decisions built into the
program code. The only way to ensure a repeatable, predictable
measure for comparison to some previous measure, is to maintain
configuration control of the software metric tool and of the
code being analyzed. Then, comparisons can safely be made only
between two measurements that claim to be produced by, for
example, PC-Metric, Version 1.3, on code successfully assembled
by the Z80 Assembler, Version 2.6.

To further ensure the accuracy of the measurements, it is
essential to use the software metric tool to analyze a test case
for which the values can be manually calculated for compdrison.
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This will ensure that the proper attribute is measured, and is
measured accurately.

Step 4. Define the segment of code that constitutes a module.

McCabe Metric Application Analysis 9

* A module can be defined trivially as a single statement, or
as the next smallest independent function, or a subroutine,
program, subsystem, or the entire system of programs. In
general, the larger the module is defined, the larger the value
of the Cyclomatic Complexity.

N The Cyclomatic Complexity measure requires that every
statement can be reached from the beginning of the module and
that flow continues from each statement to the end of the module
(McCabe 1976). When this is not the case, the segment of code
includes more than one independent module.

A file was taken to be a module, since each file constituted a partition
categorized, for certification purposes, as nonessential, essential, or critical.
In general, this meant that a module was the same as an Assembly language
subroutine. However, in some cases, fi-es contained internal subroutines and/or
additional external subroutines. In all cases, these were lumped together as
a single module. The code consisted of 145 modules, thus defined.

Step 5. Define the rules for detecting the beginning and ending of each module.

McCabe Metric Application Analysis 10

* A module whose ending is not delineated, or is delineated in
a way other than as specified in the rules, might be combined
with the next module. This combination would inflate the count
for the first module and would cause the following module to go
undetected.

a A module whose beginning is not delineated, or is delineated
in a way other than as specified in the rules, might be combined
with the previous module or might be ignored. In either case,
it goes undetected.

0 If any of the code accidentally satisfies the rules for
indicating the beginning or ending of a module, the count will
likely be inaccurate.

a The rules are necessarily different for every computer
language or language variation. They are very closely tied to
the rulLs used in the interpreter, compiler, or assembler. It
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is assumed that the code has been translated, without error, by
one of them. Code from a different language processor will
produce unreliable results.

N Different people will probably define the rules differently.
The various sets of rules may produce similar results most, but
not all of the time.

The first line of each file was assumed to be the beginning of the module. The
end was generated by the EOF. There was, therefore, little ambiguity for meeting
the chosen module definition.

Step 6. Segregate the modules into categories of nonessential, essential, and
critical so that metric results can be used to aid the different development
processes required for each category of code.

Following the guidelines of RTCA/DO-178A, the developer divided the 145 modules
into 84 nonessential, 59 essential, and 2 critical.

Step 7. For each module, count the number of program control flow conditions.
Also, accumulate the measures for all modules in each category of criticality
so that metric results can be used to aid the different development processes
required for each category of code.

McCabe Metric Application Analysis 11

* The rules used to detect conditional branches must take into
account the possibility that the same word of code is to be
interpreted as a different operation, as determined by the
context. For instance, the equal sign is used in conditions,
but it is also used in assignment statements.

N It has been shown that counting control flow conditions does
not produce a strictly monotonic relationship to subjective
judgments of control flow complexity (Myers 1977). For
instance -ompound conditions result in a simpler control flow
than do 4ultiple simple ones. Myers' Cyclomatic Complexity
Interval measure quantifies complex conditions more accurately
than McCabe's measure, but the Interval measure has not achieved
much of a following.

PC-Metric accounted for most of the problems associated with the first point of
analysis mentioned above, by distinguishing between comments, declarations, and
executable code. Within executable code, all unique keywords in a module are
nearly always constrained to be unique in form by the interpreter, compiler, or
assembler.

The Z80 code presented an additional problem: the conditional branch keywords
can also be used in an unconditional form. This required that PC-Metric look
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for the keyword and a following condition, before concluding that a conditional
branch had been detected.

PC-Metric did not accurately count the case structure branches since each
occurrence of an indirect jump was simply flagged by an additional increment to
the extended complexity count. The number of cases were not counted.

Furthermore, PC-Metric had to distinguish between an asterisk in the first
character position as designating a comment, but in subsequent positions as being
the multiplication operator.

Step 8. Calculate the following derived measures.

a. Calculate the Cyclomatic Complexity, v(G), for a single module of code, as
follows:

v(G) - + 1

where x is the number of program control flow conditions.

McCabe Metric Application Analysis 12

This metric calculates the maximum number of linearly
independent paths required to form a basis set for all the paths
in a structured program. It is assumed that the program has an
additional path from its last statement back to its first
statement. Any possible path through the program can be
expressed as a linear combination of some subset of this basis
set of paths (McCabe 1976).

* A set of program path test cases cannot claim path coverage
if it does not consist of at least the number of paths in the
basis set. If it does, it still may not be a basis set.
Although a basis set provides path coverage on only a partial
path basis, at least the set of partial paths is finite. Full
path coverage assumes that every possible path, from the
beginning to the ending of the module, has been generated. A
program with loops can have an infinite number of such paths
(Prather 1983).

a This measure counts all conditions present, whether necessary
or not. For example, code may contain a condition in a context
where it will always be true. The Cyclomatic Complexity counts
the number of conditions present in the algorithm, as
implemented.

* This formula for structured programs requires that for every

branching node there is exactly one collecting node, and that
the program has unique entry and exit nodes. Exceptions to the
rules always increase v(G). As long as there are relatively few
exceptions to these rules, the Cyclomatic Complexity will be not
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be substantially affected. If there are many exceptions, the
impact of multiple exits can be corrected by computing the
following:

v(G) - w - s + 2

where "s" is the number of exits from the module (Harrison
1984). Of course, counting the number of exits requires
additional analysis. If the code is primarily structured, the
inaccuracy of the original equation is probably not significant
enough to warrant the extra effort.

. The Cyclomatic Complexity of a collection of independent
modules, as in a main program and its subroutines, is simply the
sum of tLe Cyclomatic Complexities for each module. It is
improper to calculate the total Cyclomatic Complexity by
analyzing all the modules as if they were one continuous
sequence of code. In this case, the value is deflated by the
number of modules in the collection minus one.

The Cyclomatic Complexity for each module of the code is listed in appendix
C. The Cyclomatic Complexity for each category of code is shown in table
3.5-1. PC-Metric calculated these totals in the manner just warned against
in the last point of Analysis Box 12. This can be seen by comparing the
critical code total to the individual counts. Thus, the values in table
3.5-I are understated by the number of modules in the category minus one.

TABLE 3.5-1. CYCLOMATIC COMPLEXITY, BY CODE CATEGORY

Nonessential Essential Critical

v(G) 821 730 13

b. The Essential Complexity, ev(G), can be calculated from the control graph

of a prograr as follows:

ev(G) - v(G) - m

where "m" is the number of proper subgraphs, those structured subgraphs

which contain no further subgraphs.

McCabe Metric Application Analysis 13

; This is a measure of the amount of unstructured code in a
program. The smaller the value of ev, the greater the
proportion of structured code. The Essential Complexity of a
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structured program is one. Greater values for the Essential
Complexity of a module indicate the size of the non-structured
portion of the code; that code that does not conform to the
proper subgraph structure (McCabe 1976).

SLike the Cyclomatic Complexity, this measure also reflects
the state of the algorithm, as implemented. It does not
indicate whether the conditions, as implemented, are necessary
to the solution of the problem that the algorithm claims to
solve.

From the program control graphs in appendix C, it was determined that the
first module contained one proper subgraph and the second module contained
four. The values for the critical modules are shown in table 3.5-2.

TABLE 3.5-2. ESSENTIAL COMPLEXITY DATA

v(G) m ev(G)

CRITI001 6 1 5
CRITI002 8 3 5

Step 9. Calculate the SQM defined in step 1 of this case.

a. Calculate the Maintainability quality factor, as follows:

Maintainability # of modules that met the goaltotal number of modules % compliance

The value for the code can be calculated from the data in appendix C. (The
noncompliant data are flagged with an asterisk.)

Maintainability - 125/145
- 86.2% compliance

Thus, the maintainability goal was met on the first check. The 20
noncompliant modules were reviewed, and some were reduced by separating
some of the code into independent modules.

b. Based on the total Cyclomatic Complexity units for the code, the 21
programmers were assigned modules to debug, as follows:

Nonessential modules: 11 programmers

Complexity units - 821/11

- 74.6 units per programmer
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Essential and critical modules: 10 programmers

Complexity units - 743/10 0
- 74.3 units per programmer

This assignment gave less than a one percent variation in programmer load.
Similar calculations were made to determine how many modules to assign to
each programmer.

c. The number of test cases required by McCabe's Cyclomatic Complexity for
ensuring branch coverage was generally reasonable. The highest of the
average values for each of the three categories was 14. However, 20 had
values that exceeded 22. For these, alternate methods for determining the
required number of test cases were used.

d. Calculate the Testability, as follows:

Testability - # of modules with v(G):10 % compliancetotal # of modules

The value for the critical modules of the code can be calculated from the
data in appendix C.

Testability - 2/2
- 100% compliance

e. Calculate the Integrity, as follows:

# of modules with ev(G)•5 % compliance
Integrity - total # of modules

The value for the critical modules of the code can be calculated from the
data in table 3.5-2.

Integrity - 2/2
- 100% compliance

3.5.2 Certification Conclusions

For certification purposes, it should be determined whether the metrics, as
applied, were reliable indicators of the properties measured. It should also
be determined whether such measures equivalently fulfill the requirements of the
certification guidelines. This determination can be based on the experience of
the developer, the experimentation performed by the developer, or the
experimentation that the developer references, as documented in the certification
package. It can also be based on the experience of the CE or on references by
the CE to the handbook data sheets.

Based on these inputs, the SQM performed are evaluated to see if they help the
CE answer any of the certification determinations posed in section 3.3. This
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evaluation addresses each SQM, in the order in which they were specified in step
1.

a. The use of the Maintainability SQM indicates thau the developer subjected
the code to a disciplined, quantitatively controlled development process.

McCabe Metric Application Analysis 14

First, the CE should compare this software development
project to those of the experiments on Maintainability. The CE
would then likely conclude that this SQM offers some assurance
that the software was developed according to a disciplined
approach, as recommended by RTCA/DO-178A, paragraph 1.1.

b. Since the debugging load was balanced using the Cyclomatic Complexity
metric, the developer maintains that it is more likely that the modules
are consistently debugged and that they operate properly. Otherwise, some
programmers would have been overloaded and their search for bugs would have
been truncated in order to keep on schedule.

McCabe Metric Application Analysis 15

First, the CE should compare this software development
project to those of the experiments on debugging times. The CE
would then likely conclude that this SQM offers some assurance
that the software will operate at the required level of
performance.

c. Since the testing of critical modules was regulated by the Cyclomatic
Complexity, the developer maintains that branch coverage has been achieved.
Otherwise, it would be possible to test an insufficient number of cases.

McCabe Metric Application Analysis 16

The CE would likely conclude that this SQM offers some
assurance that test coverage is obtained, as recommended by
RTCA/DO-178A, paragraph 6.2.5.3.2. However, this metric gives
the CE no assurance that the developer picked unique and
comprehensive test cases. The developer may have perfo-med the
specified number of test cases, but this SQM does not ensure
that the test cases used were a comprehensive set.

d. Since the critical modules met the Cyclomatic Complexity threshold, the
developer maintains that they are more testable than the other modules.
Testing will not be inhibited by undetected coding errors.
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,McCabe Metric Application Analysis 17

First, the CE should compare this software development
project to those of the experiments on testing time. The CE
could then conclude that this SQM offers some assurance that the
critical code has been subjected to a more demanding development
process, appropriate to the software level, as recommended by
RTCA/DO-178A, paragraph 6.2.1. However, this metric is not as
assuring as others since it claims to be an absolute measure,
rather than a relative measure. Particularly, the critical code
satisfied the absolute level, as coded. It is possible that the
nonessential and essential code would also have satisfied the
absolute level, as coded.

e. Since the critical modules met the Essential Complexity threshold, the
developer maintains that they have more integrity than the other modules.

McCabe Metric Application Analysis 18

First, the CE should compare this software development
project to those of the experiments on Essential Complexity.
The CE could then conclude that this SQM offers some assurance
that the critical code has been subjected to a more demanding
development process, appropriate to the software level, as
recommended by RTCA/DO-178A, paragraph 6.2.1. However, this
metric is not as assuring as others since it was used as an
absolute measure, rather than a relative measure. Particularly.
the critical code satisfied the absolute level, as coded. It is
possible that the nonessential and essential code would also
have satisfied the absolute level, as coded.

McCabe's metrics did not address whether any of the requirements stated for this
software were fulfilled. Thus, the developer (lid not use SQM in the requirements
analysis recommended by RTCA/DO-178A, paragraph 6.2.5.3.1.

In this example, the developer used both software metrics and SQM to analyze
the flight control code being developed. In either case, the metrics provided
a quantitative analysis of the software product. This analysis was used to
assess and sometimes improve the software development product and process.

3.6 Case #3: Software Quality Metrics Based on RADC's Software Metrics

In this case, the developer used SQM of the type developed by the RADC to assess
the code quantitatively. In particular, the methodology developed by Bowen,
Wigle, and Tsai (1985) was used. The developer followed the steps described in
the next section.
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. 3.6.1 Metric Application and Analysis

Step 1. Define the groups of modules that have different quality factor
requirements and specify the quality factors of concern for each, based on the
functions that each group supports.

RADC Metric Application Analysis 1

* The SQM developed by RADC are based on a predefined set of
user-oriented quality factors. From this set, the developer
selects the factors which apply to each group of modules.

These factors have been carefully defined to produce a
comprehensive set of relatively independent factors.
Furthermore, the SQM that use them have been shown to give
meaningful, repeatable results in experiments. However, the CE
can accept these SQM as reliable only if the code being
developed belongs to the same population of code on which the
experimcntb have been peiformed. Otherwise, the SQM
relationships are based solely on intuition.

N The quality factors are not totally independent of one
another. Some are complementary. A factor that is complemented
by another but selected by itself will result in a false
indication of the total quality present. All factors
complementary to one that was specified should also be
specified.

For this avionic code project, the developer chose to lump all the code into one
group, since it all contributes to the single function: flight control. The
developer specified that Maintainability, Expandability, and Reusability were
to be measured for all the code. Because the developer was using SQM for the
first time, the more crucial factors, Reliability, Correctness, and
Verifiability, were assured by conventional testing strategies, rather than by
SQM. Since the strength of the factors complementary to Maintainability, namely
Reliability and Correctness, was also assured, the SQM results for
Maintainability would be meaningful.

Maintainability was considered important because flight control code is usually
modified many times during the lifetime of the aircraft. Expandability was
important because the same code was to be used in several models of the same
aircraft, some of which required many additional features. Reusability was
important because reusing code is profitable.

Step 2. Specify the level of quality considered acceptable for each factor
selected for each group, based on the importance of that factor for the
particular system function served, a survey of important factors, the factor
interrelationships, and the impact on costs.

17-49



RADC Metric Application Analysis 2

* Some of the factors have negative interrelationships. When
these are selected, high levels cannot be achieved for all of
them; the levels must be balanced. This compromise results in
lower quality factor scores than would be otherwise attainable.

, When factor scores are specified and calculated, numeric
scores arc used. However, when the quality goals are chosen,
they should be based on a qualitative approximation of the
importance of each factor. For instance, one must choose
whether the code must have Excellent, Good, or Acceptable
Reliability. These are the qualitative levels recommended for
the Air Force. They are correlated to the numeric scores as
follows (Lasky, Kaminsky, and Boaz 1990):

Excellent t 0.9
Good 2 0.8

Acceptable • 0.7

The level of quality considered acceptable varied for the software criticality
categories. The developer made the specifications shown in table 3.6-1.

TABLE 3.6-1. QUALITY FACTOR GOALS, BY CODE CATEGORY

Quality Factor [ Nonessential Essential Critical

Maintainability Excellent Excellent Good
Expandability Excellent Excellent Good
Reusability Acceptable Good Acceptabhe

The Maintainability quality factor was especially important for the non-critical
code, since it is subjected to the most revision. This quality factor was not
as important for critical code. Critical code is usually subjected to the most
thorough testing, and therefore requires less maintenance. It receives fewer
enhancements because the certification process for critical code is so rigorous
that a developer avoids making any changes which would require recertification.

The Expandability quality factor was important because it was planned that the
code would be used in all the models of the particular aircraft. It was
especially important for the non-critical code to be expandable because most of
the enhancements were to be made to non-critical code.

The Reusability quality factor was important for all the code because reusing
code saves money. This more demanding goal was set for essential code which
must be reusable with a minimum number of modifications, since modifications to
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essential code must all be recertified. In general, critical code must be
written from scratch for each application. There is less demand that it be
reusable.

RADC Metric Application Analysis 3

* These three factors are complementary to one another.
Therefore, it was reasonable for the developer to expect to
attain all the quality goals specified.

. The CE should note that the development process is being
subjected to the disciplined approach of quantitative control
for the purpose of ensuring a process commensurate with the code
criticality, as required by RTCA/DO-178A.

Step 3. Identify the criteria assigned to each selected quality factor and
specify a weighting factor for each, based on the importance of the criterion
for the particular function served, the interrelationships of the criterion with
the selected factors, and the impact on costs.

RADC Metric Application Analysis 4

* The criteria are a predefined set of software characteristics
assigned to the quality factors to which they contribute. These
criteria have been carefully defined to produce a comprehensive

set of relatively independent criteria for each factor. They
have also been shown to give meaningful, repeatable results when
used in SQM experiments. The developer assigns a weighting
factor, from zero to one, to multiply by the scQre of each
criterion. A weight of zero is assigned to those criteria that
are not to be counted. The sum of the weighting values for each
factor must be one.

a The criteria are not totally independent of other factors.
Some may contribute to more than one of the selected factors.
These may each be weighted lower so that one characteristic does
not contribute too heavily to the total quality. Some may
conflict with other factors. These may be weighted lower so
that the quality goal for each factor can be attained, based on
the strength of other criteria.

The Maintainability criteria, with the specified weighting factors, are shown
in table 3.6-2.
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TABLE 3.6-2. MAINTAINABILITY CRITERIA

Criterion Weight

Consistency 0.0
Visibility 0.0
Modularity 0.5
Self-Descriptiveness 0.5
Simplicity 0.0

The Expandability criteria, with the specified weighting factors, are shown in
table 3.6-3.

TABLE 3.6-3. EXPANDABILITY CRITERIA

Criterion Weight

Augmentability 0.0
Generality 0.6
Virtuality 0.0
Modularity 0.2
Self-Descriptiveness 0.2
Simplicity 0.0

The Reusability criteria, with the specified weighting factors, are shown in
table 3.6-4.

TABLE 3.6-4. REUSABILITY CRITERIA

Criterion Weight

Application Independence 0.0
Document Accessibility 0.0
Functional Scope 0.3
Generality 0.3
Independence 0.0
System Clarity 0.0
Modularity 0.2
Self-Descriptiveness 0.2
Simplicity 0.0
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Each criterion was of equal relevance to the nonessential, essential, and
critical code. Therefore, the function of the code was not a factor in
determining the weights. Other concerns determined the specified weights.

In order not to complicate the learning process, the developer chose the minimum
set of criteria that would exercise the different ways that criterion scores are
combined. To reduce the cost of calculating the metrics, criteria that were
based on easily automatable metrics were favored. Other criteria were assigned
a zero weight.

Generality and Self-Descriptiveness were chosen because they represent criteria
that are the most cost-effective to measure; they contribute to more than one
factor. Modularity was chosen for that reason, and also because it represents
a metric that is based on a combination of metric elements. Functional Scope
was chosen as representative of criteria that do not contribute to any other
factor.

Modularity and Self-Descriptiveness were weighted less heavily for the
Expandability and Reusability factors so that those factors could be
distinguished from Maintainability by the other criteria. This also keeps these
criteria from having too large an impact on the overall quality. Since none of
the chosen criteria exhibit noticeable interrelationships with the other factors
measured, there was no reason to otherwise weight the criteria unevenly.

RADC Metric Application Analysis 5

This weight specification is a fairly reasonable one. It is
especially important that the developer recognized the need to
distinguish the factors from each other by emphasizing the
unique criteria for each. It would have been even better if the
number of unique criteria had been increased to match or exceed
the number of criteria common to other factors. The developer
also simplified the weighting process by using criteria that did
not negatively impact any of the measured factors.

Step 4. Identify the metrics assigned to each criterion and specify which metric
elements are to be measured, based on the applicability of the metric element
to the particular system and the cost of measuring the metric element.

RADC Metric Application Analysis 6

The metrics are a predefined set of software-oriented details
assigned to the criterion to which they contribute. These
metrics have been carefully defined to produce a set of
independent metrics for each criterion. They have also been
shown to given meaningful, repeatable results when used in SQM
in experiments. The developer chooses to use those that Apply
and that will not cost more to measure than is gained from doing
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* Metric elements must all be defined in the same sense, such
that an increase in any metric score produces an increase in the
associated quality factor score.

. Because the factor scores are based on these metric
questions, the SQM goals can be used to improve the software.
If a goal is not met, simply fix the individual metric element
failures to achieve a higher quality.

The metric elements to be calculated were selected from Metric Worksheets 4A and
4B (Bowen, Wigle, and Tsai 1985). Each criterion is usually based on many
metrics, and each metric is usually based on several metric elements. In this
case, only those metric elements that were easily automated were selected. Thus,
the metric, MO.I, was based on two elements and SD.2, GE.I, and FS.I were based
on only one. These metric elements are listed in table 3.6-5. With these
preliminary selections, development began. After the code was written, the
following metric steps were taken.

TABLE 3.6-5. SELECTED METRIC ELEMENTS

Criterion Metric Element Number and Description

Modularity MO.l(3) - Are the estimated lines of source
code for this unit 100 lines or
less, excluding comments?

MO.l(7) - Is control always returned to the
calling unit when execution is
completed?

Self-Descriptiveness SD.2(l) - Are there prologue comments which
contain all information in
accordance with the established
standard?

Generality GE.l(l) - How many units are called by more
than one other unit?

Functional Scope FS.'(2) - Is a description of the function(s)
provided in the comments?

Step 5. Define the rules for identifying and counting metric element objects
and for calculating factor scores. The rules may be contained in a lookup table
or may consist of rule statements.
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RADC Metric Application Analysis 7

* The occurrence of a metric element object that was not
anticipated by the rules will deflate the element count. For
instance, if a comment count detects comment lines but not in-
line comments, the measure of the amiount of commenting would be
deflated.

* A metric element object manifested in a way that was not
anticipated by the rules will deflate the element count. For
instance, if a nesting indentation check required that each
level be indented with three spaces, but the code was
consistently indented with a tab of three spaces, the code
indentation would not be counted.

a Code that accidentally satisfies the rules for detecting a
metric element object will inflate the element count. This
would only occur if the rules were less stringent than the
language processor.

. The rules are necessarily different for every computer
language or language variation. They are very closely tied to
the rules used in the interpreter, compiler, or assembler. It
is assumed that the code has been translated, without error, by
one of them. Code from a different language processor will
produce unreliable results.

. Different people will probably define the rules differently.
The various sets of rules may produce similar results most, but
not all of the time.

For this case, the developer wrote a program to calculate the previously selected
RADC metric elements for the Z80 Assembly code. All the rules were imbedded in
the program statements. None were in a table or otherwise user-defined.

RADC Metric Application Analysis 8

* The calculations produced by a software metric tool reflect
all the decisions built into the program code. The only way to
ensure a repeatable, predictable measure, for comparison to some
previous measure, is to maintain configuration control of the
software metric tool and of the code being analyzed. Then,
comparisons can be safely made only between two measurements
that claim to be produced by, for example, RADC-Metric, Version
1.3, on code successfully assembled by the Z80 Assembler,
Version 2.6.

It is essential to use the software metric tool to analyze a
* test case for which the values can be manually calculated for
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I comparison. This check will ensure that the proper attribute is
measured accurately.

Step 6. Define the segment of code that constitutes a module.

RADC Metric Application Analysis 9

A module can be defined trivially as a single statement, or
as the next smallest independent function, or a subroutine,
program, subsystem, or the entire system of programs. These
metrics can be applied at any level, but the detail of the
calculations makes their application prohibitive at the lower
levels. For code developed under DOD-STD-2167, it is not
recommended that they be applied any lower than the level of the
Computer Software Configuration Items (CSCI) (Lasky, KaminslVr,
and Boaz 1990).

A file was taken to be a module, since each file constituted a partition
categorized, for certification purposes, as nonessential, essential, or critical.
In general, this meant that a module was the same as an Assembly language
subroutine. However, in some cases, files contained internal subroutines and/or
additional external subroutines. In all cases, these were lumped together as
a single module. The code consisted of 145 modules, thus defined.

Step 7. Define the rules for detecting the beginning and ending of each module.

RADC Metric Application Analysis 10

* A module whose ending is not delineated, or is delineated in
a way other than as specified in the rules, might be combined
with the next module. This combination would inflate the metric
for the first module and cause the following module to go
undetected.

i A module whose beginning is not delineated, or is delineated
in a way other than as specified in the rules, might be combined
with the previous module or might be ignored. In either case,
it goes undetected.

* If any of the code accidentally satisfies the rules for
indicating the beginning or ending of a module, the metric will
likely be inaccurate.

* The rules are necessarily different for every comput r
language or language variation. They are very closely tied to
the rules used in the interpreter, compiler, or assembler. It
is assumed that the code has been translated, without error, by
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one of them. Code from a different language processor will
produce unreliable results.

a Different people will probably define the rules differently.
The various sets of rules may produce similar results mosl:, but
not all of the time.

The first line of each file was assumed to be the beginning of the module. The
end was generated by the EOF. There was, therefore, little ambiguity for meeting
the chosen module definition.

Step 8. Segregate the modules into categories of nonessential, essential, and
critical code so that metric results can be used to aid the different development
processes required for each category of code.

Following the guidelines of RTCA/DO-178A, the developer divided the 145 modules
into 84 nonessential, 59 essential, and 2 critical. These three categories were
treated as CSCIs and each module was taken to be a unit, as defined by this
methodology.

Step 9. Compute all the metrics for each module. Also, accumulate the measures
for all modules in each category of criticality so that metric results can be
used to aid the different development processes required for each category of
code.

RADC Metric Application Analysis 11

The rules used to detect a particular metric element object
must take into account the possibility that the same word of
code is to be interpreted differently, as determined by the
context. For instance, the equal sign is used in conditions,
but it is also used in assignment statements.

The custom program accounted for most of the problems associated with the above
analysis by distinguishing between comments, declarations, and executable code.
Within executable code, all uniqu.; keywords in a module are nearly always
constrained to be unique in form by the interpreter, compiler, or assembler.

Furthermore, the program had to distinguish between an asterisk in the first
character position as designating a comment, but in subsequent positions as being
the multiplication operator.

The metric element values for each category of code were calculated as follows:

Metric Element - the sum of the unit scores
the number of applicable units in the CSHI
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where each unit is scor d with either a calculated value normalized to be between
zero and one, or with a one for a yes answer and a zero for a no answer. The
values are shown in table 3.6-6. They were calculated from the data in appendix

TABLE 3.6-6. METRIC ELEMENT SCORES, BY CODE CATEGORY

Metric Nonessential Essential Critical

MO.I(3) 45/84 - 0.5 28/59 - 0.5 2/2 - 1.0
MO.1(7) 75/84 - 0.9 48/59 - 0.8 2/2 - 1.0
SD.2(1) 44/84 - 0.5 1/59 - 0.0 0/2 - 0.0
GE.l(l) 11/84 - 0.1 11/59 - 0.2 0/2 - 0.0
FS.I(2) 84/84 - 1.0 56/59 - 1.0 2/2 - 1.0

The metric scores can then be calculated form the element scores of table 3.6-6.
The Modular Implementation metric, MO.1, is calculated as follows:

MO 1 - the sum of the numerators of MO.1(3) and MO.1(7)
the sum of the denominators of MO.1(3) and MO.1(7)

The scores for the other metrics are simply equal to the value of the single
metric elements composing each. The values for each category of code are shown
in table 3.6-7.

TABLE 3.6-7. METRIC SCORES, BY CODE CATEGORY

Criterion Nonessential Essential Critical

MO0. 120/168 - 0.7 76/118 - 0.6 4/4 - 1.0
SD.2 0.5 0.0 0.0
GE.I 0.1 0.2 0.0
FS.I 1.0 1.0 1.0

RADC Metric Application Analysis 12

When a metric is based on several metric elements, several
methods can be used to combine the metric element scores into a
metric score, according to the following procedures and
considerations:

1. Direct ratio scoring adds all the numerator scores and
divides this sum by the sum of the denominator scores. This
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has the effect of treating every individual score of every
metric element equally. If one of the composing metric
element objects occurs much more frequently than the others,
(i.e., the denominator is much larger) then the metric score
primarily reflects that metric element. The others
contribute insignificantly to the metric score.

This attribute of direct ratio scoring is helpful if it draws
attention to a single frequently occurring code weakness
among many code features that are consistently and properly
implemented. It is harmful if a single frequently occurring
code strength masks many code features that are not
consiste.Ltly or properly implemented. The CE should examine
the data to determine if any negative effects Lave occurred
which would mask the true quality.

When each metric element has the same value for the
denominator, the value calculated by this method is the same
as that calculated by second order averaging.

2. Second order averaging adds all the metric element scores
together and divides the sum by the number of metric
elements. This has the advantage of giving each metric
element an equal contribution to the metric score. If one of
the ccm;osing metric elements is especially weak or strong,
it will still have an effect on the average, but not in
proportion to the number of occurrences of the code feature

* measured.

This attribute of second order averaging is helpful if only
the percentage of errors is important. It is harmful if the
number of errors of a certain type is important. The CE
should examine the data to determine if any of the negative
effects have occurred, masking the true quality.

3. Weighting factors can be introduced to tailor the impact a
particular metric element has on the metric score. Each
metric element is multiplied by a weight, between zero and
one, before the summation is perforwted. Normalization is
achieved by assuring that the sum of the weights is one.
Tit.s can be applied to either of the two types of averaging.
When weighting factors are used, the CE should examine the
weights applied to each metric element to determine if the
quality is measured accurately.

Step 10. Calculate the criterion scores, as follows:

The scores for the criteria, Modularity, Self-Descriptiveness, Generality, and
Functional Scope, are simply equal to the value of the single metric composing;
each. The values for each category of code are shown in table 3.6-8.
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TABLE 3.6-8. CRITERIA SCORES, BY CODE CATEGORY

Criterion]i Nonessential Essential Critical

MO 0.7 0.6 1.0
SD 0.5 0.0 0.0
GE 0.1 0.2 0.0
FS 1.0 1.0 1.0

RADC Metric Application Analysis 13

The methods of combining metric element scores to get a
metric score, as discussed above, also apply to combining metric
scores to get a criterion score.

Step 11. Calculate the SQM selected in step 1, and defined in step 3, as
follows:

Maintainability - (0.5 x MO) + (0.5 x SD)

Expandability - (0.6 x GE) + (0.2 x MO) + (0.2 x SD)

Reusability - (0.3 x FS) + (0.3 x GE) + (0.2 x MO) + (0.2 x SD)

The values for each category of code are shown in table 3.6-9.

TABLE 3.6-9. SOFTWARE QUALITY METRICS SCORES, BY CODE CATEGORY

Quality Factor Nonessential Essential Critical

Maintainability 0.6 0.3 0.5
Expandability 0. 3 0.2 0. 2

Reusability 0.6 0.5 0.5

RADC Metric Application Analysis 14

The methods of combining metric element scores to get a
metric score, as discussed above, also apply to combining
criterion scorps to get a factor score. The above calculations
are an example of combining by weighting second order averages.
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Criteria can contribute to more than one factor, as shown in
the calculations above. (This is not the case for the RADC
software metrics. Each software metric contributes to only one
criterio,.) When this occurs, a particular criterion can have
an exaggerated contribution to the selected SQM. Criteria
dampening is an additional method for combining criteria. This
method corrects the problem. Criteria dampening can be applied
to either the direct ratio or second order averaging scores,
whether weighted or not.

Criteria dampening scales back the contribution a particular
criterion makes to the factor scores. Each score for that
criterion is multiplied by the proportion that score represents
of the total score for that criterion for all factors. When the
criterion scores are direct ratios, criteria dampening is
achieved by multiplying each criterion score numerator by the
ratio of its denominator to the sum of the denominators. When
the criterion scores are second order averages, criteria
dampening is achieved by dividing each criterion score by the
number of factors to which it contributes. In the above
calculations, each Modularity and Self-Descriptiveness score
would be divided by three and each Generality score would be
divided by two. The weighting that was done in step 3 exhibits
a certain amount of criteria dampening that was done
intuitively, since the multiply-occurring Modularity and Self-
Descriptiveness criteria were weighted so low. Nevertheless,
the criteria dampening method was not applied.

The Maintainability quality factor was not initially achieved for any category.
The metric element scores were examined to determine how each module failed.
In general, the Modularity criterion scores were good, but the Self-
Descriptiveness scores were poor. The critical code was brought to a
Maintainability measure of one by simply entering "Not Applicable" for header
fields that did not apply to a failing module. This entry was also added, where
necessary, to the remaining code. This fix was sufficient to bring the
nonessential code into compliance, since it needed to have only good
maintainability. The essential modules required more work.

The essential code contained many modules which greatly exceeded 100 lines of
source code, and a few modules that transferred control to other modules, rather
than returning to the calling module. Seven modules were fixed by reducing the
code or restructuring the returns. This was sufficient to bring the essential
code into compliance.
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RADC Metric Application Analysis 15

Notice that this SQM not only quantified the quality of the
software product, but also directly indicated how to improve the
product. This indication makes an SQM particularly useful.

0 If the long modules had been broken into subroutines rather
than shortened, it would have produced more modules that were
called by only one other module, thus lowering the score for the
Generality criterion.

The Expandability quality factor was not initially met for any category. The
metric scores were examined to determine how each module failed. The weakness
was with the Self-Descriptiveness and Generality criteria. The previous fix for
the Self-Descriptiveness problem was applied but was insufficient to bring the
factor score into compliance. Furthermore, the Generality criterion score was
not able to be improved for any of the categories. The application was not
general enough to allow many modules to be called by more than one other module.
The developer chose to make no further improvement. The Expandability goal was
not met.

RADC Metric Application Analysis 16

From the description of the Generality metric used, the CE
can determine that the expandability required for this code will
not be significantly impacted by a low score for this metric.
The expansions required by the various models of the aircraft
would occur within single modules or by the addition of modules.
The existing module interaction would remain intact.,

The Reusability quality factor was not initially met for any category. The
metric scores were examined to determine how each module failed. The Self-
Descriptiveness and Generality criteria scores were particularly low.

Again, rhe Self-Descriptiveness fix was applied to bring its criterion score to
one. This fix sufficed to bring the critical code into compliance and the
nonessential code very close to compliance. Since the particular Generality
metric used reflects the specificity of the calling environment, rather than the
generality of the subroutines, the developer decided to deemphasize that
criterion and emphasize the Functional Scope criterion. Furthermore, 100 percent
compliance was achieved for the Functional Scope metric. By weighting Functional
Scope by 0.5 and Generality by 0.1, the non-critical code was brought into
compliance.
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RADC Metric Application Analysis 17-

Rather than arbitrarily changing the weight applied to the
Generality criterion, the developer could have added more
generality metrics in order to exhibit reusability qualities
that were present in the code, but nbt recognized. This
probably would have been sufficient to overcome the low score on
the GE.I(1) metric element. In general, a criterion should be
based on several metrics. Otherwise, the criterion is being
reduced to the presence of a single feature of code.

The final values for all the SQM are shown in table 3.6-10.

TABLE 3.6-10. FINAL SOFTWARE QUALITY METRICS SCORES, BY CODE CATEGORY

Quality Factor 1- Nonessential Essential Critical

Maintainability 0.9 0.9 1.0
Expandability 0.4 0.4 0.4
Reusability 0.8 0.9 0.9

3.6.2 Certification Conclusions

For certification purposes, it should be determined whether the metrics, as
applied, were indeed reliable indicators of the properties measured. It should
also be determined whether such measures equivalently fulfill the requirements
of the certification guidelines. This determination can be based on the
experience of the developer, the experimentation performed by the developer, or
the experimentation that the developer references, as documented in the
certification package. It can also be based on the experience of the CE or on
references by the CE to the handbook data sheets.

Based on these inputs, the SQM performed are evaluated to see if they help the
CE answer any of the certification determinations posed in section 3.3. This
evaluation addresses each of the questions, in the order in which they were
posed.

a. The use of these SQM indicates that the developer subjected the code to a
disciplined, quantitatively controlled development process.
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RADC Metric Application Analysis 18

After comparing this software eevelopment project to those of
the experiments on RADC's metrics, the CE would likely conclude
that these SQM offer some assurance that the software was
developed according to a disciplined approach, as recommended by
RTCA/DO-178A, paragraph 1.1.

b. The developer set more demanding goals for each level of criticality.
These goals regulated the amount of improvement required to make the modules
meet the goals set for them.

RADC Metric Application Analysis 19

After comparing this software development project to those of
the experiments on RADC's metrics, the CE would likely conclude
that these SQM offer some assurance that the software was
developed by a process appropriate to the software level, as
recommended by RTCA/DO-178A, paragraph 6.2.1. Regardless of the
experiments, the SQM resulted in inconsistencies being detected
and corrected.

c. RADC's metrics did not address whether any of the requirements stated for
this software were fulfilled. Thus, the developer did not use SQM in the
requirements analysis recommended by RTCA/DO-178A, paragraph 6.2.5.3.1.

d. This developer could not use SQM to substantiate test coverage, as defined
in RTCA/DO-178A, paragraph 6.2.5.3.2, because RADC's software metrics do
not measure anything that substantiates structural test coverage.

e. Maintainability and Expandability were partly performance requirements for
this software. The developer submitted these two SQM as indicators of the
extent to which those qualities were present in the delivered software.

RADC Metric Application Analysis 20

* After comparing this software development project to those of
the experiments on RADC's metrics, the CE would likely conclude
that these SQM offer some assurance that the software will
operate at the required level of performance.

In this example, the developer used SQM to analyze the flight control code being
developed. This analysis was used to assess and sometimes improve the software
development product and process.
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APPENDIX A - SOFTWARE METRIC DATA SHEETS

This appendix contains individual data sheets on each of the most prevalent
software metrics encountered in this study. The data sheets are a summary of
the concepts, constraints, criticisms, and other data needed to understand and
critically evaluate the SQM that rely on these metrics.

Although the data sheets are not primarily intended as a guide for applying the
metrics, some of the data sheets contain sufficient information that the metric
could be properly and fully calculated by following the data sheet. On the
other hand, some of the metrics are so extensive that the data sheets could not
encompass all the necessary parts. In either case, the Technical Report,
Software Quality Metrics (N. VanSuetendael and D. Elwell 1991), discusses each
of them in detail. See the references listed on the data sheet for a complete
coverage of a particular metric.

Each data sheet covers only one metric and they all contain the same fields of
information. The fields are defined only as they apply to measuring source
code. Many of the metrics can be applied more broadly, but the other pos-
sibilities are not addressed here.

O The "SQM RELATIONSHIPS" field lists those quality factors that are known to be
related to the particular software metric. This serves as a cross-reference to
the applicable Software Quality Factor Data Sheet of appendix B.

The "TOOL" information is supplied on an as-available basis. It is not to be
taken as a comprehensive list of tools available. Nor is the information to be
taken as a recommendation.

Metrics that share a common heritage of theory are grouped together by family.
The family name is given at the top of each sheet. The data sheets are arranged
alphabetically by family name. Within each family they are arranged in the
order in which they build upon each other, from the fundamental level to the
highest level. When there is no hierarchical relationship within a family, the
metric data sheets are arranged alphabetically by metric name.
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SOFTWARE METRIC DATA SHEET Albrecht Family

Function Points

This metric calculates a weighted sum of the number of elementary functions
supported by a module of source code. The functions are categorized into five
types. The number of Function Points (FP) provided to the user by a module of
source code is given by the following rule:

RULE: FP - FC x PCA

FC is the function count produced as follows:

Function Count - Number of External Inputs x 4, plus
Number of External Outputs x 5, plus
Number of Logical Internal Files x 10, plus
Number of External Interface Files x 7, plus
Number of External Inquiries x 4

where the weights given were determined experimentally. They are the values
that made the measure most accurately reflect the perceived amount of function
delivered in real projects of average complexity. PCA is the Processing
Complexity Adjustment Factor, calculated as follows:

PCA - 0.65 + (0.01 x PC),

where PC is the Processing Complexity. It is based on an estimate of the degree
of influence that each of 14 specified application characteristics (Albrecht and
Gaffney 1983) has on the complexity of the functions counted. Each characteris-
tic is assigned a "0", "i", or "2" degree of influence. Then the PC is the sum
of these 14 numbers. This produces a PCA which adjusts the function count by
±35 percent for application and environment complexity.

DOMAIN: This measure only applies to source code that implements an algorithm;
the code must perform some function that relates to user inputs, user
outputs, internal files, interface files, and/or user inquiries.

RANGE: This metric produces a real number greater than or equal to 1.3, the

number of function points in the simplest algorithm which must contain
an input and an output (assuming the lowest possible weight of one for
each category and the lowest possible PCA of 0.65).

NECESSARY CONDITIONS: The criteria for determining the inputs, outputs,
internal files, interface files, and inquiries from code must be
defined for the context. The criteria for determining whether they
are internal or external must be defined for the context. In order
to use the weights given, the practitioner must also use Albrecht's
definitions for the five types of function (Albrecht and Gaffney
1983).
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QUALIFICATIONS: This metric has been validated primarily in a data processing
system environment, rather than a real-time flight control environ-
ment. The given weights probably do not apply to code in avionic
equipments

The given weights are for programs that fall into a qualitatively
chosen category of average complexity. Different sets of weights are
given for simple or complex programs (Albrecht and Gaffney 1983).

The FP of an application is not necessarily equal to the sum of the
FP of each of its sub-applications. Thus, FP is not an additive
quantity.

CRITICAL ANALYSIS: This measure is not necessarily strictly monotonic or
repeatable. A program reader may erroneously identify an input,
output, internal file, interface file, or inquiry. In this case, an
increase in the measure does not represent an increase in the amount
of function. Furthermore, a different reader will likely judge the
attributes differently. This effect has been observed in experimental
analysis (Low and Jeffery 1990).

A problem with repeatability can also result from the arbitrariness
of establishing application boundaries. The larger the application
size, the more functions will be included. Furthermore, as the
boundary is enlarged files will shift from being external interface
files to being logical internal files. It is important that all
measurements be based on an unambiguous specification for establishing
application boundaries.

A software tool can also produce non-monotonic results. Although it
has well-defined rules for identifying the attributes, the rules will
likely misinterpret some uncommon realization. Whether the couiýL
produced by a tool is right or wrong, it will certainly produce a
repeatable result.

Despite these problems, if the program reader or the software tool
follows carefully defined rules, either can generate highly reliable
counts.

The FP metric uses the source code to deduce the characteristics of
the algorithm solved by the program. The rules used for this step
are dependent on the programming language and technology used. But
it is the algorithm that is measured, not the program. Thus, as
Drummond (1985) also points out, the FP metric has the advantage of
being language independent, as well as being independent of programmer
style or experience. It is even independent of any changes in
technology. Once the size of the algorithm is calculated, any program
in any language that performs the same algorithm, whether poorly or
well written, will provide the same number of function points.

SQM RELATIONSHIPS: Complexity, Simplicity
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TOOLS: Checkpoint, Software Productivity Research, Inc., Burlington, MA
SIZE PLANNER, Quantitative Software Management, Inc., McClean, VA

REFERENCES: Albrecht 1979, 1985; Albrecht and Gaffney 1283; Behrens 1983;@
Drummond 1985; Jones 1988; Low and Jeffery 1990
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O SOFTWARE METRIC DATA SHEET Ejiogu Family

H - Height of a Tree

This metric quantifies the depth of nesting in a set of modules of source code.
It is based on the number of levels in a hierarchy tree of the control flow
between modules.

RULE: The Height of a hierarchy tree is the maximum height attained by any
node in the hierarchy tree, except that the Height of a single node
tree is defined to be one.

The Height of a node is the number of levels of nesting below the root node.
Thus, the root node has a height of zero and any child node of the root node has
a height of one, being nested one level below the root node. Because the tree
is drawn upside-down, height increases with lower levels of nesting.

A module (or node) is defined to be a set of code that embodies an aggregate of
thought representing a single function. A module must be a well-defined entity
in order to ensure that the count is repeatable.

DOMAIN: This measure only applies to source code that implements an algorithm;
the code must perform some function which may or may not be composed
of subfunctions.. RANGE: This metric produces an integer greater than or equal to one, the
Height of the tree for source code that has no nested modules.

NECESSARY CONDITIONS: The combinations of characters that constitute a node,
the source code constructs that constitute nesting, and the boundaries
of a module must be defined for the context.

QUALIFICATIONS: None.

CRITICAL ANALYSIS: This measure is not necessarily strictly monotonic or
repeatable. A program reader may erroneously nest a node when drawing
the hierarchy tree. In this case, an increase in the measure does not
represent an increase in the depth of nesting. Furthermore, a
different reader will likely judge nesting differently.

A software tool can also produce non-monotonic results. Although it
has well-defined rules for identifying nodes and nesting, the rules
will likely misinterpret some uncommon realization. Whether the count
produced by a too. is right or wrong, it will certainly produce a
repeatable result.

Despite these problems, if the program reader or the software tool
follows carefully defined rules, either can generate highly reliable
counts.
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Twin Number

This metric quantifies the breadth of explosion of a module (or node) of source
code. It is based on the number of nodes nested directly below it (child nodes)
in a hierarchy tree of the control flow between nodes.

RULE: The Twin Number of a node is the number of child nodes of which it is
the parent, except that the Twin Number of the node in a single node
tree is defined to be one.

Every node that is immediately related to a particular node at the next lowest
level (one level closer to the root) is considered a child of that node.

A module (or node) is defined to be a set of code that embodies an aggregate of
thought representing a single function. A module must be a well-defined entity
in order to ensure that the count is repeatable.

DOMAIN: This measure only applies to source code that implements an algorithm;
the code must perform some function which may or may not be composed
of subfunctLons.

RANGE: This metric produces an integer greater than or equal to zero, the
Twin Number of a module with no child nodes (monad).

NECESSARY CONDITIONS: The combinations of characters that constitute a node,
the source code constructs that constitute nesting, and the boundaries
of a module must be defined for the context.

QUALIFICATIONS: None.

CRITICAL ANALYSIS: This measure is not necessarily strictly monotonic or
repeatable. A program reader may erroneously nest a node when drawing
the hierarchy tree. In this case, an increase in the measure does not
represent an increase in the number of child nodes. Furthermore, a
different reader will likely judge nesting differently.

A software tool can also produce non-monotonLc results. Although it
has well-defined rules for identifying nodes and nesting, the rules
will likely misinterpret some uncommon realization. Whether the count
produced by a tool is right or wrong, it will certainly produce a
repeatable result.

Despite these problems, if the program reader or the software tool
follows carefully defined rules, either can generate highly reliable
counts.

SQM RELATIONSHIPS: Complexity, Simplicity
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M - Monadicity

This metric quantifies the number of irreducible modules (or nodes) in a set of
modules of source code. It is based on the number of childless nodes in a
hierarchy tree of the control flow between modules.

RULE: The Monadicity of a hierarchy tree is the number of nodes that have
no children (a monad), except that a tree with a Height of one is
constrained to have a Monadicity of one.

Every node that is immediately related to a particular node at the next lowest
level (one level closer to the root) is considered a child of that node.

A module (or node) is defined to be a set of code that embodies an aggregate of
thought representing a single function. A module must be a well-defined entity
in order to ensure that the count is repeatable.

This is a measure of the number of leaves on the tree, where the node at the end
of each branch is a leaf. It is a measure of the "bushiness" of the tree.

DOMAIN: This measure only applies to source code that implements an algorithm;
the code must perform some function which may or may not be composed
of subfunctions.

RANGE: This metric produces an integer greater than or equal to one, the
Monadicity of tree with a Height of one.

NECESSARY CONDITIONS: The combinations of characters that constitute a node,
the source code constructs that constitute nesting and the boundaries
of a module must be defined for the context.

QUALIFICATIONS: None.

CRITICAL ANALYSIS: This measure is discontinuous between hierarchy trees of
Height one and two. A tree with five child nodes at level one and
one child node at level two has a monadicity of five. But if the
single monad at level two is removed, the monadicity becomes one.

Even for hierarchy trees with a Height greater than one, this measure
is not necessarily strictly monotonic or repeatable. A program reader
may erroneously divide a monad into two monads when drawing the
hierarchy tree. In this case, an increase in the measure does not
represent an increase in the number of monads. Furthermore, a
different reader will likely Judge nodes differently.

A software tool can also produce non-monotonic results. Although it
has well-defined rules for identifying nodes and nesting, the rules
will likely misinterpret some uncommon realization. Whether the count
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produced by a tool is right or wrong, it will certainly produce a

repeatable result. Despite these problems, if the program reader or
the software tool follows carefully defined rules, either can generate
highly reliable counts.

SQM RELATIONSHIPS: Complexity, Simplicity

TOOLS: COMPLEXIMETER, Softmetrix, Inc., Chicago, IL

REFERENCES: Ejiogu 19841, 19842, 1987, 1988, 1990
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S - Software Size

This metric calculates the size of a set of modules (or nodes) of source code.
It is based on the number of nodes in the hierarchy tree of the control flow
between modules.

RULE:' Count the number of nodes above the root node.

A module (or node) is defined to be a set of code that embodies an aggregate of
thought representing a single function. A module must be a well-defined entity
in order to ensure that the count is repeatable.

DOMAIN: This measure only applies to source code that implements an algorithm;
the code must perform some function which may or may not be composed
of subfunrtions.

RANGE: This metric produces an integer greater than or equal to zero, the
size of a single-node tree.

NECESSARY CONDITIONS: The combinations of characters that constitute a node,
the source code constructs that constitute nesting, and the boundaries
of a module must be defined for the context.

O QUALIFICATIONS: None.

CRITICAL ANALYSIS: This measure is not monotonic. When two different modules
call the same subroutine, it appears as two distinct nodes on the
hierarchy tree. This increases the size even though there is no
increase in function.

Even if a program contains no such problem, this measure is not
necessarily strictly monotonic or repeatable. A program reader may
erroneously divide a monad when drawing the hierarchy tree. In this
case, an increase in the measure does not represent an increase in
the number of monads. Furthermore, a different reader will likely
judge nodes differently.

A software tool can also produce non-monotonic results. Although it
has well-defined rules for identifying nodes and nesting, the rules
will likely misinterpret some uncommon realization. Whether the count
produced by a tool is right or wrong, it will certainly produce a
repeatable result.

Despite these problems, if the program reader or the software tool
follows carefully defined rules, either can generate highly reliable
counts.
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Very little experimental validation has been performed for this metric
and none of it has been published. No independent experiments have
been performed.

SQM RELATIONSHIPS: Complexity, Performance, Simplicity, Understandability
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REFERENCES: Ejiogu 1984', 19842, 1987, 1988, 1990
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so - Structural Complexity

This metric calculates the structural complexity of a set of modules of source
code. It is based on the number and relationship of nodes in a hierarchy tree
of the control flow between nodes,

RULE: Se - H x Rt x M

where H is the Height of the tree, Rt is the Twin Number of the root node, and
H is the Monadicity of the tree. Each of these arguments is defined on a
previous data sheet.

A module (or node) is defined to be a set of code that embodies an aggregate of
thought representing a single function. A module must be a well-defined entity
in order to ensure that the count is repeatable.

The Structural Complexity ieflects the nature of "the relation of conglomerates
of thoughts expressing the functional composition of the system" (Ejiogu 1984).
It combines into one measure both the number of related modules of thought and
the closeness of their relationship. This measure was designed to be applied
to issues relating to p:ogramming productivity, since it quantifies the amount
of complexity in a program.

DOMAIN: This measure only applies to source code that implements an algorithm;
the code must perform some function which may or may not be composed
of subfunctions.

RANGE: This metric produces an integer greater than or equal to one, the
Structural Complexity of a single-node tree.

NECESSARY CONDITIONS: The combinations of characters that constitute a node,
the source code constructs that constitute nesting, and the boundaries
of a module must be defined for the context.

QUALIFICATIONS: While this metric is based on structured programming concepts,
unstructured programs do not render it useless. Any effect that lack
of structure has on the value of the measure is to be taken as a
reflection of the increased complexity that results when a program
deviates from the ideal. Excessive values alert the developer to the
presence of unstructured code so that it can be determined whether its
presence is an asset or a detriment. For instance, when two nodes
call the same subroutine the count is increased, even though there is
no increase in function. But since calling a subroutine twice is not
a detrimental effect, this apparent increase in complexity is allowed
to remain.

CRITICAL ANALYSIS: This measure is not necessarily strictly monotonic or
repeatable. The problems are due to the counts that compose it. See
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the respective software metric data sheets for details. Very little
experimental validation has been performed for this metric and none
of it has been published. No independent experiments have been
performed.
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q" Number of Unique Operators

This metric quantifies the number of unique operators that occur in a module of
source code.

RULE: Count the number of unique operators in the defined module.

An operator is any word of source code that represents an operation to be
performed. (A word of source code is any sequence of characters set off as such
by the delimiters defined for the particular language.) The operation is
performed on the objects that are the arguments of the operator. In computer
program source code, most operators are the keywords that define a program
statement. Some keywords have multiple parts that must occur as a set. They
constitute one compound operator. The classification of each word of code must
be based on an analysis of what that word of code does, from a functional point
of view.

Uniqueness is to be determined according to the uniqueness of function rather
than syntactical form. A unique function is rarely represented by more than one
form. When this does occur, the various forms are not to be counted as unique
operators. For example, if an exponent is denoted by either an "E" or a '^,

these two forms represent one function. Conversely, two unique functions may
be represented by the same form. When this occurs, the form is to be counted
as two distinct operators, as indicated by the context. For example, if an
asterisk denotes either multiplication or a comment, this one form represents
two functions.

A module is defined to be a set of code that is to have a measure assigned to
it. It must be a well-defined entity in order to ensure that the count is
repeatable.

DOMAIN: This measure only applies to that part of source code that implements
an algorithm; the code must contain solely operators and operands.
An algorithm with less than two operators and one operand is
undefined.

RANGE: This metric produces an integer •greater than or equal to two, the
number of operators in the most succinct implementation of an
a-gorithm.

NECESSARY CONDITIONS: Every possible combination of characters that constitutes
an operator, the criteria for establishing uniqueness, and the
boundaries of a module must be defined for the context.

QUALIFICATIONS: The number of unique operators in a module is not necessarily
equal to the sum of the values for each of its sub-modules. Thus, ,I

is not an additive quantity.
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CRITICAL ANALYSIS: This measure is not necessarily strictly monotonic or
repeatable. A program reader may increment the count for a word that
is not an operator. In this case, an increase in the measure does
not represent an increase in the number of operators. Furthermore,
a different reader will likely define a different set of operators.

A software tool can also produce non-monotonic results. Although it
has well-defined rules for identifying operators, the rules will
likely misinterpret some uncommon realization. Whether the count
produced by a tool is right or wrong, it will certainly produce a
repeatable result.

Despite these problems, if the program reader or the software tool
follows carefully defined rules, either can generate highly reliable
counts.

SQM RELATIONSHIPS: Clarity, Complexity, Modifiability, Performance, Relia-
bility, Simplicity, Understandability

TOOLS: LOGISCOPE, Verilog USA Inc., Alexandria, VA
PC-Metric, SET Laboratories, Inc., Mulino, OR

REFERENCES: Albrecht and Gaffney 1983; Arthur 1983; Basili, Selby, and Phillips
1983; Bulut 1974; Carver 1986; Coulter 1983; Curtis 1980; Elshoff
1976; Fitzsimmons 1978; Funami 1976; Gordon 1976, 1979; Halstead 1972,
1977, 1979; Halstead and Zislis 107ý; Henry, .,:ifura, and Harris 1981;
Jones 1978; Kafura and Reddy 1987; Lassez 1981; Li and Cheung 1987;
Prather 1984; Shen, Conte, and Dunsmore 1983; Shneiderman 1980; Siyan
1989; Weyuker 1988; Zislis 1973; Zweben 1977
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72 - Number of Unique Operands

This metric quantifies the number of unique operands that occur in a module of
source code.

RULE: Count the number of unique operands in the defined module.

An operand is any word of source code that represents an argument upon which an
operation is to be performed. (A word of source code is any sequence of
characters set off as such by the delimiters defined for the particular
language.) In computer program source code, most operands are the variables and
constants of the program. The classification of each word of code must be based
on an analysis of what that word of code does from a functional point of view.

Uniqueness is to be determined according to the uniqueness of function rather
than syntactical form. A unique argument is rarely represented by more than one
form. When this does occur, the various forms are not to be counted as unique
operands. For example, if a variable name can be denoted by either VELOCITY or
VEL, these two forms represent one argument. Conversely, two unique argumentý
may be represented by the same form. When this occurs, the form is to be
counted as two distinct operands, as indicated by the context. For example, if
the constant, 10, denotes 10 array elements in one part of a program, but it
also denotes 10 volts in another part, this one operand represents two
arguments.

A module is defined to be a set of code that is to have a measure assigned to
it. It must be a well-defined entity in order to ensure that the count is
repeatable.

DOMAIN: This measure only applies to that part of source code that implements
an algorithm; the code must contain solely operators and operands.
An algorithm with less than two operators and one operand is
undefined.

RANGE: This metric produces an integer greater than or equal to one, the
number of operands in the most succinct implementation of an
algorithm.

NECESSARY CONDITIONS: Every possible combination of characters that constitutes
an operand, the criteria for establishing uniqueness, and the
boundaries of a module must be defined for the context.

QUALIFICATIONS: The number of unique operands in a module is not necessarily
equal to the sum of the values for each of its sub-modules. Thus, q2
is not an additive quantity.

CRITICAL ANALYSIS: This measure is not necessarily strictly monotonic or
repeatable. A program reader may increment the count for a word that
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is not an operand. In this case, an increase in the measure does not
represent an increase in the number of operands. Furthermore, a
different reader will likely define a different set of operands. A
software tool can also produce non-monotonic results. Although it has
well-defined rules for identifying operands, the rules will likely
misinterpret some uncommon realization. Whether the count produced
by a tool is right or wrong, it will certainly produce a repeatable
result.

Despite these problems, if the program reader or the software tool
follows carefully defined rules, either can generate highly reliable
counts.

SQM RELATIONSHIPS: Clarity, Complexity, Modifiability, Performance, Relia-
bility, Simplicity, Understandability

TOOLS: LOGISCOPE, Verilog USA Inc., Alexandria, VA
PC-Metric, SET Laboratories, Inc., Mulino, OR

REFERENCES: Albrecht and Gaffney 1983; Arthur 1983; Basili, Selby, and Phillips
1983; Bulut 1974; Carver 1986; Coulter 1983; Curtis 1980; Elshoff
1976; Fitzsimmons 1978; Funami 1976; Gordon 1976, 1979; Halstead 1972,
1977, 1979; Halstead and Zislis 1973; Henry, Kafura, and Harris 1981;
Jones 1978; Kafura and Reddy 1987; Lassez 1981; Li and Cheung 1987;
Prather 1984; Shen, Conte, and Dunsmore 1983; Shneiderman 1980; Siyan
1989; Weyuker 1988; Zislis 1973; Zweben 1977
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N, - Total Number of Operator Occurrences

This metric quantifies the number of occurrences of operators in a module of
source code.

RULE: Count the total number of occurrences of operators in the defined
module.

An operator is any word of source code that represents an operation to be
performed. (A word of source code is any sequence of characters set off as such
by the delimiters defined for the particular language.) The operation is
performed on the objects that are the arguments of the operator. In computer
program source code, most operators are the keywords that define a program
statement. Some keywords have multiple parts that must occur as a set. They
constitute one compound operator. The classification of each word of code must
be based on an analysis of what that word of code does from a functional point
of view.

A module is defined to be a set of code that is to have a measure assigned to
it. It must be a well-defined entity in order to ensure that the count is
repeatable.

DOMAIN: This measure only applies to that part of source code that implements
an algorithm; the code must contain solely operators and operands.
An algorithm with less than two operators and one operand is
undefined.

RANGE: This metric produces an integer greater than or equal to two, the
number of operator occurrences in the most succinct implementation of
an algorithm.

NECESSARY CONDITIONS: Every possible combination of characters that constitutes
an operator must be defined for the context. The boundaries of a
module must be defined for the context.

QUALIFICATIONS: None.

CRITICAL ANALYSIS: This measure is not necessarily strictly monotonic or
repeatable. A program reader may increment the count for a word that
is not an operator. In this case, an increase in the measure does
not represent an increase in the number of operators. Furthermore,
a different reader will likely define a different set of operators.

A software tool can also produce non-monotonic results. Although it
has well-defined rules for identifying operators, the rules will
likely misinterpret some uncommon realization. Whether the count
produced by a tool is right or wrong, it will certainly produce a
repeatable result.0 17-83



Despite these problems, if the program reader or the software tool
follows carefully defined rules, either can generate highly reliable
counts.

SQM RELATIONSHIPS: Clarity, Complexity, Modifiability, Performance, Relia-
bility, Simplicity, Understandability

TOOLS: LOGISCOPE, Verilog USA Inc., Alexandria, VA
PC-Metric, SET Laboratories, Inc., Mulino, OR

REFERENCES: Albrecht and Gaffney 1983; Arthur 1983; Basili, Selby, and Phillips
1983; Bulut 1974; Carver 1986; Coulter 1983; Curtis 1980; Elshoff
1976; Fitzsimmons 1978; Funami 1976; Gordon 1976, 1979; Halstead 1972,
1977, 1979; Halstead and Zislis 1973; Henry, Kafura, and Harris 1981;
Jones 1978; Kafura and Reddy 1987; Lassez 1981; Li and Cheung 1987;
Prather 1984; Shen, Gonte, and Dunsmore 1983; Shneiderman 1980; Siyan
1989; Weyuker 1988; Zislis 1973; Zweben 1977
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N2 - Total Number of Operand Occurrences

This metric quantifies the number of occurrences of operands in a module of
source code.

RULE: Count the total number of occurrences of operands in the defined
module.

An operand is any word of source code that represents an argument upon which an
operation is to be performed. (A word of source code is any sequence of
characters set off as such by the delimiters defined for the particular

language.) In computer program source code, operands are the variables and
constants of the program. The classification of each word of code must be based
on an analysis of what that word of code does, from a functional point of view.

A module is defined to be a set of code that is to have a measure assigned to
it. It must be a well-defined entity in order to ensure that the count is
repeatable.

DOMAIN: This measure only applies to that part of source code that implements
an algorithm; the code must contain solely operators and operands.
An algorithm with less than two operators and one operand is undefined.

RANGE: This metric produces an integer greater than or equal to one, the
number of operand occurrences in the most succinct implementation of
an algorithm.

NECESSARY CONDITIONS: Every possible combination of characters that constitutes
an operand must be defined for the context. The boundaries of a module
must be defined for the context.

QUALIFICATIONS: None.

CRITICAL ANALYSIS: This measure is not necessarily strictly monotonic or
repeatable. A program reader may increment the count for a word that
is not an operand. In this case, an increase in the measure does not
represent an increase in the number of operands. Furthermore, a
different reader will likely define a different set of operands.

A software tool can also produce non-monotonic results. Although it
has well-defined rules for identifying operands, the rules will likely
misinterpret some uncommon realization. Whether the count produced
by a tool is right or wrong, it will certainly produce a repeatable
result.

Despite these problems, if the program reader or the software tool
follows carefully defined rules, either can generate highly reliable
counts. 17-85
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1989; Weyuker 1988; Zislis 1973; Zweben 1977
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q - Vocabulary

This metric calculates the total number of unique operators and operands that
occur in a module of source code.

RULE: 7 - 71 + 72 words

where i7l is the number of unique operators and f72 is the number of unique
operands. Each of these arguments is defined on a previous data sheet.

A module is defined to be a set of code that is to have a measure assigned to
it. It must be a well-defined entity in order to ensure that the count is
repeatable.

The Vocabulary represents the number of unique words in a module. Every word
of executable code should be listed once in a vocabulary listing. However, when
an operator and an operand are identical in form, they still constitute unique
words since they serve unique functions. They are distinguiished by their
context.

DOMAIN: This measure only applies to that part of source code that implements
an algorithm; the code must contain solely operators and operands.
An algorithm with less than two operators and one operand is
undefined.

RANGE: This metric produces an integer greater than or equal to three, the
Vocabulary of the most succinct implementation of an algorithm.

NECESSARY CONDITIONS: Every possible combination of characters that constitutes
an operator or operand, the criteria for establishing uniqueness, and
the boundaries of a module must be defined for the context.

QUALIFICATIONS: The Vocabulary of a module is not necessarily equal to the sum
of the Vocabularies of each of its sub-modules. Thus, Vocabulary is
not an additive quantity.

CRITICAL ANALYSIS: This measure is not necessarily strictly monotonic or
repeatable. The problems are due to the counts that compose it. See
the respective software metric data sheets for details.

SQM RELATIONSHIPS: Clarity, Complexity, Modifiability, Performance, Relia-
bility, Simplicity, Understandability

TOOLS: LOGISCOPE, Verilog USA Inc., Alexandria, VA
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REFERENCES: Albrecht and Gaffney 1983; Arthur 1983; Basili, Selby, and Phillips
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17-87



1976; Fitzsimmons 1978; Funami 1976; Gordon 1976, 1979; Halstead 1972,
1977, 1979; Halstead and Zislis 1973; Henry, Kafura, and Harris 1981;
Jones 1978; Kafura and Reddy 1987; Lassez 1981; Li and Cheung 1987;
Prather 1984; Shen, Conte, and Dunsmore 1983; Shneiderman 1980; Siyan
1989; Weyuker 1988; Zislis 1973; Zweben 1977

17-88



. SOFTWARE METRIC DATA SHEET Halstead Family

N - Implementation Length

This metric calculates the total number of occurrences of operators and operands
in a module of source code.

RULE: N - N, + N2 words

where N, is the total number of operator occurrences and N2 is the total number
of operand occurrences. Each of these arguments is defined on a previous data
sheet.

A module is defined to be a set of code that is to have a measure assigned to
it. It must be a well-defined entity in order to ensure that the count is
repeatable.

The Implementation Length represents the count of every word in a module. No
word of executable code should be left uncounted.

DOMAIN: This measure only applies to that part of source code that implements
an algorithm; the code must contain solely operators and operands.
An algorithm with less than two operators and one operand is
undefined.

RANGE: This metric produces an integer greater than or equal to three, the
Implementation Length of the most succinct implementation of an
algorithm.

NECESSARY CONDITIONS: Every possible combination of characters that constitutes
an operator or operand must be defined for the context. The
boundaries of a module must be defined for the context.

QUALIFICATIONS: None.

CRITICAL ANALYSIS: This measure is not necessarily strictly monotonic or

repeatable. The problems are due to the counts that compose it. See
the respective software metric data sheets for details.

SQM RELATIONSHIPS: Clarity, Complexity, Modifiability, Performance, Relia-
bility, Simplicity, Understandability
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1989; Weyuker 1988; Zislis 1973; Zweben 1977

17-90



. SOFTWARE METRIC DATA SHEET Halstead Family

S- Estimated Length

This metric estimates the total number of occurrences of operators and operands
in a module of source code.

RULE: & - n' 11og07 1 + 172 1og 2 172 words

where Til is the number of unique operators and r72 is the number of unique
operands. Each of these arguments is defined on a previous data sheet.

A module is defined to be a set of code that is to have a measure assigned to
it. It must be a well-defined entity in order to ensure that the count is
repeatable.

DOMAIN: This measure only applies to that part of source code that implements
an algorithm; the code must contain solely operators and operands.
An algorithm with less than two operators and one operand is
undefined.

RANGE: This metric produces a real number greater than or equal to two, the
Estimated Length of the most succinct implementation of an algorithm.. NECESSARY CONDITIONS: Every possible- combination of characters that constitutes
an operator or operand, the criteria for establishing the uniqueness
of operators and operands, and the boundaries of a module must be
defined for the context.

QUALIFICATIONS: While the measure is given in terms of a real number, the
number of words should be rounded up to the next highest integer.

This estimate assumes that every combination of operators and operands
of length q occurs only once in the module. This means that repeqted
segments of code, as long as 17 words, are put into subroutines rather
than in redundant code. If such redundancy is present in the code,
the Implementation Length will be underestimated by the Estimated
Length Equation.

The Estimated Length Equation also assumes that operators and operands
alternate without variation. Any code that does not follow this
convention will likely produce an underestimation of the Implemen-
tation Length.

Because the Estimated Length Equation is nonlinear, adding the
Estimated Lengths of sub-modules would not be expected to give an
accurate Estimated Length for the module that they constitute.
Nevertheless, an experiment by Ingojo indicated that the relationship
holds fairly well (Halstead 1977).
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CRITICAL ANALYSIS: This measure is not necessarily strictly monotonic or
repeatable. Some of the problems are due to problems with the counts
that compose it. See the respective software metric data sheets for
the details of the problems that they contribute to this metric.

Most of the problems with the Estimated Length, however, are due to
the simplifying assumptions upon which the estimate is based. Whether
or not these ascumptions are reasonable, experiments show that N
yields a close estimate of the Implementation Length, N (Halstead
1977).

SQM RELATIONSHIPS: Clarity, Complexity, Modifiability, Performance, Relia-
bility, Simplicity, Understandability

TOOLS: LOGISCOPE, Verilog USA Inc., Alexandria, VA
PC-Metric, SET Laboratories, Inc., Mulino, OR

REFERENCES: Albrecht and Gaffney 1983; Arthur 1983; Basili, Selby, and Phillips
1983; Bulut 1974; Carver 1986; Coulter 1983; Curtis 1980; Elshoff
1976; Fitzsimmons 1978; Funami 1976; Gordon 1976, 1979; Halstead 1972,
1977, 1979; Halstead and Zislis 1973; Henry, Kafura, and Harris 1981;
Jones 1978; Kafura and Reddy 1987; Lassez 1981; Li and Cheung 1987;
Prather 1984; Shen, Conte, and Dunsmore 1983; Shneiderman 1980; Siyan
1989; Weyuker 1988; Zislis 1973; Zweben 1977

17-92



. SOFTWARE METRIC DATA SHEET Halstead Family

V - Volume

This metric calculates the number of binary digits required to uniquely
represent all of the operators and operands that occur in a module of length,
N, and Vocabulary, q. It is not primarily a measure of the size or complexity
of the function programmed, but a measure of the size of a particular imple-
mentation of a function. This metric should primarily be used to compare the
size of the same program written in various languages or by various programmers.

RULE: V - Nlog 2mj bits

where N is the Implementation Length and q is the Vocabulary. Each of these
arguments is defined on a previous data sheet.

A module is defined to be a set of code that is to have a measure assigned to
it. It must be a well-defined entity in order to ensure that the count is
repeatable.

DOMAIN: This measure only applies to that part of source code that implements
an algorithm; the code must contain solely operators and operands.
An algorithm with less than two operators and one operand is
undefined.

RANGE: This metric produces a real number greater than or equal to about
4.755, the Volume of the most succinct implementation of an algorithm.

NECESSARY CONDITIONS: Every possible combination of characters that constitutes
an operator or operand, the criteria for establishing the uniqueness
of operators and operands, and the boundaries of a module must be
defined for the context.

QUALIFICATIONS: While the measure is given in terms of a real number, the
number of bits should be rounded Up to the next highest integer.

The Volume of a module is not necessarily equal to the sum of the
values of each of its sub-modules. Thus, Volume is not an additive
quantity.

CRITICAL ANALYSIS: This measure is not necessarily strictly monotonic or
repeatable. The problems are due to the counts that compose it. See
the respective software metric data sheets for the details of the
problems that they contribute to this metric.

This measure is related to the size of the function being implemented,
but it is not a monotonic relationship. A larger algorithm could be
implemented so tersely that its volume is less than a smaller
algorithm. Conversely, a smaller algorithm could be implemented so
verbosely that its volume is greater than a larger algorithm.
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SQM RELATIONSHIPS: Clarity, Complexity, Modifiability, Performance, Relia-
bility, Simplicity, Understandability

TOOLS: LOGISCOPE, Verilog USA Inc., Alexandria, VA
PC-Metric, SET Laboratories, Inc., Mulino, OR

REFERENCES: Albrecht and Gaffney 1983; Arthur 1983; Basili, Selby, and Phillips
1983; Bulut 1974; Carver 1986; Coulter 1983; Curtis 1980; Elshoff
1976; Fitzsimmons 1978; Funami 1976; Gordon 1976, 1979; Halstead 1972,
1977, 1979; Halstead and Zislis 1973; Henry, Kafura, and Harris 1981;
Jones 1978; Kafura and Reddy 1987; Lassez 1981; Li and Cheung 1987;
Prather 1984; Shen, Conte, and Dunsmore 1983; Shneiderman 1980; Siyan
1989; Weyuker 1988; Zislis 1973; Zweben 1977
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SOFTWARE METRIC DATA SHEET Halstead Family

V* - Potential Volume

This metric calculates the number of binary digits required to implement the
function of a module in its most efficient form, namely two operators (i.e., one
that says "do the function" and another that groups the operands with the
operator), and all the operands that it requires.

RULE: V* - (2 + 172")1og 2 (2 + '72*) bits

where 172* is the sum of the number of unique inputs and outputs for the module.

A module is defined to be a set of code that is to have a measure assigned to
it. It must be a well-defined entity in order to ensure that the count is
repeatable.

DOMAIN: This measure only applies to that part of source code that implements
an algorithm; the code must contain solely operators and operands.
An algorithm with less than two operators and one operand is
undefined. The operand ensures that there is at least one input or
output.

RANGE: This metric produces a real number greater than or equal to about
4.755, the Potential Volume of the most succinct implementation of an
algorithm.

NECESSARY CONDITIONS: Every possible combination of characters that constitutes
an operator or operand, the criteria for establishing the uniqueness
of operators and operands, and the boundaries of a module must be
defined for the context.

QUALIFICATIONS: While the measure is given in terms of a real number, the
number of bits should be rounded up to the next highest integer.

The Potential Volume of a module is not necessarily equal to the sum
of' the values of each of its sub-modules. Thus, Potential Volume is
not an additive quantity.

a

CRITICAL ANALYSIS: This measure is not necessarily strictly monotonic or
repeatable. A program reader may increment the count for some part
of the code that is not an input or output. In this case, an increase
in the measure does not represent an increase in the size of the
function. Furthermore, a different reader will likely define a
different set of inputs and outputs.

A software tool can also produce non-monotonic results. Although it
has well-defined rules for identifying inputs and outputs, the rules
will likely misinterpret some uncommon realization. Whether the count
produced by a tool is right or wrong, it will certainly produce a
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repeatable result. Despite these problems, if the program reader or
the software tool follows carefully defined rules, either can generate
highly reliable counts.

SQl4 RELATIONSHIPS: Conciseness, Efficiency

TOOLS: No listing.

REFERENCES: Albrecht and Gaffney 1983; Arthur 1983; Basili, Selby, and Phillips
1983; Bulut 1974; Carver 1986; Coulter 1983; Curtis 1980; Elshoff
1976; Fitzsimmons 1978; Funami 1976; Gordon 1976, 1979; Halstead 1972,
1977, 1979; Halstead and Zislis 1973; Henry, Kafura, and Harris 1981;
Jones 1978; Kafura and Reddy 1987; Lassez 1981; Li and Cheung 1987;
Prather 1984; Shen, Conte, and Dunsmore 1983; Shneiderman 1980; Siyan
1989; Weyuker 1988; Zislis 1973; Zweben 1977
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. SOFTWARE METRIC DATA SHEET Halstead Family

L - Program Level

This metric calculates how efficiently a module of source code is implemented.
It is the ratio of the minimum number of bits it takes to represent an algorithm
to the number of bits in a particular implementation. As the Vocabulary and/or
Implementation Length decrease, the Program Level increases, i.e., the module
is written at a higher level because each word carries more weight. Thus,
Program Level indicates the amount of function per word rather than the number
of words per function. In this sense, it measures what a program hides rather
than what it shows.

V* bits of function
RULE: L --

V bits of implementation

where V* is the Potential Volume and V is the Volume. Each of these arguments
is defined on a previous data sheet.

A module is defined to be a set of code that is to have a measure assigned to
it. It must be a well-defined entity in order to ensure that the count is
repeatable.

DOMAIN: This measure only applies to that part of source cnde that implements
an algorithm; the code must contain solely operators and operands.
An algorithm with less than two operators and one operand is undefined.
The operand ensures that there is at least one input or output.

RANGE: This metric produces a positive real number less than or equal to one,
the Program Level of the most succinct implementation of an algorithm.

NECESSARY CONDITIONS: Every possible combination of characters that constitutes
an operator or operand, the criteria for establishing the uniqueness
of operators and operands, and the boundaries of a module must be
defined for the context.

QUALIFICATIONS: The Program Level of a module is not necessarily equal to the
sum of the values for each of its sub-modules. Thus, Program Level
is not an additive quantity.

CRITICAL ANALYSIS: This measure is not necessarily strictly monotonic or
repeatable. The problems are due to the counts that compose it. See
the respective software metric data sheets for the details of the
problems that they contribute to this metric.

SQM RELATIONSHIPS: Clarity, Complexity, Modifiability, Performance, Relia-
bility, Simplicity, Understandability

TOOLS: PC-Metric, SET Laboratories, Inc., Mulino, OR
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REFERENCES: Albrecht and Gaffney 1983; Arthur 1983; Basili, Selby, and Phillips
1983; Bulut 1974; Carver 1986; Coulter 1983; Curtis 1980; Elshoff
1976; Fitzsimmons 1978; Funami 1976; Gordon 1976, 1979; Halstead 1972,
1977, 1979; Halstead and Zislis 1973; Henry, Kafura, and Harris 1981;
Jones 1978; Kafgra and Reddy 1987; Lassez 1981; Li and Cheung 1987;
Prather 1984; Shen, Conte, and Dunsmore 1983; Shneiderman 1980; Siyan
1989; Weyuker 1988; Zislis 1973; Zweben 1977

0
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. SOFTWARE METRIC DATA SHEET Halstead Family

t - Estimated Program Level

This metric calculates how efficiently a module of source code is implemented.
It is an estimate of the Program Level metric that can be used when the number
of unique inputs and outputs, 172, is not known. The Estimated Program Level
increases as the module is written at a higher level. This occurs as the number
of operators decreases to its minimum value of two and as the number of operand
occurrences decreases to only one occurrence of each operand.

RULE: L - 2 '72 (unitless)i7I N2

where 72 is the number of unique operands, '7 is the number of unique operators,
and N2 is the total number of operand occurrences. Each of these arguments is
defined on a previous data sheet.

A module is defined to be a set of code that is to have a measure assigned to
it. It must be a well-defined entity in order to ensure that the count is
repeatable.

DOMAIN: This measure only applies to that part of source code that implements
an algorithm; the code must contain solely operators and operands.
An algorithm with less than two operators and one operand is undefined.

RANGE: This metric produces a positive real number less than or equal to one,
the Estimated Program Level of the most succinct implementation of an
algorithm.

NECESSARY CONDITIONS: Every possible combination of charactets that constitutes
an operator or operand, the criteria for establishing the uniqueness
of operators and operands, and the boundaries of a module must be
defined for the context.

QUALIFICATIONS: The Estimated Program Level of a module is not necessarily
equal to the sum of the estimated values for each of its sub-modules.
Thus, the Estimated Program Level is not an additive quantity.

CRITICAL ANALYSIS: This measure is not necessarily strictly monotonic or
repeatable. Some of the problems are due to the counts that compose
it. See the respective software metric data sheets for the details
of the problems that they contribute to this metric.

Most of the problems are due to the simplifying assumptions upon which
the estimate is based. Whether or not these assumptions are
reasonable, experiments show that L yields a close estimate of the
Program Level, L (Bulut 1974, Elshoff 1976, Halstead 1977, and
Ottenstein 1981). They can be used interchangeably.
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SQM RELATIONSHIPS: Clarity, Complexity, ModifiabiliLy, Performance, Relia-
bility, Simplicity, Understandability

TOOLS: LOGISCOPE, Verilog USA Inc., Alexandria, VA
PC-Metric, SET Laboratories, Inc., Mulino, OR

REFERENCES: Albrecht and Gaffney 1983; Arthur 1983; Basili, Selby, and Phillips
1983; Bulut 1974; Carver 1986; Coulter 1983; Curtis 1980; Elshoff
1976; Fitzsimmons 1978; Funami 1976; Gordon 1976, 1979; Halstead 1972,
1977, 1979; Halstead and Zislis 1973; Henry, Kafura, and Harris 1981;
Jones 1978; Kafura and Reddy 1987; Lassez 1981; Li and Cheung 1987;
Prather 1984; Shen, Conte, and Dunsmore 1983; Shneiderman 1980; Siyan
1989; Weyuker 1988; Zi-lis 1973; Zweben 1977
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. SOFTWARE METRIC DATA SHEET HalsteaO Family

I - Intelligence Content

This metric simply calculates the product of the Estimated Program Level (how
efficiently the module is implemented) and the Volume (the size of the
implementation) of a module of source code. It represents that constant
quantity of information that is present in any implementation of a particular
function, in any language, at any level. This quantity is basically an
estimated Potential Volume of the program; I and V* can often be used inter-
changeably.

RULE: I - 2 '72 x (Ni + N2 )log 2 (111 + '72) bits
?7 N2

where n2 is the number of unique operands, N, is the total number of operator
occurrences, N2 is the total number of operand occurrences, and 7, is thle ni,.mber
of unique operators. Each of these arguments is defined on a previous data
sheet.

A module is defined to be a set of code that is to have a measure assigned to
it. It must be a well-defined entity in order to ensure that the count is
repeatable.

DOMAIN: This measure only applies to that part of source code that implements
an algorithm; the code must contain solely operators and operands.
An algorithm with less than two operators and one operand is
undefined.

RANGE: This metric produces a real number greater than or equal to about
4.755, the Intelligence Content of the most succinct implementation
of an algorithm.

NECESSARY CONDITIONS: Every possible combination of characters that constitutes
an operator or operand, the criteria for establishing the uniqueness
of operators and operands, and the boundaries of a module must be
defined for the context.

QUALIFICATIONS: While the measure is given in terms of a real number, the
number of bits should be rounded up to the next highest integer.

The Intelligence Content of a module is not necessarily equal to the
sum of the values for each of its sub-modules. Thus, Intelligence
Content is not an additive quantity.

CRITICAL ANALYSIS: This measure is not necessarily strictly monotonic or
repeatable. The problems are due to the counts that compose it. See
the respective software metric data sheets for the details of the
problems that they contribute to this metric.
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The Intelligence Content measures the size of an algorithm based on
its implementation. The Potential Volume measures the size of an
algorithm based on its functional aspects: inputs and outputs.
Therefore, when the Intelligence Content is used as an estimate for
the Potential Volume, the accuracy of the estimate depends upon the
quality of the programming. Redundant and extraneous uses of
operators and operands alter the estimate. Halstead has characterized
improper usages and has categorized them into six groups that he calls
impurity classes (Halstead 1977).

Although it is generally undesirable that the constancy of the
Intelligence Content be affected by the presence of program im-
purities, this effect results in an additional use of this metric.
It provides a measure of the amount of impurity in an algorithm
implementation. The closer the estimate is to the Potential Volume,
the purer the algorithm implementation.

SQM RELATIONSHIPS: Conciseness, Efficiency

TOOLS: LOGISCOPE, Verilog USA Inc., Alexandria, VA
PC-Metric, SET Laboratories, Inc., Mulino, OR

REFERENCES: Albrecht and Gaffney 1983; Arthur 1983; Basili, Selby, and Phillips
1983; Bulut 1974; Carver 1986; Coulter 1983; Curtis 1980; Elshoff
1976; Fitzsimmons 1978; Funami 1976; Gordon 1976, 1979; Halstead 1972,
1977, 1979; Halstead and Zislis 1973; Henry, Kafura, and Harris 1981;
Jones 1978; Kafura and Reddy 1987; Lassez 1981; Li and Cheung 1987;
Prather 1984; Shen, Conte, and Dunsmore 1983; Shneiderman 1980; Siyan

1989; Weyuker 1988; Zislis 1973; Zweben 1977
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. SOFTWARE METRIC DATA SHEET Halstead Family

E - Programming Effort

This metric calculates the number of elementary mental discriminations done by
"a programmer to reduce a preconceived algorithm to a module of source code in
"a language in which the programmer is fluent. It is based on the assumption
that, when writing a program, a programmer selects each word of the program by
mentally searching a list of words from which to choose. Specifically, the
programmer performs a mental binary search of the vocabulary of 17 words in order
to select the N words used in the implementation. Furthermore, each comparison
(or mental discrimination) in the selection process requires an effort related
to the difficulty of understanding the program. This program difficulty is
supplied by the reciprocal of the Program Level.

RULE: E - V/L discriminations

where V is the Volume and L is the Program Level. Each of these arguments is
defined on a previous data sheet. A module is defined to be a set of code that
is to have a measure assigned to it. It must be a well-defined entity in order
to ensurc that the count is repeatable.

This relationship indicates that the greater the Volume, or the lower the
Program Level, the greater the effort required to write a program.

DOMAIN: This measure only applies to that part of source code that implements
an algorithm; the code must contain solely operators and operands.
An algorithm with less than two operators and one operand is
undefined.

RANGE: This metric produces a real number greater than'or equal to about
4.755, the Programming Effort for the most succinct implementation of
an algorithm.

NECESSARY CONDITIONS: Every possible combination of characters that constitutes
an operator or operand, the criteria for establishing the uniqueness
of operators and operands, and the boundaries of a module must be
defined for the context.

QUALIFICATIONS: While the measure is given in terms of a real number, the
number of bits should be rounded up to the next highest integer.

The Program Effort of a module is not necessarily equal to the sum of
the values for each of its sub-modules. Thus, Program Effort is not
an additive quantity.

CRITICAL ANALYSIS: This measure is not necessarily strictly monotonic or
repeatable. The problems are due to the counts that compose it. See
the respective software metric data sheets for the details of the
problems that they contribute to this metric. Often, the Estimated
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Program Level is used in place of the Program Level. In this case,
any lack of monotonicity in the Programming Effort metric would be
produced primarily by the assumptions underlying the Estimated Program
Level.

SQM RELATIONSHIPS: Clarity, Complexity, Maintainability, Reliability, Simplicity

TOOLS: LOGISCOPE, Verilog USA Inc., Alexandria, VA
PC-Metric, SET Laboratories, Inc., Mulino, OR

REFERENCES: Albrecht and Gaffney 1983; Arthur 1983; Basili, Selby, and Phillips
1983; Bulut 1974; Carver 1986; Coulter 1983; Curtis 1980; Elshoff
1976; Fitzsimmons 1978; Funami 1976; Gordon 1976, 1979; Halstead 1972,
1977, 1979; Halstead and Zislis 1973; Henry, Kafura, and Harris 1981;
Jones 1978; Kafura and Reddy 1987; Lassez 1981; Li and Cheung 1987;
Prather 1984; Shen, Conte, and Dunsmore 1983; Shneiderman 1980; Siyan
1989; Weyuker 1988; Zislis 1973; Zweben 1977
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. SOFTWARE METRIC DATA SHEET Halstead Family

t - Estimated Programming Time

This metric calculates the time it took a programmer to make the number of
elementary mental discriminations performed when a module of source code was
programmed. The number of elementary mental discriminations is given by the
Programming Effort.

RULE: T E 60 N20711°og 2 1 1 + '7l2g 2 172)lg 2 1 hoursT600 S 7,200Q2S

where E is the Programming Effort and the Stroud Number, S, is the total number
of elementary mental discriminations that a programmer makes per second. This
calculation assumes that the programmer's attention is entirely undivided and
that the range of values found from psychological experimentation, 5<S<20,
applies to programming activity.

Each of the remaining arguments of this rule is defined on a previous data
sheet. A module is defined to be a set of code that is to have a measure
assigned to it. It must be a well-defined entity in order to ensure that the
count is repeatable.

DOMAIN: This measure only applies to that part of source code that implements
an algorithm; the code must contain solely operators and operands.
An algorithm with less than two operators and one operand is
undefined.

RANGE: This metric produces a real number greater than or equal to about one
quarter of a second, the Estimated Programming Time for the most
succinct implementation of an algorithm (with S-20).

NECESSARY CONDITIONS: Every possible combination of characters that constitutes
an operator or operand, the criteria for establishing the uniqueness
of operators and operands, and the boundaries of a module must be
defined for the context.

QUALIFICATIONS: The Estimated Programming Time of a module is not necessarily
equal to the sum of the estimated values for each of its sub-modules.
Thus, Estimated Programming Time is not an additive quantity.

CRITICAL ANALYSIS: This measure is not necessarily strictly monotonic or
repeatable. Some of the problems are due to the counts that compose
it. See the respective software metric data sheets for the details
of the problems that they contribute to this metric.

Most of the problems are due to the variability associated with the
Stroud Number. It is not necessarily monotonic or repeatable for all
programming contexts. It is not necessarily monotonic because a
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programmer's knowledge in one discipline may result in a shorter
programming time for a program with a greater value of Program Effort
than for a program with a lesser value of Program Effort. This could
occur when the former program is in a discipline with which the
programmer is familiar, but the latter program is not. It is not
necessarily repeatable because on some days a programmer will
concentrate better than on others.

SQM RELATIONSHIPS: Performance

TOOLS: LOGISCOPE, Verilog USA Inc., Alexandria, VA
PC-Metric, SET Laboratories, Inc., Mulino, OR

REFERENCES: Albrecht and Gaffney 1983; Arthur 1983; Basili, Selby, and Phillips
1983; Bulut 1974; Carver 1986; Coulter 1983; Curtis 1980; Elshoff
1976; Fitzsimmons 1978; Funami 1976; Gordon 1976, 1979; Halstead 1972,
1977, 1979; Halstead and Zislis 1973; Henry, Kafura, and Harris 1981;
Jones 1978; Kafura and Reddy 1987; Lassez 1981; Li and Cheung 1987;
Prather 1984; Shen, Conte, and Dunsmore 1983; Shneiderman 1980; Siyan
1989; Weyuker 1988; Zislis 1973; Zweben 1977

0
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OSOFTWARE METRIC DATA SHEET Halstead Family

A- Language Level

This metric calculates the efficiency with which algorithms can be implemented
in a particular language. For any module of source code written in the
particular language, the Language Level should be a constant, regardless of the
Volume of the module or the Program Level at which it is written.

RULE: x - L2 V

where L is the Program Level and V is the Volume. Each of these arguments is
defined on a previous data sheet.

A module is defined to be a set of code that is to have a measure assigned to
it. It must be a well-defined entity in order to ensure that the count is
repeatable.

DOMAIN: This measure only applies to that part of source code that implements
an algorithm; the code must contain solely operators and operands.
An algorithm with less than two operators and one operand is
undefined.

RANGE: This metric produces a positive real number less than or equal to the
Volume of the module.

NECESSARY CONDITIONS: Every possible combination of characters that constitutes
an operator or operand, the criteria for establishing the uniqueness
of operators and operands, and the boundaries of a module must be
defined for the context.

QUAL:FICATIONS: The Language Level of a module is not necessarily equal to the
sum of the values for each of its sub-modules. Thus, Language Level
is not an additive quantity.

CRITICAL ANALYSIS: This measure is not necessarily strictly monotonic or
repeatable. The problems are due to the counts that compose it. See
the respective software metric data sheets for the details of the
problems that they contribute to this metric.

Often, the Estimated Program Level is used in place of the Program
Level. In this case, any lack of monotonicity in the Language Level
would be produced primarily by the assumptions underlying the
Estimated Program Level.

SQM RELATIONSHIPS: None.

TOOLS: LOGISCOPE, Verilog USA Inc., Alexandria, VA
PC-Metric, SET Laboratories, Inc., Mulino, OR
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REFERENCES: Albrecht and Gaffney 1983; Arthur 1983; Basili, Selby, and Phillips
1983; Bulut 1974; Carver 1986; Coulter 1983; Curtis 1980; Elshoff
1976; Fitzsimmons 1978; Funami 1976; Gordon 1976, 1979; Halstead 1972,
1977, 1979; Halstead and Zislis 1973; Henry, Kafura, and Harris 1981;
Jones 1978; Kafura and Reddy 1987; Lassez 1981; Li and Cheung 1987;
Prather 1984; Shen, Conte, and Dunsmore 1983; Shneiderman 1980; Siyan
1989; Weyuker 1988; Zislis 1973; Zweben 1977

0
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. SOFTWARE METRIC DATA SHEET Halstead Family

B- Number of Bugs

This metric calculates an estimate of the number of bugs that a module of source
code contains at the time of measurement.

RULE: - V/E 0 bugs

where V is the Volume and E0 is the number of discriminations per bug. The
Volume is as defined on a previous data sheet. E0 is determined by an evaluation
of a programmer's previous work. Experimentation has found that 3,200
discriminations per bug is a typical value.

A module is defined to be a set of code that is to have a measure assigned to
it. It must be a well-defined entity in order to ensure that the count is
repeatable.

DOMAIN: This measure only applies to that part of source code that implements
an algorithm; the code must contain solely operators and operands.
An algorithm with less than two operators and one operand is
undefined.

RANGE: This metric produces a positive real number.

NECESSARY CognITIONS: Every possible combination of characters that constitutes
an operator or operand, the criteria for establishing the uniqueness
of operators and operands, and the boundaries of a module must be
defined for the context.

QUALIFICATIONS: While the measure is given in terms of a real number, the
number of bugs should be rounded up to the next highest integer.

The Number of Bugs in a module is not necessarily equal to the sum of
t+hp vAlues for each -f its sub-modules. Thus, Number of Bugs i5 not

an additive quantity.

CRITICAL ANALYSIS: This measure is not necessarily strictly monotonic or
repeatable. Some of the problems are due to the counts that compose
it. See the respective software metric data sheets for the details
of the problems that they contribute to this metric.

Most of the problems are due to the variability associated with E0.
It is not necessarily monotonic *or repeatable for all programming
contexts. It is not necessarily monotonic because a programmer's
knowledge in one discipline may result in fewer bugs for a program
with a greater Volume than for a program with a lesser Volume. This
could occur when the former program is in a discipline with which the
programmer is familiar, but the latter program is not. It is not
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necessarily repeatable because on some days a programmer will

concentrate better than on others.

SQM RELATIONSHIPS: Maintainability

TOOLS: LOGISCOPE, Verilog USA Inc., Alexandria, VA
PC-Metric, SET Laboratories, Inc., Mulino, OR

REFERENCES: Albrecht and Gaffney 1983; Arthur 1983; Basili, Selby, and Phillips
1983; Bulut 1974; Carver 1986; Coulter 1983; Curtis 1980; Elshoff
1976; Fitzsimmons 1978; Funami 1976; Gordon 1976, 1979; Halstead 1972,
1977, 1979; Halstead and Zislis 1973; Henry, Kafura, and Harris 1981;
Jones 1978; Kafura and Reddy 1987; Lassez 1981; Li and Cheung 1987;
Prather 1984; Shen, Conte, and Dunsmore 1983; Shneiderman 1980; Siyan
1989; Weyuker 1988; Zislis 1973; Zweben 1977
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. SOFTWARE METRIC DATA SHEET Henry Family

Information Flow

This metric calculates the complexity of a module of source code based on the
size of the module and the flow of information within it.

RULE: The Information Flow Complexity (IFC) of a module is the sum of the
IFCs for each procedure that composes it. The IFC for each procedure
is calculated as follows:

IFC - Length x (Fan-in x Fan-out) 2

where Length is given by the number of lines of source code in the procedure,
Fan-in is the number of local data flows that terminate at the procedure, and
Fan-out is the number of local data flows that emanate from the procedure.

A module is defined as the set of procedures that either directly update or
directly retrieve information from the particular data structure with which the
module is associated.

Local data flow is data that is passed from procedure to procedure without going
through the data structure.

DOMAIN: This measure only applies to source code that implements an algorithm;
the code must perform some function that has inputs and outputs.

RANGE: This metric produces an integer greater than or equal to one, the IFC
of a one statement procedure that has one input and one output.

NECESSARY CONDITIONS: The criteria for determining the local' inputs and outputs
must be defined for the context. The criteria for delimiting
procedures and modules must be defined for the context.

a
QUALIFICATIONS: The IFC of a module is not necessarily equal to the IFC of each

of its submodules. Thus, IFC is not an additive quantity.

CRITICAL ANALYSIS: This measure is not necessarily strictly monotonic or
repeatable. A program reader may erroneously count local inputs,
local outputs, or lines of source code. In this case, an increase in
the measure does not represent an increase in the amount of informa-
tion flow. Furthermore, a different reader will likely judge the
attributes differently.

A problem with repeatability can also result from the arbitrariness
of establishing module boundaries. The larger the module, the greater
will be the IFC. Furthermore, as the module boundaries shift, the
fan-in and fan-out counts will change. It is important that all
measurements be based on an unambiguous specification for establishing

* module boundaries.
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A software tool can also produce non-monotonic results. Although it
has well-defined rules for identifying the inputs and outputs and for
counting the lines of code, the rules will likely misinterpret some
uncommon realization. Whether the count produced by a tool is right
or wrong, it will certainly produce a repeatable result.

Despite these problems, if the program reader or the software tool
follows carefully defined rules, either can generate highly reliable
counts.

The IFC metric uses the source code to deduce the characteristics of
the data flow of the algorithm solved by the program. The rules used
for this step are dependent on the programming language and technology
used. But it is primarily the data flow that is measured, not the
program. Although the process for deducing the data flow is
implementation dependent, the resulting value of the IFC metric has
the advantage of being highly language independent, as well as highly
independent of programmer style or experience. It is even highly
independent of any changes in technology. Once the data flow
complexity of an algorithm is calculated, most any progran, in any
language that performs the same algorithm, whether poorly or well
written, will have the same IFC value.

This complexity measure has been shown to represent the decrease in
complexity that sometimes can be made by adding lines of code (Henry
and Kafura 1984). It appears to measure a dimension of complexity
somewhat different from that measured by Halstead's and McCabe's
metrics (Kafura and Reddy 1987).

SQM RELATIONSHIPS: Complexity, Maintainability, Modifiability, Performance,
Reliability, Simplicity, Understandability

TOOLS: No listing.

REFERENCES: Henry and Kafura 1984; Henry, Kafura, and.Harris 1981; Kafura and
Reddy 1987

17-112



0 SOFTWARE METRIC DATA SHEET McCabe Family

v(G) - Cyclomatic Complexity

This metric calculates the number of linearly independent program flow paths in
the basis set of paths for a module of source code. Every possible path of
program flow through a module can be represented as a linear combination of some
subset of the basis set of paths.

RULE: v(G) - e - n + 2p

where e. is the number of edges and n is the number of nodes in the program flow
control graphs of all the modules. The variable p is the number of modules.

A module is defined to be a set of connected code that is to have a measure
assigned to it. It must be a well-defined entity in order to ensure that the
count is repeatable. To be connected, there must exist an unbroken chain of
nodes and edges between any two nodes. A subroutine is a module, distinct from
its calling module, unless the graph is drawn with the subroutine code
substituted for the calling statement.

To draw the control graph, first, block the code into predicate nodes,
collecting nodes, and function nodes. A predicate node is a block of code
ending with a statement that branches to multiple locations. A collecting node
begins with a labeled statement to which flow branches. When a predicate node
is labeled, it is both a predicate node and a collecting node. Each strictly
sequential block of statements between any two predicate or collecting nodes
compose a function node.

Once the code is blocked, graphically represent each block with a circle and
the flow of control between them with lines. In this graph, the circles are
nodes and the lines are edges. The function nodes can be omitted from the graph
without affecting the value of the Cyclomatic Complexity.

DOMAIN: This metric can be applied to any source code that can be blocked into
nodes.

RANGE: This metric produces an integer greater than or equal to one, the
Cyclomatic Complexity of code with purely sequential flow.

NECESSARY CONDITIONS: Every possible combination of characters that constitutes
each type of node must be defined for the context. The boundaries of
a module must be defined for the context.

QUALIFICATIONS: None.

CRITICAL ANALYSIS: This measure is not necessarily strictly monotonic or
repeatable. A program reader may miss a node when drawing the graph.
In this case, a net increase in the edge-node difference is not

0 17-113



represented by an increase in the measure. Furthermore, a different
reader will likely judge the nodes differently for the same code.

A software tool can also produce non-monotonic results. Although it
has well-defined rules for identifying nodes, the rules will likely
misinterpret some uncommon realization. Whether the count produced
by a tool is right or wrong, it will certainly produce a repeatable
result.

Despite these problems, if the program reader or the software tool
follows carefully defined rules, either can generate highly reliable
counts.

SQM RELATIONSHIPS: Complexity, Maintainability, Modifiability, Modularity,
Performance, Reliability, Simplicity, Testability, Understandability

TOOLS: Analysis of Complexity Tool (ACT), McCabe & Assocs., Columbia, AD
Battlemap Analysis Tool (BAT), McCabe & Assocs., -olumbia, MD
LOGISCOPE, Verilog USA Inc., Alexandria, VA
PC-Metric, SET Laboratories, Inc., Mulino, OR

REFERENCES: Arthur 1983; Basili 1983; Basili and Hutchens 1983: Basili, Selby,
and Phillips 1983; Carver 1986; Cote et al 1988; Crawford, McIntosh,
and Pregibon 1985; Curtis 1980; Elshoff 1982, 1983; Evangelist 1983;
Gaffney 1981; Harrison 1984; Henry, Kafura, and Harris 1981; Kafura
and Reddy 1987; Li and Cheung 1987; Lind and Vairavan 1989; Mannino,
Stoddard, and Sudduth 1990; McCabe 1976, 1982, 1989; McCabe and Butler
1989; McClure 1978; Myers 1977; Prather 1983, 1984; Ramamurthy and
Melton 1988; Schneidewind and Hoffmann 1979; Shneiderman 1980; Siyan
1989; Walsh 1979; Ward 1989; Weyuker 1988
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. SOFTWARE METRIC DATA SHEET McCabe Family

v(G) - Cyclomatic Complexity
Alternate Rule 1

This metric quantifies the number of linearly independent program flow paths in
the basis set of paths for a module of source code. Every possible path of
program flow through a module can be represented as a linear combination of some
subset of the basis set of paths.

ALTERNATIVE RULE 1: The Cyclomatic Complexity of a module is equal to the
number of regions delineated by its control graph, with an additional
edge from the last node to the first. The control graph must be drawn
with no crossing edges: it must be a planar graph.

A module is defined to be a set of connected code that is to have a measure
assigned to it. It must be a well-defined entity in order to ensure that the
count is repeatable. To be connected, there must exist an unbroken chain of
nodes and edges between any two nodes. A subroutine is a module, distinct from
its calling module, unless the graph is drawn with the subroutine code
substituted for the calling statement.

To draw the control graph, first, block the code into predicate nodes,
collecting nodes, and function nodes. A predicate node is a block of code
ending with a statement that bianches to multiple locations. A collecting node
begins with a labeled statement to which flow branches. When a predicate node
is labeled, it is both a predicate node and a collecting node. Each strictly
sequential block of statements between any two predicate or collecting nodes
compose a function node.

Once the code is blocked, graphically represent each block with a circle and
the flow of control between them with lines. In this graph, the circles are
nodes and the lines are edges. Also draw an edge from the exit node to the
entrance node. The function nodes can be omitted from the graph without
affecting the value of the Cyclomatic Complexity. The region surrounding the
graph must also be counted as a region.

DOMAIN: This metric can be applied to any source code that can be blocked into
nodes md can be drawn in a planar graph.

RANGE: This metric produces an integer greater than or equal to one, the
Cyclomatic Complexity of code with purely sequential flow.

NECESSARY CONDITIONS: Every possible combination of characters that constitutes
each type of node must be defi • for the context. The boundaries of
a module must be defined for t context.

QUALIFICATIONS: The control graphs of all -structured and many unstructured
programs can be drawn as planar graphs. Sometimes the control graph
of unstructured code cannot be drawn as a planar graph.
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CRITICAL ANALYSIS: This measure is not necessarily strictly monotonic or
repeatable. A program reader may miss a node when drawing the graph.
In this case, a net increase in the edge-node difference is not
represented by an increase in the measure. Furthermore, a different
reader will likely judge the nodes differently for the same code.

A software tool can also produce non-monotonic results. Although it
has well-defined rules for identifying nodes, the rules will likely
misinterpret some uncommon realization. Whether the count produced
by a tool is right or wrong, it will certainly produce a repeatable
result.

Despite these problems, if the program reader or the software tool
follows carefully defined rules, either can generate highly reliable
counts.

SQM RELATIONSHIPS: Complexity, Maintainability, Modifiability, Modularity,
Performance, Reliability, Simplicity, Testability, Understandability

TOOLS: Analysis of Complexity Tool (ACT), McCabe & Assocs., Columbia, MD
Battlemap Analysis Tool (BAT), McCabe & Assocs., Columbia, MD
LOGISCOPE, Verilog USA Inc., Alexandria, VA
PC-Metric, SET Laboratories, Inc., Mulino, OR

REFERENCES: Arthur 1983; Basili 1983; Basili and Hutchens 1983; Basili, Selby,
and Phillips 1983; Carver 1986; Cote et al 1988; Crawford, McIntosh,
and Pregibon 1985; Curtis 1980; Elshoff 1982, 1983; Evangelist 1983;
Gaffney 1981; Harrison 1984; Henry, Kafura, and Harris 1981; Kafura
and Reddy 1987; Li and Cheung 1987; Lind and Vairavan 1989; Mannino,
Stoddard, and Sudduth 1990; McCabe 1976, 1982, 1989; McCabe and Butler
1989; McClure 1978; Myers 1977; Prather 1983, 1984; Ramamurthy and
Melton 1988; Schneidewind and Hoffmann 1979; Shneiderman 1980; Siyan
1989; Walsh 1979; Ward 1989; Weyuker 1988

17-116



. SOFTWARE METRIC DATA SHEET McCabe Family

v(G) - Cyclomatic Complexity
Alternate Rule 2

This metric quantifies the number of linearly independent program flow paths in
the basis set of paths for a module of source code. Every possible path of
program flow th :ough a module can be represented as a linear combination of some
subset of the lasis set of paths.

ALTERNATIVE RULE 2: v(G) - 7r + 1

where w is the number of control flow branch conditions in the module.

A module is defined to be a set of connected code that is to have a measure
assigned to it. It must be a well-defined entity in order to ensure that the
count is repeatable. To be connected, there must exist an unbroken chain of
nodes and edges between any two nodes. A subroutine is a module, distinct from
its calling module, unless the graph is drawn with the subroutine code
substituted for the calling statement.

This formula for structured programs requires that for every predicate node
there is exactly one collecting node, and that the program has unique entry and
exit nodes. Exceptions to the rules always alter v(G). As long as there are
relatively few exceptions to these rules, the Cyclomatic Complexity will be not
be substantially affected. If there are a significant number of exceptions,
the impact of multiple exits can be corrected by computing the following:

v(G) - w - s + 2

where s is the number of exits from the module (Harrison 1984). Of course,
counting the number of exits requires edditional analysis. If the code is
primarily structured, the inaccuracy of the original equation is probably not
significant enough to warrant the extra effort.

DOMAIN: This metric can be applied to any executable source code.

RANGE: This metric produces an integer greater than or equal to one, the
Cyclomatic Complexity of code with purely sequential flow.

NECESSARY CONDITIONS: Every possible combination of characters that constitutes
a branch condition must be defined for the context. The boundaries
of a module must be defined for the context.

QUALIFICATIONS: This measure counts all conditions present, whether necessary
or not. For example, code may contain a condition in a context where
it will always be true. The Cyclomatic Complexity counts the number
of conditions present in the algorithm, as implemented.
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The Cyclomatic Complexity of a collection of independent modules, as
in a main program and its subroutines, is slmply the sum of the
Cyclomatic Complexities for each module. For this rule, it is
improper to calculate the total Cyclomatic Complexity by analyzing all
the modules as if they were one continuous sequence of code. In this
case, the value is deflated by the number of modules in the collection
minus one.

CRITICAL ANALYSIS: This measure is not necessarily strictly monotonic or
repeatable. A program reader may miss a condition when reading the
code. In this case, a net increase in the number of branch conditions
is not represented by an increase in the measure. Furthermore, a
different reader will likely judge the conditions differently for the
same code.

A software tool can also produce non-monotonic results. Although it
has well-defined rules for identifying branch conditions, the rules
will likely misinterpret some uncommon realization. Whether the count
produced by a tool is right or wrong, it will certainly produce a
repeatable result.

Despite these problems, if the program reader or the software tool
follows carefully defined rules, either can generate highly reliable
counts.

SQM RELATIONSHIPS: Complexity, Maintainability, Modifiability, Modularity,
Performance, Reliability, Simplicity, Testability, Understandability

TOOLS: Analysis of Complexity Tool (ACT), McCabe & Assocs., Columbia, MD
Battlemap Analysis Tool (BAT), McCabe & Assocs., Columbia, MD
LOGISCOPE, Verilog USA Inc., Alexandria, VA
PC-Metric, SET Laboratories, Inc., Mulino, OR

REFERENCES: Arthur 1983; Basili 1983; Basili and Hutchens 1983; Basili, Selby,
and Phillips 1983; Carver 1986; Cote et al 1988; Crawford, McIntosh,
and Pregibon 1985; Curtis 1980; Elshoff 1982, 1983; Evangelist 1983;
Gaffney 1981; Harrison 1984; Henry, Kafura, and Harris 1981; Kafura
and Reddy 1987; Li and Cheung 1987; Lind and Vairavan 1989; Mannino,
Stoddard, and Sudduth 1990; McCabe 1976, 1982, 1989; McCabe and Butler
1989; McClure 1978; Myers 1977; Prather 1983, 1984; Ramamurthy and
Melton 1988; Schneidewind and Hoffmann 1979; Shneiderman 1980; Siyan
1989; Walsh 1979; Ward 1989; Weyuker 1988
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SOFTWARE METRIC DATA SHEET McCabe Family

ev(G) - Essential Complexity

This metric calculates the amount of unstructured code in a module.

RULE: ev(G) - v(G) - m

where m is the number of proper subgraphs with unique entry and exit nodes.

A proper subgraph is any part of the graph that consists of only a "SEQUENCE"
construct, an "IF-THEN-ELSE" construct, a "DO-UNTIL" construct, a "DO-WHILE"
construct, or a "CASE" construct.

A module is defined to be a set of connected code that is to have a measure
assigned to it. It must be a well-defined entity in order to ensure that the
count is repeatable. To be connected, there must exist an unbroken chain of
nodes and edges between any two nodes. A subroutine is a module, distinct from
its calling module, unless the graph is drawn with the subroutine code
substituted for the calling statement.

The smaller the value of ev(G), the greater the proportion of structured code.
The Essential Complexity of a structured module is one. Greater values for the
Essential Complexity of a module indicate the size of the nonstructured portion
of the code; that code that does not conform to the proper subgraph structure
(McCabe 1976).

Like the Cyclomatic Complexity, this measure also reflects the state of the
algorithm, as implemented. It does not indicate whether the conditions, as
implemented, are necessary for the algorithm.

To draw the control graph, first block the code into predicate nodes, processing
nodes, and collecting nodes. A predicate node is a block of code ending with
a statement that branches to multiple locations. A collecting node begins with
a labeled statement to which flow branches. When a predicate node is labeled,
it is both a predicate node and a collecting node. Each strictly sequential
block of statements between any two predicate or collecting nodes compose a
function node.

Once the code is blocked, graphically represent each block with a circle and
the flow of control between them with lines. In this graph, the circles are
nodes and the lines are edges. The function nodes can be omitted from the graph
without affecting the value of the Cyclomatic Complexity.

DOMAIN: This metric can be applied to any source code that can be blocked into
nodes.

RANGE: This metric produces an integer greater than or equal to one, the
Essential Complexity of a totally structured module.
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NECESSARY CONDITIONS: Every possible combination of characters that constitutes
each type of node must be defined for the context. The boundaries of
a module must be defined for the context.

QUALIFICATIONS: This measure only applies to executable source code.

CRITICAL ANALYSIS: This measure is not necessarily strictly monotonic or
repeatable. A program reader may miss a node when drawing the graph.
In this case, a net increase in the edge-node difference is not
represented by an increase in the measure. Furthermore, a different
reader will likely judge the nodes differently for the same code.

A software tool can also produce non-monotonic results. Although it
has well-defined rules for identifying nodes, the rules will likely
misinterpret some uncommon realization. Whether the count produced
by a tool is right or wrong, it will certainly produce a repeatable
result.

Despite these problems, if the program reader or the software tool
follows carefully defined rules, either can generate highly reliable
counts.

SQM RELATIONSHIPS: Complexity, Conciseness, Efficiency, Modularity, Per-
formance, Reliability, Simplicity, Understandability

TOOLS: Analysis of Complexity Tool (ACT), McCabe & Assocs., Columbia, MD
Battlemap Analysis Tool (BAT), McCabe & Assocs., Columbia, MD
LOGISCOPE, Verilog USA Inc., Alexandria, VA

REFERENCES: Arthur 1983; Basili 1983; Basili and Hutchens 1983; Basili, Selby,
and Phillips 1983; Carver 1986; Cote et al 1988; Crawford, McIntosh,
and Pregibon 1985; Curtis 1980; Elshoff 1982, 1983; Evangelist 1983;
Gaffney 1981; Harrison 1984; Henry, Kafura, and Harris 1981; Kafura
and Reddy 1987; Li and Cheung 1987; Lind and Vairavan 1989; Mannino,
Stoddard, and Sudduth 1990; McCabe 1976, 1982, 1989; McCabe and Butler
1989; McClure 1978; Myers 1977; Prather 1983, 1984; Ramamurthy and
Melton 1988; Schneidewind and Hoffmann 1979; Shneiderman 1980; Siyan
1989; Walsh 1979; Ward 1989; Weyuker 1988
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. SOFTWARE METRIC DATA SHEET RADC Family

FS.I(2) - Function Specificity

This metric calculates, for a single Computer Software Configuration Item
(CSCI), the ratio of modules in which the functions of the module are described
in the comments to total applicable modules.

RULE: For each module of the CSCI, answer the question:

"Is a description of the functions provided in the comments?"
(Bowen, Wigle, and Tsai 1985)

Divide the total number of affirmative answers by the number of
modules to which the question applied.

A CSCI is a set of code as defined in MIL-STD-483 and as used in DOD-STD-2167.

A module (or unit) is defined as a set of code to which a measure is assigned.
It must be a well-defined entity in order to ensure that the count is repeat-
able.

DOMAIN: This metric can be applied to any module of source code that performs
a function.

RANGE: This metric produces a real number between zero and one.

NECESSARY CONDITIONS: The combinations of characters that constitute a
description of the function must be defined for the context. The
boundaries of a module must be defined for the context.

QUALIFICATIONS: This single question requires both that the comments exist and
that they contain a description of the functions.

CRITICAL ANALYSIS: This measure is not necessarily strictly monotonic or
repeatable. A program reader may erroneously judge that a description
in a comment satisfies the requirement. In this case, an increase in
the measure does not represent an increase in how specifically the
function is described. Furthermore, a different reader will likely
judge the sufficiency of the description differently for the same
code. At best, it only establishes that the function was described,
not how well it was described.

A software tool can also produce non-monotonic results. Although it
has well-defined rules for evaluating the descriptions, the rules will
likely misinterpret some uncommon implementation. Whether the count
produced by a tool is right or wrong, the tool will certainly produce
a repeatable result.
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Despite these problems, if the program reader or the software tool
follows carefully defined rules, either can generate highly reliable
counts.

SQH RELATIONSHIPS: Reusability

TOOLS: ***, METRIQS, San Juan Capistrano, CA
AdaMAT, Dynamics Research Corporation, Andover, MA
AMS, Rome Air Development Center, Griffiss AFB, NY
(*** This tool is used internally to support their consulting
service.)

REFERENCES: Boehm et al 1978; Bowen, Wigle, and Tsai 1985; Lasky, Kaminsky,
and Boaz 1990; McCall, Richards, and Walters 1977; Millman and Curtis
1980; Murine 1983, 19851, 19852, 1986, 1988; Pierce, Hartley, and
Worrells 1987; Shneiderman 1980; Sunazuka, Azuma, and Yamagishi 1985;
Warthman 1987
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. SOFTWARE METRIC DATA SHEET RADC Family

GE.1(1) - Unit Referencing

This metric calculates, for a single Computer Software Configuration Item
(CSCI), the ratio of modules that are sufficiently general that they are called
by more than one other module to total number of modules.

RULE: For each CSCI, answer the question:

"How many units are called by more than one other unit?" (Bowen,
Wigle, and Tsai 1985)

Divide the answer by the number of modules in the CSCI.

A CSCI is a set of code as defined in MIL-STD-483 and as used in DOD-STD-2167.

A module (or unit) is defined as a set of code to which a measure is assigned.
It must be a well-defined entity in order to ensure that the count is repeat-
able.

DOMAIN: This metric can be applied to any module of source code.

RANGE: This metric produces a real number between zero and one.

NECESSARY CONDITIONS: The combinations of characters that constitute a call
must be defined for the context. The boundaries of a module must be
defined for the context.

QUALIFICATIONS: None.

CRITICAL ANALYSIS: This measure is not necessarily monotonic. A module may be
sufficiently general to be called by many other modules in various
applications, but only be required by one other module in a particular
application. Thus, it is not a measure of the generality of the
module called.

This metric is highly repeatable, even when determined by a program
reader, since a module is either called or not called.

SQM RELATIONSHIPS: Expandability, Flexibility, Reusability

TOOLS: ***, METRIQS, San Juan Capistrano, CA
AdaMAT, Dynamics Research Corporation, Andover, MA
AMS, Rome Air Development Center, Griffiss AFB, NY
(*** This tool is used internally to support their consulting
service.)
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REFERENCES: Boehm et al 1978; Bowen, Wigle, and Tsai 1985; Lasky, Kaminsky,

and Boaz 1990; McCall, Richards, and Walters 1977; Millman and Curtis

1980; Murine 1983, 1985a, 1985b, 1986, 1988; Pierce, Hartley, and

Worrells 1987; Shneiderman 1980; Sunazuka, Azuma, and Yamagishi 1985;

Warthman 1987
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. SOFTWARE METRIC DATA SHEET RADC Family

NO.1(3) Modular Implementation

This metric calculates, for a single Computer Software Configuration Item
(CSCI), the ratio of modules that are sufficiently modularized (so that they are
not too large) to total applicable modules.

RULE: For each module of the CSCI, answer the question:

"Are the estimated lines of source code for this unit 100 lines or
less, excluding comments?" (Bowen, Wigle, and Tsai 1985)

Divide the total number of affirmative answers by the number of
modules in the set to which the question applied.

A CSCI is a set of code as defined in MIL-STD-483 and as used in DOD-STD-2167.

A module (or anit) is defined as a set of code to which a measure is assigned.
It must be a well-defined entity in order to ensure that the count is repeat-
able.

DOMAIN: This metric can be applied to any module of source code that contains
executable statements.

RANGE: This metric produces a real number between zero and one.

NECESSARY CONDITIONS: The combinations of characters that constitute a comment,
the combinations of characters that constitute lines of source code,
and the boundaries of a module must be defined for the context.

QUALIFICATIONS: The count of lines of source code is called an estimate because
it is recognized that there is no one standard for defining code that
constitutes source code.

CRITICAL ANALYSIS: This measure is not necessarily strictly monotonic or
repeatable. A program reader may erroneously judge that a line of
code is not source code. In this case, an increase in the measure
does not represent an increase in the modularity of the implementa-
tion. Furthermore, a different reader will likely judge lines of code
differently for the same code.

A software tool can also produce non-monotonic results. Although it
has well-defined rules for identifying the comments and lines of
source code, the rules will likely misinterpret some uncommon
implementation. Whether the count produced by a tool is right or
wrong, the tool will certainly produce a repeatable result.
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Despite these problems, if the program reader or the software tool
follows carefully defined rules, either can generate highly reliable
counts.

SQM RELATIONSHIPS: Expandability, Flexibility, Interoperability, Maintain-
ability, Portability, Reusability, Survivability, Verifiability

TOOLS: ***, METRIQS, San Juan Capistrano, CA
AdaMAT. Dynamics Research Corporation, Andover, MA
AMS, Rome Air Development Center, Griffiss AFB, NY
(*** This tool is used internally to support their consulting
service.)

REFERENCES: Boehm et al 1978; Bowen, Wigle, and Tsai 1985; Lasky, Kaminsky,
and Boaz 1990; McCall, Richards, and Walters 1977; Millman and Curtis
1980; Murine 1983, 1985a, 1985b, 1986, 1988; Pierce, Hartley, and
Worrells 1987; Shneiderman 1980; Sunazuka, Azuma, and Yamagishi 1985;
Warthman 1987

S
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.SOFTWARE METRIC DATA SHEET RADC Family

MO.l(7) - Modular Implementation

This metric calculates, for a single Computer Software Configuration Item
(CSCI), the ratio of modules that always transfer control back to the calling
unit to total applicable modules.

RULE: For each module of the CSCI, answer the question:

"Is control always returned to the calling unit when execution is
completed?" (Bowen, Wigle, and Tsai 1985)

Divide the total number of affirmative answers by the number of
modules in the set to which the question applied.

A CSCI is a set of code as defined in MIL-STD-483 and as used in DOD-STD-2167.

A module (or unit) is defined as a set of code to which a measure is assigned.
It must be a well-defined entity in order to ensure that the count is repeat-
able.

DOMAIN: This metric can be applied to any module of source code that is called
by another module.

RANGE: This metric produces a real number between zero and one.

NECESSARY CONDITIONS: The combinations of characters that determine when
execution of a module is completed, what constitutes a calling module,
and the boundaries of a module must be defined for the context.

QUALIFICATIONS: None.

CRITICAL ANALYSIS: This measure is not necessarily monotonic. A module may
transfer control back to the calling module, but not to the next
statement in the sequence. This would break up the modularity of the
calling module. In this case, an increase in the measure does not
represent an increase in the modularity of the implementation.

This metric is highly repeatable, even when determined by a program
reader, since control is either returned to the calling module or is
not returned to the calling module.

SQM RELATIONSHIPS: Expandability, Flexibility, Interoperability, Maintain-
ability, Portability, Reusability, Survivability, Verifiability
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TOOLS: ***, METRIQS, San Juan Capistrano, CA
AdaMAT, Dynamics Research Corporation, Andover, MA
AMS, Rome Air Develipment Center, Griffiss AFB, NY
(*** This tool is used internally to support their consulting
service.)

REFERENCES: Boehm et al 1978; Bowen, Wigle, and Tsai 1985; Lasky, Kaminsky,
and Boaz 1990; McCall, Richards, and Walters 1977; Millman and Curtis
1980; Murine 1983, 1985a, 1985b, 1986, 1988; Pierce, Hartley, and
Worrells 1987: Shneiderman 1980; Sunazuka, Azuma, and Yamagishi 1985;
Warthman 1987
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.SOFTWARE METRIC DATA SHEET RADC Family

SD.2(l) - Effectiveness of Comments

This metric calculates, for a single Computer SLftware Configuration Item
(CSCI), the ratio of modules in which header comments are complete to total
applicable modules.

RULE: For each module of the CSCI, answer the question:

"Are there prologue comments which -!ontain all information in
accordance with the established standard?" (Bowen, Wigle, and Tsai
1985)

Divide the total number of affirmative answers by Lhe number of
modules in the set to which the question applied.

A CSCI is a set of code as defined in MIL-STD-483 and as used in DOD-STD-2167.

A module (or unit) is defined as a set of code to which a measure is assigned.
It must be a well-defined entity in order to ensure that the count is repeat-
able.

DOMAIN: This metric can be applied to any source code for which a standard
has been set for header comments.

RANGE: This metric produces a real number batween zero and one.

NECESSARY CONDITIONS: The combinations of characters that identify a prologue
comment, the combinations of characters that must constitute each
required piece of information, and the boundaries of a module must be
defined for the context.

QUALIFICATIONS: This ques~ion requires that the comment exist and that it
contain the specified informat-on. The only case in which the
question does not apply is for a module for which no prologue comments
are required.

CRITICAL ANALYSIS: This measure is not necessarily strictly monotonic or
repeatable. A program reader may erroneously judge that a piece of
information in a comment satisfies the requirement. In this case, an
increase in the measure does not represent an increase in the comment
effectiveness. Furthermore, a different reader will likely judge the
sufficiency of the comments differently for the same code.

A software tool can also produce non-monoton'- results. Although it
has well-defined rules for evaluating the information, the rules will
likely misinterpret some uncommon implementation. Whether the count
produced by a tool is right or wrong, the tool will certainly produce
a repeatable result.
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Despite these problems, if the program reader or the software tool
follows carefully defined rules, either can generate highly reliable
counts.

SQM RELATIONSHIPS: Expandability, Flexibility, Maintainability, Portability,
Reusability, Verifiability

TOOLS: ***, METRIQS, San Juan Capistrano, CA
AdaMAT, Dynamics Research Corporation, Andover, MA
AMS, Rome Air Development Center, Griffiss AFB, NY
(*** This tool is used internally to support their consulting
service.)

REFERENCES: Boehm et al 1978; Bowen, Wigle, and Tsai 1985; Lasky, Kaminsky,
and Boaz 1990; McCall, Richards, and Walters 1977; Millman and Curtis
1980; Murine 1983, 1985a, 1985b, 1986, 1988; Pierce, Hartley, and
Worrells 1987; Shneiderman 1980; Sunazuka, Azuma, and Yamagishi 1985;
Warthman 1987
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APPENDIX B - SOFTWARE QUALITY FACTOR DATA SHEETS

This appendix contains individual data sheets on each of the most prevalent
software quality factors encountered in this study. The data sheets are a
summary of the concepts, constraints, criticisms, and other data needed to
understand and critically evaluate the application of Software Quality Metrics
(SQM) that measure these quality factors.

Although the data sheets are not primarily intended as a guide for applying SQM,
some of the combinations of these data sheets with the Software Metric Data
Sheets that they reference contain sufficient information that an SQM could be

properly and fully calculated from them. On the other hand, some of the SQM are
so extensive that the data sheets c -Id not encompass all the necessary parts.
In either case, the Technical Report, Software Quality Metrics (N. VanSuetendael
and D. Elwell 1991), discusses the most prominent SQM in detail. See the

references listed on these data sheets for complete coverage of a particular
quality factor. See the references listed on the Software Metric Data Sheets
for complete coverage of a particular software metric that an SQM uses to
measure a quality factor.

Each data sheet covers only one factor and they all contain the same fields of
information. The fields are defined only as they apply to measuring source
code. Many of the metrics can be applied more broadly, but the other pos-
sibilities are not addressed here. The data sheets are arranged alphabetically
by factor name.

The "CLAIM" field is filled by the particular quality factor description or
definition that is the most comprehensive, without being too general, and the
most independent. The goal of identifying quality factors is to come up with
a set of factors that are independent of one another and that comprehensively
cover the full range of quality factors of concern for software.

The "SQM RELATIONSHIPS" field lists those software metrics that are known to be
related to the particular quality factor. This serves as a cross-reference to
the applicable Software Metric Data Sheet of appendix A. However, not all of
the referenced software metrics are addressed in appendix A. See the articles
listed in the bibliography for further information.

The "TOOLS" information is supplied on an as-available basis. It is not to be
taken as a comprehensive list of tools available. Nor is the information to be
taken as a recommendation.
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SOFTWARE QUALITY FACTOR DATA SHEET

Accuracy

This quality factor addresses the concern that programs provide the precision
required for each output. Accuracy is important because most computer manipula-
tions are not exact, but are limited approximations.

CLAIM: Some researchers claim that

"A software product possesses accuracy to the extent that its outputs
are sufficiently precise to satisfy their intended use." (Boehm et al
1978).

DOMAIN: This factor only applies to source code for which the required
precision has been explicitly stated for each output.

NECESSARY CONDITIONS: The required precision must be defined for the context.
The outputs must be defined for the context.

QUALIFICATIONS: None.

CRITICAL ANALYSIS: This factor does not address whether a calculation or output
should or should not be present. The former is the concern of
completeness, the latter of conciseness. Nor does it address whether
the proper quantity is being calculated or output. That is the
concern of correctness.

SQM RELATIONSHIPS: RADC's AC.I(7)

TOOLS: ***, METRIQS, San Juan Capistrano, CA
AdaMAT, Dynamics Research Corporation, Andover, MA
AMS, Rome Air Development Center, Griffiss AFB, NY
(*** This tool is used internally to support their consulting
service.)

REFERENCES: Boehm et al 1978; Bowen, Wigle, and Tsai 1985; Lasky, Kaminsky,
and Boaz 1989; McCall, Richards, and Walters 1977; Millman and Curtis
1980; Murine 1983, 1985a, 1985b, 1986, 1988; Pierce, Hartley, and
Worrells 1987; Shneiderman 1980; Sunazuka, Azuma, and Yamagishi 1985;
Warthman 1987
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SOFTWARE QUALITY FACTOR DATA SHEET

Clarity

This quality factor addresses the concern that programs be easily understood by
people. Programmers are concerned particularly that source listings be easily
understood. Users are concerned that the human interface of the program is
easily understood.

CLAIM: One researcher claims that software clarity is a

"Measure of how clear a program is, i.e., how easy it is to read,
understand, and use" (Kosarajo and Ledgard, as quoted in McCall,
Richards, and Walters 1977).

Although users are concerned about the clarity of the program
dialogue, it is best to let the users' concern for clarity be handled
by the quality factor, usability. Then clarity only addresses the
ease of reading and understanding the program.

DOMAIN: This factor applies to any source code. Programming is such an
iterative process that the code should be programmed with clarity at
least to aid the programmer who writes some code, reviews it, and then
writes some more.

NECESSARY CONDITIONS: The audience to which the code must be clear must be
defined for the context. The criteria for determining that the
program is clear must be determined for the context.

QUALIFICATIONS: This is a programmer-oriented quality factor, not a user-
oriented one.

CRITICAL ANALYSIS: Program clarity can suffer either because the necessary
information is not provided, or because the information provided is
not well presented. Either problem impacts program clarity, since
this quality factor is concerned about the net impact on the ease of
understanding the program, regardless of the cause. In this case,
clarity can be equated with self-descriptiveness.

SQM RELATIONSHIPS: Halstead's Effort, RADC's SD.2(l), SD.2(3)

TOOLS: ***, METRIQS, San Juan Capistrano, CA
AdaMAT, Dynamics Research Corporation, Andover, MA
AMS, Rome Air Development Center, Griffiss AFB, NY
LOGISCOPE, Verilog USA Inc., Alexandria, VA
PC-Metric, SET Laboratories, Inc., Mulino, OR
(*** This tool is used internally to support their consulting
service.)
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REFERENCES: Albrecht and Gaffney 1983; Arthur 1983; Basili, Selby, and Phillips
1983; Boehm et al 1978; Bowen, Wigle, and Tsai 1985; Bulut 1974;
Carver 1986; Coulter 1983; Curtis 1980; Elshoff 1976; Fitzsimmons
1978; Funami 1976; Gordon 1976, 1979; Halstead 1972, 1973, 1977, 1979;
Halstead and Zislis 1973; Henry, Kafura, and Harris 1981; Jones 1978;
Kafura and Reddy 1987; Lasky, Kaminsky, and Boaz 1989; Lassez 1981;
Li and Cheung 1987; McCall, Richards, and Walters 1977; Millman and
Curtis 1980; Murine 1983, 1985a, 1985b, 1986, 1988; Pierce, Hartley,
and Worrells 1987; Prather 1984; Shen, Conte, and Dunsmore 1983;
Shneiderman 1980; Siyan 1989; Sunazuka, Azuma, and Yamagishi 1985;
Warthman 1987; Weyuker 1988; Zislis 1973; Zweben 1977

0
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SOFTWARE QUALITY FACTOR DATA SHEET

Completeness

This quality factor addresses the concern that program functions be implemented
completely.

CLAIM: Some researchers claim that software completeness is determined by

"Those characteristics of software which provide full implementa-
tion of the functions required" (Bowen, Wigle, and Tsai 1985).

DOMAIN: This factor only applies to source code for which the required
functions have been explicitly stated.

NECESSARY CONDITIONS: The required functions and their extent must be defined
for the context.

QUALIFICATIONS: None.

CRITICAL ANALYSIS: This definition of completeness distinguishes functional
completeness from the completeness- of the source code. The latter
encompasses additional attributes, such as program comments, that are
desired by programmers rather than the user. Furthermore, these
attributes are already addressed by the understandability and clarity
quality factors.

SQM RELATIONSHIPS: RADC's CP.I(2)

TOOLS: ***, IETRIQS, San Juan Capistrano, CA
AdaMAT, Dynamics Research Corporation, Andover, MA
AMS, Rome Air Development Center, Griffiss AFB, NY
(*** This tool is used internally to support their consulting
service.)

REFERENCES: Boehm et al 1978; Bowen, Wigle, and Tsai 1985; Lasky, Kaminsky,
and Boaz 1989; McCall, Richards, and Walters 1977; Millman and Curtis
1980; Murine 1983, 1985a, 1985b, 1986, 1988; Pierce, Hartley, and
Worrells 1987; Shneiderman 1980; Sunazuka, Azuma, and Yamagishi 1985;
Wartham 1987
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SOFTWARE QUALITY FACTOR DATA SHEET

complexity

This quality factor addresses the concern that programs not be complex. There
are many types of program complexity, but the complexity of concern is the
complexity that is constructed in the mind of a programmer, the psychological
complexity.

CLAIM: The authors claim that

The complexity of a program is the extent to which it is involved
or intricate, composed of many interwoven parts.

DOMAIN: This factor applies to any source code.

NECESSARY CONDITIONS: The criteria for determining complexity must be defined
for the context.

QUALIFICATIONS: Although the psychological complexity is the important one, a
given SQM may claim that psychological complexity is totally en-
compassed by the complexity of a particular structure of a program.
In this case, the two complexities can be used interchangeably. It
is important that the type of complexity measure be qualified.
Different types must not be directly compared.

This is a programmer-oriented quality factor, not a user-oriented one.

CRITICAL ANALYSIS: This quality factor addresses the complexity of program
code, not the complexity of the user interface. Programmers are
concerned that programs not be complex so that they can easily and
assuredly satisfy programmer and user needs. Any complexity that may
exist for the user is addressed by the quality factor, usability.

SQM RELATIONSHIPS: Albrecht's Function Points; Ejiogu's Structural Complexity;
Halstead's Length, Volume, and Effort; Henry's Information Flow;
McCabe's Cyclomatic Complexity and Essential Complexity; RADC's
si.3(1)

TOOLS: ***, METRIQS, San Juan Capistrano, CA
AdaMAT, Dynamics Research Corporation, Andover, MA
AMS, Rome Air Development Center, Griffiss AFB, NY
Analysis of Complexity Tool (ACT), McCabe & Assocs., Columbia, MD
Battlemap Analysis Tool (BAT), McCabe & Assocs., Columbia, MD
Checkpoint, Software Productivity Research, Inc., Burlington, MA
COMPLEXIMETER, Softmetrix, Inc., Chicago, IL
LOGISCOPE, Verilog USA Inc., Alexandria, VA
PC-Metric, SET Laboratories, Inc., Mulino, OR
SIZE PLANNER, Quantitative Software Management, Inc., McClean, VA
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(*** This tool is used internally to support their consulting
service. )

REFERENCES: Albrecht 1979, 1985; Albrecht and Gaffney 1983; Arthur 1983; Basili
1983; Basili and Hutchens 1983; Basili, Selby, and Phillips 1983;
Behrens 1983; Boehm et al 1978; Bowen, Wigle, and Tsai 1985; Bulut
1974; Carver 1986; Cote et al 1988; Coulter 1983; Crawford, McIntosh,
and Pregibon 1985; Curtis 1980; Drummond 1985; Ejiogu 1984a, 1984b,
1987, 1988, 1990; Elshoff 1976, 1982, 1983; Evangelist 1983; Fitzsim-
mons 1978; Funami 1976; Gaffney 1981; Gordon 1976, 1979; Halstead
1972, 1973, 1977, 1979; Halstead and Zislis 1973; Harrison 1984; Henry
1979; Henry and Kafura 1984; Henry, Kafura, and Harris 1981; Jones
1978, 1988; Kafura and Henry 1982; Kafura and Reddy 1987; Lasky,
Kaminsky, and Boaz 1989; Lassez 1981; Li and Cheung 1987; Lind and
Vairavan 1989; Low and Jeffrey 1990; Mannino, Stoddard, and Sudduth
1990; McCabe 1976, 1982, 1989; McCabe and Butler 1989; McCall,
Richards, and Walters 1977; McClure 1978; Millman and Curtis 1980;
Murine 1983, 1985a, 1985b, 1986, 1988; Myers 1977; Pierce, Hartley,
and Worrells 1987; Prather 1983, 1984; Ramamurthy and Melton 1988;
Schneidewind and Hoffmann 1979; Shen, Conte, and Dunsmore 1983;
Shneiderman 1980; Siyan 1989; Sunazuka, Azuma, and Yamagishi 1985;
Walsh 1979; Ward 1989; Warthman 1987; Weyuker 1988; Zislis 1973;
Zweben 1977
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SOFTWAKE QUALITY FACTOR DATA SHEET

Conciseness

This quality factor addresses the concern that programs not contain any
extraneous information.

CLAIM: Some researchers claim that software conciseness is determined by

"The ability to satisfy functional requirements with minimum
amount of software" (McCall, Richards, and Walters 1977).

DOMAIN: This factor only applies to source code for which the functional
requirements have been explicitly stated.

NECESSARY CONDITIONS: The functional requirements must be defined for the
context.

QUALIFICATIONS: This is a programmer-oriented quality factor, not a user-
oriented one.

CRITICAL ANALYSIS: This quality factor basically addresses how efficiently the
source code was used. Any efficiency quality factors may already
encompass this quality factor. Another word used for efficiency is
effectiveness.

SQM RELATIONSHIPS: Halstead's Potential Volume, McCabe's Essential Complexity,

TOOLS: Analysis of Complexity Tool (ACT), McCabe & Assocs., Columbia, MD
Battlemap Analysis Tool (BAT), McCabe & Assocs., Columbia, MD
LOGISCOPE, Verilog USA Inc., Alexandria, VA

REFERENCES: Halstead 1977; McCabe 1976, 1982
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SOFTWARE QUALITY FACTOR DATA SHEET

Consistency

This quality factor addresses the concern that the source code syntax and
constructs in programs be implemented uniformly.

CLAIM: Some researchers claim that software consistency is determined by

"Those characteristics of software which provide for uniform
design and implementation techniques and notation" (Bowen, Wigle,
and Tsai 1985).

DOMAIN: This factor applies to any source code.

NECESSARY CONDITIONS: The standard notation must be defined for the context.

QUALIFICATIONS: This is a programmer-oriented quality factor, not a user-
oriented one.

CRITICAL ANALYSIS: This quality factor addresses self-consistency. External
consistency is more properly addressed by the quality factors,
completeness, correctness, and performance, since they all compare
the implementation with an external standard.

SQM RELATIONSHIPS: RADC's software metrics

TOOLS: ***, METRIQS, San Juan Capistrano, CA
AdaMAT, Dynamics Research Corporation, Andover, MA
AMS, Rome Air Development Center, Griffiss AFB, NY
(*** This tool is used internally to support their consulting
service.)

REFERENCES: Boehm et al 1978; Bowen, Wigle, and Tsai 1985; Lasky, Kaminsky,
and Boaz 1989; McCall, Richards, and Walters 1977; Millman and Curtis
1980; Murine 1983, 1985a, 1985b,. 1986, 1988; Pierce, Hartley, and
Worrells 1987; Shneiderman 1980; Sunazuka, Azuma, and Yamagishi 1985;
Wartham 1987
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SOFTWARE QUALITY FACTOR DATA SHEET

Correctness

This quality factor addresses the concern that software design and documentation
formats conform to the specifications and standards set for them. It is not
concerned with any content affecting software operation or performance.

CLAIM: Some researchers claim that software correctness is determined by the

"Extent to which the software conforms to its specifications and
standards" (Bowen, Wigle, and Tsai 1985).

DOMAIN: This factor only applies to source code for which specifications and
standards have been explicitly stated.

NECESSARY CONDITIONS: The specifications and standards must be defined for the
context.

QUALIFICATIONS: This is a programmer-oriented quality factor, not a user-
oriented one.

CRITICAL ANALYSIS: This quality factor must not be confused with completeness.
Although each specification may have been completely addressed, it
may have been addressed incorrectly. Completeness of a function must
be satisfied before its correctness can be established.

SQM RELATIONSHIPS: RADC's CP.l(2)

TOOLS: ***, METRIQS, San Juan Capistrano, CA
AdaMAT, Dynamics Research Corporation, Andover, MA
AMS, Rome Air Development Center, Gri'fiss AFB, NY
(*** This tool is used internally to support their consulting
service.)

REFERENCES: Boehm et al 1978; Bowen, Wigle, and Tsai 1985; Lasky, Kaminsky, and
Boaz 1989; McCall, Richards, and Walters 1977; Millman and Curtis
1980; Murine 1983, 1985a, 1985b, 1986, 1988; Pierce, Hartley, and
Worrells 1987; Shneiderman 1980; Sunazuka, Azuma, and Yamagishi 1985;
Wartham 1987
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SOFTWARE QUALITY FACTOR DATA SHEET

Efficiency

ThiL, quality factor addresses the concern that programs optimally use any
computer resources.

CLAIM: Some researchers claim that

"A software product possesses the characteristic Efficiency to
the extent that it fulfills its purpose without waste of
resources." (Boehm et al 1978)

In practice, one is not usually concerned with general efficiency,
but with the efficiency of utilization of a particular resource, for
example, efficient use of processing time.

DOMAIN: This factor only applies to source code for which the purpose has been
explicitly stated.

NECESSARY CONDITIONS: The criteria for estab *lishing that a resource is wasted
must be defined for the context.

O QUALIFICATIONS: None.

CRITICAL ANALYSIS: This quality factor must not be confused with how the
software rates for a particular performance measure. Performance is
concerned with how close the measure comes to a standard. Efficiency
requires that the standard be met, and then addresses how effectively
it was met.

SQM RELATIONSHIPS: Halstead's Potential Volume, McCabe's Essential Complexity,
RADC's EP.2(4)

TOOLS: ***, METRIQS, San Juan Capistrano, CA
AdaMAT, Dynamics Research Corporation, Andover, MA
AMS, Rome Air Development Center, Criffiss AFB, NY
Analysis of Complexity Tool (ACT), McCabe & Assocs., Columbia, MD
Battlemap Analysis Tool (BAT), McCabe & Assocs., Columbia, MD
(*** This tool is used internally to support their consulting
service.)

REFERENCES: Boehm et al 1978; Bowen, Wigle, and Tsai 1985; Halstead 1977;
Lasky, Kaminsky, and Boaz 1989; MC'Cabe 1976, 1982; McCall, Richards,
and Walters 1977; Millman and Curtis 1980; Murine 1983, 1985s, 1985b,
1986, 1988; Pierce, Hartley, and Worrells 1987; Shneiderman 1980;
Sunazuka, Azuma, and Yamagishi 1985; Wartham 1987
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SOFTWARE QUALITY FACTOR DATA SHEET

Expandability

This quality factor addresses the concern that program limitations be easy to
extend.

CLAIM: Some researchers claim that software expandability is determined by
the

"Relative effort [required] to increase the software capability
or performance by enhancing current functions or by adding new
functions or data" (Bowen, Wigle, and Tsai 1985).

DOMAIN: This factor applies to any source code.

NECESSARY CONDITIONS: The criteria for distinguishing a change from an
expansion must be defined for the context.

QUALIFICATIONS: None.

CRITICAL ANALYSIS: This quality factor must not be confused with flexibility,
maintainability, or reusability. Expandability assumes that all
existing functions are still performed, but possibly added to or
enhanced. Expandability also assumes that there is no change in the
context in which the program is used. Another word used to describe
this quality factor is augmentability.

SQM RELATIONSHIPS: RADC's GE.1(1), GE.2(2), MO.I(3), MO.I(5), MO.l(7), SD.2(1),
SD.2(3), SI.3(i)

TOOLS: ***, METRIQS, San Juan Capistrano, CA
AdaMAT, Dynamics Research Corporation, Andover, MA
AMS, Rome Air Development Center, Griffiss AFB, NY
(*** This tool is used internally to support their consulting
service.)

REFERENCES: Boehm et al 1978; Bowen, Wigle, and Tsai 1985; Lasky, Kaminsky,
and Boaz 1989; McCall, Richards, and Walters 1977; Millman and Curtis
1980; Murine 1983, 1985a, 1985b, 1986, 1988; Pierce, Hartley, and
Worrells 1987; Shneiderman 1980; Sunazuka, Azuma, and Yamagishi 1985;
Wartham 1987
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SOFTWARE QUALITY FACTOR DATA SHEET

Flexibility

This quality factor addresses the concern that programs be easy to change to
meet different requirements, with no change in the context.

CLAIM: Some researchers claim that software flexibility is determined by the

"Ease of effort for changing the software missions, functions,
or data to satisfv other requirements" (Bowen, Wigle, and Tsai
1985).

DOMAIN: This factor applies to any source code.

NECESSARI CONDITIONS: The criteria for distinguishing different requirements
from a change in context or an expansion must be defined for the
context.

QUALIFICATIONS: None.

CRITICAL ANALYSIS: This quality factor must not be confused with expandabilit.,
maintainability, or reusability. Expandability addresses the simple
case of satisfying extended requirements, rather than different
requirements. In order to keep flexibility independent of expanda-
bility, flexibility should assess the ability to accommodate different
requirements. Maintainability assumes no change in the functions of
a program. Reusability requires a change of context.

SQM RELATIONSHIPS: RADC's GE.l(1), GE.2(2), MO.1(3), MO.I(5), MO.1(7), SD.2(l),
SD.2(3), SI.3(I)

TOOLS: ***, METRIQS, San Juan Capistrano, CA
AdaMAT, Dynamics Research Corporation, Andover, MA
AMS, Rome Air Development Center, Griffiss AFB, NY
(*** This tool is used internally to support their consulting
service.)

REFERENCES: Boehm et al 1978; Bowen, Wigle, and Tsai 1985; Lasky, Kaminsky, and
Boaz 1989; McCall, Richards, and Walters 1977; Millman and Curtis
1980; Murine 1983, 1985a, 1985b, 1986, 1988; Pierce, Hartley, and
Worrells 1987; Shneiderman 1980; Sunazuka, Azuma, and Yamagishi 1985;
Wartham 1987
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SOFTWARE QUALITY FACTOR DATA SHEET

Integrity

This quality factor addresses the concern that programs must continue to perform
their function even under adverse conditions: inputs that are unexpected,
improper, or harmful.

CLAIM: Some researchers claim that software integrity is determined by the

"Ability of software to prevent purposeful or accidental damage
to the data or software" (United States Army Computer Systems
Command as quoted in McCall, Richards, and Walters 1977).

This definition assumes that damage to the data or software will
result in the loss of function.

DOMAIN: This factor applies to any source code.

NECESSARY CONDITIONS: The adverse conditions must be defined for the context.

QUALIFICATIONS: This definition assumes that program integrity is an issue only
when the program is operating. When it is not operating, the
operating system must guard the program and its data from damage; the
program cannot.

CRITICAL ANALYSIS: This quality factor must-not be confused with security or
reliability. Security contributes directly to integrity, but security
is only concerned with unauthorized access to information. When a
program is not secure, the confidentiality of the data is compromised,
whether or not the program is subjected to adverse conditions.
Similarly, reliability is determined by program failures that occur
during execution under the specified conditions, not during adverse
conditions.

SQM RELATIONSHIPS: RADC's software metrics

TOOLS: ***, METRIQS, San Juan Capistrano, CA
AdaMAT, Dynamics Research Corporation, Andover, MA
AMS, Rome Air Development Center, Griffiss AFB, NY
(*** This tool is used internally to support their consulting
service.)

REFERENCES: Boehm et al 1978; Bowen, Wigle, and Tsai 1985; Lasky, Kaminsky,
and Boaz 1989; McCall, Richards, and Walters 1977; Millman and Curtis
1980; Murine 1983, 1985a, 1985b, 1986, 1988; Pierce, Hartley, and
Worrells 1987; Shneiderman 1980; Sunazuka, Azuma, and Yamagishi 1985;
Wartham 1987
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SOFTWARE QUALITY FACTOR DATA SHEET

Maintainability

This quality factor addresses the concern that programs be easy to fix, once a
failure is identified.

CLAIM: Some researchers claim that software maintainability is determined by
the

"Ease of effort for locating and fixing a software failure within
a specified time period" (Bowen, Wigle, and Tsai 1985).

DOMAIN: This factor only applies to source code for which operational failure
and restoration is defined.

NECESSARY CONDITIONS: The criteria for program failures must be defined for the
context.

QUALIFICATIONS: In general, maintainability encompasses the ease of identifying
and making any changes to programs. But when used as one of a set of
quality factors, maintainability is usually restricted to changes that
are made to fix software failures as in the definition above. Often,
maintainability is further restricted to the ease of making the fix,
once the cause for the failure is found. This restriction keeps it
highly independent. In particular, it makes maintainability indepen-
dent of complexity and understandability.

CRITICAL ANALYSIS: This quality factor must not be conf,,sed with expandability,
flexibility, modifiability, portability, or reusability. None of
these quality factors apply to changes made in response to software
failures. They address the concerns related to making changes for
other reasons.

SQM RELATIONSHIPS: Halstead's Effort; Henry's Information Flow; McCabe's
Cyclomatic Complexity; RADC's MO.I(3), MO.I(5), MO.I(7), SD.2(l),
SD.2(3), SI.3(I)

TOOLS: ***, METRIQS, San Juan Capistrano, CA
AdaMAT, Dynamics Research Corporation, Andover, MA
AMS, Rome Air Development Center,'Criffiss AFB, NY
Analysis of Complexity Tool (ACT), McCabe & Assocs., Columbia, MD
Battlemap Analysis Tool (BAT), McCabe & Assocs., Columbia, MD
PC-Metric, SET Laboratories, Inc., Mulino, OR
(*** This tool is used internally to support their consulting

service.)

REFERENCES: Albrecht and Gaffney 1983; Arthur 1983; Basili 1983; Basili and
Hutchens 1983; Basili, Selby, and Phillips 1983; Boehm et al 1978;
Bowen, Wigle, and Tsai 1985; Bulut 1974; Carver 1986; Cote et al 1988;
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Coulter 1983; Crawford, McIntosh, and Pregibon 1985; Curtis 1980;
Elshoff 1976, 1982, 1983; Evangelist 1983; Fitzsimmons 1978; Funami
1976; Gaffney 1981; Gordon 1976, 1979; Halstead 1972, 1973, 1977,
1979; Halstead and Zislis 1973; Harrison 1984; Henry 1979; Henry and
Kafura 1984; Henry, Kafura, and Harris 1981; Jones 1978; Kafura and
Henry 1982; Kafura and Reddy 1987; Lasky, Kaminsky, and Boaz 1989;
Lassez 1981; Li and Cheung 1987; Lind and Vairavan 1989; Mannino,
Stoddard, and Sudduth 1990; McCabe 1976, 1982, 1989; McCabe and Butler
1989; McCall, Richards, and Walters 1977; McClure 1978; Millman and
Curtis 19F0; Murine 1983, 1985a, 1985b, 1986, 1988; Myers 1977;
Pierce, Hartley, and Worrells 1987; Prather 1983, 1984; Ramamurthy and
Melton 1988; Schneidewind and Hoffmann 1979; Shen, Conte, and Dunsmore
1983; Shneiderman 1980; Siyan 1989; Sunazuka, Azuma, and Yamagishi
1985; Walsh 1979; Ward 1989; Warthman 1987; Weyuker 1988; Zislis 1973;
Zweben 1977
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SOFTWARE QUALITY FACTOR DATA SHEET

Modifiability

This quality factor addresses the concern that programs be easy to change,
regardless of the reason for the change.

CLAIM: Some researchers claim that

"A software product possesses modifiability to the extent that
it facilitates the incorporation of changes, once the nature of
the desired change has been determined." (Boehm et al 1978)

DOMAIN: This factor applies to any source code.

NECESSARY CONDITIONS: The criteria for a program change must be defined for the
context.

QUALIFICATIONS: The effort expended to understand how to change a program is
not addressed by this quality factor. Only the next step of imple-
menting the change is addressed.

CRITICAL ANALYSIS: This quality factor encompasses all the concerns addressed
by expandability, flexibility, maintainability, portabiliity, and
reusability. This does not mean that they are identical, but rather
that modifiability is fundamental to them all. The ease of making
all types of changes must be addressed for this quality factor. The
other quality factors emphasize a particular type of modifiability.

SQM RELATIONSHIPS: Halstead's Effort; Henry's Information Flow; McCabe's
Cyclomatic Complexity

TOOLS: Analysis of Complexity Tool (ACT), McCabe & Assocs., Columbia, MD
Battlemap Analysis Tool (BAT), McCabe & Assocs., Columbia, MD
LOGISCOPE, Verilog USA Inc., Alexandria, VA
PC-Metric, SET Laboratories, Inc., Mulino, OR

REFERENCES: Albrecht and Gaffney 1983; Arthur 1983; Basili 1983; Basili and
Hutchens 1983; Basili, Selby, and Phillips 1983; Bulut 1974; Carver
1986; Cote et al 1988; Coulter 1983; Crawford, McIntosh, and Pregibon
1985; Curtis 1980; Elshoff 1976, 1982, 1983; Evangelist 1983;
Fitzsimmons 1978; Funami 1976; Gaffney 1981; Gordon 1976, 1979;
Halstead 1972, 1973, 1977, 1979; Halstead and Zislis 1973; Harrison
1984; Henry 1979; Henry and Kafura 1984; Henry, Kafura, and Harris
1981; Jones 1978; Kafura and Henry 1982; KaCura and Reddy 1987; Lassez
1981; Li aid Cheung 1987; Lind and Vairavan 1989; Mannino, Stoddard,
and Sudduth 1990; McCabe 1976, 1982, 1989; McCabe and Butler 1989;
McClure 1978; Myers 1977; Prather 1983, 1984; Ramamurthy and Melton
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1988; Schneldewind and Hoffmann 1P79; Shen, Conte, and Dunsmore 1983;
Shneiderman 1980; Siyan 1989; Walsh 1979; Ward 1989; Weyuker 1988;
Zislis 1973; Zweben 1977
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SOFTWARE QUALITY FACTOR DATA SHEET

Modularity

This quality factor addresses the concern that programs be composed of many
small, simple, independent steps that are clearly delineated by the code.

CLAIM: One researcher claims that software modularity is the

"Formal way of dividing a program into a number of sub-units each
having a well defined function and relationship to the rest of
the program" (Mealy as quoted in McCall, Richards, and Walters
1977).

These sub-units are called modules. Thus, the quality factor is
modularity. The program itself may be a sub-unit of some larger
program.

DOMAIN: This factor applies to any source code.

NECESSARY CONDITIONS: The criteria for distinguishing modules and intermodule
relationships must be defined for the context.

QUALIFICATIONS: This is a programmer-oriented quality factor, not a user-
oriented one.

CRITICAL ANALYSIS: This quality factor is usually used to indicate the presence
of one of the following quality factors: expandability, flexibility,
maintainability, modifiability, portability, reusability, and
understandability. Depending on which of these quality factors is to
be indicated by modularity, different modules and intermodule
relationships are identified. For example, a program that is broken
into one set of modules to enhance expandability may be broken into
a different set of modules to enhance understandability.

SQM RELATIONSHIPS: McCabe's Cyclomatic Complexity and Essential Complexity;
RADC's MO.l(3), MO.I(5), MO.1(7)

TOOLS: ***, METRIQS, San Juan Capistrano, CA
AdaMAT, Dynamics Research Corporation, Andover, MA
AMS, Rome Air Development Center, Griffiss AFB, NY
Analysis of Complexity Tool (ACT), McCabe & Assocs., Columbia, MD
Battlemap Analysis Tool (BAT), McCabe & Assocs., Columbia, MD
LOGISCOPE, Verilog USA Inc., Alexandria, VA
PC-Metric, SET Laboratories, Inc., Mulino, OR
(*** This tool is used internally to support their consulting
service.)

REFERENCES: Arthur 1983; Basili 1983; Basili and Hutchens 1983; Basili, Selby,
and Phillips 1983; Boehm et al 1978; Bowen, Wigle, and Tsai 1985;
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Carver 1986; Cote et al 1988; Crawford, McIntosh, and Pregibon 1985;
Curtis 1980; Elshoff 1982, 1983; Evangelist 1983; Gaffney 1981;
Harrison 1984; Henry, Kafura, and Harris 1981; Kafura and Reddy 1987;
Lasky, Kaminsky, and Boaz 1989; Li and Cheung 1987; Lind and Vairavan
1989; Mannino, Stoddard, and Sudduth 1990; McCabc 1976, 1982, 1989;
McCabe and Butler 1989; McCall, Richards, and Walters 1977; McClure
1978; Millman and Curtis 1980; Murine 1983, 1985a, 1985b, 1986, 1988;
Myers 1977; Pierce, Hartley, and Worrells 1987; Prather 1983, 1984;
Ramamurthy and Melton 1988; Schneidewind and Hoffmann 1979; Shneider-
man 1980; Siyan 1989; Sunazuka, Azuma, and Yamagishi 1985; Walsh 1979;
Ward 1989; Warthman 1987; Weyuker 1988
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SOFTWARE QUALITY FACTOR DATA SHEET

Performance

This quality factor addresses the concern of how well a program attribute or
function is implemented with respect to some standard. Often, this is related
to the utilization of resources.

CLAIM: One researcher claims that software performance is determined by

"The effectiveness with which resources of the host system are
utilized toward meeting the objective of the software system"
(Dennis as quoted in McCall, Richards, and Walters 1977).

DOMAIN: This factor only applies to source code for which performance
standards have been set.

NECESSARY CONDITIONS: The standard against which the implementation is to be
compared must be defined for the context.

QUALIFICATIONS: None.

CRITICAL ANALYSIS: This quality factor must not be confused with completeness
or correctness. Performance is concerned with how well the job is
done, given that a program completely and correctly meets its
specifications. The performance quality factor is used to determine
which satisfactory program performs better.

SQM RELATIONSHIPS: Albrecht's Function Points; Ejiogu's Structural Complexity;
Halstead's Length, Volume, and Effort; Henry's Information Flow;
McCabe's Cyclomatic Complexity and Essential Complexity

TOOLS: Analysis of Complexity Tool (ACT), McCabe & Assocs., Columbia, MD
Battlemap Analysis Tool (BAT), McCabe & Assocs., Columbia, MD
Checkpoint, Software Productivity Research, Inc., Burlington, MA
COMPLEXIMETER, Softmetrix, Inc., Chicago, IL
LOGISCOPE, Verilog USA Inc., Alexandria, VA
PC-Metric, SET Laboratories, Inc., Mulino, OR
SIZE PLANNER, Quantitative Software Management, Inc., McClean, VA

REFERENCES: Albrecht 1979, 1985; Albrecht and Gaffney 1983; Arthur 1983; Basili
1983; Basili and Hutchens 1983; Basili, Selby, and Phillips 1983;
Behrens 1983; Bulut 1974; Carver 1986; Cote et al 1988; Coulter 1983;
Crawford, McIntosh, and Pregibon 1985; Curtis 1980; Drummond 1985;
Ejiogu 1984a, 1984b, 1987, 1988, 1990; Elshoff 1976, 1982, 1983;
Evangelist 1983; Fitzsimmons 1978; Funami 1976; Gaffney 1981; Gordon
1976, 1979; Halstead 1972, 1973, 1977, 1979; Halstead and Zislis 1973;
Harrison 1984; Henry 1979; Henry and Kafura 1984; Henry, Kafura, and
Harris 1981; Jones 1978, 1988; Kafura and Henry 1982; Kafura and Reddy
1987; Lassez 1981; Li and Cheung 1987; Lind and Vairavan 1989; Low and
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Jeffrey 1990; Mannino, Stoddard, and Sudduth 1990; McCabe 1976, 1982,
1989; McCabe and Butler 1989; McClure 1978; Myers 1977; Prather 1983,
1984; Ramamurthy and Melton 1988; Schneidewind and Hoffmann 1979;
Shen, Conte, and Dunsmore 1983; Shneiderman 1980; Siyan 1989; Walsh
1979; Ward 1989; Weyuker 1988; Zislis 1973; Zweben 1977
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SOFTWARE QUALITY FACTOR DATA SHEET

Portability

This quality factor addresses the concern that programs be changed easily to
operate on a different set of equipment.

CLAIM: One researcher claims that software portability is determined by

"How quickly and cheaply the software system can be converted to
perform the same functions using different equipment" (Kosy as
quoted in McCall, Richards, and Walters 1977).

DOMAIN: This factor only applies to source code that performs functions that
are supported on other equipment.

NECESSARY CONDITIONS: The criteria for distinguishing lack of modifiability
from lack of portability must be defined for the context.

QUALIFICATIONS: The portability of the code, not the function that it performs,
is addressed by this quality factor. If the hardware on which it
operates is unique, there is no machine to which the code can be
transported tQ perform the same function. This is not the fault of
the code.

Every change required to operate a program on different equipment is
weighted by the modifiability of the code. If the modifiability is
poor, a very machine-independent program may still appear to be not
very portable.

CRITICAL ANALYSIS: This quality factor must not be confused with reusability.
Portability addresses only those changes required to make the program
work on a different machine; everything else remains the same.

SQM RELATIONSHIPS: RADC's MO.I(3), MO.l(5), MO.I(7), SD.2(l), SD.2(3)

TOOLS: ***, METRIQS, San Juan Capistrano, CA
AdaMAT, Dynamics Research Corporation, Andover, MA
AMS, Rome Air Development Center, Griffiss AFB, NY
(*** This tool is used internally to support their consulting
service.)

REFERENCES: Boehm et al 1978; Bowen, Wigle, and Tsai 1985; Lasky, Kaminsky,
and Boaz 1989; McCall, Richards, and Walters 1977; Millman and Curtis
1980; Murine 1983, 1985a, 1985b, 1986, 1988; Pierce, Hartley, and
Worrells 1987; Shneiderman 1980; Sufiazuka, Azuma, and Yamagishi 1985;
Wartham 1987
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SOFTWARE QUALITY FACTOR DATA SHEET

Reliability

This quality factor addresses the concern that programs continue to perform
properly over time.

CLAIM: One researcher claims that software reliability is determined by

"The probability that a software system will operate without
failure for at least a given period of time when used under
stated conditions" (Kosy as quoted in McCall, Richards, and
Walters 1977).

DOMAIN: This factor only applies to source code for which the proper operating
conditions are specified.

NECESSARY CONDITIONS: The proper operating conditions and the criteria for
establishing a fail,.re must be defined for the context.

QUALIFICATIONS: For code-based SQM, this quality factor must be given by
probabilities based solely on program code. Most reliability
estimates are based on experimental data.

CRITICAL ANALYSIS: This quality factor must not be confused with accuracy or
correctness. Reliability addresses the continuance of functions
already presumed to he both accurate and correct.

SQM RELATIONSHIPS: Halstead's Effort; Henry's Information Flow; McCabe's
Cyclomatic Cocrplexity and Essential Complexity, RADC's S1.3(l)

TOOLS: ***, METRIQS, San Juan Capistrano, CA
AdaMAT, Dynamics Research Corporation, Andover, MA
AMS, Rome Air Development Center, Griffiss AFB, NY
Analysis of Complexity Tool (ACT), McCabe & Assocs. Columbia, MD
Battlemap Analysis Tool (BAT), McCabe & Assocs., Columbia, MD
LOGISCOPE, Verilog USA Inc., Alexandria, VA
PC-Metric, SET Laboratories, Inc., Mulino, OR
(*** This tool is used internally to supp3rt their consulting
service.)

REFERENCES: Albrecht and Gaffney 1983; Arthur 1983; Basili 1983; Basili and
Hutchens 1983; Basili, Selby, and Phillips 1983; Boehm et al 1978;
Bowen, Wigle, and Tsai 1985; Bulut 1974; Carver 1986; Cote et al 1988;
Coulter 1983; Crawford, McIntosh, and Pregibon 1985; Curtis 1980;
Elshoff 1976, 1982, 1983; Evangelist 1983; Fitzsimmons 1978; Funami
1976; Gaffney 1981; Gordon 1976, 1979; Halstead 1972, 1973, 1977,
1979; Halstead and Zislis 1973; Harrison 1984; Henry 1979; Henry and
Kafura 1984; Henry, Kafura, and Harris 1981; Jones 1978; Kafura and
Henry 1982; Kafura and Reddy 1987; Lasky, Kaminsky, and Boaz 1989;
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Lassez 1981; Li and Cheung 1987; Lind and Vairavan 1989; Mannino,
Stoddard, and Sudduth 1990; McCabe 1976, 1982, 1989; McCabe and Butler
1989; McCall, Richards, and Walters 1977; McClure 1978; Miliman and
Curtis 1980; Murine 1983, 1985a, 1985b, 1986, 1988; Myers 1977;
Pierce, Hartley, and Worrells 1987; Prather 1983, 1984; Ramamurthy and
Melton 1988; Schneidewind and Hoffmann 1979; Shen, Conte, and Dunsmore
1983; Shneiderman 1980; Siyan 1989; Sunazuka, Azuma, and Yamagishi
1985; Walsh 1979; Ward 1989; Warthman 1987; Weyuker 1988; Zislis 1973;
Zweben 1977
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SOFTWARE QUALITY FACTOR DATA SHEET

Reusability

This quality factor addresses the concern that programs be easy to reuse in a
different application.

CLAIM: Some researchers claim that software reusability is determined by the

"Relative effort to convert a software component for use in a
different application" (Bowen, Wigle, and Tsai 1985).

DOMAIN: This factor applies to any source code.

NECESSARY CONDITIONS: The proper operating conditions and the criteria for
establishing a failure must be defined for the context.

QUALIFIC.,TIONS: Every change required to use a program in a different applica-
tion is weighted by the modifiability of the code. If the modifiabil-
ity is poor, a very application-independent program may still appear
to be not very reusable.

This is a programmer-oriented quality factor, not a user-oriented one.

CRITICAL ANALYSIS: This quality factor must not be confused with expandability,
flexibility, or portability. All three address ease of changing a
program, but for reasons other than using the program to perform the
same function in a different application.

SQM RELATIONSHIPS: RADC's AP.3(2), FS.1(2), GE.1(1), GE.2(2), MO.I(3), MO.1(5),
MO.l(7), SD.2(l), SD.2(3), SI.3(1), ST.5(2)

TOOLS: ***, METRIQS, San Juan Capistrano, CA
AdaMAT, Dynamics Research Corporation, Andover, MA
AMS, Rome Air Development Center, Griffiss AFB, NY
(*** This tool is used internally to support their consulting
service.)

REFERENCES: Boehm et al 1978; Bowen, Wigle, and Tsai 1985; Lasky, Kaminsky,
and Boaz 1989; McCall, Richards, and Walters 1977; Millman and Curtis
1980; Murine 1983, 1985a, 1985b, 1986, 1988; Pierce, Hartley, and
Worrells 1987; Shneiderman 1980; Sunazuka, Azuma, and Yamagishi 1985;
Wartham 1987
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SOFTWARE QUALITY FACTOR DATA SHEET

Simplicity

This quality factor addreszes the concern that, as much as possible, programs
be implemented in strictly sequential steps that depend only on the step before
it. Comments should exhibit a similar straight forwardness.

CLAIM: Some researchers claim that software simplicity is determined by

"Those characteristics of software which provide for definition
and implementation of functions in the most noncomplex and
understandable manner" (Bowen, Wigle, and Tsai 1985).

Simplicity is the opposite of the quality factor, complexity.

DOMAIN: This factor applies to any source code.

NECESSARY CONDITIONS: The criteria for determining simplicity must be defined
for the context.

QUALIFICATIONS: Simplicity of implementation must be evaluated independently
of the simplicity or complexity of the algorithm. Simplicity
addresses how simply an algorithm of a certain complexity is imple-

* mented.

This is a programmer-oriented quality factor, not a user-oriented one.

CRITICAL ANALYSIS: This quality factor is usually represented by other quality
factors. Since simplicity is desired because it enhances under-
standing, clarity and understandability are more commonly used.

SQM RELATIONSHIPS: Albrecht's Function Points; Ejiogu's Structural Complexity;
Halstead's Length, Volume, and Effort; Henry's Information Flow;
McCabe's Cyclomatic Complexity and Essential Complexity; RADC's
sI.3(l)

TOOLS: ***, METRIQS, San Juan Capistrano, CA
AdaMAT, Dynamics Research Corporation, Andover, MA
AMS, Rome Air Development Center, Griffiss AFB, NY
Analysis of Complexity Tool (ACT), McCabe & Assocs., Columbia, MD
Battlemap Analysis Tool (BAT), McCabe & Assocs., Columbia, MD
Checkpoint, Software Productivity Research, Inc., Burlington, MA
COMPLEXIMETER, Softmetrix, Inc., Chicago, IL
LOGISCOPE, Verilog USA Inc., Alexandria, VA
PC-Metric, SET Laboratories, Inc., Mulino, OR
SIZE PLANNER, Quantitative Software Management, Inc., McClean, VA
(*** This tool is used internally to support their consulting
service.)
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REFERENCES: Albrecht 1979, 1985; Albrecht and Gaffney 1983; Arthur 1983; Basili
1983; Basili and Hutchens 1983; Basili, Selby, and Phillips 1983;
Behrens 1983; Boehm et al 1978; Bowen, Wigle, and Tsai 1985; Bulut
1974; Carver 1986; Cote et al 1988; Coulter 1983; Crawford, McIntosh,
and Pregibon 1985; Curtis 1980; Drummond 1985; Ejiogu 1984a, 1984b,
1987, 1988, 1990; Elshoff 1976, 1982, 1983; Evangelist 1983; Fitzsim-
mons 1978; Funami 1976; Gaffney 1981; Gordon 1976, 1979; Halstead
1972, 1973, 1977, 1979; Halstead and Zislis 1973; Harrison 1984; Henry
1979; Henry and Kafura 1984; Henry, Kafura, and Harris 1981; Jones
1978, 1988; Kafura and Henry 1982; Kafura and Reddy 1987; Lasky,
Kaminsky, and Boaz 1989; Lassez 1981; Li and Cheung 1987; Lind and
Vairavan 1989; Low and Jeffrey 1990; Mannino, Stoddard, and Sudduth
1990; McCabe 1976, 1982, 1989; McCabe and Butler 1989; McCall,
Richards, and Walters 1977; McClure 1978; Millman and Curtis 1980;
Murine 1983, 1985a, 1985b, 1986, 1988; Myers 1977; Pierce, Hartley,
and Worrells 1987; Prather 1983, 1984; Ramamurthy and Melton 1988;
Schneidewind and Hoffmann 1979; Shen, Conte, and Dunsmore 1983;
Shneiderman 1980; Siyan 1989; Sunazuka, Azuma, and Yamagishi 1985;
Walsh 1979; Ward 1989; Warthman 1987; Weyuker 1988; Zislis 1973;
Zweben 1977

0

17-158 0



SOFTWARE QUALITY FACTOR DATA SHEET

Testability

This quality factor addresses the concern that programs be easy to test.

CLAIM: Some researchers claim that

"A software product possesses the characteristic Testability to
the extent that it facilitates the establishment of acceptance
criteria and supports evaluation of its performance." (Boehm et
al 1978).

DOMAIN: This factor only applies to source code for which acceptance criteria

can been established.

NECESSARY CONDITIONS: The test plan must be defined for the context.

QUALIFICATIONS: This is a programmer-oriented quality factor, not a user-
oriented one.

CRITICAL ANALYSIS: This quality factor must not be confused with main-
tainability. Testability is only concerned with finding problems,
not fixing them.

SQM RELATIONSHIPS: McCabe's Cyclomatic Complexity

TOOLS: Analysis of Complexity Tool (ACT), McCabe & Assocs., Columbia, MD.
Battlemap Analysis Tool (BAT), McCabe & Assocs., Columbia, MD
LOGISCOPE, Verilog USA Inc., Alexandria, VA
PC-Metric, SET Laboratories, Inc., Mulino, OR

REFERENCES: Arthur 1983; Basili 1983; Basili and Hutchens 1983; Basili, Selby
and Phillips 1983; Carver 1986; Cote et al 1988; Crawford, McIntosh,
and Pregibon 1985; Curtis 1980; Elshoff 1982, 1983; Evangelist 1983;
Gaffney 1981; Harrison 1984; Henry, Kafura, and Harris 1981; Kafura
and Reddy 1987; Li and Cheung 1987; Lind and Vairavan 1989; Mannino,
Stoddard, and Sudduth 1990; McCabe 1976, 1982, 1989; McCabe and Butler
1989; McClure 1978; Myers 1977; Prather 1983, 1984; Ramamurthy and
Melton 1988; Schneidewind and Hoffmann 1979; Shneiderman 1980; Siyan
1989; Walsh 1979; Ward 1989; Weyuker 1988
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SOFTWARE QUALITY FACTOR DATA SHEET

Understandability

This quality factor addresses the concern that programs be easy to understand.

CLAIM: One researcher claims that software understandability is determined
by the

"Ease with which the implementation can be understood" (Richards
as quoted in McCall, Richards, and Walters 1977).

DOMAIN: This factor applies to any source code.

NECESSARY CONDITIONS: The criteria for establishing whether a program is
understood by a program reader must be defined for the context.

QUALIFICATIONS: This is a programmer-oriented quality factor, not a user-
oriented one.

CRITICAL ANALYSIS: This quality factor must not be confused with modifiability.
Before any change can be made to a program, the code must be under-
stood as implemented. The next step may be to modify it.

SQM RELATIONSHIPS: Ejiogu's Structural Complexity; Halstead's Effort; Henry's
Information Flow; McCabe's Cyclomatic Complexity and Essential
Complexity

TOOLS: Analysis of Complexity Tool (ACT), McCabe & Assocs., Columbia, MD
Battlemap Analysis Tool (BAT), McCabe & Assocs., Columbia, MD
COMPLEXIMETER, Softmetrix, Inc., Chicago, IL
PC-Metric, SET Laboratories, Inc., Mulino, OR

REFERENCES: Albrecht and Gaffney 1983; Arthur 1983; Basili 1983; Basili and
Hutchens 1983; Basili, Selby, and Phillips 1983; Bulut 1974; Carver
1986; Cote et al 1988; Coulter 1983; Crawford, McIntosh, and Pregibon
1985; Curtis 1980; Ejiogu 1984a, 1984b, 1987, 1988, 1990; Elshoff
1976, 1982, 1983; Evangelist 1983; Fitzsimmons 1978; Funami 1976;
Gaffney 1981; Gordon 1976, 1979; Halstead 1972, 1973, 1977, 1979;
Halstead and Zislis 1973; Harrison 1984; Henry 1979; Henry and Kafura
1984; Henry, Kafura, and Harris 1.81; Jones 1978; Kafura and Henry
1982; Kafura and Reddy 1987; Lassez 1981; Li and Cheung 1987; Lind and
Vairavan 1989; Mannino, Stoddard, and Sudduth 1990; McCabe 1976, 1982,
1989; McCabe and Butler 1989; McClure 1978; Myers 1977; Prather 1983,
1984; Ramamurthy and Melton 1988; Schneidewind and Hoffmann 1979;
Shen, Conte, and Dunsmore 1983; Shneiderman 1980; Siyan 1989; Walsh
1979; Ward 1989; Weyuker 1988; Zislis 1973; Zweben 1977
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SOFTWARE QUALITY FACTOR DATA SHEET

Usability

This quality factor addresses the concern that programs be easy to use.

CLAIM: Some researchers claim that

"A software product possesses the characteristic Usability to
the extent that it is convenient and practicable to use." (Boehm
et al 1978).

DOMAIN: This factor applies to any source code.

NECESSARY CONDITIONS: The criteria for establishing that a program is easy to
use must be defined for the context.

QUALIFICATIONS: To keep this quality factor independent of maintainability,
portability, and reusability, this quality factor must address the
usability of an error-free program that is run on the intended
machine, in the intended context or application.

CRITICAL ANALYSIS: This quality factor must not be confused with programmer
concerns, like uineerstandability. Usability is a strictly user-
oriented quality factor.

SQM RELATIONSHIPS: RADC's software metrics

TOOLS: ***, METRIQS, San Juan Capistrano, CA
AdaMAT, Dynamics Research Corporation, Andover, MA
AMS, Rome Air Development Center, Griffiss AFB, NY
(*** This tool is used internally to support their consulting
service.)

REFERENCES: Boehm et al 1978; Bowen, Wigle, and Tsai 1985; Lasky, Kaminsky,
and Boaz 1989; McCall, Richards, and Walters 1977; Millman and Curtis
1980; Murine 1983, 1985a, 1985b, 1986, 1988; Pierce, Hartley, and
Worrells 1987; Shneiderman 1980; Sunazuka, Azuma, and Yamagishi 1985;
Wartham 1987
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APPENDIX C - SOFTWARE METRIC DATA

This appendix contains the software metric data from which the software metrics
and Software Quality Metrics (SQM) of the worked examples were computed.
Halstead's and McCabe's software metrics are as computed by PC-Metric, Release
2.0, of the Assembler version. Rome Air Development Center's (RADC) software
metrics and SQM were computed by the authors' own text analyzer. Values that
tripped the thresholds for particular SQM in the worked examples are marked with
an asterisk (*).

The code analyzed was supplied by a major avionics manufacturer. It is a
modular, real-time, flight control application written in Assembly language.
It is a standalone, memory-resident application. It does not rely on an
operating system. The Assembly language uses simple constructs and does not
rely on any library functions. Diagnostics and self-checks are included.

The code consists of 143 files of subroutines, averaging about 164 lines of
executable code per file. Many of the files contain additional internal and
external subroutines. The files were categorized by the developer into 84
nonessential files and 59 essential files. Each file is documented with a
header of information of consistent format. The code is well commented
throughout. The majority of the files are fairly simple, but many are very
complex. The files of the essential code are about 10 percent larger and more
complex than the nonessential code.

Two of the essential modules were copied, renamed, and arbitrarily categorized
as critical modules, for the sake of providing a more complete example.

The 84 modules of nonessential code had the Halstead and McCabe measures shown
in the following table. Two modules are not listed because they contained no
executable statements. The total scores are the measures of the code when the
modules are treated as one large module.

71 72 N, N2  N N V E v(G) Li St L I

NONESS01 35 98 573 447 1020 828 7196* 574426 30* 355* 275 0.013 90.2 2.2
NONESS02 21 39 135 116 251 298 1483 46304 13 87 65 0.032 47.5 0.5
NONESS03 23 29 187 154 341 245 1944 118709 7 111 100 0.016 31.8 0.6
NONESS04 27 30 129 92 221 276 1289 53367 8 72 61 0.024 31.1 0.4
NONESS05 29 36 179 138 317 327 1909 106114 12 111 86 0.018 34.3 0.6

NONESS06 12 17 61 48 109 113 530 8971 1 37 28 0.059 31.3 0.2
NONESS07 15 45 211 157 368 306 2174 56879 18 121 90 0.038 83.1 0.7
NONESS08 11 10 20 13 33 71 145 1036 1 13 8 0.140 20.3 0.0
NONESS09 13 18 49 50 99 123 490 8856 4 41 29 0.055 27.2 0.2
NONESSIO 13 16 47 48 95 112 462 8999 5 41 29 0.051 23.7 0.1
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71 2 N, N2  N V E v(G) Li St t I

NONESSII 23 72 439 318 757 548 4973* 252606 19 248* 195 0.020 97.9 1.6
NONESS12 27 87 528 368 896 689 6122* 349603 29* 318* 246 0.018 107.2 1.9
NONESS13 21 94 366 270 636 708 4354* 131307 11 189 156 0.033 144.4 1.4
NONESS14 15 20 77 57 134 145 687 14692 1 52 38 0.047 32.2 0.2
NONESSI5 25 29 120 90 210 257 1209 46882 9 70 55 0.026 31.2 0,4

NONESS16 11 13 45 33 78 86 358 4993 1 57 27 0.072 25.6 0.1
NONESS17 15 11 33 32 65 97 306 6666 5 33 23 0.046 14.0 0.1
NONESS18 26 53 204 167 371 426 2339 95799 14 124 99 0.024 57.1 0.7
NONESS19 23 62 294 242 536 473 3435 154207 15 191 139 0.022 76.5 1.1
NONESS20 27 86 531 403 934 681 6370* 402980 50* 323* 235 0.016 100.7 2.0

NONESS21 27 36 158 124 282 314 1686 78380 8 91 76 0.022 36.2 0.5
NONESS22 15 16 53 40 93 123 461 8639 3 35 26 0.053 24.6 0.1
NONESS23 21 43 238 196 434 326 2604 124629 16 128 110 0.021 54.4 0.8
NONESS24 22 32 118 95 213 258 1226 40030 7 78 55 0.031 37.5 0.4
NONESS25 40 55 276 221 497 531 3265 262405 21 173 141 0.012 40.6 1.0

NONESS26 9 10 30 20 50 62 212 1912 1 19 13 0.111 23.6 0.1
NONESS27 43 61 391 304 695 595 4657* 498965 24* 224* 191 0.009 43.5 1.5
NONESS28 25 77 385 333 718 599 4791* 258983 36* 230* 183 0.018 88.6 1.5
NONESS29 15 17 65 48 113 128 565 11965 1 41 32 0.047 26.7 0.2
NONESS30 16 1 29 1 30 64 123 981 1 19 15 0.125 15.3 0.0

NONESS31 12 5 18 7 25 55 102 858 2 16 9 0.119 12.2 0.0
NONESS32 11 28 120 106 226 173 1195 24871 14 95 59 0.048 57.4 0.4
NONESS33 18 26 78 57 135 197 737 14542 3 53 35 0.051 37.4 0.2
NONESS34 12 5 18 7 25 55 102 858 2 14 9 0.119 12.2 0.0
NONESS35 18 33 170 136 306 242 1736 64381 3 103 83 0.027 46.8 0.5

NONESS36 15 18 68 56 124 134 626 14595 5 55 34 0.043 26.8 0.2
NONESS37 18 26 87 67 154 197 841 19499 9 58 39 0.043 36.3 0.3
NONESS38 7 6 17 13 30 35 111 842 1 13 8 0.132 14.6 0.0
NONESS39 14 22 64 49 113 151 584 9108 5 35 28 0.064 37.5 0.2
NONESS40 15 6 29 9 38 74 167 1878 3 19 13 0.089 14.8 0.1

NONESS41 26 69 299 234 533 544 3502 154381 18 195 144 0.023 79.4 1.1
NONESS42 28 35 204 123 327 314 1955 96165 11 108 92 0.020 39.7 0.6
NONESS43 31 18 98 42 140 229 786 28429 6 65 57 0.028 21.7 0.2
NONESS44 14 39 113 86 199 259 1140 17595 3 52 45 0.065 73.8 0.4
NONESS45 22 30 110 81 191 245 1089 32337 12 66 49 0.034 36.7 0.3

NONESS46 27 38 189 151 340 328 2048 109843 19 115 89 0.019 38.2 0.6
NONESS47 20 15 72 41 113 145 580 15843 10 46 33 0.037 21.2 0.2
NONESS48 5 1 7 1 8 12 21 .52 1 8 4 0.400 8.3 0.0
NONESS49 18 39 132 104 236 281 1377 33037 7 90 60 0.042 57.4 0.4
NONESS50 29 86 498 388 886 694 6065* 396771 24* 313* 234 0.015 92.7 1.9
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q1 n2 N1 N2  N N V E v(G) Li St L I

NONESSS1 30 102 528 419 947 828 6671* 411054 53* 318* 232 0.016 108.3 2.1
NONESS52 11 26 106 82 188 160 979 16988 4 54 44 0.058 56.5 0.3
NONESS53 5 7 14 11 25 31 90 352 1 11 6 0.255 22.8 0.0
NONESS54 34 55 274 217 491 491 3180 213263 14 184 134 0.015 47.4 1.0
NONESS55 28 60 328 251 579 489 3740 219040 15 205 163 0.017 63.9 1.2

,NONESS56 34 96 564 416 980 805 6882* 506968 34* 330* 258 0.014 93.4 2.2
NONESS57 27 54 382 270 652 439 4134* 279017 4 239* 192 0.015 61.2 1.3
NONESS58 12 31 153 109 262 197 1422 29993 6 76 64 0.047 67.4 0.4
NONESS59 26 34 200 169 369 295 2180 140843 6 249* 101 0.015 33.7 0.7
NONESS60 26 36 156 116 272 308 1620 67841 13 99 75 0.024 38.7 0.5

NONESS61 26 56 186 168 354 447 2251 87772 12 121 95 0.026 57.7 0.7
NONESS62 18 29 89 75 164 216 911 21203 4 59 45 0.043 39.1 0.3
NONESS63 35 68 375 306 681 593 4554* 358589 24* 281* 182 0.013 57.8 1.4
NONESS64 30 60 289 232 521 502 3382 196171 21 167 133 0.017 58.3 1.1
NONESS65 8 15 47 36 83 83 375 3604 2 28 20 0.104 39.1 0.1

NONESS66 8 16 49 37 86 88 394 3647 2 31 23 0.108 42.6 0.1
NONESS67 10 19 79 60 139 114 675 10662 4 48 34 0.063 42.8 0.2
NONESS68 34 54 275 217 492 484 3178 217107 14 183 135 0.015 46.5 1.0
NONESS69 27 46 214 174 388 382 2402 122641 9 140 102 0.020 47.0 0.8
NONESS70 37 94 585 439 1024 809 7202* 622265 33* 329* 260 0.012 83.4 2.3. NONESS71 22 42 253 171 424 325 2544 113935 2 161 123 0.022 56.8 0.8
NONESS72 33 45 156 104 260 414 1634 62318 7 99 74 0.026 42.9 0.5
NONESS73 26 38 154 116 270 322 1620 64288 13 97 73 0.025 40.8 0.5
NONESS74 23 27 97 75 172 232 971 31010 4 66 49 0.031 30.4 0.3
NONESS75 14 12 38 31 69 96 324 5865 4 33 19 0.055 17.9 0.1

NONESS76 7 12 25 22 47 63 200 1281 1 20 12. 0.156 31.1 0.1
NONESS77 16 41 186 148 334 284 1948 56260 15 113 90 0.035 67.5 0.6
NONESS78 12 14 45 30 75 96 353 4533 2 26 20 0.078 27.4 0.1
NONESS79 34 79 525 392 917 671 6254* 527561 36* 365* 254 0.012 74.1 2.0
NONESS80 32 65 414 307 721 551 4759* 359599 12 274* 194 0.013 63.0 1.5

NONESS81 1 2 1 2 3 2 5 2 1 188 1 2.000 9.5 0.0
NONESS82 5 1 7 2 9 12 23 116 1 8 4 0.200 4.7 0.0

Average 21 38 185 141 326 305 2061 116121 11 119 87 0.075 46.8 0.6

Std Dev 9 26 161 123 284 222 1994 154596 11 98 74 0.222 27.1 0.6

Total Scores

'1i 172 N, N2  v(G) St LOG

129 1418 15141 11602 821 7161 15561
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The 59 modules of essential code had the Halstead and McCabe measures shown in
the following table. Two modules are not listed because they contained no
executable statements. The total scores are the measures of the code when the
modules are treated as one large module.

q, nz N, N2 N N V E v(G) Li St L I

ESSENT01 19 22 79 62 141 179 755 20225 6 47 37 0.037 28.2 0.2
ESSENT02 33 54 264 209 473 477 3048 194618 21 171 122 0.016 47.7 1.0
ESSENT03 27 21 103 69 172 221 961 42610 6 64 55 0.023 21.7 0.3
ESSENT04 23 19 78 62 140 185 755 28330 4 98 39 0.027 20.1 0.2
ESSENT05 9 9 23 18 41 57 171 1539 4 21 17 0.111 19.0 0.1

ESSENT06 8 8 17 15 32 48 128 960 4 18 12 0.133* 17.1 0.0
ESSENT07 6 2 9 3 12 18 36 162 2 12 8 0.222* 8.0 0.0
ESSENT08 22 31 148 116 264 252 1512 62243 12 97 70 0.024 36.7 0.5
ESSENT09 17 29 109 89 198 210 1094 28530 5 '83 49 0.038 41.9 0.3
ESSENT1O 19 85 318 224 542 626 3632 90919 3 200 143 0.040 145.1 1.1

ESSENTI1 25 65 257 165 422 508 2740 86928 4 155 115 0.032 86.3 0.9
ESSENT12 15 40 155 128 283 271 1636 39267 17 97 69 0.042 68.2 0.5
ESSENT13 8 17 38 30 68 93 316 2229 1 24 17 0.142* 44.7 0.1
ESSENT14 27 51 239 184 423 418 2659 129496 17 141 106 0.021 54.6 0.8
ESSENTI5 22 40 198 164 362 311 2155 97209 16 133 92 0.022 47.8 0.7

ESSENT16 13 51 329 261 590 337 3540 117757 38* 227 146 0.030 106.4 1.1
ESSENT17 63 108 686 476 1162 1106 8620*1196680 30* 403* 317 0.007 62.1 2.7
ESSENT18 13 26 93 83 176 170 930 19302 9 197 49 0.048 44.8 0.3
ESSENT19 19 14 59 49 108 134 545 18114 5 45 37 0.030 16.4 0.2
ESSENT20 6 5 8 8 16 27 55 266 1 9 5 0.208* 11.5 0.0

ESSENT21 18 32 117 99 216 235 1219 33944 6 101 59 0.036 43.8 0.4
ESSENT22 50 56 289 226 515 607 3465 349582 61* 192 170, 0.010 34.3 1.1
ESSENT23 14 13 35 31 66 101 314 5238 6 31 22 0.060 18.8 0.1
ESSENT24 11 9 23 21 44 67 190 2440 4 19 14 0.078 14.8 0.1
ESSENT25 36 86 549 375 924 739 6404* 502640 33* 376* 284 0.013 81.6 2.0

ESSENT26 14 15 33 33 66 112 321 4938 5 27 20 0.065 20.8 0.1
ESSENT27 11 9 15 15 30 67 130 1189 3 15 10 0.109 14.1 0.0
ESSENT28 6 5 11 11 22 27 76 502 1 11 7 0.152* 11.5 0.0
ESSENT29 5 5 12 10 22 23 73 365 1 12 8 0.200* 14.6 0.0
ESSENT30 6 5 7 6 13 27 45 162 2 9 5 0.278* 12.5 0.0

ESSENT31 29 69 394 306 700 562 4630* 297748 24 221 181 0.016 72.0 1.4
ESSENT32 27 46 209 162 371 382 2296 109180 14 131 100 0.021 48.3 0.7
ESSENT33 37 79 451 374 825 691 5658* 495526 39* 297* 218 0.011 64.6 1.8
ESSENT34 11 57 192 146 338 371 2058 28986 3 116 86 0.071 146.1 0.6
ESSENT35 28 53 158 119 277 438 1756 55202 6 94 74 0.032 55.9 0.5
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q1 "2 N, N2  N N V E v(G) Li St L I

ESSENT36 48 64 450 230 680 652 4629* 399251 19 278* 224 0.012 53.7 1.4
ESSENT37 13 26 52 46 98 170 518 5957 2 37 29 0.087 45.0 0.2
ESSENT38 16 50 150 153 303 346 1831 44834 12 133 88 0.041 74.8 0.6
ESSENT39 26 56 284 221 505 447 3211 164713 20 168 135 0.019 62.6 1.0
ESSENT40 21 37 184 146 330 285 1933 80094 21 143 101 0.024 46.7 0.6

ESSENT41 27 55 292 231 523 446 3325 188527 19 188 146 0.018 58.6 1.0
ESSENT42 37 72 423 350 773 637 5232* 470499 37* 282* 203 0.011 58.2 1.6
ESSENT43 13 17 40 32 72 118 353 4323 3 23 19 0.082 28.9 0.1
ESSENT44 10 10 27 25 52 66 225 2809 3 18 11 0.080 18.0 0.1
ESSENT45 15 49 327 247 574 334 3444 13C204 5 183 151 0.026 91.1 1.1

ESSENT46 38 71 485 336 821 636 5557* 499632 22 270* 222 0.011 61.8 1.7
ESSENT47 23 50 221 167 388 386 2402 92247 13 130 103 0.026 62.5 0.8
ESSENT48 28 44 220 150 370 375 2283 108955 13 124 94 0.021 47.8 0.7
ESSENT49 34 55 247 169 416 491 2694 140720 19 153 114 0.019 51.6 0.8
ESSENT50 29 85 498 387 885 686 6047* 399216 40* 306* 228 0.015 91.6 1.9

ESSENTS1 25 51 240 193 433 405 2705 127974 21 143 109 0.021 57.2 0.8
ESSENT52 29 68 435 318 753 555 4970* 336992 32* 268* 193 0.015 73.3 1.6
ESSENT53 26 32 107 79 186 282 1090 34969 4 78 53 0.031 34.0 0.3
ESSENT54 33 74 431 354 785 626 5292* 417715 39* 309* 223 0.013 67.0 1.7
ESSENT55 24 41 178 143 321 330 1933 80911 12 110 80 0.024 46.2 0.6

* ESSENT56 25 37 126 98 224 309 1334 44158 8 74 57 0.030 40.3 0.4
ESSENT57 32 52 290 233 523 456 3343 239680 9 192 145 0.014 46.6 1.0

Average 22 41 200 152 352 336 2250 141744 14 132 96 0.053 49.1 0.7
Std Dev 12 25 163 119 281 231 1980 205466 13 100 77 0.059 29.6 0.6

Total Scores

7 172 Ni N2  v(G) St LOC

157 1059'11393 8676 730 5491 11656
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The two modules of critical code had the Halstead and McCabe measures shown in
the following table. The total scores are the measures of the code when the
modules are treated as one large module.

qI "2 N 1 N2  N N V E v(G) Li St f I

CRITIC01 19 22 79 62 141 179 755 20225 6 47 37 0.037 28.2 0.2
CRITIC02 25 37 126 98 224 309 1334 44158 8 74 57 0.030 40.3 0.4

Average 22 30 103 80 183 244 1045 32192 7 61 47 0.034 34.3 0.3
Std D-•v 3 8 24 18 42 65 290 11967 1 14 10 0.004 6.0 0.1

Total Scores

'71 172 N, N2  v(G) St LOC

28 51 205 160 13 94 220

The program control graphs for CRITICOI and CRITIC02 are shown on the following
two pages.
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The 84 modules of nonessential code had the RAbC measures shown in the following

* tables.

MO.I(3) MO.I(7) SD.2(1) GE.l(l) FS.I(2)

NONESS01 0 1 0 0 1
NONESS02 1 1 1 0 1
NONESS03 0 1 1 0 1
NONESS04 1 1 1 0 1
NONESS05 0 1 1 0 1

NONESS06 1 1 1 0 1
NONESS07 0 1 0 0 1
NONESS08 1 1 1 0 1
NONESS09 1 1 0 1 1
NONESSl0 1 1 0 0 1

NONESS1I 0 1 1 0 1
NONESS12 0 1 1 0 1
NONESS13 0 1 1 0 1
NONESS14 1 1 1 0 1
NONESS15 1 1 1 1 1

NONESS16 1 0 0 1 1
NONESS17 1 1 0 0 1
NONESSI8 0 1 1 0 1
NONESS19 0 0 0 0 1
NONESS20 0 1 0 0 1

NONESS21 1 1 1 0 1
NONESS22 1 1 0 0 1
NONESS23 0 0 0 0 1
NONESS24 1 1 1 0 1
NONESS25 0 1 1 0 1

NONESS26 1 1 0 0 1
NONESS27 0 1 1 1 1
NONESS28 0 1 1 1 1
NONESS29 1 1 1 0 1
NONESS30 1 1 0 0 1

NONESS31 1 1 0 0 1
NONESS32 1 1 0 0 1
NONESS33 1 1 0 0 1
NONESS34 1 1 0 0 1
NONESS35 0 1 1 0 1

NONESS36 1 1 1 0 1
NONESS37 1 1 1 0 1
NONESS38 1 1 0 0 1
NONESS39 1 1 1 0 1

O NONESS40 1 1 0 0 1
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MO.1(3) MO.1(7) SD.2(1) GE.1(1) FS.1(2)

NONESS41 0 1 1 0 1
NONESS42 0 1 0 0 1
NONESS43 1 1 1 0 1
NONESS44 I 1 0 0 1
NONESS45 1 1 1 0 1

NONESS46 0 1 1 0 1
NONESS47 1 1 0 0 1
NONESS48 1 1 0 0 1
NONESS49 1 1 1 0 1
NONESS50 0 1 0 0 1

NONESS51 0 1 0 0 1
NONESS52 1 1 0 1 1
NONESS53 1 1 0 0 1
NONESS54 0 1 1 1 1
NONESS55 0 1 1 0 1

NONESS56 0 1 1 0 1
NONESS57 0 1 0 0 1
NONESS58 1 1 0 0 1
NONESS59 0 0 1 0 1
NONESS60 I I 1 0 1

NONESS61 0 1 1 1 1
NONESS62 1 1 1 0 1
NONESS63 0 0 0 0 1
NONESS64 0 0 0 0 1
NONESS65 0 1 1 0 1

NONESS66 0 1 0 0 1
NONESS67 1 1 0 1 1
NONESS68 I 1 0 0 1
NONESS69 0 1 0 0 1
NONESS70 0 1 1 0 1

NONESS71 0 1 1 0 1
NONESS72 0 1 0 0 1
NONESS73 0 1 0 0 1
NONESS74 0 1 i 0 1
NONESS75 1 1 0 0 1

NONESS76 1 1 0 0 1
NONESS77 1 0 0 0 1
NONESS78 0 0 0 0 1
NONESS79 0 1 0 0 1

NONESS80 1 1 1 1 1
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MO.1(3) MO.1(7) SD.2(1) GE.I(1) FS.1(2)

NONESS81 0 1 1 0 1

NONESS82 0 1 1 0 1
NONESS83 0 0 0 0 1
NONESS84 1 0 0 0 1

Total 45 75 44 11 84

11
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Modularity, KO - KO.1(3) & MO.1(7)

NO.1(3) 45/ 84 - 0.54
MO.1(7) 75/ 84 - 0.89

DS 120/168 - DR 0.71 SO 0.71

Maintainability - MO & SD

MO 120/168 - 0.71 x 0.5 - 0.36
SD 44/ 84 - 0.52 x 0.5 - 0.26

DS 164/252 - DR 0.65 SO 0.62 WSO 0.62

Expandability - GE & MO & SD

GE 11/ 84 - 0.13 x 0.6 - 0.08
MO 120/168 - 0.71 x 0.2 - 0.14
SD 44/ 84 - 0.52 x 0.2 - 0.10

DS 175/336 - DR 0.52 SO 0.46 WSO 0.33

Reusability - FS & GE & MO & SD

FS 84/ 84 - 1.00 x 0.3 -0.30
GE 11/ 84 - 0.13 x 0.3 - 0.04
MO 120/168 - 0.71 x 0.2 - 0.14
SD 44/ 84 - 0.52 x 0.2 - 0.10

DS 259/420 - DR 0.62 SO 0.59 WSO 0.59
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The 59 modules of essential code had the RADC measures shown in the following

tables.

MO.l(3) MO.1(7) SD.2(1) GE.1(l) FS.1(2)

ESSENT01 1 1 0 0 1
ESSENT02 0 1 0 0 1
ESSENT03 1 1 1 0 1
ESSENT04 1 0 0 0 1
ESSENT05 1 1 0 0 1

ESSENT06 1 0 0 0 1
ESSENT07 1 1 0 1 1
ESSENT08 1 1 0 0 1
ESSENT09 1 1 0 0 1
ESSENT10 0 1 0 0 1

ESSENTI1 0 1 0 0 1
ESSENT12 1 1 0 0 1
ESSENT13 1 1 0 0 1
ESSENT14 0 1 0 0 1
ESSENTI5 0 0 0 0 1

ESSENT16 0 1 0 0 1
ESSENT17 0 0 0 0 1
ESSENT18 0 1 0 0 1

ESSENT19 0 0 0 0 1
ESSENT20 1 1 0 1 1

ESSENT21 1 1 0 0 1
ESSENT22 1 1 0 0 1
ESSENT23 0 1 0 1 1
ESSENT24 1 1 0 1 0"
ESSENT25 1 1 0 1 0

ESSENT26 0 0 0 0 1
ESSENT27 1 1 0 0 1
ESSENT28 1 1 0 1 0
ESSENT29 1 1 0 1 1
ESSENT30 1 1 0 1 1

ESSENT31 1 1 0 1 1
E&SENT32 0 1 0 0 1
ESSENT33 0 1 0 0 1
ESSENT34 0 1 0 0 1
ESSENT35 0 1 0 0 1

ESSENT36 0 0 0 0 1
ESSENT37 0 1 0 0 1
ESSENT38 1 0 0 0 1
ESSENT39 1 0 0 0 1. ESSENT40 0 1 0 0 1
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MO.1(3) MO.1(7) SD.2(1) GE.1(1) FS.1(2)

ESSENT41 0 1 0 1 1 0
ESSENT42 0 1 0 0 1
ESSENT43 0 1 0 0 1
ESSENT44 1 1 0 1 1
ESSENT45 1 0 0 0 1

ESSENT46 0 1 0 0 1
ESSENT47 0 1 0 0 1
ESSENT48 0 1 0 0 1
ESSENT49 0 1 0 0 1
ESSENT50 0 1 0 0 1

ESSENTS1 0 1 0 0 1
ESSENT52 0 1 0 0 1
ESSENT53 0 1 0 0 1
ESSENT54 1 0 0 0 1
ESSENT55 1 1 0 0 1

ESSENT56 0 1 0 0 1
ESSENT57 1 1 0 0 1
ESSENT58 1 1 0 0 1
ESSENT59 0 1 0 0 1

Total 28 48 1 11 56
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Modularity, MO - MO.l(3) & MO.1(7)

MO.l(3) 28/ 59 - 0.47
MO.1(7) 48/ 59 - 0.81

DS 76/118 - DR 0.64 SO 0.64

Maintainability - MO & SD

w

MO 76/118 - 0.64 x 0.5 - 0.32
SD l/ 59 - 0.02 x 0.5 - 0.01

DS 77/177 - DR 0.44 So 0.33 WSO 0.33

Expandability - GE & MO & SD

GE 11/ 59 - 0.19 x 0.6 - 0.11
MO 76/118 - 0.64 x 0.2 - 0.13
SD 1/ 59 - 0. 0 2 x 0.2 = 0.00

DS 88/236 - DR 0.37 SO 0.28 WSO 0.24

Reusability - FS & GE & MO & SD

FS 56/ 59 - 0.95 x 0.3 - 0.28
GE 11/ 59 - 0.19 x 0.3 - 0.06
MO 76/118 - 0.64 x 0.2 - 0.13
SD 1/ 59 - 0.02 x 0.2 - 0.00

DS 144/295 - DR 0.49 So 0.45 WSO 0.47
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The two modules of critical code had the RADC measures shown in the following

tables.

O.1(3) MO.1(7) SD.2(1) GE.I(1) FS.1(2)

CRITICOI 1 1 0 0 1
CRITIC02 1 1 0 0 1

Total 2 2 0 0 2

Modularity, MO - MO.1(3) & MO.1(7)

MO.1(3) 2/ 2 - 1.00
MO1.(7) 2/ 2 - 1.00

DS 4/ 4 - DR 1.00 SO 1.00

Maintainability - MO & SD

MO 4/ 4 - 1.00 x 0.5 - 0.5 0

SD 0/ 2 - 0.00 x 0.5 - 0.00

DS 4/ 6 - DR 0.67 SO 0.50 WSO 0.50

Expandability - GE & MO & SD

GE 0/ 2 - 0.00 x 0.6 - 0.00
MO 4/ 4 - 1.00 x 0.2.- 0.20
SD 0/ 2 - 0.00 x 0.2 - 0.00

DS 4/ 8 - DR 0.50 SO 0.33 WSO 0.20

Reusability - FS & GE & MO & SD

FS 2/ 2 - 1.00 x 0.3 - 0.30
GE 0/ 2 - 0.00 x 0.3 - 0.00
MO 4/ 4 - 1.00 x 0.2 - 0.20
SD 0/ 2 - 0.00 x 0.2 - 0.00

DS 6/ 10 - DR 0.60 SO 0.50 WSO 0.50
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0
GLOSSARY

ANTAGONISTIC QUALITY FACTORS. Quality Factors with conflicting attributes.

V BINARY SEARCH. A searching algorithm in which the search population is
repeatedly divided into two equal or nearly equal sections.

BITS. Binary digits.

CODE. The subset of software which exists for the sole purpose of being loaded
into a computer to control it.

COMPLEMENTARY QUALITY FACTORS. Quality Factors with interrelated attributes.

CONTROL STRUCTURES. Programming constructs which direct the flow of control.

EQUIVALENCE STATEMENT. A FORTRAN statement which equates two variable names.

HARDWARE. The physical components of a computer.

. METRIC. A measure.

MODULE. A unit of code which implements a function.

MONOTONIC FUNCTION. A function in which a certain change in the measure always
represents a certain change in the property being measured, where either change
is simply an increase or decrease in magnitude.

OBJECT CODE. The translation of source code that is loaded into a computer.

OPERANDS. The variables or constants on which the operators act.

OPERATORS. Symbols which affect the value or ordering of operands.

OPTIMIZING COMPILER. A computer program which, while translating source code
into object code, removes inefficiencies from the code.

PROGRAM. A detailed set of instructions for accomplishing some purpose.

QUALITY MEASURE. A repeatable, monotonic relationship relating measures of
objects (a set of numbers) to subjective qualities.

SOFTWARE METRIC. A measure of software objects.

SOFTWARE QUALITY FACTOR. Any software attribute that contributes either
directly or indirectly, positively or negatively, toward the objectives for the

* system in which the software resides.
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SOFTWARE QUALITY METRIC. (1) A measure that relates measures of the software
objects (the symbols) to the software qualities (quality factors). (2) The
measure of a software quality factor.

SOFTWARE. Computer programs and the documentation associated with the programs.

SOURCE CODE. Code that can be read by people.

STROUD NUKBER. The total number of elementary mental discriminations that a
person makes per second.

SUBROUTINE. A self-contained body of code which can be called by other routines
to perform a function. A
WELL-BEHAVED FUNCTION. A smooth mathematical relationship.
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ACRONYMS AND ABBREVIATIONS

A Language Level
l/E 0  Average number of discriminations a person is likely to make for each

bug introduced into the code.
AC Advisory Circular
ACT Analysis of Complexity Tool
ARP Aerospace Recommended Practice
6 Number of Bugs (Estimated)
BAT Battlemap Analysis Tool
CE Certification Engineer
CFR Code of Federal Regulations
CR/LF Carriage Return/Line Feed
CSCI Computer Software Configuration Item
D Program Difficulty
DR Direct Ratio (Average)
DS Direct Score
E Programming Effort
EOF End of File
FAA Federal Aviation Administration
FAR Federal Aviation Regulation
FP Function Point
HOL High Order Language
I Intelligence Content
IEEE Institute of Electrical and Electronics Engineers
IFC Information Flow Complexity
ISO International Standards Organization
L Program Level
L Estimated Program Level
& Estimated Length
17 Vocabulary of a Program
171 Number of Unique Operators
172 Number of Unique Operands
71. Minimum Number of Unique Operators
72* Number of Different Input and Output Parameters
N Implementation Length of a Program
N, Total Number of Operator Occurrences
N2  Total Number of Operand Occurrences
N1' Minimum Number of Operators
N2* Minimum Number of Operands
PC Processing Complexity
PCA Processing Complexity Adjustment
PROM Programmable Read-Only Memory
RADC Rome Air Development Center
RAM Random-Access Memory
RTCA Radio Technical Commission for Aeronautics
SS Stroud Number

17-195



SAE Society of Automotive Engineers
SO Second Order (Average)
SQF Software Quality Factor
SQM Software Quality Metrics
SQPP Software Quality Program Plan
SRS Software Requirement Specification
SSS System/Segment Specification
i Estimated Programming Time
V Volume
V* Potential Volume
WSO Weighted Second Order (Average)

a
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