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CASE-BASED SONOGRAM CLASSIFICATION

1. INTRODUCTION AND MOTIVATION

Fala and Walker (1993) describe results of applying three novel case-based reasoning (CBR)
algorithms to a submarine classification task that used data obtained from sonogram line readings.
Although some of their algorithms appeared to perform well, they did not describe comparisons
with alternative algorithms. It is difficult to assess the performance of their algorithms without
these comparisons.

We replicated their studies, included comparisons with several other algorithms from the ma-
chine learning literature, and included two studies suggested as future work by Fala and Walker.
We discovered strengths and weaknesses of their algorithms. We also found ways to improve their
performance. This report details our studies and summarizes ways for incorporating additional
domain-specific knowledge into case-based classifiers.

Section 2 details Fala and Walker's (1993) experiments. Our results with the same dataset are
described in Section 3. Section 4 discusses the ramifications of these results and Section 5 provides
suggestions on how to incorporate more domain-specific knowledge.

2. CONTEXT: NAWC'S SONAR ANALYSIS SYSTEM

Fala and Walker (1993) analyzed their CBR tools' ability to automatically classify acoustic sonar
images of submarines. Their interviews with experts who do this task (i.e., three aviation anti-
submarine warfare technicians) suggested that experts might use CBR-like classification strategies.
This motivated Fala and Walker to create a CBR system that automates this process.

They began by collecting low-level features describing lines in sonogram readings. These were
used to design a representation for cases. More specifically, 21 cases were compiled using an
automated system for extracting lines from sonograms. Each case was then classified by an expert
into one of five possible classifications (i.e., submarines). The raw cases contained between 16 and
49 lines, all taken at the same noise levels. The frequency resolution was 100 and the frequencies
of the lines ranged between five and 400 Hz.

The raw data were not represented directly in the cases. Instead. Fala and Walker incorporated
the notion that humans can visually separate lines as close as 1/32 of an inch. Their representation
was based on counting, individually Tor each sonogram, the number of lines per frequency boundary.
The frequency boundary for a given line was obtained using

frequency(line) = truncate ( line5 
(

3M+ 32N 1
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2 Aha and Harrison

When applied to the given 21 sonograms, this formula yields frequency boundaries in the range

[0, 1271. Since this function can map many frequencies to a single frequency boundary, the 128

feature values constituting each case were non-negative integers.

Fala and Walker used the standard leave-one-out strategy (Weiss and Kulikowski 1991) to

evaluate the classification accuracy of three novel variants of the nearest-neighbor algorithm (Fix

and Hodges 1951; Cover and Hart 1967; Duda and Hart 1973). This strategy simply includes all

but one case in the training set and uses the remaining case as the only one used during testing.

This is repeated once for each case in the data set. Since one of the cases had a unique classification

relative to the remaining cases, it was not included in their experiments. Thus, only 20 of the 21

cases were used in their experiments, which left only four classes represented by cases in the dataset.

The nearest-neighbor algorithm has been extensively analyzed in the literature on pattern recog-

nition (Dasarathy 1991) and machine learning (Aha, Kibler, and Albert 1991), where it is viewed
as an instance-based learning (IBL) algorithm. For the purposes of this report, IBL algorithms can

be thought of as consisting of the following three functions:

1. Normalization: Preprocesses the data, and is primarily used to equalize the relative influences

of features in similarity computations.

2. Similarity: Used to compute the similarity between two cases.

3. Prediction: Given the results of the similarity computations, this function details how a

classification prediction is made.

There is no standard normalization function used with the nearest-neighbor algorithm. However,
it is defined as using the following Euclidean (dis)similarity function (assuming F features are used
to describe each case x and y):

F

(dis)Similarity(x.y) = Z(x, - yi) 2. (2)
i=i

The nearest-neighbor prediction function simply predicts that the given case's class is the same
as that of its most similar case (i.e., the least distant case). Several studies on machine learning,

case-based reasoning, statistics, pattern recognition. cognitive psychology, and other topics have
used this algorithm in empirical comparison studies as a straw-man due to its simplicity and popu-

larity (Sebestyen 1962; Reed 1972; Duda and Hart 1973: Shepard 1983; Breiman, Friedman, Olshen,
and Stone 1984; Kibler and Aha 1987: Bareiss 1989: Dasarathy 1991; Weiss and Kulikowski 1991;

Shavlik, Mooney, and Towell 1991: Aha. Kibler. and .\Abert 1991). It is well-known that while the
nearest-neighbor algorithm is a relatively rohlt•,cl daýiier. its primary drdwhacks include an inabil-

ity to tolerate irrelevant attributes, large ,torraiezo r,,quirements. and relatively high computational
complexities for classifying new cases.

Fala and Walker's (1993) variants of t},,' Owi,.r,,t inighbor function used no normalization func-
tion. used the nearest-neighbor prediction fiImticiI. and (lid not involve repairs to these drawbacks.
Instead, they used novel similarity functimi.. w hici they called comparison operators. The defini-

tions of these three functions, which are listed in Table I. were derived from their interviews with
expert sonogram classifiers. More specifically.. MATCHES was suggested by experts noting that a

given frequency boundary of the two sonograms both contain or do not contain fines. The HITS

function corresponds to the number of botindaries in the two sonograms that both contain lines;

it sunis the number of such lines in each such frequency boundary. Finally. the MISSES function
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Table 1 - Similarity Functions Used by Fala and Walker (1993), Where x is the New Case and y is
the Stored Case

NAME DEFINITION

MATCHES 2F=I if (xi = yi) or ((x, i 1) and (yi _> 1)) then 1 else 0

HITS •f=I if ((xi > 1) and (yj > 1)) then min(x,, y,) else 0

MISSES _f 1I if ((x, _ 1) and (y, = 0)) then xi else 0

corresponds to the number of boundaries in a stored case's sonogram that are missing lines visible
in the new case.

Innumerable methods exist for making predictions when there is a tie among the most similar
stored cases. Walker (1993) noted that the method used in their study was perfectly optimistic. If
any of the most similar neighbor's classifications matched that of the test case, then the classification
was deemed to be correct. We used this same optimistic tie-breaking method in our own experiments

with nearest-neighbor variants.

Fala and Walker's algorithms compare two sonograms based on their number of fines per fre-
quency boundary. However, each sonogram involved a different number of line readings (i.e.,
between 16 and 49). Therefore, they scaled their cases by using the percentage of fines in a given
frequency boundary rather than their raw number. These case representations were obtained from
the raw data by dividing each case's feature value by the number of total lines in that case.

Fala and Walker (1993) reported their leave-one-out results using this 128-feature representation
for these three variants of the nearest-neighbor algorithm. The respective classification accuracies
for MATCHES, HITS. and MISSES were were 14/20 (70%), 17/20 (85%), and 5/20 (30%). Guessing
randomly among the four classes yields an accuracy of 25%, whereas always guessing the most fre-

quent class yields an accuracy of 40%. Simply using nearest-neighbor prediction when representing

the cases with their average line reading yields 55%.

3. FOLLOWUP STUDIES

While the accuracies recorded by MATCHES and HITS are greater than that attainable by always
guessing the most frequent class in the dataset, it is not obvious from this study alone whether they
are "very good." Our first goal was to investigate this claim. We also tested several alternative
preprocessing strategies that have been shown to dramatically alter classification performance on
some problems (Aha 1990; Turney 1993). Finally, we investigated Fala and Walker's two suggestions

for future work. Their first suggestion involves combining the effects of their algorithms. Their
second suggestion involves examining the algorithms' behavior when using a more continuous case
representation. These studies are detailed in the following subsections.

3.1 A Comparison Study

We selected our suite of algorithms from among several commonly known algorithms in the
pattern recognition and machine learning literatures. In doing so, we also replicated Fala and
Walker's experiments with their three case-based learning algorithms.

The first comparison algorithm we included is -'MISSES, which is identical to MISSES except
that it negates the computed sums before making classification predictions. We did this because
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Table 2- Leave-One-Out Results on the Sonar Database Using Scaled Data
Classifier Fala and Walker's (1993) Results Our Results

random guess 25% 25%

guess most frequent 40% 40%

MATCHES 70% 70%

HITS 85% 85%

MISSES 30% 30%

- MISSES 75%

HAMMING 85%

EUCLIDEAN 70%

CUBIC 75%

C4.5 60%

CN2 40%

BACKPROP 85%

MISSES computes dissimilarities rather than similarities. This can be observed by noting that its

values increase as the number of frequency boundaries differ. Fala and Walker's (1993) empirical

results support the fact that this poor similarity function is outperformed by always guessing the

most frequently occurring class in their dataset.

Given our familiarity with the nearest-neighbor classifier and its similarity with Fala and

Walker's algorithms, it is natural to ask what accuracies it can attain. Therefore, we tested three
additional variants of this algorithm. These variants differ only in their similarity function. The

Euclidean similarity function shown in Eq. (2) is actually the Minkowski metric with r = 2:

F
(dis)Similarity(x. y) = -(x: - y,)r. (3)

We used the Minkowskian dissimilarity function with r = 1 (HAMMING), with r = 2 (EUCLIDEAN),

and with r = 3. which we'll refer to as CUBIC.

We also tested three common machine learning algorithms: a decision tree inducer named C4.5 1

(Quinlan 1993), a decision rule inducer named CN2 2 (Clark and Niblett 1989; Clark and Boswell

1991), and the Backpropagation algorithm 3 (Runmelhart. McClelland. and the PDP Research Group

1986).

Table 2 summarizes the results for the algorithms alongside the results from the original study

and the baseline results for guessing randomly or always guessing the most frequent class in the

dataset. As with the original study, we scaled the data before applying the algorithms. Four
observations are noteworthy:

'C4.5 gave the same results when run both with and without its post-pruning option in effect.

'CN2 was tested on 24 combinations of its parameter settings. This included all four of its error estimating

strategies, three values for its star size (i.e., 3, 5. and 7). and both with and without its maximum class prediction

option. Its chi-square threshold value was always set to 0.
3 BACKPROP was tested once for each of 384 combinations of its input parameters, including two methods for

normalizing the input data (i.e., simple linear interval and z-score), four momentum values (i.e., 0.1, 0.4, 0.7, and

0.9). four learning rates (0.01, 0.1, 0.3. and 0.5). four temperatures (0.1, 0.5, 1.0, and 2.0), and three numbers of

hidden units (i.e.. 5, 10, and 25). Classification wa., based on the output node with the highest activation.
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"Table 3 - Leave-One-Out Results on the Sonar Database Using Scaled and Unscaled Data
Classifier With Scaled Data With Raw Data

random guess 250, 25%
guess most frequent 40% 40%

MATCHES 70% 70%
HITS 85% 80%

MISSES 30% 30%

-,MISSES 75% 70%
HAMMING 85% 70%

EUCLIDEAN 70% 75%

CUBIC 75% 65%
C4.5 60% 65%
CN2 40% 50%

BACKPROP 85% 90%

I. We replicated the original results.

2. As expected, the -,MISSES similarity function easily outperformed MISSES and performed
comparatively well with the other functions tested.

3. The Minkowski metric's results were somewhat sensitive to the value of r. The HAMMING

distance function performed as well as HITS.

4. The machine learning algorithms fared poorly because they perform comparatively well only
with larger-sized databases. Previous research also suggests that C4.5 and CN2 may not

work well when the data is completely numeric (Aha 1992). As usual, BACKPROP performed
well primarily bocause we tested it on a large number of values for its many parameters.

In general, it appears that the performance of the MATCHES and HITS algorithms selected by
Fala and Walker performed well relative to this suite of algorithms.

3.2 Alternative Preprocessing Strategies

It is possible that, by using different normalization functions in the case-based classifiers, higher
classification accuracies can be obtained. However, it is not obvious which case representation,
scaled or raw, supports better classification performance.

Although Fala and Walker reasoned that their data should be scaled, it is not obvious what
gains were obtained by doing so. Therefore, we repeated the experiments using the unscaled
case representation. The results are displayed in Table 3. Four of the algorithms recorded lower
accuracies using this representation while three recorded higher accuracies. While HITS's accuracy
decreased slightly, the accuracies of the other new algorithms did not change. Therefore, it is not
obvious which representation supports better classification performance. Given this, we retested
the case-based classifiers using both case representations in our next study.

In the previous experiments, no normalization function was used in any of the algorithms. We
were curious as to whether improved classification accuracies could be obtained by using normaliza-
tion functions. Therefore, we compared our previous results with those obtained using two standard
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Table -1 - Leave-One-Out Results on the Sonar Database Using Scaled and Unscaled Data
Classifier With Scaled Data With Raw Data

MATCHES 70%, 70% 70% 70% 70% 70%

HITS 85% 757( 85% 80% 757%, 70%

MIssEs 30% 2017 20% 30% 20% 25(7
-'MISSES 75(, 657 70% 70% 65% 70%X

HAMMING 85% 70% 55% 70% 60% 60%

EUCLIDEAN 70% 757c 80% 75% 70% 800/

CUBIC 75% 65%7( 85% 65% 75% 80%

normalization strategies. The first, named linear interval, normalizes value v of feature f based on
its minimum and maximum across all cases. The normalized value is computed using

v- niinimum(f)
Noralize(f, r axium( f ) - minimum(f)" (4)

The second normalization function we tested is z-scorc. This function subtracts the feature's
mean value from the feature value and divides by the feature's standard deviation. The results
for all three normalization procedures and both case representations are shown in Table 4.4 In
summary, the scaled representation supports the highest accuracies, and using the linear interval
normalization function yields lower accuracies than the other two strategies.

3.3 Combining the Original Algorithms

Fala and Walker (1993) suggested combining the effects of their algorithms. There are four
obvious combinations to consider corresponding to combining pairs of the three algorithms or all of
them at once. In each case, the combined algorithm simply invokes more than one of the similarity
functions in Table 1. For example, when using the three-algorithm combination, similarities among
pairs of cases are still computed by summing up pairwise similarities among the features. Thus, the
MATCHES component adds one to the similarity when the two values are equal or both positive,
the HITS component then adds the smaller value if both are positive, and the MISSES component
subtracts the test case's value if it is positive and the stored case's value is zero. The other, pairwise
combinations of the three similarity functions are computed similarly, but with only two similarity
comlpon~ents rather than three.

We evaluated all four combinations by using both case representations. The results are ;hown
in Table 5. In this case, two of the algorithms show improvement under some of the normalization
functions. Perfect classification accuracy results for this dataset when combining the MATCHES
and -MIssEs similarity functions and using no normalization function oil the raw data. High
accuracies result under three conditions when combining all three similarity functions. In summary,
combinations including both MATCHES and -MISSES yield better performance on this dataset.

4The second through fourth columns display the results using scaled case representations. The third column's re-
sults correspond to using a linear interval normalization procedure, while the fourth column's results are from comput-
ing z-score normalizations. The remaining columns ii(lud, the same results when using unscaled case representations.
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Table 5- Leave-One-Out Results on the Sonar I)atabase Using Scaled and Unscaled Data
Classifier With Scaled Data \With Raw Data

MATCHES-MISSES 6591[ 75(/ f 759"1 100 % 757, 80%

HITS-MISSES I5's 709;1 75(7 8097 65%1 70%
MATCHES+HITS 60'1 7(0"; S0K! 809 65% 80%,

MATCHES+HITS-MISSES 60',9609 7 1 7.5 90 90% 75%

Table 6- Leave-One-Out Results on the Sonar D).tabase Using the 126-Feature "Boundary-
Overlapping" Representation

Classifier \Vith Scaled Data J With Raw Data

MATCHES 8 . ,X5 % 85% 85%5 85% 85%

HITS 8097 7571 80% 80/ 8091 80/

MISSES 209 2091 2071 2091 309( 259(

9MISS1S (5ý, 7091 7091 6591 709 70%

MATCHES-MISSES 8 5-( 90% 6591 80($( 8591 700%

HITS- MISSES SO,7 757 75c/ 7571 75% 75%1

MATCHES+HITS 8591 90% 8097 S0 8097 757,

MATCHES+HITS-MISSES 8591 8091 7091 7591 7091 750/

HAMMING 85 7 8591 859( 7091/ 709 809,

EUCLIDEAN 75,91 75,( 8097 7571 7091 7571

CUBIC 70 1 65V9 S591 851( 7591 7591
C4.5 s 0 7( 5091 __

CN2 5597( -1017(

BACKPROP 90% 90%°_

3.4 An Overlapping Case Representation

Fala and Walker (1993) also suggested using an alternative case representation in which the
frequency bounds overlap. This coarsc coding representation (Runielhart, %1cClelland. and The
PDP Research Group 1986) modifies the original representation via an averaging process. Each
feature in this representation corresponds to a seqience of frequency boundaries rather than to a
single boundary. For example, we used an overlap of three so that the first feature's value is the

sum of the values of the first three frequency bonidaries. Similarly. feature i contains the sum of
the values from frequency boun(daries i, i + 1. and i + 2. where i ranges between zero and 125.
Table 6 summarizes the results when using this 126-feattire representation.

In general. this boundary-overlapping representation did not yield higher performances. None

of the accuracies were over 90(7%. However. it is possible that alternative boundary-overlapping
representations can support higher classification accuracies.
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4. DISCUSSION

These results should not be interpreted as an indication that, for example, the combined al-
gorithms will outperform the others in general. We plainly see that the algorithm's accuracies
vary depending on the normalization function and case representation. Each algorithm has its own
classification bias, and that bias can only be best for a finite set of databases (Utgoff 1986; Schaffer

1993).

However. it is interesting to note that a cognitively motivated similarity function, such as

the combination of MATCHES and MISSES, was the only similarity function that attained perfect
classification accuracy on this dataset. Tversky (1977) has argued for the psychological plausibility
of such similarity definitions. His contrast model of similarity is similar to the combination of

MATCHES and MISSES in that it is an increasing function of the cases' commonalities, a decreasing
function of their differences, and computes these separately. However, one difference is that the
contrast model subtracts differences in both directions rather than only one direction (i.e., test
value minus the stored value). Thus a variant of Tversky's model would also subtract from the

cumulative cases' similarity the value of the stored case's feature whenever it was positive and
the test case's value for that feature was zero. We extended MISSES to include this property and

replicated the experiments. The results were similar to those previously reported.

One interesting avenue for research concerns evaluating generality of the hybrid MATCHES +
MISSES classifier. While it performed well for this applicatiou, we would like to determine whether

it has specific general benefits in comparison to more established algorithms.

While the performance of some individual algorithms improved when using the alternative

normalization functions, in general normalization did not improve classification performance. This
information is still useful in that it tells us that the good performance of Fala and Walker's classifiers

is not primarily due to anomalies of the initial representation. After all, MATCHES performed
equally weU under all of the normalization methods that were tested while the performance of the
other two algorithms decreased slightly when using the linear interval and z-score functions.

Naturally, there are several questions not addressed by this research, such as the relationship
between the similarity function and the case representation and their contribution towards perfor-

mance. Studying this requires varying one component of the case-based classifier while controlling
the selection of the other components. For example. we would like to understand the comparative

limitations of case-based classifiers and other anproaches. This is partially addressed elsewhere

(Aha 1992), but these experiments are beyond the scope of this report.

5. INCORPORATING DOMAIN KNOWLEDGE

Although it is comforting that perfect classification accuracy could be achieved on this sonogram
dataset via a combination of the MATCHES and MISSES algorithms. we do not know whether this

result will scale up. That is, the current dataset is quite small - only 20 cases - and this hybrid

algorithm may not perform well on larger datasets.

The algorithms we have described so far are knowledge-poor in that they use only a minimum
of domain-specific knowledge. In practical applications, there is no substitute for such knowledge,

and we believe that to attain equally good classification accuracies with larger sonogram datasets,

more knowledge-intensive case-based classifiers will be required.
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There are at least five ways to incorporate domain-specific knowledge into a case-based classifier:

1. Use a more appropriate case representation,

2. Improve the normalization function,

3. Improve the similkrity function,

4. Improve the prediction function, and

5. Add a postprocessing function.

Several of these methods have overlapping effects. For example, some similarity functions effectively
modify the case representation.

5.1 Case Representations

The simplest and most effective way to improve classification performance often involves using
a better case representation for the given task. This relies on having experts available to suggest
alternative representations. For example, Fala and Walker (1993) suggested that experts classify
sonogram readings using only a subset of the sonogram rather than its entirety. Thus, perhaps
these cases could more profitably be represented using only a subset of their features.

Alternatively, if there is sufficient data and expertise available to statistically analyze the data,
then a data modelling approach could be used to repeatedly propose and test alternative case
rep resent at ions.

A final alternative is to have the algorithm itself propose alternative case representations. In the
machine learning literature, several algorithms implementing feature construction and constructive
induction have been used to modify the given case representation (Birnbaum and Collins 1991).
While few such algorithms have been described for use with case-based classifiers (e.g., Aha 1991),
constructive induction algorithms have greatly improved classification behavior on a limited set of
applications. Future research should include an investigation to determine whether they are useful
for similar sonob:am classification tasks.

5.2 Normalization Functions

Although we examined three simple normalization strategies in this report (i.e., none, linear
interval, and z-score), they are certainly knowledge-poor. Recently. Turney (1993) proposed using
several contextual normalization functions to exploit the context of the application. One of Turney's
approaches normalizes data by estimating each feature's expected value and variance using some
standard prediction function on "healthy baseline" data and then normalizes data using a function
of these estimates. His algorithm improved the accuracy of a simple case-based classifier by 13%
on a gas turbine classification task. Future work should include studying whether similar functions
could be used for sonogram classification tasks.
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5.3 Similarity Functions

As mentioned previously, a primary weakness of the nearest-neighbor function is that it is
sensitive to the presence of irrE',-,ant features in the case representation. This is because its
similarity function, the Euclidean distance metric, assumes that all features are equally relevant.
That is. each feature has equal impact on similarity computations.

Dynamic feature selection algorithms alleviate this problem. Most of them assign weights to
each feature. The most relevant features are assigned the highest weights. For example, a typical
weighted- Euclidean similarity function is

F
(dis)Similarity(x, y) = wi x (xi - y 1)

2 , (5)
i=1

where Wi is the weight of feature i. Using this function, features with weights of zero are effectively
ignored during similarity computations. whereas features whose weights are high have the most
impact on determining similarity. Several weight-learning methods have been proposEd, including
algorithms based on incremental training (Salzberg 1990; Aha 1989), genetic algorithms (Kelly and
Davis 1991 ), decision trees (Kibler and Aha 1987: Cardie 1993), information theory (Bakiri 1991),
ones for symbolic-valued attributes (Stanfill and Waltz 1986), and several others.

All of these algorithms can be run in a knowledge-poor fashion. However, knowledge-intensive
algorithms are often more appropriate, especially when only a small amount of data is available
for an application with a large instance space. For example. Cain, Pazzani and Silverstein (1991)
demonstrated that a simple set of explanation-based learning trees can be used to determine, for
each case, which attributes are relevant for their application. By using this additional knowledge,
they increased their classification accuracy by 18%7c in their database on foreign trade negotiations.
Future research shoild include analyzing how well similar algorithms improve performance on
sonogram classification tasks.

Jabbour (et al. 1987) and his colleagues have published studies on yet another method for in-
corporating knowledge into a similarity function. Their power load forecasting system, ALFA, uses
an eight-nearest-neighbor function to predict power load for the Niagra Mohawk Power Company
(NIMO) of central New York State. Cases consist of meteorological data from three cities in New
York. To prevent similarities from being computed on possibly misleading cases, thresholds are
placed on the tolerated amount of difference allowed on the day of week, hour of day, and month
of year features. If these thresholds are not met. then the similarity between two cases is deemed
to be zero (i.e., effectively, similarities are not computed for large portions of their huge database).
Similar domain-specific thresholds may prove useful for sonogram classification tasks.

5.4 Prediction Functions

The only prediction function that we have discussed has been the single nearest-neighbor
function. Alternative functions should be considered in future research tasks. The most obvious
alternative is k-nearest-neighbor %here k > 1. Many studies have suggested that its bias is
beneficial, and it is well-known that linear increases in k yield exponential decreases in the difference
between the learning rates of k-nearest-neighbor and the Bayes optimal learner (Cover and Hart
1967; Cover 1968: Duda and Hart 1973).
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Additionally, when k > 1, alternative similarity functions should be considered, especially those
in which similarity decreases exponentially with distance (Nosofsky 1986; Hintzman 1988; Aha
and Goldstone 1992). These studies on human concept formation were all motivated by Shepard's
(1987) findings that subjects tend to generalize two stimuli based on an exponentially decreasing
function of the stimuli's distance in a psychological space. This observation may soon prove useful
for improving the performance of automated classification algorithms.

5.5 Postprocessiag Functions

Finally, postprocessing functions have also been shown to improve the performance of case-
based classifiers. For example, after ALFA generated a prediction, it consulted a set of rules to
adjust for annual population drift and account for days on which power load requirements would
differ greatly from their norm (e.g., Super Bowl Sunday). This allowed ALFA to attain predictive
accuracies similar to those attained by NIMO's experts.

Another way to incorporate knowledge during postprocessing was demonstrated in CABERESS
by Clark, Feng, and Matwin (1993). They simply averaged the predictions from a case-based
classifier with those derived from a domain-specific model of their classification task. Similar
approaches should be useful for sonogram classification studies.

6. CONCLUSION

This report describes followup studies to Fala and Walker's (1993) study of three CBR algo-
rithm's ability to classify sonar data. We replicated their experiments, extended them, compared
their results with those from several other algorithms, and investigated other representations and
normalization functions. We also tested Fala and Walker's suggestion to combine their similarity
functions and found that, under some conditions, perfect or near-perfect classification performance
could be obtained when using their algorithms. Our future interests include investigating whether
existing knowledge-intensive learning strategies for case-based reasoners can improve performance
on more challenging sonogram classification tasks. Therefore, we outlined many possible ways to
explore these issues.
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