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S UMMARY

This report covers the first eighteen months
of our investigations. Following a brief
introdaction the report discusses in some
detail the mathematical model of the system,
the methods used in solving the corresponding
differential equations and the various ways
of presentation of the resilts, The effect

of an external load is then discussed in some
detail. The report ends with suggestions for
fature work based on the results obtained

so far.
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l. Introduction

The main purpose of this work is to investigate
the control of chaos in a plasma-.filled diode.
A mathematical model of siuch a system has been
considered before 1'2, its main featiure being the
replacement of a smooth, interelectrode electron cloud
by a large number of infinitely thin electron sheets,
In the absence of ions similar, continiuous systems
have been considered in great detail 3, including the
effects associated with the granular nature of the

1
<+
electron stream « In the presence of positive ions

5

the system was first considered by J.R,Pierce

and then in more detail by others 6,7 . When the

electron cloud is discretized, the ions can be treated

as a smooth positive hackground 1, or they can be

discretized as well. Drawing on the experience quoted
1

4
above we are sugeesting that the latter is the more

appropriate approach to adont for further investigations,

E N T e R R Lacamer
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2, Mathematical model

Let us first of all consider a system which is devoid
of positive ions (pure vacunm). The equation of motion

for a single sheet of electrons is then given by

Pms?l - fsal {(2.1)

wvhere xl is the position of the sheet, Ps and Pms

are the respective charge and mass surface densities

= - e/ o
(Ps/Pms e/m ) and E. is the aversge field acting

1

on the sheet,

T m B, o= 4 5
" Pt T(Fp e By
. 2f. d=x X ) _ps
: d q N
3 : X, B
-8 (f - 2 (2.2)
Yere EI and QTT are respectively the fields in the

grid/electron-sheet and electron-sheet/anode spaces,
the general seometrv being thrt shown in Fig.l. Since
the field must chance from E to %

I TI
through the sheet, the actial fieli acting on the sheet

AS we pass

is the avarase field T Substititing (2,.2) in (2.1)

1.
we find th: t the <ingle sheet is decelernted when * < d/2

and acceler- ted when x, > a/2.

e
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In the case of sevaral sheets the averase field

acting on shect j is Tiven by

-
[ ]

En(all sheets to the left of j) + cj +
€,(all sheets to the right of 3)

’?TI(i:J) + Ej + ?‘TI(i-(.))

Al
_gz[ gj“_& . (._:.4. . ) . ’g_ 1,_-_1]
“ ' . e

where the sheets are counted from rizht to left, since
sheet 1 wa'tld be injected first and woild have travelled
to the risght by the time sheet 2 has been injected, and
sn on. Here M represents the total nimber »f sheets
momentarily in the interelectrode space.

In »slace of (2.1) we now have the fallowing set
of M coupled equations of motion, each representing

one of the M electrnn sheets present in the interelectro-e

space:

oy - ?
Pms™1 Ps™1

: :
wu - | gl )
Pms‘j Psqj 2.4)
-® L
L4 »

[ &

Pms™y = Ps™w

It is now convenient to introduce the following
1

reduced variables

x' = x/a_ , t! = t/to (2.5)

P

1
;a['.g‘ “EL' 1 ‘%] (2.%)
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where d 1is the separatinn of the clactrodes and t
is the transit time in the absence of fields of an electran
injected with initial velocity io = v, t.@ t = d/vo.

o
Thus we now have:

dx ' te dx X d® x ! _ts d3x . &
dae’ " Td dt T Ty, de’™ T Tq dt¥ (2.6)

In order to introduce the concent »f convectisan ciurrent

Jc we write

- ebh* = ped - Jeo d
Ps N ™ Vo N (2.7)

where ?s is asain the eharge surface-density of a single
shect, P tot is the surface density of N sheets and
Po is the smoothed-out volume density nf Y sheets,

A typical equation (2.4) can now be written, substituting

from (2.%), (2.6) and (2.7):

d"x'i = P> ’ Jeo t: [{
Pas €c Ve N

X' - g g] (2.8)

e
Note that M may be different from N , since YN is
a constant and M wmay vary, being equal to the numbher
of sheets which are present in the interelectrode space
at any given time,

In the final step of our derivation of the eqtations
of motion we choonse to express the convection current 7T

co
as a fractlion of the convection current flowing in a similar

T A Y M TP TR

s b
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space-charge-limited diode Jc,scl given by:
o
Iy se1 2_9&_%»_3; - 23 £ % (2.9)
o
Substituting (2.9) in (2.8) we finally obtain
_ii;'.,. T [E x! -J+&] (2.10)
dt' 9y t=) i “ ®
L - JCO/Jc’scl (2.11)
®
as a tynical equition of motion for the jth electron
sheet 1 .
The M equations (2,10) fully describe the motinn o
of M electron sheets, each sheet injected with the same
initial velocity dx'j/dt' = io/vo = 1 into the interelectrode
space. Since the diode is assumed to be short-circuited, °
the only fields present are those due to the space charge
of the sheets themselves, Thus (2.10}) re>jresent
a computer model of the conditions inside a plane diode,
where the cathode has been replaced by a grid, so that ¢
the electrons can be injected with a constant velocity
v which is different from zero ? . °
So far we have only considered a short-circuited
diode, If a load is connected across the electrodes,
we reqiire an additional equation which relates the
conditions inside and outside of the diode. Yoting the ¢
fact that the total current in Fig. 1 must be continuous
we can write:
@
; o
.
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and a suitable expression for the induced current
has bheen derived elsewhere 1 .
consisting of a resistor R

we have

tot

so that, substititing in (2.12) we finally obtain

where

expyresses the plane geometry of the system,
look at
In the presence of the load the equations of

(2.%) mast be adjusted by writing:

X, = £ - £ ¥V
X, qu(gj * Bioad’ Pes °3 " Tpa
| )
- —&’& —*x. —a—
P & ‘»Zu a -3¢ %] - f.\,:i(RIt:ot *

tot ind cap
i A - & A
. 28 T % I WL R 1)
a oz % d
+here V 1is the potential difference ~cross the load

Iind

In the case of a load

in series with an inductor L

(2.15)

NDne can also

it as an irreducible capacitance of the system.

motion

LItot) (12,16)
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Mualtiplying both sides of (2.1%) by to/Ps!\ and (2.,15)

2 . .
by t‘o/d we obtain corresponding expressions in terms

\J]

of the reduced variables (2.5) - (2.7):

%ftl‘('; {[2"' 'J+ﬂ - TpI' - T ‘_‘ll}

T L at!
a o] '
a1 dar' \ s dx
Ty atx * Tpger 1T '."'-.’. de!

(2,17)

(2.18)

Yere we h: ve introduced a new reduced variable given by

tg I

1
I Ps tot

The constants T, and TL are defined by writing:

o]

P fv, B _pe Jatt | 2
P B A '%:;e,v,x 9N
e bA s : 3 éoA R
-%— -—!; - ﬁ?—RﬂF:I' - —%—wc-&-c-%o——a—o—t—: I'
2

v CsR _, 2¢

1}
oY Tp I

9N "t
B 8.3 S PLt A ATl oy 0y tQ %A L dl!
Flleot = poB @ AT Pes A4 d & dt!

2. CuL dI! - dr!
9N " t2 dt’ T 9N 'L dt?

Since P < 0 in (2.19), it should be noted that TI!

has an opposite sign to Itot' In the case of Fig. 1 we

3 '
have Itot & 0 and IY > 0,

(2.19)

(2.20)

(2.72)

One can see from (2,17), (2,18) that in the presence

of a R,L 1load M+l coupled second order differential

equations are required for the descriotion of the system,

T T

M
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(i In some cases it is preferable to use the field
®
6 d ed P d
El - : - ':‘ - o t J r
2‘. F').oad m‘vs load Pms %' load
. P p,t%(g ; ar')
g“vg‘RItot*L tot p_.d" RIT Ldt' i
th [CeR Cy L dI') a1’
- bt Ko ! ' —_—
E,p,"l( t, | €2 dt? (TRI' + T ¢!
= E'R + F,'L 2,23) o
where, from (2.23%)
o
T. dE
¢ -
E L " T R;:.- (2.24%)
Substituting for I!' in (2.17), (2.13) we now obtain { ]
dix! 2. o s v L dRg
at'x [?,," 'J*%J - Blq - T 4t (2.25)
®
To d*r8! dE' 1 . 2¢ dx;
T, dt'* T dt' T Ty Flr 9N ;i., de'! 2.26)
The evolution of the system is again described by M+l o !
coupled second-order differential equations.
Another load to be considered is in the form of a resistor R
and a capacitor C 1in parallel. In place of (2.12), (2.1% ®
we now have
Y ;
- - 2 . - 0
T tot " Tina * Icap d .5 51 2 L
I v v 2
R * Ic = R + cv (2.2
®

. Ca e - - . - G s e e ey
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where Iq and Ic respectively represent the currents

flowing in the two branches of the load. Since the field

@

across the load is given by the usual expression Eload
- V/d, we obtain from (2.27)
- [y to A D . ."'\.f
1oad - a e fi T h(cv + C) d

™ .t
- 2R 98 LB o) B
(4

" ol
R S - R (TR+TC)-—9§—';=.‘1 (2.28)

where we have ised (2.5), (2.15) and (2.20) . (2.22) for

defining «x!', t?}, TR ; in addition we have introduced

a new constant given by

T, = RC/% (2.29)

From (2,23) +we can now write for the reduced field

aga M ]
¢ . _ _psd LA Fdx)  ped dEioqq
B Pas = "load T pdee TRmdt' - howF (TR*Tc)Taed
or
Bl o. 2k o 5 _axt dg! -
7oy Tr&y qer - (Tp * Tg) e (2.30)

This equation should be compared to (2.18) which is valid

for an R and an L in series. The corresponding equrtion of

motion of the electron sheets is now given by
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x{y =3+ %] - E!

This equation is similrr to (2.25) except for

Place of the two terms in

nt

lR‘

(2.21)

' jin

Sometimes it is more convenient ro express everything

in term- of current. Ye then have

Elond

or

E'---%.ﬁ—ﬁ NS SR s S U Sy

Thus in terms of current (2.31} and (2.%20) acqiire the

following algebraic form:

™

dix?, 24 [
at'? " 9% { g‘:r‘

- RIR/d (2.32)
R P.sd. To R
ggt.‘ RC 2
(2.35)

d 2 dxg
(Tp + T¢) dt; +Ig = I g

It should be noted that in the load equrtions the capacitance

C 1s merely added to Cv. the two being in parallel

{ TR + Tc = R(Cv + C)/Ta

).
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Let us now consider briefly the initial conditions,
It is assumed that initially the diode is free of charge
and that no external batteries are present, the energy

being delivered to the system by the injection current Ul .

In those circumst~rnces there are no charges on the
electrodes until the first electron sheet is injected
into the interelectrode sp - ce through the left.hand
electrode, i.,e, the grid. Consequently in the case of
(2.17), 42.18) or (2.25), (2.26) the initial boundary

conditions are respectively either

[
1.0, S50 at t' =0 (2.36)
or
]
EL =0, 958 .0 ac tr -0 (2.%27)

In the case of (2.30), (2.%1) or (2.34), (2.%5) we again

have either

]
[
jw ]
A
o)
"
o

at t!' = 0 2.38)

[s N
[

or

It .o,ﬂi = 0 at t' =0 (2.39)

=3
[

Finally let us consider an approximate expression
for the potentisl distribution between the electrodes.
Since the interelectrode space-charge in our model is
represented by a succession of electron charge sheets,
the potential function is approximated by a series of
straight line segments connecting the yJotentials of

neighbouring sheets.

B L R T R PR R S
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ixpressions for "I ~nd "II are obtained hy ®
@ integrating the corresponding fields FZI and '"II'
qroted in (2.2); since in our model the fields are
constant, the corresponding potential functions must ®
hy straight lines slopins dovnwatds bhetween the grid
and point 1 in Fisg, 1, and 1pwards between i and
the anode. For example: ®
¥ d
= - \F 3 - _EL -—:51_
dI ) i dx e d x <0 (2.%0)
3 o
- - - . £ 5 (5 < 0 2
bry SEH dx £ 2 () (2.41)
P
since f’s < 0. In the presence of many sheets we find ®
that for sheet jJ we have 1
E >
- + P,
IR SrNles TURNE N o
: $
- —4?’—[ x.{d - x + 3 d - ) - . j
&d R Y] 1( j) 1= ‘j( xi) t
e [ 3 g *
= x . (jd - x d & + ¢, K *
2d J(J £, g) ;:',uxi] 4 (2.%2)
In the presence of a load (2.29) has an additional .;
terms ziven b v i
¥ ' E1oad™j . Dividing both sides by |
|
2 2d" J |
= - ./ s¢) :
"o gs 2 -3 Vo (2.43) o
which is another form of (2,9) and then using (2.7)
Py
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we finally obtain

g Jeo/ &4 v N o o Ey
'y - g T ati, The [‘J‘jd -ty v alk "1]‘ kil

. ™ ssyel

so | 5 5
B ':‘ b'\

An approximation to the potential function ' is
obtained by connecting all the points ¢'j with
straight line segments.

Tt should be noted that (2.17), (2.13) and also
(2.25), (2.26) are linear; however the boundary
conditions of the system are expressed in terms of

(2.%1) which is nonlinear, so that the inherent

nonlinearity of the system is SJ4itably expressed in

this fashion,

A g g e 4 PR et
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2s Computational details
Two different methads have been used for the
solution of equations (2,17), (2.13) and (2.25),
(2.28) ar (2,20}, (2.21) -=~nd (2.%%), (2.%s5).
The first method is based on the use of backward
and forward differences, s is customary in sich cases
each second order differential equation is first converted
into two first order differential equations and the
corresnonding derivatives are then expressed in terms
of the finite differences, using second order approximation.

Thus, for example, we obtain for the equations of motion

of the j-th electron sheet:

* - 2-0 -t
X+l i IR I Y & LI (3.1)
and
. 2 o 1 .
o = 1Rt (35 -g X delse s x (3.2)

This method hrs been initially developed by Rirdsall
and BRridges 1 for the solution of equations describing
the conditisns in a short-circiited diode. We have
extended it to cover the case of a diode with a partly
reactive load connected across its electrodes.

The second method of solving the M + 1 coupled
differential equations is based on a fourth-or-der
Runge-Kutta subroutine of proven reliability. This
method is particularly convenient when the number

of -equations is large, say greater than 20; it is

also very fast,
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The following methods have heen used for testing
the accuracy of our resilts. In the absence of a load,
i.e. wvhen the diode was short.circuited, ve woulAd
compare our "umerical results with those obtained
analytically. In most cases the agreement was excellent
(of the order of 0.01%) provided the injection cirrent
t < 8; at b2 3 a virtual cathode appears and the
sheet model develops oscillations.

For Direly resistive loads we were able to use
Birdsall's and Runge-Kutta subroutines and then
compare the results; as a rule we woild reject any
results that would differ by more than 0,1%. In the
case of more complicrted loerds containing reactive
components ve couald only use the Runge-Kutta
subroutine; we would then test the numerical acciracy
of the results by systematically reducing the time
integration interval until we were satisfied that the
accuracy was better than 0.1%, This simple nrocedire

can be qiite effective in practice, provided it is used

sensibly.
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There ~re several ways of »resenting the results
of our calculations and we will discuss them in turn,

SA[ Sheet position

The simplest way of _resenting our results is
to plot the position of all the sheets of charge, as
shown in Piges, 2 a.d for four different values of the

injection current density b+ = JCO/J The »osition

scl’
of the sheets is shown along the horizontal xLaxis.

the vertical naxis heing '1sed for indicating their

Jotential relative to the entrance grid situated at x! = 0,
Since in this case the diode is short-circiited, the
reduced potential of both clectrodes is the same and

equal to ¢4' = 1. The whole pictire has been obtained for

a single instant of time, well after the transient due

to a gradual injection process has died out. The values

of the current density . have been chosen so as to cover
the three areas of interest shown in Flg. *, i.e. stable,
hysteresis and oscillatory (unstable) regions. It is to be
noted that in the last two cases, Figs, 2 ¢ 4 d, there exists
a marked tendency for the sheets to cluster near the :
injection electrode, their potential becoming negative

in many cases.

(B) Interelectrode potential profile

Another simple presentation of the results is that
shown in Pigs. % a,b , where we have plotted the reduced
potential of each sheet ¢' against its position along

the x' axis, all values heing obtained for a single instant
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of time and after the transient has died out. Thus

the R.type presentation is very similar to the A.type
presentation, although now the potential curve is much
easier to visialize. Ye have also used this example

to show the difference Ln the potential distribution
between a short-circuited diode, Fig. 4 a and that with

a simple resistive load defined by T_ = CvR/t0 - 0.1

R
connected across its electrodes, Fig. 4 b. We can see
that in the latter case the anode is at a-lower potential
than the grid, the potential difference V = RItot being
zenerated by the current flowing throigh the resistive
load R , as shown in Fig.l. Both results have been obtained
for the same current density = 6,

The main weakness of the simple presentations of the type
A and B 1is that they are valid for a single instant
in time only, i.e. they do not tell us anything about the
development of the system with time. In order to overcome

this we mist use other methods of presentation.

{C) Trajectories

Since the system is 10, one can gain information about
its evolution by plotting x' = x/d against t' a t/to.
Figs. 5 a and b show the corresponding trajectories
for v = 4,0 (short-circuited diode) and v = 9.0 (diode
with 2 R,L load). In the first case, Fig. 5 a corresponds
to a stable potential distribution, the charge sheets move
smoothly hetween the electrodes, The sesond case, Fig, 5 b,
corresponds tc the other extreme where, due to the large
values of ¢ and TL we have quite violent changes in the

sheet trajectories, leading to large amplitude oscillations.




@ & ia @&

- 22 .

Since the position of each charge sheet is noted at fixed
time intervals and then indicated by a dot, the density
of the dots is inversely proportional to the velocity

of travel of the sheets,

(D) Nepth of potential minimum versus time

Strictly speaking there is no potential minimum
in our case; all we have at our disposal is a chirge sheet
which is at a potential that is lower than the potential
of all the other sheets, Figs. 6 a and b show the value
of such a potential as a finction of time respectively
for two different values of the injection surrent density.,
We find that for ¢ = 4.0, Pig. 6 a, the lowest potential,
after a brief transient, settles down to a constant value.
In the case of ¢ = 9.0, Fig. 6 b, the lowest potential
oscillates in a somewhat uneven or 'chaotic' fashion.
These oscillations have a clear character of 'relaxation'
oscillations, their upward movement being much faster
than their downward movement, as can be seen by the
density of dots. Closer investigation of drawings such as
Figs. 2 ¢ &4 ¢ indicate that the oscilliations occur because
the charge sheets first bunch near the grid and are then
jettisoned at approximately equal intervals,

(E) Position of potential minumum vesus time

Another presentation of the system is that of the
position of the potential minimum against time. However this
presentation suffers from an inherent weakness in the form
of a built-in discontinuity, since in our model there is

no such thing as a true minimum, but only the position

sy 1 o o
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of a sheet temporarily at the lowest potential. Thus

at odd moments there is a sudden and discontinuoas

jump from one sheet to the other., Figs. 7 a and b
clearly show the jerky mévement of the potential
'minimum’ with time. In Fig, 7 a the movement is so
fast thrt we only get a blur in the form of a thick
horizontal line, but in Fig, 7 b the Jjumps are quite
noticeable, especially on the downward strokes,

(F) Field across the loal versus time

In the presence of the load it is often convenient
to nlot the field E' across the load against time, as
shown in Fig. 8. Since this is possible only when the
load is present, e have chosen { = 9,0, TR = 0,1 as
an example. This should he compared with Fig. 6 b where
vmin is plotted against time for a short-circuited
diode and ( galso equal to 9.0. In the case of Fig. 3
the field £E' does not change sign, once the transient
has died out,

Since our system is 1D in character, the (x!, x')
phase space is a 200 plane and the phase trajectories

of the system are 3D curves with the t'-.axis at right

angles to the (x',x')-plane. If we then 'strobe' the

trajectories, i.e. note the values of x!, x' at regular

time intervals and plot them in the (x',x!')-plane, we

obtain what is usually referred to as a Poincaré

section of the system. Let us consider such a presentation

but at the snrme time alter it somewhat by taking
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a X min’ X min instead of x', x!. o
- (G) Velocity of x'ir vers1s _its position
4
& The velocity of the potential minimum x"“n
against its position is shown for two cases respectively
L _
in Pigs. 9 a and b, In Fig., 9 a we have L = 4,0 and
a short-circuited diode and in Fig, 9 b we hrve v = 9,0
and a load in the form of TR = 0,1, TL = 1,0, Naturally
®
this is another presentation of the resilts respectively
shown in Figs. 7 a and b. As is usual with other Poincare
sections the presentrtion of the results is more revealing
@
and possibly easier to interpret, since wve now have
information about both «x' . and %' . . In Fig. 9 a
min min
the velocity of the potential minimum clearly settles
to a constant value X' = X /v = 0,83 (note that ¢
7 min min’ "o ¢
in fact this is the velocity of » given sheet), its
position oscillating in a narrow range near the middle,
o
! = /
min xmin‘d & 0.5. In the case of Fig. 9 b the
Poincaré section reveals marked variations both in
: H : 3 !
the position x min and in the velocity x min® o
Regrettably both presentations suffer from the
artificial discontinhuities caused by jumps from one
charge sheet to the other which are inherent in our
®
definition of x', and Xx' . .
min min
(H) Potential minimum versus_the field
One more presentation of the results p»roved to he
®
of interest. Instead of plotting vmin against time,
it is probably better in the presence of a load to plot
vmin against F'. This type of presentation is quite
®
L
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smooth, i.e. it does not suffer from artificial
discontinuities, as can be seen from Fig. 10 which
is plotted for . = 9.0, TR = 0,1, TL = 1.0, Pig. 10
should be compared with Figs. 7 b and 9 b which are
Plotted for siwnilar values of the relevant parameters,
Both the periodicity of the system and the relaxation

character of the oscillations indicated by lack of mirror

symmetry are clearly shown in the drawing.
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5. The effect of the load

‘The majot objective of these investigations is to
determine the effect of the load on the behaviour
of a plasma-filled diode, in particular its possible ®
role in the control of chaos. So far we have developed
a technique of investigations by creating a suaitable
mathematical model of the system and evovlving varioas ®
forms of presentation of the results. We now wish
to describe the effect of the load on the stability of
operation of the system in the absence of nositive ions ®
and then make suggestions concerning possible influence
of positive charges.

The mathematical model described in Section 2
includes an external load which is in the form of
a resistor and an inductor in series or a resistor
and a capacitor in parallel, Fig. 1, the irreducible
capacitance of the tube being connected in parallel
with the load, the source of power being in the form
of a constant current 1+ 1injected through the grid.

In our case the simplest load takes the form
of a pure resistor R, as has been briefly discussed
elsewhere 1. In Fig. 11 a we have a tabie of results
summarizing our investigations. We find that for low
values of TR there are no oscillations until the
current ¢ 2 3,0, This is consistent with the results

obtained analytically when the corpuscular nature
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of the electron stream has been ignored (hydrodynamic
approximation) 8; we then find from curve a in Fig, 7

of ref. 8 that in a short-circuited diode (T = 0, g. = 1.0)
the virtual cathode appears also when ¢+t 28.0, i.e. for

the same values of the current as those leading to oscillations
in the numerical case. This fact had already been noted

by others 1. However this simple relationship is no longer
valid for larger values of TR . For example at TR- 8.0

and ¢ = 4,0 the system becomes unstable and begins

to oscillate, bringing the anode voltage down to a mean
value of d; = 0.8, although in ref. S for = 4.0 the
virtual cathode does not set in until d; = 0.35, Clearly
even a simple resistive load, which is absent in ref, 8,

has a profound effect on the behaviour of the system,
probably by intriducing an element of feedback in addition
to that already present in the system and associated with
the space charge acting as a medium facilitating communication
between the two electrodes (see also ref. 7). As we shall
see shortly the effect of the load becomes more wide ranging
when reactive components ~re included. Figs. 11 b - d show
typical oscillations for three different values of TR .

namely T, = 0.01, 0.1 and 0,8 and for a single value of

R
the injection current L = 9,0, The oscillations are rather
irregular, their amplitude and shape varying in a random

fashion; also, as mentioned before, they have the character

of relaxation rather than harmonic oscillctions, their

rise associated with sheet dumping at the grid (see Figs.1ll c

and d) being much faster than their downward stroke, which
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is associrted vith a slower biaild-1p of the interelectrode

space charge. This is clearly indicated by the density of

dots, the system bheing 'strobed' at eqial time intervals,

It should be noted thit the amnlitude of oscillations

increases by a factor of ~ 3% as T saries between 0.01

- R

and 0.8; so does the frequency of oscillations, but only
by some 10%. The corresnonding frequency spectra of the
oscillations are shown in Figs. 11 e - g. We find that,
because of their relaxation chaoracter, the oscillations
are rich in harmonics; also they become progressively
‘cleaner' as TR increases, their chaotic or more
accurately rendom character being more pronounced at
lower values of TR‘ It should be added taat the two
figures in brackets respectively refer to the DNDC level
and the amplitide of the fundamental component, the
amplitude being normalized ti unity in the drawings.

lLet 1s now consider a load which has a reactive
component in the form of an inductor L in series with
a resistor R, as shown in Fig. 1, the resilts of the
compititations now being collected in a table shown in
Fig. 12 a, We find that for & = 4.0, i.e. in the stable
range of operation (see Fig, %), the addition of an
indictor to a purely resistive load of TR = 0,1 Aoes
not caase instabilities. The siturtion is qiite different
however for larger values of the injection current, such

as L = 9,0, Now, as we know, the oscill~rtions are likely

to be present even in a short-circiited diode and the

ol
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addition of a purely resistive load increases their
amplitude, ~s shown in Figs. 11 b - d. The addition of
an inductor further emphasizes the effect, nrovided

TL is sufficiently large; this can be clerrly seen

by comparing Figs. 11 ¢ and 12 d, the effect of ’I‘R
probably hbeing stronger, Figs. 11 d and 12 d. 3 weak
inductor, TL = 0,001, hrs a negligible effect on the
amplitude ~nd shape of the wave, as can be seen from
Figs. 11 ¢ and 12 b (note different scales). However
for TL = 0.1 and 1.0, Figs., 12 ¢ and d, there is

a considerable growth in the amplitude of oscillations,
finally reaching a factor of ~ %, At the same time the
oscillations again hecome 'cleaner', i.e. more regular,
although they still retain their relaxation character.,
This is particularly noticeable in frequency spectra,
Figs. 12 e - g, which clearly show the 'cleaning up'
process; at the same time the relsxation ch: racter of
the oscillations is further confirmed by the presence
of harmonics, Fig. 12 g, apart from which the spectrum
is remarkably 'clean'!, There is some suspiscion here

that we may be dealing with a resonance phenomenon,

berring in mind the presence of R, L of the load and

the inherent capacitance Cv of the tube. In nur opinion
this point merits further investigation, especially since
some preliminary computations revezled very high amplitudes
of 'clean' oscillations for vanishingly small T and

R

mhrdernte values of TL'
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Tn our third aud list exemple the load is in
the form of » resistor R @end a capacitor C in
parerllel, as shown in Fig. 1. In fact this is equivalent
to a purely resistive load with an abnormally large
capacitance assigned to the tube and given hy cv + C
instead of just Cv' However, as can be seen from
(2.31), (2.71) and (2.%4), (2.%25) this anrlogy is not
complete, since TR does not always appear in the
combinrtion (TR + Tc) = R(Cv + C)/t0 . The results of
our computations are collected in a table and shown
in Fog. 13 a. Ye now find that in this case the
oscillations only occur for ¢ = 9,0, Figs. 12 b - d,
The three sets of results, T

R
c* 0.001, 0.1 »nd 1.0, are very simil r and they

= 0,1 and three values of
T
hardly differ from those for TR = 0,1, TL = Tc = 0

shown in Fig. 11 e. This further supports our conjecture
that the load capacitance C is merely added to that

of the tube Cv, no resonance phenomena being possible

in this configur: tion. Comparing Figs. 11 f ond 12 f

we find that there is no noticeable change in the frequency
of oscillations due to the addition of C , although

the frequeney spectrum is slightly 'cleaner' in the presence
of C. This is even more noticeable when we compare

Tigs. 11 f and 13 g where, in the latter case, TC = 1.0,

One would assume that the R,C combinstion acts here

as a filter.




Finelly it is worth noting the effect of various
types of load on the intermediite, or hysteresis range
of values of the injection current L , Fig. * . fe have
already mentioned the fict that in the case of a purely
resistive load oscill-tions may occur even for injection
currents as low as + = 4,0, provided that TR is
sufficiently large, in our case TR = 0.8, Pig. 11 a.
The seme epplies to the intermediate range of injection
currents, say L = 6.0, wvhere hysteresis occurs in the
case of 7 short-circiited diode, Fie. %*. In the presence

of a relatively lfrge indactance, T_ = 0.1, T, = 1.0,

R L

we find from Fig. 12 a th-t although no oscill:tionms
occur for U = 4,0, they are excited at o+ = 6,0;
however this only happens sfter a realtively lengthy
transient, as if the system co'i1ld not quite decide
what to do, Fig. 14, 2t the same time the hysteresis

effect clearly shown in Fig. * disappears, the system

following the lower branch of the curve in both directions.

In the case of 2 capacitance T in perelle with R no

oscill~tions are excited at ( = 6,0, T_ = 0.1 and

R
Tc = 1.0, ns is shown in Fig. 13 a.




4—————f;;———————————444—————4‘44""""‘““““““‘44444i1"ﬁﬂ

S M
'
t
)
'

L
G §. Chaos prolegomena °
@ In the discussion of chaos it is alwavs importsnt
to define precisely the svstem a2nd the corresponding
ohase space and its Poincaré sections. In our case s
the electrodes, the space.charge which in general
would comprise negative electrons and positive ions
and the load together represent our system. Since °
ve have energy losses in the system, both at the
electrodes where the kinetic energy of the charesed
particles is being converted into heat and in the load, o
where the flow of current gener~tes the usual hert losses
in the resistive component of the load, the system is
clearly non-Hamiltonian ~#nd we should expect the
appearance of strange attractors if and when the system .1
hecomes chaotic.
At this stage of our investigations we ¢ssume
that the electrodes are infinite »l:nes which are prrallel ¢
to each other, so that the envisaged system is 1D in
character, the corresponding phsrse space being constructed
from the position and velocity variables x and X . °
The difficulty arises in deciding which x and which i,
or possibly some other more siitable parmeters should
be used in the representation of our system. ¢
®
®
. @
e s
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The simplest possible model of our system is that
of a single sheet of electrons traversing the interelectrode
space. The corresponding equation of motion for a
short-circiited diode hes been derived elsewhere 1 and

in the notstion of Section 2 is given by the following

expression

d®x! 1t}

T Sl
dt ‘ﬂ“

—(x'-3) = 012 (x'-3) (§.1)

which is similar to (2.10) for N = M =1 and

Phed

el
n'” = 2L/9, The solutions of (5.1) are given by

x' = 4(1 - cosh m't') + —%T sinh m't' (6.2)
dAx ! fmt 1t Tt -
T L sinh mlt + cosh m'g (6.3)

A set of the corresponding phase trajectories, each for

a different value of the prrameter m' = 21/9 and thus
related to the injection current density | , are shown

in Fig. 14 a. Ye find that there are only two possibilities:

either the sheet reaches the anode (m'< 2) or it returns

to the cathode (m'>» 2), a singular case being given

by m' = 2, it takes an infinite time for the sheet to
reach the centre of the interelectrode space. If we now
strobe the phase trajectory at equal time intervals At!,
we obtain what could be called somewhat grandeloquently

a 'Poinceré section' of the system, Our problem in this

simple sase is that the system is aperiodic and therefore
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there is no preferved vealue of At', so that the whole
point of plotting a Poincaré section is virtually lost,
Let us now consider a more realistic case when we
have some t-enty sheets injected, M of them remaining in
the interelectrode space at any given time, The corresponding
'Potnceréd sections' for « = 4,0 and zero load are shown
in Figs. 1% b and ¢, respectively with and withouat the
transient, the system being strobed at At! = 0,01, which
is the same as the integr-tion interval. We can see from
Fig. 14 ¢ that the phase space trajectory is similar
to any of the trajectories shown in PFig. 1% a for n'<L2,
the system remaining stable throughout. The effect of
the transient is clearly shown in Fig. 1% b - it simply
amounts to an upward swing before the trajectories settle
to a value dx'/dt' = 1 at the anode, as they ought to,

The situation is radically different for L = 9,0, T, = 0,1,

R
TL « 1,0, vhen there are well established oscill~tions,

Fig. 12 d. The corresponding phase space trajectories,

again strohed at At' = 0,01, are shown in Figs. 1% d and e,
respectively with and without the transient, We can clearly
see from Fig. 1% e thrt some sheets land on the anode and
other sheets return to the cathode, frequently after some
considerable hesitation in the vicinity of x' = 1/3,

This is very much in agreement with the time trajectories
shown in Fig. 5 b but, as we well know, in total disagreement
with the simple hydrodynamic model 8. Clearly the 'either,or'

situation with a singular solution for m' = 2 and shown

in Fig. 1% a also no longer applies.
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Yhen the system becomes unstabhle and begins to
oscillate it is often more revealing to use a phase
space described in Section 4H and comprising the E field
across the load and the v~flue of the potential minimum vmin'
In Fig. 15 a are shown the corresponding phase trajectories
for L = 9,0, TR = 0,1 and TL = 1.0, which sre the same
values of parsrmeters »s those chosen for the systems

shown in Figs. 10, 12 d and 1% d, e. In this case we

have a relatively 'clean'! set of oscillations and the

plots of Figs. 10 and 15 a, the latter incliding a transient,

confirm that, Since we now have a well defined period
of ascillations given by At' = 2,3, a more representative
Poincaré section in shown in Figs. 15 b and ¢, respectively
for two different phase values, the system now being
strobed once during each cycle,

Finally in Figs. 15 d - f are plotted phase space
trajectories for ¢ = 9,0, TR « 0,1 where, as can be
seen from Fig. 11 ¢, the oscillations are particularly
'dirty'. We now find that the corresponding phase space
trajectories exhibit similar characteristics, Fig. 15 d
being strobed at 8t! « 0,01 (integration interval) and
Pigs. 15 e and £ at At! = 2,1, which is the approximate
period of nscill-tions. Although this is still not a

behaviour which could be described as being 'chaotic',

it certainly is much more irregular than thet shown in

Figs. 15 a - c.




In our searcu 10r a convincing example of chaos in

the absence of positive ions we have investigated the
effect of very high injectiovua cairrents in the case of
a short-circaited diode. In Figs. 16 a - e we have

2lotted ;;in against «x respectively for

0
min
L =9, 12, 15, 18.ana <3, Ye note that initially during

the transient the pattern is full of discontinaities

or jumps and then it settles down to a rather fuzzy
eye-shaped curve rewminiscent of Fig. 9 b and representing
relaxation oscillations. As the vali« of the injection

current Vv increascs ve find thrt first a gap appears

in the closed curve indicating that some combhinations

x! x!
min’ “win

to grow, the fuzzy eye-shaped pattern surinking more

of are no longer jossible. This gap tends

and more, until at ¢ = 18 and 23 we are left with

a fairly shapeless distribition of )oints in what, 1in
erfect, is a Poincaré section. At the same tine the
transient also becomes very scattered. Although the

pattern has become very irregular, before we can call

it chaotic we still have to find a hierarchy of
bifurcations. Ye know from the literature 3 that in

a short.circnited diode there is at least one 'bifurcation!
2oint at L = 8; for t<3 there are two solutions of the
corresponding hydrodynamic equation, i.e. (6.1) with & = 0,
one stable and one unstable 10 and that atuL = 8 the

two solutions coalesce. For t 2 3 there is a sudden

discontinuity in the current reaching the anode, Fig., 3,




if we follow the hydrodynamic model and in the numerical

calculations the system breaks out into oscillotions.

g
¢
e

Whether this finally leads to a »roper chaotic bhehaviour
as  1increases even further reuires additional

investogations.
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7. The influence of positive ions

So fer we hive only considered the c nditions
on a vacuum diode, i.e. when the space chi~rge is solely
due to the negnative chrrge of the electrons. However
our main task is to consider the conditions in a plasma
filled diode, i.,e. in a system where the space chfrge is
due to the negatice chirge of the electrons and the
corresponding positive charge of ions, the initial ratio
of the two heing left to our choise. The idea of deliberately
adding nositive ions was probably first suggested by

J,R,Pierce 5

2and at the time it was simply intended

to increase the perveance of the system, so that more
current could be drawn from the cathode. Ye now know

that the siti»tion is much more complicated, the system
being prone to all sorts of instabilities &#nd oscillations,
including chaotic behaviour 7 .

The simplest way of taking into account the e¢ffect
of positive ions is to assume that they form an immobile
backdrop against which the movement of electrons takes
Jlace. The assumption of immobility is based on the fact
that respective masses of ions and electrons usually
differ by at least three orders of magnitude. If we then
assume thst both electrons and ions form perfectly smooth

space-charge clouds, the corresponding differential

equation

__g.g‘ - —%“"(’-r-%: .4 ) , J <0 (7.1)

Sk e e e e TG,
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can be solved aralytically b. Here Jo is the injection
current density -nd do = mevog/ze expresses the initial
electron velocity v, of the injected electrons, Since
a . nio/neo expresses the contribution due to positive
tons, their absence is indicated by & = 0; (6.1) then
reverts to i1ts familiar form valid for a vacuum diode 8.
The main difference between vacuum and plasma~filled
diodes is that, as we can see from (6.1), in the absence
of positive ions d2|‘/dx2 must remain positive, whereas
in their presence the second derivative may change sign,
for example when for sufficiently large ¢ the
electron density drons below that of the ions.

In the compatational model of our system the electron
cloud is expressed by a series of infinitely thin 20
sheets of charge; for a single sheet the presence of
immobile positive ions is then represented by a correcting
factor f = 1 - o in (2.2), so that for d -1 a single
sheet would experience no forces and would travel with
a constant velocity from one electrode to the other.
Mathematically this can be expressed by writing in place

of (2.2) 1

% .E.—%r(—}--%) (7.2)

In the presence of seversl sheets the situation is more

complex since in »lace of (2,3) we now have:
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T, - EII(all sheets to the left of j) + Ej +

Ei(all sheets to the right of j)

EII(i>J) + Ej + F,I(1< 3)

- . S
i aan(E ) L g ]

5 -0 1) S -

]
[

) (7.%)

bearing in mind that o, = = -qpg, " - ENP /d. 1In
the =2bsence of positive ions @ «0 anda (7.7
reduces to (2.3).

Turning to the equations of motion we now find,
repeating the algebra contained in (2.4%4) - (2.9) that
(2.10) now acquires a more general form

il

d?x '
dt 1d

] ( .4)

ol

O
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Conseqnuently in the presence of immobile positive ions
all the expressions derived previonsly and quoted as
(2.17), (2.25), (2.%1) and (2.3%) are still volid as
long as we substitute everywhere the RHS of (7.4)

for the corresponding shorter expressions i the squere
brackets. One can look at the new expressions =s
computational models of (7.1) when a siitable load is

connected across the electrodes.
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In order to obtain an expression for the new
potential distribution in the presence of immobile
Dositive ions we have to calculate first of all the
additional potentiesl distribution (due to the ions,
We find from (6.%7) that the field at x due to the

ions alone is given by
Erpp = - 2 av(-2 - 1) (7.5)

Since p_ < 0 the field 7,,,<0 for O0¢x < id and

EIII> 0 for $d<¢xgd. Integrating (7.5) we now

obtain:

= 3NN X
Ees-.—a.\. xj('-(—l')- - 1) (7.6)
where dTII = 0 at xg = 0 and xg = d, the function

being a» perabola with its maximum at x., = “d, as was
J

to be expected. Adding (7.6) to (2.42) we now obtain:

™M
by - Falrya-Exp v afa o dane g - ] 4, 1

Dividing both si:les by (2.%4%) and adding the effect of
a load
be ay -
g! = - -—[x’.(‘-Zx') +2 x! + 3aNx'(x'-1) - 2E'x!
j 9N j J SEd :"’" i 3« J( J )1 E J + 1 (7.8)
It should be noted that since ygsl.by definition, the
additional term associsted with the positive ions has

as opposite sign to the preceding terms associated with

the electron cloud.




i S

In order to confirm the equivalence of (7.1) and
(71.4), we decided to consider a simple case of a short-
circiited diocde with a = I and operating at two different
values of the injection current ¢ , viz, f: = 5,82
and 8.00. As was to be expected in the presence of positive
jons the relative values of the injection current density
are much higher. The results of our computations are shown
respectively in Figs. 17 a ~nd b, As before a hydrodynamic
equation of the type (7.1) provides us with both stable and
unstable solutions, however a numerical solution of (7.4)
invariably leads to stable configurations only, provided
we are outside the range of oscillatory solutions. Thus
in Fig. 3 or rof. 7 we have a plot of stable and unstable
solutions of (7.1) for @ = 1, the first bifurcation point
occurring at &/m = 1, which corresponds to our f51/3" = 1
or Jt = 6.,6643, To the left of this point we have stable
solutions for EO = 0, which corresponds to a constant
potentisl distribution shown in Fig. 17 a, whereas to the
right of the bifurcation point we have stable solutions for
Eo 4 0, as is shown in Fig. 17 b, the Eo = 0 solutions then
being unstable; it is worth noting that the maximum of the
potential function is very close to its analytical value
of 1.7%25. Having established at least to some extent
a formal ngreement etween the results obtained with the
help of (7.1) and (7.4) we did not persue tn.s i1ine of
investigations any further for reasons which are discussed

more fully in the following paragraph.
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In our opinion the above numericel model of

[~

a plesma-filled diode suffers from two weaknesses,

®irst of all the assumption of infinitely heavy
(immobile) nositive ions is unwelcome since in a way

it introduces sinsularities into the governing

equations of motion. However what is possibly even

more worrying is the fact thst although the electron
cloud has been discretized by heing converted into

a number of charge sheets, the correspondin< cloud

of ppositive ions has not, Ye know from other
considerstions 10 th: t this is a dangerous path to
follow. We are therefore siggesting in a new proposal
that the work should be continued by discretizing

both ¢louds of charge. Since the discretization of

the electron cloud not only emphasizes the corpuscular

nature of electrons but a2lso leads to new phenomena

such as oscillations whibch could not have been predicted

analytically using o~ perfectly smooth model of the cloud,

it is to be expected that the discretization of the

positive ion cloud may well lerd to similar new phenomena

which could not be predicted at present, This would be

of particular relevance in the analysis and control of

chaos in a plasma-filled diode.

e
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CONCL JSIONS

In the first period of our investigations we have
been able to establish siitable num2rical m->dels
describing the conditions inside a plane dinde vith
and without positive ions. Having developed siitable
computer codes ve have been able to investicate in
some detail the effect of load in a system containing
an electron cloud represented by a nunber of charge
wheets., Ve have then derived suitable expressions and
developed appropriate codes for a system comprising
electron sheets and an immobile cloud of pnsitive ions.
Ve have also made suggestions for a further development
of this particialar aspect of our investogations, Finally
in Section § we have discussed the bhasics of chaos as
applied to our particular system

Ye have now reached a stage in our investizations
when further extension of our work should be considered.
There nre three obvious routes we can follow in order
to obtain a clearer and more complete picture of the
behaviour of our syvstem, in particular bearing chaos
and its control in mind,

1. The most obvious is the addition of ~» resonant
circuit in place of R, L in series or R, C in
parallel. This would reqiire the raising of the euqations
of motion from the second to the thord order, a process
which sould not create any special computational

difficulties, Since we know thst chaos can be controlled
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by injection of a small signal of well defined fredquency,
the presence of a load in the form of a resonint circuit
may be of significance.
2, Ve are well placed in view of our esrrlier work 4
to investizate the effect of initial velocity spread
of the injected electrons. This has been briefly
investizrated before 1 and we know that a velocity sprerd
can wipe out oscillations altogether and replace them
with noise., Again this type of investigation would bhe
of relevance to the problem of chaos control.
2. The most interesting extension of our work would be
in the direction of 1iscretization of plasma, So far two
aporoaches have been used in the treatment of plasm~,
In the case of our numerical mocdel positive ions have ncted
as an immovable charged bhackground, the electron cloud
heing in the form of charged sheets, In practice this
amounts to the introduction of a correction factor in (7.2
given by f = 1 - & for a single electron sheet and
a more complex expression in the case of several sheets, (7.4).
The other approach, based on hydrodynamics and frequently
used in analytical investigations, assumes a smooth
space-charge of either sign 5'7. In the lagt paragraph
of Section 6 we have indicated in some detail the reasons
why in our opinion both the electron cloud and the cloud
of positive ions shou1ld be discretized. This would recognize
the corpuscular nature of positive charges, a step, juadging

L

by our past experience ~, of considerable practical

importance in the modelling of interaction processes.
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CAPTIONS

The model of the diode.

Position and potential of individual

sheets: (a) = 4.0; (b) = 6.0; (c) v = 8.0; (d)¢ = 9.0,

The anode current L. as a function of the
injection current L for a short.circuited diode,
Interelectrode potential distribution:

(a) + = 6.0, S.C,; (b) L =« 6,0, T. = 0.1.

R
Electron trajectories:

(a) v = 4,0, s.C.; {b)iL=g.0, ‘rR = 0.1, T, = 1,0,

L
Potential minimum against time:
(a) v = 4,0, S.C,; (b) ¢ = 9.0, S.C.

Position of the potential minimum against time:

(a) « =%.0, s.c,; (b) \ = 9,0, Tp = 0.1, T, = 1.0,

The field E' against time:

» = 9;0. T = 0.1.

R
¥elocity of the potential minimum against its
position: (a) ¢ = 4.0, S.C.; (b) + = 9.0, TR = N,1, TL
Potential minimum against the field:

{ =9,0, ?R = 0.1, TL = 1,0.

System performance for different values of ¢ and TR:
(a) Table of results; potential minimum against time
for L = 9.0: (b) T, = 0.01, (c) Tp = 0.1, (d) T, = 0.8;
frequency spectrum for + = 9,0: (e) TR = 0,01,

(f) Tg = 0.1, (g) Tp = 0.8.

1.0,




12,

@ &I

13.

14,

15.

16.

17.

System performance for T, = 0.1 and different values

R

of  and TL.

(a) Table of results; potential minimum against time,t. = 9,0:
- = «d, = .0;

(b) T = 0.001, (¢) T = 0.1 () T =1

frequency spectrum, . = 9,0:

(e) TL = 0,001, (f) TL = 0.1, (8) TL - 1.0,

System preformance for T = 0.1 and different values

R

and Tc.

{(a) Table of results;

of
potential minimum against time, v = 9,0:
{b) Tc = 0,001, (c) Tc = 0,1, (d) Tc = 1,0;

frequency spectrum, v+ = 9,0;

(e) T, = 0.001, (r) To = 0.1, (g) To = 1.0.
Phase-space trajectories: x' against x':

(a) for a single sheet, S.C.; for many sheets:

(b) t = 4,0, S.C., ¢c) the same, transient removed;

(d) « = 9,0, T, = 0,1, T, = 1.0, (e) the same, transient

R L

removed.

Phase-space trajectories: potential minimum against field:

(a) L = 9.0, T - 001. T = 100' At‘ - 0.01;

R
(b) the same, Lt' = 2,3;

L

(c) the same, At! = 2,3, different

phase; (d) v = 9,0, T

R
(f) the same, At'

= 0,1, 4t' =« 0,01, (e) the same,

At! = 2.1, = 2,1,

different phase.

Poincaré sections: X against x

;in
{(d) . = 18.0,

1
min

(a)i = 9,0, (b)¢ = 12,0, (c)i = 15,0,

(e)t= 23.0.

Potential distribution, s.c., & = 1:

(‘) L = 28033- (b) L = 61"0090
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