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SUMMARY 0

This report covers the first eighteen months

of our investigations. Following a brief

introdactton the report discusses in some

detail the mathematical model of the system,

the -methods used in solving the corresponding 0

differential equations anid the various ways

of presentation of the resilts. The effect

of an external load is then discussed in some 0

detail. The report ends with suggestions for

f-ture work based on the results obtained

so far. 0

0
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1. Introduction

The main purpose of this work is to inveqtignte

the control of chaos in a plasma-filled diode.

A mathematical model of suich a system has been 0

considered before 1,2 its main feature being the

replacement of a smooth, interelectrode electron cloud

by a large number of infinitely thin electron sheets. 0

In the absence of ions similar, continijois systems

have been considered in great detail , including the

effects associated with the granular nature of the 0

electron stream . In the presence of positive ions

the system was first considered by J.R.Pierce 5

and then in more detail by others 6,7 . When the

electron cloud is discretized, the ions can be treated

1as a smooth .3ositive bpckground , or they can be

discretized as well. Drawing on the experience quoted

above we are sugg-esting that the latter is the more

appropriate approach to adopt for further investigations.



2. .Mathematical model

Let us first of all consider a system which is devoid

of positive ions (pure vacuum). The equation of motion

for a single sheet of electrons is then eiven by

(2.1)Fms'Kl - sI(

,€here x is the position of the sheet, Fs and prs

are the respective charge and mass surface densities

(ps./ms - - e/m.) and F, is the averr.ge field acting

on the sheet,

1 •' " T TIT

~. (.
4ere FI and 7.TT Pre respectively the fields in the

,rid/electron-sheet Pnd electron-sheet/anode soaces,

the Peneral Peometry beinp thrt shown in Fig.l. Since

the field mtist change from ET to TI a- i'e pass

through the sheet, the act jal rielt acting nni the shet

is the av-,raie field "I" Stibstititinng (2.2) in (2.1)

we find .h: t the -ingFle sheet is :lecelerited w'hen x I 4/2

and acceler.-ted when xI /2.

-• ' - . . . . .. mmlm~m ~ wi m•, mm w m- -- • .--- ,m mmmmm-m l mI, m0
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Tn the case of ,ev'ril sheets the nver,-e field

actine on qheet j is -iven by

•j . 1(all sheets to the left .)f j) + 9 +

E T (all sheets t,• the right of j)

-. (TIi>j) + E + F i

bag-'T- I

where the sheets are counted from ri?ht tq left, since

sheet I ,¢n'ild be injected first and ,¢'olcd have travelled

to the ri.ht hv the time sheet 2 hns been injected, and

so on. t-ere M represents the tntal nm,.n,#r rf sheets

momentarily ini the interelectrode space.

In n.ace of (2.1) wf now have the f-llowin-, set

of M coupled el-tations of motion, each representing

one of the M electron sheets present in the interelectro-le

reduced aibe: pmslj - Psj

It is nowi convenient to introduce the following

reduced variables

I' = X/d. t' - t/t (2,5)

S.. . . .. 0
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where d Is the separatinn of the ,lectrodes ard to0

is the transit time in tVe absence Of fields of an electron

injected with initial velocity i v 0 i.e. ti d/v

Thus !,e now have: ;

dx' t. dx d&xI _ x
dt' d cit do a TIM d (2.6)

In order to introdtice the .onne:jt if convecti')n carrent

J we write
C

Ps .- "VeX(2.?)

N .vN7

where is na-in the eharge surface-density of a single 0

sheet, p tot is the surface density of N sheets And

PC is the smoothed-nlit volume density of N sheets.

A typical equation (2.4) can now be written, substituting

from (2.7), (2.6) and (2.7):

dt -f = L9 'f. -T + (2, )d-tI s a p a %I v-A i

Note that 4 may be different from N , since N is

Sa constant and M may vary, bein.ý eqtt.4l to the numler

of sheets which are present in the interelectrode space

[ at any given time.

In the final step of our derivation of the eqtrtions

[ of motion ife choose to express the convection ciorrent -c

as P fraction of the convection current flowing in a similar[ •

['
C:
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space-char-e-limited diode .T given by:-c, s~l "• ,
0

J2l 5 0 LL!2 V (2.9)
9 c& I*9-9

Sisbstittiting (2.9) in (2.8) we finally obtain

daXt 2u M I
E -I + (2.10)d t 9 V- I '&= I t -

L * Jco/Jc (2.1l)
,co' c'scl

as a typical equ;,titcn of -,otion for the jth electron

1sheet .

The .M equations (2.10) fully describe the motion

of Nt electron sheets, each sheet injected with the same

initial velocity dx'./dt' - i /v = 1 into the interelectrode

space. Since the diode is assumed to be ;hort-circiiited,

the only fields present are those due to the space charge

of the sheets themselves. Thus (2.10) re)resent

a computer model of the conditions inside a plane diode,

where the cathode has been replaced by a grid, so that

the electrons can he injected with a constant velocity

v which is different from zero
0 0

So far we have only considered a short-circ;ited

diode. If a load is connected across the electrodes,r
we reqtire an additional equation which rplates the

[ conditions inside and outside of the diode. Noting the

fact that the total current in Fig. 1 must be continuous

[�we can frite:
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S0
a

Itot I ind + Teat

-ihere V is the potential difference across the load

and a %.iitable expression for the ind-iced current Iind

1
has been derived elsewhere . In the case of a load

consisting of a resistor R in series with an induictor L

we have

V RI ÷+ Li (2.13)
tot tot

so that, siibstititing in (2.12) we finally obtain

14
I F- I .~ C RI - C LI 2 4

tot i. v%, i v tot v tot

where

c Eta A (2.15)v d

ex,3resses the p1lane geometry of the system. One can also

look at it as an irreducible capacitance of the system.

In the ?resence of the load the equations of -notion

(2.4) mTist be adjusted by writing:

x + (t V
J l~4 ~oad Poo P' d

-* i + -*!(OIto + Lftot) (12.16)

NO d t o0
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.Malttplying both sides of (2.14) by to//psA and (2.15) 0

by t2 0 /d we obtain corresponding exiressions in terms

of the rediced variables (2.5) - (2.?):

0

A-2 "x" 2 . R L T1 -- Tc (2.17)

dAI' dl' (2. l 3)
L t TR t I = dt'

Iere we h; ve introduced a new reduced variable -iven by

0

I' - -- ~--I (2.19)
p&A tot

The constants T and T' are defined by writing: 0

= 9N tt - (2.20)

p--* tot t, pa* V d d t t

2L C.jII
- ~ T T 1'=~~- I (2.'!1)

t:- 4 T0  ~ A. dT I ~A L dT'

2 L CvL dTl 2a&, dl'

Since s 0 in (2.19), it should be noted that I'

has An oi"posite sign to T tot'In the case of Fig. 1 we

have Itot 4 0 and Is > 0. 0

One can see from (2.17), (2.18) that in the presence

of a R,L load M+l coupled second order differential

eqaitions Are required for the description of the system.
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In some cases it is preferable to use the field

V l0oad .1 load p lv: load

- d'~-I L )d . +
p.*VA t ot tot P td" t t. 't

oT' + C L d" =-i- (TRI + T d-T)

, + FL (2.23) 0

where, from (2.23)

El T.. -r (2.2!&)L' Ta 7_1

Substituting for IV in (2.17). (2.13) we now obtain 0

d"x ' -M - E' TL- A'PI (2.25)
""T R "T dt"

T, d dE' 1 6
T- (t dt' Tf R 9N . dt'

The evolution of the system is again described by M+l •

coupled second-order differential equations.

Another load to be considered is in the form of a resistor R

and a capacitor C in parallel. In place of (2.12), (2.13 •

we now have

tot 'ind+Icap d ;a• 'i- 'V a

aR +c (2.2-7)
" IR + C = T0

-. ..0



where IR and IC respectively represent the currents •

flowing in the two branches of the load. Since the field

across the load is geiven by the us-tal expressioi R load -

- V/d, we obtain from (2.27)

" "oc - -• - -R =, + (v + C t

C TR d dxA + dRC + C) 2.2 a

it' I -~C. dt'
=" ;= dt' + (T + T) (d2.23

t -Rd'R C dt' (.8

4here we have ised (2.5), (2.15) arid (2.20) . (2.22) for

defining x', t', TR ; in addition we have introduced

a new constant given by 0

T -. RCo (2.29)

From (2.23) we can now write for the reduced field

El- as f~t2t.TIx. 'T dEiftfi

"load Ri dt' ,', R RTC dtf

or

- 2. T dxt' dE'
92' TR. dt, - (TR + TC) d• (2.30)

This equation should be compared to (2.13) which is valid

for an R end an L in series. The corresponding eqw,'tion of •

motion of the electron sheets is now given by

S

t -
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d" x.' El (2.31)

This equation is similrr to (2.25) except for •' in

place of the two terms in n;.

Sometimes it is more convenient ro express everything

in term- of current. "fe then have

Fload -RIR/d (2.32)

or

pf" load Via IR TO

R td R~ 11 2 T I' (2.33)d R 9 R R

Thus in terms of current (2.31) and (2.30) acqiire the

following algebraic form:

dakx 1- 2L,0 .4(.3)0
- 9N . ', -P - T( )

(TR + Tc) + (2.35)R I ;., It

It should be noted that in the load equrttons the capacitance

C is merely added to C v the two being in parallel

TR + TC R(C v + C)/- 1

fL. :'•0



Let us now consider briefly the initial conditions.

It is assumed that initially the diode is free of charge

and that no external batteries ore present, the energy

being delivered to the system by the injection current L

In those circumstances there are no charges on the

electrodes until the first electron sheet is injected

into the interelectrode sp:ce through the left-hand

electrode, i.e. the grid. Consequently in the case of

(2.17), !2.13) or (2.25), (2.26) the initial boundary

conditions are respectively either

It a O, d' 0 at t' - 0 (2.36)

or

E 0, .0 at t' - 0 (2.37)

In the case of (2.30). (2.31) or (2.34), (2.35) ,re again

have either

s - 0, d-- . 0 at t' - 0 (2.38)

or

I _ o dtI . 0 at t d0 (2.39)

Finally let us consider an approximate expression

for the potentiPl distrib,ition between the electrodes.

Since the interelectrode space-charge in our model is

represented by a succession of electron charge sheets,

the potential function is approximated by a series of

straight line segments connecting the 3otentials of

neighbouring sheets.
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Expressi-ns for •T ind 0 TI nre obtained by
integrnting the corresponding fields F T and F'

(itoted in (2.2); since in oir model the fields are

constant, the corresponding potential functions must

by straight lines sloping, doinwatds between the z•rtd

and point i in rig. 1, and ajpwards between i nnd

the anode. 'or example:

" R- yFdx P-s ( ( 2.•*)

e,, d

"TI"-EI dxTI .... +±.4 (x-d) < 0 (2.4L)

since FS < 0. Tn the presence of many sheets we find
1

that for sheet j we have

- -

x (d - x.) + d . x +- (2.42)
I.•, M 1-~

In the presence of a load (2.29) has an aiditit.nal

terms .-iven by Vj E . load Xj . Dividing both sides by

9d J" (2.4"3) •

which is another form of (2.9) and then ;ising (2.?)

L •
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we finally obtain

$6 = " -- J",/4 v.- x (jd - x +) x

-

K41= - •-" x' 3 (j x ''i) +1 (2.44)9N J=2W.x'. i•

An approximation to the potential function $' is

obtained by connecting all the points $l with

straight line segments.

Tt shoutld be noted that (2.17), (2.19) and also

(2.25). (2.26) are linear; h-owever the boundary

conditions of the system are expressed in terms of

(2.31) which is nonlinear, so that the inhe:rent

nonlinearity of the system is s•itably expressed in

this fashion.

€ -1

t@
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3. Com.utattonal details

Two different methods have been 'tsed for the

solution of equations (2.17), (2.1d) and (2.25),

(2.26) or (2..,0), (-.3) nd (2.!4), (2.5).

The first method is based on the use of backward

and forward differences. Ns is customary in s-ich cases

each second order differential equation is first converted

into two first order differential equtations and the

corresponding derivatives are then expressed in terms

of the finite differences, ,asing second order approximnation.

Thus, for example, we obtain for the equntions of motion

of the J-th electron sheet:

'k+l " I 2 1 k - k-ll At + k(3.)

and
2.- 1 ..

Xk~l " [X + ( • )k - t Xk-IJ xk (3.2)

This method h~s been initially developed by flirdsall

and Bridges for the solujtion of equntions describing

the conditions in a short-circitted diode. 'We have

extended it to cover the case of a diode with a partly

reactive load connected across its electrodes.

The second method of solving the - + 1 coupled

differential equations is based on a fourth-orler

Runge-Kutta sitbroptine of proven reliability. This

ruethod is particularly convenient when the number

of equations is large, say greater than 20; it is

also very fast.

i0

!- o
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The following methods have been used for testing

the accuracy of oir res-ilts. In the absence of a load,

i.e. when the diode was short-circuited, ve would

compare our .iumerical res-ilts with those obtined

analytically. In most cases the agreement was excellent

(of the order of 0.01) provided the injection c irrent

&, < 8; at 1, 1 3 a virtual* aothode. appears and the

sheet model develops oscillations.

For .irely resistive loads we were able to wise

1irdsall's and Runge-Kutta subroutines and then

compare the results; as a rule we wouild reject any

results thnt would differ by more than 0.1%. In the

case of more complicrted lords containing reactive

components -%e couJld only use the Runge-Kutta

sabroutine; we would then test the numerical accuracy

of the results by systematically reducing the time

integration interval until we were satisfied that the

accuracy was better than 0.1. This simple procedire

can be qiite effective in practice, provided it is used

sensibly.

S. .... . .. .. , 0
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4. Presentation and discission of the results

- There ore several ways of )resenting the results

of our calculations and we will discuss them in tuirn.

•Shoot position

The simplest way of *resenting our results is

to plot the position of all the sheets of charge, as

shown in ri-s. 2 a-d for four different values of the

injection ciurrent density L - J co/J scl. The :•osition

of the sheets is shown along the horizontal X -axis,

the vertical axis being ,ised for indicating their

?otent.i*1 relative to the entrance grid sit:uAted at x' a 0.

Since in this case the diode is short-circiited, the

reduced potential of both alectrodes is the same and

equal to $1 = 1. The whole picture has been obtained for

a single instant of time, ,fell after the transient duke

to a pradunl injection ,)rocess has died out. The values

of the current density t have been chosen so as to cover

the three areas of interest shown in Fig. -7, i.e. stable,

hysteresis and oscillatory (unstable) regions. It is to be

noted that in the last two cases, rigs. 2 c -% d, there exists

a marked tendency for the sheets to cluster near the

injection electrode, their potential becominp negative

in many cases.

(B) Interelectrode_,)otentja 1_rofile

Another simple presentation of the results is that

shown in Fies. 4 a,b , where we have plotted the reduced

potential of each sheet •' against its position along

the x' axis, all values being obtained for a single instant

L 0
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of time and after the transient has died out. Thuis

the R-type presentation is very similar to the A-type

presentation, althoigh now the potential curve is much

easier to visstalize. 'e have also used this example

to show the difference Ln the potential distribution

between a short-circuited diode, Fig. 4 a and that with

a simple resistive load defined by TR - CvR/t 0 - 0.1

connected across its electrodes, Fig. 4 b. ge can see

that in the latter case the anode is at a-lower potential

than the grid, the potential difference V - AI beingtot

generated by the current flowing throigh the resistive

load R , as shown in Fig.l. Roth results have been obtained

for the same current density t - 6.

The main weakness of the simple presentations of tke type

A and 8 is that they are valid for a single instant

in time only, i.e. they do not tell us anything about the

0
development of the system ,with time. In order to overcome

this ,e muAst use other methods of presentation.

(C) Trtjectories

Since the system is 1!. one can gain information about

its evolution by plotting xt - x/d against t' - t/t°.

Figs. 5 a and b show the corresponding trajectories

for v - 4.0 (short-circuited diode) and v - 9.0 (diode

with a RL load). In the first case, Fig. 5 a corresponds

to a stable potential distribution, the charge sheets movt

smoothly between the electrodes, The sesond case, Fig. 5 b,

corresponds to the other extreme where, due to the large

values of s, and TL we have quite violent changes in the

sheet trajectories, leading to large amplitude oscillations.

L ... • . .. _ .. .T ..... . : ~ m~m~l m| m mm ~ mm • mm l~ a m mm ~ m0
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Since tho position of each charge sheet is noted at fixed

tire intervals and then indicated by a dot, the density

of the dots is inversely proportional to the velocity

of travel of the sheets.

(n) Depth of potential minimum versus time

Strictly speaking there is no potential minimum

in our case; all we have at our disposal is a ch;rge sheet

which is at a potential that is lower than the potential

of all the other sheets. Figs. 6 a and h show the value

of such A potential as a finction of time respectively

for two different values of the injection eurrent densityL.

We find that for a 4.0, Fig. 6 a, the lowest potential,

after a brief transient, settles down to a constant value.

In the case of 6 - 9.0, Fig. 6 b, the lowest potential

oscillates in a somewhat uneven or 'chaotic' fashion.

These oscillations have a clear character of 'relaxation'

oscillations, their upward movement being much faster

than their downward movement, as can be seen by the

density of dots. Closer investigation of drawings such as

Figs. 2 c & d indicate that the oscilAations occur because

the charge sheets first bunch near the grid and are then

jettisoned at approximately equal intervals.

(E) Position of potential minumum veaus time

Another presentation of the system is that of the

position of the potential minimum against time. However this

presentation suffers from an inherent weakness in the form

of a buil-in discontinuity, since in our model there is

no such thing as a true minimum, but only the position

S... . ... ... ' " / M / mlm~mmmme mrmmnm m m mm le el mm m 0



-23-

of a sheet temporarily at the lowest potential. Thus

at odd moments there is a sudden and discontinuozis

jump from one sheet to the other. Figs. 7 a and b

clearly show the Jerky mevement of the potential

Iminimum' with time. In rig. 7 a the movement is so

fast thrt we only get a blur in the form of a thick

horizontal line, but in Fig. 7 b the jumps are quite

noticeable, especially on the downward strokes.

(r) Lield across the loa.1 versus time

In the presence of the load it is often convenient

to plot the field F1 across the load sgainst time, as

shown in Fig. 9. Since this is possible only when the

load is present, ee have chosen A. - 9.0, TR - 0.1 as

an example. This should be compared with Fig. 6 b w¢here

Vmin is plotted against timi for a short-circttited

diode and L.Salso equal to 9.0. In the case of Fig.

0
the field R1 does not change sign, once the transient

has died out.

Since our system is I1 in character, the (xl, ji)

phase space is a 2D plane and the phase trajectories

of thp system are 3D curves with the t|-axis at right

angles to the (x1,4|)-plane. If we then 'strobe' the

trajectories, i.e. note the values of x', x' at regular

time intervals and -lot them in the (x',')-p•lane, we

obtain what is usually referred to as a Poincar6

section of the system. Let us consider such a presentation

but at the same time elter it somewhat by taking
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1 m i' m; I i n s t e a d o f x 1, 0a
0

(G) Velocity of x'- vers-is its position
min

The velocity of the i)otential minimum x'

against its position is shown for two cases respectively

in Figs. 9 a and b. In Fig. 9 a we have k - 4.0 and

a short-circuited diode and in Fig. 9 b we hrve t = 9.0

and a load in the form of TR - 0.1, TL - 1.0. Naturally

this is another presentation of the resilts respectively

shown in rigs. 7 a and b. As is usujal with other Poincari

sections the presentrtion of the results is more revealing

and possibly easier to interpret, since ve now have

information about both x1 m and ;m' . In Fig. 9 a

the velocity of the potential minimum clearly settles

to a constant value . ' - " /v - 0.83 (note that"mmn mm n'V

in fact this is the velocity of a given sheet), its

position oscillating in a narrow range near the middle,

xm = xm in/d 0.5. In the case of Fig. 9 b the

Poincarg section reveals marked variations both in

the position xtmin and in the velocity ;x'mn

Regrettably both presentations suffer from the

artificial discont.tiuities caused by jujmps from one

charge sheet to the other which are inherent in our

definition of x'. and xm •
min min

J(H Potential minimum versus the field

One more presentation of the results proved to be

of interest. Instead of plotting Vmin against time,

it is probably better in the presence of a load to plot

Vmin against Ft. This type of presentation is quite

S•S
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smooth, i.e. it does not s-iffer from artificial

discontin~iities, as can be seen from Tig. 10 which

Sis plotted for b- 9.0, TR * 0.1, TL - 1.0. Fig. 10

shoujld be compared with Fis. 7 b and 9 b which are

plotted for si-illar values of the relevant parameters.

%oth the periodicity of the system and the relaxation

character of the oscillations indicated by lack of mirror

symmetry are clearly shown in the drawing. 0

0
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3. The effect of the load

're majot objective of these investigations is to

determine the effect of the load on the behavioir

of a plasma-filled diode, in particular its possible

role in the control of chaos. So far we have developed

a technique of investigations by creating a s:jitable

mathematical model of the system and evovlving vario-is

forms of presentation of the results. lie now wish

to describe the effect of the load on the stability of

operation of the system in the absence of positive ions

and then make suggestions concerning possible influence

of positive chprges.

The mathematical model described in Section 2

includes an external load which is in the form of

a resistor and an inductor in series or a resistor

and a capacitor in parallel, Fig. 1, the irreducible

capacitance of the tube being connected in parallel

with the load, the source of power being in the form

of a constant current v injected through the grid.

In our case the simplest load takes the form

of a pure resistor R, as has been briefly discussed
1

elsewhere . In Fig. 11 a we have a table of~results

summarizing our investigations. 'Ye find that for low

values of T. there are no oscillations until the

current L -13.0. This is consistent with the results

obtained analytically when the corpuscular nature

0i
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of the electron stream has been ignored (hydrodynanic
8

approximation) ; we then find from curve a in Fig. 7

of ref. 9 that in a short-circuited diode (T R 0, 4' - 1.0)

the virtual cathode appears also when &->,8.0 , i.e. for O

the same values of the current as those leading to oscillations

in the numerical case. This fact had already been noted

by others 1. However this simple relationship is no longer

valid for larger values of TR . For example at T - 8.0

and L - 4.0 the system becomes unstable and begins

to oscillate, bringing the anode voltage down to a mean O

value of $; - 0.8, although in ref. 9 for - 4.0 the

virtual cathode does not set in until $' 0.35. Clearly

even a simple resistive load, which is absent in ref. 8, O

has a profoannd effect on the behaviour of the system,

probably by intriducing an element of feedback in addition

to that already present in the system and associated with
0

the space charge acting as a medium facilitating communication

between the two electrodes (see also ref. 7). As we shall

see shortly the effect of the load becomes more wide ranging
0

when reactive components Pre included. Figs. 11 b - d show

typical oscillations for three different values of TR ,

namely TR - 0.01, 0.1 and 0.8 and for a single value of

the injection current L - 9.0. The oscillations are rather

irregular, their amplitude and shape varying in a random

fashion; also, as mentioned before, they have the character

of relaxation rather than harmonic oscillptions, their

rise associated with sheet dumping at the grid (see Figs.il c

and d) being much faster than their downward stroke, which

L



is associrted ¢ith a slowier b-iild-ji of the interelectrode

spnae charge. This is clearly indicated by the density of

dots, the system being *strobed' at eqial time intervals.

It should be noted that the amrlitde of oscillations

increases by a factor of r.- -5 as TR iaries between 0.01

and 0.9; so does the freequtency of oscillations, but only

by some 104. The corres.iondine, freqiency spectra of the 0

oscillations are shown in Figs. 11 e - g. 'Te find that,

because of their relaxation choracter, the oscilliations

are rich in harmonics; also they become 3rogressively S

'cleaner' as T increases, their chaotic or -ore

accurately rpndom character being more pronounced at

lower values of TR . It should be added tiat the two

figures in brackets respectively refer to the DC level

and the amplitide of the fundamental component, the

amplitude being normalized ti unity in the drawings. S

Let is now consider a load which has a reactive

component in the form of Pan inductor L in series with

a resistor R, .s shown in Fig. 1, the resilts of the

compittations now being collected in a tPble shown in

Fig. 12 -. lie find that for i. - 4.0, i.e. in the stable

range of operation (see Fig. 3.), the addition of an 0

indictor to a purely resistive load of TR - 0.1 loes

not cause instabilities. The siturtion is quite different

however for larger values of the injection current, such S

as L - 9.0. Now, as we know, the oscillptions are likely

to be present even in a short-circiited diode nnd the

S .. ... .. ... ... .. . . .i . . . . .. . •i I d I• • .- , - , - H • 0



addition of a parely resistive load increases their

amplitude, Ps shown in Figs. 11 b - d. The addition of

an inductor further emphasizes the effect, provided

TL is sufficiently large; this can be clea'rly seen

by comparing Figs. 11 c and 12 d, the effect of TR

irobably being stronger, Figs. 11 d Pnd 12 d. A weak

inductor, TL - 0.001, hrs a negligible effect on the

amplitude Pnd shape of the wave, as can be seen from

Figs. 11 c fnd 12 b (note different scales). However

for TL - 0.1 and 1.0, Figs. 12 c and d, there is

a considerable growth in the amplitude of oscillations,

finally reaching a factor of - 3. Pt the same time the

oscillptions again become 'cleaner', i.e. more regular,

although they still retain their relaxation character.

This is pprticularly noticeable in frequency spectra,

Figs. 12 e - g, which clearly show the 'cleaning upI

process; at the same time the relpxation ch;racter of

the oscillptions is further confirmed by the presence

of harmonics, Fig. 12 g, apart from which the spectrum •

is remarkably 'clean'. There is some suspiscion here

that we may be dealing with a resonance phenomenon,

bepring in nind the presence of R, L of the load and 0

the inherent capacitance Cv of the tube. In our opinion

this point merits further investigation, especially since

some preliminary computations reverled very high am,)litudes

of 'clean' oscillations for vanishingly small TR and

miderate valies of TL.
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Tn oir third atid lrst example the load is in

the form of P resistor .R and a capacitor C in

parellel, as shown in Fig. 1. In fact this is eqazivalent

to a purely resistive load with an abnormally large

capacitance assigned to the tube and given by C + Cv

instead of just C . However, as can be seen fromv 0

(2.31), (2.31) and (2.-,4), (2.35) this analogy is not

complete, since TR does not always appear in the

combination (T R + TC) - R(Cv + C)/t . The results of

our computations are collected in a table Fnd shown

in Fog. 13 a. 'Ye now find that in this case the

oscillations only occur for ý - 9.0, Figs. 13 b - d.

The three sets of results, T R 0.1 and three values of

TC . 0.001, 0.1 Pnd 1.0, are very similr end they

hardly differ from those for TR = 0.1, TL - TC . 0

shown in Fig. 11 c. This farther supports our conjecture

that the load capacitance C is merely added to tht

of the tube C , no resonance phenomena being oossible

in this configurý tion. Comparing Figs. 11 f Pnd 1'3 f

we find that there is no noticeable change in the frequency

of oscillations due to the addition of C , although
0

the frequeney spectrum is slightly 'cleaner' in the presence

of C. This is even more noticeable when we compare

Figs. 11 f and 13 g where, in the latter case, TC a 1.0.

One woild assume that the R,C combination acts here

as a filter.

S .. . . ... . . .. • mlll mm~mmm-'l -- • m - ,ra rll mm l mm mm~~m.=0



Finally it is worth noting the effect of various

types of load on the intermedii'te, or hysteresis range

of values of the injection current L , Fig. d . ie have

already mentioned the fict thet in the case of a purely

resistive load oscillrtions may occur even for injection

currents as low as -- 4.04, provided that TR is

sufficiently large, in our case TR a 0.8, Fig. 11 a.

The srme aoplies to the intermediate range of injection

currents, say L - 6.0, where hysteresis occurs in the

case of r short-circiited diode, Fig. 3. In the presence

of a relatively lrrge ind-ctance, TR - 0.1, TL - 1.0.

we find from Fig. 12 a thýt although no oscill-tioas

occur for t, - 4.0, they are excitod at & = 6.0; •

however this only happens rfter a realtively lengthy

transient, as if the system co,ild not quite decide

vhat to do, Fig. 14. Pt the same time the hysteresis 0

effect clearly shown in Fig. '3 disappears, the system

following the lower branch of the curve in both directions.

In the case of P capacitance C in pPrplle w,,th R no 0

oscillptions are excited at L - 6.0, T - 0.1 and
R

T- 1.0, as is shown in Fig. 13 a.

P .... ' •• I ,wr, • . mC
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6. Chaos prolegomena

In the discussion of chaos it is always imiportrnt

to define precisely the system and the corresoonding

,hase space and its Poincar6 sections. In our case 0

the electrodes, the space-charge which in general

would comprise negative electrons and 3ositive ions

and the load together represent our system. qince

,ve have energy losses in the system, both at the

electrodes where the kinetic energy of the charged

particles is being converted into heat and in the load,

where the flow of current renerpres the usual hert losses

in the resistive component of the load, the system is

clenrly non-Hamiltonian Pnd we should expect the

Pppearpnce of strange attrnctors if and when the system

becomes chaotic.

At this stage of our investigationis we pssume

that the electrodes are infinite -)lrnes w.hich are pnrallel

to each other, so that the envisaged system is ID in

character, the corresponding i)hase sp3ace being constructed

from the position and velocity variables x and x

The difficulty arises in deciding which x and wjhich x,

or possibly some other more suitable )armeters should

be used in the representation of our system.



The simplest possible model of o-jr system is that

of a single sheet of electrons traversing the interelectrodeI
space. The corresponding equation of motion for a

short-circ zited diode has been derived elsewhere and

in the notation of Section 2 is given by the following

ex pression

dt ~ i f~ (' j) , 'o'(x'-½)(.)dt" t.p Fd "

which is similar to (2.10) for N M a u 1 and

- 2L/9o The solutions of (5.1) are •iven by

x (1 - cosh ,,It') + -- T sinh ,)'t' (6.2)

dt____s . . t nh (n Itf + cosh m°t' (6 "3)dt'

A set of the corresponding, phase trajectories, each for 0

a different value of the tiprameter ,nt - 2L/9 and thus

related to the injection current density ,. Pre shown

in Fig. 14 a. 'Ye find that there are only two possibilities:

either the sheet reaches the anode (m1<( 2) or it returns

to the cathode (en'> 2), a singular case being given

by 'n' - 2, it takes an infinite time for the sheet to

reach the centre of the interelectrode space. If we now

strobe the phase trajectory at equal time intervals At',

ife obtain what could be called somewhat grandeloquently 0

a 'Poincar6 section' of the systeip. Our problem in this

simple ease is that the system is aperiodic And therefore

S. . . .... • ..... m mS.... . .. .. .. • .. .. | |IlhmllllNl N m~llii i l • uI• mlI IIM N m w• -6



there is no Oreferred vpl,.ie nf At', so that the whole

point of plotting a Poincpr4 section is virtually lost.

Let us now consider a more realistic case when we

have some t-'enty sheets injected, m of them remaining in

the interelectrode space at any given time. The corresponding

'Poincrrd sections' for - 4.0 and zero load are shown

in Figs. 14 b and c, respectively with Pnd witho-it the

transient, the system being strobed at At' - 0.01, which

is the same as the integr:-tion intervPl. We can see from

fig. 14 c that the :)hase space trajectory is similar

to any of the trajectories shown in Fig. 14 a for m14.2.

the system remaining stable throughout. The effect of

the transient is clearly shown in Fig. 14 b - it simply

amounts to an upward swing before the trajectories settle

to a value dxt/dt' - 1 at the anode, as they ought to.

The situation is radically different for L, - 9.0, TR = 0.1,

TL - 1.0, -lhen there are well established oscillations,

Fig. 12 d. The corresponding phase space trnjectories,

again strobed at 6t' - 0.01, Pre shown in Figs. 14 d and e,

res-pectively with and without the transient. Ye can clearly

see from Fig. 14 e thpt some sheets land on the anode and

other sheets return to the cathode, frequently ofter some

considerable hesitation in the vicinity of xi - 1/3.

This is very much in agreement with the time trajectories

shown in Fig. 5 b but, as we well know, in total disagreement

with the simple hydrodynamic model B. Clearly the leither,or'

situation with a singular solution for (,) - 2 and shown

in Fig. 14 a also no longer applies.

S. .. . ..,, r, .. .. 0
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S�lhen the system becomes unstable and begins to

oscillate it is often more revealing to use a •hase

space described in Section 4H and comprising the E field

across the load and the vplue of the potential minimum Vmin*

In Fig. 15 a are shown the corresponding phase trajectories

for 4 a 9.0, TR a 0.1 Pnd TL - 1.0, which are the same

values of parameters Ps those chosen for the systems

shown in Figs. 10, 12 d and 14 d, e. In this case we

have a relatively 'cleant set of oscillations and the

plots of Figs. 10 and 15 a, the latter incliding a transient,

confirm that. Since we now have a well defined period

of ascillations given by A t' a 2.3, a more representative

PoincarA Fection in shown in Figs. 15 b and c, respectively

for two different phase values, the system now being

strobed once during each cycle.

Finally in Figs. 13 d - f are plotted phase space

trajectories for L - 9.0, T- 0.1 where, as can be

seen from Fig. 11 c, the oscillations are particularly

'dirty'. We now find that the corresponding ?hase space

trajectories exhibit similar characteristics, Fig. 15 d

being strobed at &t' a 0.01 (integration interval) and

Figs. 15 e and f at L t' w 2.1, which is the approximate

period of nscillptions. Although this is still not a

behaviour which could be described as being 'chaotic',

it certainly is much more irregular than thrt shown in

Figs. 15 a - c.

0



- 36 -

In our searci, ior a convincing example of chaos in

J the absence of positive ions we have investigated the

effect of very high injectioi u-xrents in the case of

I. a short-circoaited diode. In Figs. 16 a - e we have

'3lotted -'-ainst x respectively for
in - n nin

L -9. 12, 15, 13.anu •-3. fe note that initially during

Sthe transient the pattern is full of discontinuities

or jumps and then it settles down to a rather fuzzy

[ eye-shaped curve remniniscent of Fig. 9 h and representing

relaxation oscillations. As the vali, :)f the injection

current % incretkss w'e find thrt first a gap P.i,))ears

[ in the closed curve indicating th,'t some combinations

ofXmi, Xi are no longer ?ossible. This gap tenis

to grow, the fuzzy eye-shaped pattern sharinking more

and more, Qntil at L 19 and 23 we aire left with

a fairly shapeless distrib-ition of )oints in .,rhat, Lnf

et'fect, is a ?oincare section. At tiie same tine the

transient also becomes very scattered. Alt1otigh the

pattern has become very irregular, before we can call

it chaotic we still have to find a hierarchy of

bifurcations. Ie know from the literature that in

a short-circ-tited diode there is at least one 'bifurcation'

?oint at '. - 8; forL,<3 there are two solutions of the

corresponding hydrodynamic equation, i.e. (6.1) with . - 0,

10
one stable and one unstable and that at 6 - 8 the

two solutions coalesce. For L 0 3 there is a sudden

discontinuity in the current reaching the anode, Pip.. 3.,

L
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if we follow the hydrodynamic model and in the numerical 0

calculations the sYstem breaks out into oscil1lations.

'hether this finally leads to a .)ro,)er chaotic behavioar

as t increases even further rel~lires additional 0

investogat ions.



1
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7. The influence of positive ions 0

So frr we h;ve only considered the c nditions

on a vacuum diode, i.e. when the space chprge is solely

due to the negative chrrge of the electrons. However

our main task is to consider the conditions in a plasma

filled diode, i.e. in a system where the space chrrge is

due to the negatice charge of the electrons and the 0

corres-ponding positive charge of ions, the initial rptio

of the two being lft to our choise. The idea of deliberately

adding )ositive ions was probably first suggested by

J,R.Pierce 3 Pnd at the time it was simply intended

to increase the pervepnce of the system, so that more

current could he drawn from the cathode. Ye now know

that the situý'tion is much more complicated, the system

being prone to all sorts of instabilities Fnd oscillations,

including chaotic behaviour .

The simplest way of taking into account the effect

of 3ositive ions is to assume that they form an immobile

backdrop against which the movement of electrons takes

,lace. The assumption of immobility is based on the fact

that respective masses of ions and electrons usually

differ by at least three orders of magnitude. If we then

assume thrt both electrons end ions form perfectly smooth

sppce-charge clouds, the corresponding differential

equation 0

dx --JI Jo< 0 (7.1)
0

e.-
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can be solved auvalytically 6. Rere J is the injection

current density -nd •o m "v /2e expresses the initial

electron velocity v of the injected electrons. Since0

=n /n expresses the contribution due to positive

ions, their absence is indicated hy 0 = 0; (6.1) then

reverts to its familiiar form valid for a vacuum diode

The main difference between vacuum and plasma-filled

diodes is that, as we can see from (6.1), in the absence

of positive ions d24/dx must remain positive, whereas

in their presence the second derivative may change sign,

for example when for sufficiently large $ the

electron density dro:)s below that of the ions.

In the compiitational model of our system the electron

cloud is expressed by a series of infinitely thin 2D

sheets of charge; for a single sheet the presence of

immobile positive ions is then represented by a correcting

factor f - 1 - ;L in (2.2), so that for a - 1 a single

sheet would experience no forces and would travel with

a constant velocity from one electrode to the other.

Mathematically this can be expressed by writing in )lace

of (2.2)

F, - af X, (7.2)
1 1 (

In the presence of severl sheets the situation is more

complex since in ?lace of (2.3) we now have:

...... .....
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- E1 1 (all sheets to the left of j) + E +

Ei(all sheets to the right of j)

EII(i>j) + E% + F < j

a -d ÷d;, )(,, d j

" L - + -PN( - - (1.3)

bearing in mind that eIo =" eo -"Ne /d. In

the absence of positive ions = 0 and (7.3)

reduices to (2.3).

Turning to the equations of motion we now find,

repeating the algebra contained in (2.4) - (2.9) that

(2.10) now acquires a more general form

"di 9N ft - j + ( v -

Conseqiiently in the presence of immobile positive ions

all the expressions derived previoulsly -nd qioted as

(2.17), (2.25), (2.3-1l) and (2.344) ore still vplid as

long as we substitute everywhere the RHS of (0.4)

for the corresponding shorter expressions i-, the sqiPre

brackets. One can look st the new expressions Ps

oomput.ational models of (1.1) when a stitable loind is

connected across the electrodes. S

0



In order to obtain an expression for the new

potential distribution in the ,)resence of immobile

,)ositive ions we have to calculate first of all the

additional ,)otentipl distrib,ition due to the ions. 0

'Je find from (6.3) that the field at x due to the

ions alone is given by

E = - (1 " " )ITIT Z

Since P < 0 the field 7'I (.0 for 0 <x < d and

E III 0 for Id <x,4d. Integrating (1.5) we now

obtain:

.1 0
2III - 1 N [ -.

290 H

where $TT ' 0 at x. - 0 and x. = d, the f-inction

being i parabola with its Maximum at x. = "d, as was

to be expected. Adding (1.6) to (2.42) we now obtain:

x-ld- x + d.M xt + 1Nx6 - d (7.7)

Dividing both sitles by (2.!43) and adding the effect of

a load

4j, E(,,.x.1  + x! + j.Nx-(x!-l1- 'x+
9 jl -. 2.1 i , 3 2EI 1. 1 (7.8

It should be noted that since x!,.l by definition, the

3 0additional term associated with the positive ions has

as opposite sign to the preceding terms associated with

the electron cloud.
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In order to confirm the equiivalence of (7.1) and

(1.4), we decided to consider a simple case of a short-

circtited diode with : and operating at two different

values of the injection current L, , viz. [ - 5.82

and 8.00. As was to be expected in the oresence of positive

ions the relative values of the injection current density

Are much higher. The results of our computations are shown

respectively in Figs. 17 a Pnd b. As before a hydrodynamic

equation of the type (7.1) provides us with both stable and

unstable solutions, however a numerical solution of (7.4)

invariably leads to stable configurations only, provided

we are outside the range of oscillatory solutions. Thus

in Fig. 3 or rýýf. 7 we have a plot of stable and unstable

solutions of (7.1) for -* 1. the first bifurcation point

occurring at C/1 = 1, which corresponds to our 2•/t - I

or F= 6.6643. To the left of this point we have stable

solutions for E - 0, which corresponds to a constant
o

potentiF'l distribution shown in Fig. 17 a, whereas to the

right of the bifurcation point ,,e have stable solutions for

E # 0, as is shown in Fig. 17 b, the E 0 0 solutions then
o 0

being unstable; it is worth noting that the maximum of the

potential function is very close to its analytical value

of 1.7325. Having established at least to some extent

a formal agreement 'etween the results obtained with the

help of ('7.1) and (7.4) we did not persue tnis iine of

investigations any further for reasons which are discussed

more fully in the following paragraph.
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In our opinion the above numerical model of O

a plPsma-filled diode suffers from two weaknesses.

Virst of all the assumption of infinitely heavy

(immobile) positive ions is unwelcome since in a way

it introduces sinpularities into the governing

equations of motion. However what is possibly even

more worrying is the fact thrt although the electron •

cloud has been discretized by being converted into

a number of charge sheets, the correspondin- cloud

of )ositive ions has not. "Ce know from other 0
10

considerrtions th; t this is a dangerous )ath to

follow. We are therefore s iggesting in a new proiosal

that the work should be continued by disoretizing 0

both *loeds of charge. Since the discretization of

the electron cloud not only emphasizes the corpuscular

nature of electrons but also leads to new phenomena

such as oscillptions whtch could not have been predicted

analytically using P perfectly smooth model of the cloud,

it is to be expected that the discretization of the 0

positive ion cloud may ,well ler'd to similer new phenomena

which could not be predicted at kpresent. This wotild be

of particular relevance in the enalysis and control of S

chaos in a plasma-filled diode.

- -
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CONCL-JIONS •

In the first period of our investigations we have

been able to establish siitable numrical m'ndels

describing the conditions inside a plane diode with

and without 3ositive ions. 4aving developed snitable

computer codes :-.e have been able to investiaate in

some detail the effect of load in a system containing

an electron cloud represented by a nojunber of charge

wheets. *le have then derived suitabli- expressions and

developed appropriate codes for a system comprising

electron sheets and an immobile cloud of 3ositive ions.

Ve have also made suggestions for a further development

of this partic-ilar aspect of our investogations. Finally

in Section 6 we have discussed the basics of chaos as

applied to our particular system

'Ve have now reached a stage in our investigations

when further extension of oulr 1fork should be considered.

There are three obvious routes -'e can follow in order

to obtain a clearer and m'ore complete Aicture of the

behaviour of our system, in particular bearing chaos

and its control in mind.
40

1. The most obvious is the addition of P' resonant

circitit in place of R, L in series or R, C in

parpllel. This would req tire the raising of the euqations

of motion from the second to the thord order, a lirocess

which sould not create any special computational

difficulties. Since we know that chaos can he controlled

L. 0



by injection of a small •signl of w•ell definod frequency,

the 3)resence of a load in the form of a resonant circuit

may be of significance.

2. .e are well ,)laced in view of our e;rlier work

to investirate the effect of initial velocity spread

of the injected electrons. This has been briefly

investi.-nted before 1 and we know th;'t a velocity spread

can wipe out oscillations altogether and re,'lace them

with noise. Again this typ3e of investigation would be

of relevance to the problem of chaos control. S

Z* The most interesting extension of our work would he

in the direction of jiscretizatiotn of ,)lasma. So far two

aproaches have been used in the treatment of plasms.

In the case of our numerical model positive ions have icted

as an immovable charged background, the electron cloud

being in the form of charged sheets. In practice this 0

amounts to the introduction of a correction factor in (C.2)

given by f - 1 - a for a single electron sheet and

a more complex expression in the case of several sheets, {7.J). S

The other approach, based on hydrodynamics and frequently

used in analytical investigations, assumes a smooth

5-7s,3ace-charge of either sign . In the last paragraph S

of Section 6 we have indicated in some detail the reasons

why in oir opinion both the electron cloud and t:Vie cloud

of positive ions shoild be discretized. This would recognize •

the corpusctular nature of positive charges, a step, judging

by our post experience 4, of considerable practical

importance in the modelling of interaction processes. S

L . .. . . . .
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* CAPTIONS

1. The model of the diode.

2. Position and potential of individual

sheets: (a) t - 4.0; (b) s, - 6.0; (c) . 1 9.0; (d)L- 9.0.

3. The anode current L3 as a function of the

injection current L for a short-circuited diode.

04. Interelectrode potential distrib, tion:

(a) %. - 6.0, S.C.; (b) 6 - 6.0, TR - 0.1.

5. Electron trajectories:

(a) x - 4.0, S.C.; (b)L-9.0, TR - 0.1, TL - 1.0.

6. Potential minimum against time:

(a) •. -4.0, S.C.; (b) . 9.0, S.C.

7. Position of the potential minimum against time:

(a) L - 4.0, S.C.; (h) t w 9.0, TR ' 0.1, TL ' 1.0.

B. The field V' against time:

9.0, TR a 0.1.

9. Velocity of the potenti,1 minimum against its

position: (a) L - 4.0, S.C.; (h) L - 9.0. TR = 0.1, TL 1.0.

10. Potential minimum against the field: 0
L - 9.0, T - 0.1, T, - 1.0.

11. System performance for different values of L and TR:

(a) Table of results; potential minimum against time •

for L - 9.0: (b) TR - 0.01, (c) TR - 0.1. (d) TR 0.8;

frequency spectrum for t - 9.0: (e) TR * 0.01,

(f) TR - 0.1, (g) TR = 0.9. 0



0U
12. System performance for TR - 0.1 and different values

of & and TL.L

(a) Table of results; .)otential minimum against time,L - 9.0:

(b) TL - 0.001, (c) TL - 0.1, (d) TL - 1.0;

fre•qency spectrum, L - 9.0: 0

(e) TL - 0.001, (f) TL - 0.1, (g) TL - 1.0.

13. System preformance for TR - 0.1 and different values

of 1, and T ,

(a) Table of results; Ootential minimum against time, % - 9.0:

(b) Tc 0.OOl, (c) Tc - 0.1, (d) Tc - 1.0;

frequency spectrum, - 9.0: 0

(e) TC .- 0.001, (f) T - 0.1, (g) T - 1.0.

14. Phase-space trajectories: i' against x':

(a) for a single sheet, S.C.; for many sheets: 0

(b) L - 4.0, S.C., tc) the same, transient removed;

(d) -- - 9.0, TR = 0.1, TL - 1.0, (e) the same, transient

removed. •

15. Phase-space trajectories: potential minimum against field:

(a) L, = 9.0, TR - 0.1, TL = 1.0, At' - 0.01;

(b) the same, Lt' - 2.3; (c) the same, At' - 2.3, different

phase; (d) L. - 9.0, TR - 0.1, at% - 0.01, (e) the same,
R

At' - 2.1, (f) the same, At' - 2.1, different phase.

16. Poincare sections: k against x'
min min

Ca).- 9.0, (b), - 12.0, (c)t- 15.0, (d) .- 18.0,

(e)i- 23.0.

17. Potential distribution, s.c., 0 - 1:

(a) t - 28.33, (b) L - 64.09.
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