
AD-A275 5201EIIIIIIII

NPS-MA-93-020

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
,t STAes ELECTE 0SFEB 1 419940jý

CHROMATIC NUMBERS OF

COMPETITON GRAPHS

by

J. Richard Lundgren
Sarah K. Merz

Craig W. Rasmussen

Technical Report For Period am
April 1993 - July 1993

Approved for public release; distribution unlimited

Prepared for: Naval Postgraduate School

Monterey, CA 93943 DITIC QUALrff INBUCr 1



Best
Available

Copy



NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943

Rear Admiral T.A. Mercer Harrison Shull
Superintendent Provost

This report was prepared in conjunction with research conducted for the Naval Postgraduate
School and funded by the Naval Postgraduate School and the Office of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

~7
.•Richard- Lundiren

Professor of Mathematics

Sarah K. Merz
Research AssistanL...

Craig WJRasmussen
Assistant Professor of Mathematics

Reviewed by: Released by:

': 4 , t

"RICHARD FRANKE PAU J. MARTO
Chairman D f Research



MII(UMTY CLASSIFWCATION Of THIS PAGE

REPORT DOCUMENTATION PAGE OFOr0ApNov0d

to REPORT SE CURTY CLASSIF ICATION Ib RESTRICT'VE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION IAVAILABILITY OF REPORT

2b DECLASSIFICATION /DOWNGRADING SCHEDULE Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

NPS-MA- 93-020 NPS-MA- 93-020

6. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL ?a. NAME OF MONITORING ORGANIZATION
(If app~ceble)

Naval Postgraduate School MA Naval Postgraduate School
6€. ADDRESS (City. State. and lIP Code) 7b ADDRESS (City, State. and ZIP Coe)

Monterey, CA 93943 Monte'ey, CA 93943

Ba. NAME OF FUNDINGISPONSORING 6 Sb OfFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDEN1IFICATIO•NUMBER

ORGANIZATION (If opplicge)-

Naval Postgraduate School, & OjR MA OM,N ONR (Contract #N 0 14-91-J-1145)
6c. ADDRESS (City, State, and llP Code) 10 SOURCE OF FUNDING NUMBERS

Monterey, CA 93943 PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO 1 ACCESSION NO

11 TITLE (Include Security Clanssification)

Chromatic Numbers of Competition Graphs

12 IM.• - IM 8kren, Sarah K. Merz, Craig W. Rasmussen

13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PACE COUNT

Technical frROM,. TO 9a 14 Oct 93 11
16 SUPPLEMENTARY NOTATION

17 COSATI CODES 19 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB -GROUP

I f Competition graphs, graph coloring

19 AbSTRACT (Continue on reverse if ecessary and identify by block number)

Previous work on competition graphs has emphasized characterization, not only of the
competition graphs themselves but also of those graphs whose competition graphs are chordal or
interval. The latter sort of characterization is of interest when a competition graph that is easily
colorable would be useful, e.g. in a scheduling or assignment problem. This leads naturally to the
following question: Given a graph F, does the structure of G tell us anything about the chromatic
number X of the competition graph C(G)? We show that in some cases we can calculate this chromatic
number exactly, while in others we can place tight bounds on the chromatic number.

20 ISTRIBUTION/AVAILABILITY OF ABSTRACT 121 ABSTf.eafffi¶ CLASSIFICATION

L.UNCLASSIFIED/UNLIMITED 0 SAME AS RPT Q3 DTIC USERS
72a NAME OF RESPONSIBLE INDIVIDUAL 72b TELEPHONE (Include Area Code) c OFFICE SYMBOL

Craig W. Rasmussen 408-656-2763 MA/Ra
DD Form 1473. JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

SIN 0102-LF-014-6603



CHROMATIC NUMBERS OF COMPETITION GRAPHS

J. RICHARD LUNDGREN* AND SARAH K. MERZ"
UNIVERSITY OF COLORADO AT DENVER

CRAIG W. RASMUSSEN
NAVAL POSTGRADUATE SCHOOL

Abstract: Previous work on competition graphs has emphasized characterization, not only of the
competition graphs themselves but also of those graphs whose competition graphs are chordal or
interval. The latter sort of characterization is of interest when a competition graph that is easily
colorable would be useful, e.g. in a scheduling or assignment problem. This leads naturally to the
following question: Given a graph G, does the structure of G tell us anything about the chromatic
number X of the competition graph C(G)? We show that in some cases we can calculate this chromatic
number exactly, while in others we can place tight bounds on the chromatic number.

1. Preliminaries. The competition graph of a directed graph D = (V, A) is the
undirected graph C(D) = (V, E) in which zy E E if and only if there exists z E V
such that (X, z), (y, z) E A. While the notion of competition graph was first reported
in Cohen's 171 work on models of ecosystems, these graphs have since found a number
of other applications, as reported by Lundgren [15], Kim [13], and Raychaudhuri and
Roberts [27]. The distance dG(x, y) from z to y is the length of a shortest z, y-path
in G; the subscript will be suppressed when there is no danger of confusion. The two-
step graph of a graph G = (V, E) is the graph S2(G) = (V, E'), where zy E E' if and
only if G contains a path of length two joining z and y; this has also been called the
neighborhood graph by Boland, Brigham, and Dutton [2, 1, 4]. The square of G is the
graph G2 = (V, E), where zy E E if and only if d(x,y) : 2. Given an mxn (0, 1)-matrix
M, the row graph of M is the graph G of order m in which the vertices correspond to
the rows of M and in which vertices i and j are adjacent if and only if there exists some
column k containing l's in rows i and j. The column graph is similarly defined. We
denote by A(G) and 6(G) the maximum and minimum degrees, respectively, among all
vertices of G. By a(G) we denote the largest independent, i.e., pairwise nonadjacent,
set of vertices of G, while by w(G) we denote the order of the largest clique, or complete
subgraph, of G. For graph-theoretic notation and terminology not defined in this paper,
see Harary [11].

In some applications, such as scheduling or assignment problems, the digraphs
whose competition graphs are under investigation happen to be symmetric. In these
cases, it is simpler to view these digraphs as undirected graphs. The competition graph .ton For
of an undirected graph G = (V, E) is obtained by first replacing each edge zy E E with 3  CRAad
arcs (x, y) and (y, z) and then applying the previous definition. In earlier work with . TAB
Maybee [17], two of the present authors showed that the competition graph C(G) of a Inounced
loopless graph is the two-step graph S2(G); Raychaudhuri and Roberts [27] showed that ,
if G has a loop at each vertex, then C(G) = H2 , where H is obtained from G by removing
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FIG. 1. Graph G, with competition graph C(G). Also shown are two-step graph S2(G) and square 02

of loopless graph 0 obtained from G.

all loops. In previous work on competition graphs of symmetric digraphs, considerable
emphasis has been on characterization of classes r of graphs whose competition graphs
fall into some class A. For example, in the work of Raychaudhuri and Roberts [27, 26]
these classes were Ir = {GIG is (unit) interval and has a loop at each vertex), and
A = {GIG is (unit) interval). In our previous work [17] we set r = A = {GIG is
loopless interval}. Phelps [24] has set r = A = fGIG is chordal). The primary reason
one seeks such characterizations is that applications of competition graphs to problems
such as scheduling or channel assignment frequently involve vertex coloring. Since
coloring is, in general, a hard problem, one seeks classes of graphs whose competition
graphs have good coloring properties. This leads us to a related question that has not
received much attention in the literature: given a graph G, what can be said of the
chromatic number X of the competition graph C(G)? Are there classes r of graphs
with the property that if G E r then X(C(G)) can be bounded or exactly computed in
terms of some parameter of G?

2. The Undirected Case. As a starting point, we have the obvious bound on
the chromatic numbers of the two-step graph and square of a graph G given by A(G) _<
X(S 2(G)) :_ x(G2). In an effort to improve on this, we begin by making an observation
that generalizes aspects of earlier work, both ours [17, 18, 25, 22, 21] and that of
Raychaudhuri and Roberts [27, 26]. Consider the graph G and its competition graph
C(G) of figure 1. Denote by G the graph obtained by deleting from G the loop zz.
Included in figure 1 are S2(6•) and 02. Note that S2(G) 9 C(G) _ (.. This is always
the case, as shown by the following lemma.

LEMMA 1. Let G be a graph, and let G be the subgraph of G obtained by deleting
loops. Then S2(G) 9_ C(G) C W2.

Proof: Let zy E E(S 2(G)). Then x,y E N(z) for some z E V, so Xy E C(G),
whence S2(G) C_ C(G). Now suppose that zy ý E(G2). Then do(z,y) = do(x,y) _Ž 3,
so zy C(G), but then C(G) C 2. 0

2
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Fia. 2. The Grtz.scA graph G and its two-step graph. The square in this case is complete.

This has a natural interpretation in terms of the chromatic number.
COROLLARY 1. Let G be a graph, and let G be the subgraph of G obtained by

dLeting loops. Then X(S2(G)) < x(C(G)):<_ x(62).

Proof: Immediate. 0

In the case depicted in figure 1, the bounds obtained differed by exactly one. It is

easy to construct examples that show that this is not always the case. For example,

consider the graph G of figure 2. This is the well-known Gr6tzsch graph (see, for

instance, Bondy [3]), a 4-chromatic triangle-free graph. The two-step graph S2(G), also
shown in figure 2, has chromatic number 6, while G2 is isomorphic to K11 and so has

chromatic number II. Thus the bounds obtained by Corollary 1 are not particularly
precise.

There is an obvious relationship between neighborhoods of (nonsimplicial) vertices

in G and cliques in C(G), from which we may deduce that A(G) _• w(C(G)). Moreover,

we may replace X(S2(G)) with w(S 2(G)) in the left-hand inequality of Corollary 1.

However, we must further restrict our choice of G to make a similar substitution in the

right hand inequality. Perfect graphs provide the necessary additional structure. There

are several characterizations of perfect graphs. The characterization that we shall use

here is the following: a graph G is said to be perfect if w(G') = x(G') for all induced

subgraphs G' of G. For other characterizations and much of the lore of perfect graphs,
see Golumbic [10].

COROLLARY 2. If G = (V, E) and 6 are as described in Lemma 1, and if both
S2(6) and 62 are perfect, then w(S2(G)) • x(C(G)) 5(

Proof: follows immediately from Corollary 1 and the definition of perfect graph. 03

We are now able to obtain a result exemplified by the graphs in figure 1. The reader

may verify that in that example we have X(S2(6)) = 3 and X(6 2) = 4.

THEOREM 1. Let G = (V, E) be a graph, and suppose that the subgraph 6 obtained

by deleting loops is a tree. Then A(G) < x(C(G)) < 1 + A(G). Moreover, if G is

loopless, then X(C(G)) = A(G).

Proof: By [17], the maximal cliques of S2(G) correspond to the open neighborhoods
of interior vertices of 12. So w(S 2(G)) = A(G). By a result of Raychaudhuri and

3
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Fio. 3. A 4-sun. Incomplete, since vtv 4 is musing.

Roberts [27], the maximal cliques of 02 correspond to the closed neighborhoods of
interior vertices in 6. Thus w(6) = 1 + A(6). Lundgren and Rasmussen [22] showed
that if 6 is a tree then S2(G) is chordal; by a result of Chang and Nemhauser [6], 02 is
chordal. Chordal graphs are perfect, so by Corollary 2 and the preceding observations
we have A(6) 5 x(C(G)) _< 1 + A(6). If G is loopless, then C(G) = S2(G), so we have
x(C(G)) =A(G). 0

Corollary 2, with its result concerning perfect graphs, is potentially useful only
up to our ability to detect perfect graphs. Applying the definition alone is difficult,
but certain classes of perfect graphs are easily recognized. One such class is that of
chordal graphs. It is easy to construct chordal graphs whose two-step graphs are not
chordal. For example, consider the graph G of figure 4. This graph is the simplest
instance of a bowtie, where a bowtie is defined as a pair of triangles connected by a
path of positive length. Similarly, it is a simple matter to construct a chordal graph
G whose square is not chordal. For example, consider the "4-sun" G of figure 3. The
vertices ui, i = 1,2,3,4 induce a 4-cycle in G2 . We can, however, provide the following
sufficient condition for the square of a chordal graph to be chordal. The proof requires
two additional definitions. The 4-sun of figure 3 is the case n = 4 of an object called
an n-sun. An n-sun is defined as a chordal graph on 2n vertices u1,..., u,v,,... ,V

in which the ui are a stable set, the vi are an n-cycle (not induced), and in which each
vertex ui is adjacent to vertices vi and vi+1 , where the addition is cyclic. A complete
n-sun is an n-sun in which < vi, v2,. .. , v, > is complete. A strongly chordal graph G is
a chordal graph with no induced n-sun, n > 3. These have been studied by Farber [8],
Chang [5], Chang and Nemhauser [6], and Laskar and Shier [14], among others. Other
names for n-suns are "trampoline", used by Farber, and "sunflower", used by Laskar
and Shier. We will make use of the following lemma, which paraphrases part of a result
of Chang and Nemhauser [6], found independently by Laskar and Shier [14], and which
is stated without proof.

LEMMA 2. The following statements are equivalent for any chordal graph G.
1. G2 is chordal.
2. If G contains an induced n-sun, n > 4, defined on {u1,.. ., u,,,v,. .. ,v,n}, then

dG(ui, ui) = 2 for some i < j such that 1 <i - il < n -.

4
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FiP. 4. A bowte G, with S2 (G).

Thus while G being strongly chordal is sufficient to guarantee that GC is chordal,
there are ways to embed an n-sun in a graph G in such a way that G2 is still chordal.
Consider, for instance, the graph G of figure 3. Suppose that we introduce a new
vertex, say x, and edges zul, zu3. While (G - z)2 is not chordal, since it contains
< U 1 , u2 , U3 , U4 > as an induced 4-cycle, it is easy to verify that G2 is chordal. We may
use Lemma 2 to prove another sufficient condition for the square of a chordal graph G
to be chordal.

THEOREM 2. Let G = (V, E) be a chordal graph. If S2(G) is chordal, then G2 is
chordal.

Proof: Suppose that both G and S2 (G) are chordal. If G is strongly chordal, then
by Lemma 2 G2 is chordal, and we are done. Suppose, then, that G is not strongly
chordal. Then G contains an induced n-sun H. If n = 3, then by Lemma 2 G2 is
chordal, so assume that n > 4 and that H is defined on {u 1,. .. - ,, . . ,v,,} as
described above. Since G contains H yet S2(G) is chordal, by Phelps [24] we know that
da(ui, ui) = 2 for some i < j with 1 < Ij - il < n - 1, but then by Lemma 2 we know
that G2 is chordal and the proof is complete. 0

Note that the statement of Lemma 2 leaves open the possibility that we might find
a strongly chordal graph G whose square is chordal but whose two-step graph is not.
Such graphs indeed exist. For example, consider the bowtie G of figure 4. The square of
this graph is chordal, but we have already seen that its two-step graph is not. A precise
statement of the conditions under which this occurs requires an additional definition,
due to Phelps [24]. Given a graph G = (V, E) and subgraph H = (V', E') of G, and a set
R _ P(V'), we say that H is R-induced if, whenever there exist z E V- V' and y, z E V'
such that zz, yz E E, then there must exist S E R such that y, z E S. Given a bowtie
B, let TI(B) and T2(B) denote the vertex sets of the two triangles in B. Given an n-sun
G, let {ul,..., u.} denote the stable set and W = {vI,. .. , v,} denote the vertices of the
n-cycle, as described earlier in the definition of n-sun. Phelps showed that a condition
that is both necessary and sufficient for the two-step graph S2 (G) of a chordal graph
G to be chordal is that G contain no R-induced bowtie B with R = {T1(B), T2(B)}
and no R-induced n-sun, n _> 4, with R = {{WUuj}li = 1,2,...,n}. In the sequel,
we shall refer simply to R-induced bowties and R-induced n-suns; the reader should
assume that the restrictions R are as stated above. Note that an R-induced n-sun is
precisely an n-sun that violates condition (2) of Lemma 2.

5
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FIG. 5. d, S2((G), and 02 are chordal; C(G) is not.

Also left open by Lemma 2 is the possibility that 0, S2(G), and 02 are all chordal
yet C(G) is not. This, too, can occur. An instance of this is shown in figure 5.

Now suppose that we are able to determine, given some graph G, that Corollary
2 applies. In particular, suppose that we know that both S!2(() and 6 2 are chordal.
The problem now is to bound X(C(G)) in terms of some parameter of d•. If we insist
that G contain no six-cycle, a recent result by the present authors [16] shows that the
maximal cliques in S2(G) correspond to the neighborhoods of the nonsimplicial vertices
in (G). Whether the closed or the open neighborhood of a nonsimplicial vertex x applies
depends upon the sizes of cliques containing x. A similar result by the same authors [20]
shows that the maximal cliques in 02 correspond to the maximal closed neighborhoods
of these same vertices.

THEOREM 3. Suppose that d is si-cycle-free and contains no R-induced bowtie or
R-induced n-sun, n > 4. Then A(d) 5 X(C(G)) _< 1 + A(d). Moreover, if every edge
of G is contained in a triangle, then x(C(G)) = 1 + A(d).

Proof: Since d? contains no forbidden bowtie or n-sun, both S2 (G) and 62 are
chordal, so Corollary 2 applies and we have w(S 2(G)) < x(C(G)) < w(62). Since G
is six-cycle-free, by the discussion above we have A(6) _< w(S 2(G)) < 1 + A(d) and
w(62) = I + A(d), which establishes the first set of inequalities. If every edge of
(4 is contained in a triangle, then S2(6) = 6•, and the equality in that case follows
immediately. 0

Finally, we find a similar result that applies in the case where d is interval.

THEOREM 4. Let G be a graph, with underlying loopless graph d. If 6 is interval
and contains no R-induced bowtie, then A(G) _ x(C(G)) _ 1 + A(G).

Proof: Since (6 is interval, then by a result of Lundgren, Maybee and Rasmussen [18]
the maximal cliques in S2(G) correspond to the maximal neighborhoods (either open or
closed, depending on structure) of nonsimplicial vertices in (, so A(d) _< w(S 2(G)) :_

1 + A(64). Since 6 is interval, then d is also strongly chordal, so has no induced n-suns.
If in addition G contains no R-induced bowtie, then we know that S2((G)) is chordal.
By a result of Raychaudhuri [26], the maximal cliques in 02 correspond to the maximal
closed neighborhoods of nonsimplicial vertices in (, so w(6) = 1 + A(d). By a result
of Raychaudhuri and Roberts [27], the square of an interval graph is interval. Since
both chordal and interval graphs are perfect, the result follows from Corollary 2. 0

8
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FIG. 6. Digraph D has di-simplicial elimination ordering v1 , v2 .... VG.

3. The Directed Case. We now return briefly to the more general setting of
directed graphs, where much of the existing work on competition graphs has been done.

If D is a directed graph with adjacency matrix A, then the competition graph of D is

simply the row graph of A. This gives us an immediate lower bound on x(C(D)), which

is stated without proof in the following lemma.

LEMMA 3. Let D be a directed graph on n vertices, without loops or multiple edges.

Then naxf id(v)} x(C(D)) < n.
,,EV

To uncover anything less obvious, we must introduce a bit of relevant background

material. If D = (V, A) is a directed graph and v E V, then we define Out(v) :=
{x E VI(v,x) E A}. Following Lundgren and Merz [19], say that a vertex x E V is

di-simplicial in the digraph D if whenever there are distinct vertices y, z, u, v E V such

that (X, u), (y, u), (x, v), (z, v) E A, there exists a vertex w E V such that (y, w) and
(z, w) are in A. The idea of a di-simplicial vertex in a digraph was first introduced by

Hefner, et.al. [12]. Intuitively, we see that a vertex z E V is di-simplicial if the set of
vertices with which vertex x competes are in mutual competition with one another. It

is not hard to see that this set of vertices induces a complete subgraph in C(D). See,

for example, the digraph D of figure 6, in which each of vI, v2 , and v3 is nontrivially

di-simplicial. This particular specimen also illustrates the following definition. We say

that vi, V2,... , v, is a di-simplicial elimination ordering if and only if vi is di-simplicial

in Di = (V, Ai) where Ai is the subgraph of A obtained by deleting all outarcs of
VI,... , v-...1 This is closely related to perfect elimination orderings for chordal graphs.
See Golumbic [10] for more on perfect elimination orderings and their applications.

We then have the following characterization of digraphs whose competition graphs

are chordal.

THEOREM 5. (Lundgren & Merz [19]) Let D be a digraph. Then G = C(D) is

chordal if and only if D has a di-simplicial elimination ordering.

Proof. First assume that G is chordal. Then G has a perfect elimination ordering

vI, v2,..., v,. We claim that vI, v2 ,... , v, is a di-simplicial elimination ordering for D.
Consider a vertex vi that is simplicial in Gi = G - {vl,... , vi-}. We claim vi is di-

simplicial in Di. Suppose there exist y, z, u, v E V such that (y, u), (vi, u), (z, v), (vi, v)

all lie in Ai. Observe that y, z V {vl,... , vi-11}, since these vertices have no outgoing
arcs in Di, so y and z are vertices in Gi. Since y and z compete with vi at, respectively,

7



u and v, then (y, vi) and (z, vi) are edges in Gi. Since vi is simplicial in G, then y and
z are adjacent in Gi. Thus y and z have common prey, i.e., there exists w E V such
that (y, w) and (z, w) are arcs in Ai. Therefore vi is di-simplicial in D,.

Now assume that D has di-simplicial ordering v1, V2,... ,v, . We claim v1, v2,..., v,
is a perfect elimination ordering for C(D). Consider a vertex v, that is di-simplicial in
Di. We must show that vi is simplicial in Gi. Suppose there exist y, z E Gi such that
y, z E N(v,). Since GC C- C(D), y and z have common prey with v,. Thus there exist
vertices u and v, where possibly u = v, such that (y, u), (v,, u), (z, v), vi, v) E A. Since
y,z E Gi, then y,z g{vl,...,vi-,1 }, so (y,u) and (z,v) are arcs in Ai. Ifu = v, then y
and z are adjacent in C(D), hence in Gi. If u 94 v then, since vi is di-simplicial in Di,
there exists w E V such that (y, w), (z, w) E A,, so y and z are adjacent in C(D) and
Gi. Thus vi is simplicial in Gi, completing the proof. 0

It is well known that a perfect elimination ordering can be found in linear time
(Rose, Tarjan, and Leuker [28]). In the proof of the previous theorem we showed that a
di-simplicial elimination ordering in the digraph is a perfect elimination ordering in the
corresponding competition graph and vice versa. Thus a modification of the algorithms
used to find a perfect elimination ordering in a chordal graph can be used to find a di-
simplicial elimination ordering in the digraph. The algorithm which produces a perfect
elimination ordering can also be slightly modified to produce a list of the maximal
cliques and chromatic number of a chordal graph (Gavril [9]). Analogous results arise
for digraphs with chordal competition graphs.

LEMMA 4. Suppose that D = (V, A) has a di-simplicial elimination ordering
VIV 2 ,. .. ,Vn . For each vertex vi, let Xi = {vi}U{vklk > i and Out(v)Out(vk) }.
Let C be a maximal clique in G = C(D), and let i = min{klvk E C}. Then C = Xi.

Proof: First suppose that z = vk E C. If k = i, by definition, vk E Xi, so assume
that k :6 i. By our choice of vi, k > i. Since z, vi E C, then Out(z)fn1out(vi) # o,

but then z E Xi. Consequently C C Xi. Now since D has a di-simplicial elimination
ordering, it follows that Xi induces a clique in G. If Xi i C, then Xi must properly
contain C, but this is impossible since C is maximal. 0

THEOREM 6. Suppose that D = (V, A) has a di-simplicial elimination ordering
v1, v2,... , vn, and let Xi, 1 < i < n, be defined as in the preceding lemma. Then

x(C(D)) = max IXiII<i<n

Proof: Since D has a di-simplicial elimination ordering, then by the preceding result
we know that G = C(D) is chordal. Since chordal graphs are perfect, it follows that

x(G) = w(G). By the preceding lemma, w(G) = max IXd 1. 0I<_i<_n

3.1. Circulant Tournaments. In pursuit of stronger results, we must begin with
directed graphs that are highly structured. A tournament of order n is an oriented
complete graph of order n. Following Moon [23], we define a regular tournament D of
order n to be as regular as possible, i.e., if n is odd then D is regular in the usual sense,

8



0.0A(Hn)): 0 n21

FIG. 7. Adjacency matrix of H,, the circulant tournament of order n.

while if n is even then for every vertex v either id(v) = and od(v) - or

vice versa. Among regular tournaments, one is of special interest in this paper. We

define a circulant tournament to be a regular tournament whose adjacency matrix can

be arranged in the form shown in figure 7. If the order n of the tournament is odd,

then the matrix is a true circulant; in the even case, the first 1 to be cyclically shifted

from the nth column to the first is replaced with a 0, after which the shifts proceed in

the usual way.
The following lemma will be useful in proving a subsequent result concerning the

chromatic number of the circulant tournament of order n.

LEMMA 5. Let H, be the circulant tournament of order n, where n > 4.

Then a(C(H,)) = 2.

Proof: By relabeling the vertices of H,, as necessary, we may place A(H,) in the

form shown in figure 7. A simple calculation shows that rows n and r•] are orthogonal,

so vertices n and [• have no common neighbors, whence these vertices are nonadjacent

in C(Hn). Thus a(C(H,,)) > 2. One can examine the case n = 6 to verify that the

lemma is true. For n = 5 and n > 7, since each row of A(H,,) has at least L-' J ones

and 3([Q J) > n, if we choose any three rows i, j, and k, there must exist some column

p such that at least two of rows i,j, and k have ones in column p. Thus a(C(H,,)) <_ 2,

and the result follows. 0

Note that an immediate consequence of the preceding lemma is that, in any proper

coloring of C(Hn), no color class can contain more than two vertices. This is crucial in

completing the proof of the following theorem.

THEOREM 7. Let Hn be the circulant tournament of order n, where n > 4. Then

x(C(H,)l) = [!2!
Proof: The case n = 4 is easily verified, so assume that z > 4. We first show

that C(H,) can be properly colored using rBI colors. Relabel the vertices of Hn, if

necessary, so that the adjacency matrix of H, is in the form shown in figure 7. To
9



each vertex i, i = i,2,...,n, assign color i (mod [r1). Suppose two vertices v, and
vi have the same color. Then i j (mod [!]). Suppose vi and v3 are adjacent in
C(H,,). Then there exists k such that vi and vi have arcs to vk in the tournament and
ai,k = ak = 1. Since A(H,,) has the circular consecutive ones property for columns,
there must be [r• + 1 ones in column k. But each column sum is either 2j1J or [r j11,
a contradiction. Thus vi and vi are not adjacent in C(Hn). Thus x(C(H.)) < rfi. If
fewer than rR1 colors are used, then at least one color must be used on at least three
vertices, but this is impossible since, by the preceding lemma, each color class can have

at most two members. Thus x(C(Hn)) _ rfi, and the result follows. 0

4. Avenues for Further Work. The results concerning tournaments leave a
number of questions unanswered. For example, let m(n) be the maximum number
of cyclic triples in a tournament on n vertices. The minimum, of course, is 0, achieved
by a transitive tournament. For all integers 0 < k < m, there is a tournament on n
vertices with exactly k cyclic triples. Do chromatic numbers of competition graphs of
tournaments behave similarly? Is it the case that, for all integers rni :- k < n - 1,
there exists a tournament D on n vertices with X(C(D)) = k? For that matter, if D is
a tournament on n vertices, can we prove that r[i -< x(C(D))?

In the undirected case, is the inequality, A(G) _< x(C(G)) _< 1 + A(G), satisfied by
all graphs G whose underlying loopless graphs d are strongly chordal?
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