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Interconnections in ULSI: Correlation and Crosstalk

Summary of Research

During the period 1 January 1991 to 31 December 1992, research supported by the Office of
Naval Research under Grant Number N0O0014-91-J-1505 was directed at studying the phenomena
of correlation and crosstalk in future ULSI interconnects. As described in the body of this report
the coupling phenomena include: (i) line - line coupling, (ii) dot - dot coupling, and (iii) line - dot
coupling. We have also addressed the photovoltaic effect, which leads to an induced voltage in a
line due to electromagnetic radiation which may be caused by neighboring lines. We also discuss
related issues of the fabrication and design of quantum wire and dot structures.

The research supported by the present grant resulted in 36 refereed journal papers and 49 confer-
ence publications and presentations. Graduate student support led, in part, to 5 M.S. theses and
one Ph.D. dissertation. Individuals whose research was supported, in part, by the present funds
include Gary H. Bernstein, S. Bandyopadhyay, Wolfgang Porod, and graduate students Suresh
Subramaniam, Nina Telang, Xiaokang Huang, Greg Bazan, and Henry Harbury.
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Interconnections in ULSI: Correlation and Crosstalk

Line - Line Coupling

Fabrication of dense interconnect structures

Investigator: G. H. Bernstein
The central mechanism for current drag between metal interconnects is expected to be Coulomb
mutual scattering. However, since screening is very strong in metals, in order to observe possible
current drag phenomena between metal interconnects, metal patterns must be extremely small and
placed very closely together- about 10 nm lines and spaces. Our continued work on high contrast
electron resist developers proved critical to the success of achieving the highest possible litho-
graphic resolution.

To this end, we have studied extensively the technology for creating such structures without
resorting to such techniques as shadow evaporation. Direct fabrication of such patterns is necessi-
tated by the need to make connections to the individual lines through which currents are sent and
measured. Our basic tool is electron beam lithography of poly (methyl methacrylate) (PMMA).
The two central issues to creating very dense patterns as described above are proximity effects
and the strength of PMMA “walls”.

Proximity effects are important since the lines are so closely spaced that electron scattering phe-
nomena enter a new regime not commonly studied for the fabrication of conventional integrated
circuits. Most proximity effect studies use a double Gaussian model taking into account short
range forward scattering and long range backscattering. Usually not considered, however, are the
high energy secondary electrons of intermediate range. We performed a very careful study fitting
curves to include a third Gaussian component due to the fast secondary electrons. Figure 1 shows
the relative dose necessary to create lines of equal width as a function of the grating pitch. It was
found that the use of the third, intermediate range, component gave a much better fit to the data
than the use of only two Gaussian components. We believe this is the only study to date of the
proximity effect on the size scales of a few tens of nm.
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Fig. 1: Normalized dose for equal line widths as a function of grating pitch. The agreement with a
triple Gaussian model shows that fast secondary electrons play a significant role in the exposure.
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Interconnections in ULSI: Correlation and Crosstalk

The strength of PMMA walls is important because the spacing of the lines is much smaller than
the thickness of the starting resist. When the (positive) resist is developed out to form the lines by
lift-off, a wall of PMMA remains to form the space between the two lines. Since the length of the
walls is very long (on the order of 50 to 100 microns), the walls have a tendency to wave and
buckle under the stress of the development process, whereas very straight walls are necessary for
the experiments. This phenomenon required a very good understanding of the forces in order to
control the process for the continuation of the current drag experiments. We found that the lack of
stability was due not to process control or technique, but rather to the very slight swelling of the
PMMA with the developer leading to buckling of the walls. Furthermore, grating structures had a
tendency to fail in very regular arrays of waves which seemed at first to be due to either noise on
the electron beam or poor development/drying procedures. Our study revealed that the regular
patterns were in fact due to attractive forces through the developer fluid which set up a pattern of
wall failure across the grating.

One new and interesting outcome of the study was the role of swelling in the development of
PMMA. It was universally believed that a contributing factor to the ultra-high resolution proper-
ties of PMMA was the absence of any swelling characteristics. We found that in the regime of
narrow walls, the very slight swelling that does exist as a consequence of the normal chemical
development sequence of events does indeed impact the results on this size scale.

A directly applicable result of the study was the relationship that the fabrication of reliably
straight walls is achieved under the condition of not exceeding a ratio of wall height to thickness
of 5. This applies over a wide range of starting resist thicknesses. Using insights gained from the
study, we were able to fabricate gold gratings of thickness 15 nm with pitch as small as 38 nm
(Fig. 2) and gold line pairs on a pitch of 36 nm. To our knowledge, these are the densest patterns
ever fabricated using direct lithographic techniques.

Fig. 2: Ti/Au (2 nm/15 nm) grating with 38 nm pitch fabricated by electron beam lithography using
our high contrast developer.
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Relevant Publications:

G. H. Bemnstein, D. A. Hill and W. P. Liuy, “New High-Contrast Developers for PMMA Resist,”
Journal of Applied Physics 71, 4066 - 4075 (1992).

G. H. Bernstein and D. A. Hill, “On the Attainment of Optimum Development Parameters for
PMMA Resist,” Superlattices and Microstructures 11, 237-240 (1992).

X. Huang, G. Bazan, G. H. Bernstein, and D. A. Hill, “Stability of Thin Resist Walls,” Journal of
the Electrochemical Society 139, 2952-2956 (1992).

D. A. Hill, X. Huang, G. Bazan, and G. H. Bernstein, “Swelling and Surface Forces-Induced
Instabilities in Nanoscopic Polymeric Structures,” Journal of Applied Physics 72, 4088-4094
(1992).

X. Huang, G. H. Bemstein, G. Bazan, and D. A. Hill, “Spatial Density of Lines in PMMA by
Electron Beam Lithography,” Journal of Vacuum Science and Technology A 11, 1739-1744
(1993).

X. Huang, G. Bazan, G. H. Bernstein, “New Technique for Computation and Challenges for Elec-
tron Beam Lithography,” Journal of Vacuum Science and Technology B 11, 2665 - 2569 (1993).

Experimental Study of Coupling between Metal Lines

Investigator: G. H. Bernstein
In order to increase confidence in our low temperature measurement techniques, we replicated
previously published work by other groups in which the length dependence of universal conduc-
tance fluctuations in 1-D structures was investigated. Figure 3 shows the dependence of the mag-
nitude of the conductance fluctuations on the length of gold wires with cross-sections of 30 nm by
70 nm at 1.8K. The existence of an L™ dependence (where n=1.5 to 2) is characteristic of this
phenomenon, and is in agreement with the previous experiments.

10 < F

Ah A s

3
1< o o
) e
2 o |
01-% o J
: o]
0.01 — ——r—r—r—r . v ——pyyy
0.1 1 10
L/Ly

Fig. 3: Magnitude of the conductance fluctuations as a function of wire length,
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Having established the credibility of our measurement set-up, we proceeded to measure current
drag in normal metal wires. In this phase of the research effort, six attempts over six months were
made at finding current drag between gold lines at 1.7K to 4.2K with linewidths of 50 nm and
spaces of 25 nm. The decision to use linewidths larger than those discussed above was based on
mcasurement issues. The ratio of current drag to drive current reported in the literature was on the
order of 10, and drive currents needed to be about 100 nA, putting the drag current into the pA
range. In our case, we expected a considerably lower drag/drive current ratio, and did not wxsh to
go below 10 microamps for the drive current, with the ability to measure down to 1 pA (10
ratio). Thinner lines than those used would not have withstood such large drive currents.

In the course of the experiment, considerable progress was made in improving the measurement
system to 0.1 pA measurements and eliminating all sources of stray cross-talk between measure-
ment lines, but no evidence was seen of actual coupling between the lines on chip. We believe that
the reason for failure is that we had not succeeded in meeting the specifications for the patterns
and measurements as outlined above. Beyond 10 nm linewidths, the screening was likely so large
that any Coulomb effects directed from the drive to the drag lines were screened near the surface
of the drag line, so that most of the electrons in the drag line were unaffected by the Coulombic
fields induced by the drive electrons, and very little momentum transfer resulted. Given better
measurement techniques now implemented, we will revisit this regime and look for possible
effects.

Through extensive discussions with Dr. N. Giordano at Purdue University, we decided to pursue
the work in the area of superconducting films and lines. The basis for this decision was the expec-
tation that the Cooper pairs involved in the phenomenon of superconductivity enjoy very long
coherence lengths - on the order of several tens of nm. Because of this, screening of the charge-
induced momentum transfer will be much less, and therefore is expected to survive on the size
scales used in the experiment.

Although he has not observed coupling between normal metal (NM) films, Giordano has already
observed drag between thin films of NM and superconducting (SC) metals [private comm.,
unpublished]. His work showed that current drag developed within the NM and SC temperature
transition regime. For this reason, he (and we) chose a material that has a wide transition temper-
ature range so that the crossover from no drag to drag can be more easily studied. We chose alu-
minum/oxygen compounds which shift the critical temperature of aluminum from 1.2K to as high
as 1.95K with a transition range of about 0.1K.

By introducing oxygen during aluminum evaporation, we have succeeded in achieving films with
a wide range of transition temperatures. Using these films, we have observed current drag
between films. Figure 4 shows induced voltage in the SC film due to current driven through a gold
film. Both films are 20 nm thick, separated by 35 nm of Al,O5 (insulating). The coupling occurs
only in the temperature range over which the SC film changes from normal to SC (solid line in the
figure). It is interesting that the induced voltage decreases as the resistance of the SC film
approaches zero, i.e. purely superconducting (also observed by Giordano). We believe this is due
to the nature of the SC material i.e. a superconductor cannot support a voltage drop. As the tem-
perature decreases and electrons pair up, the coherence length grows and coupling begins. How-
ever, as pairing is completed, there is a canceling of the voltage due to the coupling and the
superconductivity, so the voltage decreases to zero as it must in a SC.

Line - Line Coupling 6
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Fig. 4: Induced voltage in the superconducting film due to current driven through a gold film.

Work is continuing in order to observe coupling between NM and SC lines. We plan to pursue
several schemes for current drag between lines including lines lying side-by-side and over each
other. There are advantages to both schemes which is the subject of the dissertation of Xiaokang
Huang. Both schemes will rely heavily on our ability to perform very accurate alignments
between metal levels (see the section on Dot-Dot Coupling).

Theory of Line -Line Coupling
Investigator: S. Bandyopadhyay

A general theoretical framework was developed for studying coupling and crosstalk between
ultranarrow and ultradense interconnects in ULSI. Both coupling between optical interconnects
and quantum mechanical coupling between silicide interconnects were studied using this theory.
It was found that generic optical interconnects are quite immune to crosstalk since GaAs/AlGaAs
optical waveguides (interconnects) are non-leaky. In contrast, quantum mechanical tunneling
between contiguous closely spaced silicide lines can be quite significant if the lines are about 5
nm apart. To suppress this coupling, a possible remedy is to dust the intervening dielectric with
magnetic impurities which are known to inhibit tunneling. A paper describing this research was
published in the JEEE Journal of Quantum Electronics (provided in the appendix).

Relevant Publications:

S. Bandyopadhyay, “Coupling and Crosstalk Between High Speed Interconnects in Ultra Large
Scale Integrated Circuits,” IEEE Journal of Quantum Electronics 28, 1554 - 1561 (1992).
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Line - Line Coupling by Phonon-Assisted Hopping of Electrons
Investigator: S. Bandyopadhyay

A possible source of coupling between narrow contiguous wires is phonon assisted hopping of
electrons from one wire to another. In addition to crosstalk, this kind of events can also cause Shot
noise in the interconnects. We have calculated phonon scattering rates in quantum wires and at
present are investigating phonon assisted hopping rates. We have also found that a magnetic field
can dramatically suppress acoustic phonon emission in quantum wires. This also has very serious
implications for the quantum Hall effect in one-dimensional systems. Several papers describing
the effect of a magnetic field on phonon scattering have been published.

Relevant Publications:

N. Telang and S. Bandyopadhyay, “Quenching of Acoustic Phonon Scattering of Electrons in
Semiconductor Quantum Wires Induced by a Magnetic Field,” Applied Physics Letters 62,
3161 (1993).

N.Telang and S. Bandyopadhyay, ‘““Modulation of Electron Phonon Scattering in Quantum Wires
by a Magnetic Field,” Semiconductor Science and Technology (in press).

N. Telang and S. Bandyopadhyay, “The Effect of a Magnetic Field on Polar Optical and Surface
Phonon Scattering Rates,” Physical Review B 48 (Dec 15 - 1993).

Magnetotransport in Quantum Wires
Investigator: S. Bandyopadhyay

A formalism was developed for calculating the electron wavefunction and the energy dispersion
relation of hybrid magnetoelectric states in ultranarrow quantum wires in the presence of a mag-
netic field. The results are exact solutions of the Schrodinger equation. The importance of this
work is that it allows one to study the effect of a magnetic field on transport in narrow quasi-one
dimensional wires. We are extending this work is to study transport in two coupled wires. At
present, we are studying the following problem. An electron is introduced into a wire at a certain
instance of time. We would like to find out after what time the electron switches over to an adjoin-
ing wire and with what efficiency. This requires solving the time dependent Schridinger equation,
for which we have formulated a general prescription that is valid even in the presence of a mag-
netic field. A paper describing the first (steady-state) part of this work was published in the Jour-
nal of Applied Physics (provided in the appendix).

Relevant Publications:

S. Chaudhuri and S. Bandyopadhyay, “Numerical Calculation of Hybrid Magnetoelectric States
in an Electron Waveguide, Journal of Applied Physics 71, 3027 - 3029 (1992).
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Spatial Current Distribution in Quantum Wires
Investigator: S. Bandyopadhyay and W. Porod

A formalism was developed for studying the spatial distributions of the current, potential, excess
carrier concentration, residual resistivity dipoles and electromigration forces in quantum wires in
a magnetic field. A paper describing these results was published in Superlattices and Microstruc-
tures. It was also presented at the Sixth International Conference on Superlattices, Microstruc-
tures and Microdevices, Beijing, People’s Republic of China, August, 1992. A more detailed
version of this paper appeared in Physical Review B (provided in the appendix).

In addition, we have also obtained self-consistent electronic states through an iterative solution of
the 2-D Schrodinger equation using current carrying boundary conditions. Any bound electronic
charge is approximated by the semi-classical Thomas-Fermi screening model. The Hartree poten-
tial due to the electron density is explicitly determined from the total charge density in each itera-
tion, and is used to calculate the electronic states in the subsequent iteration. The self-consistent
solution is obtained when the potential difference between iterations converges to within a desired
tolerance. The results of this work are described in a paper in Superlattices and Microstructures.

Relevant Publications:

Henry K. Harbury, Wolfgang Porod, and Craig S. Lent, “Field Effects in Self-Consistent Trans-

port Calculations for Narrow Split-Gate Structures,” Superlattices and Microstructures 11, 189
- 193 (1992).

S. Chaudhuri and S. Bandyopadhyay, “Quantum Transport in a Disordered Quantum Wire in the
Presence of a Magnetic Field,” Superlattices and Microstructures 11, 241 - 244 (1992).

S. Chaudhuri and S. Bandyopadhyay, “Spatial Distribution of the Current and Fermi Carriers
Around Localized Elastic Scatterers in Quantum Transport,” Physical Review B 45, 11126 -
11135 (1992).

S. Bandyopadhyay, S. Chaudhuri, B. Das, and M. Cahay, “Features of quantum magnetotransport
and electromigration in mesoscopic systems,” Superlattices and Microstructures 12, 123 - 132
(1992).

S. Chaudhuri, S. Bandyopadhyay, and M. Cahay, “Spatial distribution of the current, Fermi carrier
density, potential and electric field in a disordered quantum wire in a magnetic field,” Physical
Review B 47, 12649 (1993).

Design of Quantum Wires at Corrugated Heterointerfaces
Investigator: W. Porod
in collaboration with Dr. S. M. Goodnick (OSU)

We have investigated the formation of a quantum wire structure by the confinement of electrons
between lateral quasi-two-dimensional p-n junctions at corrugated GaAs/AlGaAs heterostruc-
tures. Such a quantum wire may be realized at the tip of a Si-doped AlGaAs overgrown V groove
in a SI-GaAs substrate due to the surface orientation dependence of Si doping. The two-dimen-
sional conduction and valence band profiles for the electron and hole charge densities are

Line - Line Coupling 9
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obtained numerically within a semiclassical Thomas-Fermi screening model. The quantized elec-
tronic wire states at the heterointerface are then obtained by solving the two-dimensional effective
mass Schrodinger equation using the calculated potential profile. We have explored the parameter
space of the one-dimensional electronic system and we established which features of the structure
are dominant factors in controlling the quantum confinement. Specifically, we found that the
energy level spacing of the quantum wire depends primarily upon the lateral confinement width in
the n-type region at the tip of the V groove. The ground state energy of the wire is shown to
depend on both the lateral confinement width and the vertical heterointerface confinement width.
We have also studied the effect of lateral gates on the side walls of the V groove in order to obtain
direct control of the quantum wire transport properties. Our studies have resulted in an experi-
mental effort in the group of Dr. Jim Merz at UC Santa Barbara, which is aimed at realizing such
a quantum wire structure by MBE techniques.

Relevant Publications:

Henry K. Harbury, Wolfgang Porod, and Stephen M. Goodnick, “Lateral p-n junctions between
quasi two-dimensional electron and hole systems at corrugated GaAs/AlGaAs interfaces,”
Journal of Vacuum Science and Technology B 10, 2051 - 2055 (1992).

Wolfgang Porod, Henry K. Harbury, and Stephen M. Goodnick, “Lateral p-n junctions and quan-
tum wires formed by quasi two-dimensional electron and hole systems at corrugated GaAs/
AlGaAs interfaces,” Applied Physics Leters 61, 1823 - 1825 (1992).

Henry K. Harbury, Wolfgang Porod, and Stephen M. Goodnick, “A Novel Quantum Wire Formed
by Lateral p-n-p Junctions Between Quasi-Two-Dimensional Electron and Hole Systems at
Corrugated GaAs/AlGaAs Interfaces,” Journal of Applied Physics 73, 1509 - 1520 (1993).
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Dot - Dot Coupling

Fabrication of dense dot arrays
Investigator: G. H. Bernstein

The simplest conception of an array of dots is to directly fabricate metal dots on the surface of a
PDEG formed by a heterostructure. This could be utilized if it is followed by connecting to a top
gate after planarization by polyimide, or by reactive ion etching into the doping layer, followed by
evaporation of a blanket metal layer, effecting depletion of the etched region and leaving dots in
the 2DEG. We have made dot arrays as a test of our lithographic system with dot sizes approach-
ing 10 nm on a 37 nm pitch, as shown in Fig. 5. These dots, however, are not planned as the first

effort in actual dot arrays for nanostructures.

Fig. 5: Gold dots with diameters as small as 10 nm fabricated by electron beam lithography.

A more useful "dot" system is that created by single electron tunneling through small tunnel junc-
tions onto a small metal island. We have demonstrated the processing technique of shadow evapo-
ration with thin Al;O3 tunnel barriers, as described in our paper in the Review of Scientific
Instruments. Figure 6 shows a large array of tunnel junctions using native oxide on aluminum fab-
ricated with electron beam lithography. The overlapping areas are small, about 30 by 60 nm, but
there could be significant stray capacitance due to the overlapping metal. This technique has
recently been refined to decrease the stray capacitance. We have improved our layer-to-layer over-
lay alignment accuracy considerably. Using our new technique, described in the Journal of Vac-
uum Science and Technology A, we have achieved alignment accuracies beyond the visible limits
of our newest field emission scanning electron microscope, with a resolution of about 1.5 nm.

Dot - Dot Coupling 1§
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Fig. 6: Amray of tunnel junctions fabricated by shadow evaporation.

Figure 7 shows a tunnel junction fabricated by the alignment of one metal line against another on
subsequent processing and metalization steps. The alignment is so accurate that no horizontal off-
set can be seen at 250,000 times magnification. Qverlap in the vertical direction exists only
because of proximity effect elongation of the lines beyond their actual lithographic placement, so
that with the two lmcs combined, an extremely small tunnel junction has resulted with an area of
about 30 by 30 nmZ. We plan to test devices of this quality in the near future.

24-NOV-93

Fig. 7: Very small overlap of two wires to be used as a single electron tunnel junction. The wires
were placed over each other by a nearly perfect alignment of two metal layers.

Dot - Dot Coupling 12
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Relevant Publications:

S. J. Koester, G. Bazan, G. H. Bernstein, and W. Porod, “Fabrication of Ultrasmall Tunnel Junc-
tions by Electron Beam Lithography,” Review of Scientific Instruments 63, 1918 - 1921 (1992).

G. Bazan and G. H. Bernstein, “Electron Beam Lithography Over Very Large Scan Fields,” Jour-
nal of Vacuum Science and Technology A 11, 1745-1752 (1993).

Physical Coupling between Quantum Dots for Cellular Automata Architectures
Investigators: W. Porod and G. H. Bernstein
in collaboration with Dr.C. S. Lent

We have studied architectures composed of quantum structures which are based on the physical
coupling between the individual elements. We have pursued the general notion of computing in
granular arrays of quantum dots, similar to cellular automata. In a specific example, we have
implemented cellular automata rules which correspond to a solution of the Helmholtz equation.
Our simulations exhibited wave behavior, such as Huygen’s principle, interference, and diffrac-
tion at a slit. We have attempted to employ these wave phenomena to computing on a chip, but
more work is needed.

Perhaps our most successful avenue of research was aimed at developing a specific model system
for the coupling between quantum dots. In these so-called quantum cellular automata, each cell is
composed of several quantum dots which are occupied by only a few electrons. Inside each cell,
electrons my tunnel from one dot to the next. No tunneling is allowed between cells. Electrons,
both within and between cells, interact Coulombically. We have demonstrated bistable behavior
of the charge alignment in each cell, which is due to intracellular quantum mechanics and inter-
cellular Coulomb coupling. This bistability is akin to gain and saturation in conventional electron-
ics. In ongoing work, computing elements have been demonstrated, building upon the basic
quantum cell.

This work has led to a new project, which is entitled “Quantum Cellular Automata,” and which is
sponsored by ARPA and administered by ONR.

Relevant Publications:

Craig S. Lent, P. Douglas Tougaw, and Wolfgang Porod, “Bistable saturation in coupled quantum
dots for quantum cellular automata,” Applied Physics Letters 62,714 - 716 (1993).

Craig S. Lent, P. Douglas Tougaw, Wolfgang Porod, and Gary H. Bernstein, “Quantum Cellular
Automata,” Nanotechnology 4, 59 - 57 (1993).

P. Douglas Tougaw, Craig S. Lent, and Wolfgang Porod, “Bistable Saturation in Coupled Quan-
tum-Dot Cells,” Journal of Applied Physics 74, 3558 - 3566 (1993).

Numerical modelling of quantum dot structures
Investigator: W. Porod

Knowledge of the potential profiles in quantum dot structures is an important issue both for the
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design of quantum dots as well as for a study of dot - dot coupling. We have developed a numeri-
cal technique which allows us to model the effect of close-by surface states and the interface to
the dielectric. Specifically, we have studied potential distributions and quantized electronic states
in gated AlGaAs/GaAs quantum dot structures obtained from self-consistent solutions of the axi-
symmetric Poisson and Schrodinger equations. Our model takes into account the effect of surface
states by viewing the exposed surface as the interface between the semiconductor and the dielec-
tric. We investigate the occupation of the quantum dot structures as a function of (i) gate bias, (ii)
distance of the confining heterointerface from the top gate, and (iii) different physical models of
the interface charge at the exposed semiconductor surface. This modelling is important for the
design of our recently proposed mesoscopic computing architectures, called Quantum Cellular
Automata, which consist of arrays of interacting quantum dot cells occupied by few electrons.

Relevant Publications:

Minhan Chen, Wolfgang Porod, and David J. Kirkner, “A Coupled Finite Element/Boundary Ele-
ment Method for Semiconductor Quantum Devices with Exposed Surfaces,” Journal of Applied
Physics 7S (Mar 1 - 1994).

Supercomputing with spin polarized single electrons
Investigator: S. Bandyopadhyay,
in collaboration with Drs.
Miller and Das

We have proposed a novel quantum technology for ultrafast, ultradense and ultra-low power
supercomputing. The technology utilizes single electrons as binary logic devices in which the spin
of the electron encodes the bit information. The architecture mimics quantum coupled two dimen-
sional cellular automata without physical interconnects. It is realized by laying out on a wafer reg-
imented arrays of nanophase particles each hosting an electron. Various types of logic gates,
combinational circuits for arithmetic logic units, and sequential circuits for memory can be real-
ized. The technology has many advantages such as (1) the absence of physical interconnects
between devices (inter-device interaction is provided by quantum mechanical coupling between
adjacent electrons), (b) ultrafast switching times of about 1 picosecond for individual devices, (c)
extremely high bit density approaching 10 Terabits/cm?, (4) non-volatile memory, (5) robustness
and possible room temperature operation with very hlgh noise margm and reliability, (6) a very
low power delay product for switching a single bit (about 102 0 Joules), and (7) a very small
power dissipation of a few tens of nanowatts per bit.

We are also investigating possible routes of clocking this type of a chip with coherent electromag-
netic radiation that can induce magnetic dipole transitions. This is the closest realization of the
Benioff-Zurek-Peres type quantum spin computer for dissipationless computation as envisaged by
Feynman. We have found that the Hamiltonian of the system (including the radiation) can be Her-
mitean so that the computation represented by the transformation exp[-2xi Ht /h] is unitary. We
are presently studying the time evolution of such a system. Finally, we have proposed a novel fab-
rication technology for producing single electron chips that involves selective area nucleation of
nanophase particles. This work is being carried out in collaboration with Argonne National Labo-
ratory and the National Institute of Standards and Technology, Gaithersburg, Maryland.

Dot - Dot Coupling 14
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Line - Dot Coupling

Investigator: W. Porod
in collaboration with Dr.C. S. Lent

Line-to-dot coupling will be utilized in our proposed Quantum Cellular Automata architectures to
sense the polarization of a particular cell. In other words, this phenomenon will serve as the
READ operation. Line - dot coupling may also be used to set the initial state of an array of quan-
tum dot cells.

So far, we have studied transmission phenomena when coupling a quantum waveguide to a reso-
nator, which may be realized as a quantum dot. In particular, we have investigated the properties
of the transmission amplitude in the complex-energy plane. We find that, similar to double-barrier
resonant tunneling, there are transmission poles in the complex-energy plane for quantum
waveguide structures which contain quasi-bound states in attached t-stub resonators. In contrast to
double-barrier resonant tunneling, however, we also find that the quantum wire networks also
possess transmission zeros (antiresonances), which always occur on the real-energy axis. The
existence of transmission zeros is a characteristic feature of quantum waveguide system with
attached resonators, but is absent for double-barrier resonant tunneling, which contains the reso-
nant cavity as part of the transmission channel. We demonstrate that each quasi-bound state of the
resonantly-coupled quantum waveguide system leads to a zero-pole pair of the transmission
amplitude in the complex-energy plane. The previously noted resonance - antiresonance behavior
of the transmission probability, which leads to its sharp variation as a function of energy, can be
understood in terms of these zero-pole pairs.

We have also investigated the line shape of the transmission probability in quantum waveguides
with resonantly-coupled cavities. Resonance/antiresonance features in the vicinity of each quasi-
bound state can be characterized by a zero-pole pair in the complex-energy plane, which leads to
asymmetrical transmission peaks. We have found a generalization of the familiar symmetrical
Lorentzian line. Using several examples, we demonstrate the utility of our proposed line shape to
extract the lifetime of the quasi-bound state by a fit to the data. We also discuss the asymmetrical
line shapes in the context of Fano resonances.

Relevant Publications:

Wolfgang Porod, Zhi-an Shao, and Craig S. Lent, “Transmission Resonances and Zeros in Quan-
tum Waveguides with Resonantly-Coupled Cavities,” Applied Physics Letters 61, 1350 - 1352
(1992).

Wolfgang Porod, Zhi-an Shao, and Craig S. Lent, “Resonance-Antiresonance Line Shape for
Transmission in Quantum Waveguides with Resonantly-Coupled Cavities,” Physical Review B
48, 8495 - 8498 (1993).

Zhi-an Shao, Wolfgang Porod, and Craig S. Lent, “Transmission Resonances and Zeros in Quan-
tum Waveguide Systems with Attached Resonators,” Physical Review B (in press).
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Photovoltaic Effect in the Presence of Magnetic Fields

Investigator: G. H. Bernstein

in collaboration with Dr. N. Giordano (Purdue)
From a practical point of view, metal interconnects used in mesoscopic systems will be subject to
some electrical noise and interference. Since circuits utilizing mesoscopic phenomena will oper-
ate at frequencies high in the microwave range, we must be concerned with the effects of micro-
wave bombardment and current drive on mesoscopic systems. Of a scientific interest, the
existence of photovoltages induced by bombardment of microwave radiation (the photovoltaic
(PV) effect) has proved fertile ground for studying the interaction of high frequency electric fields
on conduction electrons in metals. One present model for the PV effect is that electrons absorb
microwave photons, and being out of equilibrium with the Fermi sea, the energetic electrons dif-
fuse in a direction preferential to the precise impurity distribution. Because of this, a DC voltage
on the order of nV develops across the leads of the device.

We have engaged in an extensive collaboration with Dr. Giordano and graduate student R. Bartolo
to study the photovoltaic effect in mesoscopic structures. Prior to our involvement, their work was
confined to structures with dimensions of about one micron. We have collaborated to produce a
variety of structures with dimensions to 50 nm in the form of wires and rings of diameter 330 to
500 nm, measured at Purdue University.

We have fabricated (on glass substrates) gold 1-D wires with widths of 50 to 70 nm, thicknesses
of 20 nm, and total lengths of up to 1.5 microns. These structures clearly showed evidence of the
PV effect at 4.2K. Although the results from the small wires were essentially the same as the
larger structures, the small structures allowed comparisons with similarly sized lines formed in
the shape of rings for investigation of the Aharonov-Bohm (A-B) effect. In these structures, A-B
oscillations in the PV data were clearly visible. Figure 8a shows the data for a 330 nm diameter

se 8§mparlson of two field sweeps in submicron rings frequency = 8.4GHz T = 4.2K
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Fig. 8a: Photovoltaic effect in a gold ring of 330 nm diameter. The two lines are opposite sweeps of
the magnetic field.
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Fig. 8b: Fourier transform of the data in Fig. 8a. The peak corresponds to h/e oscillations in the
photovoltaic effect indicating a phase coherent component to the phenomenon.

ring at 4.2K and 8.4 GHz radiation under a sweep of the magnetic field up to 1 Tesla. The data has
been shown to be very consistent with time and sweep direction. Fig. 8b shows the Fourier trans-
form in magnetic field with a clear peak at about 0.0037/Tesla. This peak is at precisely the correct
location corresponding to h/e oscillations. The data indicate that the existence of the PV effect is
in fact mesoscopic in nature, and is related to the phase coherence over a lazge fraction of one
micron. This is the first data that unambiguously shows this fact.

Another interesting point is that previous observations of the A-B effect have been performed at
temperatures of less than 0.1K. Here we have demonstrated the direct observation of an A-B
related phenomenon at much higher temperatures. This could prove useful in future investigations
of the A-B effect and other physical phenomena.

This work has been presented at the 1992 40:h Midwest Solid State Conference and will be pre-
sented at the 1994 March Meeting of the APS. A publication is under preparation.
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A New Technique for Fabricating Mesoscopic Structures in Silicon

Investigators: G. H. Bernstein and W. Porod
In the interest of fabricating wires with new properties and in new materials, we have investigated
a novel technique for fabricating mesoscopic structures in general, and quantum wires in particu-
lar, in silicon. Initially, we performed a series of experiments to investigate the spatial stability of
positive charge induced in SiO, by exposure to a beam of electrons. The positive charge caused a
shift in the threshold voltage of MOSFETSs by up to -15 volts, so that the area exposed to the beam
inverted, creating a 2DEG in the silicon, at a much more negative voltage than did the area left
unexposed.

We showed through the use of capacitance-voltage measurements, as discussed in our paper in
Scanning, that the induced positive charge remains stable over periods of at least several weeks.
Furthermore, the charge did not appear to move in a measurable way during the testing period. We
surmised that by intentionally introducing positive charges into the oxide of a MOSFET in a con-
trolled manner using electron beam lithography techniques, that quantum structures could be fab-
ricated.

We have so far investigated various aspects of producing 1D structures with this technique. We
made MOSFET: in our laboratory with gate lengths and widths of 8 microns and 10 microns,
respectively. After careful evaluation, the devices were exposed by the electron beam in a single
line from source to drain. At room temperature, the device I-V curves showed a slight enhance-
ment of the drain current a voltages slightly lower than the original threshold voltage. We infer
that this was due to the narrow line of positive charge.
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Fig. 9: Conductance in a MOSFET exposed from source to drain by a narrow electron beam. The
steps in the conductance are due to the formation of a quantized channel.
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We tested several devices, both exposed and unexposed at 1.8K. Among the unexposed devices,
the Notre Dame devices and commercially fabricated devices showed no structure whatsoever
around the threshold voltages. All of the exposed devices showed complicated structure very
close to threshold. One set of conductance data as a function of the gate voltage for different
drain/source voltages is shown in Fig. 9. The steps indicate that right at threshold, the line does
not invert uniformly, leaving a pinched area or areas in series with the resistance of the channel.
Steps are clearly evident, although they do not appear in units of ¢2/4h, as they ought to for point
contacts in silicon. We concluded that the lack of predictable step size in the conductance was due
to the large series resistance of the 1D channel. We are in the process of performing more experi-
ments on this system and are preparing a manuscript regarding the preliminary results.

Relevant Publications:

G. H. Bernstein, S. W. Polchlopek, R. Kamath, and W. Porod, ‘“Determination of Fixed Electron-
Beam-Induced Positive Oxide Charge,” Scanning 14, 345 - 349 (1992).
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Coupling and Crosstalk Between High Speed
Interconnects in Ultralarge Scale
Integrated Circuits

Supnyo Bandyopadhyay, Senior Member, IEEE

Abstract—The advent of sophisticated lithographic tech-
niques has made it possible to fabricate densely packed uitra-
large-scale-integrated (ULSI) circuits. In these chips, intercon-
nect lines are so narrow sad spaced in such close proximity that
signal from one line could easily get coupled to another causing
interference and crosstalk. This paper presests a gemeral the-
ory to model coupling between optical interconnects (wave-
guides) and quantum-mechanical coupling between narrow and
very closely spaced silicide interconnects embedded in dielec-
trics (Si0,).

I. INTRODUCTION

ECENT advances in nanolithography [1]-[6] have

made it possible to delineate electronic devices with
feature sizes of a few hundred angstroms in both silicon
and GaAs wafers. The ability to make such small features
has led to the development of ultralarge-scale-integrated
(ULSI) circuits with packing densities far greater than
those of very-large-scale-integrated (VLSI) circuits. In
1980, Hewlett-Packard produced a single chip micropro-
cessor with 0.5 million devices on a 1 sq cm chip using
1.25 um feature sizes [7]. Today, we are envisioning chips
with 10° devices. Simple scaling law shows that the fea-
ture sizes required for such ULSI chips will be a few
hundred angstroms causing extremely dense packing.

In ULSI chips not only are the devices densely packed,
but so are the interconnects. The close proximity of in-
terconnect lines resulting from this dense packing could
lead to severe problems with mutual interference and
crosstalk. In this paper, we study crosstalk due to cou-
pling between optical interconnects (GaAs waveguides
embedded in AlGaAs) and coupling between narrow and
closely spaced silicide interconnects surrounded by a di-
electric. In the case of silicide interconnects, coupling is
caused by quantum-mechanical tunneiing of electrons
from one line to another. This kind of coupling will be
especially severe if the dielectric in which the intercon-
nects are embedded is leaky (such as porous Si;N, or SiO,
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grown by wet oxidation). In addition to causing crosstalk,
tunneling can give rise to a unique problem. In multilay-
ered interconnects, there can be crossings of two lines with
a very thin dielectric layer sandwiched between them. If
the thickness of the lines is a few hundred angstroms, then
at the crossing we have a crossover capacitor whose ef-
fective plate area is a few hundred angstroms square and
the plate separation is aiso of the same order. The corre-
sponding capacitance can be estimated from standard for-
mula [8]. If the linewidths are 300 A and the piate sep-
aration is 100 A, then the crossover capacitance is
~ 107" F. Since the dielectric layer between the piates is
thin enough, an electron can unnel through this layer from
one interconnect 1o another. Such tunneling can charge up
the capacitor to 10 mV per electron! Effects such as these
have already been observed in single discrete capacitors
[9]. Obviously, stray voltages of this nature are undesir-
able in an integrated circuit and can cause reliability prob-
lems, logic errors, etc., especially if the supply voltages
have been scaled down with the device sizes.

The close physical proximity of neighboring lines is not
the only cause of increased coupling in ULSI. The in-
creasing length of interconnects with increasing chip size
also contributes to increased coupling since a larger re-
gion is available for interaction when the interconnects
are long. Suffice it to say, then, that crosstalk and cou-
pling can be a serious problem in large ULSI chips be-
cause of the dense packing and long interconnect length.
To understand the nature of this coupling and finally to
find ways of countering it. one needs to be able to de-
scribe and model such coupling effects within a basic mi-
croscopic formalism. In this paper, we present such a
model derived from general coupled mode theory {10]-
[18]). The formalism is perfectly general and applies for
coupling between both optical and silicide interconnects.
i.e., for both optical coupling and quantum mechanical
coupling (tunneling). The applicability of the model for
both types of coupling is a rather fortuitous coincidence
which happens because the basic equations describing the
two types of coupling at the microscopic level are the
electromagnetic wave equation (derived from Maxwell's
equation) and the Schrodinger equation which are math-
ematically similar. In the next section, we present the the-
ory and then the Section III we estimate coupling coeffi-
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cients for both types of coupling. In Section [V we present
results for GaAs-AlGaAs optical interconnects and sili-
cide interconnects. Finally. in Section V. we present the
conclusions.

[1. THEORY
A. Coupling Between Optical Interconnects

To model electromagnetic coupling between a set of

closely spaced optical interconnect lines. we view and the
interconnects as optical waveguides and start from the
wave equation that governs the propagation of an electro-
magnetic signal in a waveguide. We assume that the in-
terconnects are nonlossy and nondispersive. This is a very
good assumption for optical interconnects comprising
GaAs waveguides surrounded by AlGaAs cladding. The
scalar wave equation for a TE mode propagating in the
X direction in any one waveguide reads [10)
9’E, 3°
v? E.(F, ‘)‘M?"'“ [Pcoup(r ')]v (1
where E, is the y component of the electric field in the
interconnect (waveguide) and [P, ], is the y component
of a distributed polarization source caused by the coupling
of signal from other interconnects. The quantities i and ¢
are the permeability and permittivity of the interconnects.
To solve for the field E, in the above equation, we in-
voke standard coupled mode theory. The solution
E,(7, 1) can be written as a linear superposition of the
normal modes (unperturbed fields) in the individual inter-
connects

E(F, 0 = L C,0E (. e @

where E7(y, 2) is the y component of the electric field in
the isolated nth interconnect (in the absence of coupling)
and w is the signal frequency. The field £ ( y, 2) satisfies
the unperturbed wave equation so that

2 2
[aa 2 a ]S‘H,(V )eluhl
a* .
= ue a 2 8""()’. ~)ew.l - _w;“eg-(vn)(y’ :)ew.l

3

where w, is the signal frequency in the nth interconnect.
Substituting (2) in (1), we get

aZ 2
PX iaaxc: + C, [ay :ZB E"(y, e

= —pew” [ZCS'"'()’ ‘.)]

a s L]
thaa [Peoup (7. O] (2 .8\ (y, z)) e (4)

where [P (7, 1], is an operator such that [P, (F. 1],
&, = [Peoup(T. D],

Using (3). we can replace the terms within the square
brackets in the left-hand side of (4) to get

|———uewC IS"”

= —pew” _.rc £ + u [P“,.,,,] <Z cnat.'").

(5)

Finally, multiplying the above equation by &/™" (the
asterisk denotes complex conjugate) and integrating over
all space, we obtain the coupled set of equations for the
coefficients C,

E{aac ? - w)C,0,, x,,.,.C}=0
m=1.2.3,---.m 6)

where &7, = | d*r87 1(8%/31*)[Prop], €} and Op, is
the overlap between the fields in the mth and nth inter-
connect (O, = [ d*r&7°E7).

Equation (6) is a set of n coupled second order differ-
ential equations. The difference between (6) and the equa-
tions of conventional coupled mode theory is that we have
not assumed O,,, = 0 for m # n. In fact, this assumption
would be incorrect in the limit of strong coupling where
the overlap between the fields in neighboring intercon-
nects can be quite significant and neglecting this overlap
may result in violation of energy conservation [13}-[18].

Let us now make the following substitution

D,(x) = Cy(x) exp <—i S k, dx) W)
where
- w3)- ®
Substituting (7) in (6) and using (8), we get

k)" = pe(w’

~

3D, aD, .
Z[azo + 2iky == O x,,,,.D,.]

-exp<i§k,,dt>=0 (m=1,

Equation (9) can be recast in a matrix form

2.3, -+, n).
)]

a? oy @

A) o (D] + 2i[B] - (D} = [KI[D]  (10)
where [D] is an n x 1 matrix whose elements are the coef-
ficients D,, D,, - - - . D,, [A} is an n X n matrix whose
elements are A, = O, exp (i { k,dx). [B)isan. < n
matrix whose elements are B, = k,On. €xp (i § k, dx)
and [K] is an n x n matrix whose elements are given by
Kmn = Kfznn exp (i I kn dx).

Equation 10 is the general coupled mode equations for
a system of n optical interconnects. To illustrate the use-
fulness of these equations, we now proceed to solve them




h)

for the case of just rwo interconnects. For this. we first
note that ratio of the second to the first term in the LHS
of (10) is of the order of the rato of the distance scale
over which significant coupling occurs to the wavelength
of the signal in the interconnects. For electromagnetic
coupling. the signal wavelength is the wavelength of the
optical or electromagnetic signal which is between 1 and
100 um typicaily. (We are only concerned with high speed
interconnects. i.c.. optical interconnects or those that
carry ultrashort pulses or millimeter waves.) For quantum
mechanical coupling the wavelength is the DeBroglie
wavelength of electrons which is between 10 and 100 A.

Since even for the most densely packed interconnects, we
do not expect significant coupling to occur over such small
scales, we can always neglect the first term in the LHS of
(i0) in comparison with the second term. This allows us
to obtain closed analytical solutions of (10) in the case of
WO interconnects.

If we neglect the first term in the LHS (10), we get

? = —iA|D1 - i9|2é2 exp i—l S [k| - kz] dX}
X
aD, . . ¥
= = —iA‘_)D-_) - in|D| exp {—l S [kz - k|] dX}
dx
(1
where
_ _1_[ xi1On _ k31 O }
& 2 Lki(0,,0 = 10317) k(0,05 = |01,]?)
_ l[ k30, 3 k110 ]
2 k(0,02 = 1002]7) k(0,05 — 03]
Q. = l[ k31 Oy _ k11O ]
12100000 - [045]7) k1 (01, 0x — |042]7)
1T K130 _ k3O
2 [k ki(0110% = [012]7)  ka(0,,09 — |0|212)J'

(12)

We now make another transformation of variables
D, = D, exp(-i S A, dx)

D}=D:exp<—i§¢:dx>

k| = k; + A|
ks = k3 + Q. (13)
This reduces (11) to
% = —i}y,Ds exp{—i S [ky — k3] dx}
9622 = —i{h,D, exp{—i S [ky - k;]dx}. (14)
x
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The above equations can be decoupled to yield

Oa—l? = ik = k) % ~ 004D, =0 (15

whose solution is
Di(x) = e [Pe”" + Qe ™| (16)
where P and Q are constants. 26 = k; — k| and v =

VK™ + 8” where k = Q,, = . The last equality follows
from the fact that the two interconnects are assumed to be
identical.

Assuming that the wave vectors are independent of po-
sition x. we get from (7), (13), and (15)

C(x) = e™*[Pe™ + Q") (1n
where ko = ki + .
Similarly, we get
CZ(X) tkox[P' wx o Qle—iux] (18)

where P’ = Pk* /xand Q' = Qk™ /x with k* = 28 +
2vand k™ =26 — 2.

To evaluate the constants P and Q, we need to apply
the boundary conditions. Let

Cx=0=P+Q=A;
k™P + k™
Cix =0 = ——K—Q=A{ (19)
This gives
k=, K _
P— _5A| 2 A2
k* . ok _
Q—3A| +2pA1 (20)
Now let
C|(x=L)=
C:ix = L) = By Y

Using (16)-(20), we get

B} = et [(cos (L) + %sin (vL)) AT
+ <—%‘ sin (uL)> Af]
B: = et Kcos (vL) — %S sin (vL)> A

+ <—'—y’5sin (uL))A,‘;]. (22)
This equation can be written in a matrix form as
Bf a c Al
= : (23)
By b d Ay
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where
Aol 0
a=e cos (vL) + — sin tvl) |
v

kol (

ST \
h=c=e - —sin wl) )
. 3 '

. 6 .
d = et (cos (vL) — — sin (vL) )
14 /

(24)

Note that the 2 X 2 matrix in (23) is in the form of a
transmission matrix. The matrix element b (= ¢) is an
indication of the coupling from one interconnect to an-
other. It is the fraction of the signal in interconnect 1 that
gets coupled to interconnect 2 after a distance L. Substi-
tuting back the values of « and ». we find that the quantity
b is given by

K S E—

bl = ic| N sin [ vk 6-L]. (25)
It is easy to show that this coupling is maximum if § = 0
as long as tan (kL) > «L or as long as xL < x/2. To
have § = 0 would require that the two interconnects be
identical and carry the same signal frequency. Note that
when é is zero it is possible for 100% of the signal in one
interconnect to get coupled to the other and this happens
at a distance

T
Ligos = > (26)
K
In the case of 6 = 0, the coupling over a distance L is
simply given by

|b} = |c| = |sin («L)| 27N

Therefore. the fraction of the signal power from one in-
terconnection that is coupled into another is given by

1bl* = |c|* = isin (xL)|". (28)

The most important step now is to derive an expression
for the coupling constant x. But before we proceed to do
so. we show that the Schrédinger equation governing
quantum mechanical coupling between interconnect lines
is mathematically similar to the wave equation governing
electromagnetic coupling between optical interconnects so
that the Schrodinger equation yields similar solutions for
the coupling parameter b (= c). In fact, the expression
for b (for quantum mechanical tunneling) is identical to
the expression given in (27).

B. Quanrum Mechanical Coupling

- The equations goveming quantum mechanical transport
of electrons through an interconnect (which can be viewed
as an electron waveguide) is the Schrodinger equation
which reads

th==(Hy+ H)W = ( -V~ H' )y 9

ar . 2m ,
where h is the reduced Planck’s constant, m is the elec-
tron’s effective mass. y (= ¥ (7, 1)) is the electronic wave

tfuncuion. Hy is the unperturbed Hamiltonian, and H' is
the perturbation in the Hamiltonian ansing from coupling.

We will assume that the perturbation is static (this ne-
glects phonon-assisted or incoherent tunneling) and use
time-independent perturbation theory. The wave function
IS written as

VP =Y vz n =[G (y, 2

+ Cy(x)pa( v, 2)]e ~iEt/A
~E 2tk

(30

where ¢, ;(y, 2)e are the unperturbed wave func-
tions in interconnects | and 2 in the absence of coupling.
These wave functions are eigen functions of Hy (which is
Hermitean) and therefore orthonormal.

Since ¢, »( y, 2) e “£'**/* are eigen functions of Hy, i.¢.,
they satisfy the unperturbed Schridinger equation, it is
easy to see that

Hody 2 (. 2) = E 20, 2(y, 2. (3D
Substituting (30) in (29), we get
rEe e, 2,
2m ( Ox° dy-  az°
R (d%C L L
a5+ Gla alle
= E[Ci¢, + C:¢n] — H'(C ¢y + Giy)  (32)

—tky ¢

where ¢, ; = ¢, ,(v. e

Comparing the above equation with (5), we find that
they are mathematically similar. This is not surprising
since both the electromagnetic wave equation and the
Schrodinger equation describe the propagation of a wave
through a medium. Because of this mathematical similar-
ity we can write down the coupling coefficients |b| and
|c| from analogy without any further derivation.

Ib| = lc| = sin ({L) (33)
where
¢ = (mlH} ,|/h*) 0y, — (miH; | /h?) 0,
8(0,,0n, - 10121 %)
_ (mlH /) 0n = mH i1 /B) Oy o
3(0,00 — [02])
while H},,, = {d’r¢ xH' ¢, and
B = V2mE - E\)/h = N2m(E — E))/h  (35)

where E, and E, are the unperturbed energy levels in in-
terconnect 1 and 2.

III. CaLcuLATiON OF CouPLING COEFFICIENTS

A. Optical Coupling Coefficient

To calculate the optical coupling coefficient x, we con-
sider two identical parallel or crossing interconnects which
we view as optical waveguides. The configuration is
shown in Fig. 1(a) and (b). We concentrate on TE,; wave
propagation and one particular transverse mode. Fig. 1(c)
shows the refractive index profile 5 (z) along the z direc-
tion where n(z) = v u,(2)¢€,(2) and the subscript r denotes
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Fig. 1. (a) Two parailel interconnects of width d and separation s. (b) two
crossing interconnects, and (c) the refractive index profile along with the
electnic field distnbution in two neighboring optical interconnects that act
as waveguides.

relative permeability or permittivity. The refractive in-
dexes in the two interconnects are 7,, and 7,,, respec-
tively, while the refractive index of the intervening me-
dium is 7.

We now calculate the quantities k), (= x1») and k|, (=
x>, ) which appear in the expressions for @), = @, = «.

2
K1

W Ho€o s dz€\"(2)(m; — 1) € (@)

wzﬂoéo S dZS:,“(Z)(ﬂf - 7]“)8'\.2’(2) (36)

R
K12

0y, = Oy
2 2
N ne — N (]
=e ""Ei{ Z s — +
ne — M5 (o
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where uq, and ¢, are the tree space permeabilities and per-
mittiviues.

We will assume that the two interconnects are identical
so that n,, = n,, = n,. The electnc field amplitudes are
given by {see Fig. i(c)] [12]

Ee: :<0
€M) = zEe COS (Y, + @) 0<:sd (37
Eexpl-adz —-d)] :t=z=d

E;exp [a,(z — 3] Zss

§2(2) = { E;cos (7,(z — 5) + &) s<zss+d
Erexp [—a,(c — 5 — d)] z2s+d
(38)
where
a; = k= nfw’poeo
Y; = ngw’noey — k?
El(m} - N*) = Ej(ng — nj)
¢ = —tan”' <&)
Yd
N = k/wuoe 39)
and k is defined in (3).

The quantities O;, O, O3, 11, and k)2 can now be
computed ecasily.

On = On
Ex[,me— N
= — |4 ———=cot o + 2y,d
AR HER T ‘

+ sin (2y,d + 2) — sin 2¢] (40)

a,(e®? cos (y,d + &) — cos d))z

3 3
as + v

s

n Ny

i 2 2
- n, — N

+e MEZ: x 3

v,(e™? sin (y,d + ¢) — sin ﬂ

2 N
a; * v y

a,(e*? cos ¢ — cos (v,d + 0))2

+ e'""Ei

N 2 s
as; * v ./
J

v, (sin (v,d + ®) — ™4 sin @)
4 2 (4])

—
ai + v
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) . e = N° 0 sin(y,d)

Kix = € uTugen 1 < £ ——— i 42
Nne - v, T Yoo

: ~las 2 ne = N E, avd

K =€ "Twugen — [e™ = 1]. (43)

o+ e/ 24

One can now use the results of (40)-(43) in (12) to ob-
tain « and then use it in (27) to tind the coupling parameter
b for electromagnetic coupling.

B. Quantum Mechanical Coupling Coefficient

To estimate the coupling coefficient { associated with
quantum mechanical tunneling between two intercon-
nects, we first refer to Fig. 2 which shows two parallel
interconnects [Fig. 2(a)] or two crossing interconnects
[Fig. 2(b)] as a system of two coupled quantum wires.
Fig. 2(c) plots the potential energy profile ¥(2) that an
electron sees along the z direction. The electron’s kinetic
energy of motion in the z direction is quantized into sub-
band states that are labeled by n (E, is the energy of the
nth subband state as shown in Fig. 2). The height of the
potential barrier is V — V, for the first interconnect and V
~ V, for the second interconnect. The distance between
the interconnects is s and the width of each interconnect
(dimension along z direction) is d.

To calculate {, we first find the quantities |H »|, O,,
0,,, and O,; which appear in the expression for { [see
(34)]. Following [15] we calculate these quantities as fol-
lows

il = || vty - v

(44)

The wave functions ¢, (z) and ¥, (z) are given by [18]

e™ cos 0 <0
Yi(2) =S cos(yz + O 0=<:=sd
exp [—a(z = d)]cos (yd +0) z=2d
(45)
e** """ cos § :I<s
cos (y(z —5) + 0 s<:=<s+d
V) = exp [—a(z — s — d)] cos (yd + 0)
z2s5+d
(46)
where
a = 2m/h*(V - EV)
y = V2m/RET - V)
= —lal;_' (a/¥)
2
C= «/ﬂz_/a" @7)

The energy E, is the energy of an electron in the nth bound
state in a quantum well and is found from the eigen equa-

ayer
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Fig. 2. (a) Two parallel interconnects of width d and separation s, (b) two
crossing interconnects. and (c) the potential energy profile along with the
wavefunctions in two neighboring narrow interconnects that act as quantum
wires.

tion

yd = 2tan"' (a/v) + n=. 48)

The quantities O,, (= 0y), Oy; (= Oy)), H}, and
1.2 can now be calculated easily

Oy =0y =1
0 = Oy
e [cos: 8 + cos” (yd + 0
d+2/a 2a

*d cos (yd + 6) cos (s — d)]
L e
d+2/a
[a(e"‘“ cos (yd + ) — cos 0)]
L al + v’
sin{(yd + 8) — sin @
a: + 72

- cos @

+_

d+2/a

+ s ——

d+2/a

[ a(e™ cos 8 — cos (vd + 0))]
a: + ‘y:

ad
cos 8 [7(8

cos (yd + 0)

4, -as
Yd+2/a
[y(sin (vd + 6) — e* sin 0)]

al + o’ J

cos (yd + 6)

(50)
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Fig. 3. 1a) The coupling parameter 151 * (which is the fraction of the power
in one 1nterconnect coupled to the other) for electromagnetic coupling ver-
sus the separation between the interconnects. The interconnects are t um
wide and the refractive indexes of the interconnect matenal and the sur-
roundings are 3.6 and 1.5, respectively. The resuits are plotted for two
Jdifferent lengths of the interconnects. namely | and 10 cm. The angular
frequency 13 67 x 10'* rad /3. (b). The coupling parameter ib|? versus the
length of the interconmect for a spacing of 1.005 um. All other parameters
are the same as n Fig. J(a).

as 2V = V3) cos (vd + &) sin (vd)

H' =
P e i+ 3a v"y: . (5D
Ly UV = Vi) cos® (yd + 6) .
. ’ = «as - sad -
Hiv = T P
(52)

We can use the resuits of (49)-(52) in (33)-(35) to ob-
tain the coupling parameter b in the case of quantum me-
chanical coupling.

IV. RESULTS

In Fig. 3(a) we show the coupling parameter |b|? due
to optical coupling as a function of the spacing s between
two identical optical interconnects for two different
lengths of the interconnects. The coupling parameter |b| 2,
as mentioned before. is the fraction of the power in one
interconnect that is coupled to the other. The intercon-
nects are assumed to be | um wide (this is of the order of
the wavelength of light emitted by semiconductor lasers
and light emitting diodes). the material is GaAs with a
refractive index of 3.6 and the isolating medium is Al-
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Fig. 4. (a) The coupling parameter 5| ? for quantum mechanical coupling
versus the separation between interconnects. The imterconnects are as-
sumed to be made of polysilicon embedded in solicon dioxide. The energy
barrier between polysilicon and oxide is assumed to be 3 eV, the electron
subband energy is 1 eV below the barrier and the loagitedinal kinetic en-
ergy is 10 meV. The width W of the interconnects is 50 A. The results are
plotted for two different lengths of the interconnects, namely | and 10 cm.
(b) The coupling parameter |b|* versus the length of the interconnect for
two different spacings of 100 and 150 A. All other parameters are the same
as in Fig. 4(a).

GaAs with a refractive index of 3.5. Fig. 3(b) shows the
coupling parameter due to electromagnetic coupling as a
function of interconnect length when the spacing between
the optical interconnects is 1.005 um. The signal fre-
quency is assumed to be 2x10'* Hz which roughly corre-
sponds to the signal frequency of a GaAs diode laser.
Other parameters regarding the interconnects are shown
in figure legends. In Fig. 4(a) we show the coupling pa-
rameter due to quantum mechanical coupling as a function
of spacing between two identical silicide interconnects
embedded in silicon dioxide. We assume that the potential
barrier between silicide and silicon dioxide is 3 eV which
is close to the potential barrier between silicon and silicon
dioxide. The interconnects are assumed to be S0 A wide
(the limit of present-day lithographic capability). The data
is presented for two different lengths L of the intercon-
nects (L = 1 cm and L = 10 cm). In Fig. 4(b), we show
the coupling parameter as a function of the length of the
interconnect for two different spacings of 100 and 150 A.
All other relevant parameters about the interconnects are
displaced in the legend.
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V. CONCLLUSION

It ts evident trom the resuits that coupling 1n opucal
interconnects 1s not a senous problem in ULSI. This 1s
hecause GaAs-AlGaAs waveguides provide cxcellent
confinement of the optical signal. However. quantum me-
chanical tunnelng can be quite senous in siiicide dielec-
tncs embedded in silicon dioxide. As shown in Fig. 4(a).
the coupling parameter |b| - for quantum mechanical cou-
pling approaches 1 if the spacing 1s 100 A. The coupling
15 always larger for a longer length of the interconnects
since a larger region tor coupling is provided. As shown
in Fig. 4(b). the coupling is also larger when the spacing
between interconnects is smaller. In Fig. 4(b), we see that
the coupling oscillates with increasing length of the inter-
connect L when the spacing is small enough. This is eas-
ily understood from (33) which shows that |b|> = sin’
({L) which is an oscillatory function in L. When the spac-
ing is 100 A. the coupling and ¢ are large enough that a
penod of the oscillation occurs when L = 6300 A. For a
spacing of 150 A, the coupling and { are much smaller
so that a much larger length L would be required for a full
period of the oscillation. Therefore. we doe not see the
oscillation for the spacing of 150 A in Fig. 4(b).

Fig. 4 shows the quantum mechanical tunneling be-
tween silicide interconnects can be a serious problem in
ULSI. Tunneling, of course, can be a coherent process or
an incoherent process (phonon-assisted tunneling, for in-
stance. is incoherent) and our analysis has dealt with co-
herent tunneling only. In our analysis, we assumed that
the electron wavefunction is coherent over the entire width
of the interconnect which is a good assumption for very
narrow polysilicon interconnects (<50 A wide) even at
room temperature and certainly below. Consequently,
tunneling may cause significant crosstalk in ULSI circuits
at room temperature and at cryogenic temperatures. Since
many ultrafast electronic devices such as high electron
mobility transistors (HEMT's) or quantum coupled de-
vices utilizing resonant tunneling transistors may be con-
strained to operate at liquid nitrogen temperatures (77 K),
quantum mechanical tunneling between interconnects
could pose a serious problem at these temperatures. To
circumevent this problem, one may devise ways of de-
stroying the coherence of the electron wave function. One
possibility is to impregnate the intervening dielectric iso-
lating the interconnects with a soft magnetic material with
strong spin-orbit scattering. Since spin orbit scattering is
very efficient in destroying coherence. this may inhibit
significant tunneling between neighboring interconnects
and reduce crosstalk. The other obvious way of counter-
ing this problem is to use as isolating dielectrics those

- insulators that present a large energy barrier to tunneling.
In this respect. silicon dioxide is better than silicon nitride
since the energy barrier to tunneling is usually larger with
silicon dioxide which has an energy gap of ~9 eV com-
pared to ~ 5 eV for silicon nitride. The small energy gap
of silicon nitride may preclude its use as isolating dielec-
tnc in ULSI in spite of its other attractive properties such
as high resistance to Na~ diffusion.

In conclusion. we have presented a model to calculate
crosstalk between optical interconnects using waveguides
and between narrow and closely spaced silicide intercon-
nects embedded in dielectncs. We tind that the crosstalk
between silicide interconnects ansing from quantum me-
chanical tunneling could be senous tn ULSI circuits. We
have also suggested some remedies for that problem.
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New developers for poly(methyl methacrylate) consisting of mixtures of common developing
components have been carefully investigated. It has been found that adding a small
percentage of methyl ethyl ketone to methyl isobutyl ketone and Cellosolve results in a
significant increase in contrast. Resuits of contrast experiments as well as improvements in
electron-beam lithographic exposures are reported. An explanation of the mechanism of

contrast and resolution enhancement is offered.

I. INTRODUCTION

Very large scale integration (VLSI) technology con-
tinues to push toward smaller geometries with advance-
ment in the § um range and experimental circuits such as

monolithic microwave integrated circuits (MMICs) in the
0.1 um range. The fabrication of nanostructures and quan-
tum devices below 0.1 um especially relies on ultrahigh
lithogra=hic resolution, and as such continues to utilize
primarily poly(methyl methacrylate) (PMMA) as the re-
sist of choice. PMMA continues to find applications in
electron-beam lithography (EBL), focused ion-beam li-
thography, x-ray lithography, deep uv optical lithography,
and, more recently, scanning tunneling lithography.' It is
ulmost universally the choice for the development of new
lithographic techniques since PMMA offers the highest
known resolution of any organic resist. A drawback to the
use of PMMA is that it is generally not sensitive enough
for manufacturing purposes, but it does offer extremely
high resolution. For this reason, PMMA remains techno-
logically important.

The generally accepted criterion of resolution predic-
tion of a resist-developer system has fallen on contrast 7.
High contrast can be thought of as the ability of a devel-
oper to discriminate between very small differences in ex-
posure dose from one small area to an adjoining one. Ex-
posure in electron-beam lithography is not precisely
localized due to factors including the Gaussian beam cross
section, forward scattering in the resist, backscattering
from the resist and substrate (proximity effect), and the
generation of secondary electrons in the resist.> These fac-
tors decrease the modulation transfer function of the ex-
posure for closely spaced patterns.

In PMMA, a positive resist, bonds are broken by inci-
dent radiation (e.g., an electron beam), decreasing the av-
erage molecular weight M of the long-chain molecules.
This increases the solubility of the resist in a suitable de-

' Author to whom correspondence should be addressed.
"'Present Address: VLSI Research Depariment. Lishan Microelectronics
Co.. P. O. Box 19, Lintong, Shsanx: 710600, Peoples Republic of China.
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veloper allowing the exposed pattern to be indented into
the resist. In further processing steps, the pattern is trans-
ferred by various techniques to the substrate material. An
important limitation on the density of the exposed pattern,
and in some respects the individual line-widths, is the prox-
imity effect which causes exposure of the resist up to sev-
eral micrometers away from the area of the primary expo-
sure. As lines are placed closer together, the total dose
increases between the primary exposed regions, thus lead-
ing to a decreased differential in exposure.2 The require-
ments of the developer to distinguish between differences in
dose become more stringent if the pattern is to be resolved.

Ideally, a developer will remove all positive resist that
has been exposed to a dose above a certain threshold and
none of the resist that has been exposed below that thresh-
old. In practice, a range of exposures results in partial
development of the resist over that range. For this reason,
higher contrasts allow a narrower area to be developed
completely even in the presence of those factors that
broaden the exposure. For other lithography schemes men-
tioned above, similar energy scattering limitations to reso-
lution exist. It is expected that for all types of lithography,
higher resolution will result from higher contrast, and the
improvements discussed below will be equally relevant to
any application of PMMA.

Contrast is a measure of the sharpness of the develop-
ing threshold of the developer-resist system and is defined
as the slope of the plot of normalized thickness of the resist
remaining after development versus the logarithm of the
exposure dose. Figure 1 illustrates the definition of y. The
onset of development D, is defined to be the dose at the
intersection of the steepest part cf the contrast curve ex-
trapolated to the 100% level of the curve. The sensitivity
Dy is defined to be the dose of the extrapolated curve at
zero thickness.

As discussed above, v is a measure of the ability of the
developer to distinguish between gradations of dose. Since
contrast is expressed as

v = [log(D/Dy)] ~ . (n
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FIG. 1. Plot of normalized positive resist thickness remaining after de-
velopment as a function of log of exposure dose (the contrast curve)
illustrating the definitions of D, and D,.

a higher absolute value of y represents a higher contrast
developer. (In this report, the absolute value of all contrast
values will be used, but are all negative.) The ideal situa-
tion discussed above in which there is an absolute dose
threshold for dissolution represents an infinite contrast,
whereas in practice the contrast is always finite. Contrast is
commonly measured experimentally for a given develop-
ment time by varying the exposure dose in small incre-
ments through the region of dose that causes the resist to
dissolve until total dissolution is achieved. A common
method for measuring v is to use a surface profilometer to
measure the thickness of resist remaining after exposure
and development and plot the data as discussed above.>”’

As we discuss later, the contrast parameter is entirely
dictated by the dissolution behavior of the polymer. Pa-
panu er al. have produced valuable fundamental work on
the mechanism of PMMA dissolution in one- and two-
solvent developers, and for different polymer molecular
weights.'” Their experiments greatly clarify the role of
thermodynamic quality of the solvent on the rate and
mechanism of polymer dissolution, but only for one- and
two-component developer mixtures. Here we approach the
more complex case of a multicomponent developer and, on
more practical grounds, we study the effect of solvent qual-
ity (in our case various mixtures) on the rate of dissolution
of electron-beam-exposed PMMA resists. We explore com-
binations of common developers to ascertain whether or
not improvements in the lithographic process could be pro-
moted simply by using readily available mixtures of sol-
vents.

These new developer solutions are mixtures of chemi-
cals that have been commonly employed individually as
developers for PMMA, but which when combined exhibit
higher performance than when alone. Our combination of
these chemicals has shown improvements in achievable
contrast of PMMA as well as improved lithographic re-
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sults. Some of our developer solutions give improvements
of up to 35% in contrast and no loss in sensitivity.

Three chemical solutions are often employed as
PMMA developers. These are (i) methyl ethyl ketone:eth-
anol (EtOH) in a rauo of 26.5:73.5; (ii) Cellosolve (2-
ethoxyethanol):methanol (MeOH) in a ratio of 3:7: and
(1i1) methyl isobutyl ketone:2-propanol (IPA) in a ratio of
1:3. These solutions are referred to here simply as solution
A, or S-A, solution B, or S-B. and solution C, or S-C,
respectively. Pure methyl ethyl ketone, Cellosolve, and me-
thyl isobutyl ketone will be represented by MEK, CS, and
MIBK, respectively. S-C has been reported to provide very
high resolution at exposures of 50 kV electrons with a
development time of 1545 s'"'? while S-B has been re-
ported to provide very high resolution in EBL exposures
between 20 and 120 kV with a development time of 5 s.'>14
It is mixtures of these three common developer solutions
which we have found to give markedly improved resuits in
contrast.

Il. EXPERIMENT

For resist exposures, we used an ISI-100B scanning
electron microscope (SEM) modified for EBL in a vector-
scanned mode with an exposure spot (pixel) spacing and
beam diameter of 100 nm each.'* All test exposures were
performed at 40 kV on thick silicon substrates. All PMMA
films were of molecular weight 950 000 a.u., spin coated
and baked at 160 °C for 4 h, with resist thicknesses ranging
from 0.4 to 1.0 um. Exposures were arranged in a 6 X6
array of 50 50 um? squares. Resist thicknesses remaining
after development were obtained using a Dektak II surface
profilometer.

S-A, S-B, and S-C were tested alone and in combina-
tion using development times that yielded approximately
the same dose for complete development and also corre-
sponded to typical values from the literature. These times
were 45 s for S-C,'''? 5 s for S-B,'*!* and 2 s for S-A. The
development time for almost all mixtures of these compo-
nents was 10 s. This time was based upon the relative
strength and concentrations of the components used in the
mixtures and was estimated initially to yield the same time
to complete development for approximately similar doses.
The range of developer temperatures represents common
fluctuations caused by varying room conditions, evapora-
tive cooling, etc.

Development was performed by holding the samples
with tweezers and dipping in the developer with light agi-
tation for the required time. Temperatures during develop-
ment were determined by inserting a mercury-bulb ther-
mometer, calibrated to 1°C, into the beaker. Developer
times were controlled as much as possible by careful atten-
tion to the process. Significant error occurred only in the
possible case of S-A with a 2 s develop (estimated at less
than 20% ), but this data was used only for crude compar-
ison as will be discussed below. All samples were rinsed for
15 s in MeOH immediately after development and blown
dry in nitrogen.

The unexposed dissolution properties of the three de-
veloper components were tested to ensure that normalized
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TABLE 1. Resuits of contrast experiment wdentified by sample number. concentrations, and development lemperature.

Volume Percent Develop
Sample time Temperature

no. S-C S-B S-A MEK 5) 'C v

! 0 100 b} 0 N 19 &7
2 0 100 0 ) < 2 T0
3 100 0 0 0 45 19 7.
4 100 0 0 0 45 21 9.3
3 66.4 .0 1.6 0.424 10 e 77
o 66.4 20 1.6 0.424 10 e 70
T 49.6 48.0 24 .636 10 s R2
b 49.6 48.0 24 0.636 10 e 8.5
9 50.1 154 45 1.19 10 I8 79
10 50.1 154 4.5 1.19 10 18 79
11 50.1 45.4 4.5 1.19 10 19 94
12 50.1 45.4 4.5 1.19 10 19 94
13 50.1 454 4.5 1.19 10 19 9.1
14 50.1 454 45 1.19 10 19 8.8
15 0 95 5 1.19 5 21 12.8
16 0 0 100 100 2 19 47

thicknesses were not compromised by excessive dissolution
rates. This was necessary since the profilometer technique
can only measure resulting resist thicknesses with respect
to the unexposed portions. By soaking for several hours,
S-B and S-C were found to yield unexposed dissolution
rates of 2.8 and 0.5 A/min, respectively. The harshest de-
veloper, S-A, displayed the highest dissolution rate of 5t
A/s. However, even this rate was still small enough to be
negligible given our initial thickness and short develop
times for mixtures containing even smail amounts of
MEK.

Data were taken for the three developer components
alone as well as for a variety of mixtures of the three com-
ponents. Contrast was determined from the steepest slope
on the graphs of percent resist remaining versus the log of
exposure dose. The steepest slopes were determined using a
linear regression routine applied to the three steepest data
points. Special care was taken to apply exactly the same
criterion for the determination of steepest siope in all cases.

The mixtures of the developers were investigated to
show the effects of varying primarily the S-A concentra-
tion. It was deemed that S-A is such a harsh developer that
its overall concentration should be very low, and also that
the properties of S-B and S-C are similar enough that their
concentrations should also be similar. However, higher
concentrations of S-C were included in the mixtures since
it yields generally higher contrast than S-B. Since S-A was
found to give low contrast by itself at an MEK concentra-
tion of only 26.5%, we investigated primarily the range of
very small MEK concentrations. For these reasons, the
three mixtures investigated were S-C:S-B:S-A in ratios of
42:20:1, 21:20:1, and 11:10:1. We consider the most impor-
tant parameter to be the S-A concentration, which in the
above mixtures is 1.59%, 2.38%, and 4.55%, respectively.
This corresponds to an absolute concentration of MEK in
the total mixture of only 0.42%, 0.64%, and 1.2%, respec-
tively. Please note that mixture ratios are expressed in units
of S-A volumes, and percentages are provided in Table I.
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IIl. RESULTS AND DISCUSSION

The resuits of our contrast experiment are shown in
Figs. 2 and 3. Figure 2 shows contrast curves for the three
original developers, S-A, S-C, and S-B. For the data
shown, the contrast for S-A is 4.7, for $-C 7.0, and for S-B
5.7. It is important to note, as will be demonstrated below,
that small differences in contrast can be very important to
lithographic results, given the logarithmic nature of the
plot.

Figure 3 shows contrast curves for two mixtures of the
three common solutions. It can be seen by comparing Figs.
2 and 3 that the sensitivity of the mixtures is approximately
the same as that of S-C, falling midway between that of
S-A and S-B. This is an extremely desirable trait of a de-
veloper, namely, that an increase in contrast does not lead
to a decrease in sensitivity of the resist-developer system.
This is more significant considering that the develop time
for the mixtures is only 10 s compared with 45 s for S-C.
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FIG. 2. Contrast curves for the three onginal developers.

Bernstein, Hill, and Liu 4068




5 08

2 .

c

= 0

g

= 086

@

(%]

o

3 0

© 4

§ o 21:20:1 (sample 7) y=¥ .

=

£ s 117101 (sample 11) Y=y 3

3 02

z a
0 e _
10° 10° 10 °

Dose (Coulicm’:

FIG. 3. Contrast curves for mixtures of the ongimnal developer compo-
nents. Ratios are S-C:S-B:S-A.

This implies that the mixture must offer higher sensitivity
than S-C or S-B alone if development times are increased.
In addition, it is shown in Appendix A that contrast is
predicted to increase for increased develop times but only
for an increased solubility, as in our case of added MEK.
This implies that further study would indicate a possibility
of achieving even higher contrasts coupled with improved
sensitivity for longer develop times. In practice, the opti-
mum exposures for highest resolution correspond to the
dose at D, of Fig. 1, where D, must decrease for increased
develop time. This has strong implications for the viability
of improving the throughput of processes utilizing PMMA
for high-resolution commercial applications.

We have observed markedly improved lithographic
performance using the new developer mixtures. Figure 4
shows photomicrographs of test patterns consisting of sets
of parallel lines of decreasing pitch to 0.1 um in the direc-
tion of the outside of the pattern, and overlapping to form
a variable-spaced grid in the corner. Both test patterns
were exposed on a single sample under the identical con-
ditions of resist thickness, bake temperature, bake time,
dose, line spacing, and beam energy. After exposure the
patterns were separated and developed as discussed above
using S-C for pattern 4(a) and S-C:5-B:S-A 11:10:1 for
pattern 4(b).

The resulting improved contrast can be observed from
the variations in light and dark areas. One expects that as
the parallel lines are exposed closer together, the proximity
effects cause some exposure of the spaces between the
lines.* A lower-contrast developer will dissolve the PMMA
at the lines of exposure and also remove much of t}._ resist
between the lines. This is the cause of the light areas in Fig.
4(a) as the line pitch decreases. However, a sufficiently
higher-contrast developer will remove mostly the resist in
areas of direct exposure and less of the resist between the
lines. This is the case in Fig. 4(b) where there 1s clearly
less light area, showing that the resist remains intact be-
tween the lines even in the presence of identical proximity
effects to part 4(a). These results cannot be explained as a
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{b)

FIG. 4. Photomicrographs of test patterns illustrating improved contrast
from new developers. The test patterns consist of parallel lines of decreas-
ing pitch in the outward directions, crossing in a vanable-pitch grid pat-
tern at the corner. Light areas indicate severe loss of resist between the
exposed lines. Both patterns were exposed under identical conditions, but
developed by (a) S-C for 45 s and (b) S-C:S-B:S-A 11:10:1 for 10s. The
appearance of less light area in (b) implies that the mixiure has provided
much higher contrast than that of S-C in (a).

simple matter of sensitivity and overdeveloped exposure,
since the sensitivity of the 11:10:1 mixture is almost exactly
the same as that of S-C as can be seen by comparing Figs.
2and 3.

Figure S5{a) shows a grid pattern developed by the S-B
solution. The linewidths vary by about 25% toward the
interior of the pattern. Figure 5(b) shows a pattern devel-
oped in §-C:S-B:S-A 11:10:1. There is almost no evidence
of linewidth variations over the pattern due to the higher
contrast of the 11:10:1 mixture versus that of the S-B. In
addition, lift-off properties are affected by contrast. Figure
5(a) shows a typical example of metal flakes left from the
unexposed areas after a lift-off step 1n acetone. Figure 5(b),
however, shows the consistentlv improved lift-off achieved
due to steeper sidewalls resulting from the higher contrast.
The patterns of Figs. 4 and 5. then. help demonstrate that
the new m:xtures provide usablv higher contrast compared
with conventional developers

Table I shows the contrast tor various percentages of
developer solutions and temperatures. A plot of contrast as
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FIG. 5. Grid patterns formed by EBL exposure at 40 kV on GaAs sub-
strates followed by development and lift-off of 40 nm gold: (a) developed
i1 S-B and (b) developed in S-C:S-B:S-A 11:10:1. Note decreased line
broadening 1n (b) vs (a) indicating higher contrast of the mixture over
S-B. Also note typical improved lift-off as a result of steeper edge profiles
due to higher contrast.

a function of percent S-A, uncorrectzd for temperature
dependence, is shown in Fig. 6. A trena of increasing y as
S-A is increased is indicated. The same data, but normal-
ized to 19 °C, are shown in Fig. 7. (Note that contrast data
show: no correlation with the initial resist thickness. which
is accounted for in the process of normalizing the remain-
ing thickness after development.) The temperature nor-
malization assumes an Arrhenius behavior with an activa-
tion energy of 24.3 kcal/mol, found by fitting contrast data
at a fixed S-A percentage as a function of temperature. This
value is intermediate between that found by Cooper, Kra-
sicky, and Rodriguez '® of 25 kcal/mol for MEK and that
reported by Greeneich'” of 24 kcal/mol for MIBK. In the
case of Fig. 7, a trend of increasing contrast for increasing
percent MEK is r~w clearly evident. The data. including
S-C, collapse to a straight line of the least-squares fit very
closely except for the case of S-B at 09 MEK. (Precise
temperatures were not available for the case of 0.429% and
0.64% MEK. The bar in the figure is not an error bar. but
represents calculated uncertainty of plus or minus 0.45°C
based on the known value of the activation energy centered
about 19°C.) It is striking that within this linear region.
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FIG. 6. Plot of ¥ as a function of percent MEK, uncorrected for temper-
ature dependence. Sample number and temperature are noted for each
datum.

about a 1.3% increase of MEK concentration in the mix-
ture results in more than a 35% increase in contrast, and
that further improvements can be promoted by simply in-
creasing the temperature.

The fact that S-B does not fall on the temperature-
compensated line can be qualitatively understood by noting

14

15

Normalized Contrast

™~ o 0.45°C

4 - r " ey

0.0 0.2 04 06 8 10 1.2 1.4
% MEK

FIG. 7. Plot of y as a function of percent MEK. corrected for temperature
dependence by normaizing to 19°C. The normahzation assumes an
Arrhemus dependence with an activation energy of 24.3 kcal/mol. Nouce
that the points 1n Fig. 6 corresponding to sample no 4 (21 °C) for pure
S-C and that of samples no. 9 and 10 (18°C) at 1.199% MEK have
collapsed onto the straight line and are now obscured on the graph by
other data points. The bar in the figure is not an error bar, but represents
caicuiated uncertatnty of +0.45°C based on the known value of the
activation energy centered about 19 °C
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that both MEK and MIBK are ketones, while CS (I-
ethoxyethanol) contains both alcohol and ether groups.
The chemical compositions of MIBK and MEK are very
similar, differing only by two aliphatic carbons. In order to
understand the dynamics completely, one would need to
consider a full thermodynamic and transport analysis in-
volving six components. A complete analysis is beyond the
scope of this work, but a simple explanation of the role of
the components is given below.

Previous analyses of the development of EBL-exposed
resist show that measured decrements of normalized resist
thickness upon exposure (i.e., the contrast curve) shouid
be directly proportional to the rate of polymer dissolution'’
(see also Appendix A). For a given developer system, this
rate depends on the average molecular weight of the ex-
posed polymer, which in turn is a function of the dose.
Appendix A shows that contrast is expected to exhibit the
same temperature behavior as that of dissolution rate and
explains our observation of increased y for developments
performed at slightly higher temperatures where dissolu-
tion rates are in general higher. We found that at all S-A
concentrations, ¥ increased with temperature between 18
and 21 °C. With the exception of only the S-B data, all
other data properly collapsed onto the best-fit line as a
function of temperature as suggested by the above theory.

The main factors that affect the rate of solubilization of
a polymer in a solvent are the plasticization and thermo-
dynamic compatibility, or solvent “quality.” Plasticization
refers to the ability of the solvent to penetrate the polymer
and increase the free volume,'®'? making it more vulnera-
ble to dissolution. The rate at which a solvent can plasticize
a polymer is related to its molecular size and therefore its
molecular weight. Gipstein et al.?® reported a noticeable
solvent-size effect in the dissolution rate of atactic PMMA
in a homologous series of n-alkyl acetates. They found a
precipitous drop in dissolution rate for increased penetrant
molecular weight. As an approximation we will use molec-
ular weights as an estimator of the relative ability of the
solvent components to plasticize the exposed PMMA.

The solvent quality is related to the match between
three thermodynamic parameters of the solvent and the
polymer. The closer these are, the higher is the thermody-
namic compatibility resulting in a higher dissolution rate.'®
These parameters are the three components of the global
solubility parameter 8, namely the dispersive, polar, and
hydrogen-bonding components, 8, 5,, and §,, respectively,
where

8t =5, + 8 + 8. (2)
We have found it useful to compare all of these com-
ponents in an attempt to explain our results. In comparing

.the similarity of the three solubility parameters between
the developers and PMMA, we have defined the parameter

A= [(8, = 8,)" + (8, — 842 + (84— 64)*1% (D)

where i indicates a developer component and j the resist.
Since 6, is the lengt’. of the solubility vector in solubility
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TABLE [I. Molecular weight and solubility parameters for each compo-
nent of the mixtures. The distance & is included for each component.

M 5y S, EN a
Component  (g/mol) [(MPa)' *] [(MPa)' °] ((Mpa)"?}] {(MPa)"}]
MEK 72 140 w3 95 14
EtOH 46 12.6 12 200 12
MIBK 100 144 5.1 59 34
IPA 60 14.0 98 16.0 75
cs 90 13.0 9 15.2 6.8
MeOH 32 116 13.0 240 16
MMA 90 135 10.1 8.5

parameter space, A is the distance between the end points
of these vectors. We therefore refer to A as simply “dis-
tance.”

It is expected that the greater the distance A is, then
the less efficient the component is at dissolving PMMA,
and therefore the lower is the solvent quality. Such mea-
sure of compatibility is consistent with the idea that polar,
dispersive, and hydrogen-bonding forces can, in principle,
act independently. (For example, two chemical species,
one strongly polar but nonhydrogen bonding, and the
other weakly polar but strongly hydrogen bonding, could
have the same global solubility parameter and yet be im-
miscible. This is the same as saying that the length of §, in
solubility space is the same for each species, but their di-
rections vary greatly.) Thus only those solubility parame-
ter components pertaining to congruent energetic interac-
tions should be compared.

The calculated values of A for all pure solvents com-
pared with MMA, along with the molecular weights of
each component, are given in Table I1. Again, the plasti-
cization, or molecular weight, of the individual compo-
nents must also be considered in explaining their role in the
solutions. Table III indicates the order of each developer
component in its ranking of plasticization and solvent qual-
ity. We can see that MEK is indeed the best solvent but
rates fourth as a plasticizer. In S-A, the EtOH serves as a
diluent and to help in plasticization, being ranked second
in this regard. These two facts heip to explain why S-A is
such an effective solvent of PMMA at 3060 A/min for a
molecular weight as high as 950 000 a.u. This also helps to
explain why S-A exhibits the worst contrast, since it
strongly dissolves PMMA of all molecular weights. Al-
though CS ranks third in solvent quality, it appears that
the presence of MeOH in S-B, ranked first for plasticiza-
tion, helps to increase the effectiveness of CS as a solvent.
Regarding S-C dissolution, the component MIBK is rated

TABLE II1. Ranking of plasticization and solvent quality for each com-
ponent of the developer solutions.

MEK EOH MIBK [IPA CS MeOH

Distance

A [(MPa)'}) 1.4 12 14 75 68 16
M (g/mol) 72 46 100 60 90 32
Solvent quality 1 5 2 4 3 6
irank)

Plasticization 4 2 6 3 b 1
(rank)
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FIG. 8. Explanation of mechanism by which trace amounts of S-A in $-C
increases contrast. The solubility curve for S-C alone 1s compared to the
expected curve after the addition of a small amount of S-A (MIX) and
S-A alone (see also Ref. 17). Contrast is improved through the increase
of r, for higher molecular weights with only slight change to 7, at low
ones. Below the graph are molecular waight distributions for (a) fully
exposed. {b) partislly exposed, and (c) unexposed PMMA. The shaded
region corresponds to those molecular weights that require large exposure
doses to be further fragmented. It is preferabie to use the lowest exposure
dose possible 10 achieve the highest resolution. The addition of traces of
S-A increases the solubility of these fragments.

second as a solvent but is the poorest plasticizer. Isopro-
panol being ranked only third as a plasticizer helps to ex-
plain why S-C dissolves the unexposed PMMA at only 0.5
A/min.

As mentioned above, prediction of the solubility prop-
erties of systems containing many solvents can be very
complex, and only a simple qualitative explanation of those
properties can be offered here. Within the exposed resist, a
distribution of molecular weights exists whose average de-
pends on the exposure dose.'? Under conditions of low-
level exposure, the inability of a relatively high-contrast
developer, such as S-C, to completely remove the FMMA
in the primary exposed area is due to the presence of high-
molecular-weight polymers that have not been exposed suf-
ficiently to be broken into sufficiently small strands. The
presence of a small percentage of MEK increases the over-
all thermodynamic quality of the solvent, causing those
remaining long-chain PMMA strands to be more selec-
tively removed without a major change in the solubility
rate of the unexposed or less exposed areas. This argument
is supported in Appendix B.

The above argument is plausible when discussed in
light of Figure 5 of Ref. 17, which gives solubility rates of
MIBK solutions as a function of fragment molecular
weight M. We discuss here a two-component system that
can be extended to more components. Figure 8 shows a
qualitative curve of dissolution rate r, versus fragment mo-
lecular weight M after exposure for a single developer, e.g.,
S-C, and also a proposed curve for the two-developer mix-
ture S-C + S-A (MIX). Since the dissolution rate for pure
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MEK 1s much higher than tor etther S-C or dilute MEK 1n
solution. and given the lower value of y for S-A, r, for S-A
15 expected to extend to higher molecular weight with a
lower slope and approach a constant for very high molec-
ular weights (similar to MIBK in Ref. 17). Portrayed be-
low in the figure are qualitative molecular weight distnbu-
tons of a fully, parually, and unexposed polymer. By
adding small amounts of MEK to S-C, we have affected th.:
solubility properties of the S-C as shown in the MIX curve
to dissolve the higher-molecular-weight fragments far
more quickly while changing the slope of the curve only
slightly for the lower molecular weight. To first order, we
expect the solubility properties to be affected little for
lower molecular weights, but increased substantially for
higher. (A thermodynamic model that qualitatively sup-
ports this assertion is presented in Appendix B where we
analyze a two-component developer system by assuming
that the rate enhancement derives exclusively from an in-
crease in polymer solubility.) Highest benefit to contrast
and resolution is achieved when the cutoff of solubility for
the new mixture is above the highest molecular weight of
the fragments in the primary exposed area but is below that
of the marginally exposed resist for a slightly lower effec-
tive dose in a closely adjoining area. This can never be
achieved totally in practice, as the distribution of fragment
molecular weights in the adjoining aress is a continuum
and overlaps that of the polymer in the primasy exposed
area.
In our case of mixing the three components S-C, S-B,
and S-A, Fig. 7 indicates that the contrast improvement is
dominated by the presence of MEK. We believe, however,
that a more complete study would indicate that each com-
ponent enhances the solubility in a range of molecular
weights yielding an effective characteristic in which all
fragmented molecular weights in the primary exposed ar-
eas are removed, but little is removed outside. It must be
kept in mind that the average molecular weights of the
PMMA fragments increase quickly with distance away
from the beam. The goal in choosing a correct exposure for
achieving high resolution is that the top of the range of
fragment molecular weights in the primary exposed area
lies just in the range dissolved at an appreciable rate by the
trace amounts of MEK in the mixture, so that high-mo-
lecular-weight fragments are selectively removed from the
area of primary exposure. It is possible to conceptualize an
ideal developer whose properties are described in Fig. 9.
This developer would have “break points” in the r, vs M
curve that tailor the dissolution rate to the molecular
weight distribution curve. This ideal developer would then
be assured of dissolving no more of the higher-molecular-
weight fragments than was absolutely necessary for a given
exposure dose, thereby minimizing the erosion of the
lower-molecular-weight fragments (relative to the unex-
posed areas) in the less-exposed adjoining area. (These
arguments are further supported by the theoretical predic-
tions for a binary developer as discussed in Appendix B,
and in Fig. 10.) Our three component system is a crude,
but demonstrably effective, attempt at achieving this goal.
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FIG. 9. Solubility curve for a conceptualized “ideal” developer superim-
posed on the distnbution of fragment molecular weights for PMMA. The
shape of the solubility curve ensures that dissolution rates for each mo-
lecular weight are no higher than necessary to dissolve all molecular
weight fractions completely, thereby minimizing erosion of areas adjoin-
ing those of pnmary exposure.

IV. SUMMARY AND CONCLUSIONS

We have investigated new developer mixtures for
PMMA positive resist. We demonstrated that adding a
small percentage of methyl ethyl ketone to methyl isobutyl
ketone/Cellosolve solutions increased contrast substan-
tially. This was illustrated in practice by a comparison of
EBL exposures each demonstrating decreased proximity
effect.

The mechanism for increased contrast by adding trace
amounts of MEK was explained in terms of selective
broadening of the range of solubilities for S-A in S-C/S-B
solutions. It was concluded that the presence of MEK in-
creased the range of dissolution of fragmented molecular

102
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FI1G. 10. Calculated rate of dissolution for a single solvent and aiso that
solvent combined with 2% of a second solvent as a function of molecular
weight. The mixed curve has been caiculated from Eqs. (B7) and (B8)
assuming B(x,/xy) = M/100.
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weights 1n the pnmary exposed regions to more efficiently
clear the exposed PMMA without affecting unexposed ar-
eas.

We feel that in view of the substantial improvements of
the contrast of PMMA and demonstrated improvements in
minimizing the proximity effect, the use of PMMA can be
further justified for ultrasmall geometries in future special-
ized integrated circuits and optical and x-ray mask fabri-
cation apphcations. In addition. as future x-ray sources
increase in brightness, the feasibility of using PMMA will
become more favorable with the trade-off in support of
resolution versus speed becoming more advantageous.
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APPENDIX A

Here, we show that the contrast y is proportional to
the rate of polymer dissolution. We consider the dissolu-
tion of a polymer film of uniform initial thickness 4, The
polymer has an average molecular weight M. Exposure to
a developer solution for a time At will cause partial ero-
sion of the film, and the removal of a layer of thickness Ah.
In general, we may write for Ah< Ay,

Ah/hy = rabty/hg, (A1)

where r, is the average rate of dissolution, which depends
on M, temperature 7, and solvent quality. Experiments's!’
indicate that

rg=f(M,T, solvent quality)exp( — E,/RTIM ~ ¢,
(A2)

where E, is the activation energy for dissolution, R the
ideal-gas constant, and fa function of solvent quality, poly-
mer molecular weight, and 7. The exponent a, a positive
real number, may also be a function of M, 7, and the
solvent. Within certain ranges of M, however, such depen-
dencies of f and a are weak, so that the main effects of T
and M are accounted for predominantly by the Arrhenius
and power law, respectively.

For a polymer exposed to radiation, the average mo-
lecular weight depends on the exposure dose D, ie. M
= M(D). Thus the after-development normalized thickness
of an exposed resist will depend on the average polymer
molecular weight M, which, in tumn, is a function of expo-
sure dose D. The contrast y, defined as

d(Ah/hy)
dlog D

lyl = max( ) . (A3)

where the term on the right-hand side can be expressed as

a(Ah/ho) a(fdAfd/ho) (alog ’d) (d 108 M) A‘d
=ry

dlog D =

dlog D dlogM | \dlog D) A, -

Bernstein, Hill, and Liu 4073




Equation (A4) shows explicitly a proportionality between
y and r,. Furthermore, for exclusively Arrhenius temper-
ature dependence and a power-law molecular weight de-
pendence of r, as in Eq. (A2), we will have

dlogry
(alogM) -

and

(d log M

A
dlog D (A3)

) = function of D only,
which are both independent of temperature. In this case,
the contrast will show an Arrhenius temperature depen-
dence, with the same activation energy as the dissolution
rate. This supports our observations of increased y for
higher developer temperatures.

Interestingly, from Eq. (A4) we see that for a fixed
rate, temperature, and M(D) functionality, a lower value of
a will always give lower contrast. Greeneich'’ has shown
experimentally for dissolution of PMMA in MIBK:IPA
that the slopes of log(7;) vs log(M) decrease appreciably
with increasing solvent quality (i.e., for larger MIBK:IPA
ratios); indeed, for pure MIBK, after a relatively sharp
transition in slope at M around 10* a.u., the curves even-
tually approach a constant (i.e., a=0). In this case, ac-
cording to Egs. (A4) and (AS) the contrast should either
approach zero, or, more realistically, become very small.
This is consistent with our finding that films developed in
pure S-A, an extremely strong (good) solvent, always
showed poor contrast, in fact, poorer than those developed
in either S-C or S-B.

APPENDIX B

We propose here a simple explanation of our findings,
based on the hypothesis that our observed enhancement of
contrast with traces of MEK is due to purely thermody-
namic factors. This hypothesis is reasonable, since MEK is
such a strong solvent. We assume the ratio of the dissolu-
tion rate (and thus contrast) of the system with MEK to
that without it to be proportional to the corresponding
ratio of polymer volume fractions. This functionality is
consistent with the idea that any multiplicative factor
quantifying rate enhancement should increase with poly-
mer solubility, and approach unity at zero MEK concen-
tration.

Our task, then, is to determine the increase in polymer
volume fraction in solution caused by the presence of
traces of a third component in an otherwise binary
(polymer + solvent) and biphasic (solid polymer
+ solution) system. This can be done within the frame-
work of solution thermodynamics.

We consider two equilibrium systems. The first one, a
two-phase two-component system, comprises a pure, solid
polymer (phase S) in equilibrium with a solution of poly-
mer (component 1) in a solvent (component 2, phase L).
The second system (denoted here by an asterisk) is iden-
tical to the first one, except for the presence of traces of a
second solvent (component 3) in the liquid. We assume
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that the polymer is monodisperse, and that the solid pre-
cipitate is always made exclusively of polymer, with no
appreciable amounts of either solvents.

Thermodynamic equilibrium requires that the chemi-
cal potential u of the polymer in the solution and in the
solid must be equal, i.e.,

pi=pi and i =puf (B1)
where, again, component 1 is the polymer, and S and L
stand for solid and liquid, respectively.

In both cases, the solid is a pure polymer, i.e.,

i =pi (B2)
thus
ub=pb. (B3)

Expressions for the chemical potentials of the various
components in a ternary mixture of a polymer with two
solvents have been given by Flory;?! for the polymer we
have

p — p) =RT[In ¢ + (1 — ¢1) — da(x)/%3) — $a(x1/x3)
+ (x1262 + x1:03)(é2 + 3)

— x23(x1/x3):243) ],

where the superscript O refers to the pure, amorphous,
polymer at the same temperature T and pressure of the
solution, R is the ideal-gas constant, and x,, x,, and x ; are
quantities proportional to the molecular volumes of the
polymer 1, and solvents 2 and 3, respectively. Additionally,
¢, is the volume fraction of species i (i = 1,2,3), and the
interaction parameters y;; are given by

(B4)

Xi= zAw,-,-x,-/R T, (BS)

where z is a lattice coordination number and Aw; the mo-
lar interaction energy between species i and j.

Note that Eqs. (B4) and (BS5) have been proven to be
of only limited accuracy, even for simple binary systems,
and especially for dilute polymer solutions.?? The predicted
trends are generally correct, however, and consistent with
most experimental evidence. Thus, this model shouid be
able to capture, at least qualitatively, the main physics of
our problem.

Equations (B4) and (B5) can be used to caiculate the
chemical potential of the polymer both in the presence and
absence of component 3. Because component 3 is very di-
lute, the following approximations can be made:

|6k — o<1, ofxdl’, k=0, #t'¢l.  (B6)
From Egs. (B3)-(BS) we obtain
In(6F°/8%) = 65" (x/x3) [1 + 6% (2xy/RT)
X (Awqy — Awyy — Awyy) ] (B7)

Thus, an exponential enhancement in polymer solubility is
predicted to occur upon addition of traces of component 3,
provided that:
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B=[1+é5(zxs/RT)(Awsy — Awyy — dwyy) | > 0.
(B8)

For B~ 1, the increase can be substantial, since (x,/x;) is
proportional to the ratio of the molecular weight of the
polymer to that of component 3. Notice that an exponen-
tial increase of the ratio (éf'/ éf) with polymer molecular
weight does not necessarily imply an unbounded increase
of polymer volume fraction, since for higher, insoluble,
molecular weights, the decay to zero of ¢ will be faster
than any concomitant growth of the enhancement factor.
Flory, in his analysis of polymer fractionation by selective
precipitation from binary mixtures, derived an equation
[see Eq. (23) of Ref. 21] that is very similar to Eq. (B7).
In order to obtain the sign of B in Eq. (B8) it is nec-
essary to estimate the differences of the interaction energies
between the various components. Following Gordon and
Taylor™ (see aiso Ref. 18) in a semiempirical approach,
we assume the following proportionality [see Eq. (3)]:

Aw:j(‘ Ale = [(‘spl - 6pj)2 + (adi - (Sd,)z + (aln - 6hj)2]y
(B9)

where / and j denote the particular substances, and §,, §,,
and 8, are the poiar, dispersive, and hydrogen-bonding
components of the solubility parameter, respectively. In
our case

(Awy;—Awy; — Awys) « (Ady — AL, — AL).  (B10)

Hence, the sign of the interaction energy term on the left-
hand side can be estimated from the properties of the pure
components. (Further theoretical refinements would re-
quire that the factor of proportionality between Aw;; and
Afj be a function of the molar volumes of the various com-
ponents. Such refinements are not deemed necessary here,
where only rough estimates are of interest.) For a positive
right-hand side in Eq. (B10), B8 in Eq. (B8) will also be
positive, indicating an enhancement of polymer solubility.
On the other hand, a negative term in Eq. (B10) may
either signify an increase or a decrease of solubility, de-
pending on the relative magnitude of the various terms in
Eq. (B8).

It is interesting to estimate the sign and magnitude of
the quantity in Eq. (B10) for PMMA in MIBK with traces
of MEK. This system should be reasonably close to the one
we achieved experimentally. Using the pure-component
solubility parameters in Table II (MMA = |, MIBK = 2,
MEK = 3), we obtain, in units of cal/ml],

Al =14.49, AL, =11.57, Al =2,
giving
Ajy — Af, — 8, =0.92 cal/ml.

We see that the overall interaction energy is positive, so
that we would indeed expect an enhancement of solubility
in our case, consistent with observations.

Furthermore, it is possible to extract from our data
with Eq. (B7) an “experimental” value of B(x,/x,). The
linear increase of contrast with percent MEK in Fig. 7 is,
in fact, consistent with Eq. (B7), since for small values of
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the argument, the exponential can be approximated as a
straight line. From the temperature-normalized contrast
data we obtain 8(x,/x;) = 24, which is reasonable, in light
of our many approximations, and, possibly, some more
fundamental limitations inherent to the thermodynamic
model itself. Again, it is worth noticing here that, given the
crudeness of our model, such *‘theoretical” results should
be considered only for their quaiitative value.

A rate-enhancement curve, calculated from Eq. (B7)
by assuming ¢; = 0.02, B(x,/x 1) = (M)/100, and an in-
verse-square dependence of the dissolution rate on M, is
given in Fig. 10 (Note that we have arbitrarily truncated
the enhanced-rate curve, since it would have shown an
unrealistic upturn for higher molecular weights, due to our
assumption of a fixed inverse-square dependence of the
original rate for all molecular weights. In reality, due to the
finite solubility of higher fractions, the dissolution rate
eventually drops to zero much faster than M~ and no
upturn in the net rate occurs). Figure 10 should be com-
pared with curves | and 3 in Fig. 5 of Ref. 17.
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Fabrication of ultrasmall tunnel junctions by electron-beam lithography
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Fabrication of a variety of ultrasmall tunneling structures is presented for possible
applications in single electronics. Two main structures are described: (i) arrays of nanometer-
scale metal dots and (ii) single and multiple linear tunnel junctions formed by overiapping
lines. Very large, uniform particle arrays were fabricated by electron-beam

lithography (EBL) with particle diameters as small as 25 nm. The advantage of our dot
array system is its high degree of uniformity and very small junction size coupled with the use
of isolated particles to reduce stray capacitance effects. Single and muitiple linear tunnel
junctions were fabricated by EBL using single-layer resist and angled evaporations. Qur
fabrication technique differs from previous ones in its ability to create very small tunnel
junctions without the need for multilayer resist systems or precise knowledge of the angle of

evaporation.

I. INTRODUCTION

The semiclassical theory of single-electron tunneling
(SET) has proven to be useful in describing the behavior of
tunnel junctions with ultrasmall capacitances.' In this the-
ory, the Coulomb effects due to the individual clectrons
become increasingly evident as the single-eiectron charging
energy of a structure with capacitance C surpasses the en-
ergy of thermal fluctuations at temperature T, i.e.,

€/2C » kT. (D

Here, e and k are the electron charge and Boltzmann con-
stant, respectively. According to (1), the observation of
individual electrons requires cryogenic temperatures, even
for the smallest tunnel junctions reported.? This issue has
become increasingly important for the future of new de-
vices which might utilize single-electron charging
effects.>> Such devices might operate at temperatures
above 4.2 K if the characteristic capacitance of a junction
can be reduced below 10~ '® F while maintaining narrow
tunnel barriers. Therefore, a major issue facing the growing
field of *‘single electronics” today is the ability to fabricate
small, reliable capacitor structures for operation at higher
temperatures.

The most common type of system used in studying
SET effects is the metal-insulator-metal tunnel junction
structure. With this type of system, researchers have uti-
lized two basic approaches to achieving capacitances small
enough to experimentally observe single-electron charging.
The first technique is to use natural particle arrays as the
center electrode of a double-tunnel junction structure.®® It
is well documented that the particle islands formed by
evaporating metal onto an insulator such as Al,O, can
have effective capacitances as low as 5% 10~ '* F.® Since
the particles are isolated they do not suffer from stray ca-
pacitance effects. However, because the particles have
widely varying sizes, the temperature at which the SET

*'Present address: Department of Electrical Engineenng, University of
California at Santa Berbara, Santa Barbara. CA 93106.
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effects wash out remains near liquid-helium temperatures.
The other technique, pioneered by Dolan,>' is the use of
electron-beam lithography and aagled evaporations to cre-
ate narrow, overlapping metal lines separated by thin tun-
nel barriers. This technique has proven successful at creat-
ing junctions as small as 30 30 nm*.2 However, even very
small junctions produced this way can produce large ca-
pacitances if the leads connecting the junction significantly
couple to their environment or to each other.

The purpose of this work is to investigate improved
designs and fabrication techniques which can further en-
hance the performance of single-clectron tunneling struc-
tures. This paper focuses only on fabrication issues, while
the clectrical characterization of these tunneling junctions
will be reserved for future publications. In Sec. 11, we de-
scribe the first of two experimental structures, arrays of
ultrasmall metallic dots, along with the fabrication proce-
dure and fabrication results. In Sec. 1II, we discuss similar
issues for systems of linear tunnel junctions formed by
overlapping metal lines. Finally, we discuss in Sec. IV
some of the pertinent issues involved in creating such
structures, as well as the advantages and disadvantages of
our approach over those previously reported in the litera-
ture.

Il. ARRAYS OF ULTRASMALL METAL DOTS

The first structure discussed here is composed of a
large array of very small metal *“dots” sandwiched between
two electrodes and separated by thin tunnel barmers. A
schematic of these dot arrays is shown in Fig. 1. Our struc-
ture is different from previous ones utilizing isolated par-
ticles because the particle array is fabricated by direct ex-
posure of high-resolution electron-beam lithography. The
advantage of using EBL to create the particle array is that
it can produce uniform dots of equal size and spacing,
while still providing very high resolution.

The fabrication procedure for our structures is as fol-
lows. The base-electrode metal is evaporated onto a Si sub-
strate through a mechanical shadow mask forming a 10-
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FIG. 1. Cross-sectional diagram of a single-electron tunneling structure
utilizing a lithographically fabricated parucle array.

mil-wide line. Typically, this metal is Al and the barrier,
always an oxide in our case, is formed by exposure to air
during the subsequent processing steps. Next, an insulation
region is patterned by standard EBL and lift-off to reduce
the effective junction area of the structure. This is accom-
plished by creating a 500 600-um- rectanguiar germa-
nium region with a 20X 20-um° “hole” in the middle,
which covers the base electrode except for the small central
area. Next, a 24 X 24-um? dot array is aligned and exposed
by EBL to the previous pattern in such a way that the
array entirely fills the opening in the Ge insulation. Once
again this pattern is evaporated and lifted off, typically
using 300 A of Al. The second oxide is formed as before, by
exposure to air during the subsequent processing. Finally,
a gold counterelectrode is patterned over the active area by
EBL and lift-off as before. The Ge insulation!! separates
the base electrode and counterelectrode in all places except
for the 20X 20-um? junction region, thus minimizing leak-
age and shunt currents.

In order for such a system to display single-electron
effects at T > 4.2 K, the dots must have diameters less than
35 nm, assuming hemispherical dots and a temperature
threshold of T = ¢*/4kC.'? In addition, the dots should
be spaced as closely together as possible to limit the par-
allel shunt current which can flow by directly tunneling
from one electrode to the other. This is equivalent to im-
proving the signal-to-noise ratio of the SET effects. The
dots must also be very uniform in size and spacing over the
entire array. Although it has been predicted'? that a Cou-
lomb staircase can persist in a system with a standard de-
viation in particle capacitance as high as 25%, much
sharper steps are predicted if the capacitances of the par-
ticles are equal.

Therefore, to meet these requirements we have fabri-
cated our arrays using the following parameters. A high-
resolution EBL system'? was utilized for all exposures. The
dots were exposed at 50 kV, in 1400-2500 A of poly(me-
thyl methacrylate) (PMMA) in square arrays with 100-
250-nm spacing, and developed in a 99.7% 1:3 methyl
isobutyl ketone (MIBK)/2-propanol, 0.3% methyl ethyl
ketone (MEK) solution for 15 s. Typically, the exposure
time was limited to about 10 min in order to minimize the
effects of current drift and loss of focus.

Figures 2 and 3 show SEM micrographs of typical dot
arrays fabricated by the above technique (except that goid
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FIG. 2. SEM mucrograph of a gold dot array with a 100-nm pitch and
25-30-nm dot diameter.

was used to provide higher contrast in the SEM micro-
graphs). It was found that dot diameters as low as 25 nm
could be achieved fairly routinely with extremely success-
ful lift-off results. Even with a dot spacing of 100 nm,
nearly 100% lift-off could be achieved. There are several
reasons for the high quality of the lift-off. Firstly, the use of
a relatively high accelerating voitage (50 kV) reduced
proximity effects, thereby creating a more uniform array
and forming sharper features in the resist. Next, adding a
small amount of MEK to the usual MIBK developer has
been shown to enhance the contrast of the developer and
improve lift-off characteristics.'* Finally, the appropriate
choice of PMMA layer thickness (up to 2500 A) helped to

improve the aspect ratio of the resist pattern, making it
more suitable for lift-off than thinner resists.

iil. LINEAR TUNNEL JUNCTIONS

The other types of structures investigated are single-
and multiple-junction systems created by overlapping thin
metal lines. Excluding contact pads, these can be created in
a single EBL exposure and two successive angled evapora-

FIG. 3. Medium magnification view of a 250-nm-pitch gold dot array
showing 100% lift-off in this area.
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FIG. 4. SEM micrograph ot an Al/ Al O/ Al tunnel juncuion with an area
of about 30 « 60 nm-.

uons with an intermediate oxidation step. The motivation
for this particular structure is to create small junctions
utilizing a simple and straightforward fabncation tech-
mque.

An example of a very small single-tunnel junction is
shown in Fig. 4. This pattern simply realizes a junction
formed at the intersection of two long, narrow lines. It was
created by first exposing a crossed pattern in 2500 A of
PMMA., and developing as discussed above. Next, two an-
gled evaporations of 300 A of Al were performed with a
brief (5-min) oxidation step in air between them. The
evaporations were carried out at such an angle (approxi-
mately 45°) that only one line would be metalfized at a
tims. As shown in Fig. 4, the two successive angled evap-
orations resuited in a tunnel junction with an area of 30

. 60 nm”.

This same technique was used to create multiple-tun-
nel junctions in series. An example of a double-tunnel junc-
ton 1s shown in Fig. S. Here. two parallel lines overlap a
~mall. 1solated crossbar which acts as the centra: electrode.
When the resist shadows the incoming evaporant. the
metal lines are not exact replicas of the resist teatures.

FIG. 5 SEM micrograph of a system containing two linear tunnel junc-
‘10ms 1n senes.
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FIG. 6. SEM micrograph of a series of linear tunnel junctions. The bar
represents | um.

However, this can be corrected by allowing a certain over-
lap of the crossing resist lines and shifting the pattern po-
sition. It is not sufficient to merely make the actual junc-
tions small, because stray capacitances due to the central
bar may still be significant. The most important require-
ment of this type of structure, therefore, is that the central
electrode be as small as possible.

The above processing technique has proven to be very
reliable. Figure 6 shows a set of multiple-tunnel junctions
demonstrating the feasibility of fabricating large-area
structures.

V. DISCUSSION

The structures which utilize lithographically fabricated
dot arrays, as described in Sec. II, merge the precision and
high resolution of EBL with the use of isolated particles.
thereby offering clear advantages for the study of SET ef-
fects. Particle arrays of this type should result in the small-
est capacitance attainable in a structure fabricated by con-
ventionally employed lithographic techniques. An
advantage of dots used in this system is that no leads are
required and the use™of dense parallel arrays might also
lead to temporal and spatial correlation effects with novel
device applications.

To determine the value of capacitance for very smali
isolated particles fabricated by EBL, the dot can be mod-
eled using a concentric sphere approximation. For a dot of
radius r and dielectric thickness d, the capacitance is given
by

C=dmegyr(l + (r/d)]. (2)

For the smallest dot size achievable by EBL using
PMMA. " say, » = 5 nm. and typical parameters of d = 2
nm and €, = 8, the corresponding minimum capacitance is
Cmn = 1.6 x 10" F. Conceivably, one might achieve
even smaller capacitances by the use of novef lithographic
techniques such as those uulizing the scanning tunneling
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The properties of the thin tunnel barriers are of major
importance to the behavior of SET structures such as those
which are based on isolated particle arrays. As stated be-
fore, the formation of the tunnel barriers was normally
accomplished by utilizing the natural oxidation properties
of aluminum to form a thin layer of oxide. However, we
found that the oxidation of the base electrode was difficuit
to control because the sample had to be repeatedly exposed
to both air and elevated temperatures (170 °C for PMMA
baking) during processing. The result was that all junc-
tions with natural Al,O, barriers were very resistive, thus
precluding the observation of SET effects.

An alternative way to control thickness of the tunnel
barriers is to form the insulator through deposition rather
than oxidation. This can be achieved, for example, by sput-
ter deposition or reactive evaporation of 15-20 A of
AlLO; onto a nonoxidizing metallic substrate. The advan-
tage of these techniques is that the barrier thickness can be
precisely controlled and does not change during subse-
quent processing. Another advantage of using deposited
barriers is that the space between the dots is filled with
both barrier materials rather than that of the base elec-
trode. This can greatly reduce the parallel shunt current
which might flow between the dots,® especially since the
resistance of a tunnel barrier increases exponentially with
thickness. However, in the event of damage to the oxide
during processing, a short circuit between electrodes could
result. This is less of a problem with natural barriers
which, when exposed to air, tend to “heal” by themselves
if damaged.

A final issue for dot arrays fabricated by EBL is the
choice of dot metal. For artificial barriers, metals with
small grain sizes, such as gold alloys, provide optimum
conditions for uniform coating and lift-off. When natural
barriers are used, the choice of metal determines the prop-
erties of the oxide. If the base electrode barrier is thick,
then it is desirable to make the dot barrier thin, and vice
versa, so that the resistances of the two barriers are very
different. This has been shown to sharpen the steps of the
Coulomb staircase in the /-¥ curve.’ Metals which we have
lifted off include Al, Sn, and Pb. Since these metals have

121 Rev. Scl. instrum., Vol. 83, No. 3, March 1992

varying oxidation properties, the thickness of the barriers
can, in principle, be controlled by appropriate metal selec-
tion.

Our approach to the fabrication of linear junctions of-
fers distinct advantages. Firstly, our fabrication technique
does not require a muitilayer resist system. Secondly, by
using perpendicular crossing lines for each junction, no
residual patterns are created from the two evaporations,
thereby avoiding the presence of unnecessary stray capac-
itances. Another feature is that the sizes of the junctions do
not depend upon the angie of evaporation, but only on the
width of the developed lines. In fact, the angle of evapora-
tion does not need to be known precisely because the cross-
ing lines can overlap slightly without greatly increasing the
total capacitance of the system. These festures make this
technique easy to implement while maintaining the capa-
bility of producing junctions with dimensions at the limits
of electron-beam lithography.
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We study local potential variations due to self-consistent space-charge effects in cal-
culations of coherent wransport in narrow split-gate structures. We present a numerical
technique based on caiculating the Hartree potential from the charge density obtained by
solving the two-dimensional effective-mass Schridinger equation for scattering states,
and from the bound charge density obtained from a semi-classical Thomas-Fermi screen-
ing model. This method allows us to obtain the local self-consistent potential variations
close to scatering centers exposed to an incident flux of electrons.

1. Introduction

Many recent studies have appeared in the literature
which present calculations of conductances in narrow split-
gate structures that can be realized using advanced fabrica-
tion techniques [1]. In these calculations the Schridinger
equation is solved for the channel geomertry to obtain trans-
mission coefficients, from which the conductance is ob-
tained. It has been pointed out {2] that seif-consistent ef-
fects may be significant in these structures, but it has been
prohibitively difficult to include them in the numerical cal-
culations.

We present a technique for capturing self-consistent
space-charge effects in two-dimensional transport caicula-
tions in split-gate structures. We study the self-consistent
vanations in carrier density and local potentials close to
scattering centers exposed to an incident flux of electrons.

2. Numerical Method

Self-consistent clectronic states are obtained through
an iterative solution of the 2-D Schrodinger equation us-
ing current carrying boundary conditions. Any bound
clecuonic charge is approximated by the semi-classical
Thomas-Fermi screening model. The Hartree potential due
10 the electron density is explicitly determined from the
total charge density in each iteration, and is used to calcu-
late the electronic states in the subsequent iteration. The
self-consistent solution is obtained when the potendal dif-

0749-8036/92/020189 + 05 $02.00/0

ference between iterations converges to within a desired
tolerance.

A. Problem Domain

Our model of the device geometry consists of a dis-
cretized calculation domain, )y, of mesh elements con-
nected to input and output leads, 2, and 2;, as shown in
Fig. 1. The current carrying leads attach to the edges of
the calculation domain, at r = 0 and r = [, and extend
to infinity. Although the leads are not part of the caicu-
lation domain, the charge contained in the leads must be
included in the numerical model for the Hartree potential.
For simplicity, we assume hard-wall boundary conditions
for the conducting channe!. A split-gate structure is real-
ized by adding a large fixed potential in the gate regions
of the problem. The size of the calculation domain must
be sufficiently large that the disturbance due to the con-
striction has decayed at r = 0 and r = /. Selecting device
geometries that are symmetric across the channel enables
us to solve the problem on only one half of the original
domain. The resulting bandwidth reduction significantly
lowers the computation time.

B. Effective Mass Schrédinger Equation

The 2-D effective-mass Schridinger equation is repeat- -

edly solved on the discretized spatial domain for the trav-
cling wave “scartering states”. V- denotes the confining

© 1992 Academic Press Limited
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FIGURE 1. Schematic of the channel geometry showing
the finite clement domain, {1, and the leads, 2, and 0,.
The shaded regions represent the confining gate potentials.

channel potential, V}; represents the self-consistent Hartee
potential, and m* is the elecoon effective-mass,

Vet + Vate ). g) = Buta.).
(1

Deep inside the leads, i.c. far from the scattering region,
we assume free electron propagation. The clectronic wave
function can be factorized into a longitudinal plane-wave
part, exp(ikr), and a ransverse part with quantized modes,
\m{y), which are due to the confining powential of the
channel. The scattering eigenstates for injection from the
left-hand lead, 1,, in mode m are, therefore, of the form,

,Jk...:\ (y)+ E r t—tl.l ( ) T -

T (I.l)= m n'nm XniY 0

£ y { Zn ’v:m"“:Yn(y) T =~ 470
(2)

The index » runs over all possible ransverse modes
with £ = E, +(#*42/2m"), which includes both traveling
and evanescent states. )

The. finite clement method is used W reduce the prob-
lem to.a large sysiem of coupled lineas equations. - The
Quantum Transmitting Boundary Method (3] is used to
imglement the finite clement boundary conditions appro-
priate for the current carrying leads.

C. Charge Density

The eléctron density in the channet due to current car-
rying stares:is' obtained by explicitly summing over the
contributions of all occupied scarering states. We assume
the linear response regime and zero temperature. The scat-
tering state electron density is then given by summing over
all states with £ < Eg,

nou(z.y) = Y |ve(z. )P (3)

R s - SSS’

Reproduced From

~
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The sum includes the wave-functions due 1o injection frome
both lead | and lead 2. In the linear response regime,
injection i3 symmetric for both leads and this can be used
10 reduce computation tme. We.typicaily find thee twesty
terms in the summation over electronic states are sufficient.

Bound clectronic states can exist inside the scatcs
ing region if the total powntial dips below its asympsotke
value far into the leads, The quantum mechanical eles-
tron density obtained for raveling states does not consaim
any contribution that may arise from bound charge inside
the problem domain, Q. If this contribution is negleceed
the clectron density would be underestimaied in the re-
gion of a potential well, resulting in a larger amracsive
Hartree potential and subsequently an unstable runemeay.
condition. As a first order approximarion, we chooss o
model the bound-state electronic charge density witly the.
semi-classical Thomas-Fermi screening model. If the po-
tential in the solution domain is lower than its asympeotic
value in the leads, Vi, (r.y) < V(0.y), then a semi-
classical electmn density is obtained 2t the point (r,y) by
nTR(T.y) = Zr{Viee(0.y) — Viu(z.y)], where Vi, is the
total pozcnull used in solving the Schriddinger equation.
This simple approximation over-estimates the total elec-
tron density in the region of a potential well because we
fill a discrete quantum system with a continuous clecwon-
density. The over-estimation, however, will cause the po-
tential well to tecome more “shallow” in the subsequent
iteration resulting in a smaller semi-classical electrom den-
sity.

To maintain charge neutrality, a compensating positive--
background charge, pg, is needed. The backgroond ciiasge -
is obrained by enforcing charge neutrality in the leads. The - -
local disturbance caused by any constriction is assumed'sn”
be completely contained within the problem domain: §5; -
with negligible effect in the leads. This criterion alltvs’ - '
us 10 model the charge densiv in the infinitely exendiig™™~
leads as a continuation of the charge density at the edges ol -
the problem domain, pp = [ (0. ¥)dy = J§ pa(PH) .

This model for the positive background: Y
fact that in most 2DEG systems the positive
in a parallel plane isolated from the carriers by a spiidiéy'™
layer. Although we do not model the spacer layer th-ifibgs"-*
calculations, one could, in principle, use an “cffective™
positive background charge density without changing the
algorithm [4]. ]
RS |
r™wa i

The Hartree posential at any location (z, y) is obtzineds=.
by explicitly summing over all charge contributions i dme::
channel, e

rolbdd b2

A Az'.y')dz' dy'. _o Die.
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D. Hartree Potential
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The integral can be broken into three distinct contnbutions,
Vi = e + U + 18 corresponding to the domain, Q.
and the two leads, 0, and 12,, respectively. The term due
10 the charge density inside the solution domain, 1,52, is
explicitly caiculated by Gaussian quadrature on the finite
clements. The components of the Hartree potential due
1o the infinite leads, V)" and V57, must be, in part, cal-
culated analytically. Using the conditions of charge neu-
mmality across the leads, [? p(l.y) = 0, and of translational
invanance down the leads, pi.r > l.y) = p(l.y), yields

Ly (3)

e =

== o dul M = ry + JU = 2+ (' =y )3

The above integral across the lead is evaluated numerically
from the charge density at the edge of the finite element
domain, pil. 4). We obtain a similar Hartree term due 10
the charge density in the left lead, V.

FIGURE 2. The components of the Hartree potential for
the open channel after the first iteration: (a) L7, (B) V' +
Vi () V.
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E. Self-Consistency

The resuiting Hartree potential is used to modify the
total potential on which the Schrodinger equation is solved
in the subsequent iteration. The self-consistent powcntial
and charge density are obtained when the difference in
the total potential between iterations converges to within a
specified tolerance.

3. Results
A. Open Channel

We first investigawe the electronic charge density and
the Hartree potential for an open, unconstricted channel.
The solutions must show transiational invariance down the
channel, namely p(r.y) = ply) and Vy(z.y) = Vyly).
This provides a test for the Hartree potential obtained by
summing 1/, 1", and V}{7. We choose 10 study single
mode injection by occupying states up to a Fermi energy
that is below the second subband in the leads. Fig. 2
shows in part (2) the Hartee potential due to the solution
domain V/® and in part (b) the sum of both lead contribu-
tions, 1} + 1§, after the first iteration. The total Harree
potential, which is the sum of (a) and (b), results in the
potential shown in Fig. 2(c) and exhibits the desired trans-
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FIGURE 3. Shown is (a) the converged open channel
potential, and (b) the iwration error.
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FIGURE 4. Shown is (a) the charge density for the con-
stricted channel (WNW swructure) after the first iteration,
(b) the new total potential after the first iteration, (¢) the
semi-classical electron density in the second iseration, and
(d) the total charge density after the second iteration.

lational invariance. This clearly shows that the Hartree po-
tential due to charge in the leads exactly compensates for
the potential due 1o charge within the domain, and is a very
critical test of our numerical method. Because the total po-
tential in the solution domain, {15, does not drop below its
asympeotic value in the leads, there are no bound elec-
tronic states in the open channel. The Hartree potential in
Fig. 2(c), obtained from the compietely quantum mechan-
ical electron density, is used to modify the total potential
with which the Schrtdinger equation is solved on the sub-
sequent iteration. Fig. 3(a) shows the converged solution
after 37 iterations, and Fig. 3(b) plots the change in the
total potential between iterations versus iteration number.
The aigorithe is stable and convergent for the open chan-
nel and, as Fig. 3(a) indicases, the “floor”” of the quantum
wire is “buckled” by several meV.

B. Constricted Channel
We- sally~investigate a. partially constricted channel,

our model for a narrow splie-gaee strectuse.. We show i

Fig. 4(a) the charge density after the first iteration for
single mode injection, and in Fig. 4(b), (c) and (d) the
new total potential used in the second iteration, the semi-
classical electron density, and the total charge density afeer
the second iteration respectively.

The first iteration charge density far from the comrie-
tion asymptoticaily approaches the case of an undistrbed
system. The leakage of charge between the split gates in
the first iteration is small enough that the charge density in
Fig. 4(a) resembles the solution of the totally constricted
channel [5]. The smaller electron density in the gawe ro-
gion in Fig. 4(a) results in the formation of a powential
well through the Hartree tesm wsed 10 obtain the total po-
tential shown in Fig. 4(b). This posential welt in the gate
region will, in subsequent iterations, cause amincrease in
the local electron density near the scasering cemer. This
results both from an increase in occupied traveling stases
through the gate region and from the semi-classical model

for the bound electron density, shown in Fig:. 4(c)
since the potential in the gate region dips below.dhepo-
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tential far into the leads. The total charge density obtained
in the second iteration, due to both the electron density
of the traveling states and the semiclassical bound elec-
tron density, is shown in Fig. 4(d). The increase in the
electron density near the scattering center is clearly visi-
ble. Although not fully converged, it is clear from these
calculations that the oscillations in the local field near the
scattering center due to seif-consistent space charge cffects
could be significant in transport calculations since they will
effect the transmission amplitudes of the structure. The os-
cillations 1n the potential due to a scattenng center in the
700A channel can extend up 1o a hatf micron into the leads,
and are on the order of a few meV. Although the poten-
tial well in the scattering region does not become deeper
in later iteranons, we have found it difficult to achieve
convergence for split-gate sguctures. We are currently in-
vestigating vanous convergence schemes and more work
15 needed on this problem.

4. Conclusion

We have presented a method which incorporates self-
consistent space charge effects in transport calculations for
narrow split-gate structures. Our method uses an iterative
solution of the effective-mass Schrodinger equation, with
a semi-classical model for bound electronic charge, and
explicit calculation of the Hartree potential. This method
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allows us 10 invesugate the local self-consistent potential
vaniations close 1o scattering centers exposed 10 an incident
Hux of electrons.

For the case of an open channel, or quantum wire, we
have demonsirated the validity of our method and achieved
a fully convergent solution. We presented some results for
a partially constricted channel, or narrow split-gate struc-
ture, but for this case convergence has been difficult to
achieve. More work is needed to ensure convergence of
the self-consistent cycle for general split-gate structures.
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Because of the uniquely high resolution offered by poly(methyl
methacrvlate) (PMMA) for practically ail forms of lithography, its technological

significance remains strong.

We have found significantiy higher contrast

deveiopers for PMMA which have shown improved resolution, less susceptibility
to proximity effects and better lift-off properties with no loss of sensitivity to
exposure. We report data which demonstrate an improvement in contrast by
more than 35% with the addition of as little as 1.3% methyl ethyl ketone (mek)
to other common developers. We discuss a model which explains the observed
contrast enhancement and predicts that for small changes, an increase in either
mek concentration. temperature or develop time increases contrast. We include
experimental evidence in support of temperature and mek related improvements.

. Introduction

Of all matenals utilized in the fabncation of
nanostructures, poly (methyl methacrylate) (PMMA)
is among the most important. PMMA remains so
popular as a positive resist that virtually all laterally
defined quantum devices rely on PMMA for patterns
below 100 nm regardless of the lithographic technique
employed. In fact, PMMA is the only proven positive
resist usable into the 10 nm regime. (Contamination
resist is utilized for etch masks in this dimensional
regime, but is slower and more difficult to work
with.)

The typical manner in which PMMA is
employed is that of exposure to electrons, X-rays or
deep UV light foilowed by development, metallization
and lift-off. The resolution of the resulting metal
pattern depends on both the width of the defined line
and the quality of the edge profile in the resist. [n
turn, edge profile depends on the contrast, v, of the
resist/developer system. Contrast is defined as the
maximum slope of the curve of normalized resist
thickness remaining after development as a function of
the log of the exposure dose. As contrast increases,

0749-6036/92/020237 - 04 502.00/0

such properties as lift-off reliability, proximity effect
immunity and. to some extent. resolution, are all
improved.

We have found that several parameters can
increase the contrast of PMMA. First, we found that
adding a very small percentage of methyl ethyl ketone
(mek) to other commor. gevelopers effects a drastic
improvement in contrast, dimensional consistency and
lift-off quality. Second. we have found that, over a
narrow temperature range, an iacrease in temperaturc
also improves contrast.  Finally, as discussed in
further sections, we propose that an increase in
deveiop time is also predicted to improve contrast.

2. Experimental

Contrast results for a variety of developer
formulations were determined using a standard
technique''® Using electron beam lithography (EBL)
at 40 kV, we exposed 25 SO um x 50 um squares in
950,000 amu PMMA, 0.4 to | um thick with a series
of doses. developed for various times and
temperatures. and determined the normalized resist

© 1992 Academic Press Limited
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thicknesses by surface profilometry using a Sloan The primary ingredients of the developer
Dektak II profilometer. The quality of the data was mixtures were chosen from solutions commonly
excellent, and an example of the raw data is given in employed as developers for PMMA. These are
Fig. 1. Variations in resist thickness were shown to methyl ethyl ketone {("mek”):ethyl alcohol (EtOH)
have no effect on the results. Experimental par- 26.5:73.5 (mixture referred to here as "MEK"),
ameters and contrasts are summarized in Table I. methyl isobutyl ketone (mibk):isopropyl alcohol (IPA)

1:3 (mixture referred to here as "MIBK®). and 2-

ethoxy ethanol (Cellosolve or "cs”);methanol (MeOH)

e (mixture referred to here as "CS"). These mixtures
- were chosen in their complete forms due 10 their
§ 08 - . known properties as developers of PMMA. It should
% . ‘ be noted that solubility properties of mixtures of
Z 06 . several solvents are extremely difficult or impossible
B to predict, and such an exercise will not be anempted
2 here. In subsequent sections we offer a qualitative
o ¢ rnw cmoen . explanation of the role of the harshest component,
_g * 11707 isampie 11 . mek, in improving contrast and offer guidelines
E 02 . . toward future improvements in contrast.
2 : *
0 i 3. Resuits and Discussion
10° 10" 10’
Dose (Coulem’) For mixtures given in Table I, we mgasurcd
contrast and plotted the results as a function of inverse
Figure 1: Example of data from which contrast is temperature as shown in Fig. 2. A trend of
calculated. increasing contrast with temperature in the range

Table 1: Summary of contrast experiment data.

Sample | volume volume volume Develop | Temp v
I.D. percent percent percent time R
MIBK cS MEK (sec) c

1 0 100 0 5 19 5.7
2 0 100 0 5 21 7.0
3 100 0 0 45 19 7.0
4 100 0 0 45 21 9.3
5 66.4 32.0 1.6 10 7.7
6 66.4 32.0 1.6 10 7.0
7 49.6 48.0 2.4 10 8.2
8 49.6 48.0 2.4 10 8.5
9 50.1 45.4 4.5 10 18 7.9
10 50.1 45.4 4.5 10 18 7.9
11 50.1 45.4 4.5 10 19 9.4
12 50.1 45.4 4.5 10 19 9.4
13 50.1 45.4 4.5 10 19 9.1
14 50.1 45.4 4.5 10 19 8.8
15 0 95 5 5 21 12.8
16 0 [¢] 100 2 19 4.7
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Figure 2: Arrhenius plot of contrast for various
formulations.

between 18°C and 21°C is clearly evident. This
range is especially important since room temperature
variations coupled with evaporative cooling of the
developer solvents are shown to be especially critical.
It can be shown™ that v can be expressed as

dlogr, dlogM. Aty

., .9logr, (1)
Y (rq dlogM dlogD h, Voax

where 1, is the average rate of dissolution, M is the
molecular weight, D is the dose, At, is the
development time and h,, is the initial resist thickness.
The first term, r,, depends on exp(-E./RT) where E,
is the activation energy, R is the gas constant and T is
the temperature. This theory also predicts that y
depends lincarly on develop time. This has not yet
been investigated and remains for future work on this
topic.

Figure 3 gives the dependence of contrast on
percent mek (pure methyl ethyl ketone component)
normalized to 19°C. The CS data are omitted since
the activation energy of Cellosolve is significantly
different from that of MIBK and MIBK/MEK
mixtures (see Fig. 1) and therefore do not normalize
to the plot. Note that data corresponding to 21°C for
pure MIBK and that of 18°C at 1.19% mek have
collapsed onto the straight line and their multiplicity
1s obscured.

An explanation of the time, temperature and
mek concentration dependence follows. Figure 4 is
the qualitative dependence of dissolution rate on the
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Figure 3: Plot of contrast as a function of % mek
formulation normalized to 19°C.
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Figure 4: Dependence of dissolution rate on

temperature, time and solvent strength superimyposed

on fragmented molecular weight distribution.

strength of a solvent, time or temperature as a
function of molecular weight, M. This dependence
has been demonstrated by Greeneich for MIBK/IPA
solutions'*'. Below this curve is the dependence of the
M distribution after three exposure doses'”. First, as
any of the above parameters is slightly increased, the
solvent quality changes in such a manner as to
dissolve more cfficiently the higher M tails remaining
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after normal exposures”'. For the case of very slight
amounts of MEK added to MIBK. the mek acts
independently of the MIBK to remove efficiently high
M components left behind by the MIBK, thus
improving contrast. side wall profiles and proximity
effect immunity without decreasing sensitivity. The
effect on lower M components 1s not increased enough
to affect deleteriously the contrast”,

The above results suggest a way in which
developers might be further formulated to increase
contrast even higher. We suggest that solvents be
chosen for their range of effectiveness in dissolving
various molecular weights of PMMA. Assuming
these solvents retain their basic properties in soiution,
the solvents could be mixed in the percentages which
reflect the percentages of molecular weights of the
PMMA remaining after exposure (as shown if Fig. 4).
These tatlored developers would be strong enough to
remove only the proportions of the PMMA in the
particular ranges of M affected by the individual
components but would not act to remove higher M
components in adjoining, less exposed areas or in
unexposed areas. In a very simplified way, this is
what has been accomplished by the addition of mek,
a much stronger solvent for PMMA, to mibk.
Clearly, much work in this area is still to be done.

4. Summary

We have demonsirated that new developer

Superiattices and Microstructures, Vol. 11, No. 2, 1992

solutions  containing small amounts of a strong
developer mixed with a2 weaker one can enhance all
aspects of PMMA development with no deleterious
side effects. In addition, we demonstrated
expenimentally that good control of temperature is
critical for consistent contrast control, where in fact,
at least slightly higher temperatures are desirable.
New directions for research in this area were
suggested.
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We have performed a numerical calculation of the energy dispersion relation of hybrid
magneto-electric states (both propagating and evanescent) in an electron waveguide subjected
to a magnetic field. Our results are considerably different from those obtained through

the Bohr-Sommerfield quantization condition. We have also calculated the density of the
magneto-electric states as a function of energy and the velocity versus energy
relationships. Finally, we show how the wavefunctions of these states evolve with increasing
magnetic field from particle in a box states to edge states. These resuits are useful in

the analysis of numerous recent magnetotransport experiments performed in electron

waveguides.

Electron waveguides (quasi-one-dimensional wires in
which carrier transport is partially ballistic) has been the
focus of many recent theoretical and experimental
investigations.! Of particular interest in these structures is
the nature of magneto-electric states that are formed under
an applied transverse magnetic field.? These states are im-
portant in understanding numerous magnetotransport ex-
periments such as the conductance oscillations of quasi-
one-dimensional electron gases in a magnetic field,’ the
integer quantum Hall effect,® etc. In the past, magnetoelec-
tric subbands and their wave functions were calculated in
an approximate manner using analytical functions such as
Weber or hypergeometric functions.’ In this paper, we
have calculated the wave function, the energy dispersion
relation, the velocity versus energy relationships, and the
density of these states starting from the Schrodinger equa-
tion. Our calculation is described below.

We consider an electron waveguide (a quasi-one-di-
mensional structure) as shown in Fig. 1. The magnetic
field is directed along the z direction along which the con-
finement is complete in that only one transverse subband is
occupied. The Schrodinger equation describing electrons in
this structure is

(p — eA)?
g V) + V() U(xy) = Ed(xy), (h

where A is the magnetic vector potential, m* is the elec-
tron's effective mass, and V(y) is the electric confining
potential in the y direction. The simultaneous presence of a
magnetic potential and an electric potential hybridizes the
electronic states causing them to be magneto-electric
states.

The potential ¥ (y) is chosen to be consistent with
hardwall boundary conditions

Viy) =0 yi<d
= x

yl>d, (2)

where 24 is the width of the structure in the y direction.
We choose the Landau gauge
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A = (- By0,0), (3)

where B is the z directed magnetic flux density.
The wave function ¥ can be written as

W(x.p) = &5 (y), (4)

where &, is the x directed wave vector and ¢(y) satisfies
the eigenequation

Foiy) 2me 2
T+ B0 — (7) 601 + 2k

—kp(y) =0 (5)

with / being the magnetic length given by / = J#/eB. To
find the wave function ¢(y) of the magneto-electric states,
we have to solve the above equation subject to the bound-
ary conditions

d(y=d)=d(y= —-d)=0 (6)

which follow from Eq. (2).

In order to find the energy dispersion relation E vs &,
for the magneto-clectric states, we have tc find the values
of the wave vector &, for a given energy E satisfying Eqgs.
(5) and (6). We then repeat this for various values of E to
obtain the energy dispersion relation. Unfortunately, this is
not straightforward since Eq. (5) is not an eigenequation
in k, for a given E due to the fact that it is nonlinear in &,.

F1G. 1. An electron waveguide subjected to s magnetic field along the z
axis.

© 1992 Amencan Institute of Physics 3027
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FIG. 2. Energy dispersion £ vs k, of magneto-clectric subbands in a

waveguide subjected to a magnetic field. The waveguide transverse width
is 100 A and the magnetic field is | T. The Fermi energy is taken to be 17

meV. If the subband bottoms are below the Ferni energy, the states are
propagating states and have real wave vectors; otherwise they are evanes-
cent states and have imaginary or compiex wavevectors. For the param-
cters (well width and magnetic field) chosen, the lowest evanescent states
bave purely imaginary wave vectors. The evanescent states are shown
with negative curvatures. The energy separation between the subband
bottoms depends on the magnetic field as well as the width of the wave-

guide.

We therefore Thve to convert Eq. (5) into an eigenequa-
tion in k, using the following transformation.
Let

§0) =ks(0) @)

Equation (5) can now be recast as

0 1
e P [WEL K

We discretize Eq. (8) within a finite difference scheme
breaking the y domain into NV grid points where ¥ is some
suitably large integer. We can now readily solve for N
different k. eigenvalues (k., k2,..kY) for any given energy
E and find the corresponding eigenvectors which give the
wave function ¢,(y). Each value of n corresponds to a
magneto-electric subband. This gives us the energy E ver-
sus the k7 (n = 1,2,3,... N) relation, or the dispersion re-
lation for N subbands. We vary E up to an arbitrary max-
imum which we call the “Fermi energy” E. If the bottom
of a subband is above Ej, then the corresponding state is an
evanescent state; otherwise, it is a propagating state. Eva-
nescent states have imaginary or complex wave vectors (X,
values) whereas propagating states have real k, values. It is
interesting to note that while in the absence of a magnetic
field evanescent states can only have imaginary wave vec-
tors, in the presence of a magnetic field they can have both
imaginary and complex wave vectors. The states with com-
plex wave vectors can interfere since their wave functions
are complex and they have nonzero current densities asso-
ciated with them even though they are evanescen:. It is
interesting to note that because of this feature one could
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FIG. 3. Energy dispersion relations (for the propagating states only)
obtained from our resuits (solid curves) and the Bohr-Sommerficld quan-

tization rule (broken curves). (a) The waveguide wadth is 1000 A and the
magnetic field is 1 T; (b) the waveguide width is 2000 A and the magnetic
fieldis 1.5 T.

observe, say, the magnetostatic Aharonov-Bohm effect
with the evanescent states but not the electrostatic
Aharonov-Bohm effect.

In Fig. 2 we show the energy dispersion relations in-
cluding both propagating and evanescent states. In Figs.
3(a) and 3(b) we compare the dispersion relations of the
propagating states with those obtained from the Bohr-
Sommerfield quantization rule.®” We find that there is a
significant difference between the two results. In Fig. 4, we
show the velocity versus energy relations for different sub-
bands. The velocity in the nth subband is defined as
v, = (1/#)(9E,/dk,).° In Fig. 5, we show the density of
states versus energy where the density of states is defined as
3,(4/hv,)8(E, — E%) with 0 being the Heaviside step
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FIG. 4. Velocity vs energy re_lmonshlps for the magneto-electric states in
a waveguide width of 1000 A and a magnetic field of | T.

function and EC the energy at the bottom of the nth sub-
band. The summation is carried out over the propagating
states only. The density of magnetoelectric states is useful
in calculating the optical absorption spectra of a quantum
wire subjected to a magnetic field, or the scattering rates
for hot electrons in the presence of a magnetic field, and
various other quantities.

Finally, in Figs. 6(a), 6(b), and 6(c), we show how
the probability density |é(y) |’ of the lowest subband at
the energy E = E evolves with increasing magnetic field.
At zero magnetic field, the state is a particle in a box state,
whereas at high magnetic fields, it peaks near the edges of
the waveguide and becomes an edge state. For a given sign
of the wave vector k,, the probability density peaks near
one of the edges of the waveguide whereas for the opposite
sign of k,, it will peak near the opposite edge. This behav-
ior can be understood as skewing of the wavefunction to-
wards one of the edges due to the Lorentz force applied on
the electrons.

In conclusion, we have shown in this paper the nature
of magneto-electric states in an electron waveguide. These
states have been invoked to explain several experiments
and phenomena such as magnetoconductance oscillations
in electron waveguides and the quantum Hall effect. We
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F1G. 5. Density of magneto-electric states in a {000 A wide waveguide at
afieldof 1 T
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FIG. 6. Probability density in the lowest magneto-ciectnc subband at the
Fermi energy of 17 meV. The waveguide width is 1000 A. (8) The mag-
netic field is zero: (b) the magnetic field is | T: (c) the magnetic field is
I0T.

believe that our results will be useful in the analysis of
these and other experiments dealing with magneto-electric
States.
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We report on the existence of transmission zeros in quantum waveguide structures with
resonantly coupled cavities. Such zeros do not occur in the usual double-barrier resonant
tunneling systems. For quantum waveguides, the transmission probability exhibits pairs of poles
and zeros in the complex-energy plane. The observed sharp structure of the transmission
resonances and zeros can be understood in terms of these zero-pole pairs.

Electronic transport in ultrasmall semiconductor
structures resembles wave propagation in waveguid@s."2
and device applications based on this analogy to micro-
wave devices have been proposed. The transmission ampli-
tude in these systems exhibits a rich structure which is
related to resonance phcnomena."s In this letter, we dem-
onstrate how quasibound states in resonantly coupled cav-
ities give rise to zero-pole pairs in the complex-energy
plane. Transmission zeros are unique to quantum wave-
guide structures, and are absent for double-barrier reso-
nant tunneling.

Resonances have long been studied in transmission
through double-barrier resonant-tunneling structures.®’ It
is well known that these resonances are related to the ex-
istence of quasibound states in the quantum-well region.
Within the Breit-Wigner formalism, a quasibound state at
energy E, and decay time T=#/T will give rise to a trans-
mission raomnee with a Lorentzian line shape, T(E)

={TY/[(E—Ey)*+ i) In the complex-energy plane, this
corresponds to a simple pole of the transmission amplitude
at the complex energy z=E,—il'/2.}

It is instructive to demonstrate why a quasibound state
gives rise to a pole in the complex-energy plane. In analogy
to an optical Fabry-Perot resonator, the total transmission
amplitude across both barriers, 5, (from left to right),
may be related to partial transmission and reflection coef-
ficients at each barrier:’

.TRL=fk|y(e‘*l'+e”d"ke‘kl'fl_€lkl'

+ e rpetlr e lrpe e et 1+ ey, (1

1
=tw Frz_—,;;n,—L'w- (2)

Here, t,; denotes the transmission amplitude from the left
to the well region, and 7, is the reflection coefficient at the
right barrier. The phase accumulated by an electron with
energy £ moving from one side of the quantum-well reso-
nator of length L to the other is represented by the phase
factor exp(ikL), where k = v(2m‘l£')/§z. Poles occur at
those complex energies for which the denominator van-
ishes. For real-value reflection amplitudes, it is an ecasy
matter to see that this occurs for wave numbers & whose
real part is an integer multiple of m/L, i.e., for quasibound

states. Note that this geometric series does not possess ze-
ros.
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As an illustration of the above arguments, we show in
Fig. 1 the transmission amplitude in ¢he complex-energy
plane for a double-barrier resonant-tunneling structure
which is schematically depicted in the inset. This structure
supports true bound states for E <0, double-barrier reso-
nances for 0 < E < V,, and continuum resonances for £
> ¥, Figure 1(a) shows the transmission coefficient on
the real-energy axis (£ > 0), while Fig. 1(b) depicts a con-
tour plot of the absolute value of the transmission ampli-
tude in the complex-energy plane. Note that transmission
resonances and poles occur at essentially the same energies.

We now proceed to the study of transmission in quan-
tum waveguides in the presence of coupled resonators. The
prototypical resonator structure we adopt is the resonantly
coupled stub, as schematically shown in Fig. 2. The reso-
nant cavity is created by closing off the side arm in a
three-way branch [Fig. 2(b)]. The new feature here, with
respect to quasi-one-dimensional double-barrier resonant-
tunneling is the existence of wire branches which inher-
ently makes this problem spatially two-dimensional.

We start out by considering transmission through the
three-way splitter {Fig. 2(a)]. This problenthas been stud-
ied by several workers,'®'? and we follow them in choosing
a scattering matrix approach which connects the out-going
and in-coming waves in each wire branch,

o, re tr s\ 1L
(OR)=(1RL re trs )| Iz ). (3)
Os tsg tsg rs/ \Is

The eclements of the scattering matrix are constrained by
unitarity. The reflection and transmission amplitudes are
the elements of a Shapiro-Biittiker matrix,'®'* and their
specific values depend upon the detailed geometry of the
waveguide and junction. Typically, the elements of the
scattering matrix are slowly varying functions of energy.

Making the sidearm into a resonator forces a standing
wave in the stub [Fig. 2(b)]. This imposes an additional
relationship between the out-going and in-coming ampli-
tudes in the side branch, O5 and /5, respectively,

Os=A(E)s, (4)

where A = F

the resonator.’
The transmission and reflection amplitudes for the
quantum waveguide with a resonantly coupled stub,

and the phase angle ®(E) is a property of
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FIG. I. Transmission amplitude for a double-barrier resonant-tunneling
structure, which is schematically depicted in the inset (V,=02¢eV, V,,
=0.1 eV, L=30 nm, and b=5 nm); (a) shows the transmission coeffi-
cient on the real-energy axis, and (b) shows a contour plot of the absolute
value of the transmission amplitude in the compiex-energy plane.

and 5, may now be determined by combining Egs. (3)
and (4). For the case of transmission from left to right,
they are given by

IrsisL
~7u=’u+——_,s-

t
and m=r,_+l“"". (5)

Note that the second terms contain a resonance denomi-
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FIG. 2. Schematc drawmg of a waveguide with a resonantly coupled
cavity, (a) shows a wire branch with incoming and outgmng waves out-
sude the junction region. which is indicated by the dashed box: (b) shows
a resonant stub which is obtained by closing off the sidearm.
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nator, which is reminiscent of double-barrier resonances,
Eq. (2). An expansion of (§) yields

P11 111
7’"—=IRL+'RS(I+I’SZ+IrSZ’SI+”')'S"’ (6)
which allows the following interpretation of the transmis-
sion and reflection amplitudes for the resonantly coupled
stub. Each multiple reflection in the stub contributes a
factors rg for reflection back into the sidearm and a phase
factor 1/4 for the roundtrip (up and down). The sum of
all multiple reflections results in a geometric series, very
much like a Fabry-Perot resonator. Structure in the trans-
mission amplitude is due to two effects: (i) The resonance
denominator which gives rise to poles, and (ii) the possi-
bility of destructive interference between the first and the
second terms which may resuit in transmission zeros. Note
that in contrast to Eq. (1), zeros are now possible.

Next, we examine in more detail conditions for the
existence of transmission zeros. As seen from Eq. (5), ze-
ros in the transmission amplitude, 7 ; =0, occur if

trsist
A=’S_ {

(when 5 g, =0). (M

The above condition relates a property of the resonator, A,
to the characteristics of the junction between the stub and
the channel, r’s and 7’s. In particular, Eq. (7) can only be
true if the right-hand side is a phase factor on the unit
circle, i.e., |re—tpstsi/try| =1. It is, perhaps, a surprising
consequence of unitarity, but easy to show, that always

trsist
ire

Unitarity, therefore, ensures that both the lefR-hand side
and the right-hand side of Eq. (7) are constrained to the
unit circle, which implies that a transmission zero occurs
when both phase angles are the same. This proves the ex-
istence of transmission zeros for transmission in
waveguides.

In the following, we elucidate the above general argu-
ments using specific model systems. We assume that the
transmission channels are very thin wires, allowing us to
consider only the coordinate along the wire. Transmission
and reflection coefficients of such quasi-one-dimensional
models have been studied in literature.'*'"'* We match the
values of the wave functions and the appropriste derivative
boundary conditions at each branch point in the network.'*
For the symmetrical open branch, this results in reflection
and transmission amplitudes which are independent of en-
ergy and orientation, r,=rg=rs=—1/3 and t;x=1s
=tsp=2/3.

The sidearm can now be made into a resonstor of
length L by erecting an infinite potential barrier. This
forces the wave function to be zero there, and implies A (E)
= —exp( —2ikL). Thus, A moves around the unit circle
with an angular frequency proportional to the wave num-
ber. Using Eq (5), the transmission amplitude for this case
of a strongly coupled stub can be given analytically, .7~
=2/[2+i cot(kL)). Figure 3 shows .7 (z) in the complex-
energy plane: for a complex argument z. Note the appear-

rs— =1 (8)
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FIG. 3. Transmsmion amplitude for the strongly coupled stub, which s
schematically depacted in the inset: (a) shows the transmission coefficient
on the real-energy axis, and (b) shows a contour piot of the absolute
value of the tranumussion amplitude 1n the complex-energy plane.

ance of transmission zeros on the real-energy axis, and the
existence of poles in the fourth quadrant of the complex-
energy plane. The zeros occur at energies for which a
standing wave forms in the stub, i.e., when k=n-7/L with
n=1,2,... . Also note that the maxima of the transmission
coefficient do not occur at the location of the poles, as for
double-barrier resonant tunneling. This is a particularly
simple example since the elements of the scattering matrix
are independent of energy.

An energy dependence in the elements of the scattering
matrix may be introduced by weakly connecting the stub to
the channel via a tunneling barrier, as schematically de-
picted in the inset of Fig. 4. We present numerical results
for a tunneling barrier of 0.5-eV height and 1-nm thick-
ness. Figure 4 shows the transmission amplitude for this
weakly coupled stub in the complex energy plane. Note
again the existence of transmission zeros as predicted by
Eq. (8). The poles move closer to the real-energy axis
which corresponds to the longer lifetime of the resonant
states due to the confining barrier. The most striking fea-
ture is the occurrence of a zero-pole pair for each quasi-
bound state. With increasing barrier height, the pole ap-
proaches the zero which leads to a sharper and sharper
transition between a transmission zero and one on the real-
energy axis (compare Figs. 3 and 4). In the limit of an
infinitely high barrier, the poles and zeros merge which
corresponds to 7 =1 for a completely decoupled stub.

In summary, we have demonstrated that quasibound
states in cavities, which are resonantly coupled to quantum
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FIG. 4. Transmussion amplitude for the weakly coupled stub, which is
schematically depicted in the inset: (a) shows the transmission coefficient
on the real-cnergy axis, and (b) shows a contour plot of the absolute
value of the transmission amplitude in the complex-energy plane.

waveguides, lead to zero-pole pairs of the transmission am-
plitude in the complex-energy plane. The proximity of
these zeros and poles leads to sharp variations of the trans-
mission coefficient with energy. Zeros are a new “‘animal”
not observed in the usual one-dimensional transmission
resonances.
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We report the results of modeiing laterai p-n junctions and p-n-p quantum wire structures at
corrugated GaAs/AlGaAs interfaces, using the surface orientation dependent amphoteric
nature of Si doping. We determine the potential landscape and the electron and hole charge
densities within a semiclassical Thomas-Fermi screening model, and then solve the
two-dimensional Schrodinger equation using finite elements for the quantized electron and hole
states at the heterointerfaces. We demonstrate the formation of a one-dimensional electron
system confined between two lateral p-n junctions, and discuss the advantages of this structure
compared to conventional electrostatic confinement schemes for fabricating quantum wires.

Recent studies'™ have shown that Si acts as an am-
photeric dopant depending on substrate orientation during
molecular beam epitaxial growth of GaAs and AlGaAs. In
particular, growth on {100} surfaces invariably leads to
n-type doping, while p-type behavior has been reported for
Ga-terminated {111}A surfaces. These findings have led to
the investigation of lateral p-n junctions at selectively
etched and epitaxially regrown V grooves consisting of
{111}A facets on {100} surfaces. Miller’ demonstrated the
feasibility of lateral GaAs p-n junctions which exhibited
good diode current-voltage characteristics. By using Si-
doped Alj;GagAs rather than GaAs during epitaxial re-
growth, one may also realize a lateral p-n junction between
quasi-two-dimensional electron and hole systems at the
corrugated GaAs/AlGaAs interface. Ebner et al.’ demon-
strated electroluminescence corresponding to the GaAs
quantum well band gap in such a system, and Harbury
et al. ° reported calculations which confirmed the existence
of a lateral p-n junction between two-dimensional electron
and hole gas systems for Si doping densities in excess of
5% 10" cm ~?.

The ability to fabricate lateral p-n junctions between
high mobility two-dimensional hole and electron gases al-
lows for a variety of novel complementary device struc-
tures. In previous studies, V-grooves have been employed
for the design of quantum wires.””'* By utilizing ampho-
teric Si in such a V-groove structure, a novel quantum wire
system may be realized at lateral p-n-p junctions.'' This
new way of fabricating a quantum wire with lateral p-n
junctions'’ may offer some advantages compared to
present unipolar structures'’ which use metal gate electro-
static confinement or sidewall etching.

In this letter, we report our resuits of modeling both
lateral p-n junctions and lateral p-n-p quantum wire struc-
tures at corrugated GaAs/AlGaAs interfaces. We deter-
mine the potential landscape and the electron and hole
charge densities by solving Poisson’s equation within a
semiclassical Thomas—-Fermi screening model. Given a cer-
tain potential profile, we then solve Schridinger’s equation
for the quantized states at the heterointerfaces. Among the
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interesting properties of such structures are the coexistence
of quasi-two-dimensional electron and hole states next to a
quasi-one-dimensional electron o7 hole system.

Figure | shows a schematic drawing of the model cor-
rugated GaAs/AlGaAs interface. The composition and
layer thicknesses are similar to those used by Ebner et al*
in fabricating a lateral light emitting structure. A 50 nm
thick layer of Si-doped Alj;Gay+As is overgrown on a
semi-insulating GaAs substrate with an etched V-groove.
The substrate terminates in a (100) plane, whereas the
sidewalls of the V-groove are members of the {111}A fam-
ily of planes. As indicated in Fig. 1, n-type doping is
present for the (100) layers, and p-type doping for the
(111) layers.!* Also shown is the heterointerface between
GaAs and AlGaAs. For suitable doping conditions, a two-
dimensional electron and hole gas (2DEG and 2DHG,
respectively) forms along this interface.

We use the finite element method and Newton-
Raphson iteration to solve the nonlinear Poisson equation
within a Thomas-Fermi screening model for room temper-
ature. We assume surface pinning at the Alj3Gag,As
(100) and (111) facets (0.8 eV separation between the
conduction band edge and the Fermi level), and n-type
background doping in the bulk of 1Xx10'* cm~>. The de-
termination of the two-dimensional conduction and va-
lence band edges is a challenging numerical problem which-
requires a highly nonuniform mesh because of the compli-
cated geometry and the different doping densities. The re-
sulting large system of linear equations is solved utilizing
band width optimized sparse matrix methods. We also
study the quantum-confined electronic states at the hetero-
interfaces by obtaining solutions of the two-dimensional
Schrodinger equation for the calculated potential land-
scape.

We now concentrate on the portion of our model struc-
ture which is shaded and labeled “p-n Junction” in the
schematic drawing of Fig. 1. Depending upon the doping
densities in the overgrown AlGaAs layer, the (100) and
(111) heterointerfaces may induce two-dimensional elec-
tron and/or hole systems, respectively. A lateral p-n junc-
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FIG. 1. Schemauc diagram ot the modei geometry.

nion will form if the Si-doping density is high enough to
simultaneously produce two-dimensional electron and hole
systems along the heterointerfaces. Figure 2 shows, for sev-
eral values of the Si-doping density in the overlayer, the
caiculated conduction band profiles at the n-side of the p-n
junction in the direction perpendicular to the (100) het-
crointerface; the semiclassical Fermi level defines the zero
of energy and is shown by the dashed line. The inset dis-
plays the conduction band minimum at the GaAs side of
the heterointerface, and a quasi-two-dimensional electron
gas forms for doping densities higher than 5x10'" cm~*.
Similar behavior is found for the valence bands in the di-
rection perpendicular to a (111) interface. Figure 3 dem-
onstrates the existence of lateral p-n junctions between
2DEGs and 2DHGs for two values of the overlayer doping
density. Plotted are the conduction and valence band edges
in a direction parallel to the (111) and (100) heterointer-
faces, respectively, as schematically shown in the inset.
Negative values of the distance correspond to the (111)
interface, and positive values to the (100) interface. The
emergence of a p-n junction is clearly visible, and the tran-
sitton from p- to n-type behavior occurs over a distance of
about 100 nm.
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FIG. 2. Conduction band profile perpendicuiar to the ( 100) interface for
different values of the Si-doping density in the overiaver. The inset shows
the vanation with dopeng of the conduction band miumum at the het-
eromterface.

1824  Appl. Phys. Lett. Vol. 81, No. 15, 12 October 1992

N -00)

Potential oo Ny
<

Vg Ng.-SOXIO'scm: \

L0 - == Ng = i0x107 cm

P2

14 - rY————— x
16 3

18 ¢
-S00 400 -300 -200 -i00 O 100 200 300 400 500

Distance (nm)

FI1G. 3. Band diagram for the lateral p-n juncuon. Shown are the con-
duction and valence bands (for two values of the doping density) along
the (111) and (100) interfaces. as indicated in the inset.

At the base of the V groove, a narrow (100) n-type
region exists between two (111) p-type regions which re-
suits in lateral potential confinement in addition to that of
the heterojunction. We have investigated the formation of
a 1D quantum wire in the n-region by solving Poisson’s
and Schrodinger’s equations in the solution domain shown
in Fig. | by the hatched area which is labeled “WIRE."”
Figure 4 gives the band diagram for the p-a-p junction,
where the center n-type section is modeled with a length of
L=100 nm and the overlayer doping is chosen to be 1
x 10'8 cm 3. The conduction and valence band edges are
shown at the GaAs side of the junction and in a direction
parallel to the heterointerfaces. Note that an accumulation
of electrons occurs at the center of the n-type (100) section
where the conduction band moves below the semiclassical
Fermi level, which is again chosen to be the zero of energy
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FIG. 4. Band diagram for the lateral p-n-p structure. Shown are the
conduction and valence bands along the heterointerfaces for a 100 nm
long center n-type section and a Si-doping density of 1 X 10'* cm "’ The
insets show front and side views of the two-dimensonal conduction band
profile. The potential “pocket” which holds the quantum wire is also
indscated.
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FIG. 5. Potential vanation perpendicular to the heterointerface (at the
center of the n-type repion) for the two-dimensional conduction band
profile shown in Fig. 4. The insets show the wave funcuons for the lowest
two quantum wire states, which are confined at the GaAs side of the
heterointerface (the darker top portion of the mesh corresponds to the
higher-density AlGaAs overisyer).

and shown as the dashed line. The lateral p-n junctions on
both sides confine the accumulated electrons in the direc-
tion parallel to the heterointerface. A better perspective of
the two-dimensional potential variation can be gained by
the insets which present front and side views of the two-
dimensional conduction band profile. Note the dip in the
center which defines the “pocket™ holding the electrons.

Figure 5 shows the variation of the conduction band in
the direction perpendicular to the heterointerface at the
center of the n-type (100) region. The sharp dip below the
semiclassical Fermi level is now clearly visible. The corre-
sponding solutions to the two-dimensional Schrodinger
equation for the ground and first excited one-dimensional
subbands are shown by the insets in Fig. 5. The peak of the
=nvelope function clearly lies in the GaAs side of the het-
erojunction localized between the two p-type regions. (The
darker top portion corresponds to the denser mesh in the
AlGaAs overlayer.) The confinement energies relative to
the semiclassical Fermi energy are shown schematically on
the band diagram for the first three levels. The energies
shown all correspond to states originating from the lowest
two-dimensional subband energy of the heterojunction it-
self. The spacing of the levels, here on the order of 10 meV,
depends on the doping and the width of the n-region at the
base of the V-groove. As the width is reduced, the subband
separation should increase, although limitations are im-
posed by the lateral extent of the depletion region which
eventually resulits 1n complete depletion of the wire if made
100 narrow.

The resuits above demonstrate the feasibility of realiz-
INg a quantum wire structure on a corrugated GaAs/
AlGaAs surface. There are several possible advantages of
such a structure compared to the current state of the arn
which relies on sidewall etching or electrostatic confine-
ment from Schottky contacts on the surface of the
AlGaAs. First, the actual definition of the width of the
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n-region 1s defined by the etch time of the amsotropic etch
through an optically defined photoresist mask. Thus, elec-
tron or 1on-beam lithography 1s not required to fabricate
the wire structure. The bipolar nature of the structure may
be utilized to inject minonty carners into the wire struc-
ture from the p-regions. which may lead to some interest-
ing device appiications. Also. if one additionally provided
separate contacts to the p- and n-type regions using nano-
lithography, control of the wire transport properties could
be achieved both by varying the width of the confinement
(through reverse biasing the p-n junctions), and through
varying the electron Fermi energy via a gate contact on the
AlGaAs above the electron channel.

In summary, we have demonstrated the existence of
lateral p-n junctions between 2DEGs and 2DHGs on cor-
rugated GaAs/AlGaAs interfaces, which is made possible
by the amphoteric nature of Si-dopants as a function of
crystallographic plane orientations. At V-grooves etched
into a semi-insulating GaAs substrate, a p-n junction forms
at the intersection of (100) and (111) planes if the doping
in the overlayer exceeds 5 10" cm ~°. We have also dem-
onstrated the possibility of basing this system for the de-
sign of quantum wires which may form at the bottom of
the V groove. We find that a quantum wire is to be ex-

pected in this p-n-p structure for a length of the »-type
region on the order of 100 nm and a Si-doping density of
1%10'% cm 3.
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Force Office of Scientific Research.
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“The detauls of the amphotenc nature of the silicon doping near the
intersection of the (100) and (111) surfaces are not ksown, and likely
to be more complicated than our model. This and possible compensa-
tion effects might tend to reduce the abruptaess of the isteral p-» junc-
ton,
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ABSTRACT

The physical strength of poly (methyl methacrylate) (PMMA) resist is an important factor for making ve

dense

patterns with most types of lithography. For lines placed closely together using the lift-off technique, a thin wall of PMMA
remains to act as the metal line spacer. When placed in contact with a suitable developer, thin polymer walls may swell and
buckie, depending on the desired aspect ratio of the thin walls. We use electron beam lithography and a high-contrast
developer solution to study the relationship of the maximum height-to-width ratio of the PMMA walls necessary to avoid
buckling, and the resuiting effects on metal thickness after lift-off. Maximum achievable aspect-ratios for our developer
system were found to be constant (nearly 5:1) for widths from 20 to 45 nm and lengths of tens of microns. Theoretical
predictions based on the hypothesis of a swelling-induced elastic instability are in excellent agreement with the experi-

ments.

In the past few years, quantum devices based on ultra-
small geometnes have received considerable attention. The
usual case involves some feature, e.g., gate length or metal
line width, which is reduced in size in order to observe size
quantization. In some cases, reduction of line wadths plays
only half the role, whereas a decrease in spacing between
features plays an equally significant part. For example,
split gates with 100 nm gaps in the form of bends have been
made for the study of transmission properties at corners.'
Also. lateral resonant tunneling transistors have been

* Electrochemical Society Active Member.

demonstrated with distances between gates of about 100
nm.’ More recently, optical gratings have been fabricated
with a metal line pitch of 50 nm over several microns.’ All
such devices require excellent control of line spacing.
Because of its uniquely high resolution, poly (methyl
methacrylate) (PMMA) is among the most important resists
for nanostructure fabrication. Utilizing the lift-off process,
the resolution of resulting metal patterns depends not only
on :he width of the defined lines, which relates to the reso-
lution of the beam formation system, but also to the quality
of the edge profile of the resist, which depends to a great
extent on the contrast of the resist/developer system. The
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mast common developers lor nanolithographv are methvl
1sobutyl ketone:asopropyvl alcohol (MIBK.IPA) (1.3} anu
cellosolve:methanol (3:7)." both demonstrating verv high
resolution. One weakness of these developers is the 1nabil-
1ty to dissolve high molecular weight components left be-
hind from doses just at the threshold ot complete develop-
ment. This can lead to scum lavers which can interfere with
the lift-off process.” Higher doses necessarv to decrease the
molecular weight of the scum laver lead to a luss of resolu-
tion due to such factors as beam tails ana energy scattering.
It has been shown' that adding a minute percentage of
methvl ethyl ketone (MEK) to the common developers can
increase contrast and improve lift-off results. and there-
fore allow denser patterns to be fabricated.

In this paper we discuss the fabrication of extremely
dense patterns on a solid substrate at energies below 50 keV
without the use of such techniques as shadowing of a smgle
pass exposure’ or re-alignment of separate patterns.’ Al-
though patterns as small as 15 nm have been achieved with
double tilt shadow evaporation,” a major difficulty is that
of connecting the resulting lines to other structures within
a device. Double alignment techniques® have shown
equally impressive results with 16 nm lines on 24 nm pitch,
but this method is inherentlyv difficult and complicated. re-
lies on the use of a scanning transmission electron micro-
scope (STEM) for aligning the patterns. and requires muiti-
ple exposure steps. So far. only membranes. as opposed to
solid substrates. have been utilized in this technique since
alignments are facilitated using transmission imaging. Al-
though adding significant complexity to the process. mem-
branes offer an inherent advantage of reduced proximity
effects. and thus a higher exposure modulation between the
lines and spaces. Unfortunately, however, membranes are
not amenable to device fabrication or suitable device per-
formance. The developer used here helps to improve con-
trast so that verv dense patterns can be fabricated on solid
substrates even without very high beam energies offered by
the use of TEMs.

Both the beam diameter of the exposure tool and the
contrast of the resist/developer system have a significant
effect on the achievable density of narrow metal lines. In
the limit of very high resolution and contrast, the mechan-
ical strength of the PMMA used for lift-off is the final lim-
itation to making extremely closely spaced patterns. The
lift-off process is described in Fig. 1. Exposing energy, in
our case electrons. causes bond-breaking in the PMMA
(Fig. la). After development (Fig. 1b). metal is evaporated
perpendicularly to the surface. so that metal coats only the
top ot the resist and the exposed substrate surface (Fig. 1¢).
For thin reststs at moderate energles, undercutting can ap-
proximately be described by’

b =625 (Z/ENt*(p/A)'? (1]

where b is the increase of the diameter of the beam at the
bottom surface of the resist. Z. A, p, and ¢t are the atomic
number. atomic weight, density, and thickness of the resist,
respectively, and E, is the beam energy in keV. For PMMA,
Z =36.4=67g/mol, and p = 1.2 g/cm’.'* For 45 keV
electrons and a PMMA thickness of 130 nm. undercutting is
about 3 nm at each sidewall of our pattern. which aids in
the lift-off process. During the lift-off step. dissolution of
the resist 1n a suitable solvent causes removal of all metal
except that on the substrate surface (Fig. id).

As seen above. the unexposed resist spacer is in the form
of a thin wall between the developed lines. When lines are
placed too closely together and high resolution is achieved,
the resist walls can either become wavy, fall over. or even
lose adhesion to the surface. in which case thev fail com-
pletelv. In this regard. internal stresses due to swelling can
play a dominant role. Although PMMA suffers little
swelling, which accounts partiaily for its ultrahigh resolu-
tion properties, some absorption of developer is necessary
to aid the development process.' Swelling of polymeric
resists has been extensively investigated.'’ In poor solvents,
solvation forces favoring mixing are insufficient to pro-
mote dissolution of the polymer. Partial plasticization and
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swelling can occur, however, leading to weaker mechanical
properties, and to the build up of internal stresses in con-
strained systems. Typically, glassy polymers can experi-
ence between 1 and 30% swelling, without dissolution, de-
pending on solvent quality and temperature.” Such a low
degree of expansion may be irrelevant in most cases, but, as
shown below. can lead to severe dimensional stability
problems in the fabrication of thin polymer walls.

Experimental

Our EBL system consists of an Amray 1400 scanning
electron microscope (SEM) with a minimum spot size of
35 A controlled by an IBM PS/2 personal computer inter-
faced through a Pragmatic Systems 2201A 16-bit arbitrary
waveform generator. The details of the system are de-
scribed elsewhere.'*

We used PMMA with molecular weight 950,000 amu
baked at 170°C for 4 h for all exposures. Resist and devel-
oper parameters were very tightly controiled. Resist thick-
ness was 105 to 180 nm as measured with an Alpha-Step
200 surface profiler. The developer used in all cases was a
solution of MIBK:IPA (1:3) with the addition of 1% MEK
by volume.® It has been shown that contrast results are
extremely sensitive to variations in developer temperature
due to the high activation energy of the PMMA in the devel-
oper solvents.® Using a temperature controller, our devel-
oper temperature was maintained at 25 t 0.5°C. Develop
time for all samples was 15 s followed bv a 15 s rinse in
methanol. After development. all samples were dried in air
at 90°C for 5 min.

All exposures were performed at a beam energy of 45 keV
ataspc* -ize of 5 nm and 120 um scan field. Substrates used
inall ca. - were 200 nm SiO, on thick silicon wafers. Doses
were very critical for making high-density patterns be-
cause of proximity effects during E-beam lithography.
They were not only related to the line pitch, but also to
the size of the patterns. For grating pitches ranging from 70
to 150 nm, the doses varied from 1.5 to 2.5 nC/cm. For the
case of only two parallel lines, doses ranged from 2.5 to
3.5 nC/cm for pitches from 80 to 120 nm.
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All metal evaporations were gold from an electron beam
evaporator with crucible size of 2.5 cm and a distance of 40
cm from the source to wafer. Metal thicknesses were closely
calibrated with a film thickness monitor and a surface
profilometer. All metal thicknesses were 30 + 1 nm. Lift-off
was performed by soaking the samples in acetone for about
5 min, followed by the application of acetone using a hypo-
dermic syringe, followed by a 15 s methanol rinse, and final
blow drying in nitrogen.

Resulis

In order to achieve lift-off of evaporated metal films, it is
necessary that PMMA walls remain between the developed
areas. Assuming minor undercutting for thin resists and
high beam energies, it is expected that the spaces of the
resulting metal patterns closely reflect the width of the re-
maining PMMA walls, especially at the top. Because of the
very low solubility of unexposed PMMA of very high
molecular weight,* the height of the walls after develop-
ment is still approximately the same as the initial resist
thickness.

After application and bake. PMMA can be considered a
strong, glassy material. Exposure to the developer, how-
ever. causes swelling of the polymer. leading to the buildup
of internal stresses 1n strongly anchored structures. Com-
pressive stresses in the wall can, in turn. lead to buckling.

The wall aspect-ratio (height-to-width) 1s an important
parameter in delineating the stability threshold. since a
tall. thin wall will be strongly susceptible to small dimen-
sional perturbations around the erect position. while a
short wall will be able to sustain a higher degree of swelling
before buckling. Figure 2 shows the remaining metal after
lift-off of a typical failed wall. The bright areas are evapo-
rated gold. and the dark. wavy center line is the shadow of
the remaining wall over which gold was deposited and re-
moved. The wall was about 30 nm wide and 140 nm high.
We show later that a direct relationship exists between the
onginai wall height and the wavelength of the distortion.

Figure 3 shows the minimum width of a PMMA wall
achievable for a given starting resist thickness. Error bars
represent vanations in metal line separation (and therefore
wall thickness) over the length of the lines. These data were
obtained by smoothly varying the line pitch for a given
resist thickness and observing the point at which lines ei-
ther failed completely or became noticeably wavy. The
data indicate a direct proportionality between cntical wall
height and width. implying a constant aspect-ratio for
buckling.

Although the lower the thickness of the PMMA. the
closer the achievable line spacing, the resist thickness can-
not be lowered arbitrarily because. for different processes,
different thickness of metal are required depending on step
coverage, line continuity, muitiple metal layers, device
scaling requirements. electrical resistance constraints,
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Fig. 3. Minimum width of PMMA wolls achisvable for o given
starting resist thickness (wall height).

opacity to radiation (e.g., Xx-rays), etc. We have determined
that to achieve reliable lift-off, the thickness of PMMA
should be at least three times the desired thickness of the
small metal pattern. This rule of thumb will depend to some
extent on the metal evaporation system. since the physical
size of the evaporant source, the source-to-sample spacing,
and the care taken to place the sample perpendicular to and
directly above the source will all affect the amount of metal
deposited on the inside surfaces of the PMMA etched by the
developer. Using this relationship, and guided by the
“critical-aspect-ratio” criterion, we fabricated double gold
lines with an approximately 20 nm space and a metal thick-
ness of 30 nm, from 105 nm thick resist layers. The lines
were continuous and straight over a distance of 25 um.
Figure 4 shows a portion of these lines at high
magnification.
Discussion

We begin our discussion with some simple theoretical
considerations about the stability of a long wall with a
rigidly anchored bottom and a top free end subject to inter-
nal stresses. Comparison with experiments will then
closely follow the theoretical predictions.

The system of interest is shown in Fig. 5. which also gives
the characteristic geometrical parameters. Mathemati-
cally, the problem is conveniently formulated within the
framework of linear plate theorv.?* leading to the following
homogeneous boundary value problem for the lateral dis-
placement. §

¥, '8 B _ (ex1201 -v=)) a8 2
it iieytay T T\ Ewt oz
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d0=0aty=0 (no displacement at the bottom)
(3]
) -
a_y =0aty=0 (built-in bottom end) 4}
g—; .V %-8‘ =0aty=h (torque-free top) (5]
3
%2»(2—v)£;§a—y=0my=h
(shear force-free top) {6)

where o, 2 0 is the internal compressive stress, v Poisson's
modulus. E Young's modulus, and w and h the wall thick-
ness and height, respectively. For an infinitely long wall the
solution to Eq. 2 is of the form

dx, y) = cos (Zx/h)A(sinh(ay/h) - sin(By/h N
+ B (cosh(ay/h) - cos(By/h))) [T}
where A and B are integration constants, and
a=\E + \AE (8]
B=\E e\ AL

\ 2 O 12(1 - vOA?
oo Ew-
Vanable § 1s related to the wavelength of the prevailing
distortion. a. as follows
A =2rh/§ (9]

Imposition of the boundary conditions provides the follow-
ing equation for the eigenvalues

2ts + (3 « ) coshta) cos(f) = 0:75 (@’t? - B*s™) ainhta) sin(P)
(10)
where

t = B" 0V§"
(11]
s =u.' “Vé"

As customary in stability theory. Eq. 10 1s satisfied only
by a discrete set of § values, provided A is greater than or
equal to a mmmumum cntical value. A*. Physically, A’ is the
smallest (dimensioniess) load necessary to reach the mar-
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ginal stability limit (indifferent equilibrium), and can be
calculated by solving Eq. 10 numencally. We obtain A® =
10.40, and &' = 1.917. Combining these results with Eq. 8
and 9. the smallest critical stress. o%.. and the associated
wavelength, A, are calculated to be

o). = 26 Ew-/[30(1 - v-)h?] (12
A=h2r/1.917 (13]

For swelling-induced stresses, g%, can 1n turn be obtained
from

0% = Eey (14)

where €., is the hypothetical swelling strain that the wall
would undergo if allowed to expand freely. Equations 12
and 14 allow us to calculate the critical wall aspect-ratio
for stability, (h/w)’, as a function of the swelling strain
hy T
(&) = oo v (151
For (h/w) > (h/w)* the wall will buckle. Equation 15 is more
convenient for comparison with experiments than Eq. 12,
since it does not contain the unknown modulus E (which
presumably changes upon swelling). As expected, a short
wall can sustain a higher degree of swelling before buck-
ling. Additionaily, Eq. 15 predicts that, for a constant &,
the critical wall height and width should be directly pro-
portional to each other. This prediction is in excellent
agreement with our data, as shown in Fig. 3.

The slope of the line in the figure provides the critical
aspect ratio for buckling: (h/w)" = 4.75. Calculation of e,
from Eq. 15 requires knowledge of Poisson's modulus, v.
Because the polymer is swollen, and the stresses are rela-
tively small, the assumption v = 0.50 is apprnpriate, giving:
€,w = 9.1%. This value is well within the expected range for
glassy polymers."

Another easily accessible observable is the wavelength of
the distortion after buckling, A, (Eq. 13). In Fig. 2, the meas-
ured wavelength of the distortion is 460 nm, which is in
excellent agreement with the value of 459 nm given by
Eq. 13 with A = 140 nm.

The maximum amplitude of the lateral disslacement of
the wall, A (see Fig. 5), can also be measured by SEM. If we
assume that the deformation profile is unaffected by sol-
vent evaporation, then the observed value of A can be used
to obtain an independent estimate of ¢,, as follows.

The curvilinear contour iength between nodal points at
the top of the wall after buckling can be calculated from

L=A(1+e..)=zinf' \,1*(2—5.?5 sinz)dz (16}

For (2rA/A)? << 1 (subject to venfication), the kernel in
Eq. 16 can be expanded up to second-order terms and inte-
grated to give
LANE 3 Ay

ewel5) [1-3(57] u}
This equation can be used to calculate ¢,,, with the mea-
sured values of A and A. From Fig. 2 we estimated A =~
33 nm. giving (with A = 460 nm) €., = 4.7%. This value is in
good agreement with the previous estimate of 5.1%. These
findings confirm that swelling is the dominant mechanism
for instability tn our expertments. It is remarkable that a
5% swelling can lead to the failure of a wall less than five
times higher than 1ts wadth.

Summary and Conclusions

We have investigated the relationship between minimum
line spacing and maximum metal thickness for EBL-fabri-
cated patterns using high-contrast resists. Both theory and
experiments confirm that a smail degree of swelling may
lead to the catastrophic failure of PMMA walls of relatively
modest aspect-ratio. For subcrntical aspect-ratios, line
spacings as small as 20 nm, and metal thicknesses as high
as 30 nm were reliably achieved without loss of adhesion or
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distortion. We believe that the formulation of developers
that maximize contrast while minimizing swelling is desir-
able for attaiming higher resolution 1n nanostructure fabri-
cation. Hopefully, the results of this paper will permit more
effictent screening of improved developer solutions
through the 1nitial observation of swelling properties.
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Determination of Fixed Electron-Beam-Induced Positive Oxide Charge
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Summary: Contrary to previous beliefs. electron-beam-
induced positive charges in insulators persist where creat-
ed for at least several weeks without discernible move-
ment. Formerly. coating with a thin metal overlay was
thought to allow the charge to leak away. Coating with a
conductor is shown to shield electric fields tfrom affecting
the imaging probe. but to remove no charge from the spec-
imen. A new technique is introduced for the evaluation of
the properties of electron-beam-induced positive charges in
metal-oxide-semiconductor (MOS) capacitors. MOS struc-
tures were subjected to partial area exposure in a scanning
electron microscope. These exposures resulted in the cre-
ation of areas of localized positive charge within the oxide,
which was observed as steps in the capacitance-voltage
data. A systematic study was performed. It related the
exposed area to the step height and the amount of induced
charge to the voltage shift of the step. A modei describing
the observed phenomenon is presented, followed by a
comparison of theoretical and experimental results. The
progress of the charge over time was studied by perform-
ing capacitance-voltage analysis 30 min after electron
beam exposure and up to 4 weeks later.

Introduction

Charging of specimens is a common problem encoun-
tered in the imaging of all insulating materials in a scan-
ning electron microscope (SEM). In general. the details of
the charging mechanism can be a complex function of
beam and material parameters. Krause and co-workers
{Krause er al. 1989) have demonstrated that in thin films,

This work was supported 1n part by ONR. AFOSR. IBM. and the
University of Notre Dame.
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G.H. Bemnstemn

Depantment of Electncal Engineenng
University of Notre Dame
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trapped charge can be either positive or negative. depend-
ing on the beam-accelerating voltage, the thickness of the
insulating layer. and the nature of the substrate. Typically,
at higher voltages. SEM images of thin insulators on con-
ducting substrates appear dark because of trapped positive
charges left behind by secondary electrons ejected by the
primary beam. It is commonly believed that the coating of
insulating specimens by a conductive layer causes this pos-
itive charge to be drained away from the imaging area, thus
eliminating distortions of the probe and restoring usable
resolution (Goldstein er al. 1981). A nuisance in SEM
imaging, excess positive charge in the gate oxide of metal-
oxide-semiconductor (MOS) devices (McLean et al. 1989,
Nicollian and Brews 1982) can be created by electron
beam processing used in certain integrated circuit fabrica-
tion and analysis techniques. With electron beam lithogra-
phy, metal over- or under-layers are used to reduce the
charging effects during beam writing of nonconductive re-
sists (Henderson 1980). The precise properties and behav-
ior of the induced charges in insulating films are uncer-
tain. Although in MOS structures much is known about
the creation. minimization, and annealing of e-beam-in-
duced bulk oxide damage (Balasinski et al. 1988, Keery
eral. 1976. Sah er al. 1983, Shimaya et al. 1983), details of
the behavior of localized positive charge within oxide lay-
ers are not fully understoed. This is partly becanee an easy
and accurate method to monitor localized oxide charge has
not been established.

For the first time we can report that electron-beam-in-
duced positive charges remain fixed where created. To de-
monstrate this, we have developed a technique that uses a
certain structure in the capacitance-voitage (C-V) curves of
MQS capacitors. This structure can be used to yield valu-
able information regarding the location ar.. amount of
charge deposited in SiO: in a MOS structure. Using elec-
tron beam lithography, we accurately exposed partial areas
of MOS capacitors with known electron doses. This served
to effectively create two capacitors in parallel, with one
metal gate. having different threshold values due to the
induced positive charge in the oxide. By performing C-V
measurements before exposure, 30 min afterward, and
later. it was possible to electrically monitor the induced
positive charge. The resuits of these experiments, along
with conclusions about the electrical behavior of the charge
within the oxide, are reported. A model relating the ex-
posed capacitor area to the theoretical C-V resuits is pro-
posed and compared with experimental results.
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Experiment

The starting material used for MOS capacitor fabrica-
uon was <100> onentation. p-tvpe stlicon with doping
concentration Ny = 1.5X10'° ¢m *. After caretul clean-
ing. the silicon waters were oxidized at 1000°C for 20 min,
resulting in oxide thicknesses ranging trom 738-833 A. as
deduced from the accumulation capacitance of the indi-
vidual C-V curves. In order to minimize the etfects of mo-
bile ion contamination, oxygen was bubbled through a
solution of 2% HCl in deionized water. Circular aluminum
dots of an area 4.9% 10~? cm* were evaporated in a high
vacuum through a shadow mask onto the surface of the
oxidized wafers. The thickness of the Al for all of the dots
was 1.100 A as measured with an Alpha-step 200 pro-
tilometer. The top surfaces of the metallized waters were
coated with a protective {ayer of positive photoresist. then
immersed in a buffered hydrofluoric acid (HF) chemical
etching solution which removed the oxide from the back
surface. Following photoresist removal. aluminum was
evaporated onto the back surface of the wafers, after which
the wafers were annealed in flowing nitrogen gas for 20
min at 420°C.

Partial areas of the completed MOS capacitors were
subjected to electron beam exposure as shown schemati-
cally in Figure la. changing the device properties where
exposed and thus effectively dividing the device into two
separate capacitors in parallel. as described in Figure 1b.
Exposures were performed at 20 kV and 0.8 nanoamperes
in an Amray model 1400 scanning electron microscope.
The SEM was controlled using a Pragmatic Instruments
model 2201 A arbitrary waveform generator and custom
software to ensure dose and area accuracy. Exposures were
executed by quickly imaging a single capacitor at a very
low current. blanking the beam. setting the current to the
desired value. and scanning (using e-beam lithography) a
square of known area entirely within the MOS capacitor.
The dose was fixed at 4 X 10~° C/cm?, and exposed areas
ranged from 10.4-62.4% of the total area of the capacitor.
The upper limit on areal exposures was determined by the
size of the largest possible inscribed square within a circle
(with area ratio 2/z).

Results and Analysis

Total electron beam exposure of high quality MOS
devices is known to cause a negative shift of C-V charac-
teristics (Johnson 1975, Keery et al. 1976, McLean er al.
1989. Nicollian and Brews 1982. Sah et al. 1983, Shimaya
et al. 1983). Free electrons created in the oxide during ex-
posure either recombine with holes or leave the insulator;
thus they are electrically eliminated (Keery et al. 1976,
Zaininger and Holmes-Siedle 1967). Holes. however. be-
have differently because of their much lower mobility in
Si0a. as some will recombine with ¢electrons, while a sig-
nificant fraction is captured in stationary traps. resulting

(@) (b)
FiG. | Schematic diagram of the parual area exposure of a MOS
capacitor. (a) Definition of the exposed area. A, and the unexposed
area A,. (b) The exposed and unexposed portions give a total capaci-
tance, C,, which is the sum of the two parailel capacitances, C. and C,.

in a fixed positive charge contained in the oxide (Keery et
al. 1976, Zaininger 1966, Zaininger and Holmes-Siedle
1967). The result of this trapped positive charge is deple-
tion and inversion of the device at more negative voltages.

C-V measurements were performed on a series of MOS
capacitors both before and 30 min after partial area expo-
sure in an SEM, as described above. Figure 2 shows typical
results obtained from two of these capacitors that have frac-
tional exposure areas. A¢/A,, where A, is the exposed area
and A is the total area, of 10.4 % and 62.4%, respectively.
The relevant features in this figure are the additional steps
in the C-V curves observed after exposure. Comparison of
Figures 2a and 2b shows that the step height increases for
larger fractional area exposure but the location of the step is
approximately the same for constant areal dose.

We demonstrate below that our observed steps are due
to trapped positive charge in the exposed area, which caus-
es that area to deplete and invert at more negative voltages
than the unexposed portion of the capacitors. Although
steps have been previously reported in C-V data after elec-
tron beam irradiation. they were of different origin. In a
study of Zaininger (1967), steps were observed after total
capacitor exposure and were attributed to the enhancement
of existing interface states concentrated around a single
energy level in the band gap. When the degree of perfec-
tion of the interface was high. no step was observed. but
the entire C-V curve was shifted to more negative volt-
ages. In order to test whether our steps were due to such a
surface state phenomenon, we performed whole area expo-
sures of our capacitors. The results of our test are shown in
Figure 3. The shift of the C-V characteristics with no step
present indicates that our steps in the partial exposure
experiments are not related to the enhancement of pre-
existing intertace states but are a result of the localized
positive charge created in the exposed area.

We now develop a quantitative model. which relates the
size of the observed steps to the areas of exposures, assum-
ing that the created positive charge is fixed where created.
A single capacitor subjected to partial area exposure can be
modeled as two capacitors connected in parallel: one
capacitor. C.. with an area equal to that of the exposed
area. and another. C,, with an area equal to that of the un-
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Fig. 2 C-V charactenstics of MOS capacitors before and after e-beam paruial area exposure. The exposure areas were (a) 10.4% and (b)

62.4% of the total area.

exposed area. Since the exposed area has a more negative
threshold voitage, V. because of the presence of the pos-
itive charge in the oxide. it undergoes depletion and inver-
sion, while the unexposed area is still in accumulation. The
unexposed area inverts at the unchanged threshold volt-
age, Vu. Figure 4 shows schematically a C-V curve, which
is a superposition of the individual C-V curves for the
capacitors C. and C.. The additional step observed in the
expeniments is expected to occur at the threshoid voltage ot
the exposed area. The height of the step should be equal to
the difference between the accumulation capacitance, C,,
and the inversion capacitance. C,, of the exposed area.
To determine the theoretical relationship between the
step height, Cae - Cie, and the exposed area. A, we con-
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Fic. 3 C-V charsctenstics of a MOS capacitor before and 30 min
atter total e-beam area exposure.

sider the following relations as derived from basic MOS C-
V theory (Pierret 1983). The accumulation capacitance of
the exposed area 1s given by,

C = Kotoe

3 (D

ox

where ¥ is the dielectric constant of Si0x, € is the vacu-
um permittivity, and do. is the oxide thickness. Similarly,
the semiconductor capacitance of the exposed area in
inversion can be expressed as:

C&c= KSI\E;;Ae

Capacitance

t

Cat = Cae + Cay

Chi=Ce+C,

¥ T

Vie Vi, Voltage
Fic. 4 Schemauc diagram ot the C-V curve resuiung from partial
area exposure. Kev: C = capacitance. with subscripts a = accumula-
tion. { = total. ¢ = exposed. u = unexposed. and i = inversion. Ve and
Vn, are threshoid voitages for exposed and unexposed poruons. re-
specuvely.
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where x,, is the dielectnic constant of silicon and W is the maxi-
mum depletion-layer width into the semiconductor. The capac-
itance of the exposed area in inversion can now be expressed
as the senes combination of the above two capacttances:
C.= C—~( “f(‘-f (3)
Je e

The total accumulation capacitance is:
K,&
C;“= A ()/\l (4)
d
where A, is the total capacitor area. Thus. combining all

of the above equations. we obtain a linear relationship be-
tween the step height and the exposed area:
A,

Cnc _Ce
Tk T K€ (5)
Ca( A(

(131

where

Figure 5 compares the experimental data, obtained 30
min after exposure. and the theoretical predictions from
Eq. (5). Shown is a plot of the normalized step height, (Ce-
C.eVCa, versus the normalized exposure area, A/A.. The
error bars in the experimental data represent uncertainty in
the sharpness of the steps. For each individual capacitor
with a certain exposed area. we also show the theoretical
prediction from Eq. (5) for the step height. taking into ac-
count the precise value of the oxide thickness for the calcu-
lation of the constant. K. The straight line shown in the
figure represents the relationship of Eq. (5) for a value of
K corresponding to an average oxide thickness of 766 A.

Figure 5 gives excellent agreement between our exper-
tmental results and the above theoretical model. which
assumes that the positive charge remains fixed in the area
where it is created. The step height in the C-V data may
thus be used as a measure for the areal extent of positive
charges n insulators. In particular. the out-diffusion of pos-
itive oxide charges mav be monitored as a change of the
step height in time.

To gain further insight into the time-dependence of the
positive oxide charge. we performed an expeniment to de-
termine its position and magnitude a significant time after
its creation. We analyzed the C-V data 30 min. 2 weeks.
and 4 weeks after partial area exposure of an MOS capac-
itor. where the exposed area was 41.6% of the total area.
The chip containing this capacitor was stored at room tem-
perature in a dark shielded box during the 4-week time
period. Figure 6 shows the before- and after-exposure
curves. We see that the step observed 30 min after expo-
sure has moved approximately 0.8 volts in the positive
direction after 2 weeks, but only 0.2 volts more after an
additional 2 weeks. Note that the step height did not

(Cue-C)/Cuy

05 T T T T T T ;{,

—— Theoretical for average g, & 1
aa b ° Theoretical for measured d,, .

x  Expernimental data
Q3 Fr )
02 ]
01 ]
0.0 | n 1 1 i 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A /A,
FiG. 5 Plot of theoretical and experimental results relating the ex-
posure area to the resulting step in the C-V characteristics. The
crosses with error bars indicate experimental data. The filled circles
represent the predictions of our theoretical model using the actual
oxide thickness for each case. The solid line shows the linear rela-
tionship of Eq. (5) for the average oxide thickiess of dox = 766 A

change over the 4-week period, implying that no measur-
able diffusion of charge has taken place.

Even though the charge did not spread out, its magni-
tude decreased over time. The amount of charge dissipa-
tion can be determined from simple MOS theory. The shift
in the threshold voltage of the exposed area, AVy, is relat-
ed to a change in the oxide charge. AQox, by:

- Al
AV, = 24Q, (6)
Cae
280 v T L ! ! T
220 I 1.
S N +
200 k \ 7
g | ‘
¢ r60f ‘ )
3 \ 1
§ 120 [ \ - 1
3 3 - - - DBefore exposure A 1
80 After exposure ‘\ b
| -« 10 Min, \ 4
> s g o 4
ar —— 4 Weeks
0 n n 2 1 i Il P
25 -20 -15 -10 -5 0 5 10

Voltage
FiG. 6 C-V charactenstics of a MOS capacitor before exposure and
30 min. 2 weeks. and 4 weeks after 41 6% of the total area was ex-
posed with an electron beam.
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The shitt in the threshold voltage ot —14.5 volts 30 min
atter the exposure corresponds to an induced charge den-
sity of 6.84 1077 C/em=. After 2 weeks. the charge 1s re-
Juced by only about 6% to 6.4 X 10"~ C/em-. After an ud-
Jitional 2 weeks. the charge 1s turther reduced a mere
1.5%. Positive fixed charges in the oxide can be consid-
ered nearly “permanent” in the absence of any annealing
treatments. In fact. Zaininger (1967) observed that posi-
tive charge can endure for several months in capacitors
wholly exposed to electron radiation.

One might theorize a mechanism by which induced pos-
itive charge is not fixed in the oxide but. in fact, leaks out
over a small distance onto the ungrounded metal (i.e., elec-
trons into the oxide), causing a bending of the band struc-
ture for the two materials and resulting in a cessation of
charge transfer atter some time. Such a mechanism might
not be detectable by our technique, as our lateral resolution
is obviously limited and the oxide is very thin. However. if
this were the case. the metal probe used in the C-V mea-
surement would quickly drain the charge for the metal and
allow a continued leakage of charge to the C-V measure-
ment system. Presumably. such a leakage wouid be expect-
ed to act rapidly since in an SEM. sample charging is ap-
parently controlled on time scales of the order of screen
refresh rates. that is. a matter of a few seconds or less.

Conclusion

We have shown that partial area exposure of MOS ca-
pacitors using electron beam irradiation resuits in the cre-
ation of an area of immobile positive charge within the
$i0: layer. This charge causes depletion and inversion of
the exposed area of the capacitor at more negative volt-
ages than the unexposed area. which resulted in a step in
the C-V characteristics. A systematic study of exposed
area as a function of step height indicated that step height
increased with increasing exposure area. After a theoretical
model had been proposed. experimental results were com-
pared with those obtained from this model. The good
agreement we obtained demonstrated a direct correlation
between the exposed area and the step height in the C-V
dJata. We exploited this phenomenon to show that the pos-
itive oxide charge does not diffuse over long time periods.
This demonstrates that in electron microscopy, the com-
mon technique of coating nonconductive substrates with a
metal overlayer in the case of positive charging is accom-
plished not by the draining of excess charge away from the

imaging site but rather by the electncal shielding of the
site by a ground plate.
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For closely spaced, nanolithographically defined lines, a thin wall of resist remains to act as the
me1..] line spacer. When exposed to a developer, and then nnsing solution, closely spaced resist
walls may become unstable as a result of two effects: (1) internal stresses due to swelling, and
(2) lateral surface forces between adjacent walls. In this article we perform a linear stability
analysis of a thin polymer wall under the simultaneous action of internal stresses and lateral
surface forces. We calculate a stability boundary, and show that internal stresses are necessary
for the formation of deformation patterns of finite wavelength. We find that, for slightly
subcritical swelling stresses a small lateral force can induce buckling, while, for slightly
subcritical surface tractions large internal stresses are necessary to induce instability.

The theoretical predictions are

in good agreement

with experimental data on

poly (methyl-methacrylate) walls produced by electron beam lithography.

INTRODUCTION

In addition to ultrahigh resolution, an important as-
pect of nanofabrication for nanoelectronics is the achiev-
able spacing of metal features. Extremely closely spaced
features have been utilized in such devices as lateral tun-
neling transistors,' split gates,’ and optical gratings.’ In
applications such as these, metal features are required with
spaces as small as a few hundred A. The fabrication of very
narrow gaps over appreciable distances (a few um) re-
quires very good control of lithographic processing param-
eters.
Mcst pattern transfer in nanolithography for quantum
devices is effected by the lift-off process in which a thin
metal layer is deposited by perpendicular, thermal evapo-
ration onto a resist [usually poly (methyl methacrylate)
(PMMA )] such that metal falls either on the surface of the
undeveloped (positive) resist or onto the surface of the
substrate where exposed and developed resist has been re-
moved. Subsequent removal of unexposed resist also re-
moves all metal except that on the surface of the substrate.
When metal patterns are to be placed very closely together,
the space is formed by the shadowing of the deposited
metal by a thin “wall” of resist. We report here on the
fundamental limitations of solvent/PMMA interactions
which lead to failure of the thin features necessary to per-
form lift-off of very closely spaced features.

For thin resists at moderate energies, undercutting by
beam scattering within the resist can approximately be de-
scnibed by:*

b=625(Z/E,) "% (p/A)""2, (1)

where b is the increase of the diameter of the beam at the
bottom surface of the resist, Z, 4. p, and ¢ are the atomic

* Author to whom correspondence should be addressed.
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number, atomic weight, density, and thickness of the resist,
respectively, and E, is the beam energy in keV. For
PMMA, Z=3.6, A=6.7 g/mol, and p=1.2 g/cm’.* For 45
keV electrons and a PMMA thickness of 130 nm, under-
cutting is about 5 nm at each sidewall of our pattern, which
aids in the lift-off process.

As discussed above, the unexposed resist spacer is in
the form of a thin wall between the developed lines. When
lines are placed too closely together and high resolution is
achieved, the resist walls can either become wavy, fail over,
or even lose adhesion to the surface, in which case they fail
completely. In this regard, internal stresses due to swelling
and lateral surface forces between adjacent structures can
play dominant roles. Although PMMA suffers little swell-
ing, which accounts partially for its ultrahigh resolution
properties, some absorption of developer is necessary to aid
the development process.® Swelling and solubilization of
polymeric resists have been extensively investigated.”® In
marginally poor solvents, solvation forces favoring mixing
are insufficient to promote dissolution of the polymer. Ap-
preciable swelling can occur, however, leading to weaker
mechanical properties, and to the buildup of internal
stresses in constrained structures. Amorphous polymers of
high molecular weight may typically experience between
0.1% and 30% swelling, without solubilization, depending
on solvent quality and temperature.® With mixtures of sol-
vents, the swelling behavior can be of considerable com-
plexity, since preferential partitioning of one or more com-
ponents of the mixture in the polymer can occur. This
would be the case for most resist developer solutions,
which usually compnise more than a single component.
Notwithstanding their valuable insight, thermodynamic
models have enjoyed only limited success in the quantita-
tive prediction of solubility properties of multicomponent
polymer-solvent systems, and such an attempt will not be
made here. Nevertheless, as a discriminator of the quality
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of the model, our predictions will be required to compare
favorably with typical swelling data.

Recent experiments have considerably clanfied the
mechanism of interaction between polymenic surfaces.
Studies of this nature have recently become possible thanks
to the perfecting of the surface force apparatus by Is-
raelachvili and Tabor.” In this system. the separation be-
tween two mutually orthogonal, cylindrical mica surtaces
onto which polymer is adsorbed can be measured with
resolution better than 5 A. The separation measurements
rely on interferometry, while knowledge of the flexural n-
gidity of the instrument enables calcuiation of the force
between the surfaces. Normalization of the force by 27
times the mean radius of curvature of the mica sheets di-
rectly yields the surface energy of interaction.'® Experi-
ments show that in good solvents, polymer surfaces always
repel each other due to the tendency of the chains to mix
most favorably with solvent molecules. Conversely, in poor
solvents chain-chain interactions are more favorable, lead-
ing to strong long-range attraction. Experimentally, the
attractive forces between polymer layers become significant
within a distance of about twice the radius of gyration of
the chains, which can extend to several hundred A for high
molecular weight polymers.' Common post-development
rinsing solutions are, by design, of poor thermodynamic
quality. Therefore, in addition to swelling, attractive forces
are expected to play a vital role in the failure of polymeric
nanostructures.

EXPERIMENT

Our electron beam lithography (EBL) system consists
of an Amray 1400 scanning electron microscope (SEM)
with a minimum spot size of 35 A controlled by a personal
computer interfaced through a Pragmatic Systems 2201A
16-bit arbitrary wave form generator. We used PMMA
with molecular weight 950 000 amu baked at 170 °C for 4
h for all exposures. Resist and developer parameters were
very tightly controlled. Resist thickness was 105-180 nm
as measured with an Alpha-Step 200 surface profiler. The
developer used in all cases was a solution of MIBK:IPA
(1:3) with the addition of 1% (MEK) by volume.' It has
been shown that contrast results are extremely sensitive to
variations in developer temperature due to the high acti-
vation energy of the PMMA in the developer solvents.''
Using a temperature controller, our developer temperature
was maintsined at 25 +0.5 *C. Develop time for all samples
was 15 s followed by a 15 s nnse in methanol. After de-
velopment, all samples were dried in air at 90 °C for 5 min.

All exposures were performed at a beam energy of 45
keV at a spot size of 5 nm and 120 um scan field. Sub-
strates used in all cases were 200 nm SiO, on thick silicon
wafers. Doses were very cntical for making high-density
patterns because of proximity effects dunng e-beam lithog-
raphy. They were not only reiated to the line pitch, but aiso
to the size of the patterns. For grating pitches ranging from
70 to 150 nm. the doses vaned from 1.5 to 2.5x 107"
C/cm. For the case of only two parallel lines, doses ranged
from 2.5 to 3.5x 10"’ C/cm for pitches from 80 to 120
nm.
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FIG. 1. Schemauic representation of the potential energy of interaction of
a polymer surface confined between and equidistant from two other sur-
faces. As the dimensionless separation d/p increases, the curves broaden
and the equilibrium position around 8/p =0 becomes indifferent to small
lateral displacements. At very small separations the potential becomes
purely repulsive. At intermediate separations the erect position may either
be stable or unstable depending on the rigidity of the wall.

All metal evaporations were gold from an electron
beam evaporator with thicknesses of 30+1 nm. Lift-off
was performed by soaking the samples in acetone for about
5 min, followed by the application of acetone using a hy-
podermic syringe, followed by a 15 s methanol rinse, and
final blow drying in nitrogen.

THEORY

The interaction energy between two opposing surfaces,
Z, can be obtained by linear superposition of long-range,
attractive, and short-range, repulsive interactions. Gener-
ally, the potentials are individually modeled as a power-law
of the reciprocal of the separation distance, r, giving
(within an arbitrary additive constant):'®"?

I=3*{(p/r)°—(p/r)°), (2)

where 2* and p characterize the strength and width of the
potential well, respectively, and a and b (a> b) prescribe
the rate of growth and decay of repulsive and attractive
interactions, respectively. For a polymer wall confined be-
tween, and equidistant from two parallel surfaces with sep-
aration d, the following approximation is appropriate:

S, =3%[|p/(d* =812~ [1p/(d 81 | |*?}}
(for —d<é<d), (3)

where 2 _is the surface energy (energy/area), and 6 any
virtual lateral displacement away from the planar config-
uration. Note that 8§, and hence 3. will in general vary
from point to point along the surface of the wall. Figure |
schematically illustrates the shape of Z, for different values
of the dimensionless separation. d/p. It is seen that for
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large values of d/p the erect position 1s indifferent, while it
becomes progressively more unstable as the surface-to-
surface separation decreases. { Note that we are ignoring
for the moment the elasticity of the wall, which. by coun-
teracting deformation, would stabilize the system.) Inter-
estingly, as the separation further decreases repulsion be-
comes dominant and the equilibrium reverts to
unconditionally stable. Experimentally,'® the transition
should occur around d=R/2, where R is the radius of
gyration of the polymer chains. Apparently, this situation
could be exploited to greatly improve resolution in nano-
lithography. However, it may be difficult in practice to take
advantage of the phenomenon, since typically, R/2 is on
the order of 5-10 nm. Additionally, interpenetration of the
chains will, in fact, impede complete separation of the
walls after solvent evaporation.

Differentiation of the interfacial energy [Eq. (3)] with
respect 10 § provides the interfacial stress acting on the
lateral surface of the wall, o:

dZ,
as’
In the limit of smali displacements, the detailed structure

of the potential is irrelevant, and o can be linearized
around the origin (§=0) to give

(4)

o= —

o=64, (5)
where
O= - (%) . (6)
5=0

Henceforth, © will be referred to as the “surface stress
coefficient.” Equation (6) can be used to calculate © from
surface force measurements, for any given polymer-solvent
system. Note that both the magnitude and sign of © will
generally depend on the dimensionless separation d/p.
Therefore, in the following we shall attempt to estimate
only the order of magnitude of ©.

Dimensional analysis of Eq. (6) and experiments™®
suggest the following scaling:

0=A3/(R)" (N

where AZ_is the depth of the attractive potential well, and
R the end-to-end distance of the polymer chains. As men-
tioned previously, surface-force-apparatus experiments di-
rectly yield 2, as the measured force normalized by 27
times the mean radius of curvature of the mica sheets.'’
Unfortunateiy, experimental data of this nature are not
available for PMMA. Polystyrene “‘brushes” in various soi-
vents have been extensively investigated, however. Because
of the osmotic nature of the interactions, the detailed
chemical structure of the polymer is believed to be only of
secondary importance.'® Therefore. data on polystyrene
should prove useful for obtaining estimates of the general
magnitude of AZ_ Figure | of Ref. 10 gives plots of nor-
malized force versus separation for polystyrene brushes in
an aliphauc solvent below the ¢ temperature. The data
show a pronounced attractive well with a depth of about
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FIG. 2. Diagram of tall, thin wall demonstrating geometrical parameters
used in the analysis. The wall has nzen hypothetically sectioned at the
nodal points of the distortion.

AZ,~160 (uN/m) (after proper normalization by 27).
Roughly, we may assume R = 10-30 (nm) in Eq. (7), thus
placing © in the range: 10''<6<10'? (N/m’). We show
later that these values are sufficient to cause instabilities in
arrays of closely spaced, thin polymer walls. In the follow-
ing, we shall focus on the case © > 0 (signifying an unsta-
ble equilibrium), and make use of Eq. (5) to describe the
lateral surface traction on the wall.

We consider now the stability of an infinitely long wall
of width w and height # under the simultaneous action of
lateral forces and internal stresses due to swelling. The
system of interest is shown in Fig. 2, which also gives the
characteristic geometrical parameters. Mathematically,
this problem is conveniently formulated within the frame-
work of linear plate theory, leading to the following homo-
geneous boundary value problem for the lateral displace-
ment, &:'°

s F}s I 36

_) —_—= — A=
ax‘ + « ax:ay: <+ ay" = A ax- Q&. (8)
5=0 at y=0 (no displacement at the bottom),

(9)
36 Iy
5}:0 at y=0 (built-in bottom end), (10)
AL 1 free top) 11)
5_*+v5;§=0 at y=1 (torque-free top), (
36 s

v m:o at y=1

(shear force-free top) (12)

where the dimensionless vanables and parameters are de-
fined as

x=X/h; y=Y/h (13)

L1201 = VA

N=———""x " .

s (14)
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B12(1 -v)h*

A=—p—

(15)

In Egs. (14) and (15), 0.0 1s the internal compressive
stress, O is defined in Eq. (5), v is Poisson’s modulus, £
Young's modulus, and 4 and w the wall height and width,
respectively.

For an infinitely long wall. the solution to Eq. (8) is of
the form:"’

5(x,y) =cos(&x){A[sinh(ay) —sin{By)]

+ B{cosh(ay) —cos(By) ]}, (16)
where 4 and B are integration constants, and
a= §+ JAE+0
(17

‘—*
B=v—§'+ yAE' + Q.
Variable £ is related to the wavelength of the prevailing
distortion in the x direction, 4, as
A=2mh/E. (18)

Imposition of the boundary conditions generates the fol-
lowing equation for the eigenvalues:

1
25+ (5 + ) cosh (a)cos(8) =2 (e’ —B*5)

X sinh(a)sin(f), (19)
where
=B+ vE?
s=al—vEl (20)

Note that in order for B in Eq. (17) to be real, we must
have

0<e<1
where

e=2£%/(A+ yAT+4Q). 2n

The use of ¢, instead of &, provides a more efficient strategy
for a systematic search of the eigenvalues.

Equation (19) implicitly defines a relation among A,
(2. and €. In the search for the roots, the following limiting
cases are important: (1) A=0 and (2) 2=0. These cases
will be treated separately, since they provide clues for the
solution of the general probiem in which lateral forces and
internal stresses act simuiltaneously.

Case (1): 1=0

As 1s customary in stability theory, Eq. (19) (with
0 =0) is satisfied only by a discrete set of € (or £) values,
provided A is greater than or equal to a minimum cntical
value, A®*. Physically, A® is the smallest (dimensionless)
stress necessary to reach the marginal stability limit (in-
different equilibrium), and can be calculated by solving Eq.
(19) numerically. We find: A*=10.40, and £*=1917.
Combining these results with Egs. (14) and (18), the
smallest cniuical stress, 0¥, and the associated wavelength,
A, are calculated to be
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o* =26Euw/[30(1 —17 ) k), (22)

A=h2m/1.917. (23)

For swelling induced stresses. ¥, can in turn be obtained
from

o':xz Ee,

where €, is the hypothetical swelling strain that the wall
would undergo if allowed to expand freely. Equations (22)
and (24) enable calculation of the critical wall aspect ratio
for stability, (A/w)*, as a function of the swelling strain:

(24)

h  J

(E) = y26/30(1 —v)e,,, . (25)
Equation (25) is convenient for comparison with experi-
ments, since it does not contain the unknown modulus E
(which presumably changes upon swelling). As expected,
a short wall can sustain a higher degree of swelling before
buckling. Additionally, for a constant &, Eq. (25) pre-
dicts a direct proportionality between critical wali height
and width. As shown later on, our experimental findings
confirm this prediction.

Case (2): A=0

Treatment of this case is similar to the previous one
except that, here the smallest critical lateral “force,” 01°,
corresponds to £*=0. This implies an infinite wavelength,
A [Eq. (18)], which means that the wall does not buckle,
but simply bends over sideways. Solving Eq. (19) numer-
ically, we find: (2* = 12.363, and £*=0. Making use of Eq.
(15), the critical surface-stress coefficient, ©°, is obtained
as

1.03Ew’
3_7—‘(1_ )h .

If estimates of E and v were available, Eq. (26) could be
used to determine ©* experimentaily.

The search for the eigenvalues in the combined case
(i.e., A0 and Q50) is now restricted to the domain
(0K ASA® 0<N<N*, 0<e 1). Delineation of the stability
boundary implies the search of the minimum values A and
1 that simultaneously satisfy Eq. (19). A convenient nu-
merical strategy is to discretize the interval 0<A<A®, and
then find the corresponding minimum values of Q (or vice
versa). The resuits of these calculations are given in Table
I, while Fig. 3 shows the stability boundary. The wave-
length of the distortion, A, as a function of 0 is shown in
Fig. 4. Note that 4 is relatively insensitive to lateral forces
up to about 80% of (2*. It is interesting to note in Fig. 3
that, for ACS, a slightly subcritical lateral stress, say
=0.95 N*, does not cause instability. On the other hand,
for a slightly subcritical value of A, a small lateral force
can be catastrophic.

(26)

RESULTS AND DISCUSSION

Plotted in Fig. 5 are the experimental critical heights
for buckling versus width, for PMMA walls fabricated by
clectron beam lithography. A line through the orgin sat-
isfactonly fits the data. indicating a direct proportionality
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TABLE . Mimimum values ot A and {2 =121 A tor stability, and the

associated normalized waveiength, A (the calculations assume
v=0.50).
A (1 i h
10.40 V00 1277
10.19 L.000 2196
9.990 2.000 3582
9.737 + 000 3623
9474 4.000 2653
3932 0.000 1.002
3272 3 000 4319
7.450 10.00 5.097
6.700 11.30 0.398
6.000 12.08 9.721
5.000 12.362 759.2
0.000 12.363 P

between critical wall height and width. This finding is in
agreement with Eq. (25), assuming a constant degree of
swelling. The cnitical aspect ratio for buckling can be cal-
culated from the slope of the line, and we find that (A4/
w)*=4.75. Calculation of ¢, from Eq. (25) requires
knowledge of Poisson’s modulus, v. Because the polymer is
swollen, and the internal stresses are small, the assumption
v=0.50 is appropnate, giving €,,=5.1%. This value is
well within the expected range for glassy polymers.
Another easily accessible observable is the wavelength
of the distortion after buckling, A, [Eq. (23)]. Figure 6
shows an electron micrograph of the shadow of a wall
formed from a 140-nm-thick PMMA layer. The light areas
are gold films created by lift-off. The measured wavelength
of the distortion is 460 nm, in excellent agrecment with the
value of 459 nm given by Eq. (23) with 4=140 nm.

UNSTABLE

Q2

61 STABLE

o v 2 3 4 5 6 7 8 9 10 11

FIG. 3 Stability envelope for the case in which internal stresses ( A} and
lateral attracuve forces ({1) act simultaneously [Eqs. 1 14) and (15)) For
A< 3 the curve 1s practically honzontal, implying that for shghtly sub-
cntical values of 1. large internal stresses are needed 1o cause instability.
On the other hand. for slightly subcnitical values of A a small lateral force
:s sufficient to induce buckling.
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FIG. 4. Plot of the dimensioniess wavelength of the distortion of the wall,
A/h, as a function of the dimensioniess critical laterai stress, 1.

The maximum amplitude of the lateral displacement of
the wall A (see Fig. 2) can also be measured from the
figure. The hypothesis that the deformation profile remains
unaffected by solvent evaporation allows us to obtain an
independent estimate of ¢,, from the observed value of A.
The curvilinear contour length between nodal points at the
top of the wall after buckling can be calculated from

A [im 2mA\* 3
L=,{(1+ew)=—J‘ 14— sin“(z) dz.
2T 0 \ A

(27)

For (2mA/A)*«<1 (subject to verification), the integration
kernel in Eq. (27) can be expanded up to second order
terms and integrated to give
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FIG ¢ Mimmum width of PMMA walls achievable for a given starting
resist thickness { wall height )
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FIG. 6. Rer:aining metal after lift-off of a typical failed wall. Light areas
are gold, and dark, wavy line is the shadow of failed PMMA wall. The
scale marker 1s 100 nm.

TAVT 3 mAN’
(—) . (28)

*"5( i
This equation can be used to caiculate ¢,,, with the mea-
sured values of A and A. From Fig. 6 we estimated A =33
nm, giving (with A =460 nm) ¢,,=4.7%. The agreement
with the previous estimate of 5.1% is satisfactory. These
findings confirm that sweiling is the dominant mechanism
for instability 1n our experiments. It is remarkable that a
5% swelling can lead to the failure of a wall less than five
tirnes higher than its width.

In the above experiments the effects of lateral surface
forces were presumably small, due to the relatively large
separation between features. As pointed out at the end of
the previous section, for slightly subcritical values of A, a
small lateral force is sufficient to induce instability. In this
regard, the magnitude of parameter © in Eq. (15) is ex-
pected to be of crucial importance. Previousiyv obtained
ssumates of © ranged from 10'' to 10" (N/m"). There-
fore. we may venfy now whether or not instabtlities can be
tnggered for physically meaningful values of &.

The worst possible scenario eavisions surface forces
aione as sufficient to induce lateral collapse of the wall
tr.e.. A=0). Equation (26) can then be used to calculate a

INITIAL

FINAL

ttity
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t1¢, * Schemaunc illustration of lateral interactions between closely
“aed teatures immediately after swelling induced tailure ot one of the
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FIG. 8. Schematic of the final topology of the pattern in Fig. 7. The
shaded cllipsoidal areas represent metal patches ieft after metal evapora-
tion and lift-off.

critical wall height, 4*, for assumed values of E, v, w, and
©. Choosing E=10? (MPa), v=0.5, w=30 (nm), and
©=10'* (N/m’), we estimate #*=250 (nm) which is in
the range of interest for nanolithography.

The implications of these findings for fabrication of
arrays of closely spaced walls can be substantial. Indeed,
for a partially swollen polymer, surface forces can induce
cross-correlation between deformation of adjacent struc-
tures, with important consequences on the final topology of
the pattern. Figure 7 schematically illustrates this effect. It
is seen that the swelling induced buckling of one of the
walls can lead to the catastrophic failure of the entire ar-
ray, producing a pattern of adjacent sinusoidal waves 180°
out-of-phase with respect to each other. Metallization fol-
lowed by lift-off would then cause the appearance of a
pattern of metal islands, as shown in Fig. 8. Experimental
data supporting these ideas are shown in Fig. 9. Therefore,
attractive surface interactions can be extremely important
in the fabrication of thin, closely spaced features. This issue

FIG. 9 Scanning electron micrograph showing a faled pattern of an
array of closely spaced wails. The dark diagonal bands are the loci of the
points where failed resist walls have come 1nto contact ( pnor to metalls:
zanon). The scale marker corresponds to | um This figure shouid be
compared with Fig 3

Hil of &/




15 especially crucial when deaiing with marginally poor
solvents. as 1s the case for most post-development. nnsing
solutions.

As a final note on the modeling of wail stability. the
tollowing points must be considered. First, in the theoret-
1cal treatment we have 1gnored the effect of hvdrodvnamic
forces which, at least 1n principle, could aiso be invoked as
a source of instability (e.g., agitation duning development).
In fact. such effects are unimportant within the context of
the stability problem. since upon cessation of flow a hypo-
thetically deformed structure would always “spning back™
1o 1ts most stable configuration (as dictated by the equilib-
rium critenia derived previously). Additionally, hydrody-
namic effects cannot explain the correlation between defor-
mation of adjacent structures observed in Fig. 9. Second,
our simplified analysis assumes that the walls are: (1)
strongly anchored at the bottom and (2) of constant
width. The validity of the first assumption is easily inferred
from the experiments, since floppy, weakly anchored walls
would be incapable of retaining a deformed configuration
of high strain energy such as the one shown in Fig. 6. In
regards to the second assumption, we know that it cannot
be entirely accurate, since undercutting inevitably leads to
walls of decreasing thickness from top to bottom. A full
analysis of this effect goes beyond the scope of the present
work, but simple qualitative arguments in support of our
approximation can be offered for the case of mildly ta-
pered, strongly anchored walls in the swelling dominated
regime (i.e., 1€A). Indeed, due to the anchoring bound-
ary condition, the deformation at the bottom of the wall is
smail [see Eq. (16)]. Therefore, as a result of buckling,
regions of the wall closer to the surface experience neither
an appreciable release of strain energy nor a sizable de-
crease of surface free energy. In other words, the bottom
portion of the wall contributes negligibly to the onset of
instability, since its contribution to the overail energy bal-
ance is small. The relevant wall width, w, controlling the
onset of the instability [i.e., the value to be used in Egs.
{14) and (22)] should then be closest in vaiue to that at
the top, free end. This argument is also consistent with the
fact that, for (1<A, the wavelength of the distortion, 4 [Eq.
{23)], is independent of w.

SUMMARY AND CONCLUSIONS

Upon exposure to suntable solvents such as common
developing and ninsing solutions, nanofabnicated polymenc
walls may become unstable as a result of two effects: (1)
swelling and (2) lateral surface forces between adjacent
structures. By performing a linear stability analysis we cal-
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culated the stability enveiope and wavelength ot the distor-
tion for the general case in which internal swelling stresses
and lateral surtace torces act simultaneously. We also
showed expenmental evidence that supports our predic-
uons. thus demonstraung the existence and seventy of
such instabilities 1n nanoiithography. In the limiting case
of small surtace torces. predictions and data agreed quan-
titatively. Order-of-magnitude calculations of the strength
of the lateral interactions between polymer walls (based on
expenmental surface force data) confirmed that lateral at-
tractive torces can substanually enhance the action of
swelling stresses, leading ¢ventually to failure. Practical
implications of these instabilities in the fabrication of ar-
rays of closely spaced polymer walls were discussed. For-
mulation of developers that maximize contrast, but mini-
mize swelling and attractive interfacial forces, is thus
relevant to attempts to achieve higher resolution in nano-
structure fabrication.
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We have calculated the iwo-dimensional spatial distributions of several transport variables
such as the current density, carricr concentration, chemical potential, space-charge electric field,
residual resitivity dipole powcntial and clectromigration forces in disordered mesoscopic struc-
tures subjected to arbitrary magnetic fields. These fully quantum mechanical calculations shed
new light on such magnetotransport phenomena as the integer quantum Hall effect, the formation
of magnetic bound states, magneuc response of current vortices caused by quantum interference
between scalterers, Lhe nature of residual resistivity dipoles in phase coherent transport, the dif-
ference between majonty- and munonty-carmier mobilities in the quantum mechanical regime,
the electron wind force and direct force of clectromigration in a mesoscopic sysiem, and a

vanety of other phenomena.

Introduction

The spaual distnbuvon of transport vanables (such as the
current density. camner concentration, chemucal potential. resid-
val remsuvity dipole feld. eic.) are imponant in understanding
Many quantum iraneport phenomens' in MEVSCOPIC rUCtures
and also clecuromgranon effects’=  In uws paper. we present a
microscopsc caiculanon of such spsual distnbuuons 10 3 quas:
ons dwmensional strecture contamng localized impunucs and
subyecied 10 arburary magneuc ficlds. The calculsuors are fully
quenium-mechasucal and are based on the Scheddinger cquation
Jascribung the sysam. Our results clucaisss the nasuse of many
different (ypes of QuUanER WAGREDITINEPON phenomens (¢.§.
s wneger quassum Hall effect. cwvent vorms formation, eic. ).
and they aiso shed light on eicctrom granon forces. parucuiany
ihe wwnd force and the direct fofte on an on tha cause clectro-
magrawon n whde Electromigranon « an especially imponant
PREROIMENDN 1 NGITOW ONE-JUNCRBIONE MCIVICOPC Sampies.
not only m s estrgme effect of caeng caasopiec device
fashus® 28 1 GORS (7t HREETSIRG CIFTUNS. DAt AISD 1n NG 1 COusES
MUty meneh which rafcaily sers samgie CharECAORWiacS
nd eads © |/ e

0748-8038/92/080121 + 10 %08 00/0

This paper is organized as follows. In the next section, we
describe the theory for calculating spaual distributions of trans-
port varniables in mesoscopic structures. We then present results
dealing with the two-dimensional spatial distribution of the cur-
rent density in a disordered structure at vanous magneuc fiekds.
The currem distnbutions show a number of dramatic effects
such as current crowding nNCar s MUraClive impunty, CWrent
detowr around a repuimive impunty. the formaton of cdge stmes
with perfect tranamitsvity at the onsct of the ineger quanam
Hall gffect. cuculanng curvent petterns around an impurity char-
acensuc of the formaton of magnesc bound siases. formation
of current voruces (in the absence of any magneuc field) a8
s meult of quantum wusrferancs botween waves reflecied from
vanous impunues i 8 sample. the quenciung of such voruces
by 3 magnetc fieid. and 30 on. These resuits and others sre
acomparwed by the corresponding modulstions 1n Lthe camer
concersuon profile caused by currert flow  From these pro-
files, one can ciearly see the building up of an excess clectron
CORCENIFELON around 8N aliractive scaticrer and a deficit sround
1 repuissve one Owwng 10 clecrosalc imeracuon of the clecuons
with ths scaterer. Algo. clectrors accumuiens sround an WRgw-
Aty (rrgepecuve of whether it 13 arscive or repulsive) when
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1 magneuc bound state forms. These accumuiations and depic-
tens lead 10 whomogenerties in the charge distnbution which,
in m, lead 10 inhomogeneitics in the clectne ficld within the
sample. Such inhomogeneities have a profound eiTect on the
dnving forces of electromigration acting on an impurity located
inside the sample.

In agdition o the spatial distnbutions of the current density
and camer concentration modulation, we aiso show the spaunal
distnbuuon of the chemical potential inside a sample. in the
absence of any magnetic ficld, the chemical potenuial pronles
show very different features depending on whether the scatter-
¢rs are attracive of repulsive. When a magnetc held is applied,
the chemical potenuial profiles for both attracuve and repuisive
scatierers change dramatcally. At high enough magnetic ficlds,
the edges of the structure (along the direction of current flow)
become sinkiagly smooth equspotential surfaces. This happens
even when the potential at the center of the structure is exhibit-
ing chaotic behavior. As a result, the longitudinal resistance
mzasured by voltage probes attached to the edges of the struc-
ture will always read precisely zero (in a four-probe measure-
ment). This is a clear demonstration of the quantum Hall effect.
Also, we find that the chemical potential difference between
the two cdges of the structure (i.e. the Hall voitage drop) is
exacly equal to the chemical poiential drop between the two
cenzacts of the structure when a single spin degenerate subband
is occupied. Since the quantum mechanical transmission prob-
ability through the structure is exactly unity when this happens,
1t means that the Hall resistance is precisely quantized to h/2e?
which is an unequivocal demonstration of the integer quantum
Hall effect. 1t should be noted that these results penaining 10
the integer quantum Hall effect are found from a ngorous mi-
Zroscopic calculation and do not tnvoke anv phenomenological
<CRSITUCL.

From the electrostatc potenual protfile, we have caiculated
the electric ficld distribution in the structure. The ficid shows
significant inhomageneities which have a profound influence on
clectromigravon. Electromigration is caused by forces acting
on charged impuntes (ions) within the structure which tend to
cause ion motion. Such mouon can drasucaily alter the behavior
of the structure in the phase coherent regime, lead to 1/f noise,
and, in the extreme case, physically disrupt the structure lcading
1o total device failure. The iwo main forces of elcctromigration
are the “wind force™ caused by collisions with electrons flowing
past the ion and the “‘direcl force™ due w the electric field acting
cn the ion. We have calculated the spaual distribution of the so-
called residual resistivity dipole potenual which has a profound
effect on the “wind force™. [n addition, the directions of both
the “wind force™ and the “direct force™ at various ion locations
and at varying magnetic ficld have also been calculated. To
our knowledge, these are the first calculations of the effects of a
magnetic field on clectromigration forces in mesoscopic samples
in the quantum coherence regime.

Theory

We consider a quasi one-dimensional structure as shown in
Figure 1. The thickness is small enough that only a single

Superlattices and Microstructures, Vol. 12. No. 1, 1992
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s Fig. 1: A quasi onc-dimensional structure containing a ran-
dom distribution of clastic scattcrers.  The structure is thin
enough in the z-direction (o allow the occupation of only one
transverse subband in that direction. The magnetic field is in
the z-direcuon.

transverse subband can be occupied in the z-dircction (ic. the
confincment is compiele in the z-direction). Howerer, mulugle
transverse subbands may be occupiced in the y-dirersim

The Schrodinger equation descnbing this syvein under a2
z-directed magnetic ficld is

(f~eA)?

—— 4+ Vo = Ev . (1)
2m

where § is the momentum operator, m* is an isotropic effective
mass, A is the magnetic vector potential, v(x.y) is the two-
dimensional wavefunction, and the poteruial energy V' consists
of iwo lerms

V= Viz.y)=Vly) + Vimp(2. 1) . (2)

The first term gives the effect of the confining potential in the
y-direction and the second term is duc 1o impurities. We as-
sume hardwall boundary conditions in the y-direction and delta
potentials for the impurities so that we have

Vgl 290 = ¥ 3_ M = rably = ) {3)

where s is the total number of impurities in the structure and
the summation cxtends over all the impurities. The position of
the ith impurity is denoted by (r,,y,). In all our calculations,
we neglect effects associated with the spin of the electron.

The confining potential in the y-direction and the z-directed
magnetic field give rise to a sct of hybrid magnetoclectric sub-
bands in the y-direction. Each such subband corresponds to a
mode or a transport channel. Calling om(y) the y-component
of the wavefunction in the mth magnctoclectnc subband, we
can write the total wavefunction ¢ g, . (2.y) for an clectron
injected from the left contact with the Fermi energy Ep into the
mth magnetoclectric subbend as

A [Amsl)ezp(it] 100(3)]

VEpm(Z.y) = = \/‘;’F'L
. M [Bm,(z)ezp(ikf,Z)O-p(!l)] "
pml \/Ivfl[' ‘

where L is the length of the structure, and &F and of are the
x-directed wavevector and x-directed group velocity correspond-
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s Fig. 2: The encrgy-dispersion relations for the hybrid mag-
netoclectric subbands in a 2000 A wide structure at 8 magnetic
flux density of 1.5 Tesla The solid curves are the result of
an exact numencal calculation and the broken curves are those
obtamed from the application of Bohr-Sommerfeld quantization
rule.

ing b) the Fermi energy in the nth subband (see Fig. 2) . These
quanuties are found from the dispersion relation of the hybnd
magnetoelectric subbands. The method for finding the disper-
sion relatons, as well as the wavefunctions ¢.(y) in the nth
magnetoelectric subband, has been described in reference 4 and
will not be repeated here. Finally, the subscript ~p in Equation
i4) indicates that the quanuty corresponds (0 a3 wavefuncuon
wiith an oppositely directed velocity as compared to the one
with a subscript p.

In Equation (4), the summation over p (subband index) ex-
tends over both occupied and unoccupied subbands (i.e. both
propagating and evanescent modes). It is impomant 10 include
enough evanescert modes in the summation 50 that the com-
puted wavefunction does not depend on the number of terms
(M) in the summation. Even though the evancscent modes do
not carty currers., they have very significant effects on all trans-

_ pont vasisbles, and especially their spatial distnbutions? .

When the wavefunction is writien in the form of Equaton

* {4), {i.e. cach mode indexed by p is normalized by the square

root of the corresponding group velocity), all propagating modes
1t the Fermi energy carry the same current. This is consistent
with the well-known cancetlation of the velocity and density of

/Sl in quasi onc-dimensional structures which causes every

mode to carry the same current. To find the total wavefunction
given by Equation (4), we now only have to cvaluate the coeffi-
cients A,,,(z) and Bmg(z). These are found from a scauering
mammix method that has been described in the first two citations
in reference 1. Once the wavefunction has been evaluased, we
can calculate all quamtities of interest such as the spatial dis-
tribation of the current. carrier concentration profiles, residual
reastivity dipole potential, chemical potential, electric ficld, and
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the forces of clectromigration. The recipes for calculating these
quanutics from the wavefuncuon are descnbed in the following

paragraphs.

Spatial distribution of the current: In linear responsc
transport and a1 low temperatures, only elecirons with the Fermi
energy carry a net current.  Therefore. the two-dimensional
wavefunction ¥wm({z,y) of Fermi clectrons in the mth magneto-
clzctric subband allows us 1o calculate the contribution of that
subband to the two-dimensional current density J(z, v).
Teh
:";‘-.‘ {wEr.m(x- U)V‘l’i‘,,mkz. V)]

ieh ¢ ,
- ¢:)Tn_: {U‘Ep,vn(:' WVUEr.m(Z-V)}

it

Jmiz,y)

= (eAive,mi) | (5)

The ‘mul current density is then found by vectonally adding the
contnbutions from all occupicd subbands (propagating modes).

Ml
Jiotailz,9) = Y_ Ju(z.y) . (6)

The above expression provides the current density at every co-
ordinate point (x,y). Note tha in calculating the toal current
density by summing over subbands, no weighting by the density
of states is necessary in the summation since the wavefunctions
have been normalized by the square root of velocity which takes
care of the density of statcs factor. The sbove cquation gives
the two-dimensicnal spatial distribution of the current density
(Jioeas 33 2 function of coordinates (z, y)) for iy arbitrary con-
centnation and configuration of scsiterers and for any magnetic
field.

Carrier concentration change due to transport and
its spatial distribution: To calculate the change in the car-
ner concentration caused by a current, we follow the method of
Qhu and Sorbello?. At low enough temperatures, the devistion
of the s=miclassical electron distribution function from the equi-
librium value in the mth subband (as caused by a small applied
clectnic field £ driving the curren) is given by

Afm(E) = —ero(E.m)ES(E - EF) . (n

where r is a constant relaxstion time describing a uniform beck-
ground scatering due 10 all clastic collisions and v( £, m) is the
group velocity corresponding to clectron energy £ is the mth
subband.

The change in the carrier concentration due 10 the current is
then given by

“l
bz =Y. / dEN W ml E)A fm( EY¥Emz.0)? , (8)

where Ny a(E) is the onc-dimensional density of states in
the mth magnetoelectric subbard (the prescription for calcu-
lating this was provided in refercoce 4), M is the total number
of propagating modes or occupied subbands, and ¥ g ., is the
wavefunction of Fermi electrons in the mth magnetoelectric sub-
band. This wavefunction is not exactly the same as that given
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cy Equauon (4); the onty difference s that there should be no
nematization of the vanous modes by the square-root of veloc-
ity in calculating Vg . Therefore, if we use Equation (4) far
the wavefuncrion. then on,(z. y; should be be wntten as

Rt A

ia »

irre v!‘r .. - Cad 9
YEp mi v Ee mid YT . 93

-

tndzr.yr= ~ -
whers vis now given by equation (4). The above equation gives
the spaual distnbution of the change in the camier concentration
as a consequence of transpon.

Spatial distribution of the residual resistivity dipole
potential: When an impunty s introduced 1n a solid. the
resisance increases. This increase 1s associated with the forma-
tion of 8 “residual resisuvity dipele”’ around the impunty which
anses purely from the intzracusn of clectrons with the impuniy
1scaneringy’. Landauer® has poiried out that the residual re-
sisuvity dipele potential is an imponant source of electnic ficld
inhomogeneuties 1n a sample and affects the so called “wind
force™ of electromigration. The wind force 15 the force that acts
on an impunty owing to collisions with electrons dunng current
transport

To calculate the spatal distnbuuon of the residual resisuvity
dipcle potential, we follow Chu and Sorbelio®. According to
these suthors, the electrostatic poicmial anising from én, and the
induced screening charge which atiempts w0 locally neutralize
én, is the residual resistivity dipole potential. Within a Fermi-
Thomas model, seif-consisient screening gives this potential as

LS~ y-
6U(:.g} - C-Z.\l:_“én,“iz'y’
SN ERnve oyt . 10

Wheie 80, m iS5 U ‘1, {rom the mth magneto-
clectne subbana.

From the above equation, we can rcadily obtam the spa-
tial distnbution of the residual reuistivity dipole poiential. The
residual resistivity dipole field is the spanal gradient of this pn-
tennal. In contrast to the claim of reference 3, this ficld does not
have 0 be always directed along the direction of curremt flow,
especially when quantum confinement (quantum size effect) and
quantum interference (coberent effect) are important.

The “wind force™ of electromigration: The wind force is
the force that 2n ion or impunity in a solid expenences owing 10
an “clectron wind™ flowing past it during curmrens transposnt. This
clectron wind impans a force on the ion becsuse the electrons
collide with the ion and transfers momenm 10 the ion. The
wind force causes clectromigration (motion of jons or impuri-
tics) whach has several cffects in mesoscopic stnictures such as
alterstion of sample conductance. 1/f noise. and electrical failure
caused by physical disruption of the sample at critical regions.

To calculate the wind force on an ion, we follow the work
of Fiks and Huntington and Grone® who invoke Newton's law.
The wind force is given by

- dp
qu-<j‘; o {11)
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where the nght hand side 15 the rate of lass of electron momen-
wm due to collisions with the 1on®. It can be shown® from a
rigorous semiclassical treatment based on the Boltzmann trans-
port equauon that the right hand side is -J;,.,/nn where n is
the volume concentration and n is a semiclassical mobility asso-
ciated with scauenng by the ion. In the linear response regime,
the above quanuty is also equal to the negative of the spatial
gradient of the chemical poienual (quast Fermi level). There-
fore, the wind force on an ion located at coordinate (2o, yo) can
be found directly from the chemical potential profile around the
ion

FumdtZo. o) = ~Suiza, vo) (12)

where u 13 the chemical potenual,

The above calculation of the wind force relics on the ba-
sic theory of reference 5 which does not distinguish between
crystal momentum and real momentum in a solid. More sophis-
ticated theones®? require knowledge of the exact shape of the
ton potential and also the exact spatial distnbution of the charge
pile up (or charge deficiency in the case of repulsive scatierers)
around ions. These sophisticated theories could actually benefit
from our quardum mechanical calculations of the change in the
charge density around the ions caused by current flow (deacribed
previously in this section). A fully quantum mechanical, self-
consistent and rigorous calculation of the wind force, staning
from the Schrddinger-Poisson equations, is rescrved for a future
publication.

The “direct force” of electromigration: The direct force
on an ion in a solid subjected to an electric ficld is the electro-
static force given by

Froveas = 228 . (13)

where Z is the effective valency of the 1on and £ is the local
electric field at the ion site.

Bosvieux and Friedel® claimed that the difference in the
charge of an interstitial ion from the background will be com-
pletely screencd by the electrons so that the local electric field
and hence the direct force on such an ion will be exactly zero.
Gupta and co-workers!? concluded in 3 similar vein that the
direct force on a migrating ion in the saddie point position is
exacily zero.

It was correctly pointed out by Das and Peieris!! and also
Landaver'? that Bosvieux and Fricdel could not be correct since
their conclusion icads to incomsistencies. For instance, if an
interstitial proton were completely screened and the local field
is zero, then it should be also true of electrons and consequently
a metal should have no electrical conductivity.

The correct equation 10 use lor the direct force is Equation
(13), but the electric field in that equation is not the space-
averaged clectric ficld as assumed by Huntington!? and by Lou
et. al'*, 1t was stressed by Landaver that the ficld is affected by
the “charge density modulstion™ around an impurity that occurs
during current flow. Therefore, the field must be calculated seif-
consistently by solving the Poisson and Schridinger cquation.
In the lincar response regime, this field can be obtained without
much difficulty as described below.
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Spatial distribution of the chemical potential and
electric field: Any nct charge distnbution prr. y) gives rise
1o an electrostauc potenuial 1'( 1. y) and an clectne ticld (. y)
which are related to the charge distnbution through the Poisson
equation
: - LR AR
Wy = Sy = MEINL i11)
+

It was shown by Bittiker!® and Entin-Wohlman ct. al!%
that in the lincar response regime, and in situations where the
spatial variauon n the potential '/ z. y is smooth on the scale
of the screening length Gie. the screemng is very strong), the
potential is given by
AP T N . H
Jom Pl I - 2Js|(:~l”l (]

Af ) E
A |'-'l.na\"'-9’l' + !u'l.m(’-y”x

—m i

115}

iy =

where gy and pg are the chemical potentials (Fcrmi energy) in
the two contacts of the structure under investigation, wy , is
the wavefunction of electrons injected from the lcft contact in
subband m with cnergy ji; and ¥ ,, is the wavefunction of clec-
trons injected in mode m with energy p; from the right contact.
It was pointed out by Entin-Wohiman ¢t. alL!® that eV (z,y)
is also what is actally measured at a chemical potential probe
so that it is also the chemical poiential. In other words, in this
regime, eV = u.

Once the electrostatic (or chemical) potential is determined,
the comresponding electnic ficld is found simply from

-

oy = -f"!/’(x.y; = —ﬁ;x(x.y) . {16)

This is the clectne ficld that should enter Equation (13) for the
direct force in the lincar response regime. Note that this means
that the wind force and the direct force are equal in this regime
if the valency £ of the ion is unaiy.

In the next section, we present results dcaling with the
spatial distnbution of the current, camier concentration change
caused by the current. the chemical potential profile, the resid-
ual resistivity dipole potential, and the wind force and direct
force on impurities in a prototypical GaAs quantum wire con-
taining clastic delta scatterers. We consider both attractive and
repulsive scatterers and show some typical examples of how the
spatial pattems respond to an extemal magneuc ficld.

Results

Spatial distribution of the current around a single
scatterer - local effects: We consider a3 GaAs wire which
is 800 A long and 1000 A wide. The Fermi energy is 2.054
meV corresponding 10 an elcctron concentration of 3.85x 107/m.
For this low concentration, only one subband is occupicd in
both transverse directions so that transport is stictly single-
channeled.

In Figures 3(a) and 3(b), we show the current profiles around
a single attractive and repulsive scatierer respectively in the ab-
sence of any magnetic field. In the case of an sutrsctive scatierer,
the current is drawn closer 10 the scatcrer, whercas for a repul-
sive scatterer, the current detours around the scatterer. This
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e Fig. 3. The spaial distnbution of the curmrent density
JioweilZ,¥) in a 800 A long and 1000 A wide structure in
the absence of any magnetic ficld. The Fermi energy is 2.054
meV. (a). Current crowding around an autractive impurity, (b),
current detour around a repuisive impurity.
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e Fig. 4: The spatial distribution of the current density
Jiotat{ 2. 9) in the structure of Fig. 3(a) when a magnetic flux
density of 2.18 Tesla is applied. The current flows along the twop
edge indicative of the formation of “edge states™. This sitation
corresponds to the onset of the integer quantem Hall effect.
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nchavior is expected from electrostauc attraction and repuision
hetween elcctrons and the scatterer.

In Fig. 4, we show how the current pattem changes when
4 magnetc tux density of 2.18 Tesla is apphied to the struc-
iure, The impunty 1s attractive. The current now {Tows entirely
along one of the edges indicauve of the formation of “edge
stites”. There 1s practically no backscatiering and the current
dows straight through (the small reverse traveling component
near the very top of the figure is not due to backscattering; it 1§
due to skipping orbits and its origin was explaincd in reference
17). This current pattem is characteristic of the onset of the
integer quantum Hall effect. The role of perfecty transmitiing
edge states in the quanuzation of Hall resistance was clucidated
in reference 8.

In Fig. 5. we show the circulating current pattem around
an attracuve impunity when a magnetc bound state forms. The
magneuc flux density is 3.5 Tesla  Note that the circulating
Jurrent patems hardly camry any net current in the x-direction.
Therefore. the conductance of the structuse will be very low
when a magnctic bound state forms. [t was shown in reference |
that the conductance does indced drop abruptly when a magneuc
bound state forms.

Spatial distribution of the current around two scat-
terers - non-local quantum interference effects: InFig.
6(a), we show the current pattern when two attractive impuni-
ties are present and no magnetic field is applicd. Strong vortices
form due 10 quantum interference between waves reflected from
the two impuritics. These vortices are purely a result of non-
local quantum effects. The physics of these vortices were dealt
with at length in the first two citations in reference 1. These
vortices are interesting since they give rise to localized magnetic
moments. In Fig. 6(b), we show how one of the vortices is de-
stroyed at a flux density of 0.08 Tesla while the other remains.
At a flux density of 1 Tesla, (Fig. 6(c)). the first vonex reap-

[

o Fig. 5: The spatial distribution of the current in the structure
of Fig. 3(2) when the magnetic flux density is increased to s
Tesla. At this ficld s magnetic bound state forms around the
impurity which causes the circulating current panem. The net
transmission of currert through the structure is very low so that
the conductance of the structiure drops abrupily when a magnetic
bound state forms.
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o Fig. 6: The spatial distribution of the current ina 900 A long
and 1000 A wide structure containing two stiractive impurities.
(a). No magnetic field is present and two vortices form as a
result of quantum interference between waves reflected from
the two scaterers and the walls of the structure, (). a magnetic
flux density of 0.08 Tesla is applied and one of the vortices is
quenched, (c). the magnetic flux density is increased to | Tesla
and the first vortex reappears at a diffcrent locstion while the
second vortex dizappears.
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pears at a different location and the second vortex s quenched
with the simuitaneous beginning of the formauon of edge slates.

Carrier concentration change due to current flow: In
Fig. 7(a) and 7(b), we show the change in the camer concen-
iration (from the equilibrium value) around the attracuive and
repulsive scauerers of Figs. 3(a) and 3(b) respectively. Carriers
pile up around the atractive impunty and are deplcied around
the repulsive impunty because of elccirostatic interaction,

In Fig. 8. we show the camier pile up around the impunity
when a magnenc bound state forms. The formation of such a
state can cause significant inhomogeneitics in the carner profile
and the associated electric ficld.

Chemical potential profile: In Figure Y9(a), we show the
chemical potenual profile around the auractive impunty of Fig.
(a). We assume that the chemical potcntials at the two contacts
ot the structure (at x=0 and x=L) are 1y = 2.056 meV and ;1
= 2.052 meV. Almost all of the chemical potential difference
(41 - p7) is dropped at the center where the impunty is located.
This is expected since the impunity that is the major cause of
the resistance for this sampie. There are some oscillatons in the
chemical potenual around the impunty but these are just signa-
tures of quanwm interference effects. The case of a repulsive
impurity is very differcnt. In this case (Fig. 9(b)), we see that
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e Fig. & The spaual distnbution of dn,(r.y) at a magnetic
flux density of 3.5 Testa when a magnetic bound state forms.
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o Fig. 9 The spaual dimnbuton of the chemical poicnuial in
the absence of any magnetic ficld. (a). the scaterer 1s anracuve
(corresponding 10 the case »f Fig  (a)) (b). the scancrer s
repuisive (corresponding 10 the case of Fig 31 Nosc that in
the first case. most of e pocntial drop occurs around the 1m-
punty which 1« the dominant cause of ressstance. in the second
caim. the potenuial 1 dropped Mo at the contacts showing that
(he Conact remances are domingnt over the ressdusl resistance
of the impunty  This 13 & mapw difference Botween stiractive
and repuinive wCanereny
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the potential drop eccurs more near the contacts than around the
impurity. There 1s ondy a narmow peak amund the impunty but
ot much of g not drop from one end of the impunty to the other,
This means that the major contnbutor for the resistance in this
vase 15 not the impunty, but the contact resistance. A repulsive
Inpunty appears 1o be much less effective than an attractive 1m-
punty of the same scastering cross-secnon in reflecting clectrons
and causing resistance, W believe that this 1s related to the fact
that quasi-donor states (quasi bound states) form around an at-
tractive impurity'? but not around a repulsive one. When quast
Jonor states form, evancscent waves build up around the impu-
nty which cause a tremendous amount of reflection and hence
resistance. This difference between the resistances caused bv an
attracive impurity and a repulsive impurity of the same scatter-
1ng cross-section 1s a mayor difference benveen majority carrier
rransport (when most scagterers are aftractive ) and minoritv car-
rier (ransport (when most scasterers are repuisive). Note that
this difference is purcly a consequence of quantum mcechanics
since semiclassical scaitening theories, such as the Bomn approx-
imation or Fermi's Golden rule. do not discnminate between
atractive and repulsive scagerers. An expenmental venification
of this dilference would be 10 demonstrate a large difference
hetween majority camer mobilitics (measurcd by Hall effect)
and minonty camer mobilities (measured by Shockley-Haynes
method).

In Figure 10, we show how the chemical potential profile of
Figure 6(a) changes when a magnetic flux density of 2.18 Tesla
is tumed on. The edges of the wire (along the length) become
strikingly smooth equipotential surfaces. Consequently, the lon-
gitudinal resistance measured by attaching two voltage probes
at any of the two cdges will read exactly zcro since the potential

¢ Fig. 10: The spaual distribution of the chemical potential at
a magnetic Mlux density of 2.18 Tesla. Notc that the cdges of
the structure {along the x-direction) are cxceptionally smooth
equipotential surfaces so that the longitudinal resistance mea-
sured by attaching two probes at cither cdge will be cxactly
zero since the chemical potential difference between these two
probes will be zero. The potential drop along the y-direction
{Hall voltage) 1s indcpendent of the x-coordinate and is cxactly
cqual o the potential drop between the two contacts of the struc.
wre. The Hall resistance 13 exactly i1 /2¢%. This figure is a dircct
visualization of the integer quantum Hall effece

Superfattices and Microstructures, Vol 12, No. 1. 1992

Jifference measured by these probes will be exacily 7em. This
15 a mamfestauon of the quantum Hall effect. Also the Hall
voltage drop {the difference between the chemical potenuals at
the two cdges) 1s found to be exacdy j - 45, Therefore, the
Hall resistance 15 (s - 4420/ where [ 15 the current flowing in
the structure. The current [ is given by [ = (;{ g ~ i35, where
s is the two-tcrminal conductance. In reference 1. we calcu-
lated ¢ for this structure and found 1t 10 be precisely 2ef/h.
Therefore, the Hall resistance is exacly hf2e? which is again a
manifestation of the integer quantum Hall effect.

In Fig. 11, we show how the chemical poiential changes
when the flux density is increased to 3.5 Tesla. At this flux
density, a magnetic bound state forms. The bound state couples

_electrons between the two scis of edge states carrying current

dlong the two edges of the wire and causes backscautenng. This
destroys the quantum Hall effect?® - a fact that is clearly seen
from the chemical potential profile. The edges of the sample
are no longer equipotential surfaces so that the longitudinal re-
sistance will no longer measure zero. Also, the Hall voliage
drop is different from {zy ~ ;i7) so that the Hall resistance is
not quantized to sub-mulliples of h/e’. This is an unequivocal
demonsiration that a magnetic bound state in a narrow wire
destroys the integer quanmum Hall effecs.

Spatial distribution of the residual resistivity dipole
potential: In Figs. 12(a) and 12(b), we show the rcsidual
resistivity dipole potential in the case of the single auractive
scatterer and the single repulsive scauerer of Figs. 3(a) and
3(b). The potential has an approximatcly 1/r dccay or nse
(where r is the radial distance from the scatterer), as predicied
by Chu and Sorbello for the case of a iwo-dimensional elcctron
gas?.
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¢ Fig. 11: The spatial distnbution of the chemical potential
when the magnetic flux density is increased to 3.5 Tesla and a
magnctic bound statc forms. The edges are no longer cquipo-
tential surfaces and the Hall voltage drop is very different. The
tongitudinal resistance 1s no longer 7cro and the transverse ro-
sistance is no longer quantized to sub-intcgral multiples of 4 /€.
This figurc 1% a dircel visualization of the destruction of the in-
teger quantum Hall effect in a narrow wire by 2 magnetic bound
state.
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iby

¢ Fig. 12: The spaual distnbution of the residual resisuvity
dipole potential in the absence of any magnetic ficld. (2). the
scatterer s antracuve, (b), the scatterer i1s repulsive.

Spatial distribution of the electric field: In Fig. 13. we
show the elecinc field distribution in the quantum Hall regime
corresponding to the situation in Fig. 10. Al the field is con-
centrated at the ceneer of the wire and is basically the Hall field.
When the magnetc field is tumed off, the electnic field profile
changes to that shown in Fig. 14. There is no net field in the
y-direction since there is no Hall voluage drop in this case.

The forces of electromigration: In Figs. 15(a) and 15(b)
we show the directions of the wind forces and also the direct
forces (recall that the two forces are cqual) on two impurities
ina900 A long and 1000 A wide structure at zero magnetic
ficld and at a magnetic flux density of 3.5 Tesla. Unlike in the
case of a single impurity, no magnetic bound state forms at the
_ flux density of 3.5 Tesls when two impurities are present. Note
" that at zero magnetic ficld, the wind forces on neither impurity
is in the direction of the electric field (x-direction) in contrast to
the predictions of semiclassical theories. This difference in the
orientation of the forces is 2 quantum mechanical effect. In ad-
dition. magnetic field can drastically change the magnitude and
the direction of the electromigration forces on both impurities.
In the case of the first impurity on the left, the magnetic field
almost completely removes the forces. In the case of the second
impurity, the forces are enhanced by the magnetic field. There-
fore, in the quantom coherert regime, whether 3 magnetic field
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¢ Fig. 13: The spatial distnbution of the elecinic ficld in the
quantum Hall regime corresponding o the situation depicted in
Fig. 10. The magnctic flux density is 2.18 Tesla. All the ficld
15 at the center and is dirccted along the y-direction (Hall ficld).

.......

e Fig. 14: The spauial distribution of the clectne ficld when the
magnetic ficld is tumed off.

increases or decreases the direct force on an ion (or whether
it has any effect at all), is determined by the locations of the
ions within the sample. This is purcly a quantum-mechanical
phex anenon.

Conclusions

In this paper, we have presented the spatial distributions of
a large number of transpont variables associated with various
quantum magnetotransport phenomena in mesoscopic samples,
These distributions elucidate the integer quantum Hall effect,
the formation of magnetic bound states and its effect on the
integer quantum Hall effect, the difference between resistances
caused by attractive and repulsive scatterers of the same scat-
tering cross-section and the corresponding difference between
minority and majority carrier mobilities, the magnetic response
of current vortices formed as a result of quantumn imerference
between scatterers, the electric field distribution in the quan-
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(a)

(b)

¢ Fig. 15: The lorces of clectromigration acting on two impu-
ntes 1n 2 900 A long and 1000 A  wide structure. (3). No
magneuc ficld 1s present. (b). The magneuc flux density ts 3.5
Tesla.

'um Hall regime. the residual msistivity dipole potenual and
1ts spatial vanaoons, and finally, the direct and wind forces of
elecromigranon and their dependences on a magnetic field as
well as the locauon of the ion. We belicve that these resuits
will be useful in imerpreung many diffcrem types of transport
phenomena and eleCLromMIgration i MESOSCOPIC SLIUCTUrTS.
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The spatial distributions of the current, Fermi carriers, electric field (due to space charges) and elec-
trostatic potential in a disordered mesoscopic structure are calculated in the presence of arbitrary mag-
netic fields. These distributions are useful in elucidating and visulaizing many features of quantum mag-
netotransport, such as the formation of edge states at high magnetic fields and their near-perfect
transmittivity, the evolution of the integer quantum Hall effect, the creation of magnetic bound states
around an impunity, the magnetic response of current vortices that form as a result of quantum interfer-
ence between scatterers and the walls of a quantum wire, the dependence of the quantized-conductance
steps in a backgated quantum wire on an applied magnetic field, the behavior of residual-resistivity di-
poles and the electrostatic space-charge potential in a magnetic field, the dependence of the sign of the
magnetoresistance on the impurity configuration, etc. We examine the current, Fermi carrier conceatra-
tions, electric field, and both chemical- and electrostatic-potential profiles associated with each of these
phenomena, and relate them to the observed terminal characteristics in each case.

I. INTRODUCTION

Many features of quantum magnetotransport in a
mesoscopic structure can be understood by examining the
spatial distributions of the current, potentiai, electric
field, and Fermi carriers around elastic scatterers in the
presence of a magnetic field. In this paper, we have cal-
culated such spatial patterns from a fully microscopic
quantum-mechanical formalism based on the Schrodinger
equation. These spatial distributions are, of course, not
“precise” in view of the Heisenberg uncertainty principle
which prohibits simultaneous definition of both the posi-
tion and the momentum of an electron; instead they
should be viewed as spatial distribution of quantum-
mechanical averages (or expected values) of the corre-
sponding quantities. These patterns help in understand-
ing several quantum transport phenomena and provide
direct visuahzation of the associated physics. For exam-
ple., we show the spatial distnbution of the current car-
ried by edge states in a quantum wire at high magnetic
field. The current patterns clearlv show the high
transmittivity which 1s responsible for the quantization of
the Hall reustance in the quantum Hall regime. We aiso
show how current circulates around an impunty when a
magnetic bound state forms. The recovery of the quant)-
ation of conductance steps 1n a dirty quantum wire by
the application of a magnetic field 1s known to be assoc:-
ated with the suppression of hackscattenng, and the
current patterns that we obtain show this verv clearly
The onset of the integer quantum Hall effect 1s caused by
the edges of a quantum wire becoming pertfectis smooth
cquipotential surfaces and vur Chemical potential profiles
Jemonstrate this stnkingly The magnetc response of
current voruces, electrostat potential. and ciectne held

e

all show quenching phenomena. We also found why the
sign of the magnetoresistance of a quantum wire could
depend on the position of a single impurity inside the
wire. These, and the nature of other phenomena, become
very clear when one examines the spatial patterns of
current, carrier concentration, and electrostatic or. chem-
ical potentials. The spatial distributions are not only of
great importance in understanding the origin and the de-
tailed physics of many quantum magnetotransport phe-
nomena, but they often determine the nature of certain
physical phenomena such as electromigration.

This paper is organized as follows. In Sec. I, we
briefly present the quantum-mechanical theory used in
computing the two-dimensional spatial distributions of
current, Fermi carrier concentration, potentisl, and inter-
nal electric-field profiles around localized scatterers in the
presence of a magnetic field. In Sec. III, we present the
results for a disordered GaAs quantum wire containing a
vanable number of impunties. We show the spatial pat-
terns associated with vanous magnetotransport phenom-
ena in both singlechanneled and multichanneled trans-
port. Such spatial patterns were presented by us in the
limit of coherent diffusive transport (in the absence of any
magnetic field) earhier.’ Others have presented such pat-
terns 1n the limit of coherent ballistic transport with no
scattenng whatsoever © To our knowledge, we are the
first 10 present such patterns in the coberent diffusive re-
gime (n the presence o/ a magnetic held.

1. THEORY
The theors for vur calculations of the current and car-

rier density patterns 1n a yuantum wire in the abeeace of
4 magnetic tie.d has been jescribed 1n Ref. | Here, we
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repeat only the basic features. We consider a mesa as
shown in Fig. | which 1s single moded in the z direction
‘1.e., only a single subband is occupied in that direction).
but multimoded in the y direction.

The time-independent Schrodinger equation descnbing
steady-state electron transport in this confined quasi-
one-dimensional disordered structure under a magnetic
field is

‘lg-‘%"iw Ve=Ed, )
m

where p is the momentum operator, m*® is an isotropic

effective mass, and the potential energy V consists of two
terms,

VaVixyr=V.+V ixp) . (2)

The first term gives the effect of the confining potential in
the y direction and the second term is due to impurities.
We assume hardwall boundary conditions in the y direc-
tion and 8 potentials for the impurities so that we have

5
ViplX: 01 =7 3, 8(x —x,)8(y —y,), (3)

=}

where s is the total number of impurities in the structure
and the summation extends over all the impurities. The
position of the ith impurity is denoted by (x,,y; ).

The wave function ¥ in the absence of impurities can
be written as

X
Cixpr=e oy, 4)

where k, is the x-directed wave vector and é{y) satisfies
the eigenequation

¥ oA4,,ix)expt ik:x )b,(y)+ B, (x)explik fpx _,(y)
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)

A4

FIG. I. A quasi-one-dimensional quantum wire containing a
random array of elastic scatterers. The structure is single mod-
ed in the z direction but multimoded in the y direction. The
magnetic field is applied in the z direction.

2
¢  2m*
LL 42 gy — | L | sy
R ‘12 i

+2117k,¢<y>~k3¢¢y>=0, (5)

with / being the magnetic length given by | =vV'#/eB.

The wave function ¢é(y) is found by solving the above
equation numerically using a finite difference scheme as
described in Ref. 3. This method also gives the energy
dispersion relations £ vs k_ for the various hybrid mag-
netoelectric subbands that arise from the confining effects
of the magnetic field and the confining potential in the y
direction. A set of computed energy dispersion relations
are shown in Fig. 2. After calculating the energy disper-
sion relations, we choose a certain ecnergy E (which we
call the Fermi energy E, [) and find the corresponding x-
directed wave vectors k, for various magnetoelectric sub-
bands (indexed by p) from the dispersion relations. These
wave vectors k: and the wave functions é,(y) are used to
determine the total wave function ¥, (x,y; (in the pres-
ence of impurities) for an electron injected with the Fermi
energy K from the subband m in the left contact. The
wave function is given by

Unixyi= 3

P Vo]l

where the summation extends over hoth propagating and
evanescent modes (the total number of modes considered
ts M). The subscript —p indicates that the quantity cor-
responds to a wave function with an oppositely directed
velocity as compared to the one with a subscript p.

When the wave function 1s written in this form li.e.,
each mode 1s normalized by the square root of the corre-
sponding group velocity), all propagatuing modes at the
Ferm energy carry the same current. This is consistent
with the well-known cancellation of the velocity and den-
sity of states in quasi-one-dimensional structures which
causes every mode to carry the same current.' We now

) 6)

only have to evaluate the coefficients 4,,(x) and B, (x)
to determine the wave function of Fermi electrons every-
where. If we know these coefficients at any position
{Xq,p} 10 the structure, then the coeflicients at any other
position (x,,y) can be found from

I

ifoi ['u 2P
= . N
i 1,

!r, ’

where 1 is a column vector cf length M whose clements
are A, (Xn) . ApiXg) A )Xot Aoy Xe) I 18 8

Iy
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FIG. 2. The energy dispersion relations for the hybrid mag-
netoelectric subbends ia a quantum wire of width 2000 A at a
magnetic flux demsity of 1.5 T. The solid lines are the results of
exact numerical calculations, whereas the broken lines are the
results of the semiclassical Bohr-Sommerfeld quantization rule.

column vector of length M whose elements are B, (x,),
B (x0), Boy(xXq) " BoyglXg), [ is a column vector of
length M whose clements are 4,,(x,), 4,(x,)),
Apy(X,) - Agag(xy), and r; is also a column vector of
length M whose eclements are B, ,(x,), B,(x,),
By(x,) " Byylx,). The coefficients t,,,2,,,¢;, and
1, are each M X M matrices and the square matrix in Eq.
{7) is the so-called transfer matrix for the section of the
structure between x =x, and x,.

The above equation allows us to determine the
coefficients 4,,(x,) and B,,(x,) (and hence the wave
function) at any arbitrary location x, if we know the
wave function [or the coefficients 4,,(x,) and B,,,(x,)]
at any one point x =x, in the device as well as the
transfer-matrix elements. We do know the wave function
at the left contact (x =0). We assume that for injection
into the mth mode, the wave function is given by scatter-
ing states’ (this is our boundary condition)

explikfx)é,,(y)

V(00— ,y)= —
" VieE!
2 F
. i R,,,!expuk._[: o_,y) ®)
p=1 \/lvﬂ
so that 4,,(x=0-)=§,, (Kronecker delta) and
B,,ix=0- =Ry - Therefore, we can find the wave

function anywhere in the structure using Egs. (6) and (7)
if we can find the clements of the appropriate scattering
matrices in Eq. (7). In the absence of a magnetic fleld,
these elements are fairly easy to find,' but for nonzero
magnetic fields, the wave functions of the various sub-
band states at the Fermi energy are not orthogonal. Con-
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sequently, the elements of the scattering matrix cannot be
found by the normai prescription of Ref. 1. The method
for finding these elements is described in the Appendix.

Once we have evaluated the scattering matrices, we
have found all the quantities that we need in order to
evaluate the wave function of Fermi electrons everywhere
in the structure. From this wave function, we calculate
all quantities of interest.

In linear-response transport at low temperatures, only
clectrons at the Fermi level carry a net current. There-
fore, the two-dimensional wave function ¥,,(x,y) of elec-
trons in the mth subband allows us to calculate the con-
tribution of that subband to the two-dimensional current
density. This is given by

J,,,(x,y)=;’:ﬁ—.[¢m(x,y)V¢r,',,(x,y)—tl:,‘,,(x,y)v¢,,.(x,y)]

+%(eAt¢,..lz> : 9
m

The Fermi carrier concentration due to the contribution
from the mth subband is defined by us as

Ao (X, )=, (x,9)|% . (10)

The total current density is found by vectorially adding
the contributions from ail propagating modes and the to-
tal Fermi carrier concentration is found by the scalar ad-
dition of the contributions from all propagating modes.
Note that no weighting by the density of states is neces-
sary in the summation since the wave functions have been
normalized by the square root of velocity which takes
care of the density of states.

Jiowt( X ¥)= S I (x3),
propagating modes

nxy)= 3
propagating

(11)
n{x,y) .

Finally, we find the electrostatic space-charge potential
V(x,y) from the relation®%’

2 |¢l.m(x’y)|2“|+|¢2,m(x,y)|z#2

propagating
2 le'm12+|¢2.m|z
propagating

eVix,y)=

’

(12)

where u, and u, are the chemical potentials in the two
contacts of the quantum wire, ¥, ,, is the wave function
corresponding to injection in modz m (with energy u,)
from the left contact, and ¥, ,, is the wave function for
injection in mode m (with energy u,) from the right con-
tact. The above equation is derived from the Poisson
equation and is valid only for (a) linear-response trans-
port, (b) situations where the potential variation of
V(x,y) is smooth on the scale of the screening length,
and (c) when the Fermi wavelength is considerably small-
er than the screening length. When these conditions are
not satisfied, the actual Poisson equation must be solved
simultaneously with the Schrodinger equation, rather
than using the simplified equation (12). That is numeri-
cally much more demanding because in the Poisson equa-
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tion we have to account for carriers at all energies, not
just the Fermi energy. This means that we must solve the
Schrodinger equation for all energies which is a2 more
demanding task than the present approach of solving 1t
only at the Fermi energy. Fortunately, in semiconduc-
tors and in linear-response transport, the present ap-
proach may work well since space-charge effects are not
tremendously important.®

[t was pointed out by Entin-Wohlman, Hartzstein, and
Imry’ that eV (x,p) is also what is actually measured at a
chemical potential probe. In reality, the electrostatic po-
tential is the convolution of the chemical potential with a
screening function.® In the limit of strong screening (&
impurities), this screening function approaches a & func-
tion so that the electrostatic and chemical potential be-
come equivalent.

Once the electrostatic potential is determined, the cor-
responding electric field is found simply from

6ix,y)=—=VVix,y) . (13)

In the next section, we present the spatial distributions
of the current, Fermi carrier concentration, electrostatic
(or chemical) potential, and electric-field patterns associ-
ated with various magnetotransport phenomena.

III. RESULTS

A, Spatial distributions around a single impurity
in single-channeled magnetotransport: Local effects

In Figs. 3(a) and 3(b), we show the spatial distribution
of the current around a single scatterer placed in the mid-
dle of a GaAs quantum wire in the absence of any mag-
netic field. The two figures are for an attractive and a
repulsive scatterer, respectively. The wire is 800 A long
and 1000 A wide. The Fermi energy is 2.054 meV and
only a single subband is occupied in both y and z direc-
tions so that transport is single channeled. There is pro-
nounced current crowding near the impurity when the
impurity potential is attractive and diverges away from
the impurity when the impurity potential is repuisive.
There are also two weak vortices above and below the
scatterer for an attractive impurity. If the impurity is po-
sitioned close to the edges of the wire instead of at the
center, such a pronounced effect does not occur. There
are two reasons for this. First, the wave function dimin-
ishes in amplitude near the edges of the wire so that the
interaction between the electron and the impurity is
weakened when the impurity is closer to the walls.
Second, the confining potential of the walls plays a
greater role nearer the walls so that the current sees not
only the impurity, but also the walls. As a resuit, the
current pattern is determined by the combined interac-
tion of the impurity and the wall.

It is obvious that when the impurity is right at the
center, the interaction between the impurity and the elec-
trons is strongest since the wave function (of the lowest
subband) peaks at the center. A magnetic field will skew
the wave function away from the impurity and hence de-
crease the interaction or scattering. This will lead to a
decrease in the resistance so that we will observe a nega-
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tive magnetoresistance in this case. On the other hand, if
the impurity 1s close to one of the wails, then a magnetic
field will either bring the electrons closer to the impunty
or take it further away depending on the direction of the
magnetic field. Therefore we can observe either positive
or negative magnetoresistance in that case (depending on
the field direction) and the magnetoresistance will be
asymmetric in the magnetic field. This is a rather strik-
ing effect which might be observable in mesoscopic struc-
tures at very low temperatures when impurity scattering
is the dominant mechanism for resistance.

In Figs. 4(a) and 4(b), we have plotted the Fermi car-
rier concentration around the attractive and the repulsive
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FIG. 3. The current distribution inside an 800-A-long and
1000-A-wide structure in the absence of any magnetic field. (a)
The impurity is attractive and there is significant current crowd-
ing around the impurity which is shown by the solid circle. (b)
The impurity is repulsive and the current detours around the
impurity. This figure shows local effects of the impurity poten-
tial.
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®)

FIG. 4. The Fermi carrier concentration profile for the struc-
ture of Fig. 3 in the absence of any magnetic field. (a) The im-
purity is attractive; (b) the impurity is repulsive.

impurity of Figs. 3(a) and 3(b) in the absence of any mag-
netic field. As expected, in the case of the attractive im-
purity, we see a sharp spike (accumulation of electrons)
around the impurity where-the current crowding occurs.
The electrons are attracted to the impurity by electrostat-
ic attraction. In the case of repulsive impurity, the con-
centration is depleted where the impurity is positioned
because of electrostatic repulsion. In Fig. 4(a), we see
that there is a building up of electrons to the left of the
scatterer and a deficit to the right. This happens because
the impurity strongly reflects the incoming electrons
which build up to the left. Because of the excess negative
charge on one side and a deficit on the other, we expect a
dipole to form. This is the residual-resistivity dipole as
discussed by Landauer.’” We can contrast these figures
with the profiles that were presented in Ref. 1 which con-
sidered only muitiple-impurity systems. When a large
number of impurities are placed inside the wire, the local
charge accumulation and depletion effect that causes a di-
pole to form is usually diminished because of quantum-
mechanical interference between waves reflected from the
various impurities. This quantum-mechanical interfer-
ence is a nonlocal effect which tends to inhibit local di-

pole formation in most cases. aithough it may sometimes
also enhance the dipole tormation depending on the im-
purity configuration, i.e., the exact phase relationships
between the interfering waves. Therefore, even though
the dipole formation is a local effect in itself, the size and
orientation of the dipoles are significantly affected by
nonlocal quantum interference effects.

In Figs. 5 and 6, we piot the electrostatic (or chemical)
potential and electric-field profiles. For these figures, we
assume that g, =2.056 meV and u,=2.052 meV. We do
not exactly see the characteristic electric-field distribu-
tion of a dipole since the *‘poles” of the dipole are not
“isolated’ charges; they are “extended” charges. The
plots are presented for both attractive and repulsive
scatterers. They are very different when the impurity po-
tential is attractive (which corresponds to majority car-
rier transport) as opposed to the case when it is repulsive
(minority carrier transport). In the case of attractive im-
purities, there can be a building up of evanescent states
around the impurities associated with the formation of
quasibound donor states.'® These may help in dipole for-
mation.

The application of a magnetic field causes dramatic
changes in the current, carrier concentration, electrostat-
ic potential, and electric-field profiles. We show these
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FIG. 5. The electrostatic- (or chemical-) potential profile in-
side the structure of Fig. ] in the absence of any magnetic field.
(a) Attractive impurity; (b) repuisive impurity.
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effects for the single attractive impurity in Figs. 7(a), 7(b),
7(c), and 7(d) which are to be compared with Figs. 3(a),
4(a), 5, and 6, respectively.

In Fig. 7(a), we have plotted the current inside the wire
in the presence of a magnetic-flux density of B =2.18 T.
All other conditions correspond to the case of Fig. 3(a).
Comparing with Fig. 3(a), we find that current crowding
has disappeared and the two weak vortices have been
quenched. The sample now no longer exhibits localized
magnetic moments due to the vortices. In addition, there
is a significant reduction of the backscattered current
component. A similar reduction in backscattering is ob-
served for a repulsive impurity also, except that it takes a
lower magnetic field to reduce the backscattering by the
same amount. The current pattern in Fig. 7(a) clearly
shows that edge states have formed and carry the bulk of

v
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. ‘ -
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(b)

FIG. 6. The electric-field profile inside the structure of Fig. 3
in the absence of any magnetic fleld. (a) The impurity is attrac-
tive; (b) the impurity is repulsive.
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the forward current. There is also, however, a small
reverse-traveling current component close to the walls.
This component was explained in Ref. 11 (which dealt
with edge states in ballistic transport as opposed to
diffusive transport) as being due to the classical cyclotron
trajectories (skipping orbits) having their velocities
directed opposite to the net current flow adjacent to the
edges. At higher magnetic fields, this reverse component
diminishes so that backscattering is suppressed even
more. In other words, the transmittivity of the edge
states are very high at high magnetic fields. This agrees
with Biittiker’s picture of the integer quantum Hall
effect'? in which perfect transmission of edge states was
invoked to explain quantization of the Hall resistance and
vanishing of the longitudinal resistance.

In Fig. 7(b), we show the concentration profile of the
Fermi carriers in the presence of a magnetic field of 2.18
T. The concentration piles up near an edge because of
the Lorentz force skewing the wave function towards
that edge. Note that there is no longer a buildup of elec-
trons to the left of the scatterer and a deficit to the right
since the buildup is due to reflection (backscattering) and
this has diminished significantly. In fact, at high enough
magnetic fields, backscattering is always reduced. There-
fore, in general, residual-resistivity dipoles will be des-
troyed by an external magnetic field if it is of high enough
magnitude.

In Fig. 8(a), we show the conductance of the structure
of Fig. 3(a) versus the Fermi energy at a magnetic field of
3.5 T. There is only one attractive impurity in the struc-
ture placed at the center. A pronounced dip in the con-
ductance is seen at an energy of 3.82 meV. At this ener-
gy, a magnetic bound state'’ forms around the impurity
which causes the transmission (and hence the conduc-
tance) to decrease sharply. This state forms at about the
same energy for a repulsive scatterer. The corresponding
current profile is shown in Fig. 8(b). We find that there is
only a small amount of net current traveling from one
contact to another when a magnetic bound state forms
and the bulk of the current circulates around the impuri-
ty. These magnetic bound states are quite different from
the quasidonor states'® which are also bound states giving
rise to dips in the conductance characteristics. There are
two major differences between magnetic bound states and
quasidonor bound states. First, the former occurs re-
gardless of whether the impurity is attractive or repul-
sive, whereas the latter forms only when the impurity is
attractive. Second, the current patterns are very
different. In the case of magnetic bound states, the
current circulates around the impurity but in the case of
quasidonor states, no such circulating current pattern
needs to form.' Finally, the carrier-concentration profiles
are also quite different. In the case of magnetic bound
states, the concentration builds up around the impurity
but right at the impurity it drops sharply. This is shown
in Fig. 8(c). Although the carriers may accumulate
around the impurity even in the case of quasidonor state
formation (owing to the buildup of evanescent states), the
effect is much less pronounced. Finally, Fig. 8(d) shows
the electrostatic-potential profile when a magnetic bound
state forms.
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B. Spatial distributions for muitiple impurities
in singie-channeled transport: Noalocal effects

In structures where multiple impurities are present,
vortices form in the current pattern as a result of quan-
tum interference between waves reflected from the walls
and various impurities.! These vortices are a striking aft-
ermath of nonlocality in phase-coherent quantum trans-
port. They are not centered around impurities since they
are a consequence of nonlocal effects, and their positions,
as well as strengths, depend on the impurity
configuration. In Fig. 9(a), we show the current distribu-
tion in a sample with two impuriti s without any magnet-
ic field present. The structure is the same as that in Figs.
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3-8 and the Fermi energy is 2.41 meV. There are two
vortices in the current pattern. They have opposite cir-
culations and produce antiparailel localized magnetic
moments. As we turn on a magnetic field [see Fig. 9(b)],
we see immediate quenching of one vortex accompanied
by a slight reduction in the strength of the other. This
different behavior for the two vortices can be explained
by the fact that for one vortex, the Lorentz force tends to
produce a circulation in a sense opposite to that of the
vortex. Consequently, even a very low field is sufficient to
quench this vortex. The resultant change in the quantum
interference between the scatterers causes the other vor-
tex to weaken as well, even though it has a circulation
pattern in the same direction as that produced by the

|l|ll'l|J_ll\J
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FIG. 7. The spatial distributions in the structure of Fig. J in a magnetic-flux density of 2.18 T. The impurity is attractive. (a) The
current distribution. The bulk of the forward current is carried by edge states. The smalil backscattered component near the walls
was explained in Ref. 9. This figure should be compared with Fig. 3(a). Note that the local effects of the impurity potential are inhib-
ited by the magnetic field. (b} The Fermu carrier concentration distribution which peaks near an edge because of the Lorentz force
skewing the wave function towsrds that edge. ic) The electrostatic (or chemical) potential profile which shows smooth equipotential
surfaces u, aloang one wall and u, along the other. The longitudinal four-terminal resistance that will be measured by attachiag voit-
age probes near the edges will be zero showing the occurrence of the integer quantum Hall effect. (d) The electric-ield distribution
which is noazero oaly at the center of the wire.
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Lorentz force. As the magnetic field is increased slightly,
the circulation of one vortex completely reverses while
the other weakens further. This is seen in Fig. 9(c). At
very high fields, the vortices completely disappear and
the current is carried by the edge states from one termi-
nal to the other.

C. Multichanneled transport

The previous results were for single-channeled trans-
port in which an electron can scatter into only one propa-
gating mode (subband). Some of the features observed in
the single-channel case may really be consequences of sin-
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gle modality (i.c., only intrasubband scattering is allowed
as opposed to intersubband scattering). In multichan-
neled conduction, there are more propagating modes
available for scattering so that both intrasubband and in-
tersubband scattering are allowed. This increases the to-
tal scattering probability and the current vortices that
form require a larger magnetic field to be quenched.
There are also more subtle effects. For injection from the
second subband, the vortices that form are actually
strengthened by a magnetic field. The net magnetic mo-
ment of the structure is increased by an external magnet-
ic field so that the response is “paramagnetic.” This is in
contrast with the situation seen in single-channeled trans-
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F1G. 8. Results for the formstion of a magnetic bound state. (a) The conductance vs Fermi energy for the structure of Fig. 3 con-
tasmng aa stiractive impunty. A magnetic-flux density of 3.5 T has been applied. The dip in the conductance occurs at the energy at
which a magnetic bound state forms. (b) The current distnbution dunng the formation of a bound state. The current circulates
around the 1mpurity. (c) The Fermu carner concentration distribution. It builds up around the impurity but shows s dip st the im-
punty location. (d) The electrostatic-potential profile. The equipotential surfaces near the walls are no longer visible [compare with
Fig. 7(c}) indicating that the integer quantum Hall effect 1s destroyed by a magnetic hound state.
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port (Figs. 9) in which the response was “‘diamagnetic.”

In Fig. 10, we have plotted the conductance versus
Fermi energy of a8 GaAs quantum wire of length 900 A
and width 1000 A containing four attractive impurities.
The conductance shows quantized steps associated with
subband filling.'* The resuits are plotted for magnetic-
flux densities of B =0 and 3.5 T. The quantization of the
conductance steps is quite poor in the absence of a mag-
netic field because of significant backscattering from the
impurity.'>!® When a magnetic field of 3.5 T is turned
on, the steps become wider and the lowest steps become
much smoother. The steps become wider since the sub-
band separation in energy increases with magnetic field
and the widths of the steps are equal to these separations.
In addition, the lowest steps become smoother since the
transmission probabilities of the lowest subbands increase
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at high magnetic fields owing to the formation of edge
states with high transmittivity.'”'* The quantization for
the higher steps is generally worse and does not improve
very much with increasing magnetic field since the
transmittivities of the higher subbands are always lower.
The real-space edge-state trajectories at the two edges
corresponding to the higher subbands are spatally closer
to one another than those corresponding to the lower
subbands. This causes increased coupling between the
higher subband edge states and hence increased back-
scattering.

In Figs. 11(a), 11(b), and 1 1(c), we plot the current dis-
tributions around a single attractive impunty when two
subbands are occupied. The three figures are the current
patterns due to injection from the first subband, the
second subband, and the resultant current pattern, re-
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FIG. 9. The spetial distnibuuons for a mA-long and 1000-A-wide structure containing multiple impurities. (a) The current
profile 1n zero magmetic feld showing the formation of two strong vortices due to quantum interference between the scatterers and
walls. (b) The quenching of one of the vortices and weakening of the other by a magnetc flux density of 0.08 T. (c) Complete change
In the vortex patterns and formation of edge states at a lux density of 1 T.
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FI1G. 10. Recovery of conductance quantization in a disor-
dered structure by a magnetic field. The structure is 900 A long
and 1000 A wide and contains two attractive impurities. In the
absence of a magnetic field, the quantization is quite poor. The
transmssion of the lowest subband is very small so that the
height of the lowest conductance step is also very small. A
magnetic-fux density of 3.5 T improves the quantization of the
lowest steps significantly and also widens the steps. The quanti-
zation of the higher steps is always worse than that of the lower
ones because of the relatively lower transmission of the higher
subbands.

spectively. The current pattern of the second subband
[Fig. 11(b)] does not show any significant backscattering
component since the wave function of the second sub-
band has a null at the center of the wire where the impur-
ity is located. Consequently, electrons from the second
subband do not interact with the impurity and therefore
there is hardly any backscattering. A magnetic field of 1
T skews the wave function of the second subband and
causes the electrons from this subband to interact with
the impurity. This increases backscattering and hence we
expect to see positive magnetoresistance in this case. The
current profile for the second subband at a field of 1 T is
shown in Fig. 11(d). There is a large backscattered com-
ponent in the current clearly visible in the upper section
of the device which was not present when the magnetic
field was absent. Of course, at high enough magnetic
fields, edge states form and backscattering is reduced.

D. The integer quantum Hall effect

In Figs. 12(a) and 12(b), we show the electrostatic-
potential profiles in a 900-A-long and 1000-A-wide quan-
tui., wire with two impurities at magnetic fields of 0 and
3.5 T. Only one subband is occupied. We assume that
#,=2.413 meV and §,=2.408 meV. Figures 12(c) and
112(d) show the corresponding electric-field profiles. Note
that in the presence of the magnetic field, both edges of
the wire become extraordinarily smooth equipotential
surfaces, Consequently, if we attached two voltage
probes at any of the edges, they will measure a relative
voltage difference of zero and hence the four-terminal
inear-response longitudinal resistance will be zero as

ell. This is a manifestation of the integer quantum Hall

S. CHAUDHURI, S. BANDYOPADHYAY, AND M. CAHAY 47

effect. The voltage difference between the two edges is
the Hall voltage drop. This figure should be contrasted
with Fig. 8(d) which shows the potential profile when a
magnetic bound state forms. In that case, the edges are
no longer equipotential surfaces and the quantum Hall
effect is not observed. It is well known that if the radius
of the magnetic bound state is equal to or larger than the
width of the wire, then the edges states at the two edges
of the wire are coupled by the bound state and electrons
can resonantly tunnel from one edge to the other result-
ing in backscattering. This destroys the quantum Hall
effect as predicted by Jain and Kivelson'® and later
verified by Lee, McLennan, and Datta.?’ We also observe
the same effect in Fig. 8(d).

IV. CONCLUSION

In this paper, we have plotted the current, Fermi car-
rier concentration, electrostatic-potential, and electric
field profiles associated with various magnetotransport
phenomena. These results are very helpful in elucidating
many features of these effects.
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APPENDIX: DERIVATION OF
THE SCATTERING MATRIX FOR
A SINGLE IMPURITY IN THE
PRESENCE OF A MAGNETIC FIELD

In this Appendix, we derive the scattering matrix
describing electron propagation across an elastic &
scatterer (impurity) in the presence of an arbitrary mag-
netic field. The real-space matching method discussed in
Ref. 21 is employed. We take a section through the im-
purity across the width of the structure (y direction) and
break this section into a number of mesh points also
along the width. Then, we enforce continuity of the wave
function and its first derivative across the section.

If we assume the impurity to be located at a position
(0,y), then the wave function for the incoming wave from
the left side of the impurity can be written as

M
vixp=¢ e+ 3 Tons -p(X,p). x 20,
p=1

Y]
U (x, = sy Xyl x 20,
p=1
where
explik £ x1d,,(y)
Saplxy)= = = .

ATH

Here r,, and ¢, denote the transmission and reflection
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coefficients from the jth mode to the ith mode.

For the incoming wave from the rnight side of the im-

purity, the wave function can be written as

[
Ui =5t 3 s txy), x 20,

p=1
M
Mixgn= St s (x.y) x<0
olxy)1= 3 ty,s_plxyl. x20.
p=1

The scattering matrix across the impurity is defined as

t r
S=r ’ ’
1
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FIG. 11. Spatial distributions for muitichanneled conduction in a structure of length 800 A and width 1000 A with one attractive
impurity. (a) Current distribution for injection from the lowest subband only at zero magnetic field. (b) Current distribution for in-
jection from the second subband only at zero magnetic field. Not much backscattering is observed since the second subband wave
function has a null at the impurity location. (c) The total current distribution at zero magnetic field. (d) The current distribution at a
flux density of 1 T for injection from the second subband only. Significant backscattering is observed compared to (b} since the wave
function of the second subband is skewed towards the impurity by the magnetic field which increases the interaction of the electrons

in the second subband with the impurity.

where the individual elements ¢,r, etc., are themselves
M XM matrices and M is the total number of modes

(propagating plus evanescent).

We now enforce the continuity of the wave function
and its first derivative at all mesh points. This allows us
to write the set of real-space mode-matching equations

for the incoming wave from the left

v (0,y;)=¥,(0,y,) for all possible i ,

2m?*
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where y, is the ith mesh point along the y direction.

At the location of the impunty, the denvauve of the
wave function is discontinuous bv a & funcuon: else-
where, 1t is continuous. Exact treatment of this condition
is not possible. We average the quantities over the inter-
val containing the impurity by muitiplying every equa-
tion by some averaging function and then integrating
over the interval. For our case, we simplv choose the
averaging function as

l Y -1t
(nj=—— dy .
Yne1 ™ Vn fy"

Substituting for ¥, and §,, the above equations may be
rewrntten in matrix notation as

Tl ot

t2 r2|ir

¢
d

]

,-
0 \\ \\\\\
.\ \\\

——e )

—t

(c)

FIG. 12. Electrostatic- (or chemical-) potenual and electric-field profiles inside a structure with two artractive impurities. (a) Po-
tential profile in the absence of any magnetic fieid. Significant potential variations are observed. (b) The potential profile at a
magnetic-flux density of 3.5 T. The edges have become equipotential surfaces showing the occurrence of the integer quantum Hall
effect. (c) The electric-field profile in the absence of any magnetic-field. (d) The electric-field profile at a magnetic-flux density of 3.5

T.
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c,]—\/;
J
d ikl [ m*
i'=_"——,,-+——L_d’( 18,0,
1,=1ilj)
8i0=1 (y;=y,)
=0 (y;%y,)

[ T T

(d)




47 CURRENT, POTENTIAL, ELECTRIC FIELD, AND FERMI . ..

In a similar manner, the equations for the transmission
and reflection coetficients for the incoming waves from
the right can be derived.

e Ler | ic
a2 2 d
where
.= L_I. -
Vv,
rl, =-— 1_1,.1,
Y
ik _ m*
12, = | —==1, _ - L—¢.(y0)8,0 | »
] i\/u_] t ] ﬁz‘/v—/ ] i
—ik, m*y
r2, = —=I ;- =,(y918,0{ ,
Vo R ]
_ 1,
¢, ik
Y,
d,=—%L%1 + L4 (y0)8:0 -
if \/Ul L] hz\/vj 70V

For a free propagating region of length x which con-
tains no impurity, we can write adown the expressions for
transmission and reflection coefficient matrices directly as

1, =explik;x)3;;

— L ——
r;=r,=0,

t;, =explik _ x5, .
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Current conservation requires that the scattering matrix
be unitary and we must check for it at all impurity loca-
tions. The composite scattering matrix for the whole
structure can be found by cascading the individual
scattering matrices according to the law of composition
of scattering matrices:*>}

S=SycaS"PSY™ - 2S\PRSTY,
where .V is the total number of impurities.

A few statements about the numerics may be
worthwhile. At high magnetic fields, the coefficient ma-
trix required for finding the values of ¢ and r becomes
nearly singular and hence special numerical techniques
are needed for matrix inversion. However, we found that
the real-space matching technique is always numerically
much better behaved than the momentum space mode-
matching methods followed in Ref. 24. In fact, the real-
space matching method ensures that current continuity is
preserved to a much better approximation than momen-
tum space mode-matching methods.

From the set of equations above, it is easy to show that
the current across the & scatterer is conserved and that
the scattering matrix is mathematicaily unitary. To do
this, we take the continuity equation and the derivative
equations at any point, multiply the right side and the left
side together, and then sum them over all points. This
immediately shows the current continuity. We mention
that the following relationships are useful in deriving the
current continuity:

778,609 dy=0, j#k,

2
kF4kf—=L
y=0 ;7T 2

[ M,y =1, 15j<N.
y=0
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Bistable saturation in coupled quantum dots for quantum cellular automata
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A simple model quantum dot cell containing two electrons is analyzed as a candidate for
quantum ceilular automata implementations. The cell has eigenstates whose charge density is
strongly aligned along one of two directions. In the presence of the electrostatic perturbation due
to a neighboring cell, the ground state is nearly completely aligned (polarized) in one direction
only. The polarization is a highly nonlinear function of the perturbing electrostatic fields and
shows the strong bistable saturation important for cellular automation function.

Nanoscale quantum structures with potential device
applications have been an active area of exploration for
several years. A frequent criticism' of many of these struc-
tures is the absence of the saturating behavior which forces
conventional transistor elements into one of two stable
states, “on” or “off.” Such bistable saturation is important
to keep device performance robust in the presence of phys-
ical inhomogeneities and noise.’

The possibility of realizing cellular automata (CA)
with regular arrays of quantum dots has been suggested by
Bate and others.’ In one example, the necessary nonlinear
response of each dot is the result of resonant tunneling
through the dot.* We focus on a different paradigm in
which each cell of the CA is composed of groups of cou-
pled quantum dots. The confining potentials are such that
electrons can tunnel between dots in the same cell but not
between different cells. Quantum mechanics and the Cou-
lomb interaction in each cell determine the possible cell
states. The Coulomb interaction between electrons in dif-
ferent cells provides a local intercellular coupling mecha-
nism. The nonlinear response of the cell to its electrostatic
environment must be a feature of the internal cell dynam-
ics. Recent success in fabricating arrays of very small quan-
tum dots with one or two electrons per dot® prompts us to
investigate possible few-electron coupled-dot cell geome-
tries which provides the sort of bistable saturation so de-
sirable. In this letter, we analyze a possible cell geometry
with two electrons in the cell. We show that quantum con-
finement and the intracellular Coulomb interaction to-
gether yield the nonlinear saturation behavior which is es-
sential.

We examine a simple nanostructure model cell con-
taining five coupled quantum dots. The model cell is shown
schematically in Fig. 1. It consists of a central site and four
neighboring sites. Tunneling is possible both between the
outer sites and the central site, and between adjacent outer
sites. We first consider such a cell holding two electrons
(the contrasting case of single and triple cell occupancy is
discussed below). We show below that the Coulomb repul-
sion between the two electrons causes the ground state of
the system to be one in which the electrons occupy antip-
odal sites.

We model the cell using a Hubbard-type Hamiltonian
with Coulomb repuision. The Hamiltonian for a single iso-
lated cell can be written,
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where the number operator n,;a=a{,,a,~', and the operator
a{, creates an electron at site / with spin 0. The cell pa-
rameters which define the Hamiltonian are then the on-site
energy, Eq, the tunneling energies, ¢; , and the on-site Cou-
lomb charging energy, E, The parameter V), is deter-
mined by fundamental constants and the dielectric con-
stant of the material in which the dots are formed. A fixed
positive charge g is assumed at each site sufficient to main-
tain overall cell charge neutrality. For an isolated cell, this
only renormalizes E,, but it is important in calculating the
interaction between cells as is done below.

For the numerical results we discuss here we choose
parameters based on a simple, experimentally accessible
model. We consider a cell in a semiconductor with
m®*=0.06Tm, which is composed of circular quantum
dots of diameter D=10 nm. The near-neighbor distance
between the cells is 20 nm. The dielectric constant for the
semiconductor is 10. We take 1=0.3 meV for coupling to
the center site and :=0.03 meV for coupling between outer
dots. These tunneling energies can be varied greatly by
adjusting the potential barriers between dots. We take £,
=Vo/(D/3). We will assume here that the two electrons
in the cell have antiparallel spins. The parallel spin case
yields results which are qualitatively very similar.

The eigenstates of the Hamiltonian [Eq. (1)] can now
be calculated for this specific choice of cell parameters. The
Hamiltonian is diagonalized directly in the basis of few-
electron states. From the two-electron wave function we
calculate the single particle density at each site, p; by find-

N /‘\,‘
I~
ar '
o Qbéi@o > g
I N —r 2

P =+l P=-1
FIG. 1. The quantum cell consisting of five quantum dots which are

occupied by two electrons. The mutual Coulomb repulsion between the
clectrons results in bistability between the P= + | and P= — | states.
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FIG. 2. The cellceil response function. The induced polarization of cell
I 1s shown as a function of the polarization in a neighboring cell 2 (inset).
The solid line represents the polarization of the ground state and the
dashed line represents the polarization of the first excited state.

ing the expectation value of the total number operator,
n;=n;,+n,,, at each site.

It is helpful to define a scalar quantity which repre-
sents the degree to which the electron density is aligned
either along the line through sites 1 and 3, or along the line
through sites 2 and 4. To this end we define the polariza-
tion of the cell as

__(p1+p3) = (pa+ps)
Pot+pP1+ P2+ p3+ps

If sites 2 and 4 are vacant, the cell is completely in the
P= +1 polarized state as shown in Fig. I. If sites | and 3
are vacant, the cell is completely in the P= —1 polarized
state. Clearly if the on-site energies are the same for all
sites, the ground state is degenerate, comprising a combi-
nation of both polarizations, with no polarization pre-
ferred.

We examine the polarization of the low-lying eigen-
states of the cell when perturbed by the presence of a
nearby cell. We denote the target cell as cell 1 and the
perturbing cell as cell 2. The potential at each site i of cell
1 is altered by the Coulomb interaction with the charge p, ;
at site j of cell 2. The Hamiltonian for ceil 1 can be written
as the sum of the isolated cell Hamiltonian and a pertur-
bation due to cell 2.

(2)

H =HF + B, (3)
where
Pr;— P
T Y e L 4
HY'= 2 VoTR, R ™ ®

Here R, , denotes the position of site i in cell m. We
solve for the eigenstates of the Hamiiltonian {Eq. (3)] as
the polarization of cell 2 is varied in the range P,=[-1,1).
The occupancy of the central site in cell 2 is assumed to be
zero® so that the charge densities, p, , are simple functions
of the polarization P,. The distance between cell centers is
three times the near-neighbor distance in a cell. For each
value of P, we find the eigenstates and the associated
charge densities and polarizations (Eq. 2). The result is the
cell-cell response function—the polarization of cell 1 in-
duced by a polarization of cell 2.

Figure 2 shows the polarization P, of the lowest two
cell eigenstates as a function of the perturbing cell polar-
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FIG. 3. The cell-cell response function for other cell occupancies. (a) A
single electron in the cell. (b) Three electrons (two spin up and one spin
down) in the cell.

ization P,. This figure displays the central result of this
letter—that the cell-cell response function is highly nonlin-
ear and bistable. Even a very slight polarization of a cell
induces nearly complete polarization of a neighbor.

The strongly nonlinear saturation of the polarization
does not occur if only a single electron is in the cell.’
Figure 3(a) shows the cell-cell response function for the
ground state of a cell occupied by a single electron. The
polarization is a very weak and nearly linear function of
the perturbation.? The response function for a triply occu-
pied cells (two spin up, one spin down) is shown in Fig.
3(b). Although the response is clearly not linear, it is not
nearly as strong as the two-electron case. The bistable sat-
uration present in the doubly occupied cells is a result of
the distinct splitting of the degenerate ground state by the
perturbation of a neighboring cell.

The rapid saturation of the polarization is the essential
nonlinear effect which suggests this type of cell could pro-
vide the basis for a CA-type array. In such an array of
cells, the differing polarizations of neighboring ceils would
provide the electrostatic perturbation which leads to a def-
inite polarization of the ground state of the cell. It is pos-
sible to extract a CA rule set by finding the cell polariza-
tion induced from the various combinations of neighboring
polarizations. This process, and the behavior of arrays of
quantum cells will be discussed at greater length else-
where.’

It must be noted that to date, quantum dot fabrication
techniques have produced dots which tend to be rather far
apart, thus only rather weak Coulombic coupling exists.
Our analysis presumes that fabrication techniques will
shortly overcome these difficuities, possibly through mac-
romolecular rather than semiconductor implementations. ‘¢
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In conclusion. we have shown that strongly nonlinear
saturation effects occur 1n a model two-electron nanoscale
system. The charge density “snaps” into one of two posi-
nons. depending sensitively on asymmetnes tn the sur-
rounding charge. This type of very desirable bistable satu-
ration suggests the possibility of quantum cellula:
automata arravs based on this type of cell.
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Abstract. We formulate a new paradigm for computing with cellular automata
(cas) composed of arrays of quantum devices—quantum cellular automata.
Computing in such a paradigm is edge driven. Input, output, and power are
delivered at the edge of the CA array only; no direct flow of information or energy
to internal cells is required. Computing in this paradigm is also computing with
the ground state. The architecture is so designed that the ground-state
configuration of the array, subject to boundary conditions determined by the
input, yields the computational result. We propose a specific realization of these
ideas using two-electron cells composed of quantum dots, which is within the
reach of current fabrication technology. The charge density in the cell is very
highly polarized (aligned) along one of the two cell axes, suggestive of a two-
state CA. The polarization of one cell induces a polarization in a neighboring cell
through the Coulomb interaction in a very non-linear fashion. Quantum ceilular
automata can perform useful computing. We show that AND gates, OR gates,

and inverters can be constructed and interconnected.

1. Introduction

The continual down-scaling of device dimensions in
microelectronics technology has led to faster devices and
denser circuit arrays with obvious benefits to chip perfor-
mance. Dramatic as they have been, these changes have
been evolutionary in nature in that even the most
advanced chips use the same paradigms for computing as
their more primitive ancestors. There is now much
expectation that the availability of very dense device
arrays might lead to new paradigms for information
processing based on locally-interconnected architectures
such as cellular automata (ca) and cellular neural net-
works [1].

There has also been considerable interest in quantum
mesoscopic structures for -their possible application as
devices [2]. Much has been learned about the behavior of
electrons flowing through very small structures in semi-
conductors. Various investigators have pointed out the
natural link between mesoscopic quantum systems and
cellular automata architectures [3-5]. Because quantum
structures are necessarily so small, it is difficult to
conceive of a regime in which a single quantum device
could drive many other devices in subsequent stages [6].
Furthermore, the capacitance of ultra-small wires form-
ing the connections to each device would tend to
dominate the behavior of an assembly of quantum
devices. For these reasons locaily interconnected
structures such as cellularmeural networks and Cas may
provide the natural architecture for quantum devices.

We focus here on the idea of employing cA archi-
tectures which are compatible with nanometer-scale

0957-4484/93/010049 + 09 $07.50 © 1993 IOP Publishing Ltd

quantum devices—thus, quantum cellular automata
(Qca). A qca would consist of an array of quantum
device cells in a locally-interconnected architecture. The
cell state becomes identified with the quantum state of
the mesoscopic device. Two-state CAs are attractive
because they naturally admit to encoding binary in-
formation. For a two-state QCA, each cell should have
two stable quantum states. The state of a given cell
should influence the state of the neighboring cells. Two
ingredients are essential then: (1) the bistability of the cell,
and (2) coupling to neighboring cells.

We propose a cell which is composed of coupled
quantum dots occupied by two electrons [7]). The re-
quisite bistability is accomplished through the inter-
action of quantum confinement effects, the Coulomb
interaction between the two electrons, and the quantiza-
tion of charge [8). The intercellular interaction is pro-
vided by the Coulomb repulsion between electrons in
different cells. We analyze this cell and the interactions
between neighboring cells in section 2.

In section 3 we propose a new paradigm for how
computation could be performed with an array of
quantum devices. Because no direct connections can be
made to interior cells, information or energy can enter the
array only from the edges. Edge-driven computation
imposes further constraints on the nature of the comput-
ing process [9]. The lack of direct connections to the
interior cells also means that no mechanism exists for
keeping the array away from its equilibrium ground-state
configuration. We are therefore led to use the ground
state of the array to do the computation. Computing with
the ground state means that the physics of the array must
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perform the computation by dissipating cnergy as it
relaxes to the ground state. This has the distinct ad-
vantage that the computing process is independent of
the details of the energy relaxation mechanisms and that
the unavoidable energy dissipation 1s useful to the com-
puting process.

Section 4 demonstrates that QCas can perform useful
functions. We show how logical gates and inverters can
be constructed with arrays of the two-electron bistable
quantum cell we propose. Section 3 discusses some key
issues in realizing QCAs as a viable technology and section
6 identifies technological advantages that a successful
QCA implementation wouid enjoy.

2. Few-electron quantum celis

The specific cell we consider here is shown in figure 1.
Four quantum dots are coupled to a central dot by
tunnel barriers. The two electrons tend to occupy anti-
podal sites in one of two configurations. shown in the
figure as the P = +1 and P = —1 configurations. Our
analysis below will show that the cell is indeed in one of
these two stable states, and that an electrostatic per-
turbation, perhaps caused by neighboring cells, switches
the cell between these two states in a very abrupt and
non-linear way. This permits the encoding of bit in-
formation in the cell.

The essential ingredients that produce the bistable
saturation behavior [10] which is so desirable are (1)
quantum confinement, (2) Coulomb interaction between
electrons, (3) few-electron quantum mechanics, and (4)
the discreteness of electronic charge.

2.1. A model for the quantum cell

We model the ceil shown in figure 1 using a Hubbard-
type Hamiltonian. For the isolated cell, the Hamiltonian
can be wrtten

H:)." = Z EO.‘"I.: + Z t(al.ofao.c + ao.ctal.a)

RioBja
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Here a,, is the annihilation operator which destroys a

particle at site i (i = 0,1, 2, 3,4) with spin ¢. The number

operator for site i and spin ¢ is represented by n, ,. The

o R

P=+l P=-1
Figure 1. The quantum cell consisting of five quantum
dots which are occupied by two electrons. The mutual
Coulombic repuision between the electrons results in
bistability between the P = +1 and P = -1 states.
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on-site energy for the 1ith dot 1s £, ,; the coupling to the
central dot 1s ¢: the charging energy for a single dot is E,,.
The last term represents the Coulombic potential energy
for two electrons located at sites i and j at positions R,
and R,. Unless otherwise noted. we will consider the case
where all the on-site energies are equal. E, ; = E,.

For our standard model cell. on which the numerical
resuits reported here are based. we obtain the values of
the parameters in the Hamiltonian from a simple, expen-
mentally reasonable model. We take each site to be a
circular quantum dot with diameter D = 10 nm, and take
E, to be the ground-state energy of such a dot holding an
electron with effective mass m* = 0.067 my,. The near-
neighbor distance between dot centers, g, is taken to be
20 nm. The Coulomb coupling strength, V,, is calculated
for a material with a dielectric constant of 10. We take
Ey = Vo/(D/3) and t = 0.3 meV.

It is useful to define a quantity which represents the
degree to which the charge density for a given cigenstate
of the system is aligned linearly. This alignment could be
either along the line through sites | and 3 or along the
line through sites 2 and 4. For each site, we calculate the
single particle density p,, which is simply the expectation
value of the total number operator for the two-electron
eigenstate. The polarization, P, is defined as

p= P tPy)—(p2+pd)
Pot+ Pr+ Py +pP3+Pa

For an isolated cell with all on-site energies equal, no
polarization is preferred. We will see below that per-
turbations due to charges in neighboring cells can result
in a strongly polarized ground state. The polarization
thus defined is not to be confused with the usual dipole
polarization of a continuous medium. It simply repres-
ents the degree to which the electrons in the cell are
aligned and in which of the two possible directions the
alignment occurs. For the states of interest here, the cell
has no dipole moment.

The interaction of the cell with the surrounding
environment, including other neighboring cells, is con-
tained in a second term in the Hamiltonian which we
write as Hh . We solve the time independent Schrodin-
ger cquation for the state of the cell, |'¥,), under the
influence of the neighboring cells:

(HE" + Hige) ¥, = E|'¥.). 3

The spins of the two electrons can be either aligned or
anti-aligned. with corresponding changes in the spatial
part of the wavefunction due to the Pauli principle. We
will restrict our attention to the case of anti-aligned spins
here because that is the ground-state configuration; the
spin-aligned case exhibits nearly identical behavior. The
Hamiltonian is diagonalized directly in the basis of few-
electron states. We calculate single-particle densities, p,,
from the two-particie ground-state wavefunction |, ),

2

pi =Y (Woln, ,|¥o) (4)

and from the densities calculate the resuitant polariza-
tion P, equation (2). To maintain charge neutrality, a
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At each site. For the isowated ceil. this nas no ctlect and i~
:ncluded on the on-site enerLies. For seseral ceils in cose
proximity. as wiil be considered helow. the maintenance
4ooverail cetl charge neutranty means hat e nter-
cellular interaction s due to dipote. Luadrupote. nd
argher moments of the cel charee aintrioution. i1 s
had a net total charge then ciectrons mocetls ot e
pertphery of a group of ceils would end to responu
mostiy to the net charge ot the other ceilbs.

2.2. The cell-cell response function

To be of use 1n a ¢ architecture. the poianzation of one
cell must be strongly coupled to the polanization of
neighboning cells. Consider the case ol two nearby cells
shown 1n the inset to higure 2. Suppose we tix the charge
distribution in the right cell. labeled cell 2. We assume
cell 2 has polanzation P, and that the charge density on
site 0 15 negligible (this means the charge density s
completely determined by the poiarizationi. For a given
polanzation of cell 2. we can compute the electrostatic
potentiai at each site in cell 1. This addinonal potenual
cnergy is then included in the total cell Hamiitonian.
Thus the perturbing Hamiltonian is

Hige = HS" = Y V'ng, (5)
zcelll .o
where
ip*t—p
im= ¥ it (6)

i Q;
k*®m.j IRk.l - Rm.ll

is the potential at site i in cell m due to the charges in all
other cells k. We denote the position of site j in cell k as
R, ;. The total Hamiltonian for cell 1 is then

Hcell - H:)ell + Hclell' ‘7)

The two-electron Schrodinger equation is solved using
this Hamiitonian tor various values of P.. The ground-
~:ate polarization of cell 1. P,. i1s then computed as
described in the previous section.

Figure 2{b) shows the lowest four eigen-energies of
cell 1 as a function of P,. The perturbation rapidly
separates states of opposite polarization. The excitation
cnergy for a completely polanzed cell to an excited state
of opposite polarization is about 0.8meV for our
standard cell. This corresponds to a temperature of about
9 K. Figure 2(a) shows P, as a function of P, ——the cell -
cell response function. A very small polarization in cell 2
causes cell 1 to be very strongiv poianzed. This non-
linear response 1s the basis of the QCas we describe here.
As the figure shows. the polanzation saturates very
quickly. This observation vields two important resulits:

(1) The bipolar saturation means that we can encode bit
information using the cell polarization. A cell
almost always in a highty polanized state with P =~ ~ 1.
We define the P = + | state as a bit value of | and the
P = - state as a bit value of 0. Only if the electrostatic
environment due to other cells 1s nearly perfectly sym-
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Figure 2. The cell-cell response function. The
polarization of the right cell is fixed and the induced
polarization in the left cell is caiculated. (a) The calculated
polarization of cell 1 as a function of the polarization of
ceil 2. Note that the range of P, shown is only from —0.1
to +0.1. This is because the transition in the induced
polarization is so abrupt. (b) The first four sigen-energies
of cell 1. The polarization of the lowest two are shown

n (a).

metric will there be no polarization.

111} The polarization of one cell induces a polarization
in us neighbor. Figure 2 shows that even a very slight
polarization will induce nearly complete polarization of a
neighboring cell. This cell - cell Coulomb coupling pro-
vides the mechanism for ca-like behavior. The rapid
saturation of the cell-cell response function is analogous
1o the gain necessary to preserve digital logic levels from
stage 1o stage.

The abruptness of the cell-cell response function de-
pends on the ratio of the dot-to-dot coupling energy, t in
equation (1). to the Coulomb energy for electrons on
different sites. The magnitude of the coupling depends
cxponentiaily on both the distance between the dots and
the height of the potential barner between them [11],
each of which can be adjusted as engineening parameters.
Figure 3 shows how the cell - cell response function varies
with 1.

2.3. Self-consistent analysis of several quastem cells

In the analvsis of the previous (wo subsections, the two-
clectron eigenstates were calculated for a single cell. It is
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Figure 3. The cell—celi response function for various
values of the dot-to-dot coupling energy (¢ in equation
(1)). The induced cell polarization P, is plotted as a
function of the neighboring cell polarization P,. The
resuits are shown for values of the coupling energy,

t = —0.2 (full curve), —0.3 (dotted curve), —0.5 (dashed
curve), and —0.7 (dot-dashed curve) meV. Note that the
response 18 shown only for P, in the range [ 0.1, +0.1].

important to note that for the Hamiltonian employed,
these are exact two-particle eigenstates. Exchange and
correlation effects have been included exactly. This was
possible because we could explicitly enumerate all possi-
ble two-clectron states and diagonalize the Hamiitonian
in this basis set. We want to analyze clusters and arrays
of cells to investigate possible device architectures. To do
so we need to calculate the ground-state wavefunction of
a group of cells. Exact diagonalization methods are then
no longer tractable because the number of possible
many-clectron states increases so rapidly as the number
of electrons increases. We must therefore turn to an
approximate technique.

The potential at each site of a given cell depends on
the charge density at each site of all other cells. We will
treat the charge in all other cells as the generator of a
Hartree-type potential and solve iteratively for the self-
consistent solution in all cells. This approximation,
which we call the intercellular Hartree approximation
(ICHA), can be stated formally as follows. Let ¥§ be the
two-electron ground-state wavefunction for cell k, and p}
be the single-particle density at site j in cell m. We begin
with an initial guess for the densities. Then, for each cell
we calculate the potential due to charges in all other cells.

_ (8
mak,j Q'Rn.[ - Ri.ll )

Although the neighboring cells will normally dominate
this sum, we do not examine only near-neighbors but
include the effect of all other cells. For each cell k, this
results in a perturbation of the basic cell Hamiltonian of
equation (1)

Hy" = Vin,. 9
iecellh. ¢

The Schrodinger equation for each cell is now solved for
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the two-electron ground-state eigenfunction:
(HE" + HE'IWE) = E§IWE). (10)

From the ground-state eigenfunctions we calculate the
improved single-particle densities.

Py =Y (Whin, V6> (11

The improved densities are then used in equation (8) and
the system is iterated until convergence is achieved. Once
the system converges, the many-electron energy, E,,,, is
computed from the sum of the cell eigenenergies using the
usual Hartree correction term to account for over-
counting of the Coulomb interaction energy between
cells:

} ooy

SRR I RNRIN e
It should be stressed that the ICHA still treats Coulombic,
exchange, and correlation effects between electrons in the
same cell exactly. The Hartree mean field approach is
used to treat seif-consistently the interaction between
electrons in different cells. Since electrons in different cells
are physically distinguishable (there being no wave-
function overlap), the exchange coupling between them is
zero. The Hartree and Hartree—Fock approximations
are therefore equivalent in this case.

The converged ICHA solution will be an (approximate)
cigenstate of the entire system. In general, however, it
need not be the ground state. As with the usual Hartree
approximation, which of the cigenstates the scheme
convesges to is determined by the choice of the initial
guess. To find the ground state we must try many initial
state guesses and determine which converged solution
has the lowest energy. Typically, this does not present a
serious problem for the type of cellular arrays considered
here because the set of likely ground states is casily
discerned. In general, a systematic search may be
required.

The procedure described above uses, at each stage of
the iteration, only the ground-state wavefunction of each
cell. If all the excited states of the entire system were
desired, we would have to include states composed of
excited cell states as well. Since our interest is in the
ground state, this is not necessary. It is relevant to point
out however, that because each cell is in a ‘local’ ground
state, we do not require coherence of the many-electron
wavefunction across the whole array of cells. All that is
required to support this analysis is that the wavefunction
is coherent across a single cell. No information about the
phase of the wavefunction in other cells is relevant to the
wavefunction in a given cell—only the charge densities in
other cells need be known.

3. Computing with quantum cellular automata

We present a new paradigm for computing with QCas.
This represents a complete picture of how quantum
devices could be coupled in a Ca architecture to perform




aseful functions. The paradigm we propose s shown
schematically in figure 4 We will focus on the zero-
temperature case:. temperature ctfects wul be considered
hefow. As shown in the figure. the inputs dre along an
cdge of the arrav Specitving the inputs consists ot
2lectrostatically hxing the poirization ot the input cells.
This could be accomphished by simply appiving voltages
to conducting ‘set’ lines which come in close proximity to
the cells. but any method that fixes the cell polanzation
state would do. The output cells are not nhixed: their
polarization state s sensed. perhaps by clectrostatic
coupling to ‘sense’ lines. There could also be several input
and output edges. Computation proceeds 1n the follow-
Ing steps:

(1) Write the input bits by nxing the polarization state
of cells along the input edge 1edge-driven computation).

(i) Allow the array to reiax to its ground state with
these inputs (computing with the ground state).

{1i1) Read the results of the computation by sensing
the polarization state of cells at the output edge.

The essential elements that dehne this computing para-
digm are computing with the ground state and edge-driven
computation, which we discuss below.

3.1. Computing with the ground state

The advantage of computing with the ground state is that
it leaves the computing process insensitive to the details
of the disstpative processes which couple the electrons in
the array to the environment. Consider a QCA at zero
temperature for which all the input cells have been held
in a fixed state. Dissipative processes have brought the
array to its ground-state configuration for these bound-
ary conditions. Suppose at time r = 0 the input cell states
are set to their new input values completely abruptly.
Just after the inputs are applied at the edge of the QCA, the

Set
b)

Figure 4. The new paradigm for computing with
quantum cellular automata (Qcas). The input to the QCA s
provided at an edge by setting the polarization state of the
edge celis (edge-driven computation). The QCA 1s aliowed
to dissipatively move to its new ground-state
configuration and the output i1s sensed at the other edge
(computing with the ground state). The ‘set’ and 'sense’
lines are shown schematically.

AFTAV 15 NO (UNEEr in the ground stdle but 1s NOWw 10 4n
¢xcited non-stattonary state for the new boundary con-
diions. In the ume between 0 and 1,. a charactensuc
relaxation ume. various dissipative processes will bring
the array to its new ground-state configuration. After
that. the array wiil be stable unul the boundary con-
dittons are changed again. During the relaxation ume the
remporal evolution of the svstem 1s very complicated.
kEven without dissipation. the system will undergo
Jquantum oscitlations due to interference between the
various eigenstates which compose the ¢ = 0 state. The
dissipative processes. like phonon emission, introduce
extraordinary complication n the temporal evolution.
The exact state of the system at a particular time 1 < ¢,
depends not just on phonon emission rates, but on the
particular phonons emitted by these particular electrons.
In short. the temporal evolution before ¢ = r, depends on
the precise microscopic details of the dissipative
dynamics. By contrast, the ground state configuration to
which the system relaxes is completely independent of the
dissipation mechamisms. Hence we choose to use the
ground state only for computing.

3.2. Edge-driven computation

In the Qca computing paradigm we are proposing, the
input data is represented by edge cells whose polarization
is fixed. Computing then proceeds by allowing the
physics interior to the QCa to ‘solve’ the dissipative many-
electron problem for this new set of boundary conditions.
The array is designed so the part of the ground-state
‘solution’ of the many-body problem which appears at
the output edge corresponds to the solution of the
computing problem posed by the input data.

The advantage of writing input and reading output
only at the edges of the array is that no separate
connections to the array interior need be made. Because
quantum devices are of necessity extremely small. the
problem of making contacts to each element or device
becomes severe. If a single array contains thousands of
individual cells. the ‘wiring’ problem is overwhelming.

Edge-driven computation 1s. in fact, the practical
requirement which makes computing with the ground
state necessary. If no connections can be made to the
interior of the array. there is no controlled mechanism for
keeping the system away from the ground state. Neither
clocking nor refresh mechanisms are available. With a
change in 1nput, the system will dissipate energy and find
a new equilibrium ground state. The only choice is
whether to try to perform computation with the system's
transient response. or with its ground state. For the
reasons discussed above, the ground-state approach is
preferable.

Conventional computing, by contrast. is done using
very highly-excited. non-equilibrium states. Because each
element (device) can be separately contacted, energy can
be fed into the system at each point. The entire system
can thereby be maintained in non-equilibrium states. The
advantage of this is that the energy difference between the
states used for computing can be very much larger than
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ke T. The requirement that cach element be driven far
from equilibrium ultimately contributes to the difficulty
of reducing the scale of conventional technology to the
nanometer level. The breakdown of the operaung device
physics at small scales also plays a crucial role in the
scale-down problem.

Ultimately, temperature effects are the principal pro-
blem to be overcome in physically realizing the Qca
computing paradigm. The critical energy is the energy
difference between the ground state and the first excited
state of the array. If this is sufficiently large compared
with ka7, the system will be reliably in the ground state
after time ¢,. Fortunately, this energy difference increases
quadratically as the cell dimensions shrink. If the cell size
could be made a few Angstroms, the energy differences
would be comparable to atomic energy levels—several
electron Volts! This is, of course, not feasible with
semiconductor implementations, but may ultimately be
attainable in molecular electronics. It may, however, be
possible to fabricate cells in semiconductors small
enough to work reliably at reasonable cryogenic
temperatures.

3.3. Relation to syuchronous CA rules

The relationship between the Qcas described here and
traditional rule-base Cas is not direct. CAs are usually
described by a set of ca rules which govern the temporal
evolution of the array [12]. Time proceeds in discrete
increments called generations. The rules determine the
state of the array based on its configuration in the
previous generation. Clearly, for the Qca described here,
the temporal evolution proceeds not through discrete
gencrations but through continuous physical time.
Moreover, as argued above, we are not particularly
interested in the temporal evolution of the Qca in order
to perform computations. We are only concerned with
the final ground-state configuration associated with a
particular input state. Like the rule-based synchronous
CA. the QCa is an array of interacting multi-state cells and
the behavior is dominated by near-neighbor interactions
between cells. Thus, the Qca is chiefly related to tradi-
tional cas by analogy.

Nevertheless, it is possible to construct a rule-based
ca from the Qca interacting cell Hamiltonian (10). The ca
so constructed may be useful. perhaps not in describing
the transient state of the QCa, but rather in calculating the
ground-state configuration, which is our primary con-
cern anyway.

3.4. CA rules from the Schridinger equation

The ca rule set is constructed as follows. For each cell,
consider all possible polarization states (P = + 1) of the
neighbors (neighbors out to any distance useful can be
considered). For each configuration of the neighboring
polarization, solve the Sthrodinger equation (10) and
determine the target-cell ground state and its polari-
zarion. The map of neighbor polarizations to target-cell
polarization constitutes the Ca rule set for that particular
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target cell. In general. a different rule set may apply to
each cell. Typically, many ceils will have similar environ-
ments and use the same rules.

The rule set obtained by this procedure can be recast
in terms of a weighted-voting procedure. In deciding the
state of a paruicular cell, the neighboring cells vote
according to their own state. The votes are weighted
differently depending on the geometrical relationship
between each neighbor and the target cell. The votes of
closer cells are weighted mcre heavily than those of more
distant cells. In addition. the weights can be negative,
indicating that the energetics of the interaction between
the neighbor and the target cell favor them having
opposite polarizations. The ca rules generated by the
solution of the Schrddinger equation for the target cell
can then recast in the form of voting weights for the
neighbors. Any set of voting weights which reproduces
the ca rule set is equivaient.

3.5. Extended CA rules

This procedure so far has one problem which can be
remedied by expanding the rules slightly. It is possible for
the votes of the neighbors to result in a ‘tie’. That is, the
neighboring polarizations may be arranged so symmetri-
cally that the ground-state polarization of the target cell
is zero. It is desirable to break this tie by consuiting the
immediate history of the neighbors. The neighbors which
flipped their polarization in the preceding generation are
simply weighted more heavily than those which have not
flipped. This introduces a notion of momentum which is
otherwise absent in a two-state Ca. With these momentum
rules, ties are still possible but are now exceedingly rare
events that can be handled by tic-breaking with a
random number.

The ca rules corresponding to a particular QCca are
thus derived from the Schrodinger equation and aug-
mented by the momentum rule discussed above. The
evolution of the synchronous ca is still not directly
related to the temporal evolution of the physical QCa.
The ca rules know nothing of the details of the dis-
sipative dynamics, for example. However, in our
experience, the synchronous ca with the momentum
rules can be useful in determining the ground state of the
QCA. If we start with a stable Qca state, and then flip the
input cells to correspond to the new input condition, the
synchronous ca will evolve to a stationary state which
corresponds to the ground state of the physical Qca. That
the final state is really the ground state can be checked by
using the more rigorous self-consistent calculations de-
scribed in the previous section.

4. Device applications

Two types of QCA structure for computing can be
envisioned. One type is a very large regular array of cells.
We have work in progress exploring this type of array. It
is widely appreciated that computing with large regular
CAS is a significant challenge, particularly with a simple




rule set. The solution to this difficult probiem may have
the greatest long-term potential. however. tor exploiting
the massive parallelism inherent in the Qca paradigm.

A second type of QCA structure invoives a highly
irregular array of cells. We show below that using simple
irregular arrays one can produce structures analogous to
wires, inverters, AND gates and OR gates. Since these
<an be connected together, more complex devices such as
ddders and multipliers can be constructed. Because the
individual devices are so small. this represents a potent-
ially enormous increase in functional density in an
architecture free of the usual interconnect problems. We
examine below how these basic logical gates can be
constructed from quantum cells.

The device configurations shown are the results of
self-consistent calculations of the ground state using the
ICHA described above. Figure 5 shows the calculated
ground-state charge density on each site of the cellular
array. In these figures the dot diameters reflect the
relative electron density at each site (dot) in the cell.

4.1. Wires

A linear chain of cells oriented as shown in figure 5(a)
functions as a wire, transmitting a O or | (P= +1 or

= —1) from one end of the wire to the other. This is
demonstrated by fixing the polarization of one end (the
left in the figure), while letting the other end be uncon-
strained, and calculating the self-consistent ground state
of the chain using the iICHA method. Figure (5a) shows the
results of this calculation. Not surprisingly, the ground
state consists of all cells aligned with the same polariza-
tion as the end cell. The first excited state of the chain has
a ‘kink’ in it at the chain center, ie., half the cells
polarized one way and half polarized the other. For our
example, the energy of the first excited state is about
1 meV (AE/kyT = 10K) above the ground-state energy.
Wire bends and fan-out are also possible, as shown in
figure 5(b) and (c), respectively. Again. the left-hand cell is
tixed and the ground-state configuration calculated. This
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Figure 5. aca wires: (a) the basic wire; (b) a corner in a
wire; (¢) fan-out of one signal into two channels. In each
case the darker (left-hand) cell has a fixed polarization
which constitutes the input. Note that these figures are
not simply schematic, but are a plot of the results of a
self-consistent many-body calculation of the ground state

for the celiular array. The diameter of each circle is
proportional to the calculated charge density at each site.
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Figure 6. An inverter constructed from a quantum cell
automaton

sort of fan-out 1s approprate for the edge-driven para-
digm discussed above.

4.2. Inverter

By offsetting one chain of celis from another, as shown in
figure 6. an inverter can be constructed. If the polariza-
tion of the one end is fixed. the polarization of the other
end will be opposite.

4.3. AND and OR gates

AND and OR gates can be made from the intersection of
two wires. Figure 7 shows an OR gate. The darker boxes
are around the input cells. Their polarization is set to
correspond to the logical values shown. For the case
when the inputs are 0 and 1 (figure 7(c)), the central cell
state would normally be indeterminate since a ‘tic vote’
exists between the input cells. To resolve, this we bias the
central cell by increasing the site energy on sites 2 and 4
slightly. This could be accomplished by making the
quantum dot diameter slightly smaller on these two sites.
It is then slightly more energetically favorable for the cell
to be in a | state, thus breaking the tie. The AND gate is
constructed in exactly the same way except that the
central cell is biased toward the O state. The AND gate is
shown in figure 8. Both these figures reflect the results of
self-consistent solutions of the many-electron problem
for the entire array shown.

4.4. Memory cell

A single quantum ceil can act as a memory storage cell.
Once prepared in an ecigenstate with P = +1, for
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Figure 7. An OR gate. The cells in darker squares are
fixed to the input states. The ceil in the dashed square is
biased slightly toward the ‘1’ state.
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Figure 8. An AND gate. The cells in darker squares are

fixed to the input states. The cell in the dashed square is
biased slightly toward the ‘O’ state.

example, the cell will in principle remain in that con-
figuration indefinitely. One problem is that slight variat-
ions in the potential environment may make it slip into
the other cigenstates. To avoid this it may be desirable to
use small or medium-size arrays of quantum celis to store
each bit. This is shown schematically in figure 9. One
advantage of a regular rectangular array of cells is that it
may be possible to use the interaction of many cells with
the set and sense lines (the exact mechanism for setting
and sensing is not critical here). The problem of making
non-interfering address lines is certainly non-trivial.

5. Issues for QCA as a technology

Fabrication of Qcas in semiconductors appears to be
within reach of current technology. The GaAs/AlGaAs
system has proven fruitful as a means of fabricating
quantum dot structures by imposing electrostatically a
pattern on the two-dimensional electron gas formed at
the heterojuaction interface. Other materials systems,
including molecular systems, are also candidates for
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Figure 9. Quantum celiular arrays as memory storage
cells. A single bit can be stored in (a) a single cell, (b) a
line of cells, or (¢c) an array of cells. Arrays of cells would
make the storage more robust.

realizing a QCA structure. Any implementation must deal
with several issues of key importance to the successful
operation of the cell we have described.

S.1. Uniformity of cell occupancy

It is important for the operation of the Qca that each cell
contain two electrons. The cell-cell response function
degrades significantly of one or three electrons are in a
cell. Fortunately, the physics of the cell acts to ensure that
the occupancy will be very uniform. This is so because the
Coulomb interaction causes significant energy-level
splitting between the different cell charge states. The
Coulomb energy cost to add the third electron is on the
order of 10meV for cells with a 30nm separation.
Experiments by Meurer et al {13] have shown that
uniformity in the number of electrons per dot can be
maintained in arrays of 10® dots.

5.2. Dot size control

The size of the fabricated quantum dots must be fairly
well controlled. Variations in the size of the dots transiate
into variations in the confinement energies on each dot.
The cell bistability occurs because the Coulomb inter-
action is determinative in selecting a preferred polariza-
tion state. If the magnitude of the vanation among the
dots in the confinement energies is greater than the
Coulomb energies involved, the cell will be pinned at a
fixed polarization. Note that dot size variations are
critical only within a single cell; vaniations between
different cells are easily tolerated.

53. Temperature

The temperature of operation is a major factér. Our QCA
quantum cell is expected to work at liquid helium
temperatures for dot dimensions which are within the
capability of current semiconductor fabrication tech-
nology. As technology advances to smaller and smaller
dimensions on the few-nanometer scale, the temperature
of operation will be allowed to increase. Perhaps our
envisioned QcA will find its first room temperature
implementation in molecular electronics.

6. Technological benefits

If successful, Qcas would represent a revolutionary,
rather than evolutionary, departure from conventional
electronics. In this section we review some possible
benefits a QcA technology might provide.

Quantum cellular automata solve the interconnection
problem. It is widely acknowledgcd that the main chal-
lenge to further improvements in microelectronics is the
interconnection and wiring problem. The Qcas we dis-
cuss accommodate this challenge in a natural fashion.
Interconnect lines are no longer necessary to provide the
communication between celis; the Coulomb interaction




provides the coupling mechamism. Edge-driven com-
putation requires neither energy nor information to be
transmitted directly to intenor cells. Computing with the
ground state makes both clocking and refresh signals
unnecessary.

Quantum cellular automata make possible ultra-high-
density computing elements. The chief technological ad-
vantage of the proposed structures is the improved
functional density of computing elements. With a 10nm
design rule, the cell dimensions would be about
30nm x 30 nm, which translates into an extremely high
packing density of about 10'° cellscm ~ 2. Since, as shown
above. a single cell can function as a logical gate, this
represents an extremely high functional density.

Quantum cellular automata are extremely low in power
dissipation. High packing density is usually accom-
panied by high power dissipation. However, in QCaA
structures, the information is stored in physical systems
close to their ground state. The energy input to the array
1s the energy required to set each input bit—about 1 meV
per input bit. This energy is dissipated in the time it takes
for the QCa to relax to its new ground-state configuration,
probably less than a few picoseconds (phonon scattering
times). This represents a power dissipation of roughly
107 '°W per input bit, much less than conventional
devices.

Quantum cellular automata offer the possibility of
ultra-fast computing. As estimated above, the computa-
tion occurs in a QCA over the relaxation time for the
electrons in the array, probably on the order of picosec-
onds. It is clear that this relaxation time is a function of
the electron-phonon coupling and represents a funda-
mental speed limit for computation with electrons in a
semiconductor.

Quantum cellular automata may facilitate fabrication
of ultra-dense memory storage. The QCa cell encodes a bit
of information. Writing and reading the bit involves very
low power dissipation and is very fast. While problems of
cell addressing and cell volatility appear challenging, the
possibility of solid-state electronic storage of information
at these densities invites further investigation.

7. Summary

We have presented a specific model for using nanoelec-
tronic devices in a cellular automata architecture and
proposed a new paradigm for computing in this frame-
work. Each cell consists of a central quantum dot and
four neighboning dots occupied by two electrons. The
Coulomb repulsion between the two electrons, quantum
confinement effects, and the discreteness of the electronic
charge, combine to produce strongly polarized (in the

sense defined above) ground states. The response of this
polanzauon to the electrostatic environment is highly
non-linear and exhibits the bistable saturation necessary
for a two-state Ca. The concept of edge-driven com-
putation solves the interconnection problem. The concept
of computing with the ground state in the QCA approach
permits uitra-fast operation, eliminates problems of in-
terconnect delays, resistive and capacitive effects, power
dissipation. and limited densities associated with con-
ventional architectures.
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Numencal modeling of a novel quantum wire structure formed by the confinement of electrons
between lateral quasi-two-dimensional (Q2-D) p-n junctions in a corrugated GaAs/AlGaAs
heterostructure is reported on. Such a quantum wire may be realized at the tip of a Si-doped
AlGaAs overgrown V groove in a SI-GaAs substrate due to the surface onentation dependence
of Si doping. The two-dimensional conduction and valence band potential profiles for the
clectron and hole charge densities are solved within a semiclassical Thomas-Fermi screening
model. The quantized electronic wire states at the heterointerface are then obtained by solving
the two-dimensional effective mass Schrodinger equation using the calculated potential profile.
The parameter space of the one-dimensional eiectron system is explored to establish which
features of the structure are dominant factors in controlling the electronic states. It is
demonstrated that the energy level spacing of the quantum wire depends primanly on the lateral
confinement width in the n-type region at the tip of the F groove. The ground state energy of the
wire is shown to depend on both the lateral confinement width and the vertical heterointerface
confinement width. The results of our initial calculations are aiso reported on to incorporate
lateral gates on the surface to obtain direct control of the quantum wire transport properties.
The advantages of fabricating quantum wires with this structure compared to conventional

methods of electrostatic confinement are discussed.

I. INTRODUCTION

Recent experiments have demonstrated that Si behaves
as a substrate orientation dependent amphoteric dopant in
molecular beam epitaxial (MBE) grown GaAs and Al-
GaAs. This effect was first studied on As-terminated {111}
and {110} planes;' then further studies were reported on
Ga-terminated {111}A, As-terminated {111}B, {100},
{211}, and higher index plan&s.z'3 These studies show that,
under suitable growth conditions, Si-doped overlayers
grown on {100} GaAs substrate surfaces havc donor be-
havior, whereas Si-doped overiayers grown on Ga-
terminated {111}A GaAs substrate surfaces have acceptor
behavior.

The controllable amphoteric nature of Si doping in-
cited the investigation of fabricating lateral p—n junctions
in GaAs. Bulk GaAs lateral p—n junctions with good diode
current-voltage characteristics were reported by Miller in
1985.* HEMT-compatible heterostructure lateral p—n junc-
tions, between quasi-two-dimensional electron and hole
systems, were reported by Ebner eral in 1990.° In this
latter study, Si-doped Aly ;Gag 1As was epitaxially regrown
on a semi-insulating corrugated GaAs substrate. The selec-
tively etched and epitaxially regrown structure was fabri-
cated with exposed Ga-terminated {111}A facets on the
normally exposed {100} substrate. Ebner er al’ reported
electroluminescence resuits that correspond to the GaAs
quantum weil band gap of such a system, and Harbury
et alL® reported caiculations that confirm the existence of a
lateral p—n junction between two-dimensional electron and
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hole gas systems (2DEG and 2DHG, respectively) with
Si-doping densities in excess of 5% 10'” cm ™.

A variety of novel complementary device structures
may be based on lateral p—n junctions {_rmed between high
mobility 2DEG and 2DHG systems. In particular, exploit-
ing the amphoteric dopant behavior of Si in a selectively
etched and epitaxially regrown V groove structure presents
a novel quantum wire system realized between lateral p—n
junctions.” The depletion regions in such a HEMT-
compatible p-n-p-type geometry provide lateral confine-
ment of the carriers at the heterointerface of the n-type
center region, thereby realizing a quantum wire. The use of
p—n junctions for lateral confinement of quantum wires was
pioneered by Dean and Pepper® and by Fowler and co-
workers.” V-groove geometries have been previously ex-
plored for the design of quantum wires.'®'? This new de-
sign, however, may offer some advantages compared to
present unipolar structures,'* which use metal gate electro-
static confinement or sidewall etching.

In this paper we report on numerical modeling of the
lateral p—n—p quantum wire system realized in a corrugated
GaAs/AlGaAs heterostructure. In Sec. II1 we present our
model of the system, and in Sec. IiI we discuss our solution
methods for obtaining the two-dimensional electrostatic
potential for electrons and holes, and the electronic states
of the quantum wire. We also present the details of the
numerical method in the Appendix. Our results are pre-
sented in Sec. [V, and we conclude in Sec. V.

© 1993 Amaerican instiute of Physics 1500




S0 nm

SI GaAs Substrate

FIG. 1. Schemauc diagram of the model }-groove corrugated hetero-
structure geometry. The a-type or p-type nature of the amphotenc silicon
Jdoped overlayer 1s labeled along with the corresponding crystallographic
surface onentation. Possible formation of 2DEG's. 2DHG's. and a IDEG
:s also noted. The hatched region represents the computation domain.

il. MODEL SYSTEM

Figure 1 shows a schematic diagram of the model cor-
rugated GaAs/AlGaAs heterojunction system. The chosen
overlayer thickness and composition are similar to those of
a lateral light emitting structure fabricated by Ebner et al.’
A 50 nm thick layer of Si-doped Al, ;Ga, 1As is overgrown
on an etched ¥ groove of a semi-insulating GaAs substrate.
The sidewalls of the V-groove expose the {111}A family of
planes of the normally {100} terminated substrate. As in-
dicated in Fig. 1, the amphoteric Si-doped overlayer exhib-
its n-type behavior on the {100} surfaces and p-type be-
havior on the {111}A surfaces. The two-dimensional
electron and hole gas shown in Fig. 1 {labeled 2DEG and
2DHG. respectively) forms along the heterointerface for
suitable doping conditions.

The hatched region in Fig. | represents the finite eie-
ment calculation domain used to model the p-n-p quan-
tum wire structures. The range of the ternary composttion,
the doping density, and the structural dimensions are the
parameters that define the system. A two-dimensional
equilibrium potential profile of the model geometry is
sought for different material parameters. The band bending
due to the electrostatic potential, #(r), is obtained from the
solution of Poisson's equation within a semiclassical
Thomas-Fermi screening model,

4
Vi(r)=——(n(r) —p(r) + N7 —N}). (1)
€.£9

Complete ionization of the impurities is assumed at room
temperature, such that the background doping of the semi-
insulating GaAs, assumead to be lightly n type, contributes
to N} in the substrate, and the amphoteric Si doping con-
tributes to both N7 and N j in the overlayer region. The
clectron density, n(r), is given by the Ferrm—Dirac integrai
of order 3,
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niry) =4l '
n-
e ([E=E.Ary)/kgT)"*'dE/kgT)
Le I ~exp((E~E¢)/kgT)
=VF. .iny, (2)
where V. = 2(2mkgTm*/h?)*'* is the effective conduction

band density of states, n=(Eg— E.(7))/kgT measures the
separation between the Fermi levei. £, and the position-
dependent conduction band edge, £.(r), and F,,,(7) is the
Fermi-Dirac integral of order 1/2. A similar term is ob-
tained for the hole density, p(r) =N F,,(n), where 7 1s
now the separation between the valence band edge and the
Fermi level, and N, is the effective valence band density of
states.

We enforce bulk charge neutrality deep inside the
semi-insulating GaAs substrate, assumed to be slightly n
type with a background doping density of 1.0% 10" cm
which is completely ionized. A density of surface states
along the {100} and {111} exposed facets is aiso assumed,
such that the electrostatic potential is pinned to the near
midgap value of 0.8 eV separation between the conduction
band edge and the Fermi level. The problem domain ex-
tends far enough from the p—n junction regions, such that
the electrostatic potential becomes invariant parallel to the
heterointerface.

The confined states of the p—n-p quantum wire struc-
ture are also of interest. The bound state wave functions
are sought by solving the two-dimensional Schrodinger
equation for a computed potential profile,

ViU(r) + [ V(r) —ed(r) J¥(r) =Ed(r). (3)

*
2m?

Here, ¥(r) includes external potentials and band offsets
and &(r) is the electrostatic potenual obtained from the
solution of Poisson’'s equation for the V-groove geometry.

The decay of the wave function far from the potential
“pocket” that forms the quantum wire provides the neces-
sary boundary conditions to formuiate Eq. (3) as an
eigenvalue/vector problem. The wave functions of interest,
however, are the lowest energy quantum wire states. The
problem, therefore, can be reduced to a subspace of the full
eigensystem.

ill. NUMERICAL METHODS

The solution of the two-dimensional Poisson and
Schrodinger equations is a chalienging numencal probiem
that requires domains of highly nonuniform mesh design.
bandwidth optimization, and sparse matnx methods. The
general considerations of the solution method are discussed
in Sec. III1 A, whereas the detaiis of the numerical method
are deferred to the Appendix. The interesting and often
ignored subject of nonuniform mesh generation is dis-
cussed in Sec. III B.
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FIG. 2. Convergence of the Poisson solution Newton-Raphson iteration
scheme for several different p-n—-p geometnes.

A. The solution of Poisson and Schrodinger equations

The two-dimensional Poisson and Schrodinger equa-
tions are both solved with the finite element method. The
Poisson equation is solved for the discretization domain
schematically shown by the hatched region in Fig. 1,
whereas the Schridinger equation is only solved for the
small subregion near the ¥-groove tip, where the electro-
static potential “pocket” defines the quantum wire.

For the Poisson solution, the bulk charge neutrality
boundary conditions deep inside the GaAs substrate are
implemented by fixing the electrostatic potential at a few
points on the boundary to the value consistent with the
background doping, and by applying zero-valued Neu-
mann conditions on the remainder of the bulk boundary.
This condition forces the boundary normal electric field to
zero, and forces the potential to the proper equilibrium
bulk value. Surface pinning on the exposed facets is imple-
mented by Dirichlet conditions, which force the conduc-
tion band potential to the approximate midgap value of 0.8
¢V above the Fermi level. Zero-valued Neumann boundary
conditions are applied along the side boundaries to model
the asymptotic invariance parallel to the heterointerface.
The discontinuity in the eiectrostatic potential at the het-
erointerface is treated as a linear constraint on the system
of equations and is implemented with the penaity element
method. The nonlinear Poisson equation is linearized by
the Newton-Raphson iterative method. The details of the
finite element formulation and linearization are deferred to
Appendix A.

The resulting system of linear equations is solved by
standard L/U decomposition, backward substitution, and
forward elimination. Bandwidth optimization of the dis-
cretized equation numbers in conjunction with the skyline
storage technique provide an efficient solution of the linear
system. The iterative error-of the Newton-Raphson solu-
tion is plotted in Fig. 2 for typical runs of the lateral p—n-p
quantum wire domain for various widths of the n-type
region at the ¥-groove tip. The finite element domain con-
sists of 16 168 elements and 8427 bandwidth-optimized
nodes. The error drops by approximately 9 decades within

1511 J. Agpl Phya., Vol. 73, No. 3, 1 February 1993

Q 10 20 10 W 20 o0 70 80
lteration Number

FIG. 3. Convergence of the Schrodinger solution subspece iterstion
scheme for several different p-n-p geometnes.

12 iterations with a typical cumulative solution time of 430
sec on an IBM RISC System/6000.

For the Schrodinger equation, the asymptotic decay of
the wave function can be modeled by either zero-vaiued
Neumann boundary conditions or zero-valued Dirichlet
boundary conditions. Continuity of the wave function
across the heterointerface is implemented with the penalty
element method and provides compatibility with the Pois-
son solver. The details of the finite element formulation of
the Schrodinger equation are deferred to Appendix B.

Because only the lowest few eigenstates are sought, the
discretized Schrodinger equation is solved by a subspace
iteration method. Efficient skyline storage and sparse ma-
trix methods are used to obtain the lowest ten bound states.
The iterative error of the subspace algorithm is plotted in
Fig. 3 for the ground state of the lateral p—n—p quantum
wire for the same selection of n-region ¥-groove tip widths,
as were chosen for Fig. 2. After initial oscillation, the error
exponentially decreases at approximately one decade every
15 iterations. For the finite element Schrodinger domain
consisting of 3482 elements and 1876 bandwidth-optimized
nodes, a solution of a 20 eigenstate subspace over 120 it-
erations typically consumes 240 cpu seconds on an IBM
RISC System/6000.

8. Nonuniform mesh generation

Two-dimensional numenical modeling of realistic
structures, such as those considered in this work, requires
the development of sophisticated mesh domains. Buik
charge neutrality boundary conditions imply that the do-
main, (), must extend microns into the bulk region. At the
heterointerface and in the p—n junction depletion regions,
however, the potential profile may undergo large variations
in nanometer distances. The disparity between character-
istic length scales and the need to keep the problem size
computationally tractable constrains the discretization
scheme to highly nonuniform mesh designs. A further con-
straint on mesh design is the need to preserve the charac-
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FIG 4 Nonumsorm. (naagular element mcsh domain used (0 solve the
Schrodinger equation for the quaatum wire state  The Schrodinger mesn
v 4 smail subdomaa of the Poisson mesh cut irom the regyon of the
notential “pocket” formed at the bottom of the + zroove This mesh has
‘482 tnanguiar clements and 1876 nodes.

tenstic geometry of the structure. The $4 T angie between
the {100} and {111} crysuallographic planes. for exampie,
must be maintained throughout the domain.

With a rectangular master element design, 1t would be
Jdifficuit to mamntain arbitrary angles throughout the do-
main. and the resuiting system of equations would likely be
intractably large. With the tnanguiar master ciement. how-
ever, It IS easy (0 mamtain arbwtrary geometnc angles in
nonuniform mesh designs. Furthermore. standard bend-
width optimization algorithms exst for tnangular element
domans 10 efficiently number the nodes for sparse matnx
methods.

Al present there are few mesh layout toois availabie to
the scientific community suitable for device modeling ap-
plications. Xmgredit,'® however, is a powerful mesh gen-
eration tool that was originally designed for oceanographic
land-margin studies, which is general enough for device
modeling work. Xmgredit 1s 2 window based interactive
mesh editing tool that allows arbitrary tnangulation of a
domain and provides all the necessary funcuons for gnd
refinement.

Figure 4 shows the mesh generated 1o soive the Schro-
dinger equation for the lateral p—a—p quantum wire struc-
ture. This mesh i1s a small subdomain of the larger mesh
used to solve the Poisson equation, since the bound state
wave functions are nonzero only rear the potental
“pocket” at the V-groove tip. We present only the smaller
Schrodinger mesh in Fig. 4 because its ratio of largest to
smallest element is small encugh that all the elements can
be clearly seen.

As menuoned above, the Powsson mesh conmsts of
16 168 elements and 8427 nodes. and the Schrodinger sub-
domain consists of 1482 elements and 1876 nodes. For the
larger Poisson mesh, the maumum element area 1s 1.7
<10* A? and the minimum clement ares 1s 70 A’ while
maintaiung the proper crystallographic onentations
throughout the domamn. The sidewalls of the V' groove
extend approximately 800 nm for the Potsson mesh and
approximately 60 nm n the Schrodinger mesh. as shown i1n
Fig. 4.

In demgning such a large nonumiform mesh, it 13 easiest
10 generate a separate mesh for each repom of the hetero-
structure with different matenial propertes and then con-
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FIG 5 Band dugram for the iatersi p-4—p quantum wwe strecture
Shown are the conduction and valence bands along the hetsromeerfaces
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<10 :m  The insets show front and side views of the rwo-cemenmonal
conduction band protile. The potennial “pocket” that hoids the quantum
wire 18 also mdacaded.

nect the subdomains together. The special penaity clements
can then be added along the heterowmnterfaces to force the
potential discontinuity. We have found thet a computa-
tionally efficient tnangular eiement mesh can be genersted
for any two-dimensional device geometry with a2 minimum
of effort.

IV. LATERAL V-GROOVE QUANTUM WIRE
STRUCTURE

The results presented in this section concentrate on the
p-n—p V-groove structure indicated by the hatched model
domain labeled “wire” in the schematic diagram shown 1n
Fig. 1. {nteresung behavior 1s expected when back-to-back
lateral quasi-2-D p—n junctions are formed wmith a common
n-type region. In particular. if the n-type repon 13 made
narrow, one would expect the 2DEG formed at the hetero-
interface (o be laterally “squeezed” into a IDEG by the
depietion regions of the p—n junctions on both sides. A
conduction band “pocket’ i1s expected to form at the tup of
the ¥ groove, which may suppont two-dimensionally con-
fined quantum ware states.

Figure $ is a piot of the band disgram for a lsteral
p-n—p junction wmith an overlayer Si-dopant concentrstion
of 1.0% 10" cm ' and with a narrow 100 nm a-type regon
at the V-groove up. The electrostatic poteatal is plotted
parailel 10 the heteronterface on the GaAs substrate nde,
along the (111}-{100}-{111} surfaces. The formaton of
an electron gas 1s expected in the regron where the comduc-
tion band approaches and traverses the semuciaemcal Fermm
energy. indicated by the dashed line. which 1s chosen as the
zero of energy. The quantum wire potennal “‘pocket” is
more clearly visible in the insets to Fig. 5. where portions
of the front and sde views of the two-dimenmonal conduc-
uon band progie are shown. Only 2 small submesh of the
full two-dimensional computation domas 18 shown n the
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F1G. 6. Conduction band profies for the p-7—p quantum wire structure.
Shown are the conduction dands along the (111) and (100) heterointer-
laces with a fined |50 am width A-type section for five different overiayer
Jopasat concentrations.

inset figures for better delinesation of the potential well,
aithough the caiculations are performed on the full domain
to ensure that bulk charge neutrality conditions are satis-
fied deep in the GaAs substrate. The lateral p—n-p junc-
tions that form at the heterointerface are clearly visible in
the left inset of Fig. 5 (front view), whereas the heteroin-
terface and “‘pocket” are more clearly seen in the right
inset (side view).

Shown in Fig. 6 is a comparison of the lateral conduc-
tion band profile for several different overlayer Si-dopant
concentrations with constant 150 am width a-type regions.
Again, the semiclassical Fermi energy is chosen as the zero
of energy and is indicated by the dashed line. As is ex.
pected, the p-n-p depletion widths are reduced and the
quantum well depth in the n region increases with higher
overiayer dopant comcentration. For the case of a 150 nm
wide V-groove tip and overiayer dopant concentration of
1.0x 10'* cm ~*, fiatband conditions are approached at the
center of the » region. as shown by the solid curve in Fig.
6. This fiatband coadition occurs when the two lateral de-
pletion regons do not overisp and therefore there is no
lateral fieid component in the center (a-type) region of the
V-groove up.

The effect of the width of the a-type V-groove tip on
the lateral conduction band profile is shown in Fig. 7 for a
constant Si overlayer dopant concentration of 1.0x 10'*
cm ' The semiclasmcal Fermi energy s again indicated by
the dashed line at 0.0 eV. Larger V-groove tip widths cor-
respound t0 an mcrease in depth and width of the lateral
quantum well. Flatband comditions are demonstrated in
Fig. 7 for n-regon widths grester than 150 nm. As in Fig.
6. laserai flatband coaditions occur at the bottom of the
quastum weil “pocket” when the two lateral p-n depletion
regrons do not overiap. Once flatband conditions are estab-
liahed = the botsom of the weil, the maximum depth of the
“pocket” becomes mdependent of the V-groove tip width.
However, the clsctronic states in the well are expected to
be & strong fuscoes of the lsteral well width. In the limit
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FI1G. 7. Conduction band profiles for the p-a-p quastum wire structure.
Shown are the conduction bands along the (111) and (100} hesarcinter-

faces with a fixed 1.0x 10'* cm ~* doped Al, ;Gag,As overiayer for cight
different widths of the exposed (100) surface.

of a very wide n region, the behavior of the system will
approach that of isolated p-n junctions and the quasi-
IDEG becomes a quasi-2DEG in the n region. The
V-groove tip width, therefore, controls the transition of the
n region from a |DEG quantum wire system to & 2DEG
lateral p—n—p system.

Figures 6 and 7 demonstrate how control of the lazeral
quantum well eclectrostatic potential can be obtained
through adjusting both the overlayer Si-dopant concentra-
tion and the lateral V-groove dimensions. It is aleo of in-
tevest to study the dependence of the vertical hetercinter-
face confinement for the same parameters. Plotted in Fig. 8
are the conduction band profiles in a direction perpendic-
ular to the heterointerface, at the center of a 150 nm wide
n region, for the same dopant conditions used in Fig. 6. As
before, the zero of energy is chosen to be the semiclassical
Fermi energy and is indicated by the dashed line. Increas-
ing negative values of distance correspond to increasing
depth into the GaAs substrate, whereas increasing positive
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FIG. §. Potsnusl vananon perpendicuisr to the heveroimterface (at the
canter of a Ased 130 nm wdth n-type region) for five different overlayer
dopant conosmrations.
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F1G. 9. Potental vanation perpendicular 10 the heterointerface (at the
center of the a-type region) with a fixed 1.0% 10" cm~’ Si-doped
AlyGag 1As overlayer for eight different widths of the n-type region.

values of distance correspond to locations in the
Aly ;Gag 7As overlayer approaching the surface. For clar-
ity, the resuits are only plotted up to a depth of 600 nm
into the GaAs substrate, although the calculation domain
extends for several microns to ensure that bulk charge neu-
trality conditions are satisfied. Figure 8 shows that hetero-
interface confinement is only achieved for overlayer dopant
concentrations above a critical value of approximately 5.0
% 10" cm . The conduction band potential on the GaAs
side at the heterointerface has a strong dependence on the
overlayer doping for concentrations below the critical
value, marking the onset of the electron gas formation, and
a much weaker dependence for concentrations above this
critical value. The conduction band potential in Fig. 8 first
increases from its bulk value for points approaching the
heterointerface, and then it sharply decreases to form the
heterointerface confinement “notch.” This “hump’ in the
GaAs conductuon band is more pronounced for higher
overlayer dopant concentrations.

In a similar fashion to Fig. 8, Fig. 9 shows the corre-
sponding conduction band profiles for the same selection of
center n-region widths used in Fig. 7 with a constant over-
layer dopant concentration of 1.0x 10'® cm~>. The most
noticeable feature is the pronounced “hump” in the GaAs
conduction band at narrower n-region widths. For the nar-
rowest, L =50 nm case denoted by the dash—dotted line in
Fig. 9, a sharp heterointerface confinement notch is formed
with a wide “hump” barrier that extends several hundred
nanometers into the GaAs. In this case, the barrier in the
GaAs should prevent the leaking of any one-dimensional
quantum wire states into the bulk substrate. As the
n-region width is increased, the GaAs barrier decreases
until, in the limit, the conduction band profile approaches
that of the far # side of an isolated p—n junction.’

It is of interest to verify that the quantum wire struc-
ture supports two-dimensionally confined electronic states.
To this end, the caiculated conduction band profile in a
region enclosing the potential “pocket” is used as the elec-
trostatic potential in the Schrodinger Hamiltonian, as dis-
cussed in Sec. III A. Presented in Fig. 10 are the lowest
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FIG. 10. Potenual vaniation perpendicular to the heterointerface (at the
center of a 100 nm wide n-type region) for the two-dimensional conduc-
tion band profile shown in Fig. 5. The insets show the wave functions for
the lowest two quantum wire states, that are confined at the GaAs side of
the heterointerface (the darker top portion of the mesh corresponds to the
AlGaAs overlayer).

energy quantum states sought for the system with a 100 am
n-region width and 1.0 10'® cm~* overlayer dopant con-
centration. The conduction band potential is plotted for a
slice through the center of the n-type region in a direction
perpendicular to the {100} surface. The lowest eigenen-
ergy, labeled by E| in Fig. 10, is at 11 meV referenced to
the semiclassical Fermi energy, which is denoted by the
dashed line at 0.0 eV. The subsequent excited states each
have a separation of about 12 meV associated with the
contribution of the lateral confinement. The left and right
insets in Fig. 10 show the full two-dimensional results for
the ground state and first excited state, respectively. The
Aly;Gag,As overlayer appears as the region-of higher
mesh density near the top of the inset figures and delineates
the heterointerface. The wave functions are concentrated
in the deep ‘“pocket” on the higher mobility semi-
insulating GaAs substrate side of the heterointerface.

It is clear from the insets of Fig. 10 that the first ex-
cited state corresponds to the first excited mode of the
lateral confinement potential induced by the p-n junctions.
The quantized level spacing for the lower eigenstates is
therefore controlled by the nature of the lateral confine-
ment. The nearly equal level spacing of the lowest states is
due to the parabolic-like shape of the lateral potential pro-
file of the 100 nm width n-region structure, as can be seen
in Fig. 7. The higher-energy states, however, also include
excited modes of the confinement perpendicular to the het-
erointerface. This is particularly true for narrow n-region
V-groove structures in which the magnitude of both con-
finement dimensions are of similar order. The large sepe-
ration of the lowest state above the conduction band min-
ima at the heterointerface, labeled by the dot in Fig. 10, is
attributed to both the lateral confinement energy and the
confinement energy perpendicular to the heterointerface.

The details of the amphoteric nature of the silicon dop-
ing near the intersection of the (100) and (111) surfaces
are not known. and are likely to be more complicated than
our model. This and possible compensation effects might
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F1G. 11. Variation of the lowest three quantum wire states with overlayer
dopant concentration and n-region width. The energies are referenced to
the conduction band minimum at the heterointerface (i.e.. the bottom of
the “pocket™). The negative sloping curves correspond (o independently
changing the width of the a-type region for a fixed 1.0% 10'* cm *7 over-
layer doping. The positive sioping curves correspond to independently
changing the overiayer doping for a fixed 150 nm wide n-type region.

tend to reduce the abruptness of the lateral p—»n junction,
which also would tend to reduce the energy level spacings.

The dependence of the eigenstates on both the over-
layer doping and the n-region width is presented in Figs. 11
and 12. Simultaneously shown in Fig. 11 are the depen-
dence of the lowest three bound state energies on the lat-
eral n-region width and the overlayer Si-doping concentra-
tion. The bottom axis corresponds to independently
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F1G. 12. Variation of the quantum wire state separations with overlayer
dopant concentration and A-region width. The sharply sioped curves cor-
respond to independently changing the width of the n-type region for &
fixed 1.0% 10'* cm = overlayer doping. The slightly sloped curves corre-
spond to independently changing the overiayer doping for a fixed 150 nm
wide n-type region. The solid and dashed lines are the separation between
the second and first siates and between the third and second states, re-
spectively.
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changing the overlayer Si-dopant concentration for a fixed
150 nm width ¥-groove tip. The top axis corresponds to
independently changing the lateral width of the ¥-groove
tip for a fixed overlayer dopant concentration of 1.0 X 104
cm . The energies on the ordinate are plotted relative to
the minimum of the conduction band profile at the hetero-
interface. 1.c., relative to the bottom of the potential weil,
denoted by EN". The ground state energy is lowered by
independently widening the n region and saturates at the
limiting value given by the heterointerface confinement. In
approaching the wide n-region limit, the one-dimensional
electron gas evolves into a two-dimensional electron gas,
which is manifest by the pronounced decrease in the level
spacing in Fig. 11. The change in behavior for narrow
widths, i.e., below 75 nm, seen in Fig. 11, occurs when the
magnitude of the lateral junction confinement is compara-
ble to that of the heterointerface confinement. Indepen-
dently increasing the overlayer dopant concentration has
several effects on the potential well; the confining well in
the direction perpendicular to the heterointerface becomes
“deeper”” and “thinner,” whereas the /ateral junction con-
finement becomes wider and more abrupt, with smaller
side depletion regions. Figure 11 shows that the net effect
of increased doping is to increase the ground state energy,
relative to the bottom of the quantum well, with only a
slight decrease in the energy level spacings. Simultaneously
plotted in Fig. 12 are the energy level separations for the
same parameters given in Fig. 11. The bottom and top axis
represent the effect of independently changing the over-
layer doping and independently changing the n-type region
width, respectively. The nearly equal separation of the sec-
ond mode from the first and the third mode from the sec-
ond is due to the parabolic shape of the lateral junction
confinement. When the lateral n-region width is increased,
the pronounced drop in the level spacing is observed,
whereas only a slight drop is observed for increased over-
layer doping. The n-region width is therefore the dominant
controlling parameter of the quantum wire energy level
spacing.

Control of the optical and transport properties of the
active wire region is of primary interest for eventual device
applications of this corrugated GaAs/AlGaAs heterojunc-
tion system. The previous results indicate that independent
control of the quantum confinement dimensions may be
obtained by the fabrication of gates on the corrugated sur-
face. In this section we also present the method and results
for our initial attempt to model the electrostatic potential
profile with the addition of Schottky gates.

A simple gate geometry is chosen such that each wall
of the ¥V groove has a Schottky gate. The gates on the
p-type {111} sidewalls stop 100 nm from the n-type {100}
V-groove tip. The center gate, along the {100}, extends
over the full n-region width. In these caiculations, the same
bias will be applied to the sidewall gates and the center gate
will be referenced to ground.

The Thomas-Fermi screening model for the electron
and hole concentrations, described in Sec. II, tacitly as-
sumes an equilibrium carrier distribution. This mode} is
valid for small perturbations from equilibrium, such that
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FIG. 13. Potential vanation perpendicular 1o the heterointerface (at the
center of a 100 nm wide n-type region. and 1.0% 10'* cm " Si overlayer
doping) for several different bias potentiais appiied to Schottky gates on
the V-groove sidewalls.

no appreciable hole concentration exists at the surface.
However, under the bias conditions necessary to obtain
control of the quantum wire, this charge model must be
modified to extend its range of validity. To this end we
assume two constant quasi-Fermi levels: one for electrons
referenced to the Fermi level in the bulk GaAs substrate,
and one for holes referenced to the Fermi level of the side-
wall metal gates.'” The electron and hole concentrations
are therefore calculated most accurately in the regions,
where they are the majority carrier, and least accurately in
the minority carrier regions, where their contribution to
the total charge density is least significant.

The boundary conditions on the corrugated AlGaAs
surface are modified to include the gate bias. The boundary
beneath the gates is modeled by Dirichlet conditions that
specify the potential as the sum of the equilibrium surface
pinned value plus the bias potential. Since the center gate is
referenced to ground, the boundary along the n-type region
remains pinned at the approximate midgap potential of 0.8
eV above the bulk quasi-Fermi level. The 100 nm exposed
surfaces between the gates is modeled by a linear drop in
the potential along the surface from the sidewall gates to
the center electrode. This somewhat ad hoc assumption is
justified because the overlayer is depleted of mobile carni-
ers, as seen in the previous results.

The vertical conduction band profile through the cen-
ter of the n region is plotted in Fig. 13 for five different
side-gate biases. The overlayer Si dopant concentration is
1.0% 10'* cm ~ and the n-region width is 100 nm. As be-
fore, increasing negative values of distance correspond to
positions deeper in the bulk GaAs substrate referenced to
the heterointerface. The quasi-Fermi level for electrons is
specified by the bulk GaAs Fermi level and is denoted by
the dashed line at 0.0 eV. Figure 13 demonstrates that,
with this gate geometry, increasing bias reduces the con-
finement width of the notch and only slightly depletes the
clectron gas. The increase of the “hump” in the GaAs is a
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FIG. 14. Lateral conduction band profiles for the same structure and biss
conditions, as shown 1n Fig. 13. Shown are the conduction bands st the
heterownterface parailel to the surface along the (100) and (111) plames.

feature that should further confine the electronic states to
the heterointerface.

The lateral p-n—p conduction band profile is shown in
Fig. 14 for the same structure and sidegate bias conditions.
Positions parallel to the heterointerface are referenced to
the center of the n region, and the quasi-Fermi level for
electrons is denoted by the dashed line at 0.0 eV: Increas-
ing sidegate bias narrows the lateral confinement dimen-
sion, which was previously shown to controi the quantum
wire level spacing.

These initial results show that control of the electronic
properties of the structure may be obtained by the addition
of lithographically defined gates on the surface. It is intu-
itively clear that better control of the lateral confinement
width can be achieved with only the sidegates and no cen-
ter electrode. It is difficult, however, to formulate well-
posed boundary conditions along the exposed surface with-
out a center reference electrode. The nature of the Poisson
equation requires Dirichlet, Neumann, or mixed boundary
conditions along the exposed surface, none of which are
simpie without compietely ad Aoc assumptions. It is also of
interest to form Ohmic.contacts to the two-dimensional
carriers in the structure, which should provide control of
the transport properties through reverse-biased p-n junc-
tions. Ohmic contacts also provide the interesting possibil-
ity of minority carrier injection into the quantum wire,
which may give rise to new device applications, since this is
an inherently bipolar structure. The model of an Ohmic
contact, however, must include direct control of the two-
dimensional carriers, which implies additional constraints
along the heterointerface. We are working on a better
model for an exposed surface, containing occupied surface
trap states under zero current bias conditions, and the de-
velopment of well-posed clectrostatic boundary conditions.

V. SUMMARY

We have reported on our method for modeling a novel
p-n-p quantum wire structure formed in a corrugated
GaAs/AlGaAs heterostructure. We solve the two-
dimensional Poisson equation, within a semiclassical
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Thomas—Fermu screening model. for the conducuion and
valence band profiles. The quantum contined electronic
states are subsequently obtained by solving the two-
dimensional Schrodinger equation using the previously
computed electrostatic potential.

We have demonstrated that it is feasible to realize a
bipolar quantum wire structure on a HEMT-compauble
corrugated GaAs/AlGaAs interface by exploiting the sur-
face onentation dependent amphoteric nature of Si doping.
These results indicate that the quantum wire level separa-
tions are controlled by the lateral confinement width, and
the parabolic-like shape of the lateral confinement poten-
tial gives rise to nearly equal level spacings. It was also
shown that the ground-state energy of the wire states can
be controlled by the vertical confinement width. Initial re-
suits demonstrate that the electromic properties of the
structure may be controlled by the addition of gates on the
corrugated surface. This structure has several possible ad-
vantages compared to sidewall etched or Schottky contact
electrostatically confined systems.'* The definition of the
n-region width is controlled by the anisotropic etch time
through an optically defined photoresist mask; ion-beam or
electron-beam lithography is not required to fabricate the
structure. This inherently bipolar heterostructure might be
used to inject minority carriers into the quantum wire from
the p regions, possibly leading to new device applications.
If the p-type and n-type regions are separately contacted,
by further nanolithography, the lateral confinement width
might be controlled by reverse biasing the p—n junctions
and the electron Fermi energy might be controlled via a
gate contact on the AlGaAs.
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APPENDIX A: FORMULATION OF THE POISSON
PROBLEM

1. Problem statement

The model structure is partitioned into regions, (1,
..., 1y, as shown in Fig. 15, defined by different mate-
rial parameters, such as Al mole fraction and Si-doping
concentration. We want to solve the two-dimensional Pois-
son equation on the whole domain Q=Q,UQ, - U,
The total boundary of domain 2 will be denoted by I' and
18 partitioned into three terms: [g for that part of I" that is
on the surface of the structure, i.c., the boundary on which
the Fermu level is surface pinned, I' for that part of [ on
which bulk charge neutrality conditions apply, and last ",
for the remainder of [ on which the normai electric field is
forced to zero. Bulk charge neutrality can also be specified
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FIG. 15. Schematic diagram of the caiculation domein. Domeins of dif-
ferent matenial composition are indicated by differest shades of grey and
Iabeled £2,~},. The buik substrate boundary is denoted by [, the surface
pianed boundary 1s denoted by I, and the side boundaries are denotad by
[ s The boundaries between adjacent materials (2, aad () is denoted by
[, In the quantum wire structure, the AlGaAs/GeAs hetervinterfacs
occurs along ', [ 5, and [, ,.

as zero-valued Neumann boundary conditions. We have
found that specifying essential boundary conditions at a
few points and zero-valued Neumana conditions on the
remainder of the bulk boundary works best, simce it pro-
vides a quick visual check of the solution for proper con-
vergence. The boundaries of each subregion are denoted by
.. The portion of I',, in common with another subdo-
main, [, is denoted by [, .. All the hetercinterfaces in ()
will therefcre occur along the I, , boundaries. The poten-
tial on the [, side of a heterointerface formed between
regions {1, and (3, is labeled ur_,, and likewise labeled
ur,__ on the opposite side. We will also define u=(E(xy)
— Ep)/kygT as the conduction band edge energy relative to
the Fermi energy in units of eV/kyT. We now specify the
zero of potential energy to correspond to the Fermi energy,
Eg=0. The problem to be solved can now be written as
follows:

Find:
u=u,Uuy - Uuy € H(N), (A1)
such that
V=B ey e, (A2)
€m€o
and _
U on el
Uy ={ ln on I,ely (A3)
ur, —A4pm, on ,,m<n,
and
Yu,+A,=0, [,el,, (A4)

where p(x,y)=—efn(r)—p(r)+ N3 —Np)] is the total
charge density used in Eq. (1) of Sec. II of the main text,
i, is the value of the potential set by the background
doping and the requirement of space charge neutrality, i,
=0.8 eV/kyT is the near midgap surface pinned potential,
and Au,,, = ur _ — ur__isthe conduction band disconti-
nuity at the heterointerface formed between regions (1,
and Q1,, and A, is the unit surface normal. The charge
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density term on the nght-hand side of the Poisson equation
will be denoted by /,, = f(u,,) and is given by the Fermi-
Dirac integral of order 1/2. The nonlinear nature of the
Potsson equation will be discussed later.

We will use the method of vanauons to formulate the
numencal problem. We first identify a total energy func-
tional as

n=§if
'n‘(ﬂ

3|, o

1 L
3 (—vum)-dﬂmi

a s 2
3 (uf, —lim)

+ 2

’a

+ li (u,-m‘.—urm—Au,,,_,,)Z].

m<n
We have used the penalty method to incorporate the linear
constraint boundary conditions, where a is a large penalty
factor that will be discussed later. We prefer the penalty
method to the Lagrange muitiplier method since it does
not increase the dimensionality of the resuiting linear sys-
tem. We now invoke the principle of stationarity of IT with
respect to the state variable u by evaluating 811=0. In the
calculus of variations, this is the minimization of the en-
ergy functional. We denote arbitrary variations in the state
variable, which satisfy the essential boundary conditions by
5. From the minimization we obtain

(AS)

SM=0=Y

f Vu,Vu,, dﬂ,,,}

Qm

-3 [ [ St dnm} + 3 {alur,
m q, m

—ig)8up }+ 2 {(ur, —ur,  —Aup,)

m<n
X (bur_ —Sur, )}. (A6)

The state variable, u,,, i3 subject to the boundary condi-
tions specified by Eqs. (A3) and (A4) above. The third
term on the nght-hand side is the penaity method imple-
mentation of the bulk charge neutrality conditions. These
essential boundary conditions could be implemented by Di-
richlet conditions with a corresponding reduction of the
number of unknowns. The solution to Eq. (AS) above is
unique and equivalent to the solution of the original prob-
lem.

2. Finite element formulation

The domain 1 is nonuniformly discretized with M
nodal points at locations r,, ry,..., Iy, for each of which is
defined an orthonormal giobal shape function, ¢,(r), such
that é,(r,) =4. ; In our calculations we use linear Chapeau
shape functions. The potential u is approximated by an
expansion in this basis, u(r)=Z2 ,u@(r)=N(r)"u,
where N(r) is the vector of M shape functions and u is the
vector of M potentials at each nodal point. The gradient of
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the potenual can be likewise approximated by the expan-
sion Vu(r) =2 ,uVé(r)=B(r) u, where B(r) is the
12X M matnx of the gradients of the M global shape func-
tions. The same approximations are made for the potential
vanations, Su(r)=6u’+N’ and VSu=~6u’-B’. Using
these expansions. the variational statement of the Poisson
equation can be wntten as

SM=0= 2. 5u,,,’(f Bf(r)n(r)dn,,)n.
m Q,

-—6u.r( fn N’(r)-f(u,.)dn..)}

+ 2 {abug -up }— T {adug in}
&rm T ’ l - 1 .rM
o) |20 V()

Sur S 1-1 1
6Ilr T 1
m<n
We now define ey as a M X 1 vector containing a 1.in each
position corresponding to I',,, and zero eisewhere. We also
define the M X M global matrix l(',-u and the M1 glo-
bal vector P'ru as follows:

"2

m<n

Au,, .

&rl' &rl.ﬂ
L ASa
K r"'ﬁ=“ru(—l 1 )’ ( )
[
, Uroaf 1 -
P ru-=ur,__(— 1). (A8b)

We now define the following M X M matrix, K, M X |
vector f,,(u,,), and M X | vector P, as

x_={J. B7(r)B(r)dQ,, +ae,f er
0, m
+a 2 Kr . (A9)
fm(um)=|J- Nr(l‘)f(ll..)dﬂ,.]. (A10)
nn

P,=aet d,+a 2 P'r . (All)

The linear constraint boundary conditions are incorpo-
rated into the stiffness matrix, K, by the penaity method.
The penalty, a, must be several orders of magnitude larger
than the largest diagonal element of the first term in Eq.
(A9). Although the final solution will not depend upon the
actual value of a, it must be sufficiently large to force the
essential boundary conditions of the system.

We can simplify the problem by defining the giobal
matrix K, giobal vector f(u,,), and global vector P, such
that 2,5ul K, ul=56u"Kn, Z,5ut, (u,)=6a"F(u), and
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S, 5ulP, =56u’P. The finite element formulation for the
Poisson equation can now be written as the following sys-
tem of equations:

Ku=f(u)+P. (A12)

3. Newton—-Raphson formulation

The charge density term in Eq. (A10), f(u), is a func-
tion of the potential, u, through the semiclassical Thomas—
Fermi screening model for the carner density, as discussed
in Sec. II of the main text, n(u)=NZF,,,(—u), and a
similar term is obtained for the hole concentration.
N.=2 (2zkgTm®/h*)*” is the effective conduction band
density of states and F,,; is the Fermi~Dirac integral of
order ;. We use the Newton-Raphson iteration method to
solve the nonlinear system of equations. If we let n denote
the iteration count, then we can represent the solution of
the n+ 1 iteration by

u*t!'=u"+Au", (A13)

where An” represents the change in the solution between
iterations. The noniinear function f can be approximated
by a first-order Taylor series expansion:

f(u"*!) =f(n") +3M(u")Au", (Al4)

where df(u") is the partial derivative of f with respect to u
at the nth iteration and is given by the Fermi-Dirac inte-
gral of order —1.'* We substitute this expansion for f into
the system of equations as follows:

Ku"t'=f(u"*")+P, (A15)
Ku"+K Au"=f(u") +df(u")Au"+P, (A16)
(K—adf(u"))An"=1(u") +P—Ku". (ALT)

The problem has now been reduced to a system of linear
equations in Au at each iteration. We use the bulk value of
the potential given by the Si-dopant concentration and the
charge neutrality condition in each domain 2., as an initial
guess, and then solve the linear system for Au" and update
the solution u until the mean-squared difference between
iterations is below a specified tolerance, typically 1 10~°.
A standard L/U decomposition method is used to soive
the sparse linear system using an efficient skyline storage
technique.

APPENDIX B: FORMULATION OF THE SCHRODINGER
PROBLEM

1. Problem statement

The solution domain for the Schradinger equation is
described in the same manner as the Poisson domain. The
quantum mechanical problem of soiving Eq. (3) in Sec. 11
of the main text, can be stated as follows:

Find:

v=w,Udy - Udye H(Q), (B1)
such that
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ﬁz
— 5 V(X)) + [V(xp) —ebpm(xp) | = Ebp(xp),

2m?*
(B2)
and
0, on[,e ru | g
U= Yr, on[,,m<n, (B3)
or
V¢, 4,=0, on [, e[Ul;
and
;1;,,,=¢v,-m, on I,..m<n, (B4)

where V(x,y) includes the external potentials and ¢, (x.»)
=u,(x,y) XkgT is the electrostatic potential obtained
from Poisson’s equation and #; is the unit boundary nor-
mal. As indicated above, either zero-valued essential or
zero-valued Neumann boundary conditions can be used to
specify the decay of the wave function.

We will use the method of variations, as we did with
the Poisson equation, to formulate the numerical method.
We identify the total functional as

1y # :
L (e

+3 l fn. %(V.—w.wi.dﬂ.l

=2

-3 {EJ-QM %wﬁ,dn,,IJr z ';w’f_l

"2z

m<n

(BS)

a N
E (wrm.n—wrn.m)-}'

The minimization of the total functional yields

SM=0= 2.

m

ﬁZ
f — VU, V50, dﬂ,,,‘
n

.
. 2m

.3

m

f (V= ebr) ¥ St d
a,,

-y [Ef U S dL,,
m 0,

+ 2 {ave 6¥r )

+ 2 {a(w rm.u—w rn.m) (Bd’ rm.l—a‘ rn.n)}'

m<n (36)
The state variable, ¢, is also subject to the boundary con-
ditions specified by Eq. (B3) or (B4). The zero-valued
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essential boundary conditions are implemented above by
the penaity method, but could aiso be implemented by
zero-valued Dirichlet conditions with a corresponding re-
duction of the number of unknowns. The last term in Eq.
(BS) implements the continuity of the wave function
across the heterointerface by the penaity method. The
Schrodinger solution is therefore compatible with the Pois-
son solution of the electrostatic potential. The solution to
Eq. (B6) avove is unique and equivalent to the solution of
the onginal problem stated in Eqs. (B1)-(B4).

_J

+2

m

®
5n=o=§ “"r(ﬁf fﬂmnf(r)s(r)dn,,)w_

_y {w_’(s f N’(r)-N(r)dﬂ..)lﬁ-
m Q,

Using similar definitions as those in the Poissc;n deveiop-
ment in Appendix A, this set of linear equations can be
reduced to a generalized eigenvalue problem,

Ay=EBy. (B8)

Because we are only interested in the lowest bound
states of the system, we need not solve for all of the ei-
genenergies and wave functions. We use the subspace iter-
ation method with efficient skyline storage sparse matrix
methods to solve for the lowest ten bound states.
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2. Finite element formuiation

The domain, {2, for the Schriodinger problem uses the
same generalized discretization scheme developed for the
Poisson problem and is schematically shown in Fig. 15.
Using linear Chapeau basis functions we expand ¥(r) and
8¢(r) in the finite element approximations: ¥(r)
=N(r) ¢, Vo(r)=B(r) ¢, 5d(r)=5¢"-N(r)’, and
Vsu(r) =8¢” -B(r)”. With these expansions, the varia-
tional formulation of the problem becomes
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Bistable saturation in coupled quantum-dot cells
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Model quantum dot cells are investigated as potential building blocks for quantum cellular
automata architectures. Each cell holds a few electrons and interacts Coulombically with nearby
cells. In acceptable cell designs, the charge density tends to align along one of two cell axes.
Thus, a cell “polarization,” which can be used to encode binary information, is defined. The
polarization of a cell is affected in a very nonlinear manner by the polarization of its neighbors.
This interaction is quantified by calculating a cell—cell response function. Effects of nonzero
temperature on the response of a model cell are investigated. The effects of multiple neighbors
on a cell are examined and programmable logic gate structures based on these ideas are

discussed.

I. INTRODUCTION

For many years, the size of microelectronic devices has
been shrinking, and this has led to faster, denser circuits.
Despite these improvements, the basic computing para-
digm has remained virtually unchanged because device op-
eration has been largely unaitered, apart from rescaling.
There is now much interest in extremely dense device ar-
rays forming locally interconnected architectures like cel-
lular automata (CA)' and cellular neural networks.? Such
architectures could lead to changes in device structure of a
less evolutionary and more revolutionary nature.

At the same time, many researchers have been inves-
tigating ways to use quantum structures as electronic de-
vices. In the course of such research, a great deal has been
learned about the behavior of electrons in very small struc-
tures. Because of the size of the structures involved, an
outstanding difficulty is providing a scheme in which one
of these quantum devices, which typically carry nanoam-
peres of current, could be used to drive several other sim-
ilar devices. In addition, the capacitance of the wires
needed to interconnect such structures would tend to dom-
inate their behavior. Therefore, locally connected architec-
tures like CA’s may be an attractive paradigm for imple-
menting quantum device architectures.’

CA architectures composed of nanometer-scaled quan-
tum devices that are coupled through the Coulomb inter-
action (no current flows between devices) have been pro-
posed by the authors elsewhere.*® We call such
architectures quantum cellular automata (QCA). The
QCA contains an array of quantum-dot cells that are con-
nected locally by the interactions of the electrons contained
within them. The quantum state of each multidot cell en-
codes the “logical” state of that cell. For this reason, each
cell should ideally have exactly two stable states, since this
will allow direct encoding of binary information.” Such
two-state cells also need to exhibit bistable saturation to
ensure that noise or small geometnc variations do not over-
whelm the signal.

To function as a CA, the state of each cell should be
dependent on the states of its neighbors. In this paper, we
compare the cellcell coupling and bistable saturation of
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several different quantum cell designs that might form the
basis of quantum cellular automata. All these designs have
certain characteristics in common: a few (typically four or
five) quantum dots connected by coupling coefficients and
populated by a total of one to three electrons. In these cells
the required interaction between neighbors is caused by the
mutual Coulombic repuision of the electrons contained in
the cells. We use a very simple model of each cell, neglect-
ing details relating to exactly how the quantum dot struc-
tures are realized, but focusing on the charge distribution
among the dots and the Coulomb coupling between cells.
We define a cell—cell response function that characterizes
the interaction between neighboring cells.

In the next section we will introduce the theoretical
model of the “standard cell,” on which much of the work
of Refs. 4-6 is based. It is the most thoroughly investigated
cell design because it displays strong bistable saturation.
We discuss the model Hamiltonian used for the cell, the
method used to calculate the cell-cell response function,
and the effects of nonzero temperature. In Sec. III we com-
pare various other cell designs. Among these are different
geometric arrangements of the quantum dots, one and
three electron cells, and continuous quantum dashes. In
Sec. IV, we extend our resuits to include the effects of
multipie neighbors on a cell. We show that such effects in
a system with three nearest neighbors can be thought of as
majority voting logic. We show how this behavior can be
used to implement programmable logic gates, and then
show other possible implementations for dedicated AND
and OR gates. A discussion and conclusion follow in Sec.
V.

Il. A MODEL QUANTUM CELL

The model “standard cell” design, shown schemati-
cally in Fig. 1(a), consists of five quantum dots located at
the corners and the center of a square. Tunneling occurs
between the central site and all four of the outer sites
(near-neighbor tunneling), and to a lesser degree between
neighboring outer sites (next-near-neighbor tunneling). It
is assumed that the potential barriers between cells are
high enough to completely suppress intercellular tunneling.
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FIG. 1. Schemauc of the basic five-site cell. (a) The geometry of the cell.
The tunneling energy between the middle site and an outer site is desig-
nated by ¢, while ¢ is the tunneling energy between two outer sites. (b)
Coulomixc repuision causes the electrons to occupy antipodal sites within
the ceil. These two bistable states result in cell polarizations of P= +1
and P= —1 [see Eq. (1))

The cell is occupied by a total of two electrons hopping
among the five sites; these electrons tend to occupy antip-
odal outer sites within the cell due to their mutual eiectro-
static repulsion [see Fig. 1(b)].

We will show that these two stable states are degener-
ate in an isolated cell, but an electrostatic perturbation in
the cell’s environment (such as that caused by neighboring
cells) splits the degeneracy and causes one of these config-
urations to become the cell ground state. Altering the per-
turbation causes the cell to switch between the states in an
abrupt and nonlinear manner. This very desirable bistable
saturation behavior is due to a combination of quantum
confinement, Coulombic repulsion, and the discreteness of
electronic charge.

A. Cell polarization

Since Coulomb repuision causes the electrons to oc-
cupy antipodal sites, the ground state charge density may
have the electrons aligned along one of the two diagonali
axes shown in Fig. 1(b). We therefore define the cell po-
larization, a quantity that measures the extent to which the
charge density is aligned along one of these axes. The po-
larization is defined as

(pr1+p3) —(p2+ps)
Po+pr1+ P21+ Py +Ps’

where p, denotes the electron probability density at site i.
As in Fig. 1(b), electrons completely localized on sites |
and 3 will result in P=1, while electrons on sites 2 and 4
yield P= —1. An isolated cell would have a ground state
that is a linear combination of these two states, and would
therefore have a net polarization of zero.?

P

()

B. Model ceil Hamiltonian
We employ a simple model of the quantum cell that
uses a tight-binding Hubbard-type Hamiltonian. We rep-
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resent the quantum dots as sites. ignonng any degrees of
freedom internal to the dot. The Hamiltonian for a single
1solated cell can be written as

HLC“ V Ef\ n .+ 2 L /(a:,lrv"l r""a'.a'al.a)
W RN
) d’.- e ",.;:;.U’ 2 VR,—RJI

Here g, , is the annihilation operator that destroys a parti-
cle at site / (/=0,1,2,3,4) with spin ¢. The number opera-
tor for site i and spin o is represented by n,,. Eq is the
on-site energy for each dot, ¢;; is the energy associated with
tunneling between dots / and j, and Ej is the on-site charg-
ing energy (the purely Coulombic cost for two electrons of
opposite spin to occupy the same dot). The last term in (2)
represents the Coulombic potential energy due to electrons
on the ith and jth sites at positions R; and R;. ¥, is an
electrostatic parameter fixed by fundamental constants and
the dielectric constant of the material used to form the
cells.

For the cell described above we use values of the pa-
rameters in the Hamiltonian based on a simple, experimen-
tally reasonable model. We take E, to be the ground state
energy of a circular quantum dot of diameter 10 nm hold-
ing an electron with effective mass m*=0.067 m,. The
near-neighbor distance between dot centers, g, is taken to
be 20 nm. The Coulomb coupling strength, ¥, is calcu-
lated for a material with a dielectric constant of 10, and E,,
is taken to be ¥/ ( D/3). The coupling energy between an
outer dot and the central dot is t=t,;=0.3 meV (i
=1,2,3,4}, and the next-near-neighbor coupling connect-
ing the outer dots, ¢, is taken to be /10 (consistent with
one-dimensional calculations for a barrier height of 150
meV).!0

The spins of the two electrons in the cell can be either
parallel or antiparallel. We consider here the case of elec-
trons with antiparallel spins, since that is the ground state
of the cell. Calculations with electrons having parallel spins
yield qualitatively very similar resuits.

To maintain charge neutrality in the cell, a fixed pos-
itive charge p, corresponding to a charge of (2/5)e, is also
assumed on each site. In a single isolated cell this just
renormalizes E,, but the fixed charge is important when
simulating systems with more than one cell. If each cell
had a net negative charge, then electrons near the edges of
a group of cells would respond mostly to the net negative
charge of the other cells. In a semiconductor realization,
the fixed positive charge would likely be provided by ion-
ized donor impurities and charge on the surface of metal
gates.

The interaction of a cell with its electrostatic environ-
ment (including neighboring cells) is contained in a sec-
ond Hamiltonian term, which we write as Hoor . We solve
the time-independent Schrodinger equation for the nth
eigenstate of the cell, |W¥,), under the influence of the
neighboring cells:

(H' + =Y

nter

)W) =E,|¥,). (3)
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FIG. 2. Cell-cell response function for the basic five-site cells shown in
the inset This shows thc polarization P, induced in cell | by the fixed
polarization of its neighbor, P,. The solid line corresponds to antiparallel
spins, and the dotted line to parallel spins. The two are nearly degenerate,
especially for significantly large values of P,.

The total Hamiltonian is diagonalized directly in the basis
of two-particle site kets. We calculate the single-particle
density, p;, from the two-particle ground-state wave func-
tion |¥,) by finding the expectation value of the number

operator for site i:

pi= 2 (¥o|m,| ¥o). (4)

We can then use these densities to caiculate the cell polar-
ization P as in Bq. (1).

C. Caiculsating the celi-cell response function

To be useful in cellular automata-type architectures,
the state of a cell must be strongly influenced by the states
of neighboring cells. To demonstrate how one of these cells
is influenced by the state of its neighbor, consider the two
cells shown in the inset to Fig. 2. The cell centers are
separated by a distance of 3a=60 nm. We assume cell 2
has a given polarization P, and that the electron density on
the central site is negligible. This means that the charge
density is completely determined by the cell polarization.
For the corresponding clectron density on each site of cell
2, we calculate the electrostatic potential at each site of cell
1. This additional potential energy is then included in the
Hamiltonian for cell 1. Thus the perturbing Hamiltonian
component is

HA -Hg2= Y Vg, (5)
iecell 10
where
(pt—p)
2O Y Ll (6)

! kstm, j 'Rkj—Rm,tl
is the potential at site i in cell m due to the charges in all
other cells. We denote the position of site j in cell k as
Ry, and the electron density at site j in cell k as p}. The
total Hamiltonian for cell 1 is then

o =H7' + B (7)

The two-electron time-independent Schridinger equation
is solved using this Hamiltonian for a series of values of P,
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FIG. ). The lowest four cigenstate energics of cell 1 induced by the
polarization of ceil 2. The insets show that the lowest two energy states
always correspond to the same polarization direction, as in the driver.

Slight exchange splitting effects between spatially symmetric and spatially
antisymmetric states breaks the fourfold degeneracy for very small values
of Py.

in the range [—1,+1}. The ground state polarization of
cell 1, P,, is then computed for each value of P,, as de-
scribed in the previous section. Thus, we can plot the in-
duced polarization of cell 1 as a function of the polasiza-
tion of cell 2. This function P,(P,), which we call the
cell-cell response function, is one messuse of how well a
cell will operate in a quantum cellular autematon architec-
ture.

Figure 2 shows the cellcell response function for the
standard cell. The highly nonlinear nature of the response
indicates that a small polarization in cell 2 causes a very
strong polarization in its neighbor, cell 1. The figure also
shows that the polarization of cell | sarurates very quickly
to a value of + 1 or — 1. This bistable saturation is the basis
of the quantum cellular automata, since it*means thet we
can encode bit information using the cell polarization. We
assign the bit value of 1 to the P=+1 state and the bit
value O to the P= — 1 state. Since the cell is almost always
in a highly polarized state (| P| ax 1), the state of the cell
will be indeterminate only if the electrostatic environment
due to other cells is perfectly symmetnic.

Figure 3 shows the lowest four cigenenergies of cell !
as a function of the polarization of cell 2. This shows that
the perturbation due to the polarization of cel! 2 quickly
separates the states of opposite polarization. For a com-
pletely polarized standard cell, the excitation energy from
the ground state to the first excited state with opposite
polarization is about 0.8 meV. This corresponds (0 a tem-
perature of about 9 K.

The abruptness of the cellcell response function de-
pends on the ratio of the tunneling energy, 7 in Eq. (2), to
the Coulomb energy for electrons on neighboring sites. The
magnitude of the tunneling energy depends exponentially
on both the distance between dots and the height of the
potential barrier between them. Figure 4 shows the cell-
cell response function for different values of the tunneling
energy (. The switching becomes more abrupt as ¢ de-
creases. Of course, if ¢ goes to zero, the tunneling would be
completely suppressed and no switching would occur. Ex-
tremely small values of ¢+ would similarly slow the switch-
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FIG. 4. The cell—<ell response function of the basic five-site cell for var-
ious values of the parameter ¢ in Eq. (2) (after Ref. 4). The induced
polarization in cell | is plotted as a function of the polarization of its
neighbor, cell 2. The curves correspond to t=0.2 meV (solid line), r=0.3
meV (dotted line), 1=0.5 meV (dashed line), and ¢=0.7 meV (dot-
dashed line). Note the horizontal axis only shows P, in the range [—0.1,
+0.1).

ing time. For 1=0.3 meV, the standard cell value, we es-
timate the tunneling time as #/r=2 ps.

D. Nonzero temperature celi-cell response

We extend the caiculation of the cellcell response
function 10 nonzero temperatures by calculating the ther-
mal expectation value of the electron density at each site of
the cell,

zazn(\pnl’ii.al v, e~ Ew/ kD)
3,6 B/ sl . (8)

pi= ((ﬁl)) =

Evaluating the thermal average requires knowledge of the
excited states of the cell as well as the ground states. Using
the results of Eq. (8). the polarization of the cell can be
calculated as before using Eq. (1). The results of such a
calcuiation for the standard cell (with the next-near-
neighbor coupling ' =0) are shown in Fig. 5. The curve
for T=0 is the same as in Fig. 2. The nonlinearity of the
response degrades as the temperature increases. For tem-
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FI1G. S The cell—ell response function for the standard cell with ' =0 at
vanous temperatures. The response degrades as temperature increases.
Above 4.2 K. the response would be unacceptable for use in a QCA. This
maximum operating temperature 1 highly dependent on the physical size
of the celi; molecule-sized ceils would behave in a satisfactory manner up
10 room temperature.
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peratures up to 4.2 K. the response 1s good. but for higher
temperatures it would probably be unacceptable for use in
a QCA.

Note that this maximum operating temperature will
increase as the size of the ceil decreases. Thus, although a
20 nm design rule requires cryogenic temperatures for
satisfactory operation, the de:ign scales to smaller sizes
easily and a much smaller, possibly macromolecular,
implementation'' would work at room temperature.

lil. ALTERNATIVE QUANTUM CELLS

While the cell described above has demonstrated an
excellent cell—cell response, there is no reason to discount
other possible cell designs. Slight modifications to this cell
give rise to a family of similar cells whose behavior can
provide insight into the nature of the system.

In looking for other model cells, there are several ap-
proaches we can take. The most obvious of these is to alter
the number of sites and their geometric arrangement. Al-
ternatively, the cell occupation can be altered. Finally, tun-
neling between the intracellular sites can be increased, de-
creased, or effectively eliminated by varying the potential
barriers between the sites.

A. Four quantum celis

In this section we will investigate the cell—cell response
of four different quantum cells. While these four are rep-
resentative of the sort of cells one might consider, they in
no way exhaust the study of new cell designs.

The first cell, included mainly as a standard by which
to judge the others, is the original cell described above with
t=0.3 meV. This will be called cell A. Next will be the
same cell with no tunneling between the outer neighbors
(¢'=0). We will refer to this as cell B. Cell C omits the
presence of the central site and allows tunneling only be-
tween the four outer sites. Finally, cell D inhibits tunneling
even further, allowing it only between sites 1 and 2 and
between sites 3 and 4. Schematic diagrams of these four
cell designs are shown in Fig. 6(a).

In a semiconductor realization of these cells, the min-
imum spacing between nearest-neighbor sites will be lim-
ited by the fabrication technology. For this reason, these
cells are designed with a constant 20 nm design rule (the
nearest neighbors in each cell are 20 nm apart). While this
makes cells C and D smaller, it is the most physically
reasonable way to compare their operation. The spacing
between interacting cells is set at three times the near-
neighbor dot spacing.

It is possible to consider cell B as an approximation to
cell A that neglects tunneling between outer neighbors. In
reality there will always be a certain amount of tunneling
between outer sites, but this tunneling can be made arbi-
trarily small by selectively increasing the potential barriers
between the outer sites. The same increase in potential
barriers would be needed to suppress horizontal tunneling
in ceil D.

Figure 6(b) shows the cell—ell response functions for
these four cells. This figure shows that cells A and B have
very similar responses, and both are superior to cells C and
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FIG. 6. Four geometric variations on the simple model quantum cell. (a)
Schematic diagrams of the four cells. Cells C and D occupy less area, but
all four cells are drawn with the same minimum spacing between neigh-
bors. Cells B and D will require potential variation between the sites to
selectively inhibit tunneling. (b) The cellcell response function for each
of these cell designs. Cell B has the best response, but the improvement
over A is small

D. Thus, elimination of the central site as in cells C and D
degrades the response. This leads us back to the five-site
cell we originally considered. Since the complete suppres-
sion of next-near-neighbor coupling as in cell B might in-
troduce additional fabrication difficulty with little improve-
ment in the cell response, cell A may be the most practical
of these four cell designs.

B. One- and three-electron cells

As an alternative to changing the geometry of the cell,
we can also alter the electron occupancy. Figure 7 shows
the cellcell response function for cell A occupied by a
single electron, and Fig. 8 shows the response for the same
cell with three electrons (two parallel spins, one antipar-
allel). These nearly linear response functions never become
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FIG. 7. The cell-cell response function for the basic five-site cell occupied
by a single electron. The weak response indicates that such a cell is
unsuitable as the basis of 3 QCA.
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FIG. 8. Cell-cell respouse function for the basic five-eite cell cocupied by
three electrons. Such s cell is also unacoeptable as the basis of s QCA.

strongly polarized, even for fully polarized neighbors. This
mdmteathatmhcdbwouldpetfommypoody-the

basis of a quantum cellular automaton.?

C. Quantum dashes and double wells

Proposals have been made for one-clectron “quantum
dash” cells that appear qualitatively similes to the cells we
have discussed here.’’ In this section we-investigats: the
cell-cell response function of single-cliihion quantem
dashes and compare this t0 a very similas double quantem
well to show bow important the discretenssnef elestronic
charge is to the nonlinearity of the respomse fanctions seen
in the previous sections.

Since these cells are of a more spatially coatinuous
nature than cells previously considered, the site represen-
tation is no longer useful. Each cell will be modeled 28 a
one-dimensionai hard-walled square well of width 30 am.
Themadhmmnudbyndmﬂu,
dimensions are similar to those of the cells tbove.
We use the finite clement method to solve the single-
clectron time-independent Schridinger equation for each
one-electron cell. The geometry used to calculate the cell-
cell response function is shown schematically in Fig. 9(a).

Since these cells have only a single axis along which to
distribute the electronic charge, a new definition of polar-
ization must be introduced. The new defimition, which
takes into account the continuous nature of the probability
density, is
1% 12 p(x)dx— [ p(x)dx

[op(x)dx

Because of its continuous nature, the charge density in the
“driver” cell is no longer uniquely determined by specify-
ing the cell polarization. We therefore fix the charge den-
sity to be constant in each haif of the driver cell

The cell—cell response function calculated for such a
system is shown in Fig. 9(b). As this figure shows, the
response is quite linear, and cell 1 is virtually unpolarized,
even for a fully polarized neighbor. The electron probabil-
ity density as a function of position for cell 1 with a fully
polarized neighbor (P;=1) is shown in Fig. 9(c). The
probability density is nearly symmetric about the center of
the cell as we would expect for such a small polarization.

9
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FIG. 9 The “quantum dash™ as 8 QCA ceil. (a) A schemetic diagram of
the cellular arrangement. The length and spacing 18 umular to that of the
basic Ave-mte cell in Fig. 1(a). Each cell is modeled as 2 one-damennonal
infinite square well. The cell-cell response 8 shown i (b). Note that the
vertical axms only shows P; over the range [—0.1.4+0.1). (c) The ome-
dimensional charge deasty = cell 2 for a fully polarzed aeaghbor
(P, =1). The searly symmetric charge density yields s very low polas-
ization.

A related cell. the double well, is shown schematically
in Fig. 10(a). It is a quantum well of the same dimensions
as in Fig. 9(a), but the potential in the muddle third of the
well has been raised by 150 meV. This cell is also very
similar to half of cell D from the last section, so we would
expect its response to be much better than that of the sim-
ple quantum dash.

The caiculated response, shown in Fig. 10(b), 1s in-
deed much better than that of Fig. 9(b). Its nonlineanty
and saturation properties are very similar to those of cells
C and D in Fig. 6(b). This response shows that one-
electron cells can be used to provide the required nonlinear
response, but it is aiso possible to view each pair of these
cells as a single two-electron cell, which becomes geomet-
rically very similar to cell D of Fig. 6(a).

The fact that such a seemingly small change in the
nature of the cell should cause such a profound change in
the cellcell response function is linked to the fact that
electron charge is discrete 1n regions surrounded by high
potential barriers. That is to say, the expectation value of
the number operator approaches an integer value as the
region becomes more and more isolated by the potential
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F1G. 10. The double well as 8 QCA cell. (3) A schematc dingram of the
cellular srangement. The sotal dimenssons are identical ®0 these of Fig. §.
The suddie thard of each cell comtasns s | 50 meV barmier 10 nalste the top
and botsom of the cell. (b) The celi-ceil response fumotzcn flor such aa
arTangement. Note thet the vertical axs now shows P, over the range
[—1.0,+ 1.0} (c) The one-dimensional charge donsity = call 2 far s fully
polarised neighbor (7, =1). The highly ssymmetric charge dansity ro-
salts in a cell that 1 slmost compietely polanasd.

barriers surrounding it.'* Therefore. almost the enure
wavefunction will become localized in one-balf of the cell if
a small asymmetry 1n the electrostatic environment 18 in-
troduced. This fact 18 demonstrated 1n Fig. 10(c), which
shows nearly all the charge density on the nght half of the
cell. Since there 13 no barner in the muddle of the quantum
dash to isolate the top and bottom of the cell, no such
localization behavior is seen there, and the charge density
is always nearly symmetric about the center of the well.

IV. MULTIPLE NEIGHBOR INTERACTIONS

Thus far, we have only considered the interaction be-
tween a cell and a single neighbonng cell. The natural
extension of this is to investigate the cffects of multiple
neighbors on the state of a cell. Since this implies consid-
ering a system that contains several cells and therefore
several electrons. we cannot use the direct solution method
described earlier for tresung a single cell. For the analys:s
of such systems, we treat the physics within each cell as
before, including exchange and correlation effects exactly.
The intercellular interaction is treated seif-consistently us-
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FIG. 11. Majority voting logic. The states of the center and right cells are
always the same as the majority of the three fixed neighbors. The cells
with heavy borders have fixed charge densities. These are not schematic
diagrars; they are the actual results of the ICHA solution of the ground
state charge densities in this system. The diameter of each dot is propor-
tional to the charge density on that site.

ing a Hartree approximation. This method, called the In-
tercellular Hartree Approximation (ICHA) is detailed in
Refs. 5 and 6.

Figure 11 shows an arrangement of standard celis,
such that one cell has multiple neighbors. The charge den-
sities of the cells on the top, left, and bottom are fixed,
while those of the middle and right cells are free to react to
the fixed charge. In an actual QCA, the states of the neigh-
bors would not be fixed; they would be driven by the re-
sults of previous calculations or come from inputs at the
edge of the QCA.

In the specific state shown in Fig. 11, two of the fixed
neighbors are in the “one” state, and the other is in the
“zero” state. When the ICHA is used to determine the
ground state of this system, we find that the states of the
center and right cells match the state of the majority of the
fixed neighbors. We refer to this feature of the cell behav-
ior, which is true for aill combinations of the three inputs,
as majority voting logic. Note that Figs. 11~-13 are not sche-
matic, but plots of the self-consistent electron density on
each site. The radius of each dot is proportional to the
single-electron density at that site.
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FIG. 12. The programmable AND/OR gate. The program line is set to
one in each sysiem, 3o the gate is displaying OR logic. All four combi-
nations of the nonprogram line inputs are shown. The cells with heavy
borders have fixed charge densities. Any one of the three inputs could be
the program line; the left cell is not special. These are not schematic
diagrams; they are the actual resuits of the ICHA solution of the ground
state charge densities in each system. The diameter of each dot is propor-
tional to the charge density on that site.
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FIG. 13. The nonprogrammable AND gate. All four combinations of the
inputs are shown. The celis with heavy borders have fixed charge densi-
ties, while those with dotted borders are geometrically biased toward zero
as shown in the inset. The bias is sufficient 10 decreass the on-site energy
of the affected sites by 1%. Note that the output only equals one if both
of the inputs are also one. These are not schematic diagrams; they are the
actual ICHA results of the ground state charpe densitics in each system.
The diameter of cach dot is proportional to the charge density on that site.

While majority voting logic behavior is valuable by
itself, its potential functionality is shown by a particular
interpretation of the three inputs. In Fig. 12, we have sin-
gled out one of the three and called it the program signal.
Note that any one of the three neighbore could serve as the
program signal, but the one case we are showing (with the
program line coming in from the left) is sufficient for il-
lustration purposes. The four systems shown include all
possible combinations of signals on the two nonprogram
lines. Since all four systems in Fig. 12 show the program
line in the “one” state, the central cell can only be zero if
the other two inputs are both zerc. Thus the system real-
izes the truth table of the OR operation. Likewise, if the
program signal is zero, the result is zero unless both of the
other inputs are one. This is a realization of the AND
operation.

By interpreting any one of the inputs as a program line,
we have implemented a programmable AND/OR gate.
The nature of this gate (AND versus OR) is defined by the
state of the program line, and the other two inputs are
applied to the gate thus defined.

The fact that the rightmost cell always matches the
central cell means that the result of this calculation can be
propagated away from the gate, down a QCA “wire,”!*
and eventually serve as the input to subsequent gates. It is
necessary to distinguish between driving neighbors and
driven neighbors in this system. Since the rightmost cell is
free to react to the states of its neighbors, it is & driven
neighbor. Its state will always match that of the central
cell, so only the three driving neighbors are involved in the
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majority voting. Of course, once the signal is propagated
away from this gate, the outgoing cells are being driven
and can be used as driving neighbors for subsequent gates.

A dedicated, nonprogrammable implementation of the
AND gate is shown in Fig. 13. This system has only two
driving inputs: there is no program signal. The role previ-
ously played by the program signal, biasing the central cell
S0 it can only be in the one state if both of its neighbors are,
15 performed by slightly enlarging the two quantum dots on
sites 1 and 3 in the central cell.'® This means that the
ground state of the isolated cell is no longer an unpolarized
state; the cell is biased toward the zero state and can only
be persuacded to enter the one state if both of its driving
neighbors are one. Again, the signal propagates away to
the right ard can be used to drive subsequent gates. A
dedicated OR gate can similarly be implemented by enlarg-
ing sites 2 and 4, biasing the cell toward the one state. It
will only be in the zero state if both of its driving neighbors
are also zeros.

V. DISCUSSION

With the above resuits, we have demonstrated several
quantum-cot cells suitable for implementing a quantum
cellular automata architecture. Examination of the cell-
cell response function shows that for appropriate cell de-
signs, the state of a cell is influenced very strongly by the
state of its neighbors. The highly nonlinear response of the
cell suggests that a signal that has become degraded by
noise will be restored to full polarization by subsequent
cells in the array.!® In this way, the bistable saturation of
the quantum cell is analogous to the gain in a conventional
digital device.

We have assumed throughout that the many electron
system is in its ground state. In general, a system will start
in the ground state and then be driven into an excited state
by externally changing the states of input cells near the
edge of a QCA array. Inelastic processes, which are usually
very detrimental to the operation of quantum devices, then
drive the system back to a new ground state corresponding
10 the new inputs. The details of the temporal evolution of
the many-electron system as it relaxes to its ground state
are very complicated. In the QCA scheme, we rely on the
properties of the system ground state and not the details of
the relaxation process for doing the computation. This idea
of “computing with the ground state” and the related con-
vept of “edge-driven” systems are discussed more thor-
oughly in Ref. 5.

The behavior of lines of these cells, the most basic (and
important) components of a quantum cellular automaton,
is discussed in Ref. 6. The resuits show an excellent exam-
ple of the restoration of full signal strength after degrada-
tion by noise. In addition, it shows that the particular set of
parameters we chose in Sec. II B is not critical; there is a
wide range of parameter values for which the cells transmit
information from one cell to another.

Clearly, fabrication of these devices presents a major
challenge in the realization of QCA devices, but semicon-
ductor realizations of such systems using new nanolitho-
graphic techniques should be possible. It is also possible
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that future realizations of these cells will be on a macro-
molecular basis. Another challenge, sensing the presence
or absence of a single electron without disturbing the sys-
tem, necessary for reading the output state of a QCA de-
vice, has been successfully addressed.'”

In conclusion, we have explored the interaction of
neighboring quantum-dot cells. We have defined the cell-
cell response function, which characterizes the nonlinearity
of the coupling between cells, and thus determines suitabil-
ity of a particular cell design for quantum cellular autom-
ata implementations. Several cell designs that exhibit the
required nonlinear response and bistable saturation have
been examined. Temperature effects degrade cell perfor-
mance, but analysis in this simple model suggests that op-
eration at 4.2 K should be within the reach of semiconduc-
tor implementations. When a cell has several neighbors, its
state is determined by the state of the majority of the neigh-
boring cells. This majority voting logic makes possible the
construction of programmable AND/OR logic gates as
well as dedicated AND and OR gates.
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We investigate the line shape of the transmission probability in quantum waveguides with resonantly
coupled cavities. Resonance and antiresonance features in the vicinity of each quasibound state can be
characterized by a zero-pole pair in the complex-energy plane, which leads to asymmetrical transmission
peaks. We have found a generalization of the familiar symmetrical Lorentzian line shape. Using several
examples, we demonstrate the utility of our proposed line shape to extract the lifetime of the quasibound
state by a fit to the data. We also discuss the asymmetrical line shapes in the context of Fano resonances.

A problem, which many branches of physics have in
common, is to extract lifetimes of quasibound states from
peaks in transmission coefficients or scattering cross sec-
tions.! The underlying theory holds that each quasi-
bound state of the system leads to a pole of the propaga-
tor in the complex-energy plane which, in turn, gives rise
to a pole in the transmission amplitude. If this pole is
sufficiently close to the real-energy axis, it will result in a
resonance maximum of the observed transmission
coefficient. Particularly well understood is the problem
of double-barrier resonant tunneling, where the lifetimes
of the quantum-well states may be extracted from the
width of Lorentzian-shaped transmission peaks. Less un-
derstood is the problem of electronic transport in quan-
tum waveguides with resonantly coupled cavities.? It is
known for these structures that the resonator states lead
to resonance and antiresonance features,>* but their de-
tailed line shape has not been investigated so far. In this
paper, we present a theory of the line shape for transmis-
sion in resonantly coupled quantum waveguides, and we
provide a computational method to extract the lifetimes
of the corresponding quasibound states.

For double-barrier resonant tunneling (DBRT), it is
well known that the resonant transmission phenomena
are related to the quasibound states in the quantum-well
region.>® According to the Breit-Wigner theory, the
transmission amplitude in the complex-energy plane
possesses a pole for each quasibound state.” Specifically,
a quasibound state at energy E, and decay time
r=#A/(2I") yields a simple pole in the transmission ampli-
tude r(z) at the complex energy z=Ep,—il,

nz)~1/[z—(Ep—il)] . (1)

If this pole is sufficiently close to the real-energy axis
such that the effect of other poles can be neglected, the
transmission probability T(E)=1t(E)|? for a physical en-
ergy on the real-energy axis E will be given by

T(E)=TY/[{E—Ep)P+T?]. 2)

Here, we have normalized T(E,)=1 which corresponds
to umty transmission in a symmetrical double-barrier
structure. Equation (2) describes a transmission reso-
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nance with a Lorentzian line shape. It is an easy matter
to extract the lifetime of the quantum-well states from
the width of the observed transmission peak.

An example of the transmission amplitude for DBRT
is presented in Figs. 1(a) and l(c), where the double-
barrier structure and the transmission channel are
schematically displayed in the inset of Fig. 1(a). In this
example, the symmetrical barriers are assumed to have a
height of ¥;=0.2 eV, thickness of d =3 nm, and separa-
tion of L =20 nm. The poles in the complex-energy
plane are clearly visible in the contour plot of the abso-
lute value of ¢(z) shown in Fig. 1{c). The corresponding
Lorentzian transmission peaks of the transmission proba-
bility T(E ) are plotted in Fig. l(a).

In a recent study,’ we have pointed out that the struc-
ture of the transmission amplitude in the complex-energy
plane is different for resonant quantum waveguide sys-
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FIG. |. Comparison of the structure of the transmission am-
plitude in the compiex-energy plane for double-barrier resonant
tunneling (poles) and t-stubs (zero-pole pairs). For DBRT, (a)
shows the transmission probability on the real-energy axis, and
(c) gives a contour plot of the absolute value of the transmission
amplitude in the complex-energy plane. For the t-stub struc-
ture, the corresponding plots are shown 1n (b) and (d), respec-
tively.
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as compared to the above case of double-barrier resonant
tunneling. In essence. each resonator state in a
quamum-wnre structure gives rise 0o a zero-pole pair n
the compiex-energy plane. where the zero always occurs
on the real-energy axis. As a consequence, there exist
transmission zeros, and the zero-pole pairs lead to asym-
metric resonance and antiresonance features in the
transmission probability with non-Lorentzian line shapes.
As an example, we show the behavior for a t-stub struc-
ture,'” as schematically shown in the inset of Fig. 1(b),
which consists of a main transmission channel and a dan-
gling wire of length L =10 nm. For this so-called strong-
ly coupled t-stub,’ the transmission probability is shown
in Fig. 1(b) and a contour plot of the absolute value of ¢t in
the complex-energy plane is displayed in Fig. 1(d). Zero-
pole pairs are clearly visible which correspond to the
quasibound states in the stub.

Based on the zero-pole pair nature of the resonances,
we make the following ansatz for the transmission ampli-
tude in the vicinity of each quasibound state:

Hz)~(z—Eg)/[z—(Ep—iT)]. (3

Here, E, and E, —iI are the positions of the transmis-
sion zero and the pole, respectively. The lifetime of the
quasibound state is given by T=%/(2I"), as for the case of
double-barrier resonant tunneling. Again, the transmis-
sion probability on the real-energy axis is given by
T(E)=1t(E)|%, and the proportionality constant in Eq.
{3) is determined by assuming peaks with unity transmis-
ston which are known to occur in symmetrical waveguide
systems.” (This is no limitation, since the transmission
probability always can be rescaled to have a maximum
value of one.) A unity transmission peak at energy E,
provides two constraints for T(E), namely, T(E,)=1
and (d /dE)T'g =0. Itis an easy matter to show that

TEY=1T/[(Ep—Ey)?+T?]
X{UE—Eg)P/{E—EpP+T?]] . (4)

The above expression gives the line shape of the transmis-
sion probability for resonantly coupled quantum
waveguides in terms of the three parameters, namely, the
energy of the transmission zero, E, the energy of the res-
onant state, E, (the real part of the pole energy), and the
inverse lifetime of the state, I' (the imaginary part of the
pole energy). Note that (4) produces an asymmetrical
line with a resonance and antiresonance behavior.

Such asymmetrical line shapes have previously been
noted in atomic and molecular physics.!! These so-called
Fano resonances are known to occur when a bound state
is coupled to a continuumn of states, thereby leading to
resonance phenomena.'’”'* In his original paper,'
Fano, after somewhat lengthy denvations, found that the
autoionization cross section could be parametrized by
(g +€)*/(1+¢€), where € is a reduced energy [it is defined
as e=(E—E /T, where E ., 1s the energy of the reso-
nant state] and q 1s treated as a parameter (it is a compli-
cated expression involving matrix clements). We note
that this is the same line shape as our Eq. (4) by making
the following substitutions: e€=(E—E,)/ and
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g='Ep—E,/T. Companing our approach to Fano's,'
we note that € has a similar meaning where £p, the real
part of the pole energy, corresponds to £, the energy of
the resonant state. For the parameter g, our approach
vields a simple expression which could not have been 1n-
ferred from Ref. 11. Apparently, Fano's line shape corre-
sponds to a zero-pole structure in the complex-energy
plane. a fact which has not been noted before.

Given a certain transmission curve, we now can fit
each resonance and antiresonance feature to obtain the
lifetime of the corresponding quasibound state. Using
the known energies of the transmission zero, E,, and
transmission one, E,, we can determine the energy of the
pole as

Ep=(E,+E\) 2V (E,~E,*—4T?/2 . (5)

The choice of the sign in the above equation determines
whether Ep > £y or Ep <E,. With this, the only un-
known parameter is [ which may be used to obtain the
best fit of the theoretical line shape (4) to the given
transmission curve. We seek the best fit in the sense of
the least mean square error.

We now present several examples of fits to the line
shapes of resonance and antiresonance pairs, each corre-
sponding to a quasibound state of a quantum waveguide
structure, We also extract the lifetime of the state. In
essence, we extract information about the imaginary part
of the pole from data on the real-energy axis. Since in
our examples we know the transmission amplitude in the
entire compiex plane, we can ascertain the quality of the
fit.

Figure 2 presents fits of the resonance and antireso-
nance line shapes for a family of so-called weakly coupled
t-stubs,” which are schematically shown in the insets. In
Figs. 2(a), 2(b), and 2(c), the resonant stubs are separated
from the main transmission channel by a tunneling bar-
rier of length / =1.0 nm and height ¥, =0.5, 1.0, and 2.0
eV, respectively. In each case, we show three quasibound
states which lead to zero-one features in the transmission
probability, and which are labeled in the plots. Figures
2{a), 2(8), and 2(y ) show the fitted line shape for the res-
onance numbered three of cases 2(a), 2(b), and 2(c), re-
spectively. The fit is shown by the dotted line, and the
curve to be fitted by the solid line. Note the extremely
good fit of our ansatz, Eq. (3). In Table I, we give a com-
parison of the positions of the fitted poles and the exact
poles for the weakly coupled 1-stubs shown in Fig. 2. For
a particular pole, the difference between the fitted and the
exact values is due to the interaction with other poles.

Figure 3 presents another example which shows
transmission for a ¢-stub in addition to double-barrier res-
onant tunneling on the main transmission channel. A
schematic drawing of this waveguide structure is
displayed in the inset, and the two tunneling barriers
have a thickness of 1 nm, height of 0.5 eV, and separation
of 4 nm. Figure 3(a) shows the transmission probability
on the real-energy axis, and we see various types of reso-
nance behavior. Resonances | and 4 exhibit more or less
sharp | —O0 transition, whereas resonances 2 and 3 are of
the 0— | type. Figures 3(b) - 3(e) display the fits accord-
ing to our ansatz, Eq. (3), for resonances 1-4, respective-
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FIG. 2. Examples of fits using the line shape (4) for the weak-
ly coupled t-stub structures shown in the insets. The fits to the
third resonant state of (a), (b), and (c) are given in (a), (B), and
(y), respectively. The fits are shown by the dotted line, and the
curve to be fitted by the solid line.

ly. Again, the fit is shown by the dotted line, and the
curve to be fitted by the solid line. It appears that the
zero-pole character of each quasibound state leads to cx-
tremely good fits of the transmission probability in the vi-
cinity of each resonance.

In general, the locations of the poles and the zeros on
the real-energy axis are not the same, i.e., Ep#E,. Itis
this fact that gives rise to the asymmetric line shape, Eq.
(4). Note that from Eq. (5), the position of the pole E, is
always between the positions of the transmission zero and

| i
0.25; ’{ 1 / \

Transmission Probability Transmission Probability

0.00
0.03 0.045 0.06 0.2 0.3 04
1.00 ~ \
075} (d) ! (e)
0s0t
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000l /3 4
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FIG. 3. Example of fits using the line shape (4) for a r-stub
with a double-barrier structure on the transmission channel
shown in the inset to (a). The fits of resonances 1-4 are shown
in (b}~ (e), respectively.

one, Ey and E,. For E, > E, the transmission resonance
is of the 0—1 type. A 1—0 transition results for
Ep <E,. If the pole and the zero occur at the same real
energy, i.e., Ep =E,, then Eq. (4) yields a symmetric line
shape,
Tlg,=g,=(E—EpV/[(E—Ep)?+T?]

0

(6)
={—T2/[(E—EpP+T?]. )]

The above expression describes a Lorentzian-shaped
reflection line.

In recent work,'® price has pointed out that a resonant
quasibound state can give rise to ecither Lorentzian-
shaped transmission or reflection peaks, and the terms

TABLE 1. The exact and fitted positions of the transmission poles for the weakly coupled ¢-stubs

shown in Fi!. 2.

Structure Zero index Exact pole (eV) Fitted pole (eV)
Vy=0.5 eV 1 0.064 305—0.001 686i 0.064 321 —0.001 659i
2 0.260 208 —0.007 807 0.259942—0.007 715i
- 3 0.585195—0.020 514/ 0.583 005 —0.021 300i
Vo=1.0eV 1 0.069 532—0.000 329 0.069 529 —0.000 327/
2 0.278 960—0.001 985 0.278965—0.001 971y
3 0.627876—0.006 535i 0.627 752 —0.006 525i
Vo=2.0 eV 1 0.073625—0.000031i 0.073625—0.000031i
2 0.295 804 —0.000 227; 0.295 801 —0.000 228/
3 0.669 735—0.000 857 0.669 739 —0.000 852i
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these peaks resonances of the first and the second kind,
respectively. We see that the reflection peaks in general
will not have a Lorentzian shape, and that Price’s reso-
nances of the second kind are recovered when Ep, = E,.

In addition to fitting the line shape for experimental
data, we anticipate that our expression (4) will also be
useful in extracting the lifetimes of resonant states for
calculated curves. We have in mind circumstances where
one only calculates the transmission probability on the
real-energy axis because it is computationally too expen-
sive to determine the transmission amplitude in the
complex-energy plane.> '

In summary, we have investigated the detailed line
shape of the transmission probability in quantum
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waveguides with resonantly coupled cavities. The reso-
nance and antiresonance features in the vicinity of each
quasibound state can be characterized by a zero-pole pair
in the complex-energy plane. We have found a generali-
zation of the familiar symmetrical Lorentzian resonance
peaks. Using several examples, we have demonstrated
the utility of our asymmetrical line shape (4) to extract
the lifetime of the quasibound state by a fit to the data.
We also discussed the asymmetrical line shapes in the
context of Fano resonances.

This work was supported, in part, by AFOSR, ARPA,
and ONR.
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In this articie we report the expenimental investigation of the density of patterns exposed with
clectron beam lithography ( EBL). A linear relationship was found between the minimum width
of poly(methylmethacrylate) (PMMA) walls and the given resist thickness (height of the
walls). Below the minimum width, PMMA walls become wavy or fail due to the internal
stresses caused by PMMA swelling during development. Previous research pertaining to
proximity effects at feature sizes and spacing below the 0.25 um range is limited. We have
expenmentally investigated proximity effects in very-high-density gratings in the pitch range
from 50 to 330 nm. The relationship between electron beam dose and grating pitch, where
proximity effects during electron beam lithography play a major role, was achieved. By fitting
the experimental results with a triple Gaussian model, the contributions of the different electron
distributions in proximity effects were determined. It was found that fast secondary electrons
dominate the proximity effects in the range we studied and they limit the density of patterns

fabncated by EBL.

I. INTRODUCTION

The fabnication of nanostructures, and in particular
quantum devices, depends on the resolution and achievable
pattern density of lithographic techniques. In electron
beam lithography (EBL), the lithographic resolution relies
on that of the electron beam generator and the contrast of
the resist/developer system. Poly(methylmethacrylate)
(PMMA) is still the most popular choice of resist for
nanostructure fabrication because of its extremely high res-
olution.

In the hft-off process commonly used in nanofabrica-
tion. PMMA exposed with an electron beam is followed by
a develop step, after which the unexposed resist remains on
the substrate and acts as a shadow for metal evaporation.
For very-high-density patterns, the remaining PMMA is in
the form of a thin wall between the developed lines. which
serves as the spacer between deposited metal lines. Al-
though PMMA is usually considered to be a nonswelling
resist, accounting partially for its high-resolution proper-
ties. some absorption of developer is necessary to aid in the
development process.' A very small amount of swelling
can induce internal stresses in thin PMMA walls which
weaken its mechanical properties and cause the deforma.-
tion of thin resist walls during development in the fabrica-
tion of very close lines. In the limit of very-high-resolution
lithography, lines are placed so closely together that the
resist walls can either become wavy, fall over, or fail
completely.~ Therefore. the buckling of the PMMA walls
limits the ultimate density of patterns in the EBL process.
Although Chen’ predicted that the limit of line pitch is
~ 75 nm. our results show that for 100-nm-.hick PMMA
walls, PMMA can be as narrow as 20 nm without resist
failure.’ resulting in higher density than expected by them.
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Sub-50-nm pitch semiconductor-metal photodetectors
have also been achieved by Chou et al.*

Another serious limitation on very-high-density pat-
terns with electron beam lithography is the proximity ef-
fect. This is due to the distribution of the primary electron
beam, forward scattered electrons, secondary electrons
scattered in the resist film on the substrate, and backscat-
tered electrons from the substrate. It is important because
those scattered electrons expose regions of the resist that
are not originally written by the electron beam. For the
schematic grating shown in Fig. 1(a), the electron beam
exposes the pattern on each line. In the ideal case, the
resulting energy distribution in the resist is very spatially
confined (Fig. 1(b)]. However, the actual energy distribu-
tion for very-high-density gratings is less distinct,’ as
shown in Fig. 1(c), and proximity effects decrease the
modulation transfer function of the exposure for closely
spaced patterns. [The modulation transfer function
(MTF) is defined in Fig. 1(c).] Assume the peak dose
received by each line is £, and the lowest dose received at
the areas between lines is £,. The resolution of gratings
depends on the capability of a given developer to distin-
guish between E, and E,. The distribution of electrons in
e-beam lithography is complicated by the fact that it de-
pends on almost all parameters in lithography, e.g., accel-
erating potential, beam size. photoresist thickness and
type. and substrate properties. Investigations of the energy
distributions have been reported elsewhere."' A double
Gaussian model has mostly been used for the electron
distributions.*®!'"'* Computer-aided proximity effect cor-
rection and other methods reducing the proximity effects
during e-beam lithography have been pursued.'>?° The
feature size and spacing in most of the published work are
in the half-micron regime, which is quite useful for fabri-
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FIG. 1. Exposure energy distnbution in very-high-density gratings. (a)
Schematic of the beam scan for a grating. (b) Energy distnbution in the
near ideal case for the beam scan shown 1n (a). (¢) Actual energy dis-
tribution in very-high-density gratings.

cating ULSI circuits. In this case, backscattered electrons
dominate the proximity effects because of the typically low
beam energies utilized ( ~ 25 keV). The width of the back-
scattered electron distribution is in the order of the feature
size and spacing. However, previous research pertaining to
proximity effects at feature sizes and spacing below the
0.25 um range is limited.>"!

In this paper, we report the experimental investigations
of the density of the electron beam lithography limited by
the physical strength of PMMA and proximity effects.
Proximity effects in very-high-density gratings were exper-
imentally studied in the pitch range from 50 to 330 nm. We
will discuss the relationship between electron beam dose
and grating pitch, where proximity effects during electron
beam lithography play a major role.

Il. EXPERIMENTAL PROCEDURE

The EBL system used in this study consisted of an Am-
ray 1400 scanning electron microscope (SEM) with a
maximum beam energy of 50 keV and a minimum
beam width of 5 nm using a W cathode, controlled by an
IBM PS/2 personal computer interfaced through a Prag-
matic Instruments 2201A 16-bit arbitrary waveform
generator.”' Special care was taken to minimize all noise
sources. PMMA (950000 amu) was spun on Si and
Si0,/Si wafers and baked at 170 °C for 4 h. Mixtures of
methylisobutylketone (MIBK):2-propanol (IPA) (1:3)
with the addition of 1% and 1.5% methylethylketone
(MEK) by volume, were used to deveiop samples. This
mixture has been shown 1o have very high development
contrast properties.’? For both the experiments on proxim-
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Ta8LE | Experimental parameters.

Expenment Proximuty etfect Strength of PMMA

Patterns Arrays of gratngs Two parallel lines
or gratings

Line puch f0-330 nm 70-150 nm

Accelerating voltage S0 kV 45 kV

Resist thickness 60-70 nm 105-180 nm

Developer MIBK.IPA:MEK MIBK:IPA:MEK

~ 1300601 5% MEK) =1:3:0.04(1% MEK)

Developer temp. : ' C1 20 25

Developing time 6-10 s 15s

Metal thickness 1S nm 30 nm

ity effect and the strength of PMMA, different process
parameters were used. A summary of the experimental pa-
rameters is given in Table [. The resist thickness in the
proximity effect measurement was kept to 60-70 nm in
order to avoid PMMA failure during the processes. Grat-
ings with different pitch in the proximity effect experiments
are 3 umx 3 um in size and separated by 2 um with each
other in order to eliminate the proximity effects caused by
the scattered electrons from adjacent gratings.?

1Il. RESULTS AND DISCUSSION
A. Strength of PMMA

In order to achieve liftoff of evaporated metal films, it is
necessary that PMMA walils remain between the developed
areas. The width of PMMA walls was determined by mea-
suring the spaces between resulting metal patterns after
liftoff. The undercutting for thin resists was neglected be-
cause it is small for thin resists and high beam energies.
The height of the walls after development is assumed to be
the same as the initial resist thickness because the unex-
posed PMMA of very high molecular weight has very low
solubility.*? One might suppose that in the case of high-
density gratings, areas between lines might be partially de-
veloped because of proximity effects. For grating pitch
larger than 70 nm, we find in the next section that
E/E,<0.6. For the developer with contrast, y*, larger
than 10, the amount of the resist that is removed through
developing is small compared with the original thickness of
the resist, and therefore can be ignored in the final resist
thickness determination.

PMMA can be considered a strong, glassy material after
baking. However, during development, the absorption of
the developer causes swelling, and internal stresses result in
the deformation of PMMA walls. The wall aspect ratio
(height-to-width) is an important parameter in delineating
the stability threshold, since a tall, thin wall will be
strongly susceptible to small dimensional perturbations
around the erect position, while a short and thick wall will
be able to sustain a higher degree of swelling before buck-
ling.

Figure 2 shows experimental results of the minimum
width of a PMMA wall achievable for a given starting
resist thickness. Eiror bars represent variations in metal
line separation {and therefore wall thickness) over the
length of the lines. These data were obtained by smoothly
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varying the line pitch for a given resist thickness and ob-
serving the point at which lines either failed completely or
became noticeably wavy. The data indicate a direct pro-
portionality between critical wall height and width, imply-
ing a constant aspect ratio for buckling. The area above the
critical line is the regime in which straight FMMA walls
can be achieved. The area below it is the regime in which
the walls become wavy or fail.

The stability of an infinitely long wall of width w and
height # with a rigidly anchored bottom and a top free end
can be modeled with linear plate theory.” The details of
the theovetical calculation are given in Ref. 25. According
to this model, the critical wall aspect ratio for stability,
(h/uw)*, is given as a function of the swelling strain:

hy* 13
- = e YT T,
(u'i VIS = e,

(N

where v is Poisson’s modulus and €, is the hypothetical
swelling strain that the wall would undergo if allowed to
expand freely. For (A/w) > (h/w)* the wall will buckle as
shown in Fig. 3(a}). The bright areas in Fig. 3 are evapo-
rated gold. and the dark areas are the areas where PMMA
walls stood before liftoff. Equation (I) predicts a linear
relationship between the critical wall height and width for
a constant €, which is consistent with our experimental
results as shown in Fig. 2. From the slope of the line in Fig.
1, the critical aspect ratio for stability can be calculated,
giving (A/w)* = 4.75. Then €, = 5.1% for v = 0.5 from
Eq. (1). This indicates that 5% swelling can lead to failure
of PMMA walls with aspect ratio greater than 5.

In making gratings, a set of parallel PMMA walls forms
during development. The buckling of one of the walls can
lead to the catastrophic failure of the whole grating, be-
cause surface forces can induce cross correlation between
deformation of adjacent structures, producing a pattern of
adjacent sinusoidal waves 180° out of phase with respect to
each other as shown in Fig. 3(b). Figure 3(c) shows a 50-
nm pitch grating with straight resist walls between lines.
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(@)

(c)

FIG. 3. Remaining metal patterns after liftoff. (a) Failure of paraliel lines
caused by wavy PMMA walls between them. (b) A typical failure of
gratings resulting from PMMA wall swelling and buckling. (¢) A 50 nm
grating with straight PMMA walls between lines. Light arcas are gold.
and dark areas are the shadows of PMMA walls which have been re-
moved during liftoff.

8. Proximity effects

Proximity effects must be strongly considered in the fab-
rication of very-high-density patterns. It can be expected
that when lines get closer together, the dose needed for
exposure should decrease because interline scattering of
electrons causes additional energy deposition. Experimen-
tal results of normalized dose versus grating pitch are
shown in Fig. 4 along with theoretical simulations. In the
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figure, doses for various pitch values are normalized to that
needed for the same linewidth in the 150 nm pitch grating.
Three samples with different doses and development time
were measured. The data of all-three samples are very
consistent. Besides exposure dose, many factors affect line-
width in experiments, such as contrast of developers, de-
veloping time, and temperature. Our results show that al-
though linewidth may change with other factors. their
effects on the relationship between normalized dose and
grating pitch are small and can be neglected. It can also be
seen that normalized dose decreases slowly with pitch unti}
about 100 nm when the change becomes rapid. As we will
show, this effect is due to the different distributions of
scattered electrons in the resist during exposure. Models of
the exposure energy distribution in the resist employed for
fitting the experimentat data include the double Gaussian®:

1 1 AN ( r)‘ s
f(r)um a—gexp( —;)-t—[—i_rcxp. -—E; j (2)

and the triple Gaussian modcl”:

!
Tr(l+n+n)

¥ats.

! r 7
Ezcxp( «-(‘1‘:) —»E_;exp

= 7’ r i
[»—ﬁ_-)~?_cxp( <—;:)’.A 3
The simulation curves are shown in Fig. 4. In Eqs. (2) and
33 the first term is used to describe the primary beam and
forward scattered electron distribution. The second term
accounts for the behavior of the backscattered electrons.
The third term 1n the triple Gaussian model 1s added to
describe all other exposures that are not included 1n the
first two terms. The third term may result from large angie
torward scattered electrons. secondary electrons, or even
nroad tails in the primary beam distributton ™ " The resule
of Monte Carlo calculations by Jov' and Murata or &~
clearly show broad tails to the energy distribution due to
fast secondary electrons. which we will show play an
portant role in proximity effect calculations over the spatial
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range discussed here. In Eqs. (2) and (3. «, 8, and y are
the widths of each Gaussian distribution. and n and 7’ are
the ratios of exposures of the second and third term to the
forward exposure, respectively. According to Ref 8,
f3 =10 um and 1 = 0.8 for 50 keV electrons in solid silicon
substrates, a, ¥, and 7° were chosen for the apparent best
fit. The dashed line in Fig. 4 shows the calculation in which
only the first Gaussian term, that is, only the contribution
of forward scattered electrons, was considered. Since the
width of this term is only a few tens of nanometers, for-
ward scattered electrons only cause a short range proxim-
ity effect.

When the second Gaussian term was added in the cal-
culation (the double Gaussian model), the weak change of
dose over large changes in pitch (solid line in Fig. 4) was
caused by the long-range proximity effect of backscattered
electrons. The small difference between the dashed curve
and the solid curve shows that the proximity effect caused
by backscattered electrons at 50 keV is weak. a = 0.037
um was used in these two curves. The dash-dot line in Fig.
4 was calculated with the triple Gaussian model. This
curve fits the data very well with @ = (0.029 um, 3 = 0.4
um. and ° = 0.35. We conclude, therefore, that the prox-
imity effect from the y-term electrons is very important in
high-density patterns in EBL. Since these electrons cause
proximity effects in a broad range relative to the forward
scattered electrons, and their sources are still not clear, we
call them simply *“broad range electrons.”

The ratios of the contributions of scattered electrons
from the interline exposures to the total exposure received
by each line are shown in Fig. § The solid line. the dashed
line. und dash-dot line correspond to the interline exposure
contributions of forward scattered electrons, backscattered
clectrons, and broad range electrons. respectively. From
Fig. 5 we see that for the interline proximity effects: (1}
The contributions of backscatiered electrons weakly de-
pends on the grating pitch hecanse of their wide distribu-
tion |~ 10 um (Refs. 8 and 26)] at 50 keV' The backscat-
tered coefficient 1s a constant for certain materials when the
beam energy 1s Jarger than 20 keV' ° Hence the intensity of
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the backscattered electron distnbution for 50 keV is much
lower than for 20 keV because 1t spreads much further.
Therefore, for high-density patterns, the proximity effect of
backscattered electrons is like a weak background. It can
be ignored in the total exposure because the contribution of
backscattered electrons is less than 2% and much smaller
than the contribution of the broad range electrons in the
whole pitch range over which our calculations were per-
formed. (ii) The effect of forward scattered electrons is not
important until the pitch of gratings approaches the width
of its distribution. Their effect increases dramatically when
the pitch is smaller than 50 nm. Therefore, the proximity
effect of forward electrons will limit the resolution of elec-
tron beam lithography. (iii) Broad range electrons domi-
nate the proximity effect in the pitch range from 50 to 350
nm or even larger in our experiments. This range is on the
order of feature sizes of quantum devices and ULSI cir-
cuits. Therefore it is very important to include this term in
the proximity effect correction. Since the contribution of
the broad range electrons to the total exposure is larger
than 20% when grating pitch is less than S0 nm, their
limitation on the resolution and density of electron beam
lithographically defined patterns cannot be ignored.

We further consider here the role of fast secondary eiec-
trons 1n proximity effects. Fast secondary electrons have a
comphicated distribution; 1t 1s a narrow peak with a wide
shoulder.”” The width of the narrow peak is about 10 nm
in free-standing resist. Its role in proximity effects was in-
cluded in the forward scattered electrons’ which are de-
scribed by the first term of the double or triple Gaussian
models. However. the proximity effect caused by the wide
shouider was neglected by previous researchers. From Ref.
S we note that the half-width of the shoulder 1s about 100
nm and 1s on the order of the distribution of the broad
range electrons. Therefore. 1t can be concluded that fast
secondary electrons are part of the broad range electrans.
but thev are not the oniv part. Theretore. the fast second-
ary electrons introduce both short- and long-range prox-
imity effects. and therebyv iimit the resolution of EBL
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As menuioned above, the total dose at the region be-
tween the electron beam scanned areas increases when
lines are placed closer together. The resolution of gratings
created with EBL depends on how well a developer can
distinguish between the deposited energy densities between
lines and at the hnes. £, and E.. respecuvelyv. Figure 6
shows E./E, as a function of grating pitch with different
Gaussian parameters. The dotted line results from the dou-
ble Gaussian model with the same parameters used in the
calculation of Fig. 4. For 50-nm pitch graungs. the ratio
E./E.1s about 0.98. This small difference between expo-
sure energies cannot be distingmished with any practical
developers. in contradiction to the experimental results.
Therefore. although the double Gaussian model can be
used to qualitauvely simulate the normalized dose chang-
ing with grating pitch, it fails in predicting the density and
resolution limitation in electron beam lithography at these
very small dimensions. The solid line 1s calculated with the
triple Gaussian model with the same parameters that fit the
expenimental data in Fig. 4. It can be seen that E/E,
approaches unity when the grating pitch decreases.
E/E, =1 means that the grating patterns are completely
washed out because of the proximity effects. For 50-nm
pitch gratings, E/E,=0.87. The contrast, y*, of our de-
veloper (1.5% MEK) is larger than 10 and corresponds to
D/D,=0.8, where D, is defined as the critical dose be-
low which the resist is not developed at all, and D ¢ 1s the
dose above which the resist is totally dissolved. (Note that
the exposure energy E is proportional to the recetved dose
D so contrast curves yield useful information about the
limits on absorbed energy.) The resist will be partially dis-
solved when the dose is less than D, but greater than D,.
This means that the height of the PMMA walls was de-
creased for 50-nm pitch gratings during deveiopment be-
cause of partial developing. Since the initial PMMA thick-
ness in our case was 60-70 nm, the height of remaining
PMMA walls is assumed to be larger than 40 nm. which
we have found is sufficient for good liftoff of 15 nm metal
patterns. This also shows that the development 1s very cnit-
ical in making very high density patterns: a shght overde-
velopment may cause the PMMA walls to be dissoived.

From Fig. 5 we see that forward scattered electrons.
including fast secondary electrons, cause the proximity ef-
fects to dramatically increase when grating pitch approach
a. the width of the distribution of forward scattered elec-
trons. Thus the resolution of EBL can be improved when a
decreases. This is clearly shown by the dashed line (a = 20
nm) and the dash-dot line (@ = 10 nm) in Fig. 6. This
requires using a very-high-energy svstem with a non-
Gaussian-shaped beam or a resist that depends less on iow
energy electrons 1n forward electron scattering. Assuming
« = 10 nm for a very high-resolution electron beam. a grat-
ing with 20 nm pitch can be expected using a developer
with the contrast +* = 10. as shown in Fig. 6. This agrees
with predictions of Jov' that 10 nm represents the ulumate
resolution for PMMA as an electron beam resist. Our re-
sults restate those of Jov that the narrow peak of the en-
ergy deposited by secondary electrons is practically flat out
to a distance of & nm, and therefore <o fow 1n contrast
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(over the peak) as to be indistinguishable to developers
with reasonable contrast values.

We saw that the pattern density 15 also limited by the
failure of PMMA walls. As discussed above, the lower the
achieved thickness of the PMMA walls, the closer is the
achievable line spacing. However, the resist thickness can-
not be lowered arbitrarily because, for good liftoff. the re-
sist thickness shouid be about three times the metal thick-
ness, which depends on ihe ultimate desired device
characteristics. According to Fig. 2. 10 nm spacing be-
tween metal lines can be achieved with 40-nm-thick
PMMA, and is sufficient for successful liftoff of 10 to 15-
nm-thick metal lines. Therefore, we conclude that the lim-
its to the density of metal lines due 1o the proximity effect
and the strength of PMMA walls are consistent for the
achievement of lines with pitch as small as 20 nm.

IV. SUMMARY

The proximity effects in electron beam lithography were
experimentally investigated with different grating pitch.
The results were successfully simulated with a triple
Gaussian model. Proximity effects caused by backscattered
electrons were insignificant in our case because of their
wide distribution. Forward scattered electrons were very
important when the grating pitch was about the width of
this electron distribution. Broad range electrons, described
by the third term in the triple Gaussian model, dominate
the proximity effect in the pitch range from 50 to 350 nm.
Secondary electrons cause both short- and long-range
proximity effects. Their effects can be included in forward
scattered electrons as well as broad range electrons. Their
limitation on the EBL resolution cannot be ignored.

Upon exposure to suitable solvents, such as common
developing and rinsing solutions. narrow PMMA walls
were found to become unstable as a result of two effects:
(1) swelling, and (2) lateral surface forces between adja-
cent structures. We investigated the relationship between
minimum line spacing and maximum PMMA thickness for
EBL fabrication using a high contrast developer. We also
showed experimental evidence that supported our predic-
tions, thus demonstrating the existence and severity of
such instabilities in nanolithography.

From our calculation of E/E, as a function of grating
pitch with the triple Gaussian model, a 20-nm pitch grat-
ing can be expected using a very high-resolution electron
beam generator and high contrast resist/developer system.
The closest spacing between metal lines can be as narrow
as 10 nm for 10 to 15-nm-thick metals, implying that 20
nm gratings with 10 nm linewidth and 10 nm line spacing
are achievable.
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Electron beam lithography over large scan fields
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We have developed an advanced, research-onented electron beam hthography system using a
three channel arbitrary wave form generator and a scanning electron microscope. The system 1s
capable of exposing patte:ns with features less than 100 nm over scan fields greater than 1.0 mm,
as well as features less than 20 nm in smailer scan fields. Other system features include
capabilities for registration and for generating exposure matrices for evaluauing new electron
beam resists and optimizing exposure parameters. We report the details of the system and show

results made possible by our system.

1. INTRODUCTION

For more than a decade, intense effort has been put
towards the construction of dimensionally confined sys-
tems for the study of quantum effects in mesoscopic
structures.' To this end, simple devices have been con-
structed using processing methods similar to those used to
fabricate GaAs metal-semiconductor field effect transistors
(MESFETs). To study quantum effects, minimum feature
sizes within these structures must be less than | um, and
often less than 100 nm.2* Several approaches for fabricat-
ing structures with features less than 50 nm have been
implemented,>” but none combines the versatility and res-
olution capabilities of electron beam lithography (EBL)
systems. X-ray lithography systems are capable of such
resolution but are not readily available. Some commercial
EBL systems have the resolution necessary to produce the
required sizes yet are not readily available due to the their
cost. Using scanning electron microscope (SEM)-based
EBL systems can provide a low-cost, versatile, research
exposure tool whose only disadvantage is throughput.
Other cost effective methods include the modification of
scanning tunneling microscopes (STM),? but this technol-
ogy currently is limited by the overhead exposure time and
the smail exposure area.

Several EBL system designs have been implemented and
descnibed by others.>?® However. our work extends the
utility of this technique into the regime of very large scan
fields with nanometer resolution. Our motivation behind
the development of this system was the ability to fabricate
nanostructures and nanodevices incorporating all exposure
steps { mesa, contacts, gates, bonding areas) into one tool
as well as gate level exposure for quantum based circuit
architectures.”' Also recent optical expenments require
nanostructures in large scan fields due to the difficulty in
focusing lasers onto small areas > We designed our system
with three specific goals. The first was to build a system
capable of exposing any arbitrary pattern with a resolution
less than 100 nm over scan fields as large as 1.4 mm. The
second was to allow the exposure tool to perform accurate
pattern registration of 100 nm over scan fields as large as
' 4 mm. Finally, the system was designed so that cumula-

' Author 10 whom correspondence should be addressed.
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tive exposure parameters could be stored for future analy-
sis and images pnnted and saved ecasily.

The most common method used to convert a SEM to an
EBL system incorporates a computer fitted with two
digital-to-analog converters (DACs) whose outputs are
connected through amplifiers to the SEM scan coils. More
sophisticated conversions involve computer coatrolled
beam blanking and stage movement. Nabity and
Wybourne® give an especially thorough review of the de-
sign issues involved in a SEM-based EBL system. In all
cases, the computer controls the beam position by the ap-
plication of voltages via the DACs. Ideally, the beam po-
sition resolution of these DAC-based systems is strictly
limited by the DAC resolution. Earlier designs used 12-bit
DACs while most current systems use 16-bit DACs and,
presumably, future systems will have even higher resolu-
tion. When 16-bit resolution is used, the beam can be po-
sitioned anywhere on a 65 536 by 65 536 point grid. The
spatial resolution of this grid is determined by the SEM
magnification. To move the beam, successive positions in
the form of digital integers or pixels are input to the DAC
at a predetermined rate calculated from the feature size,
the exposure dose, and the beam current. This rate is cal-
culated to include the exposure time at that location as well
as any overhead time necessary to account for scan coil
settling >

The minimum feature size of such systems is not only
determined by the DAC spatial resolution, but also by the
temporal resolution. For systems with poor temporal res-
olution, a low exposure dose can only be achieved-by hav-
ing fewer pixels in an exposure to result in the desired dose
at a given magnification and beam current. In this case, if
the pixel spacing is large compared to the beam diameter a
discrete pixel exposure will result. Therefore, if faster pixel
outputs are possible, pixels can be placed closer together on
the grid resulting in smoother lines, more uniform expo-
sure doses, and improved overall performance.

Il. SYSTEM OVERVIEW

Control of the lithography system is achieved through
an in-house software program™’ written specifically for
clectron beam lithography. The program we developed is
capable of generating two types of files: layout exposure
and alignment (registration). Each file must be assigned a
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magnification which is used to determine the scan field by
the relation that a SEM magnification times the scan field
equals a system constant. Our system constant has been set
at 140 000 where the scan field is in units of microns. Hav-
ing such a large system constant allows for the possibility
to expose patterns over 7 mm. Both files allow for an ex-
posure to occur only if the beam current and dose are
specified. A layout file can consist of dot, line, and area
exposures defined as a set of primitive shapes. Currently
the set of shapes includes dot grids, angled lines, gratings,
gnids, rings, rectangles, parallelograms, and triangles. The
registration process involves continuously scanning or im-
aging any features designated as the alignment marks.
These features must be positioned at the corners of a rect-
angle so that adjustments can be made to reduce rotational,
horizontal. and vertical overlay errors as well as to select
the correct magnification. These marks are scanned simul-
taneously or individually through a window whose size can
be vaned to improve the alignment precision.

A complete schematic diagram of our lithography sys-
tem 1s shown in Fig. 1. The lithography system is con-
trolled by an IBM PC Model 30/286%* equipped with a 32
megabyte hard drive, 4 megabytes of random access mem-
ory (RAM), a Hewlett-Packard general purpose interface
bus (GPIB) interface card, and a Computer Boards, Inc.
C10-DI1024 digital input/output card. The GPIB interface
controls the operation of the wave form generator and the
CIO-DI1024 card monitors the channel synchronization
outputs of the wave form generator and controls the syn-
chronization of the beam blanker. Connected to the com-
puter through the serial port is a switch box used to direct
information to a plotter for layouts or to the SEM stage
control system. The computer is also connected to a laser-
printer to record SEM exposure parameters as well as the
size and position of exposures within a layout. Qur SEM is
an Amray 1400 with a 50 kV acceleration potential, tung-
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sten source, clectrostatic beam blanker, and a Robinson
backscattered electron detector Such a large acceleration
potential gives nse to a wide backscattered electron distn-
hution i1n the resist. thus reducing proximity effects dunng
the exposure of dense layouts.” The Robinson backscat-
tered electron detector 1s used dunng the registration pro-
cess to image marks through the resist. Also connected to
the SEM 1s a Ketthley 614 electrometer used to measure
beam current collected 1n a Faraday cup mounted 1o the
sample hoider.

The beam position and blanking are controlled by a
Pragmatic Instruments Model 2201 A high-definition arbi-
trary wave form generator (AWG). Current advances in
wave form generation electromics*®?’ make the use of s
high resolution AWG a supenor choice for controlling
SEM-based EBL systems. The 2201A is a three channel
wave form generator with each channel capabie of gener-
ating a wave form with a maximum length of 65 $35 sam-
ples and sampled at a sclectabie rate from 0.100 Hz to
2.000 MHz with four-digit resolution. Each wave form
sample has 16-bit resolution within a selectable voltage
range from 0.01 to 10.2 V with four-digit resolution. The
selectable channel amplitude is extremely usefal for SEMs
whose scan amplifiers compensate for the size of micro-
graphs. By scaling the output of the 2201A accordingly,
the SEM scan amplifier ratio can be balanced resulting in &
square scan field. Each channel also has a synchronization
output which is used to monitor the end of wave form
generation, to provide the puise signais needed for regis-
tration, and to control the beam blanking. The three wave
form outputs are connected to the SEM with channel |
controlling beam blanking, and channel 2 and 3 function-
ing as analog outputs to control the horizontal and vertical
beam positions. We refer to channel signal outputs as
BBK, XSCAN, and YSCAN, respectively, and channel
synchronization outputs are referred to as BBKSYNC,
XSYNC, and YSYNC, respectively.

The Quantel Crystal Digital Image Processor is used to
capture video information from the SEM. To capture im-
ages, the image processor requires video input as well as
line and frame pulse signals. These pulse signals corre-
spond to the end of a horizontal scan and the end of a
vertical scan, respectively. To capture an image, the pro-
cessor synchronizes its capture rate to that of the line and
frame pulses. When the lithography system is used in an
imaging mode, the image processor receives line and frame
pulses from the SEM and the scanned image is digitized.
When the system is used in a registration mode, the pro-
cessor receives line and frame pulses ‘tom the 2201A
(XSYNC and YSYNC) so that only the scanned areas
over the registration marks are digitized.

. LAYOUT EXPOSURE

We have taken great care in designing an EBL system
capable of large scan field exposures with nanometer reso-
lution. For us, the primary issue for large scan field expo-
sures is the signal-to-noise (S/N) ratio in the signais used
to control the SEM scan coils. Noise in the generated sig-
nal can result in a deflection of the beam which depends on
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ia)

1b)

Fi: 2 [Improvements made in noise reduction for an exposure completed
na i 4 mmscan field (a) Pattern processed before noise reduction. (h)
" 1ttern after improvements were made to the system

the gain of the scan amplifiers. In order to complete pat-
terns in large scan fields where the gamn of the scan ampli-
fiers 1s large, the noise must be less than the mimimum
feature size desired. For example. 1n a scan field of 0.7 mm,
for a 30 nm feature to be exposed, the S/N ratio of the
-ignal generator must be greater than 387 dB. We carefully
analyzed the scan coil signals at vanous points in the li-
thography system using a Hewlett—-Packard 35660A dv-
namic signal analyzer and were able to improve the S/N
ratio measured at the SEM scan coils from 78 to 100 dB
using proper shielding and grounding techniques.”**° A
100 dB S/N ratio represents a peak-to-peak noise signal
equivalent to only 14 nmn a 1.4 mm scan field.

Every stage of the system from the computer to the scan
coils was modified. Substantial modifications were required
o eltiminate signals emanating trom the filament current
power supply. By 1solating the supply from the scan coil
electronics power supply. the S/N ratio improved by 10
JdB. The pnmary source of noise was identified as a ground
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loop problem resulting from the GPIB connection between
the 2201 A and the computer. Two commercial GPIB op-
tical 1solation units were tested with no improvement
noted. Theretore. a ground network was designed and im-
plemented resulting 1in a 20 dB improvement in the S/N
rano. Figure 2 shows a line pattern exposure before and
after improvements were made. For large scan fields, the
S/N ratio becomes much more of a factor as the noise in
the scan coul signals directly correlates to an observable
physical displacement of the beam as shown in Fig. 2(a).
For small scan fields, the S/N rauo becomes much less of
a limiting factor.

I.ayout and pattern exposure require the user to specify
a beam current and magnification for the SEM, and expo-
sure doses for the primitive shapes in the layout. The lay-
out 1s exposed by programming the 2201A and
Cl10-DI1024 for each shape. The shape exposure order can
be changed before pattern exposure. First, the 2201A s
programmed with the necessary signals calculated to give
the correct dose, for a specific magnification and beam
current. Because of the flexibility of the 2201A, the shape
algorithms are written so that the smallest time per pixel is
calculated, allowing the highest resolution wave forms to
be generated. Before a shape is exposed, a channel is se-
lected to trigger the output of the other channels. The
synchronization signal of this channel is then monitored by
the CIO-DIO24 to detect the end of shape exposure. The
AWG is then set to be triggered through the GPIB once
the BBK circuit is programmed. The BBK circuit consists
of fast logic gates controlled by the AWG synchronization
outputs and the CIO-DIO24. The CIO-DIO24 selects
which synchronization signals are to be used to control the
SEM beam blanker. Also, the C1IO-DIO24 is programmed
to monitor the synchronization channel selected to signal
the end of shape exposure. Bv continuously polling the
ClO-DIO24 during shape exposure, the completion of an

TapLe | Commands used to contigure 2201 A for honzontal rectangie
exposure

Commands BBK XSCAN YSCAN
Amphitude 28 10.0 100
Offset s N )
Mode burst hurst tng
Start address i 1) 0
Stop address sampies - wsamples - ysamples « |
wretrace | wretrace — |
Burst ysamples vsampies
Clock sel twomeg twomeg svnth
Filter on on
Degiitch off off
Svnc start )
Svae length vsampies
Output switch on . on s on
Trigger sel chanl -han} man
Tngl stant |
ITngl length
Trngl stan '
Tngl length !
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F1G. 3. Example of the 2201A wave form output when exposing a hon-
zontal rectangle. Shown here 1s an example of three passes across the
rectangle. YSCAN tnggers BBK and XSCAN. Notice the beam is off
during the retrace of XSCAN. With this, each sample in YSCAN corre-
sponds to one XSCAN across the rectangle. The time scale for BBK and
XSCAN is kept constant at 0.5 us and the ume scale of YSCAN s equai
to the towal time for one cycle of XSCAN (xretrace + xsamples). To
ensure channel synchronizanon, YSCAN wave form output begins on 1ts
SECOND wave form sample.

exposure is detected when 0.0 V is read from the triggering
channel synchronization output.

The commands used to program the 2201 A to expose a
horizontal rectangle are shown in Table I. YSCAN is se-
lected as the triggenng chaanel for BBK and XSCAN sig-
nals. Figure 3 shows an example of the wave forms pro-
grammed to expose a hornizontal rectangle from the
instructions in Table I. The rectangle is exposed when
YSCAN is triggered by the computer. As YSCAN is gen-
erated, when the second wave form sample of YSCAN is
reached, BBK and XSCAN are triggered. This sequence
guarantees that BBK and XSCAN are synchronized to
YSCAN. The end of the exposure i1s detected by polling
YSYNC through the CIO-DIO24. When YSCAN wave
form output begins, YSYNC changes trom 0.0 to 5.0 V. At
the last wave form sample of YSCAN, YSYNC changes to
a 0.0 V signaling the end of the shape exposure and the
2201A 1s programmed for the next shape exposure.

Use of the 2201A allows us to minimize the total over-
head time for an exposure. as well as maximize control of

~arn nom ]
cevice(s) /'"
/
s - il

F1G 4 Registration mark lavout with defimtions Marks are numbered in
1 clockwise pattern A scan of ali marks 13 compieted by scanning marks
[. 2. 3. and 4 n order Scanning of individual marks 13 selected from 4
menu within the program The size of the marks is enlarged for clanty
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(a)

((o}]
FIG ¢ Processed backscatiered electron images of alignment marks for
ta) four mark and (h) single mark scans

exposure dose. Because SEM parameters such as focus and
astigmatism can dnift, large overhead umes can result in
poor exposure conditions for complex, lengthy patterns.
We have optimized the software for all line types to take
advantage of this property. When a wave form 1s calcu-
lated. the 2201 A 1s instructed to load 1its memory with the
wave form samples. Next. a sampling rate ts selected for
each memory location and the wave form 1s then tnggered
for output. For the next exposure. instead of loading a new
wave form. the start and stop pointers in channel memory
are moved to correspond to the next exposure and tng-
gered. With the resofution and range of sampling rates. the
exposure dose can be varied by 0 1% from one exposure to
another. Such resolution s needed when attempting to
charactenze new resists and developer solutions as well as
{0 optimize 2xposure parameters

IV. REGISTRATION

We have developed an accurate technique for achieving
pattern registration. reiving on the 1201A and the image
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Vi T Micrographs of ine patterns expuosed (at i the center and (b at
e tor e b donm scan teld

processor - The 2200A s used to control the acquisttion
sate of the processor such that only the  mtormation
weanned trom the ahgnment marks o digiized. The svn-
chromization siznals of the 2201A are contigured to emu-
e line and trame pulse signals with one frame consisting
1480 Gnes of sideo information. Shown in e 4, our
sechmique mvolves scanning one mark or scannng tour
anarks simnultaneously. The four-mark ~can can be used to
correct retational errors while single mark scans are used
o corredt magnification errors as well as horizontal and
certtead displacements, Onee a mark has been scanned, the
Adeo mtormatton s collected by the processor and dis-
aved Poampies of single and mudnple mark scans are
crostded cn B 50 The supenmposed dark areas i the
-canned smages are achieved through beam dlanking and
ersve s cundes durmg aiignment. Tooimprove registration
wourdey he size of the scan windows can be scaled. re-
aiting 2 omagnttied view of the registration mark
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(@)

(o)

Fia. 3. Magnitied view of lmes in Fiz. “(b) ay Vertical graung and tb)
spoke pattern demonstrating features under 100 nm in a 1.0 mr scan
tield.

V. RESULTS

We have tested our svstem in o variety of scan fields,
exposing arbitrary patterns with many exposure doses.
Studies investigaung the properties of poly(methyl-
methacrylate) (PMMA) ™ " and charges in oxides™ have
heen performed using this svstem. For this work, exposures
were performed at 50 kV on thick silicon substrates with
100-nm-thick PMMA of molecular weight 950 000 a.m.u.
baked for 10 min at 170 °C using a hot plate. Development
was performed at 21 °C tor 15 v 1n a 1:3 mixture of methyl
sobutyl  ketone: wsopropanol with 17 methyl ethyl
ketone.” Metal films of \u and TisAu were evaporated at
normal incidence i an clectron beam evaporator. Lift-off
was performed by soaking m acetone tor 2 10 3 min.

At conventional scan fields around 250 um-, dots ap-
proximately 13 nm i diameter were fabricated. ™ Some of
our results demonstrating the texibility of the system. as
well as resolution, dre shown in Fig. 6. Fizure 7 shows the
~ame line pattern exposure ar the center and top edee of a
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1.0 mm scan field. Figure ¥ shows muagnitied views of the
vertical grating and spoke pattern at the edee of the {0
mm scan field demonstranng high resolution teatures
large scan fields. In Fig. 70b), we see tnat the mnermoss
ring 1s dwplaced i the verticat direction. which s an es-
ample of the etfects of scan cotl settling. The inner most
ning is drawn lirst in this pattern. Once the sean cotls have
settled, the remaimng pattern 15 exposed without any no-
ticeable errors. Such errors are corrected by chowe ot pat-

scan field: 1.0 mm

e

b
afy ~
| A T s
(a)
{b)

Fi. @ Exposure pattern used 10 invesugate the hne width variation
across a 1.0 mm scan field. The pattern was exposed both horizontally and
vertically. Over 40 micrographs were taken ol fabncated lines. Micro.
graphs ta) and (b) correspond to locanion of boxes in figure drawn.
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F1G. 10. Exposure pattern used to determine registration accuracy. The
dark lines of patterns A and B were fabricated first. Having aligned the
sample, the mirror image of patterns A and B was then fabricated and the
registration accuracy determined.
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FIG. 11. Micrographs of alignment results for pattern A (3) and pattern
B {h) of Fig. 10 located in the center of the scan field.
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tern order and addition of delays into the 2201 A program-
ming sequence. To test line width variation over a 1.0 mm
scan field, the pattern in Fig. 9 was exposed. The line van-
ation was estimated to be 5 nm for 65-nm-wide lines. A
more accurate investigation would require micrographs
with more detail which, at this time, are currently not
available. To test the registration accuracy, the double ex-
posure pattern in Fig. 10 was used with our best results
shown in Fig. [1. We believe we have achieved an overlay
accuracy of less than 100 nm.

Vi. SUMMARY

We have shown that using an AWG to control a SEM
for EBL can provide a versatile nanolithographic exposure
tool capable of large scan field exposures. With the flexi-
bility of the 2201A, we are able to precisely control the
exposure dose, accurately position the electron beam, and
maintain beam position as well as control the image pro-
cessor to facilitate device registration. The 16-bit resolution
in voltage and four-digit resolution in sampling rates al-
lows for optimai control of exposure dose. The variable
output of the wave form generator also simplifies the ad-
justment of scan field aspect ratios. We have shown that we
are capable of exposing patterns in large scan fields with
nanolithographic features. Having the flexibility to pattern
the fine structures as well as other device features in one
system reduces the overhead associated with device design
and fabrication.
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New technique for computation and challenges for electron-beam

lithography
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In this article, the basic concepts of our recently proposed computing architecture based on
Coulomb coupling of nanofabricated structures, called quantum cellular automata (QCA) are
reviewed and fabrication issues critical to the new technology are discussed. The QCA
fabrication will require an extremely high level of lithographic control. To this end, the
proximity effects in making very high density patterns with poly(methylmethacrylate)
(PMMA) and electron-beam lithography have been experimentally investigated. A triple
Gaussian model was used to simulate the experimental data. By using a 50 keV eclectron beam,
sub-40 nm pitch gratings, double lines, and dot grids were successfully fabricated on Si and
SiO,/Si bulk wafers with single-level PMMA and lift-off.

|. INTRODUCTION

High density patterns are very important for such struc-
tures as quantum devices and high speed photodetectors,'
as well as studies of basic quantum phenomena, such as
current drag.? Recently, we proposed a new paradigm for
computing with cellular automata (CA) composed of ar-
rays of quantum dots arranged into separate cells of several
dots.** We call this new architecture “quantum cellular
automata” (QCA). Our calculations show that the dots,
which are fundamental to the new architecture (discussed
below), must be as small as 10-15 nm in diameter on a
pitch of 15-30 nm with intracell variations of at most 5%—
10% over a few micron area. This implies that electron-
beam lithography (EBL) to be used in the fabrication will
be put to a serious test. Although Allee et al’® have di-
rectly patterned 15 nm gratings on SiO,/Si with EB irra-
diation, lift-off with poly(methylmethacrylate) (PMMA)
is still one of the most common techniques used in pattern
transfer. The latter has so far produced resuits in the 40-50
nm pitch range.' In this size regime, pitch is limited by the
strength of PMMA and proximity effects during exposure.

Proximity effects result from the distributions of in-
jected and scattered electrons in the resist. Because of the
distributions, the resist which is not directly addressed by
the primary EB will also be exposed. The electron distri-
butions in resist have been discussed in many papers,””’
and a triple Gaussian model*'® was used in modeling the
distributions. The triple Gaussian model is

1 r
“r(l+n+7) E"""(‘E’)

7 Yy v s
+5:e3p(—a )+? exp(—?)
The first term includes the distributions of the primary

electron beam and forward scattered electrons. The width
of the term a ranges from a few nm to tens of nm, which
depends on the beam size and energy, and the resist. The

second term only includes the backscattered electrons from
the substrate. The width of the distribution of backscat-

fn
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tered electrons B is a few microns and depends on beam

energies and types of substrates. The higher the beam en-

ergy, the wider the distribution.'' The third term, the

“broad range electrons,”'® describes the behawiss. aball
other electrons that are not includeds ime
terms.®® Its width ¥ is a few hundreds of nm: Hiwe; 7 and
7’ are the ratios of the exposures of the £ and 7. teemx to.the:
forward exposure, respectively.

Because of their distributions, different electrons result
in proximity effects in different ranges. Although there are
many papers that have investigated the proximity effects in
EBL%*'? and many methods for computer-aided proximity
effect corrections during EBL have been developed,'>! the
feature sizes and spacing in most of the publishes work are
in the half- or quarter-micron regime, which is important
in ultra-large scale integration (ULSI) circuit fabrication.
Since large throughput is required in manufacturing, low
beam energy (20 keV) and large currents are used in in-
dustrial EBL. In that case, backscattered electrons can
dominate the proximity effects. However, for making very
high density patterns that approach the spstial density
limit of EBL, high beam energy (50 keV or higher), and
small beam size (smaller than 10 nm) are usually used. In
applications of nanolithography for quantum devices, pat-
tern sizes are usually very small compared to those of
ULSI. Therefore, the proximity effects from forward scat-
tered electrons and secondary electrons become more
pronounced. '

In this article, we discuss the basic properties and re-
quirements of the QCA architecture. Toward the achieve-
ment of the required size scales, we report an experimental
investigation of proximity effects for lines with pitch down
to 50 nm. A triple Gaussian model is used in the theoret-
ical simulation of the experimental resulits. The purpose of
discussing the proximity effects is not directly to make
proximity corrections in processing, but to understand and
overcome the difficulties in making high density patterns.
A spatial density limit in gratings caused by the proximity
effects in PMMA is also determined. We studied the prox-
imity effects in gratings rather than in arrays of dots
(which will be more typical of the QCA work 0 be done)
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Fig. 1. (a) The quantum cell consisting of five quantum dots which are
occupied by two electrons. The mutual Coulombic repulsion between the
clectrons resaits in bistability between the P= + | and P= — | states. (b)
The cell-cell response function for various values of the dot-to-dot cou-
pling emergy . The induced cell polarization P, is plotted as a fimction of

the neighboring cell polarization P,. The results are shown for values of

t= =02 (full curve), —0.3 (dotted curve), —0.5 (dashed curve), and
—0.7 (dot-dashed curve) meV. Note that the response is shown only for
P, in the range [—0.1,+0.1}.

since gratings are more susceptible to proximity effects due
to larger integration of dose, and the resuits would be more
easily interpretable. The results discussed below can be
applied to structures which require spacing in the sub-50
nm range. Toward this goal, 38 nm pitch gratings, 36 nm
pitch double lines, and 37 nm pitch dot grid on Si and
$i0,/Si bulk substrates were successfully made with 50
keV EBL combined with the lift-off technique.

il. QUANTUM CELLULAR AUTOMATA (QCA)

QCA consist of separate cells containing several quan-
tum dots per cell, as shown in Fig. 1(a). We have proposed
a specific realization of these ideas using two-electron cells
composed of quantum dots, which we will later show is
within the reach of current fabrication technology. We de-
fine polarization as an average of the two-electron wave
function as defined in Refs. 3 and 4. If the charge is aligned
along one axis as shown in Fig. 1(a), the polarization is
“41" (encoding the binary value “1) and when distrib-
uted along the other axis the polarization is ““ — 1" (encod-
ing the binary value “0”). The mutual Coulomb repuision
of the two electrons causes the charge density in the cell to
be very highly polarized (aligned) along one of the two cell
axes, suggestive of a two-state CA. Figure 1(b) shows the
polarization of a two-electron cell due to the polarization
of an adjoining cell for various values of the dot-to-dot
coupling energy, ¢ (which depends on the intracell barrier
heights and intracell dot spacing). The polarization of one
cell induces a polarization in a neighboring cell through
the Coulomb interaction in a very nonlinear fashion.
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Electrons within the cells are coupled quantum mechan-
ically by tunneling between sites, but coupling between
cells is strictly by Coulomb interactions. The cells are ar-
ranged in arrays which interact to perform computational
functions. Computing in the new paradigm is edge driven.
Input, output, and power are delivered to the edge of the
array only; no direct flow of information or energy to in-
ternal cells is required. The architecture is so designed that
the ground state configuration of the array, subject to
boundary conditions determined by the inputs, yields the
computational result. We refer to computations performed
in this manner as “computing in the ground state.”

Device modeling has been performed by solving the
two-electron Schrodinger equation directly for each cell.
Arrays of cells were modeled using a self-consistent Har-
tree technique based on the two-electron problem in each
cell. We have shown™* that useful computing structures
can be built from a set of logical primitives composed of
quantum cells. This set includes wires, wire crossings, in-
verters, and a flexible three-input structure. The three-
input device can be configured as an AND gate, an OR
gate, or a majority logic unit. The reader is referred to the
references for a complete description of thess logic devices.

The precise nature of the cell fabrication is critical to the
success of the CA. The QCA cell arrays are forgiving of
variations of dot size and spacing when variations occur
only between adjoining cells, but not within a cell. Figure
1(b) shows that the resulting polarization of a cell is very
large when subjected to only a small polarization of the
input cell. This implies that spacing between cells is not
very critical since the Coulomb interactions affected by
variations in distance are equivalent to variations of polar-
ization. However, if a cell contains dots of various sizes,
then it is prebiased toward one or the other state. Although
this can be very useful in some cases,** if uncontrolled, the
state of the cell would be very difficult to control accu-
rately. The remainder of this article is devoted to an ex-
perimental investigation of the role of proximity effects in
obtaining very dense patterns such as those likely to be
used in QCA fabrication.

Iil. EXPERIMENTAL PROCEDURE

Single layers of 950K PMMA 50-70 nm thick were
spun on bulk Si and SiO,/Si substrates. The thickness of
the SiO, in all cases was 200 nm. Patterns were written at
50 keV with an Amray 1400 scanning electron microscope
employing a W cathode, customized as an EBL system.'*
After exposure, samples were developed with methylisobu-
tylketone:isopropanol:methylethylketone ~ (MIBK:IPA:
MEK) (1:3:0.06) maintained at 26 °C. At this tempera-
ture, the contrast of the developer has been demonstrated
to be larger than 10.'® Our samples were not rinsed with
pure methanol, as is typically done following
development.! We have found'’ that methanol and other
solutions weaken the strength of PMMA walls and limit
the space between patterns, and that in fact this rinse step
is not necessary. We found that replacing this step by dry-
ing in pure N, immediately after development is of benefit
to the strength of the PMMA walls, and therefore helps to
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F1G. 2. Experimental resuits of the relative dose as a function of number
of lines in gratings. +:110 nm pitch gratings; X :90 nm pitch gratings.

achieve high deusity patterns with lift-off. Au or Ti/Au
was evaporated with an EB evaporator followed by lift-off
with acetone soaking and shooting with a syringe.'®

The relationship between resulting linewidth w and
(single-pass) line dose Dy, (defined in units of C/cm) is
approximately linear at lower doses and saturates at higher
doses,'™"? yielding a relationship for the average area dose
" Do in the linear region as,
Dyreg = Disae/w(C/cm?). (2)

This implies that in all of our exposures at low doses and
narrow lines, the average dose across the developed area of
the line is constant regardless of the final linewidth.

IV. RESULTS AND DISCUSSION

As discussed above, the linewidth increases linearly
with small exposure doses. If two lines are exposed near
each other, each line will get extra exposure dose from the
other line exposure because of proximity effects. In order
to achieve the same linewidth, the average area dose de-
fined by Eq. (2) should be smaller in two close lines than
in a single line pattern. This means that the slopes in the
relation between linewidth and exposure dose will be dif-
ferent in the two cases.'* We define relative dose as the
ratio of the average area dose of multiline patterns to the
average area dose of a single line pattern. Figure 2 shows
the relative dose as a function of the number of lines in a
pattern. As expected, relative dose decreases as more lines
are added into the pattern because of interline exposure by
the proximity effects. Also the relative dose decreases when
lines get closer together. This can be seen more clearly in
Fig. 3 which shows the relative dose as a function of the
line pitch of gratings. The gratings in our study were 3
umXx3 um separated by 2 um spaces. Linewidths were
measured at the center of gratings and ranged from 20 to
45 nm for different pitch gratings. This is different from
ULSI in which equal space and linewidth are important,’
since this is not typicaily necessary for quantum device
applications. In Fig. 3, the relative dose was defined as the
ratio of the average area doses of gratings to those of the
150 nm pitch gratings. The dot—dashed line in Fig. 3 is a
calculated result using Eq. (1).2° In our calculation, we use
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F1G. 3. The relation between the relative dose and the pitch of gratings.
O, X, and + are separate sets of experimental resuits. The dot-dashed
line is the simulation with the triple Gaussian model.

B=10 um and 1=0.8 for 50 keV backscattered electrons
in solid silicon substrates according to Ref: 11. Ideally, a
should be determined by a convolution of the beam shape
with the lateral scattering profile within the resist.?! Since
this is-complicated by knowledge of the exact shape of the
beam and lateral scattering properties, we instead fit the
experimental data.’%'? For the best fit, a, 7, and 7' were
chosen as a=0.029 ym, y=04 um, and 5'=0.35. Al-
though backscattered electrons from other gratings also
contributed to the total dose, it is appropriste to neglect
them in our case since 1/82<1/a and 7'/7%, and the total
area of all other gratings within a range of § away from the
center was small. From Fig. 3, it can be seen that the
relative dose decreases very quickly for line pitch smaller
than 100 nm, while it is relatively flat for line pitch larger
than 150 nm. Relative dose as a function of pitch of double
lines also shows a similar relation.'’

The different relationship between the relative dose and
the pitch of gratings is due to the proximity effects from
primary, forward, backscattered, and long-range electron
distributions. This has been presented in Ref. 10. Figure 3
is important because it not only shows the significant prox-
imity effects caused by forward scattered electrons and fast
secondary electrons, but it is also very useful in predicting-
the dose needed to achieve certain pitch gratings with re-
quired linewidth in EBL.

By using Eq. (1), the minimum exposure received be-
tween lines (E,) and the maximum exposure received by
the lines (E,) can be calculated. The larger the ratio
E/Ep, the more difficult the task faced by the developer
and the higher must be the contrast of the developer uti-
lized in order to delineate the latent image. Figure 4 shows
E/Ep a3 a function of the grating pitch. 8, v, 7, and 7’
were the same as in the calculation in Fig. 3, while different
widths of forward scattered electrons (a) were used in the
calculation. The shift of the E/Ep curve to the left as a
decreases means that higher spatial density can be achieved
for smaller a. Also E,/E, changes with grating pitch and
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F1G. 4. E/E, as a function of the pitch of gratings. £, is the minimum
exposure received between lines, and £, is the maximum exposure re-
ceived on the lines.

approaches unity when lines are very close. In that case,
patterns are washed out. The role of the developer is to
distinguish E, and Ep to produce the required patterns. For
a given developer contrast, there is a maximum E,/Ep that
can still be distinguished by the developer. E,/Ep can be
related to D/D,, where D, is the exposure dose at the
onset of development and D is the exposure dose for com-
plete development, and developer contrast y* is defined as
1/10g( D/ D). Therefore, the minimum pitch that can be
achieved with the developer can be obtained from Fig. 4.
We used a very high contrast developer in our experiments.
The contrast for our developer is greater than 10 at 26 °C,'®
so it can distinguish Ep from E, at £ /Ep~0.8 or even
higher. Therefore, only 50-60 nm pitch gratings could be
expected in our proximity effect experiments in which 4 pA
beam current was used. However, with =10 nm,’” 20 nm
pitch gratings can be expected.

Guided by the discussion above, the beam current was
decreased from 4 to 2.5 pA. Although this made focusing
more difficult because of image noise, by carefully focusing
of a narrower beam, we achieved a minimum grating pitch
of 38 nm, as shown in Fig. S(a). In order to get this resuit,
Fig. 3 was used with Eq. (2) to determine the best line
dose range needed in the exposure. Also, extreme care was
taken during the development because any overdevelop-
ment could cause the lires to wash out. These data points
are not shown in Fig. 3 for two reasons. First, a was
changed as the beam current decreased. Second, the line-
width of the 38 nm pitch grating could not be accurately
measured because of the resolution of our scanning elec-
tron micrograph (SEM), so it was difficult to get the ac-
curate area dose required in Fig. 3. The grating is made by
Ti/Au (2 nm/15 nm) on top of SiO,/Si by lift-off. 36 nm
pitch double lines made by lift-off are shown in Fig. 5(b).
Since there is less proximity effect in double lines than in
gratings, as shown in Fig. 2, making dense double lines is
casier than making dense gratings. However, besides prox-
imity effects, the spatial density of EBL is also limited by
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(c

FIG. 5. (a) A Ti/Au (2 nm/15 nm) graung with 38 nm-puch: (b} A
lift-off Ti/Au (2 nm/15 nm) double lines with 36 nm center-to-center
distance: both (a) and (b) are made by lift-off on $1O,/Si substrates. (¢
A gold (15 nm thick) dot gnd on Si substrate with 37 nm pitch by bft-off

the minimum fundamentally achievable linewidth and
space. The former (linewidth) is determined by beam size
and fast secondarv electrons (intraline proximity effect).
and is ~10 nm. The latter (space) is dominated by the
strength of PMMA,' ™ and is also ~ 10 nm for 45 nm
thick resist. This means that the minimum achievable pitch
of double lines 1s ~ 20 nm. 1.e., the same as the mimmum
expected pitch of gratings limited by all proximuty effects.
A 37 nm pitch dot grid is shown in Fig. S(c). It is 15 nm




2569 Huang, Bazan, and Bernstein: New technique for computation and challenges for EBL 2569

thick Au on a Si substrate made by lift-off. This micro-
graph was obtained with a Topcon model ABT-150F field
emission SEM. Since there is much less proximity effect in
making dot grids, and the strength of PMMA is not as
important in this case, 10 nm diam dots with 15 nm pitch
dot grids can be expected.

V. SUMMARY AND CONCLUSIONS

We discussed a new paradigm in computing called
quantum cellular automata and related the physical prop-
erties of the quantum structures to the limits of EBL. We
investigated proximity effects in order to predict the ulti-
mate size of the achievable dot arrays for QCA applica-
tions. We investigated properties of dense gratings and dot
arrays with a minimum achieved double line pitch of 36
nm. We predict that dot arrays with a pitch of 15 nm
should be achievable. Thus, the requirements for the fab-
rication of dense arrays of dots for applications to quantum
cellular automata are predicted to be within the physical
limits of lift-off technology using PMMA resist and EBL.

ACKNOWLEDGMENTS

The authors thank W. Porod, C. S. Lent, and P. D.
Tougaw for helpful discussions. This work was supported
by the National Science Foundation, the National Space
Grant College and Fellowship Program, the Air Force Of-
fice of Scientific Research, and the Office of Naval Re-
search. They also thank Topcon Technologies Inc. for pro-
viding field emission SEM micrographs.

J. Voe. Sol. Teohnel. B, Vol. 11, No. §, Nov/Dec 1993

P B. Fischer and S. Y. Chou. Appl. Phys. Lett. 62, 2989 (1993).

‘A. G. Rojo and G. D. Mahan, Phys. Rev. Lett. 68, 2074 (1992).

‘'C. S Lent. P. D. Tougaw. and W Porod. Appl. Phys. Lett. 62, 714
V1993

‘CS Leng, P D Tougaw. W Porod. and G H. Bernstein. Nanotech-
nology 4. 49 (1993)

‘D. R. Allee and A N Broers, Appl Phvs Lett. 87. 2271 (1990)

"D. R. Allee, C. P. Umbach, and A N Broers. J. Vac. Sc1. Technol B
9. 2838 (1991)

‘D C Joy, Microelectron. Eng. 1. 103 (1983}

‘R. J Bojko and B. J Hughes, J Vac Sci. Technol. B 8. 1909 (1990}
’S. 1. Wind, M. G. Rosenfield. G. Pepper. W W_Molzen, and P. D
Gerber, J. Vac. Sci. Technol. B 7. 1507 (1989); M. G. Rosentfield. S. J
Wind. W W. Molzen, and P. D Gerber. Microelectron. Eng. 11. 617
(1990).

'"X. Huang, G. H. Bernstein, G. Bazan. and D. A. Hill. J Vac. Sa1.
Technol. A 11, 1739 (1993).

"'P. M. Mankiewich, L. D. Jackel. and R. E. Howard, J. Vac. Sc1. Tech-
nol. B 3, 174 (1985).

'’S. A. Rishton and D. P. Kern, ). Vac. Sc1. Technol. B 8, 135 (1987)

BR. C. Frye. J. Vac. Sci. Technol. B 9. 3054 (1991).

'“S. Y Lee. J. C. Jacob, C. M. Chen. J. A McMillan, and N C McDon-
ald. J. Vac. Sc1. Technol. B 9. 3048 (1991)

"*G. Bazan and G. H. Bernstein, J. Vac. Sci. Technol. A 11, 1745 (1993)

'*G. H. Bernstein, D. A. Hill, and W.P. L, J. Appl. Phys. 71, 4066
(1992). .

"D. A. Hill, X. Huang, G. Bazan, and G. H. Bernssem, J. Appl. Phys. 72,
4088 (1992).

'S. Mackie and S. P. Beaumont, Solid State Technol 117 (1985).

'*X. Huang and G. H. Bernstein (unpublished).

T H. P Chang, }. Vac. Sci. Technol. 12, 1271 (197%).

*13.S. Greenexch and T. van Duzer, 1IEEE Trans. Electron Device ED-21.
286 (1974).

“X. Huang, G. Bazan, D A. Hill. and G. H. Bernstexn. J. Electrochem
Soc. 139, 2852 (1992).




