DTIC -

ELECTE
FEB 151994

A

hth

|
j

-

A Family of Joint Probability Models for
Cost and Schedule Uncertainties

AD-A275 513

Paul R. Garvey
The MITRE Corporation, Bedford, Massachusetts

27th Annual Department of Defense Cost Analysis Symposium
September 1993

Abstract - This paper discusses a family of analytical models from which the joint
probability of total program cost and schedule can be calculated, analyzed, and presented to
decision-makers. Specifically, the classical bivariate normal and two lesser known joint
distributions, the normal-lognormal and the bivariate lognormal distributions are
discussed. Experiences from Monte Carlo simulations suggest that this family of
bivariate distributions are candidate models for computing joint and conditional cost and
schedule probabilities. In particular, the discussion on the normal-lognormal distribution
as a joint cost-schedule probability model extends research on the applicability of the

bivariate lognormal presented last year*.

Joint probability distributions enable analysts and decision-makers to determine joint and
conditional probabilities of the types

P(Cost < a and Schedule < b)
P(Cost < a| Schedule = b)

at the program level. Probability statements such as these have not been a common
product of cost uncertainty analyses, and the development of analytical methods that
produce these probabilities is an advance in the state of the practice.

General formulas for the correlation functions, conditional distributions, and moments of
the family of joint probability distributions described in this paper are provided. Cost
analysis applications are presented to illustrate the use of these distributions in a practical
context.
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A FAMILY OF JOINT PROBABILITY MODELS FOR
COST AND SCHEDULE UNCERTAINTIES

This paper proposes a family of analytical models from which the joint
probability of total program cost and schedule can be described,
analyzed, and presented to decision-makers. Specifically, the classical
bivariate normal and two lesser known joint distributions, the normal-
lognormal and the bivariate lognormal distributions are discussed.
Experiences from Monte Carlo simulations suggest that this family of
bivariate distributions are candidate models for computing joint and
conditional cost and schedule probabilities. In particular, the
discussion on the normal-lognormal distribution as a joint cost-schedule
probability model extends research on the applicability of the bivariate
lognormal presented last yearl.

Joint probability distributions enables analysts and decision-makers to
conduct tradeoffs on joint and conditional probabilities of the types

P(Cost € a and Schedule £ b)
P(Cost £ a | Schedule = b)

at the program level. Probability statements such as these have not
been a common product of cost uncertainty analyses, and the development
of analytical methods that produce these probabilities is an advance in
the state of the practice.

General formulas for the correlation functions, conditional
distributions, and moments of the family of joint probability
distributions described in this paper are provided.

Paul R. Garvey

The MITRE Corporation
202 Burlington Road
Bedford MA

(617) 271-8234

1 Garvey, P. R., Taub A.E., A Joint Probability Model for Cost and
Schedule Uncertainties. The MITRE Corporation, presented at the 26th
ADODCAS, September 1992.
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probability of total program cost and schedule can be calculated, analyzed, and presented to
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distributions, the normal-lognormal and the bivariate lognormal distributions are
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bivariate distributions are candidate models for computing joint and conditional cost and
schedule probabilities. In particular, the discussion on the normal-lognormal distribution
as a joint cost-schedule probability model extends research on the applicability of the

bivariate lognormal presented last year”.

Joint probability distributions enable analysts and decision-makers to determine joint and
conditional probabilities of the types
P(Cost < a and Schedule < b)
P(Cost < a| Schedule = b)

at the program level. Probability statements such as these have not been a common
product of cost uncertainty analyses, and the development of analytical methods that
produce these probabilities is an advance in the state of the practice.

General formulas for the correlation functions, conditional distributions, and moments of
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1. INTRODUCTION

When cost and schedule uncertainty analyses are presented to decision-makers,
questions asked with increased urgency are: What is the likelihood of achieving
both the estimated cost and schedule? What is the chance of exceeding the most
likely cost for a given schedule? How are cost reserve recommendations driven by
schedule uncertainties? Questions such as these are not readily answered by
current analysis tools and techniques. This paper advances the state of the practice
by presenting a family of probability models designed to specifically address these
and related questions.

During the past thirty years, uncertainty analysis methods have applied univariate
probability theory to generate separate distributions of a program's estimated cost
and schedule. These distributions provide decision-makers with probabilities such
as

P(Cost < a) ¢))
and

P(Schedule <b) @
Although it has long been recognized that cost and schedule are interdependent,
little has been adopted from multivariate theory to combine cost and schedule
probability distributions. A multivariate model that combines these distributions
would provide decision-makers joint and conditional probabilities such as

P(Cost < a and Schedule < b) A

and

P(Cost S a| Schedule = b) @)

In practice, probabilities in (3) and (4) are of greater interest to decision-makers
than those in (1) and (2). This is particularly true in the early planning phases of a
program where critical cost and schedule decisions are made.




This paper presents the cost analysis community with a family of multivariate
probability models from which joint and conditional distributions of program cost
and schedule can be developed. Specifically, the classical bivariate normal and two
lesser known joint distributions, the bivariate normal-lognormal and the bivariate
lognormal distributions are discussed. The development of the bivariate normal -
lognormal distribution, and its application in the cost analysis domain, extends
research [1] on the utility of joint probability models for program cost and
schedule. Appendixes are provided that document the properties of the bivariate
normal-lognormal and bivariate lognormal models. Properties of the bivariate
normal are well known and can be found in [2].

The models proposed in this paper are analytical. They facilitate computing the
probabilities defined in (3) and (4). Furthermore, the means and variances from
univariate cost and schedule distributions developed from traditional techniques can
be used to specify the parameters of a bivariate probability model assumed for a
given program. Thus, no new or additional analysis effort is required to define and
apply these models. Lastly, these models explicitly incorporate correlation between
cost and schedule on a given program - an issue not well addressed in current
analysis methodology.

Formulas are developed that combine program cost and schedule probability
distributions to produce conditional cost distributions for a given set of schedules.
For example, in figure 1 the curves with solid lines are unconditional distributions
of a program's cost and schedule. They represent probabilities of the types in (1)
and (2). Formulas are provided in section II that incorporate statistics from these
distributions to form conditional cost distributions for a given set of schedules.
The curves with dashed lines in figure 1 are examples of conditional cost
distributions. Conditional distributions represent probabilities of the type defined




in (4). They are an effective way of directly linking a given schedule to cost
recommendations tied to a specified level of confidence.
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Figure 1. Nlustrative Probability Distributions of Program Cost and Schedule

In summary, this paper advances current practice by offering a family of
multivariate models that produce joint and conditional probabilities of program cost
and schedule. Cost analysis applications that illustrate the mathematical theory are
presented.

II. JOINT PROBABILITY MODELS
AND THEIR SUPPORT TO RISK MANAGEMENT

This section briefly defines the domain of the models described in this paper and
how they provide analyses that supports risk management decisions. An overview
of the risk management decision space is discussed. A context for how these
models are defined within that space is provided. Finally, the types of uncertainties
that can be quantified by these models are discussed.




A. Models and the Risk Management Decision Space

Cost, schedule, and performance objectives define the domain of the program
manager's decision space. A characterization of this space is presented in figure 2.
Ilustrated is how user expectations on cost, schedule, and performance are often at
odds with what can actually be delivered. Risk is introduced when expectations in
any of these dimensions push what is technically and/or economically feasible.
Managing risk, then, is managing the inherent contention that exists within each
axis and across all three. The goal of risk management is to identify cost,
schedule, and performance risks early such that control on either axis is not lost, or
that the consequences of risk mitigating actions on all three axes are well
understood.

Performance
<= User Wants

s Contract Award
= Delivered Performance
=+ Minimum Acceptable Performance

Best
Target Ceiling Estimate
A - Fl

Cost

User Wants
Contract Schedule
Schedul Best Estimate

Joint Cost-Schedule
Probability Models

Figure 2. Models and the Risk Management Decision Space

The joint probability models presented in section III operate in two of the three
dimensions shown in figure 2. They are bivariate in the cost and schedule plane.
When applying these models it is assumed that a system architecture has been
defined, or hypothesized, by the engineering team. It is also assumed that this




architecture will achieve the performance requirements as they are specified or
understood at that time.

Thus, for a given system architecture, the uncertainties captured by these models
are those associated with its technical definition and resource (cost-schedule)
estimation approaches. Examples of technical definition uncertainties include
estimating the amount of new code to develop, or the number of custom
microchips to design and fabricate, or the delivered weight of a newly designed
antenna pedestal. Examples of resource estimation uncertainties include errors in
cost models and cost methodologies, uncertainties in estimated activity durations,
economic uncertainties as they affect the cost of technology (e.g.,
inflation/deflation), or uncertainties in the data (e.g., labor rates, productivity rates)
used to develop the resource estimates.

Once a joint cost-schedule probability model has been developed on a program,
analyses can be conducted to support risk management decisions. These include

Baselining Program Cost and Schedule Risk - For a given system
architecture, acquisition strategy, and resource estimation approach
baseline probability distributions of a program’s cost and schedule
can be developed. These distributions can be periodically updated as
the program's uncertainties change across the acquisition
milestones. Generating these distributions supports estimating a
program cost and schedule that simultaneously have a specified
probability of not being exceeded. This distribution also provides
program managers with an assessment of the likelihood of achieving
a budgeted or proposed cost and schedule or cost for a given
schedule.

Estimating Reserves - An analytical basis for estimating cost reserve
for a given schedule, or set of schedules, as a function of the
uncertainties specific to a given system can be developed.
Sensitivity analyses can be conducted to assess how reserve levels
are affected by changes in specific program risks. In addition, the
relationship between the amount of reserve to recommend for a
given level of confidence and a given schedule can be examined.




Conducting Risk Mitigation Tradeoff Analyses - Models can be
developed to study the payoff of implementing specific risk
amelioration activities (e.g., prototyping) on reducing the estimated
cost and schedule variances. For instance, suppose that the cost and
schedule variances of a program are driven by uncertainty in the
amount of new code to develop. Using these models, it can be
determined whether investing in a prototyping effort markedly
reduces this variance, and, therefore, lessen the cost and schedul:
reserves estimated for the program.

OI. A FAMILY OF JOINT PROBABILITY MODELS
FOR COST AND SCHEDULE

This section presents a family of joint probability models for program cost and
schedule. Specifically, the bivariate normal, the bivariate normal-lognormal, and
the bivariate lognormal models are described. These models are candidate
theoretical distributions that might be assumed by an analyst when joint or
conditional cost-schedule probabilities are needed.

The models described herein have two features desirable for cost analysis
applications. First, they directly incorporate correlation between cost and schedule
on a given program. Second, they have the property that their marginal
distributions* are either both normal, normal and lognormal, or both lognormal.
This is reflective of the distributions frequently observed in Monte Carlo
simulations [1,3) of program cost and schedule.

The following briefly describes these models. A cost analysis application is also
presented. Throughout the remainder of this paper the random variables X and
X> will denote program cost and schedule, respectively.

Y X) and X7 are random variables with joint probability distribution Fy, x. (x;,X;), then the
marginal distributions of X1 and X are the individual probability distributions Fx (x;) and

Fx, (x3), respectively.




A. The Classical Bivariate Normal Model

This section presents the classical bivariate normal and summarizes its major

characteristics. An important feature of this model are its marginal distributions,

which are both normal.

In cost analyses, normal distributions can arise when program cost is the sum of

many uncorrelated WBS cost element random variables. Normal distributions can

also occur in schedule analyses. For instance, program schedule is approximately

normal if it is the sum of many independent activities in a network. Thus, if

normal distributions characterize a program's cost and schedule distributions, then

the bivariate normal could serve as an assumed model of their joint distribution.

A.l Model Definition

Suppose we have two random variables Y; = X and Y, =X, where X; and X2

are defined on —eo <X <o and —e= <X, <eo. If Y] and Y7 each have a normal

distribution then, for i =1, 2, the mean and variance of Yj are
E(Y ) =ny, =px, =}
E(Y2)=ny, =px, =H2
Var(Y)) =0} =o% =of

2 2 2
Var(Y2)=cy2 =0’x2 =03

Assume that the pair

(X;.X2) ~ Bivariate N((1.1).(67.6%.p,,))

is a bivariate normal distribution with density function [2]

&)
(©)

Q)
@®

®




1 —éw
e — <X <o, —m< Xy <™

10
fx,.x, (X1.X2) = (21t)010’2'\ﬁ—pi2 (10)
0 otherwise
where

2 2
1 Xy~ Xy — Xy — Xy —
W= 5 ( 1 ul) '2px,2( 1 MI 2 uz)_{ 2 ﬂz)
1- pl,z o (s J] g, O,y
and y; and c? (i = 1, 2) are given by equations (5) through (8). The correlation
term p, , in equation (10) is

Pl.2 =pY1.Y2 =Px1.x2 an
If two continuous random variables X and X7 have a bivariate normal
distribution, then
P(a;<X;<bjanda; <X, <by)
is given by
b2 by
217 i ek axyg (12)
az Ya)

where, in this case, f is defined by equation 10.
A.Il Model Characteristics

A characteristic of the bivariate normal distribution is that the distribution of X1
and the distribution of X7 are each univariate normal. These are the marginal
distributions and they are given by
2,2}
-3l(x;=p1)"/0;
Hes - o] (13)

fi(xy)= 1 e
1A ;;211:61




~Yixz -n2)?re3

fh(xy)= ! e
2172 ;;21!0'2

Important tradeoffs in cost analysis often involve assessing the impact that a given

(14)

set of schedules have on the likelihood that program cost will not exceed a

prescribed threshold. To make these assessments, the conditional probability
distribution is needed. Conditional distributions provide probabilities of the type

P(X;<a|X; =b)

If two continuous random variables X1 and X7 have a bivariate normal
distribution, then the conditional probability density function of X given X7 = x2,

denoted by fX1|Xz (xy), is normally distributed [2]. That is
c
Xy x2 ~N( +;LPL2(X2 ~n).0t(1-pE2))
2
- o2 2 2
similarly Xy %y ~ N(uo +G_Pl.2(xl -1),02(1-pi2))
1

From (15) and (16) the conditional means and variances are
g
E(Xyjx2) =, '*'gpn,z(xz -H2)

o
E(X,fx)) =12 +;11P1.2(X1 -Kp)

Var(X[x3) = 61 (1-pf2)
Var(X,|x)) = 03(1-pf,)

(15)

(16)

an

(18)

(19)
(20)

Section D will illustrate how conditional distributions are developed to provide

decision-makers with cost-schedule probabilities such as

P(Cost < a| Schedule = b)




B. A Bivariate Normal-LogNormal Model

This section presents a bivariate normal-lognormal model and summarizes its major
characteristics. Unlike the classical bivariate normal, very little exists in the
statistical literature on this model. Furthermore, the few references [4,5] that
discuss the bivariate normal-lognormal define it by parameters not computed in
cost-schedule uncertainty analyses. Thus, an alternative form of the model than
that offered in [4,5) was created specifically for this application context. Its form
is a direct extension of the bivariate normal presented in section A. A theoretical
discussion of this model is provided in appendix A.

An important feature of the bivariate normal-lognormal model is its marginal
distributions. One marginal is normal and the other is lognormal (refer to appendix
A). Section A described circumstances that give rise to normal marginal
distributions for cost or schedule. Under certain conditions, lognormal
distributions can characterize simulated program cost and schedule distributions
[1,3]. For instance, it is frequently observed that the lognormal approximates the
simulated distribution of program cost if it is the sum of many positively correlated
cost element random variables. Similarly, program schedule can also tend towards
lognormality if it is the sum of many positively correlated schedule activities.

These observations stem from practical experiences with Monte Carlo simulations.
They are not theoretical findings. Exceptions to these observations can be created.
However, if a situation arises where normal and lognormal distributions
characterize a program’s cost arid schedule distributions, then the bivariate normal-
lognormal could serve as an assumed model of their joint distribution.

10




B.I Model Definition

Suppose we have two random variables Y; = X; and Y, =InX, where X and
X7 are defined on —eo <X <o and 0 <X, <e=. If Y] and Y2 eachhavea

normal distribution then, for i =1, 2, the mean and variance of Y; [1] are

E(Y)=py, =Hx, =i Q1)
Var(Y)) =0}, =0%, =of 2)
1 (ux,)*
E(Y;)=py, =py = —In| ——ste—s— (23)
2 2 2 | (ux,)* +o%,
2 2 (ﬂx )2+°§(1
Var(Y2)=cY2 =03 =1In _(1_)2__-. (24)
Hx,
Assume that the pair
(X;,X3) ~ Bivariate NLogN((H,.}2 ).(012.022 P20 (25)
is a bivariate normal-lognormal distribution with density function
—————1———-e-iw - <X <=, (<X <= (36)
fxl X, (x1,X3) = (2“)6102\11 - piz X7
0 otherwise
where

-1 X oW1 | g [X1zHi|Inxp—Mp | [10X) —py
Y102 P12
P12 )| o1 G2 G2

and p; and oiz (i = 1,2) are given by equations (21) through (24). From appendix
A (theorem A-1) the correlation term P2 in equation (26) is

11




( %3 _ Hy2
pl.2 -.pyl.Yz -pxl‘lan ~pxl 'x2 62 (27)

Equation 27 can be found in P. T. Yuan (1933) [6]. Proofs have been developed
by P. H. Young* and the author (refer to appendix A).

If two continuous random variables X} and X 7 have a bivariate normal-lognormal

distribution, then
P(a, le Sbl andaz SXZ sz)

is given by
b2 by
j I fx,.x, (X1.X2) dx)dx; (28)
ay Ya)

where, in this case, f is defined by equation 26
B.II Model Characteristics

A characteristic of the bivariate normal-lognormal distribution is that the
distribution of X is normal and the distribution of X2 is lognormal. These
marginal distributions are given by

1 -Hag-u)?red
fi(x)) = 2Mle&[’“ 7o (29)
_ 1 -f{ﬂn x2 -4y )° /022]
fy(xy)= oy (30)

*P.H Young [The Aerospace Corporation, 1992} developed a proof of (27). His approach
used the definition of E(X;X;) to determine p; 5. The proof of (27) presented in appendix A is a
slight variation of Young's approach. The formula for p, ; is established directly from the
definition of the Cov(X, X;) instead of E(X; X;). Recall that Cov(X) X,)=E(X;X;) - E(X; JE(X;3).

12




The conditional probability density function of X given X2 = x3, denoted by
fxnlxz (x;), is normally distributed (refer to appendix A, theorem A-3). That is

X[x2 ~ N(w, +§'LPL2(1" X2 —H2) .0t (1-pf,)) €}
2
. o
similarly X,|x; ~ LogN(u, +;‘T‘Pl,2(xl -1, 03(1-pf2)) (32)

From appendix A (theorem A-4) the conditional means and variances are

[+
E(Xy[xg)=p1 +=Lpy ,(Inxz ~h2) (33)
2
H2 +E7‘Pl.z(31-u1)+f°§("9{2) 34
E(Xjlxp)=e %
and
Var(Xy|xp) = 6(1-p?;) (3s)

2(u3 +%%Pl.2(xl"“l )}

Var(X,|x;)=e e’*(e* -1 (36)

wheré z=63(1-pi,)
Section D will illustrate how conditional distributions from the normal-lognormal

model are developed to provide decision-makers with cost-schedule probabilities

such as
P(Cost < a| Schedule = b)

C. The Bivariate LogNormal Model

This section presents the bivariate lognormal model and summarizes its major
characteristics. Research presented last year [1] demonstrated that, under certain
conditions, this model can approximate a program's cost-schedule joint and

13




conditional probabilities. The bivariate lognormal has a number of characteristics
desirable for cost analysis applications. Among these are

« ]t is bounded by zero (cost and schedule cannot become negative),

» Its marginal and conditional distributions are lognormal, which is
fly observed in Monte Carlo simulations of program cost and
schedule [1,3].

C.I  Model Definition

Suppose we have two random variables Y| =1nX, and Y, =InX, where X) and
X3 are defined on 0 <x; <= and 0 <x; <e. If Y] and Y each have a normal
distribution then, for i =1, 2, the mean and variance of Y; [1] are

1 (ux,)*
E(Y)) =)y =}; ==Iln| —S‘—5— 37
(Y =y, =n; 5 n[(uxi)2+°§(iJ
2 (“X~)2+0§(-
Var(Yi)=o§{. =06 =In ——4———-2——‘- (38)
' (nx,)
Assume that the pair -
(X,X) ~ Bivariate LogN((u1.12),(0%,6%.p; ;) (39)

is a bivariate lognormal distribution with density function

1 _&w
> e 0<x) <0, (}<Xy <o (40)
fx,.x, (X1.X2) ={(27)0,0, \/1 - Pi2X1X2
0 otherwise

where

W= 1 Inx; -, -2 Inx; -y [Inxy~-y, Inx, -,
T 1-p2 o PLal ™6 o c
P12 1 1 2 2

14




and j; and 67 (i = 1, 2) are given by equations (37) and (38). From appendix B
(theorem B-2), the cormrelation term P2 in equation (40) is

__1 o7 _[o2 ] 1)
plvz—;l_(;;lnl:l.‘-pxl'xzﬁ -I'L -1

If two continuous random variables X and X7 have a bivariate lognormal

distribution, then
P(al le < hl and ar SXz sz)
is given by

by by
[ 0, aexo) axyang @)
a) Ya
where, in this case, f is defined by equation 40.
C.Il Model Characteristics

A characteristic of the bivariate lognormal distribution is that the distribution of X §
and the distribution of X7 are each lognormal. These marginal distributions are

given by
- 1 -4[(inx, -p, ) /6}]
fl(xl) me (43)
- 1 “f[('" X3 -Hz )2 ’022]
f2(x3) = me 44)

The conditional probability density function of X1 given X2 = x2, denoted by
fxllx2 (x;), is lognormally distributed (refer to appendix B, theorem B-4). That is

o]
Xy %2 ~ LogNQuy +_Lpya(Inxz ~p2). 0f (1-pf2)) (45)
2

15




similarly  X,|x, ~ LogN(y, +%1p,'2(m X, —Hy).05(1-pi5)) (46)
1

From appendix B (theorem B-5) the conditional means and variances are

A, , -3 2 2(1-p, 47
E(xllx2)=x;,px.-eul sy PL2B2+461 (1~pi 3) 47
- 201~p? 48
and
Zﬂ b ] 2 _0 E1.%) . .
Var(X1|x2)=x2"2p"'e Gt ag'p"’u‘)e’ (e* ~1) 49)
25 21,-2p, 5
var(lexl)=xl?l%pl.zc (M2 a pl.-ul)ez(ez—]) (50)
where

z=03(1-pf2) and z*=0f(1~pf,)
Section D will illustrate how conditional distributions from the bivariate lognormal
model are developed to provide decision-makers with cost-schedule probabilities

such as
P(Cost < a| Schedule = b)

D. A Cost Analysis Application

The following illustrates, from a cost analysis perspective, how the joint
probability models described in this paper can be defined and applied. Recall that
the random variables X ; and X» denote program cost and schedule, respectively.

Suppose that the cumulative probability distributions of a program's cost and
schedule are given in figure 3. Furthermore, suppose that these distributions have
means and variances given in table 1 and that the correlation between program cost
and schedule, px, x,, was 0.50.

16
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Figure 3. Probability Distributions for Program Cost and Schedule

Table 1. Program Cost and Schedule Statistics

i Xj Hx; c§i ox,

1 Cost ($M) 100 625 25

2 Schedule (Months) 48 36 6
Comrelation px x, 0.50

Using these data, the parameters of the three joint probability models described in
this paper can be determined. These parameters are summarized in table 2.
From table 2 and (9), (25), and (39) we can write

(X;.X,) ~ Bivariate N((100,48),(625, 36,0.50)) (51
(X1,X7) ~ Bivariate NLogN((100,3.863),(625,0.0155,0.502)) (52)
(X,,X,) ~ Bivariate LogN((4.575,3.863),(0.0606,0.0155,0.506))  (53)
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if the pair (X;,X,) is an assumed bivariate normal, an assumed bivariate normal -
lognormal, or an assumed bivariate lognormal.

Table 2. Joint Probability Model Parameter Set

i Bi S i
Bivariate Normal Model
1 100 (Eqt 5) 625 (Eqt 7) 25
2 48 (Eqt6) 36 (Eqt 8) 6
Correlation p; 0.50 (Eqt 11)

Bivariate Normal-LogNormal Model
1 100 (Eqt 21) 625 (Eqt 22) 25

2 3.863(Eqr23) 0.0155 (Eqr24) (.124
Correlation p, 0.502 (Eqt 27)

Bivariate LogNormal Model
1 4575 (Eq37)  0.0606 (Eqr38) (1.246

2 3.863(Eqt37) 0.0155 (Eqr38) 0.124
Correlation p; ; 0.506 (Eq1 41)

Once the joint distribution of (X;,X,) has been specified, joint cost-schedule
probabilities can be computed. For instance, if (X,,X3) is assumed to be
bivariate normal-lognormal with parameters given in (52), then the probability

P($100M < X; < $130M and 45 months < X, < 55 months)

ISS e d =0.245
X1,X x1dx4 =0.
Ist X..Xz( 1 2) 1942
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In this case, the integrand fx x, (x;.X2) is defined by equation 26. Joint cost-
schedule probabilities for other regions of interest are determined in a similar
manner.

D.I Conditional Cost-Schedule Distributions

Cost analyses must often focus on assessing the impact that a given set of
schedules have on the likelihood that an estimated program cost will not be
exceeded. To make these assessments the conditional distribution of program cost
is needed. Stated previously, conditional distributions produce probabilities of the

type
P(Cost < a|Schedule = b)

Computing a conditional probability requires the joint cost-schedule probability
distribution. Recall the following joint cost-schedule distributions formed from the
data in table 1.

(X1,X3) ~ Bivariate N((100,48),(625,36,0.50))
(X1,X,) ~ Bivariate NLogN((100, 3.863),(625,0.0155,0.502))
(X,,X,) ~ Bivariate LogN((4.575, 3.863),(0.0606,0.0155,0.506))

From equations 15, 31, and 45, and table 2, the conditional distributions of cost
X,lxz for a given schedule x, can be formed. In this case, the conditional
distribution of X;|x, if the pair (X;,Xj) is an assumed bivariate normal, an
assumed bivariate normal-lognormal, or an assumed bivariate lognormal are,
respectively

Xijx3 ~ N(100+2.083(x, —48), 468.75) (54)
Xix3 ~ N(100+101.21(Inx, — 3.863), 467.5) (55)
Xix2 ~ LogN(4.575+1.0038(Inx, —3.863), 0.045) (56)
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Using the lognormal distribution given by (56), conditional cumulative cost
distributions given x; equal to 50, 55, and 60 months are shown in figure 4. Table
3 summarizes the statistics, computed from theorems B-4 and B-S (refer to
appendix B), of these distributions.

From figure 4, the impact of a given schedule on the probability distribution of cost
can be determined. Observe that as x , increases, the cumulative conditional cost
distributions become "lazier." Shown in table 3, the increased laziness reflects a

growth of nearly 2 million dollars in 6(X;|x) for each S month increase in x,.

1
===
09 Pt IoLh

0.8 //,’T‘”'ﬁm"

0.7 a—
/[
. 0.6 #
Conditional e
Cumulative 0.5 / f—r
Probability 04 / /

0.3 3,"/

0.2 [/
77

0.1 -

0 J‘.{' ;

55 105 155

Cost ($M) Given 50, 55, 60 Months (m)

Figure 4. A Family of Conditional LogNormal Cost Distributions
(Equation 56 with x5 = 50, 55, 60 months)

By definition, the conditional median cost occurs with probability

P(Cost < a| Schedule = x5) = 0.50
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where, in table 3, a is equal to 102, 112, and 122 million dollars given x, equal to
50, 55, and 60 months, respectively. This reflects the cost that is equally likely to
overrun or underrun for a given schedule x,. For this specific example,

Median(X1| X, ) increases by 10 million dollars for every 5 month increase in x,.

A similar increase is seen in the conditional mean cost E(X;|x5).

Table 3. Statistics from the Conditional Distributions in Figure 4
Givenx,  Median(Xj}x;) E(Xj|x2)  o(X)]x;)

(Months) ($M) (M) ($M)
50 102 104 224
55 112 115 24.6
60 122 125 26.9

Linkages such as these between cost uncertainty and schedule can be made through
the use of conditional distributions. In the early stages of a program, conditional
distributions provide decision-makers valuable insight into the likelihood of
achieving cost and schedule goals.

IV. SUMMARY COMMENTS

The family of joint probability models described in this paper provides an analytical
basis for computing joint and conditional cost-schedule probabilities. Selection of
a particular model is guided by the marginal distributions it produces. For
example, if the individual distributions of X 1 and X7 are observed to be normal
and lognormal, then the bivariate normal-lognormal model (25) might be chosen
for the joint distribution of the pair (X;,X;). This is because the bivariate normal-
lognormal model produces normal and lognormal marginal distributions.
However, it must be viewed that choosing this particular model makes an
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assumption about how the pair of random variables (X, X5) is jointly distributed.
The true joint distribution of (X,,X5) cannot be uniquely determined from only the
individual distributions of X and X».

A parameter required by the models in this paper is the correlation between
program cost and schedule. Although this is a difficult parameter to estimate,
approaches include deriving it from an historical cost-schedule database (one such
correlation coefficient can be found in reference 1) or computing it using values
sampled from a simulation of the cost-schedule estimating relationships established
for a particular program. Subjective assessments might be used in the absence of a
database or a cost-schedule simulation model.

An important consideration regarding the models herein is that they do not reflect
the causal impact that schedule compression or extension has on cost.  These
models treat cost and schedule as correlated random variabies whose range of
values are reflected by their marginal distributions. These ranges result from
quantifying the uncertainties associated witn a specific technical baseline and the
cost-schedule estimation approaches. Unrealistically compressing or extending
schedule (due to missed milestones or program re-plans) can incur increased cost.
In these circumstances a reassessment of the system's cost-schedule risk is
warranted.

The utility of joint probability models is enabling analysts to present decision-
makers with an integrated view of cost and schedule uncertainties. In developing
the model parameters for a specific system, elements that significantly contribute to
cost and schedule risk are identified. This fosters early recognition of inadequately
specified requirements and permits risk mitigating decisions to be made early in the
system definition phases. For the program manager, joint probability models
reveal the simultaneous cost and schedule impacts of uncertainties in such areas as
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technical realism, the soundness of the acquisition approach, the reasonableness of
the schedule, and the accuracy of the cost and schedule estimation methodologies.

In an environment of limited funds and increasingly challenging schedules, it is

incumbent upon analysts to continually examine affordability concerns relative to
the likelihood of jointly meeting cost and schedule P(Cost < a and Schedule < b)

and cost for a given schedule P(Cost < a|Schedule = b) against specific tradeoffs

in system requirements, acquisition strategies, and post-development support.

Enabling options to be explored that offer decision-makers economically sound and

risk mitigating choices throughout the life of a program is the cost analyst's aim

and opportunity. Models and methodologies are tools that provide a means to that

end.
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Appendix A

Theoretical Aspects of the
Normal-LogNormal Joint Probability Distribution

Let Y| =X, and Y, =1nX, where X and X are random variables defined on
—oo<X; <o and 0<x, <. If Y} and Y each have a normal distribution then
E(Y)=uy, =ux, =1

Var(Yy)=6%, =0}, =of

E(Y. Y=y =} —lln_—Su—xz.Z—_
2 2 2 | (ux,)’ +o%,
2 2
+0
Var(Y;)=0%, =63 =In (ﬁ‘i)-—z—"i
(1x,)

Assume that the pair
(X1,X2) ~ NLogN((1,12),(67,6%.p; )

is a bivariate normal-lognormal distribution with density function

1 -
eI Cecx <oe, D<xy <o

fx1 X3 (x1,X9) = (21!)0'1021’1 - piz X9

0 otherwise

where
P12 =Py,.Y, =Px,.nx,

v —— L S O Sns e e e




1 ) x=m |,y [ Xi=iy [Inxp-pp | [Inxg -y
iy )
-pl.2 Oy (1 o] O,

Theorem A-1. If (X;,X,) ~ NLogN((it;.12).(07,0%.p, ,)) then

2
PLa=Px,x, g,

Proof:
By definition
0 _Cov(X).X7) _ OX\ Xy
XX ox,0x, ox,0Xx,
where

oxx, = | (xi-midxa =Kk, X, (x1.x2)dx,dxz
0 Y-oo -

ox, =01

Since X 7 is lognormal, we have from table B-1 (appendix B)

2 2 2 2
ox, =(€*?7%2(e% —1)2 = E(X, X2 -1/

thus p _Sxix; _ "X,x%

To compute oy, x, &

tl =L-_"£L and 12 _—_M
O 02

thus




'2‘(1——"’(‘1 =2p;24t; +t§)
- 2 dtldlz

1 - +0,t
Ox,X, = —F——= (o1t Xe"27 2 —py)e
i Zu\’l—pf'z 'E'J”“
——| (o1t){l; —u2l2]ay
21‘\/1 PL2 J""

2 2
..___.—-_(( _2p Aty +t )
oo —nl 1 1,2%1%27 2
Il =J‘ e”z“’?‘ze 2(1-pi) dlz
-—d

1 2 2
() =2p1 241t +13)

T Y R
I, =j e 20-pi2) dt,

To determine 1; note that the integrand can be written as

« Z{Pntﬁ(l‘mz)"zl‘z“v)

Il=ep'2“‘ e Z(I—plz) dt,
2
A=A()=p2t) +(1-pi2)o2
and noting that
t2 —2At, =(t, - A)? - A?
we can write
1 2 1 2 1 2
——t] A’ | —————(13-A)
Il=ep2e 2(1-p75) ez(l P12) J' e 2(1-pi5) dt,

12 _ 1 2
2 ‘l _ 2 A
Il = euze 2(1‘91,2) 32(1 P12 ) ’2“ ’(1 _plz‘z)




To determine I,, note that the integrand can be written as

1 ]
—2_(1——_5—)tf - "ﬁ_—T)'(lg‘zpl,z‘n‘z)
12=e Pl.z I e P1.2 d(z
Letting
B=B(t))=py 24
and noting that
t3 -2Bt, =(t, - B)? - B?
we have
2112 u 2112 B 2:12 (2B
I,=¢ (1-pi2) e( Pi2) J' e (1-pj2) dt,
1 2 1 2
20-p7,) ' 20-p} " , 2
I, =e 127 e 120 \ax (1-pi2)
Thus

-2 A2 B?
20-p12) 5= 2 1| JH2 o 201-P12) 2(1-pf )
I] —[1212 =€ . 2n (l"Pl.z) e “¢ T =—Hoe *

5

_‘2 A2 B?
1 2(1-pf,) 2(1~pf,) 201-p?,)
OXiX2 = o I_~(°1t1)° L7 eH2e TR e T Ity

—(1}-A?) -1} -B?)
1 | 2(11—9?,2) = 21-p}y)
Oxlxz —727 € 01 “tle dll ‘-}1201 tle dtl

1

[ 1 2,1 2

=={(4-p1207)" +50) o .2
euzclr t,e 2 2 dtl—uzolj tle Y lzdtl
| -—on
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1
XX, = 2n -

1, 1 2
502 p=  —{41—p1207)
e“queZ I ye 2 dtl - H0) 0}

1T in
Cxlxz =727-e“2+02 clpl'262‘\/21t]=E(x2)pl‘2°lo-2

and
=9xx; _ E(X;)py,2010; _ EX3)p20,0,
Px.X; "oy 0x. 2 2 7= ”
X;YX, cl[e2“2+02 (eoz _1)] GI[E(X2 )(ec’z _1)112]
Thus

2
(ecz - 1)1/2

pl.2 =pX1.X2 0'2 (A'l)

Theorem A-2. If (X;,X;) ~ NLogN((,.p; )'(012.0“'2.;)1‘2 )) then

1 -4 x; -1 10f
fl(xl)=m—e _[X) 1 G]]
and
1 ~4[anx; -p; 2103
fr(x4)= e
2( 2) ;;21!02X2 .
Proof:
By definition

fl(X1) = Iofxl’xz (x1.Xx3)dx,
f2(x2)= J-_-fxbxz (x1,Xx2)dx;

The density function fy, x, (x,X2)can be factored as




1 —(xy-uy)?r202
fx,.xz(xn'xz)={me iV 120y }Q(xl.xz) (A-2)

where
- -2 /962 (1-p2
Q(xy,x2) = ] - e (Inxz-b)"1205(1-p{ ;)
\2R(02y1-pf2) X2
and
(o]
b=p,+—% -
H2 dlpl.2(xl pl)
Therefore

fl(X1)=Io {me (X1-#1)°/20; }Q(X].Xz)dX2

1 —(x,—u,)zlzof I"
= e (Xp.Xq)dX
{rml OQ 1.X2)dx;

1 e‘ﬂ("l -m "’12]
2r 0

since the integrand is the probability density function of a LogN(b,63(1~p2,))
random variable.

To compute f5(x; ), the density function fy, x, (x;.x3)is factored as

1 1 -(lnxz—llz)zﬂoz
f X1,X2)=Q" (x).x ){ —e 2 A-3
X;.Xz (X1, X2) =Q (X}, X2 Brosxs (A-3)
where
. 1 —(x;-b")21262(1-p2,)
Q' (x.xg)= e ! 12
\f-’-—"(ﬁl\ﬁ°91.2)
and
. G
b = +;'Lp1'2(lnx2"u2)
2
Therefore
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- 1 1 —(nxy-py)?r2062 | s

- TPRY 2 oo
_)_1 Le (Inxy-u)" /203 Q‘(Xl.xz)dxl
JEMZ X2 —e0
2,2
I B | (LSS

_JZR G2 X2

since the integrand is the probability density function of a N(b",6%(1- pi;))
random variable.
Theorem A-3. If (X{,X7)~ NLogN((t;.1).(67.06%.p, ,)) then

c
Xy|xa ~ N( +;LP1.2(lnxz ~12). 071 -012.2))
2

X,|x; ~ LogN(i, +%§pl,2(xl —pp).03(1-pE,))

Proof:
By definition, we have
1 -4{(inx, -p, Y 16} ]| 2
e : ! (x1,X3)
fx 1x. (X1)= fx,x, (X1 %2) _ {:/2" G X2 Q %z
XV T e (k) I (CRE T
2n Oy Xy .
B, r, K1) = Q" (x1.X2)
thus, from A-3
Xi|xz ~N(b".0f(1-p2,))
where
c
b = +;;'P1_2(1nxz -H2)
Similarly
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1 e—ﬁ[(xl —hy )2/0,2

| 'X2)
thxz(xl'x2)={‘721tcl }Q(x, X2

f Xq)= '
le‘l( 2) fl(xl) 1 e—i[(:l'“l )2/012
2n o]

flex, (Xz ) = Q(XI,XZ)
thus, from A-2
Xa|x; ~ LogN(b.c3(1-p?,))
where

o
b=pz+—2p ,(x,~p)
c;
Theorem A-4. If (X}, X3) ~ NLogN((4).h12).(67.6%.p, ,)) then
uz*%z‘m,z(xl'“l o3 (1-p,)

E(lexl) =g

c
2K, +;f—P:,2(X1 ~H1))

Var(X,|x))=e e*(e*-1)

E(Xyfxz)=p, *%Pl.z(mxz ~H3)
2

Var(Xy|x;) =07 (1-pf,)

where 2 =63(1-p?,)
Proof:
Theorem A-3 proved that

o
Xa[x; ~ LogN(u, +;%P1.2(x1 -1, 031 -pt,y))

therefore, from table B-1 (appendix B)

A-8




[
B+ 2pra(xi=iy o3 (1-p] )
E(Xy|xp)=e &

[+
22 +=2p12(x1 1))
g

Var(X;|x;)=e e*(e* -1)

where 2 =03(1-p?,).
Theorem A-3 proved that

X[xz ~NQu, +§;-Pn.2(‘" Xy =H3).07(1-pf2))
therefore, it follows immediately from the properties of the normal that

o
E(Xy[xz)=p, +;';'PL2(1'1X2 -H2)

Var(Xy|x;) =06 (1-pf2)

Theorem A-5. If (X;,X;) ~ NLogN((u;.113).(6f,6%.p, ;) then
l-l2+°—2-91,2(x1-u1)
Median(X2|x1)=e o1

ag
m2+_2p, 5 (xi-H1)-03(1-p])
Mode(X,|x))=e !

Median(X;| x,) = E(X]|x5)
Mode(X;|x2) = E(X)| x;)

Proof:
Since X2| X, is lognormally distributed (theorem A-3), from table B-1 (appendix
B

%2
H2+=p) 5 (X1~Hy)
Median(X,|x)=eP =¢ o1 "

A9




(¢}
M2+ _2p) 5 (x-H1)-03(-p] )
Mode(X;,|x))=e @

Since X|x, is normally distributed (theorem A-3), it follows immediately that
Median(X;| x3) = E(X;|x;)
Mode(X;|x3) = E(X;| x5)

Property A-l1. If (X},X;) ~ NLogN((11.12),(67.6%.p, ;) then

E(X,[Median(X5[u,)) =,
Proof:

From theorem A-4 jt was established that

)
E(Xilx2) =M1+ 220, ;002 =)

From theorem A-5, we may write

Median(X,|x, =p;) =et?
It follows that

E(X;[Median(Xo|, ) =E(X|e*2)=p; +ZLp, ,(ne? —y)
2

c
- +—-L . -
Hy ozphz(uz H2)
=M

A-10




Appendix B

Theoretical Aspects of the
LogNormal and Bivariate LogNormal Probability Distributions

The Univariate LogNormal

If X is a nonnegative random variable and Y =InX has a normal distribution with
py =E(Y) and o% = Var(Y)

then X is said to be lognormally distributed, that is
X ~ LogN(iy,06%)
with density function

1 ~4{(nx-p, )} 16}
e for x>0
fx(x)= ;]Zn OyX (B-1)
0 otherwise
Equation B-1 is referred to as the lognormal distribution. Important properties of
fx(x) are summarized in table B-1.

Table B-1 Properties of the Lognormal Distribution

Property Expression
nx=EX) Hyioy
o%= Var() s T
Mode(X) HY-0Y
Median(X) ety




Theorem B-1. If X is lognormally distributed with mean i x and variance of(

then

T ]
By =oin| —BX)__
Y2 [(ux)2+0§<

and
2 2
(hx)
The Bivariate LogNormal

Let Yy =InX; and Y, =InX, where X} and X3 are random variables defined on
0<xy<ce and 0< X, <. Define

E(Y;)=py, =y; and Var(Y;)=c% =o?
fori=1,2. Suppose that Y] and Y7 each have a normal distribution and that the
pair )
(X1.X3) ~ Bivariate LogN ((111,12).(61,6%. 9, ,))

is a bivariate lognormal distribution with density function

1 ‘5“’
2 € 0<xy<o,0<xy <o
thxz (x1,X2) =4(27)0,6, Jl -P.%1X2 (B-2)
0 otherwise

P2 =Py, Y, =PmX,.nX,




w= 12 (lnxl—uljz_zp [lnxl -W Ilnxl—pz }'{ln)&z—“z)z
1-pf, o L2l g o, o,

and
4 2 2
1 (hx) (ux )" +0x
Hy =Hi =~ ——="—7—| and o%-i:ciz:ln—'—z—'
2 [(ux,)" +ox, (ux)
fori=1,2.

Theorem B-2. If (X{,X) ~ Bivariate LogN((11.12 ). (61.6%.p, ,)) then

p, ,016
e b7

pxl'x2=ch 0.2
el -1Ve 2 -]

Proof:

By definition
- Cov(X;,X5) _ EX1X5) -E(X))E(X))

Ox,0x, Ox,0x,

(B-3)

Px, x,

Since Y} =InX; and Y; =InX, we can write
E(X,X,)=E(eVeY2)=E("*Y2)

Recall that Y; ~ N(u;,67) for i = 1, 2. Thus, E(e¥1*Y2)is recognized as a
special evaluation of the moment generating function of a bivariate normal, which
is

M(ty,tp) =E(e" 5 %) = [ [T e ahag(y;, y))dydy,

_ e(m‘lﬂ‘z‘z )‘%(Oftlz*zpvl_vﬂnoztxtz +a3t})

for somereal t; and t;. Therefore,




E(xlxz) - E(CY'CY‘ ) = E(CY‘ +Yz ) = e(u|+uz )+*(0; +°;+ZPY|.Y20‘°2 )
To determine the remaining terms in equation (B-3), we note that for r20the
moments of X are

TH; "’5"2"12

EX{)=e B4)

Thus,
2
E(x1 )= e“n“‘fcn
E(XZ) = elvlz"’*c:

Var(Xl)=E(x%)_(E(xl))2 =e2l~\l+20f _(eu|+£01“ )2
=ezul+20|2 _62u|+of

2 2
var(x2)=5(x§)_(5(x2»2 = ¢2H2+20) _(euz+§oz 2
=22 +203 _e2p2+o%

Substituting into equation B-3, we have

P - E(X;X5) -E(X))E(X3)
X)X, O'le'xz

2 2 2 2
(Bp+p H-&{U +2p G167 +65) +40 +i0

p =
X1.X3 \/ezu,uc% _e2u1+o,2 \/e 2y +203 _e2M2 +o3

which can be factored as:

o = et HH(O1+07) (0P, 0i0: _y
X.. X, e(u,+u,»)+-}(of+c§)\/eo,‘ -1\/e°§ -1

where P, 5 =pY1.Y =PmX,.nX
2 1 2
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e

Thus,

P, ,0|C
el.212_1

P, x,~ T2 (B-5)
142 2 2
\/;0' —l‘»le“2 -1

which was to be hown.

Theorem B-3. If (X,,X,) ~ Bivariate LogN (11,12 ).(67.0%.p, ,)) then

—*[(lnxl -H, )2 lolzl

1
fiix)= e
1) ;]Zn C) X

e—;-[(lnxz i, )’/0,’]

fz(XZ) = 2% Oy X2

By definition
fl(x,)=J‘ofxl'xz(xl,xz)dxz
f2(X2) = jofxl'xz (XI,X2)dX]

The density function fy x, (X;,X2)can be factored as

1 1 _—(Inx;-p;)?/20?
f. X1,X9) = —e 1 X1, X -
XX, (X1-X2) {Fm_lxl Q(x;,x3) (B-6)
where
1 ~(Inx5-b)2 1262 (1-p2,)
Q(xy,x59) = - e 2 217P2
ﬁ(ﬁz\ﬁ-m,z)xz
and

G
b=, +'6%p1‘2(lnxl —-1y)




Therefore
| 1 1 —(nx;-py)ti202
N

S|

1 1 _-(nx;-p)?/20? | =
= —e (Xx1,X5)dx
{Vimlxl po 1727702

1 e‘f["""l""l)z /012]
2n o1 X4

since the integrand is the probability density function of a LogN(b,a3(1-pf,))
random variable.

To compute f,(x2), the density function fy, x, (X;,X2)is factored as

I 1 ~(nxp-u; ) 1263

o =0 e g | e

1 e-(lnx,-b‘ 21202 (1-p7 )

‘\E‘(O’l \/l —plz’z) X

Q' (x1.x2)=

and
b =y +=Lp; 0 x ~p2)
2
Therefore

=] 11 —nxg-pz)?r20d |
fz(xz)-—jo {mxze Q (xq,x2)dx;

1 1 —(lnXZ—l-lz)Z/20§ o s
= —e (xy,Xx49)dx
{72_—1052 X2 Io Q (x,x3)dx,
ed 1 ~(inxy-p;)* 1203
721:02 X3
since the integrand is the probability density function of a LogN(b",6%(1-p75))
random variable.
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Theorem B-4. lf(Xn,Xz)~BivariateLagN((uhuz),(012’022 9, then

c
Xi|x2 ~ LogN(y, +;§Pl,2(lnxz ~1y),07(0-p?2))

(o]
X,|x; ~ LogN(u, +;fpl,zanx1 -1, 050 -pt))

Proof:
By definition
! - H(inx, -p, )70} ]|
e : Xy, X
£, . (x )_fx,.x,("lvxz) __{1_]27c 0y X, Q (x1,x3)
X.,x, 1= f2(x2) - 1 e—%[(lnxz -, )2/0'22]
n 02 X2
fX,[xz (xl) = Q.(XI,Xz)
thus, from B-7
X1|X2 -~ LogN( b',uf(l —pf.z))
where
(4]

Similarly

1 ‘*[““"."M ) /O':l
€ X1, X
fX‘,xl(Xsz) _ {an O X Q 1:X2)
f;(xy) 1 e_ﬂ(mxl_“l ) /Gﬂ
2n a1 x) .

flex' (X2) =

T, lx, (%2) =Q(x1.%2)
thus, from B-6
Xa|x) ~ LogN(b,63(1-pZ,))




C
b=p, +;fp,,2(lnx1 ~Hy)
Theorem B-S. If (X;,X;) ~ Bivariate LogN ((11,.12),(6].6%.p, ,)) then

E(lex) xqplZ Pz-ﬂvam*’foz(l—l)lz)
1=

ﬂlplz 2(Hy- qlplzul) z

Var(X,|x;) = x, (e*-1)

_ﬂ. -8 -
(Y [} P 1} ++0' ( )
E(XI|X2) = Xaz ]'2 1~ 122 ! pl 2

-‘19 A -gPraM2) 20 o
0112 1= lZZez(ez

Var(Xy|x3) =x, -1
where

z=03(1-pfy) and z*=of(1-p{,)
Proof:
Theorem B-4 proved that

c
X2|x) ~ LogN(p, +;f‘Pl.2(lﬂ X1 - 1), 635(1 —Pf.z))
Therefore, from table B-1

(]
B2 +—Ep1a(lnx - )+o3 (1-p2)
]

E(lexl)-e
——p. 2 uz--—m a1 +jo-pf5)
—xl €
and
g
2("2+-191.z(lnx|-l-ln)) 2 21 02
Var(Xp|x))=e @ 020-Pi2) (93 (1Pi2) _jy
2 2~
=x1%91.2 e (W2 qpl.zﬂn)ez(ez -1
Theorem B-4 also proved that




X1| %3 ~ LogN(y + gy 2(nx; ~12). 67 (1 - pf2))
2

Therefore, from table B-1
l‘l*’%l‘Pl‘z (Inxy-p, chlz ( l-p,z.z )
E(Xl|X2) =e 2

g g 2
Lp12 wyi-—Lpma+dota-e},)
= xcz e o2

2

[+
A +—Lpya(nxy-py)) o 2 2. 2
Var(xl|x2)=e o2 ecl(l Pl,Z)(eol(l Pl.’.’)_l)

23012 201-gleiaKa) 0 ,°
=x,"2 e 9T et (ef -1

Theorem B-6. If (X,,X,) ~ Bivariate LogN (1.1, ). (07,63, p 12)) then

a2 2
. Py M2-35P; 41
Median(X,|x;)=x{! e 275 P12M

rod H P, s i1 —=05(1-p7 )
MO&(X2| X‘) =X, 1 l’2e 279 N2 2 1.2

9 _9
Median(X,|x;) = x‘z’zpl'2 e 17o2P122
(o) 5 w2 i1on?
Mode(X|x;) = xf:,"zlﬂl'zeul S22 7O (7P )
Proof:
From theorem B-4 and table B-1, it follows that

% - o o
ha+adp y(nxi-b) o .y %p 4
Median(X,|x))=e ! =x01" 12 2o 12

m +22 2 2
Mo&(x:l Xl)-—e O1

92 S w21 a2
=x;,lPl'2ellz°<-,%P,’2u| Uz(l pl.2)

B-9




(4]
},l|+—lplz(lnxz—u2) C_!Lp " -‘—’Lp "
Median(X;|x;)=¢ %2 " = x02 12 M1 TP 2H2

[+
Mi "’;‘Lpl'z (Inxp—-p3 )‘012“‘!’%.2 )
Mode(X,|x;)=¢ %2

[+ [s) 2 2
_ x;z,-gp,‘zem ~&P12M2-0 (1-p} )

Property B-1. If (X;,X;)~ Bivariate LogN((111.12).(67,6%.p, ;) then the
conditional coefficient of dispersion D is
1/2
Var(X;x,)] :
- e -1
F)(l|12 E(x!'X2) (e )

Do - [Var(lexl)lu2 )
Fam ~ EX,)x)

Vie* -1

where Fx and szlxa are the cumulative distributions of fx1|x2 and fx2

1ix2 Ix; -

This corollary is stated without proof since it directly follows from theorem B-5.
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