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Abstract - Tiis paper discusses a family of analytical models from which the joint
probability of total program cost and schedule can be calculated, analyzed, and presented to
decision-makers. Specifically, the classical bivariate normal and two lesser known joint
distributions, the normal-lognormal and the bivariate lognormal distributions are
discussed. Experiences from Monte Carlo simulations suggest that this family of
bivariate distributions are candidate models for computing joint and conditional cost and
schedule probabilities. In particular, the discussion on the nonnal-lognormal distribution
as a joint cost-schedule probability model extends research on the applicability of the
bivariate lognormal presented last year*.

Joint probability distributions enable analysts and decision-makers to determine joint and
conditional probabilities of the types

P(Cost < a and Schedule < b)

P(Cost 5 al Schedule = b)

at the program level. Probability statements such as these have not been a common
product of cost uncertainty analyses, and the development of analytical methods that
produce these probabilities is an advance in the state of the practice.

General formulas for the correlation functions, conditional distributions, and moments of
the family of joint probability distributions described in this paper are provided. Cost
analysis applications are presented to illustrate the use of these distributions in a practical
context.

SThis docutment has been approved

I ow public release and sale; its
_ tfiution is unimited.

* Garvey, P. R., Taub, A. E., A Joint Probability Model for Cost and Schedule Uncertainties,

The MITRE Corporation, presented at the 26th ADODCAS, September 1992.

94-04954
'A 2 " 4 0 1 7' IIl 1111llUlH lIII *



Best
Available

Copy



"lov /•'oe

REPORT DOCUMENTATION PAGE. oiI) No 0o704-o18

Pubfic reiort,nq burden '0r 1 1h e0Pt0 A ~n ~I rmM~0 t n ng"rqt,. ~ p . .~ r- ~ ~e.e exst-n :1ata skur
gatheingf~ and maintailning th Jjta needed. ind cornpieti in cir, i- %.T~ -'r.d mmrn-1, !, ' -u, t 'Sr~ed of ms~

collection ý,t ,T1rnd1v -wda jnu s1~t
Su ',te 12Q4 A ntýn , A 2 24 W~2 "Id 0ý t- , ,i4j)

1. GECYUSEONY Lede /ak) 2. REPORT DATE 3 REPORT TYPE AND DATES COVERED

Sepqtember 1993 ADODCAS 1993 ______________

4. TITLE AND SUBTITLE 15 lUNDONG NUMBERS
A FAMILY OF JOINT PROBABILITY MODELS FOR
CO ST AND SCHEDULE UNCERTAINTIES

6. AUTHOR(S)

Paul R. Garvey

7. PERFORMING ORGANIZATION NAMLE(S,! AND ADD)RESS(ES) S8. PEFd O`\ANG ORGAN<;ATION

The MITRE CorporationREOTNMR
202 Burlington Road
Bedford MA
i(617) 271-8234

9.SPONSORING MONITORING AGENCY NANES 1N DRSIS 10. SPONSORINb MONITOWiNG

AGENCY REPCRT NUMBER

11. SUPPLEMENTARY NOTES

Annual Department of Defense Cost Analysis Symposium Paper

12j. DISTRIBUTION AVAII.ABIUTY STATEMENT 12? f,,STRiBU CN CODE

Statement A: Approved for Public Release-, Distribution is Unlimited

I13. ABSTRACT (M.trnu,m 7)Ofl wcr(js)

See Over

DTIC QUAu.1.rY IN8PNBZD I

S 8 QýT15, NUMNIER 0& PAGES

Cogt and Schedule 1.PIECD

]R~isk

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATON 20 LiMITATIONCOFABSTRACT
A OF REPORT PR OF THIS PAGEE OF ABSTRACT

Cu U UL

NSN 75[10 U .'80 S-()()



A FAMILY OF JOINT PROBABILITY MODELS FOR
COST AND SCHEDULE UNCERTAINTIES

This paper proposes a family of analytical models from which the joint
probability of total program cost and schedule can be described,
analyzed, and presented to decision-makers. Specifically, the classical
bivariate normal and two lesser known joint distributions, the normal-
lognormal and the bivariate lognormal distributions are discussed.
Experiences from Monte Carlo simulations suggest that this family of
bivariate distributions are candidate models for computing joint and
conditional cost and schedule probabilities. In particular, the
discussion on the normal-lognormal distribution as a joint cost-schedule
probability model extends research on the applicability of the bivariate
lognormal presented last year 1 .

Joint probability distributions enables analysts and decision-makers to
conduct tradeoffs on joint and conditional probabilities of the types

P(Cost • a and Schedule • b)

P(Cost • a I Schedule = b)

at the program level. Probability statements such as these have not
been a common product of cost uncertainty analyses, and the development
of analytical methods that produce these probabilities is an advance in
the state of the practice.

General formulas for the correlation functions, conditional
distributions, and moments of the family of joint probability
distributions described in this paper are provided.

Paul R. Garvey
The MITRE Corporation
202 Burlington Road
Bedford MA
(617) 271-8234

1 Garvey, P. R., Taub A.E., A Joint Probability Model for Cost and

Schedule Uncertainties. The MITRE Corporation, presented at the 26th
ADODCAS, September 1992.
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I. INTRODUCTION

When cost and schedule uncertainty analyses are presented to decision-makers,

questions asked with increased urgency are: What is the likelihood of achieving

both the estimated cost and schedule? What is the chance of exceeding the most

likely cost for a given schedule? How are cost reserve recommendations driven by

schedule uncertainties? Questions such as these are not readily answered by

current analysis tools and techniques. This paper advances the state of the practice

by presenting a family of probability models designed to specifically address these

and related questions.

During the past thirty years, uncertainty analysis methods have applied univariate
probability theory to generate separate distributions of a program's estimated cost

and schedule. These distributions provide decision-makers with probabilities such

as
P(Cost < a) (1)

and
P(Schedule < b) (2)

Although it has long been recognized that cost and schedule are interdependent,
little has been adopted from multivariate theory to combine cost and schedule

probability distributions. A multivariate model that combines these distributions
would provide decision-makers joint and conditional probabilities such as

P(Cost < a and Schedule < b) (3)
and

P(Cost < a I Schedule = b) (4)

In practice, probabilities in (3) and (4) are of greater interest to decision-makers

than those in (1) and (2). This is particularly true in the early planning phases of a

program where critical cost and schedule decisions are made.



Tibs paper presents the cost analysis community with a family of multivariate

probability models from which joint and conditional distributions of program cost

and schedule can be developed. Specifically, the classical bivariate normal and two

lesser known joint distributions, the bivariate normal-lognormal and the bivariate

lognormal distributions are discussed. The development of the bivariate normal -

lognormal distribution, and its application in the cost analysis domain, extends

research [11 on the utility of joint probability models for program cost and

schedule. Appendixes are provided that document the properties of the bivariate

normal-lognormal and bivariate lognormal models. Properties of the bivariate

normal are well known and can be found in [2].

The models proposed in this paper are analytical. They facilitate computing the

probabilities defined in (3) and (4). Furthermore, the means and variances from

univariate cost and schedule distributions developed from traditional techniques can

be used to specify the parameters of a bivariate probability model assumed for a

given program. Thus, no new or additional analysis effort is required to define and

apply these models. Lastly, these models explicitly incorporate correlation between

cost and schedule on a given program - an issue not well addressed in current

analysis methodology.

Formulas are developed that combine program cost and schedule probability

distributions to produce conditional cost distributions for a given set of schedules.

For example, in figure I the curves with solid lines are unconditional distributions

of a program's cost and schedule. They represent probabilities of the types in (1)

and (2). Formulas are provided in section III that incorporate statistics from these

distributions to form conditional cost distributions for a given set of schedules.

The curves with dashed lines in figure 1 are examples of conditional cost

distributions. Conditional distributions represent probabilities of the type defined
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in (4). They are an effective way of directly linking a given schedule to cost

recommendations tied to a specified level of confidence.
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Figure 1. Illustrative Probability Distributions of Program Cost and Schedule

In summary, this paper advances current practice by offering a family of

multivariate models that produce joint and conditional probabilities of program cost

and schedule. Cost analysis applications that illustrate the mathematical theory are
presented.

II. JOINT PROBABILITY MODELS
AND THEIR SUPPORT TO RISK MANAGEMENT

This section briefly defines the domain of the models described in this paper and

how they provide analyses that supports risk management decisions. An overview

of the risk management decision space is discussed. A context for how these

models are defined within that space is provided. Finally, the types of uncertainties

that can be quantified by these models are discussed.
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A. Models and the Risk Management Decision Space

Cost, schedule, and performance objectives define the domain of the program

manager's decision space. A characterization of this space is presented in figure 2.

Illustrated is how user expectations on cost, schedule, and performance are often at

odds with what can actually be delivered. Risk is introduced when expectations in

any of these dimensions push what is technically and/or economically feasible.

Managing risk, then, is managing the inherent contention that exists within each

axis and across all three. The goal of risk management is to identify cost,

schedule, and performance risks early such that control on either axis is not lost, or

that the consequences of risk mitigating actions on all three axes are well

understood.
Performance

User Wants

Contract Award
Delivered Performance
Minimum Acceptable Performance

Best
Target Ceiling EstimateI • I • _Cost

SContract Schedule

Schedule o'Best Estimate
Joint Cost-Schedule
Probability Models

Figure 2. Models and the Risk Management Decision Space

The joint probability models presented in section III operate in two of the three

dimensions shown in figure 2. They are bivariate in the cost and schedule plane.

When applying these models it is assumed that a system architecture has been

defined, or hypothesized, by the engineering team. It is also assumed that this
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architecture will achieve the performance requirements as they are specified or

understood at that time.

Thus, for a given system architecture, the uncertainties captured by these models

are those associated with its technical definition and resource (cost-schedule)

estimation approaches. Examples of technical definition uncertainties include

estimating the amount of new code to develop, or the number of custom

microchips to design and fabricate, or the delivered weight of a newly designed

antenna pedestal. Examples of resource estimation uncertainties include errors in

cost models and cost methodologies, uncertainties in estimated activity durations,

economic uncertainties as they affect the cost of technology (e.g.,

inflation/deflation), or uncertainties in the data (e.g., labor rates, productivity rates)

used to develop the resource estimates.

Once a joint cost-schedule probability model has been developed on a program,

analyses can be conducted to support risk management decisions. These include

Baselining Program Cost and Schedule Risk - For a given system
architecture, acquisition strategy, and resource estimation approach
baseline probability distributions of a program's cost and schedule
can be developed. These distributions can be periodically updated as
the program's uncertainties change across the acquisition
milestones. Generating these distributions supports estimating a
program cost and schedule that simultaneously have a specified
probability of not being exceeded. This distribution also provides
program managers with an assessment of the likelihood of achieving
a budgeted or proposed cost and schedule or cost for a given
schedule.

Estimating Reserves - An analytical basis for estimating cost reserve
for a given schedule, or set of schedules, as a function of the
uncertainties specific to a given system can be developed.
Sensitivity analyses can be conducted to assess how reserve levels
are affected by changes in specific program risks. In addition, the
relationship between the amount of reserve to recommend for a
given level of confidence and a given schedule can be examined.
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Conducting Risk Mitigation Tradeoff Analyses - Models can be
developed to study the payoff of implementing specific risk
amelioration activities (e.g., prototyping) on reducing the estimated
cost and schedule variances. For instance, suppose that the cost and
schedule variances of a program are driven by uncertainty in the
amount of new code to develop. Using these models, it can be
determined whether investing in a prototyping effort markedly
reduces this variance, and, therefore, lessen the cost and schedule
reserves estimated for the program.

mH. A FAMILY OF JOINT PROBABILITY MODELS
FOR COST AND SCHEDULE

This section presents a family of joint probability models for program cost and

schedule. Specifically, the bivariate normal, the hivariate normal-lognormal, and

the bivariate lognormal models are described. These models are candidate

theoretical distributions that might be assumed by an analyst when joint or

conditional cost-schedule probabilities are needed.

The models described herein have two features desirable for cost analysis

applications. First, they directly incorporate correlation between cost and schedule

on a given program. Second, they have the property that their marginal

distributions* are either both normal, normal and lognormal, or both lognormal.

This is reflective of the distributions frequently observed in Monte Carlo

simulations [1,3] of program cost and schedule.

The following briefly describes these models. A cost analysis application is also

presented. Throughout the remainder of this paper the random variables X 1 and

X2 will denote program cost and schedule, respectively.

* If X1 and X2 are random variables with joint probability distribution Fxx 2 (xI ,x2 ), then the

marginal distributions of X1 and X2 are the individual probability distributions FX4 (xl ) and

FX3 (x 2 ), respectively.
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A The Classical Bivariate Normal Model

This section presents the classical bivariate normal and summarizes its major

characteristics. An important feature of this model are its marginal distributions,

which are both normal.

In cost analyses, normal distributions can arise when program cost is the sum of

many uncorrelated WBS cost element random variables. Normal distributions can

also occur in schedule analyses. For instance, program schedule is approximately

normal if it is the sum of many independent activities in a network. Thus, if

normal distributions characterize a program's cost and schedule distributions, then

the bivariate normal could serve as an assumed model of their joint distribution.

A.! Model Definition

Suppose we have two random variables Y1 = X, and Y2 = X2 where X 1 and X2

are defined on -o<xI < - and -- < x 2 < o-. If Y1 and Y2 each have a normal

distribution then, for i =1, 2, the mean and variance of Yi are

E(YI) = gy, = tXX1 = L1 (5)

E(Y2 )=ty 2 = x2 = P2 (6)

Var(YV)= a 1 =x21 =02 (7)

Var(Y 2)=o;2 =ax2 =Y 2  (8)

Assume that the pair

2 2(X1,X2 ) - Bivariate N((tt1,j 2 ), (102,o2. P1.2)) (9)

is a bivariate normal distribution with density function [21

7



2X,2xix) {(-~i 2 iI e -W -00 <X1 <00-cc<X2 < cc (10)fXI X2 (XI, X2)= (21t)aja2 F- Ip122

0 otherwise

where

whei - -1 2 2P1 2 -Xi 01 )1 X2 I2)J(X2-12J}

-- 1-01tt )-l I (•l 2 02)I

and gii and ci2 (i 1, 2) are given by equations (5) through (8). The correlation

ter'm PU. in equation (10) is

P1 ,2 =PYI,Y2 =PXIX 2  (11)

If two continuous random variables XI and X2 have a bivariate normal
distribution, tbl•.n

P(al <X 1 <bi anda 2 <X 2 -b 2 )

is given by

J J fX1 x2 (XI, X2) dxjdX2  (12)
a2  a1

where, in this case, f is defined by equation 10.

A.II Model Chaamcteristics

A characteristic of the bivariate normal distribution is that the distribution of X I
and the distribution of X2 are each univariate normal. These are the marginal

distributions and they are given by

fl(xl)= e (13)

8



f2(x 2 ) = 1 X2 -2 'e(14)

Important tradeoffs in cost analysis often involve assessing the impact that a given

set of schedules have on the likelihood that program cost will not exceed a

prescribed threshold. To make these assessments, the conditional probability

distribution is needed. Conditional distributions provide probabilities of the type

P(XI -< ajX 2 = b)

If two continuous random variables X1 and X 2 have a bivariate normal

distribution, then the conditional probability density function of X 1 given X 2 = x2,

denoted by fx11x2 (Xl), is normally distributed [2]. That is

X11 X2 - ~,+cl ; IP (15)XlX2- (•i •-2PI,2(x2 - I2), 021 -1p.2)) (5

C72

similarly X2 1 x, - N(P 2 + ==12 P.(x -(I ), 02 -p.2)) (16)

From (15) and (16) the conditional means and variances are

E(XIIX2 ) = i• 1 + Pl,2 (x 2 - A2) (17)

a2

E(X 2IX,) = A2 + 2-1P. 2 (x1 - 91) (18)

mC~land
Var(XllX2) 1 12 ) (19

Var(X2 Ix)=o2(1 P012) (20)

Section D will illustrate how conditional distributions are developed to provide

decision-makers with cost-schedule probabilities such as

P(Cost 5 aI Schedule = b)

9



B. A Bivariate Normal-LogNormal Model

This section presents a bivariate normal-lognormal model and summarizes its major

characteristics. Unlike the classical bivariate normal, very little exists in the

statistical literature on this model. Furthermore, the few references [4,5] that

discuss the bivariate normal-lognormal define it by parameters not computed in

cost-schedule uncertainty analyses. Thus, an alternative form of the model than

that offered in [4,5] was created specifically for this application context. Its form

is a direct extension of the bivariate normal presented in section A. A theoretical

discussion of this model is provided in appendix A.

An important feature of the bivariate normal-lognormal model is its marginal

distributions. One marginal is normal and the other is lognormal (refer to appendix

A). Section A described circumstances that give rise to normal marginal

distributions for cost or schedule. Under certain conditions, lognormal

distributions can characterize simulated program cost and schedule distributions

[1,3]. For instance, it is frequently observed that the lognormal approximates the

simulated distribution of program cost if it is the sum of many positively correlated

cost element random variables. Similarly, program schedule can also tend towards

lognormality if it is the sum of many positively correlated schedule activities.

These observations stem from practical experiences with Monte Carlo simulations.

They are not theoretical findings. Exceptions to these observations can be created.

However, if a situation arises where normal and lognormal distributions

characterize a program's cost and schedule distributions, then the bivariate normal-

lognormal could serve as an assumed model of their joint distribution.

10



B. I Model Definition

Suppose we have two random variables Yj = XI and Y2 = lnX 2 where XI and

X2 aredefinedon -o<xl <0 and 0<x 2 <oo. IfYI and Y2eachhavea

normal distribution then, for i = 1,2, the mean and variance of Yi [1] are

E(Y1)=iyY =gX1 =I1 (21)
Var(Y1)= t 1 =ax 1 =2 (22)

E(Y2)- = y2 - I2 Iln (JX,•)4 (23

) =)2 = 2  p 2 2  (23)

Var(y 2)- =• -o = in[ŽL2-L+CA' (24)(2X )2 (4

Assume that the pair

(X1 ,X 2) - Bivariate NLogN((p4.l12 ).(02.020 P1.2)) (25)

is a bivariate normal-lognormal distribution with density function

fXX2(XX2) (2C12 - <x< O<x 2 < (26)

10 otherwise
where

w= I Ir == 2-2 X1 )g 2P, "xi-NI=2 ynx2 - 112 + In X2 - tL2 }

1-P, 2  , f . I, a 2  X f

and tij and 0? (i = 1,2) are given by equations (2 1) through (24). From appendix

A (theorem A-i) the correlation term P1,2 in equation (26) is

11



p p p (e02 _ lj)112

P1,2 = PY1,Y2 : Px,, InX2 = PX1 ,X2 e 2  (27)

Equation 27 can be found In P. T. Yuan (1933) [6]. Proofs have been developed
by P. H. Young* and the author (refer to appendix A).

If two continuous random variables XI and X2 have a bivariate normal-lognormal

distribution, then
P(al :X 1 -b, anda 2 <X 2 -b 2 )

is given by

J b,2 jb fX A2 (XI, X2 ) dXl dX2  (28)
"2 .a

where, in this case. f is defined by equation 26

B.I! Model Cluhrcteristics

A characteristic of the bivariate normal-lognormal distribution is that the

distribution of X I is normal and the distribution of X2 is lognormal. These

marginal distributions are given by

) 2,-Ki e (29)

-.-[,,,• -+0n ) 2 ] (30)
f 2 (X 2 )-= I X2/2

* P. H. Young [The Aerospace Corporation, 1992] developed a proof of (27). His approach
used the definition of E(XIX 2) to determine PIa. The proof of (27) presented in appendix A is a
slight variation of Young's approach. The formula for Pl.2 is established directly from the
definition of the Cov(XI X2) instead of E(X1 X2). Recall that Cov(XI X2) = E(X1 X2) - E(X1 )E(X2 ).

12



The conditional probability density function of X 1 given X2 = x2, denoted by

fxI'x2 (X1 )' is normally distributed (refer to appendix A, theorem A-3). That is

XIJx 2 ~ N(p± +at. 2I- n X2 -A2), 2  122)) (31)
02

similarly X21x1 - L-gN(A2 + PI,2(xI 2 1.2)) (32)

From appendix A (theorem A-4) the conditional means and variances are

E(XiIx 2) = LI + _-2P 2 (in x 2 -P2) (33)
02

1.2 1 + O l 2 ( l - l + O ( -2 2 )( 4

E(X 2 1x1)=e 01 '

and
VarXix 2 =o p22var(x( IX2) = (F 1,2) (35)

2(A2 +a2Pl,2 (Xi-A1))

Var(X 2 Ix1)=e 01 eZ(ez - 1) (36)

whmt z=(2(1-0212 )

Section D will illustrate how conditional distributions from the normal-lognormal

model are developed to provide decision-makers with cost-schedule probabilities

such as

P(Cost < aI Schedule = b)

C. The Bivariate LogNonnal Model

This section presents the bivariate lognormal model and summarizes its major

characteristics. Research presented last year [1] demonstrated that, under certain

conditions, this model can approximate a program's cost-schedule joint and

13



conditional probabilities. The bivariate lognormal has a number of characteristics

desirable for cost analysis applications. Among these are

"* It is bounded by zero (cost and schedule cannot become negative),

"* Its marginal and conditional distributions are lognormal, which is
frequently observed in Monte Carlo simulations of program cost and
schedule [1,31.

C.! Model Definition

Suppose we have two random variables Y1 =InX, and Y2 =InX 2 where XI and

X2 aredefined on O<xt <- and O<x 2 < . IfYl and Y2 each have a normal

distribution then, for i = 1, 2, the mean and variance of Yi lC I are

E(Yi)=iy= = =i lln (x)4 (37)
(•~ 2 + 2t(7

Var(Yi)-- = -=a? =I(ntx) 2  (38)

Assume that the pair

(X 1, X2 ) - Bivariate LogN ((P 1 , 1 2 ), (a,02, P1,2)) (39)

Is a bivariate lognormal distribution with density function

S1 2 e-{'W () O<xI<ooO<X
2 < < (40)fXl,X2 (XI,X2)= (29•)(FlO241--pl22XX2

10 otherwise

where

W 12f(InXlI f - 2 P1 2(lnxi-Al -l ' p InX2 - '1 Iw-1p1 -P.2 I~ g jln'x'- 2

=,1,2 at (T 02 2 f2

14



and pi and a? (I = 1, 2) are given by equations (37) and (38). From appendix B

(hoemm B-2), the correlation term P. 2 in equation (40) is

Pl2 -" ln I+PxIx2 Fe2 2 1](41)
(12 aY 2  I' 2

If two continuous random variables X I and X2 have a bivariate lognormal

distribution, then
P(a1 <X 1 <b, and a2 <X 2 <b 2 )

is given by
Ja j' fx,,x 2 (Xl,X 2 )dxdx2  (42)

a2 faj

where, in this case, f is defined by equation 40.

C.H! Model Ciamcteristics

A characteristic of the bivariate lognormal distribution is that the distribution of X 1

and the distribution of X2 are each lognormal. These marginal distributions are

given by
Iix)4a1qx e -J[(nx, -p, )2 /°q (43)f1(x1) = •/1tO eXI(fX ) I

1 -e_[Qn x2 _92 )2/ 011 (44)

The conditional probability density function of X 1 given X2 = x2, denoted by

fXIIx2 (x'), is lognormally distributed (refer to appendix B, theorem B-4). That is

Xi1x 2 - LogN(qi +0 2 p1. 2(lnx 2 -912), (1- 122)) (45)
12

15



silmilarly X21x, - LogN(l9 2 + p- P. 2 (nx -(1 ),a 2 (- -1,2)) (46)

From appendix B (theorem B-5) the conditional means and variances are

E(XIIX2) = XT-p1.2 el- 9 -• § ~2' +. 1 -p.) (47)

2 2

E(X 2IXi) = X~ ;j, 2 e 2 -_FIPI.2PI ++02(1-P?.2) (48)

amid Za(Xx)_j p,. .. 2(p,- '-f,•..•.2) Z* •
Var(X -X2 )=X 2  " ,e (e -. 1) (49)

22,1- I.2 2(l.'.-a-•P'•) -

Var(X 21xl)=xi e " "" ez(e - (50)

where

2 2 and

Section D will illustrate how conditional distributions from the hivariate lognormal

model are developed to provide decision-makers with cost-schedule probabilities

such as
P(Cost • aI Schedule = b)

D. A Cost Analysis Application

The following illustrates, from a cost analysis perspective, how the joint

probability models described in this paper can be defined and applied. Recall that

the random variables X 1 and X2 denote program cost and schedule, respectively.

Suppose that the cumulative probability distributions of a program's cost and

schedule are given in figure 3. Furthennrme, suppose that these distributions have

means and variances given in table I and that the correlation between program cost

and schedule, PXI,X2, was 0.50.

16
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Figure 3. Probability Distributions for Program Cost and Schedule

Table 1. Program Cost and Schedule Statistics
i Xi PJXi Ofxi (Yii

I Cost ($M) 100 625 25

2 Schedule (Months) 48 36 6

Correlation PxI,x 2  0.50

Using these data, the parameters of the three joint probability models described in

this paper can be determined. These parameters are summarized in table 2.

From table 2 and (9), (25), and (39) we can write

(X 1,X 2 ) - Bivariate N((100,48),(625,36,0.50)) (51)
(XI, X2 ) - Bivariate NLogN((I(1 ), 3.863), (625. 0.0155, 0.502)) (52)

(X1 , X2 ) - Bivariate LogN ((4.575,3.863),(0.0606.0.0155.0.506)) (53)
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if the pair (X 1, X2 ) is an assumed bivariate normal, an assumed bivariate normal-

lognormal, or an assumed bivariate lognormal.

Table 2. Joint Probability Model Parameter Set
i A~i I(I Oi

Bivariate Normal Model

I 100 (EqI 5) 625 (Eqi 7) 25

2 48 (Eqt 6) 36 (Eqt 8) 6

Correlation P1.2 0.50 (EqI 11)

Bivariate Normal-LogNormal Model

1 100 (Eqt 21) 625 (EDt 22) 25

2 3.863 (Eq 23) 0.0155 (Eqi 24) 0.124

Correlation P1,2 0.502 (EqI 27)

Bivariate LogNormal Model

1 4.575 (Eqt 37) 0.0606 (Eqr 38) 0.246

2 3.863 (Eqt 37) 0.0155 (Eqt 38) 0.124

Correlation P1,2 0.506 (EqI 41)

Once the joint distribution of (XI,X 2 ) has been specified, joint cost-schedule

probabilities can be computed. For instance, if (X1,X 2 ) is assumed to be

bivarlate normal-lognormal with parameters given in (52), then the probability

P($100M • X, :< $130M and 45 months _ X2 . 55 months)
is

55 fl 0

,5J0 (Xlx 2 )dxldx 2 =0.245
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In this case, the integrand fx1 ,x2 (xI,x 2 ) is defined by equation 26. Joint cost-

schedule probabilities for other regions of interest are determined in a similar

manner.

D.I Conditional Cost-Schedue Distributions

Cost analyses must often focus on assessing the impact that a given set of
schedules have on the likelihood that an estimated program cost will not be

exceeded. To make these assessments the conditional distribution of program cost

is needed. Stated previously, conditional distributions produce probabilities of the

type
P(Cost < alSchedule = b)

Computing a conditional probability requires the joint cost-schedule probability

distribution. Recall the following joint cost-schedule distributions formed from the

datain table 1.

(XI,X 2 ) - Bivariate N((100,48),(625,36,0.50))
(XI, X2 ) - Bivariate NLogN((100, 3.863),(625,0.0155,0.502))
(X 1, X2 ) - Bivariate LogN ((4.575,3.863), (0.0606,0.0155,0.506))

From equations 15, 31, and 45, and table 2, the conditional distributions of cost

X11x2 for a given schedule x2 can be formed. In this case, the conditional

distribution of XiIx 2 if the pair (XI,X 2 ) is an assumed bivariate normal, an

assumed bivariate normal-lognormal, or an assumed bivariate lognormal are,

respectively

Xu x2 - N(100 + 2.083(x2 - 48), 468.75) (54)

X, x2 - N(100 + 101.2 l(ln x 2 - 3.863), 467.5) (55)

XIIx 2 - LogN(4.575+ 1.0038(ln x 2 - 3.863), 0.045) (56)
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Using the lognormal distribution given by (56), conditional cumulative cost

distributions given x2 equal to 50, 55, and 60 months are shown in figure 4. Table

3 summarizes the statistics, computed from theorems B-4 and B-5 (refer to

appendix B), of these distributions.

From figure 4, the impact of a given schedule on the probability distribution of cost

can be determined. Observe that as x, increases, the cumulative conditional cost

distributions become "lazier." Shown in table 3, the increased laziness reflects a

growth of nearly 2 million dollars in o(Xl x2 ) for each 5 month increase in x2.

0.9-
0.8 6

0.7

Conditional 0.6,
Cumulative 0.5 - Y
Probability 0.4 / .'"

0.3 /
0.2 /-/ I

0.1
0 .

55 105 155

Cost ($M) Given 50,55, 60 Months (in)

Figure 4. A Family of Conditional LogNormal Cost Distributions
(Equation 56 with x2 = 50, 55, 60 months)

By definition, the conditional median cost occurs with probability

P(Cost < al Schedule = x2 ) = 0.50
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where, in table 3, a is equal to 102, 112, and 122 million dollars given x2 equal to

50, 55, and 60 months, respectively. This reflects the cost that is equally likely to

overrun or underrun for a given schedule x2. For this specific example,

Median(X1I x2) increases by 10 million dollars for every 5 month increase in x2.

A similar increase is seen in the conditional mean cost E(X Ix 2 ).

Table 3. Statistics from the Conditional Distributions in Figure 4

Givenx 2  Median(XIjx 2 ) E(XiIx 2) o(XIIx 2 )
(Months) ($M) ($M) ($M)

50 102 104 22.4

55 112 115 24.6

60 122 125 26.9

Linkages such as these between cost uncertainty and schedule can be made through

the use of conditional distributions. In the early stages of a program, conditional

distributions provide decision-makers valuable insight into the likelihood of

achieving cost and schedule goals.

IV. SUMMARY COMMENTS

The family of joint probability models described in this paper provides an analytical

basis for computing joint and conditional cost-schedule probabilities. Selection of

a particular model is guided by the marginal distributions it produces. For

example, if the individual distributions of X I and X 2 are observed to be normal

and lognormal, then the bivariate normal-lognormal model (25) might be chosen

for the joint distribution of the pair (X1 , X2 ). This is because the bivariate normal-

lognormal model produces normal and lognormal marginal distributions.

However, it must be viewed that choosing this particular model makes an

21



assumption about how the pair of random variables (X1,X 2 ) is jointly distributed.

The true joint distribution of (X 1, X2 ) cannot be uniquely determined from only the

individual distributions of X1 and X2 .

A parameter required by the models in this paper is the correlation between

program cost and schedule. Although this is a difficult parameter to estimate,

approaches include deriving it from an historical cost-schedule database (one such

correlation coefficient can be found in reference 1) or computing it using values

sampled from a simulation of the cost-schedule estimating relationships established

for a particular program. Subjective assessments might be used in the absence of a

database or a cost-schedule simulation model.

An important consideration regarding the models herein is that they do not reflect

the causal impact that schedule compression or extension has on :()st. These

models treat cost and schedule as correlated random variables whose range of

values are reflected by their marginal distributions. These ranges result from

quantifying the uncertainties associated witu a specific technical baseline and the

cost-schedule estimation approaches. Unrealistically compressing or extending

schedule (due to missed milestones or program re-plans) can incur increased cost.

In these circumstances a reassessment of the system's cost-schedule risk is

warranted.

The utility of joint probability models is enabling analysts to present decision-

makers with an integrated view of cost and schedule uncertainties. In developing

the model parameters for a specific system, elements that significantly contribute to

cost and schedule risk are identified. This fosters early recognition of inadequately

specified requirements and permits risk mitigating decisions to be made early in the

system definition phases. For the program manager, joint probability models

reveal the simultaneous cost and schedule impacts of uncertainties in such areas as
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technical realism, the soundness of the acquisition approach, the reasonableness of

the schedule, and the accuracy of the cost and schedule estimation methodologies.

In an environment of limited funds and increasingly challenging schedules, it is

incumbent upon analysts to continually examine affordability concerns relative to

the likelihood of jointly meeting cost and schedule P(Cost < a and Schedule < b)

and cost for a given schedule P(Cost < aSchedule = b) against specific tradeoffs

in system requirements, acquisition strategies, and post-development support.

Enabling options to be explored that offer decision-makers economically sound and

risk mitigating choices throughout the life of a program is the cost analyst's aim

and opportunity. Models and methodologies are tools that provide a means to that

end.
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Appendix A

Theoretical Aspects of the
Normal-LogNormal Joint Probability Distribution

Let Y, = XI and Y2 = lnX 2 where XI and X2 are random variables defined on

-- e < X, < oo and O < x 2 < -o IfYl and Y2 each have a normal distribution then

E(Y2) = gy, = gx2 = gI

Var(Y 2 )= a2 =022 =ln(I0x2)2L + 2]

Assume that the pair

(X 1,X 2) - NLogN((0tj, 9 2 ),(a12, P1,2))

is a bivariate normal-lognormal distribution with density function

S1- e1w -oo<Xl<oo,O<x 2 <-o

fx1,x2 (xlx2)= (279))at2 x2

10 otherwise

where
P1,2 = PY1 ,Y2 = PX1 , InX2

A-I



I JfXi -91 ~j 1 -I~ nx 2 -g 2  Inx2 -g2M.

~~01~~ ) ".002 2

Theorem A-i. If (X1,X2) -NLogN((gja 1j 2 ),(U (72 , P1.2) then

By definition

=X COV(X 1,X 2 ) = oXIX,
A2 X !0 x2  OxIOx2

where

= JJX (XI -9t10( 2 -112)fX,.X, (x , x2)dx~dX2

Since X 2 is lognorMal, We have from table B- I (appendix B)

oFX2 = (e 2 2~ (e2 1I))1I2 = E(X 2 )(eG2 _ 1)1/2

'aX 10'2 - oE(X2 Xe 2 _1)1/2

To COMPUte 0XIX 2 le

t 1~xZ'I and t,= Ix2 -2

thus

A-2



1 2 2

= 1 j J (Giti)(eIl2+ 0 2t2 -P 2 )e 2( -P -2 p1 2t 412) t

- 1 j ('U1t1 4Il -IL2121dtt
241 71.

where
1(t2-2p,.2ttb+t 2

Ii=J e2+02t2e 21p 2  t

1 2 2
S t1 I-2p,.2 tlt2 +t 2)

12 e cit 2

To detennine I~ note that the integrand can be written as

1=eA2 f e 2(1-PF,2 ) t

A = A(tl) = PI,2tl + (1 - P1,2 )C2

and noting tha

t2 -2At 2 =(t 2 -A) -A2

we can write
1 2 A 2 1 0 2-A

Ii=ek'e 11p~2)' e 2( 1.2) jae 2(1-p?.2)(2 ' ct2

=ele (1, 2( 1,A 2)

A-3



To cletwnim 12' amt that the integrand can be written as

1 2 1 -02)-p tt

12 =e2(1-Pl2' 2 U eI.2 )d-L2d

B = BOtO)= P1 2t1

aEd noting utha
t 2 -2Bt 2 =0t2 -B) 2 -B 2

we have

lt 2 1 -B- 
t B

12 =e 20l-92 1.2e (1-Pýz e 2(1-pi?)' dt2

1 2 1 B2

12 =e TI .)ey(IP1P?2) -y2it; F('- 1,2)

Thus 2A2B

[t A 2  B 2 ]

GYXIX2 =2; [eA2 01 tle dt -9I201J tie t

FXiX 2 =72 7 Left2( F-J tlei'-P12022 2~ -20 t2lf e4?- d

A-4



O 7 mm.e1LOe12 f7 tie t- 1 0)di1 -i2I- 0I0 xx2  2N _91

= '[C2 2 +ax / P,2ap =rl E(X 2 )P1.2010C2

and

0x CXIX2 - E(X 2 )P1 ,2 CY1c 2  - __________________

0 X 10 X 2 o~ e2I 2+ O (~ 2 1/2X e 2 ~ 1 1 2

pX2122+ (0 2 _ 2)/ _ (A-/2

Theorem A-2. If(X1 ,X 2 )-NLogN(Qi 1 412 ),(Ol 02, P.p2 )) then

arnd

f2(X2) e-+[(In X2 -2 )2 /011

By definition

f1(xo = JofX1,X2 (X1,X2)dX2

f2 (X2) = -. X1,X2 (X1,X2)dX1

The density fuinction XI,,X2 (Xl, X2 ) can be factored as

A-5



where

22

1'¶/2l( P-t.2 ) X2
arnd

Thberefore

0- e-P) I~a JOQ(Xi.X2 )dx 2

since the integrand is the probability density function of a LogN(b, cj2l0-1.2))
randiom variable.

To compute f2 (X2 ), the density function fXlX 2 (XiX 2 )iS factored as

fX1.X2 (X1,X2) =Q*(XIX2 {1 e -(If x2-12)2 /202 (A-3)

where

Q*(XX)= e

*= ILI +2 Ip2 (lnX2 -P12)

Therefore

A-6



2 2

f2 (X2 -(IDX2112)/ 2 Y2G }Q*(XlX2)dxl

1 1-(Inx2 -P±2 ) 2I2aG
E- QO(X1 ,X2)dx1

4Tia 2 X2

since the integrand Is the probability density function of a N(b*Y 2 ~( -12)

randtom variable.

Theorem A-3. If(X 1,X 2 ) -NLogN(j 1,jt2 ),(a?1 .0 .P1,2 )) then

XjX 2 - N(;ji1  P1 2(InX2 -12), 1(l1.2))
CF2

PiWj

By definition, we have

[ý e -f [(Inx,- a )ZIGZ ,Xl*

(O=fxp,x 2 (X1,X2) - K j4i 2 x2 e 2 Qx, 2
fI3 f2 (X2 ) 1 e +I(IInx, -2 )2 /0-I

f~X1jx2 (X0)=Q*(X1 ,X2)
thus, from A-3

where

b* gL+ 2 P1.2 (1nX2 -P12)
(Y2

Similarly

A-7



% lit,1 (X2) = X1,X2 (X1 X2) 17- xc IQ1( j M 2/2 } .XI,2)
f1(x1) I - [IpI2tjJ

thus, from A-2 fX I(X2 ) =Q(X1, X2 )

wher X2 xj- LogN(b.c20(1.p 2 ))

Theorem A-4. If(X 1 ,X 2 ) -NLogN(q4 1 ,1 2 ),((C,a 2 , p12 ))t

E(XJ 1) e2+02P1,2(XI -11 )+402 (I-PI,2 )

Var(X 2 jx1)=e (11  ez (ezl- )

E-(XIfX2)=A1.+4. LP1.2(InX2 -p 2)

Var(XIJ 2  O? 11-?2)

where zc20 12

TheR=m A-3 proved tat

X21Ix - LogNqIL2 + -1 -Pi 2(X1 -ILI), Ca2(I _p2)
Oi 2 1.)

therefore, from table B- I (appendix B)
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E(X 2 Ixi)=e 9+0 P.

Var(X 2 Ixi)=e 01eZ~Z

whiere z a(Y2-0p? 2 ).

Theorem A-3 proved that

Xix - N(p.1 +1~-p1 2 ( 2 - 2) l _a1p~2 )JIX2 02 P,(n2-2 7 .)

therefore, it follows immediately from the properties of the normal that

E(XIIX2) 2 =1t+SP,2 (n2-2

and

Var(XIIX 2)=a(y1-p2 )

Theoem -S.If X1 , 2 )-2 2
Theoem A5. I (XIX2)NLogN(Q~j.,P 2 ), (a1 , 02 , p1 2 )) then

Median(X 2 xo)= e 0

2 2

Mode(X 2 X0)= e atI

Median(XII X2) = E(XI1 X2)
Mode(XuI X2) =E(X11 X2)

Since X 21 x, is lognormally distributed (theorem A-3), from table B-lI (appendix
B)

Median(X 2 IxI)=eh = 2+0i1zx~pI

and

A-9



21

Mode(X 2 xi) = e al

Since X11 X2 is wnorally distributed (thmerem A-3). it follows immediately that

Median(X I X2 ) = E(XIj IX2)

Mode(XIIX 2) =E(X11 X2)

2 2
Property A-i. If (X 1,X2 ) - NLogN((gj,A2 ),(a1 ,a 02 P,. 2 )) then

E(XilMedian(X 2 190))=A

From therem, A-4 it was establishied that

E(XIIX2 ) = Al +2 1.p 2 (InX2 -P 2 )

From therem, A-5, we may write

Median(X 2 Ix 1 1p) =e92
It follows that

E(XiIMedian(X 2I1Li)) =(X lii)=g + lP,2(n1-)

(72

A-l10



Appendix B

Theoretical Aspects of the
LogNormal and Bivariate LogNormal Probability Distributions

The Univariate LogNormal

If X is a nonnegative random variable and Y = In X has a normal distribution with

y = E(Y) and o2 = Var(Y)

then X is said to be lognormally distributed, that is

X - LogN(py,cr)

with density function

I I
e forx>O

fx(X) W i2tyX (B-i)

(0 otherwise

Equation B-I is referred to as the lognormal distribution. Important properties of

fx(x) are summarized in table B-1.

Table B- I Properties of the Lognormal Distribution

Property Expression

lx =E(X) el IY

OX= Var(X) e2 Y+2 (e Y -1)

Mode(X) e Y

Median(X) e

B-I



Theorem B-I. If X is lognormally distributed with mean 9tx and variance ox
e~n

AY =1.[ (x)L 4  ]
2 L(lx) +02J

and

Y= In (Px) + 4 ]L (lx)2

The Bivariate LogNorma)

Let Y1 = lnXI and Y2 = InX 2 where XI and X2 are random variables defined on

O<xl<o andO<x 2 <-o. Define

E(Yi) = •y = gi and Var(Yi) = oy, = oj

for i = 1, 2. Suppose that Y1 and Y2 each have a normal distribution and that the
pai

2 2(XIX 2 ) - BivariateLogN((Ai1 At2 ),(Y ,(° 2 • P1,2))

is a bivariate lognormal distribution with density function

e <xl <oo,O<x 2 <oofx1 X2 (XI, X2) _-(271)O02 ;l -2,2XlX2 B2

[0 otherwise

where

P1,2 =PYI ,Y2 =PinXinX2

B-2



1 - nx 1 -gJ*'i , ______ gl nx 2 -p12 )+rInX2 -9 2 '
-31. J tuY-I~2 )Y T2

_____ [ pX )2 + y21
!- In t, 1and a cy =In (P, 0

for i= 1, 2.

2 2Theorem B-2. If (X1,X2 ) -Bivariate LogN(qil~i 2 ), (aY .02 . P1.2)) then

Iec P1 2Iz -1

Proof,

By detinition

=COV(X 1,X2 ) =E(X1X2 )-E(XI)E(X2 ) (B-3)
(TX2 = ' CX A T X 2 X 1 

0 X 2

Since Y1 =In X I and Y2 =In X2 we canwrite

E(X, X,) = E(e Y1e Y2 ) = E(e Y'+Y2)

Recall that Y1 - Nqgi, (Y) for i = 1, 2. Thus, E(ey' + ý'2 ) is recognized as a

special evaluation of the moment generating function of a bivariate normal, which

is

M(tl,t 2 ) = E(etIy. +t2y2) t JJtYj+t2z YIf Y2)dy~dY

for Some real t1 and t2. Therefore,



y y yy (k 1 L)+oo+2 G)E(XiX 2 )=E(e le 2)=E(eY, +y,)=e +y) y

To determine the remaining terms in equation (B-3), we note that for r > 0the

moments of X are

E(Xf) = e" r 2 (B14)

Thus,
E(X1 ) = et,+°

E(X2) = e A, +jGo2

,)2 2p+2 2 Pi+o
Var(Xl). E(X2 ) - (E(X1 =) e I• +° (e l1+½ )2

X2 e) 2P2l+ 2o2 - Cy1°

Var(X 2 ) = E(X2)-(E(X_))2 = e 2I2+2 _ (e 112+½2 )2
e292 +2o2 - 2Pt2+0 2

Substituting into equation B-3, we have

E(X 1X2 )- E(XI)E(X 2)
O~l,2= ' OXIOX2

e(04+9t2 )+0(2 +2pyly 2OIO2 +02) -- (e A +O X•922+ 2)

Pxx2 e2.,+2G2 _e 2J+o2 V 2P2+2O2 _22+O2

which can be factored as:

e(It, +Ma )+.(i-(oG2•)(eP,. 2oIo, -1)
1+ 2 2

where P1,2 -PY I ,Y2 = PInXl,jnX 2

B-4



Thus,

12 (B-5)

which was to be lhown.

2 2
Theorem B-3. If (X1,X2 ) -Bivariate LogN ((jil 1 42),(Ca 0 , 2'P 1.2)) then

1 0 42-,xxIli )2IxZ

mid

f2(X2) = - ea

By definition

ffx)=Jx 1 .X, (xl,x 2)dx2

f2(X2) = J~fX1,X2 (Xl,x 2)dxl

Thle density function fXX (XI,X 2) Can be factored as

b=L2
2 2 1 (1nx1 -Ii) 2/a

fXIX2 XI'2) IQXI,2)BB-6



Therefore ~}(iX)X

1 I 4(n1  - )2 , 2

To coputefi(x2 ),h dest function fX1 e ,xiX 2)S factoreXI2d as

~~x1  )~ = {;l......1..e(If2 II2/ } B7

e*xl2 ) e-I x1 -b X2dX

N-W1 1q 1 1 J

since the:integrand is the probability density function of a LogN (b, (1 2 P1.2))
random variable.



Theorem B-4. If (X1,X2 ) -Bivariate LogN((gl1 t2 ),(aI,~ 'Y2P 1.2)) then

XJI2 LoN~, 201, (I 2 -9)C 2 0-2)
02

X2lxj - LogN(p.2 + (2 P1 ,2 (lnx, _gi). oy2(l _p2 2))

By defintion

I e - t(Inx, -p, )2I~I /

f2 (x2 ) I -ffIx

f~llx2 (XI) =Q*(X1 ,X2 )

thus, from B-7

wbeze X11 x2 - LogN( b*,o(i0 - P112))

b +S +1PL1 2 (lnX2 -12)
0r2

fxt .X2 (XI, X2) _ {1 217 oiyxi I W "~ )2 I11Q(Xl,X2)

fX21X, (X2 )=Q(x 1 ,x2 )
thus, from B-6

B-7



where

b=9±2 +SZP, (In x -p I)

Theorem B-5. If (X1,X2 ) -BivariateLogN ((1±1 ,P2).(a?,022 P1, 2 )) fthn

E(X2 IXi)=XiO e

Var(X2fx2) =x X1t e 01 - e (e -I

E~7(XI-P 2) and6 e 0

X2Ixi -LogN(~ 2 -'Ipi 2(ln 1 -02LP.9),~lP.)

wherefrfotalB-

z = -P21,2) n z2--P1,2I+0(-PI,2 )

Theorem B-4ls proved that

Thereorefromtabl B-



XX2- LogN(ji1 +f.2L.2 (In X2 - 1±2).C cT(l- P1.2))

Therefore, from table B- I

.SL 2*2

Var(X Ix2)=e A 02 e1. (n 2-12) - ( e1(- i2

S02 e (e - 1 ,)

22

0 10
2(1114 2I - P 2  2 2Mod1(X 0"2-P2)) a e 1p2 -

Medan(X2Ix2)e 02 ex (e 01 1,2

Mode(X2111 )=e 1

=~~~~fP1,2~ L2P 2 i7(P 2)
There B-. f( IX )- ivaiae~gN(Ii,9 ),(yI, C 2, 1.2) he

B92 2



iei,+- 1 •,2 (Inx 2 -=2) EL
Medoan(Xl 112)e0 X02 e 02

1/22

MoeXjlx 2) e(Xi°+• x2 )

S)-oy2 (1_P2,2

P1 a( l2x 2 -9
2

SL o 02( _2
=x02PI.2 ept-NO2•1,2112- 1 ( P12

2=

Property B-1. If (XI,X2)~BivariateLogN((•1,•2),(I 02 ,2))te h

conditional coefficient of dispersion D is

DFX112• I E(X 2Ix2) V

DFX2111 E(X 21XI ) =1

whm IFXIx2 and Fx x are the cumulative distributions of and

ibs corollary is stated without proof since it directly follows from theorem B-5.
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