
AD-A275 490 -flffl~lDTIC ___

se fte ers3, 199 L T
CLS02 1994

Design of Parallel Systems
for Signal Processing

REPORT FOR ONR/NRL PROJECT N00014-92-K-2018

Edward A. Lee DE%,rMIEII oFELWECUICL L4GDNEUNGo

Associate Professor AND CObM7U SCIENCES

University of California at Berkeley uNvEsrrY oF CAJMRNIA AT B•EUEY

SUMMARY
This report concludes phase I of the project. Two significant accomplishments are reported,
the first relating to the design of heterogeneous parallel systems, and the second related to the
synthesis of parallel programs for the CM-5 from Thinking Machines.

A methodology for design and evaluation of parallel architectures with heterogeneous compo-
nents has been developed. Specifically, the "communicating processes" (CP) domain in
Ptolemy has been used to model heterogenous parallel hardware systems. Our first demonstra-
tion design uses the "ALPS" concept (Alternative Low-level Primitive Structures). Use of the
CP domain is a departure from our proposal, where we had proposed to use a discrete-event
model. We have determined, however, that the CP model is considerably more convenient for
high-level design of heterogeneous parallel hardware. The CP domain in Ptolemy has a multi-

W tasking kernel managing concurrent processes. A process, or thread, is created for each com-
1ý c putational and communications system resource in a particular design. The CP model of coin-

L putation makes it easy to write and interconnect a variety of computational resources and
-ýq simulate the execution of an application to evaluate the particular architectural configuration.

We have developed a Target in Ptolemy for the CM-5 from Thinking Machines Inc. The pro-
0S] cessing nodes of the CM-5 (Sparc processors with dedicated network interfaces) match well

Ptolemy's large grain parallelization approach. Ptolemy will map an application fitting the
- synchronous dataflow (SDF) model of computation onto the processing nodes and schedule

the computation and interprocessor communication (IPC). A variety of different algorithms
may be used to perform the mapping and scheduling. Ptolemy generates C code for the com-

'V~ putation and IPC; this code is then compiled and executed. The IPC is performed using Active
Messages (CMAM) from Prof. Culler's group at Berkeley.

Both results are preliminary in some sense. The hardware design methodology needs a more
systematic methodology for evaluating particular hardware configurations. The CM-5 code
generation needs better expression of data parallelism in the original graphical application
specification and adaptation of our schedulers to exploit this data parallelism.

Ts doct 1 b94 2 01 17 4
o Ielete. and eae; itsdistribtion is unl=wLea

Best
Available

Copy

• -•• - :: • - ; = - - , • - ' .

1Th Design of I lsogansous Par• Bylem

A. The Design of Heterogeneous Parallel Systems

An architectural approach, called ALPS (Alternative Low-level Primitive Structures)[Wu84],
consists of several system resources connected via a "message circus" and a "data circus" as
shown in figure 1. A system resource consists of an ALPS primitive structurý, coupled to a
standard system interface called the Interface Control Unit (ICU). Such a standard interface
makes it possible to have a wide range of hardware resources within a single application - the
ICU handles the discrepancies in the requirements of different resources.The ICU implements
the control protocols necessary for data communication, primitive activation, and deactiva-
tion. This distribution of control, made possible by a self-synchronizing network architecture,
avoids the bottlenecks associated with centralized control and synchronization.

The signal flow graph (SFG) describing the application is loaded into each ICU in the form of
a routing table, which acts as a look-up table for task activation. Data associated with an arc
between two nodes of the SFG is characterized by its source and destination node pair -
called the virtual circuit number (VCN). This VCN, along with an identifier as to the 'type' of
resource needed by this data, constitutes a message control token (MCT).

A source node, upon completing execution of its task, broadcasts the MCT(s) to all the system
resources via the message circus. A 'free' resource of the requested type grabs this token and

MESSAGE IRCUS DATA CIRCUS "

/ •• \\ Primtv ICU

ResRureree_4 40 C UT:.

ISystem

FIGURE 1. System Interconnections and Resource Structure for the
ALPS Architecture.

Design of Parallel Systems for Signal Processing 2 of 18

The Design of H .ous PWard Sys*ss

sends an acknowledgment to the source, which then transmits the data on the data circus.
After transmitting the data, the source becomes free for subsequent computations. The sink
processes the received data and initiates the next transfer.

The protocol supports multiple sinks (multicast, or forking of data), variable-length data, and
multirate processing. If an appropriate sink is not found, the MCT is re-transmitted some time
later. The design is highly modular due to the standard interface, and can accommodate more
or less arbitrary combinations of processing elements.

In comparison with the SPRING [Pic89] architecture, where the tokens pass 'through' each
resource along the ring intead of being broadcast over the circus as in ALPS, ALPS has a bet-
ter fault-tolerant behavior. In the case of SPRING, if a resource is damaged it can not send the
data further along the ring; hence, even if there is another resource of the appropriate kind, the
processing halts. With ALPS however, if there is another resource, thc source re-transmits the
MCT and the processing continues when the resource becomes free.

A.1 Requirements of Heterogeneous Application-Specfi c System Design

A key difficulty in exploiting concepts such as ALPS in application-specific systems is the
complexity of the design process itself. It is not appropriate in such designs to disassociate
algorithm, hardware, and software, as is traditionally done. Instead, all three should be
designed and evaluated together. The performance of the hardware should be assessed for
variations of the algorithm. And the behavior of the algorithm should be assessed in the pres-
ence of hardware faults.

To accomplish this holistic design style, we require a software environment that contains at
least the following capabilities:

• Simulation for high-level modeling of hardware and communications.

* Ability to execute signal processing algorithms on the high-level hardware model.

* Ability to simulate hardware faults and evaluate the impact on the algorithms.
* Support for detailed hardware design of the components of the system.

* Ability to synthesize software for programmable components.

* Ability to simulate the detailed hardware design executing the synthesized software.

Another desirable capability would be integrated hardware synthesis, to support the design of
specialized hardware resources in an ALPS configuration.

All of the above capabilities are consistent with the basic design of Ptolemy. Some already -.
exist, while others have a fairly clear development path.

A.2 First Version - Discrete-Event Simulation of ALPS

The first version of our simulation environment for ALPS architectures used the discrete-
event (DE) model. Figure 2 shows a five-element ALPS system executing a simple algorithm ..

specified as a signal flow graph. The algorithm, shown in the top left corner window, gener-
ates the plot in the lower right window. The table shown next to the SFG that specifies the
algorithm defines the mapping of computations onto computational resources.

Design of Parallel Systems for Signal Processing 3o 18 I or

BTIC QULLIFZLiaT 4

The Design of aetemogeneous Parlel Sysms

The DE model of the ALPS architecture is shown in the lower left window. Each ICU exe-
cutes the interface protocol as described above. It has a number of parameters that can be con-
trolled; for example, the ID of the block, the type of resource (Source, Sink, or Processing
primitive) it is connected to, the number of samples it receives from the bus, and the number
of samples produced by the computing resource. This modest amount of programmability in
the ICU is justified because of the high modularity it supports via various types of primitives
connected to it. On the Message circus, in the left half of figure 2, each ICU sends out MCTM
and acknowledgments. Data transfers are managed by the Data circus that appears on the right
side. The plot in the lower right window results from executing this algorithm on the hardware
model.

This over-simplified example illustrates the various components involved in developing a
model for the ALPS architecture. Different types of functional resources can be connected to
each ICU. Each ICU has a pre-settable parameter that identifies the type of computational
resource it is connected to. Using this information, the ICU responds to MCTs if the requested

Simple Graphics Demo 0

1 2 2 2 3
2 1 1 I1

3 4 I 5 $

3 4
1

mi.

ALPS Model - Configured for Graphics Demo ftouArch.oictu de

esg PCU SamsltstededrrSoalPsesn

' Circus Oirou s - 3u) y -siru)

,~~ ICU•@/ 1
.T 4 \ W,

t/ \ J ;Ck

FIGURE 2. ALPS model In Ptolemy: The piplkiation .RIG Ardhtiecturffll Model, Ieah
Table, and Simulation Results This Implementation uses fte disarfte-event €oan

Design of Parallel Systems for Signal Processing 4 of 18

The Design o 1 M Pale SYSm

resource type matches the type of resource it is associated with. In this demonstration system,
the compute resource is modeled as a block in the Synchronous Data Flow (SDF) domain,
while the overall interconnection of the ICUs at the system-level is managed by the timed DE
domain. The wormhole concept of Ptolemy is used to maintain the interface between the SDF
resource and the DE architectural model. A wormhole is a block nested within a parent appli-
cation, that outwardly appears to be a monolithic block belonging to the same domain as the
parent domain, but internally contains an application that belongs to a different domain. The
differences in scheduling mechanisms for the two domains are handled at the wormhole inter-
face. This multiparadigm simulation capability permits the coexistence and interaction of dif-
ferent models of computation. In the ALPS model, the various resources are SDF wormholes
in the DE parent domain. As a result, it becomes possible to simultaneously simulate the hard-
ware (data and control flow between various ICUs) and software (the functionality of each
resource) for architectures such as ALPS.

Our experience with this simulation methodology, however, led us to another approach. The
discrete-event model of computation turned out to require rather complex code to specify the
functionality of the ICU and computational nodes. The basic reason is that in an event-driven
model, the model of a component is invoked in response to events in the simulation environ-
ment without concern for its history. The history must be stored locally in the model for each
component, making the designer responsible for managing complex, low-level control that
has little to do with the functionality he or she wishes to model. Consequently, we developed
an alternative model using a "communicating processes" (CP) model of computation. The
resulting component models are much simpler and more intuitive.

A.3 Communicating Processes Simulation of ALPS Architectures
The Communicating Processes (CP) domain in Ptolemy has been implemented by Seungjun
Lee (in Prof. Rabaey's group) to provide a hardware-software co-simulation environment. It
has a multi-tasking kernel that simulates concurrent processes using the Sun lightweight pro-
cess library'. An autonomous task, or thread, is created for each functional module in the sim-
ulation. The execution of multiple threads are supervised by a customized process scheduler.
The architecture described in the report consists of a set of ICUs and network links connecting
the ICUs. They execute concurrently, and communicate with one another by sending and
receiving data synchronously. Consequently, they are most naturally modeled as a set of con-
current processes communicating with one another by message passing. Because each process
runs independently from the other processes, except where there is explicit inter-process com-
munication, the components of the system are easier to design and more intuitive than the dis-
crete-event version. Conceptually, the simulation for each component runs continuously,
reading and writing to its communication channels. Unlike the discrete-event versions, no
code is required to required to explicitly store state and manage startup. The reason is that
when a process suspends and restarts, it restarts exactly where it left off. In the DE domain, by

1. The design of tde CP domain is isolated from the details of the Sun Lightweight process library using object-oriented prin-
ciples, so that other multitasking kernels can be substituted instead.

Design of Parallel Systems for Signal Processing 5 o is

The Deslon ov mensmis Parallel SMms tI

contrast, when a process restarts, it restarts at the beginning, and it is up to the designer to fig-
ure out where it had left off when it was suspended. We now give a detailed description of this
implementation.

The Interface Control Unit

The ICU connects a processor to the rest of the system. It communicates with other identical
ICUs and with the processor itself. Each ICU is divided into two discrete modules, the Net-
work Interface Unit (NIU) and the Processor Interface Unit (PIU) as shown in Figure 3. All
packets passing into or out of a node are handled by the NIU. The NiU. uses the clocking
scheme specified by the physical layer. Each NIU is comprised of three queues; an output
(transmission) queue, an input (acceptance) queue, and a bypass queue, as shown in Figure 4.
The input queue and the bypass queue are strictly FIFO, but the output queue is capable of re-
ordering its members so that l'igh-priority packets are not delayed by lower-priority packets.

MU

PIU

FIGURE 3. The Interfc Control Unit (ICU)

BypessQueue

Input _output
Queue Queue

Accepted Packet New Reues
FIGURE 4. Queuing model of a node.

Design of Parallel Systems for Signal Processing 6 of 18

Th Design of Heton Parallel Sys! -m

The queue size of the input queue and the bypass queue is configured at 32 words in our sim-
ulation, the maximum length of the packet size.

When a packet traveling along the ring arrives at a node, it is routed into either the input queue
(if destined for that node) or the bypass queue. In the former case, a short echo packet is con-
ditionally generated and submitted to the bypass queue. Packets in the bypass queue contend
with those queued for transmission in the output queue for the link to the next node. The
bypass queue is given non-preemptive priority over the transmission queue. Each PIU runs at
the clock frequency of the processor to which it is interfaced.

The PIU removes and decodes packets from the input queue of the NIU and appropriately
handles the data contained therein. Also, the PIU packetizes data generated by the processor,
associating it with the proper control information, and placing it into the output queue of the
NIU for transmission. The PIU is programmable.

Physical Layer
The physical layer is modeled logically, not elentrically. The relevant signals are:

"* Din<O... 15>: incoming data arrives on these lines in packetized form. Since the net-
work protocols are synchronous, idle symbols arrive on these lines when no data
packet is present.

"* Dout<O... 15>: Outgoing data is sent on these line. When there exists no packet to
send, idle symbols are transmitted.

"* Fin: Incoming flag signal to detect packet boi -,daries. It is LOW when the incoming
link is idle. It goes HIGH to indicate the start o& a packet on the Din line. It goes LOW
again at the end of arrival of the fourth to last word of a SEND PACKET or last word
of an ECHO PACKET. Note that this will increase hardware complexity.

* Fout: Outgoing flag signal.

SCin: Incoming clock signal.

• Cout: Outgoing clock signal.

Clocking Mechanism

Because inter-processor communication is achieved through the synchronous interaction of
the network circuitry on each node, the clock frequency of each network interface unit must
be the same. One node (the clock master) generates the clock signal and each NIU forwards
this signal to its downstream neighbor.

Logical Layer

The ICU supports the following transaction classes:

* Echo-less: This is a non-robust communication mechanism, in that no error recovery
is possible. However, it also entails less overhead. A "scrubber" removes packets with
erroneous Target IDs from the ring. If a packet arrives at a node that does not have
enough space in its input queue, the packet is removed from the ring. No source node
buffering is required.

eWgn of Parallel Systems for Signal Processing 7 o IS

The Design o eq Ism npfho nus Parulle Syiwnsm

"* Echoed: This provides a more robust transaction mechanism. Upon receipt of the
packet at the target node, an echo is returned. Upon receipt of a "busy echo", the
source node must retransmit the packet. If the packet or echo becomes corrupted, the
source node generates a time-out and retransmits.

"* Multicast: To initiate multicast, a node transmits to itself. Participating nodes (those
belonging to the nmidticast group) then copy the packet as it passes but do not strip it
from the stream.

" ResumeMulticast: When a busy echo is returned from a echoed multicast, the multi-
cast may be re-transmitted, but it is directed to the node which sent the echo. Upon
accepting the re-sent packet into its input queue, the target node replaces the Target ID
of the packet with the Source ID, and converts it into a normal multicast.

Arbitration

The ICU assigns packets to any of eight groups. The group to which a packet belongs will be
specified in the first word of the packet. Eight bits of this word are used for the destination
address (up to 256 nodes) and each of the remaining eight bits may be used to uniquely repre-
sent a group. A packet belonging to a given group would have the corresponding group bit set
in the first word of its header. A packet should not belong to more than one group. Send pack-
ets are always appended to idle symbols that contain a go bit corresponding to the group to
which the packet belongs. While emptying its bypass FIFO, a node records the arrival of an
idle symbol containing this (and any other passing go bits) in its idle_accumulator. This regis-
ter must eventually contain the required go bit before the node will be allowed to transmit its
packet. When the node's bypass FIFO becomes empty and it has a packet to transmit, it may
do so only if its idle accumulator contains the required go bit. In this case, the contents of the
idleaccumulator are merged (using logical OR) with the go bits of the next idle symbol and it
may follow that idle with its packet. If the required go bit has not been recorded, group bits of
a passing packet must still be recorded, and the relevant go bits of arriving idles blocked. Any
go bits contained in the idle,_accumulator that are not represented in the blockregister are
released. Upon transmission of its own packet, a node's blockregister and idleaccumulator
are cleared and, until it wishes to transmit another packet, idle symbols are passed along
unchanged. If a previously idle node suddenly wishes to transmit a packet, it may do so if the
last emitted idle contains the required go bits. Otherwise, the node is considered blocked and
the protocols described previously are employed. If, upon acceptance of a packet into its input
FIFO, a node neither has a packet to transmit nor has a full bypass FIFO, the preceding idle
symbol is multiplied. This idle extension stops when the next packet or idle symbol arrives.

Packet Formats

A packet consists of a three-word header, a cyclic-redundancy code, and sometimes a main
body, as shown in Figure 5. Information contained within the main body of a packet is speci-
fied in the transport layer. The fields are:

"* targetid: Local ringlet destination.
"* arb-grp: The packet's arbitration group.

Design of Parallel Systems for Signal Processing 8 o 18

The Design of Ieeogeneous ParllelSy-le

* command: The packet type, send class, multicast information, length, and some flow-
control and status information.

* sourceid: Local ringlet I).

* ret: Incremented when retransmitting a packet.

* seq..#: Sequence number. Useful for proper ordering of piped data.

* main body: Packet sizes 4, 8, 16, or 32 words. This corresponds to main.body sizes of
0, 4, 12, and 28. Echo packets do not have a main_body and are thus 4 words.

* CRC: Check sum.

Command Word Formats

A command word format is shown in Figure 6. The fields are:

* old: Initialized to 0 by the source node and set to 1 by scrubber. It is the responsibility
of the scrubber to remove from the ring any packets it receives with old bit set to 1.

* echo (bit 8): Set to 1 for echo packets and to 0 for send packets.

* len: 00,01, 10, 11 respectively mean 4 words, 8 words, 16 words, or 32 words.

* bsy: Set to 1 if the issuing node's input queue was full upon receipt of the correspond-
ing send packet.

arb-grp target~id

command

seq_# ret source id

control, data, address

CRC

FIGURE & General packet structure&

SEND

oI mc...Hgrp mckob o1 cmd len

0 1 4 5 6 7 8 9 13 14 15
ECHO

o01 (reserved) Ibsý 1 (reserved) T00

0 1 6 7 8 9 13 14 15
FIGURE 6. Command word fonnmts.

Design of Parallel Systems for Signal Processing 9o018

urM Designe ol rgeu PMW6I SM

* and: Transport layer command being carried out specified in the cmd field of a send
packet.

* rob: Set to I by the issuing processor if echo is desired.

• mc: Set to 1 to send a packet to multiple destinations. When set, the mc..grp field con-
tains the multicastgroup to which the packet is directed.

* rmc: Set indicates resumes-multicast. Target node clear this bit, set the mc bit, replace
the targetid with the sourceid.

Tranport Layer

Each node maintains a pipe-directory. This is necessary for static operations. The pipe-direc-
tory contains the following:

* An indication which SFG tasks it can perform;
I The input and output pipeidentifiers associated with each task;

* The nodes between which the pipe is currently established (i.e. source and sink nodes).

The pipe-directories are sometimes used during system initialization or during dynamic
scheduling or reconfiguration. All should be implemented as echoed transactions.

A.4 Architecture Simulations

Figure 7 shows a simulation of a network with 4 ICUs. The Link block connects two adjacent
ICU nodes. The signal flow graph representing the signal processing application to be exe-
cuted on the simulated architecture is attached to the PIU of the ICU node. The NIU, the PIU,
or Link is considered as an atomic block (process) for simulation. Processes interact with each
other by message passing through ports. The behavior of a process is described in C++.

Specification in CP domain

All the processes are assumed to run concurrently. A process keeps running until any one of
following occurs:

* It blocks trying to communicate with another process.

* It suspends itself for a certain amount of simulated time.
* It terminates.

A blocked process resumes as soon as the condition which caused the blocking of the process
is resolved, for example the communication channel becomes available, or an input arrives. A
suspended process resumes after the given simulated time period has elapsed. This is used to
model computation times and delays in the system.

Processes communicate with each other by passing message through ports. Each Ptolemy star
(a process) may have several input ports and output ports. A channel connects an output port
to an input port. Only one-to-one connections are allowed. Channels can be buffered or unbuf-
fered. A buffered channel has a FIFO queue with either finite or infinite capacity.

A port is characterized by a data type that it carries and a port protocol. The port protocol
specifies the behavior when a channel is full or empty. Four different protocols are supported

Design of Parallel Systems for Signal Processing 10 of 18

The Deasin of HebrogeeWaus Palsi Systms '

Proceor modse

Lik M"

gillp

FIGURE 7. A simulated network with 4 ICU nodes&

for each input and output port. An output port can either block on full, block on full with time-
out, overwrite on full, or ignore on full. An input port can block on empty, block on empty
with time-out, re-use the previous packet on empty, or ignore on empty. The port protocol is
fixed at setup time and cannot change dynamically.

The following primitives provided by the CP domain are used to build up the simulation:
"* The method msgSend (data, outPort) is used to send data through the outPort, while

msgReceive (data, inPort) receives data through inPort. If the data transaction cannot
be made immediately, the process may either block or proceed, depending on the pro-
tocol specified on the port.

" TMsgSend (data, outPort, time-out) and TMsgReceive (data, inPort, time-out) can be
used to describe the behavior, "block on ful/empty with time-out". They return after a
time-out, indicating whether the communication has succeeded. They are only mean-
ingful when they are called on the ports with BLOCK mode protocol.

Design of Prmllel Systems for Signal ProcessIng 11 o118

The Design of aH1mo@0 o P Syas"

"* waitFor (timePeriod) suspends the process until timePeriod passes. It is used to model
execution delay.

"* waitAll() and waitAnyO wait on a set of input or output ports, and return only when
all or any of them become ready for communication. They take an arbitrary number of
ports as their arguments, and return the number of ports available for data transaction.

"* waitOne0 describes non-deterministic behavior. It returns any port which is ready for
a transaction. When there is more than one port ready at the same time, one is selected
randomly and returned.

"• TWaitAll, TWaitAnyo, and TWaitOneo have the same functionality as waitAllo,
waitAnyo, and waitOne0 respectively, except that they take one more argument as
time-out. They will return when the time limit expires even if there is no ready port.

Component Star Implementation
The NIU star has two receive sections and two transmit sections. In between these two sec-
tions, an execution section is implemented to perform network protocol. The NIU receives
data from the Link star (Din, Fin, Cin) every cycle, synchronously, and receives data from the
PIU (Din, DinValid) only if DinValid is active. The data valid signal is required in order to
synchronize because the cycle time is typically much longer with the PIU than the NIU. The
NIU star transmits to the Link star (Dout, Fout, Cout) in every cycle and transmits data to the
PIU (Dout, DoutValid).

Similarly, the PIU has two receive sections and two transmit sections. Since the PIU can con-
nect to processing elements with different execution cycle times, the PIU communicates with
the processing elements using a non-blocking mode. Simple processing elements are attached
in the simulation shown in figure 7, but more complex processors can be used. The cycle time
of the PIU is implemented using the waitFor(interval) construct. The cycle time is static
throughout a simulation, in this implementation.

The Link star simply passes the data through. Its only purpose in the simulation is to monitor
the network utilization.

Communication between the NIU and the Link star is non-blocking. Communication between
the PIU and the NIU, and the PIU and the processing elements is also non-blocking, but with
a transReady construct to prevent the process from hanging when there is no input or output
available

Operation
A simulation example with four ICU nodes is shown in Figure 7. Each ICU is connected
through the Link star which synchronizes data transfer between the nodes. At the PIU side of
the ICU node, different types of processing elements are attached to generate and consume
data in order to simulate the signal processing application.

During initialization, each ICU reads in routing information and the pipe directory informa-
tion from a schedule file provided by the user for the particular simulation. In this file, there
are eight fields to be completed by the user in order to start simulation. Our plan in the future

Design of Parallel Systems for Signal Processing 12 of 18

The Desn of Met Parallel Systems

is that this file will be generated automatically from a high-level description of the signal pro-
cessing function to be performed. For the simulation shown in figure 7, the contents of this file
are:

Trans multicast Source/ Packet multicast
Type group Sink Size number

1 1 2 0 0 0 16 0
1 2 3 0 0 0 16 0
1 3 4 0 0 0 16 0
2 5 1 0 0 1 16 0
3 5 1 0 0 1 16 0
4 5 1 0 0 1 16 0

The ICU reads in schedule information only if node ID matches with the ICU node ID. In the
above example, there are three lines of schedule information for node 1 and one each for the
others. The pipe number indicates the which pipe is used for the connection given by the con-
nect ID. There are four input pipes, 1-4, and 4 output pipes, 5-8. The transaction type indicates
what type of packet transaction should be done (0: echoed transaction, 1: echoless transaction,
2: multicast, and 3: resume multicast). Processing elements belong to the multicast group have
same multicast group ID. In case of echoed or echoless transaction, the multicast group ID is

Processing Element Type
Pipe Number: 1
Pipe Type: SOURCE
Connecting Node: 2
Transaction Type: ECHOED
Packet Size: 16

Processing Element lype
Pipe Number. 2
Pipe Type: SOURCE
Connecting Node: 3
Transaction Type: ECHOED
Packet Size: 16

Processing Element Typ
Pipe Number: 3
Pipe Type: SOURCE
Connecting Node: 4
Transaction Type: ECHOED
Packet Size: 16

FIGURE 8. Schedule Information for node I generated by Ptolemy

Design of Parallel Systems for Signal Processing 13of18

The Design ofetuiomgnenhuw uus ylu

ignored. In the source/sink column, 0 indicates that the pipe is a source and I indicates that the
pipe is a sink.

The NTU stars read routing information and the PIU stars read pipe directory information. The
routing information includes arbpgrp, mc.grp, and transaction type. The nodeid is set by the
user.

The cycle time is set by the user for individual components before the simulation. The NIU
cycle time value is set to 1 under the assumption that it is designed to not be a system bottle-
neck. All of the units are operating in non-blocking mode; that is, the units do not wait for data
if data is not available. Once the schedule information read in by the ICU, Ptolemy generates
the confirmed schedule information as shown in Figure 8.

Every queue in the ICU can be monitored. Using the simulation, the actual queue size needed
in a hardware implementation can be determined as shown in Figure 9. The pipe capacity is
directly related to the amount of memory required in PIU. Hence the pipe capacity monitor
provides the required memory size. The link monitor displays the network utilization for the
particular application mapped onto the simulated architecture, as shown in Figure 10. Here, a
"1" indicates that the link is busy, so that the burstiness of the traffic can be read at a glance.

CloseE HardcopyBypass Queue Node 3
V

15.00-- 4 _ /tmp/ptzca6.001 7

10.0_-__
lo~oo--1.

0.00-- i...

0.00 100.00 200.00
FIGURE v. oueue size monitor splayesa urinng a simulation

Close Hardcopy Link 2
V

1.00-....... . -. .mp/pt ca..0+

I I

0.0
0.00 100.00 200.00

RGURE 10. Unk utilzation diplay

Design of Parallel System for Signal Processing 14 of 18

4- I

hnr& Cod* Genrto

B. Parallel Code Generation

A code generation Target in Ptolemy for the CM-5 from Thinking Machines Inc. has been
developed using the parallelizing schedulers developed in our group [Sih93ab]. These sched-
ulers easily support the variable communication latency present in the "fat-tree" communica-
tion architecture of CM-5. The synchronous dataflow (SDF) model of computation is used.
Ptolemy generates C code for the computation and IPC; this code is then compiled and exe-
cuted. The IPC is performed using Active Messages (CMAM) from Prof. Culler's group
[Eic92]

The first major test application is shown in figure 11. This is a "perfect reconstruction" filter
bank, in effect performing a wavelet transform and inverse transform. We are currently using
this application to measure communication overhead and assess the efficacy of the parallel
scheduler. This application, however, runs fast enough for many applications on a single
sparcstation, and therefore serves only as an instrumentation test.

"Perfecr Reconstruction Filter Bank
and Discrete Wavelet Transfonn

FIGURE 11. A Ptolmy oppllcedon mopped ontlo fth CM-5.

Design of Parallel Systems for Signal Processing 15 of 18

IWb

C. Further Work

Parallel Programming

The major weakness in our CM5 code generation is its limited ability to exploit data parallel-
ism. Part of the problem is in the program representation, and part in the scheduling. We pro-
pose to concentrate on these issues in the next phase of the project. Future plans also include
general research of parallel scheduling algorithms, research into fine grain parallelization, and
CM-5 specific research on alternative IPC protocols and finding weaker IPC synchronization
methods.

Representation of applications - the programmer Interface
Granhical representations of high-level program structure encourages reusable, modular soft-
ware, and in principle supports visualization of parallelism and real-time performance. But the
efficacy of these techniques has only been proven in rather narrow domains. Some constructs,
such as parameterized iteration or parallelism, are awkward to express in current graphical
environments. We will explore this issue, and find graphical, textual, or hybrid representations
that are natural and easy to work with. The principal deliverable for the next portion of the
project will be a report comparing alternative approaches and software enhancements in the
Ptolemy system that support the best of these.

Scheduling for Heterogeneous Parallel Systems
Although application-specific processors do not require a scheduler in the traditional sense,
compile-time partitioning must be performed. Since partitioning is part of any compile-time
scheduling strategy, we propose to begin by adapting existing schedulers to perform the parti-
tioning. The scheduling algorithms will be then be customized to the class of architectures.
The new schedulers will be included in future Ptolemy releases.

Heterogeneous combinations of domain-specific schedulers

An environment will be created where schedulers can be selected and mixed at will, even
mixed within a single application. The objective is to support applications containing a variety
of algorithms or subsystems that interact, but which have different degrees of compile-time
predictability, and different models of computation. Instead of generalizing a single scheduler
to support all possible subsystems, our approach will be to mix schedulers that are highly
tuned for a particular domain of operation. A principal challenge is that outer level schedulers
must be able to manage objects that consume multiple parallel resources under the control of
inner schedulers.

Improved Simulation and Evaluation of Embedded Systems
Our work to date with the ALPS simulation has had the primary benefit of refining our meth-
odology for designing and evaluating parallel architectures. Very little of the result is specific
to ALPS architectures, in that the same methodology can be applied to the design of other par-
allel application-specific systems. However, our work so far has underscored some key weak-
nesses in our methodology. The principal one of these is that the application description and

Design of Parallel Systems for Signal Processing 16 of 18

Furtlr Work

architectwe description are disjoint, and the mapping from one to another is ad-hoc. We pro-
pose to concentrate on this linkage in subsequent work.
This architectural concept of distributed resources and control can be further extended for
Ptolemy simulations for the analysis of multiprocessor configurations, interprocessor commu-
nication, and scheduling. In figures 2 and 7, each computing resource is a specific Ptolemy
subsystem implemented in the SDF domain. Although the sequence and timing of the execu-
tion is not predetermined, the capability of each processing unit is. This mechanism cannot be
conveniently used to model programmable processors as components in the system, since the
computation in the resource is hard-wired into the block diagram specification. Reconfiguring
the system to execute another signal processing application would require rewiring the hard-
ware model.

To model programmable components, we propose to identify each computing resource with a
C++ object capable of executing arbitrary SDF subsystems. One simple mechanism is for the
computing resource to be an instance of the Ptolemy interpreter. The SFG is divided into
smaller subgraphs, each of which is executed by a copy of the interpreter. A more efficient
mechanism is to define a "Target" and a "Scheduler" (C++ class names in Ptolemy) for each
processor configuration, where the Scheduler partitions the SDF graph and generates the hash
table at compile time. Each processor then invokes schedulable subunits via calls to the
Ptolemy kernel. Again, the same concept can be applied to any parallel embedded system, not
just ALPS systems.

In Ptolemy, every simulation executes via an object called a Target. The Target, in turn,
invokes one or more compile-time and run-time Schedulers. For the high-level hardware
model, the Scheduler is the standard Ptolemy discrete-event scheduler. However, we require
that the high-level hardware model itself be the Target for the signal processing application.
This will require an extension to Ptolemy, allowing one Ptolemy application to serve as the
Target for another. A scheduler associated with this Target will be responsible for determining
the capabilities of each programmable computing resource. A first-order solution applicable at
ALPS and related architectures is to leave these capabilities unconstrained, in effect deferring
all scheduling decisions until runtime. An ICU with a free computing resource will grab the
first MCT to arrive on the data circus, and begin executing the SDF subsystem associated with
that MCT.
Even with the above simple first-order scheme for scheduling executions, a compile-time
decision has to be made about how to partition the algorithm. The finest level of granularity
(one SDF block per MCT) may be much too fine, overloading communication resources with
needless messages that will not enhance execution speed. Hence, the partitioning should prob-
ably be guided by a more intelligent scheduler. Fortunately, we already have a suite of three
parallelizing schedulers in Ptolemy that can be used.

Simulating hardware faults using the above capability is quite easy. Execution resources can
be disabled at random times, even during a computation so that data in process is lost. The
robustness of signal processing algorithms in the presence of such degradations can therefore
be measured. If, for example, an ALPS configuration has two dedicated FF1 processors and

Design of Parallel Systems for Signal Processing 17of 16

one of the FFT modules fails, then the processing can continue with a single module. The
effect of this hardware loss on the performance and throughput of the application can be stud-
ied. More interestingly, if the hardware module fails in mid-computation, the effect on the
application can be assessed.

Detailed Hardware and Software Design
The hardware model in figure 2 is a very high-level model. No circuit details are represented.
Execution times are estimated. Although very valuable information can be gained about archi-
tectures and their match to particular algorithms using this type of model, a natural next step
would be to support the design of hardware that implements an architecture. Fortunately, this
fits very well with ongoing work in Ptolemy (sponsored by SRC) on hardware/software code-
sign.

The existing Ptolemy Thor domain can be used to implement a programmable DSP, or other
circuit element, at each ALPS node. The SFG is partitioned as in the earlier case; however,
instead of generating just a partitioning, DSP assembly code is generated for each portion of
the subgraph. The DSPs at the nodes of the ALPS configuration execute this code. The run-
time of the different portions of the SFG can be determined and different partitions of the SFG
can be examined.

Thor, however, is not a widely used hardware specification language. For this reason, we pro-
pose to build a VHDL code generation domain in Ptolemy, coupled with a VHDL simulator.
Because of Ptolemy's support for heterogeneity, it will be possible to freely intermix these
VHDL descriptions with more abstract stochastic hardware models in the DE domain and spe-
cialized algorithm specifications in the SDF (and other) domains. The VHDL domain is well
under way, but not yet ready for distribution.

D. References

[Eic92] T. von Eicken D. E. Culler, and S. C. Goldsein. and K. K Schauser, "Active messages a mechanism
for integrated communications and computation." Proc. of the 19th Int. Symp. on Computer Architec-
ture, Gold Coast, Australia. May 1992, also available as TR UCB/CSD 92/675, CS Division. Univer-
sity of California. Berkeley, CA 94720.

[Pic89J D. Picker. Ronald D. Fellman, ad Paul M. Chau, "Pedormance Analysis of a Ring-Based Multipro-
cessor System". Submitted, J. of Parallel and Distributed Computing.

[Sih93al G. C. Sib and E.A. Lee. "A Compile-Thme Scheduling Heuristic for Inaercouection-Constrained Het-
erogelous Processor Architectures". IEEE Trans. on Parallel and Distributed Systems, Vol. 4, No. 2.
February. 1993.

[Sih93b] G. C. Sib and E A. Lee. "Declustering: A New Multiprocessor Scheduling Technique." IEEE Trans.
on Parallel and Distributed Systems, Vol. 4, No. 6, pp. 625-637, June 1993.

[Wu84l Y. S. Wu and Les J. Wu. "'Signal Flow' Architecture", CONMPCON 84. Wash. DC. Sept. 84.

Design of Parallel Systems for Signal Processing 118o18

