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ABSTRACT

We examined the spin-up from rest of water in a rectangular cyclinder. The presence

of corners in the cylinder causes the formation of eddies. We found that the number of ed-

I dies, as well as eddy size, position, and rotation rate were dependent on the aspect ratio of

the cylinder, the depth of the fluid, and the final angular velocity of the cylinder. Two time

scales were found to be important in this experiment: the traditional Ekman number based

on depth, which defines the time scale required for spin-up and an additional Ekman number

based on the cylinder length which provides some information about the evolution of the

fluid pathlines in route to spin-up. This second Eckman number appears to provide an ex-

planation for both the agreement and disagreement of the experimental results herein and

previously published results.

I
I
I
I
I
I
I
U
I



iv

Table of Contents

LIST OF FIGURES .................................................... v

LIST OF TABLES ...................................................... vii

ACKNOWLEDGMENTS ................................................. viii

Chapter 1. INTRODUCTION ............................................. I

Chapter 2. LITERATURE ........................................ 4

Chapter 3. THEORETICAL CONSIDERATIONS ............................. 8

3.1 Equations of Motion for Spin-up in a Rectangular Cylinder ............. 8
3.2 Streamlines for the Initial Flow ................................... 10
3.3 Linear Solution for the Circular Cylinder ........................... 12

Chapter 4. EXPERIMENTAL EQUIPMENT AND PRODECURES ............... 17

4.1 Real-Tune Computer .......................................... 17
4.2 Turntable and Drive ........................................... 18
4.3 Flow Vis,. Aization ............................................ 23
4.4 The Rectangular Tank and Water ................................. 24

3 Chapter 5. RESULTS ................................................... 26

5.1 Comparison Case ............................................. 27
5.1.1 Horizontal Flow Observations ........................... 27
5.1.2 Vertical Flow Observations ............................... 30
5.1.3 Comparison with vHDD's Experiment .................... 32

_ 5.2 Effects of Varying 8 ......................................... .. 35
5.3 Effects of Varying H ........................................... 39
5.4 Effects of Varying Qf .......................................... 43I 5.5 Path of the Eddy Center ........................................ 48
5.6 Path of a Separation Point of the Flow ............................. 48

" 5.7 Post Spin-up Phenomena ................................ 51

Chapter 6. CONCLUSIONS .............................................. 56

I BIBLIOGRAPHY ...................................................... 58

U
I



V

LIST OF FIGURES

2.1 Cross-sectional View of the Secondary Flow ............................. 5

3.1 Schematic View of the Rectangular Cylinder ............................ 8

3.2 The Stream Function, V, in the Rotating Reference Frame at the Onset of
Spin-up .................................................. 11

4.1 Schematic of the Computer, Turntable, and Drive Assembly ................ 17

4.2 M otor Calibration Curve .......................................... 18

4.3 Schematic of the Table/Tank Assembly ................................ 19

4.4 Frequency Spectra of the Perturbative Surface Waves ..................... 22

4.5 Data Points Showing the Measurement Error for the Position of the Eddy
C enter ................................................... 25

5.1 Plan View of the Rectangular Cylinder ............................... 26

5.2 Photographs of Dyelines for Spin-up from Rest .......................... 29

5.2.1 Approximate Trace for the Observed Vertical Flow Patterns in the Eddies ...... 31

5.3 Photographs of Dyelines as a Function of 8 ............................. 37

5.4 The Angle of the 3-Cell Axis as a Function of Aspect Ratio ................. 40

"" 5.5 Photographs of Dyelines as a Function of H ............................. 41

5.6 Photographs of Dyelines as a Function of Qf ............................ 45

I 5.7 Path of the Center of the Cyclonic Eddy ............................... 49

5.8 Distance from the Cylinder's Comer to the Center of the Cyclonic Eddy
as a Function of Tume ....................................... 50

3 5.9 Path of a Separation Point of the Flow along the x-endwall ................ 51

5.10 Surface Waves Evidenced in the Dyelines after Spin-up ................... 52U
I



I vi

5.11 Post Spin-up Dycline Instability .................... 52

5.12 Post Spin-up Vortex Development ................................ 54

15.13 Post Spin-up Vortex Development ................................ 55

I
I
I
I
i

I
I
I
I
I



Is
I viu

I LIST OF TABLES

I 5.1 Characteristic Parameters and Non--dimensional Numbers for One of

vHDD's Experiments and T~wo Experiments Herein ................ 33

I
i
I

I
I
I
I



ACKNOWLEDGMENTS

I wish to thank my advisor, Dr Diane Henderson, whose dedication to experimental

fluid mechanics and insightful guidance provided the motivation for performing this re-

search. Her enduring patience and encouragement gave me the strength to see it through in

the face of ever-conflicting priorities.

Thanks also to my other committee members, Dr William Pritchard and Dr Juan Lo-

pez, for their valuable comments regarding this thesis.

I would also like to extend my appreciation to Mr Robert Geist whose tireless support

in the lab was an essential and valuable contribution to this thesis.

Many thanks to my family whose love and understanding is a never-ending source

of inspiration.

Finally, I would like to thank the USAF for sponsoring my master's program. The

equiment for this research was funded by Penn State and grants from the David and Lucille

Packard, and Keck Foundations.



I

Chapter 1

INTRODUCTION

Spin-up is the flow of a contained fluid that changes from one state of rigid body

rotation to another when the container's rotation rate is increased from a steady, initial angu-

lar speed of go to a steady, final angular speed of Qf. Applications of spin-up include mo-

tions in the Earth's core, the stability of liquid-filled projectiles, the transient development

of wind-driven coastal upwellings, and the interior rotation of the sun (Benton and Clark,

1 1974). Spin-up is also encountered in models of global ocean circulation that are started

from rest and attempt to develop a quasi-steady circulation pattern (Pond & Pickard, 1983,

p 183-190). These problems all involve nonlinear systems whose multi-parameters are dif-

I ficult to identify and isolate. Herein, we consider a seemingly simple system that is in fact

somewhat complicated - the spin-up from rest of water in a right, rectangular cylinder. The

flow depends on a number of parameters including water depth, H, horizontal aspect ratio,

8, and Of. We describe an experimental investigation of the effects of varying these parame-

ters on the evolution of the flow during spin-up and the pathlines of the flow at spin-up.

Despite the complications that are specific to any given system undergoing spin-up,

some of the basic physics is similar. In particular, the flow involves viscous boundary layers

at the walls and an inviscid flow in the interior. The prototype system for study is the spin-up

of water in a right circular cylinder. As the angular velocity of the cylinder is increased from

I 0 to Of, the interior fluid is unaffected with pressure gradient forces balancing centrifugal

forces. However, because of the no-slip boundary condition, the fluid on the boundaries has

the angular speed of the cylinder. The resulting large viscous stresses rapidly cause the fluid

near the cylinder boundaries to accelerate. In the absence of horizontal boundaries, the angu-

I
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lar velocity at the sidewall diffuses into the interior due to viscosity. The presence of horizon-

tal boundaries, though, creates a different phenomenon. As the angular velocity of the fluid

U in the horizontal boundary layers increases, the centrifugal force soon overcomes the pre-

vailing pressure gradient force, causing the fluid to be thrown radially outward. Conserva-

tion of mass requires that the fluid thrown outward be replaced by fluid from the inviscid

U interior and a much slower, secondary flow is established. This secondary flow is the key

to the spin-up process. The secondary flow convects high angular momentum fluid away

from the cylinder sidewalls toward the rotation axis. As the fluid moves into the interior,

3 its angular momentum is conserved. Thus the secondary flow transports higher angular-mo-

mentum fluid into the cylinder interior faster than would occur if viscous diffusion was the

oniy process involved. Once the fluid is rotating uniformly at the new angular velocity, Of,

3 we say it is spun-up.

3 The physics described above applies to spin-up in the rectangular cylinder in a gener-

al sense; however, the presence of comers causes flow separation that results in the formation

U of eddies that evolve within the interior of the flow. Numerous and varied eddy configura-

Stions result from the spinning-up of fluid in a rectangular cylinder. Let it be the integer value

nearest to the value of the horizontal aspect ratio, &. In general, we have found that if n is

3 odd, then the pathlines of the flow at spin up form 8 circular cells, which are antisymmetric

about the diagonals of the cylinder and have vorticity (before spin-up) at the narrow walls

that has the sense of the cylinder's rotation. This result is in contrast with that of van Heijst,

Davies, and Davis (1990), hereafter vHDD, who observed that the vorticity (before spin-up)

at the narrow walls has the opposite sense of the cylinder's rotation. If n is even, the flow

evolves into an odd number of cyclonic and anti-cyclonic cells whose centers are not on a

3 common horizontal axis. This result is true when the change in rotation rate, AQ, is relatively

I
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3 small and the water is relatively deep. However, as we increase AiZ or decrease the water

depth, H, the flow patterns change. For example, our results mimic those of vHDD in experi-

1 ments for which an Ekman number based on the (long) length of the cylinder is small enough.

3 Inh Chapter 5, we describe the results of changing 8, H, and of.

A more thorough review of previous research concerning spin-up will be presented

in Chapter 2. Chapter 3 describes the basic equations governing the flows and a linear solu-

3 tion for spin-up in a circular cylinder. The experimental equipment and procedures are dis-

cussed in Chapter 4, and the results are presented in Chapter 5.I
I

S
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3 Chapter 2

* Literature Review

3 Previous research on spin-up has consisted primarily of theoretical and experimental

studies of spin-up in axisymmetric cylinders. We briefly review this work to discuss the ba-

sic physics of fluid undergoing spin-up. (See Greenspan (1968) and Benton & Clark (1974)

3 for comprehensive reviews.) We then discuss previous work on spin-up in non-axisymmet-

ric cylinders.

1 The first linear model describing the spin-up of a homogeneous fluid in a closed

3 axisymmetric container was provided by Greenspan and Howard (1963). They examined

the limiting case of an infinite circular cylinder of radius A. In this case, they found that the

Imechanism for spin-up is the diffusion of vorticity that arises at the lateral boundaries. Rigid

3 body rotation is achieved in a dimensional time of order Tv = A 2/v, where v is the kinematic

viscosity of the fluid. Next, they analyzed the opposite extreme, that of two parallel coaxial

I infinite disks separated by a distance of 2H. In this case, they found that the spin-up con-

3 sisted "of three distinct phases: the development of the Ekman layer, the inviscid fluid spin-

up, and the viscous decay of residual oscillations." They determined that the dimensional

3 spin-up time, which Greenspan and Howard defined as the time required for the interior flow

to approach the final state of rigid rotation within e-1 , is of order TE = (H2/vQ)'/2. Using

these results for two parallel coaxial infinite disks, they used a perturbation expansion in

3 half-powers of E to study the case of an arbitrary axisymmetric closed container. Greenspan

and Howard noted that if the container has a vertical sidewall a viscous boundary layer, with

a double structure different from that Ekman boundary layer, is formed. These layers affect

3 only a small portion of the fluid near the sidewall prior to spin-up. Thus, the spin-up time

U
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3 scale is still of order TE unless the container is elongated in the vertical direction to the extent

that the ratio H/L (depth/width) z E-1/4 in which case the time scale for spin-up is again

U the viscous time-scale, Tv. Greenspan and Howard also discuss the two effects of having

a free surface. First, the Ekman layer at the top boundary is removed so the secondary flow

changes from a 4-cell circulation to a 2-cell circulation (See Figure 2. 1). Second, they note

I that the pressure gradient that arises from the parabolic shape of the free surface induces a

radial motion toward the interior in addition to the secondary flow produced by the Ekman

layer on the bottom of the cylinder. This radial motion acts to decrease the spin-up time.

3 The Froude number, F = U2L2/gH, where O2L is the characteristic velocity, is a measure of

the relative importance of this free-surface effect.

(a) (b) r

I

I!

3 Figure 2.1 Cross-sectional View of the Secondary Flow. (a) rigid lid (b) free surface.

U The first non-linear model of the spin-up of a homogeneous fluid within a circular

I cylinder of finite length and radius was done by Wedemeyer (1964). He divided the flow

into two distinct regions, the boundary layer flow near the end walls of the cylinder and the

core flow. He derived a nonlinear, inhomogeneous hyperbolic partial differential equation

for the radial component of the core flow. The solution to the equation showed that the core

I
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3 flow is divided into two regions: an inner region in which the fluid particles do not rotate,

and an outer region in which the particles spin-up. The regions are separated by a cylindrical

I front of fluid which moves toward the axis of rotation.

3 Weidman (1976) did extensive experimental work to examine the theoretical work

of Wedemeyer (1964). Weidman noted that one result of the Wedemeyer theory is an 0(1)

Svelocity discontinuity that arises in the inviscid Wedemeyer model when the full nonlinear

3 Ekman suction is included in the spin-up equations. Weidman's measurements of the azi-

muthal velocity for spin-up in a circular cylinder indicated that this velocity discontinuity

i is smoothed out in a shear layer whose thickness is a function of radius and time and scales

3 with EI/4H. He noted that the velocity distributions changed depending on whether the ratio

of the wall acceleration period, Ta = I(Q- - Qf)/al, where a is the cylinder acceleration rate,

3 to the ordinary Ekman spin-up time, T]E, was less than or greater than 0(1). Weidman ob-

g served that for small accelerations, T8/TE > 0(1), measured velocities agreed well with the

Wedemeyer theory away from the propagating shear layer. The effect of the shear layer is

3 local and does not affect the large scale flow. At large accelerations, Ta/TE < 0(l), Weidman

found significant deviations between the experiments and Wedemeyer's theory. In this case,

I the effect of the shear layer was not negligible.

3 As noted before, the models described above were all for axisymmetic geometries.

A study of spin-up phenomena in non-axisymmetric cylinders was done by van Heijst

(1989). He presented experimental observations of spin-up for several geometries: (i) an

annular region between two coaxial cylinders with a radial barrier between the cylinder

walls; (ii) a semicircle region; (iii) a circular region with a radial barrier extending from

the center to the tank wall; and (iv) a region enclosed by two non-concentric cylinders con-

I nected by a radial barrier. vHDD (1990) studied spin-up in a rectangular container. In each

Ia
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3 of these experiments, the authors observed three main stages in the spin-up process: (i) the

starting flow, characterized by zero absolute vorticity, (ii) flow separation, and (iii) a subse-

N quent organization of the flow into an array of alternately cyclonic and anticyclonic circular

I cells. In the latter experiments, vHDD noted that the central cell in the free-surface experi-

ments was always cyclonic.I
I
I
I
I
I
U
I
I
I
I
I
I
I



*8

I Chapter 3

* THEORETICAL CONSIDERATIONS

3 In this chapter, we present the equations of motion associated with the rectangular

cylinder as well as the boundary and initial conditions associated with the problem of spin-

U up. We then describe a solution for the flow at some small time increment, t = e. Lastly,

3 we review the linear solution for spin-up in a circular cylinder.

3.1 Equations of Motion for Spin-uo in a Recaangular C linder

Consider a fluid of depth H in a rectangular cylinder rotating at - Qk, with period

I T = 27r/O2f. In the following analysis, we use a rectangular coordinate system (x, y, z) that

3 is rotating with the cylinder. The origin is at the water surface in the center of the cylinder

as shown in Figure 3. 1.I
Il

z_ Y
3 H

Figure 3.1 Schematic View of the Rectangular Cylinder

The Navier-Stokes equations for a flow with velocity vector u* = (W*, v*. w*) are (the * de-

3 notes dimensional values):

V U 0 3.1

I
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3" u - -Vp gi + vV"u" 3.2

STheboundary conditionse a u* o 0 at x*- f,; v at0a:t : w; and w" = o.a z.

3 0, and z* = -H (where, for simplicity, we consider the free surface to behave as a rigid lid).

The pressure, p*, consists of perturbations A* from the hydrostatic pressure.

A

P p a g - gZ* + P*(X. Y. Z't) 3.3

I To non-dimensionalize the above equations, we scale the x, y, and z directions by their

5 lengths, L, W, and H respectively, and time by the final rotation rate Qf. Since we are inter-

ested in an unsteady flow due to a change in rotation speed, A, we scale velocities by the

3 appropriate length scale times A. Thus, we have:

x .=t :K! " Z" * I_ V 3.4y*. Z * * W

L W HLA WA H

t*=ff P e2J. 2  3.5

I Then the appropriate non-dimensional numbers are the Ekman number, E - v/QflH 2, the

3 Rossby number, E - A/Qf, and aspect ratios, a, 0, and 6 defined as (H/L)2 , (HJW) 2 , and LIW

respectively. So the incompressible Navier-Stokes equations in dimensionless, coordinate

I form are:

3 + + -_=0 3.6
dx ay dIz

L" + I+ w-•} - 2v a-• + Efa2 + fy2 + a2u 3.7a

S+ E(u-v + vv + -2u+E 2v +P2v + L2-J 3.7b

I- aay2 dZ2

3
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Iw + ejuw + +w + - + Ewy__ + O2w +, 2 wat ax +ay w• CI ay2 +8z2  3.7

U The boundary conditions are u = v = w = 0 atx = ;y= andz=1.

3.1 Streamlines for the Initial Flow

If we define a stream function as

U = - Vy. and v = tpx 3.9Ithen the vorticity, w, is V21p. At the onset of spin-up, the inner flow is quiescent relative

to the inertial reference frame, while the flow on the boundaries rotates with the boundaries.

In the rotating frame, the sign of the vorticity in the interior is opposite that of the cylinder's

rotation (i.e., anticylonic) and is zero on the boundaries; therefore, V2V = 2 with v' = 0 on

the boundaries. Hence, a boundary value problem at the onset of spin-up is (following

vHDD)

_-V2ýp = 2 i' = 0 at x = 2'2 <3.10
V~~p=2 V= ax--'2; 2  ~ 2  3.10

p=0aty=- 1 1 l5x<_l
2 2'2; 2

A particular solution of (3.10) is Vp = (y + 1/2)2 - (y + 1/2) = y2 - 1/4; then (3.10) can be

transformed into the following homogeneous form of Laplace's equation:

V2Vph = 0 1P = 1/4 - y2 atx 1 1 -X <V1

b=2Oaty= 2'2; 2-

The solution to (3.11) is found using separation of variables and fourier series to be:

,p(x,y) =2+1) sin(2n + 1WY+ 1) sinh(2n + I)x( - x) + sin(2n + 1;r(x + 106
tpx~y (2n 1)3 rL1~ - ]+2-l 3.12

R- 4 ih2 *
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A plot of V and its contours is shown in Figure 3.1. vHDD observed that experimental

streamlines agreed well with the theoretical results described above for tVT = .08 after the

onset of spin-up.

1 3.3 Linear Solution for S in-up in a Circular Cylinder

j It is useful to review the linear solution for spin-up in a circular cylinder provided

by Greenspan and Howard (1963) in order to understand the mechanism for spin-up and the

differences between spin-up in a circular cylinder and spin-up in a rectangular cylinder.

i Consider a fluid in a circular cylinder of radius, A, and depth H, rotating in rigid body rota-

tion about its center with constant angular velocity Qj. Consider a cylindrical coordinate sys-

I tem (r, 0, z) rotating with the cylinder whose origin is in the center of the cylinder. For sim-

plicity, we consider the fluid to have a rigid lid. We seek a solution for the azimuthal velocity

in the interior of the cylinder.

I The dimensional Navier-Stokes equations for this axially symmetric flow with ve-* *A'

locity vector, u* = (u*, v*, w*), and perturbation pressure, p, are:

1 a(r*u*) + Aw-- = 0 3.13
I r* ar* az*

Dt,* _r * 2.Qv* - -lr* + v(Au *- r2) 3.14a

2v! + •! +2Qu =(J , - v) 3.14b
0 D W* *

--- + 2 2 + ( A * w*- 3.14b

Dw* + VA *P 3.14cD1* j0 r*+V

I If we suppose the angular velocity is impulsively increased by a small amount, Egi, then

the boundary and initial conditions are u = e.Qk x r on the solid boundaries, and u* =



1 12

I (a)

I0
I00

-00I. .

I ~(b) 1

0.8

0.4

1 0.2

I~0*
0 0.2 0.4 0.6 0.8

I ~Figure 3.1 The Streamn Function, Vi in the Rotating Reference Frame at the On-

set of Spin- -up. (a) surface (b) contours.
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0 fort < 0. To non-dimensionalize the above equations, we introduce the following non--di-

mensional variables

r* t zt = ,u = -H, H H.Q' 3.15
A

= P and E =V3.16
P eEQH2 ' QH 2 '

where e = (Qf - QJ)/Qi is the Rossby number and E is the Ekman number. Considering the

case of e 4 1, we can neglect the nonlinear terms. The linear initial-boundary value problem

becomes

la(ru) +aw =0311 + =°3.17Ir Or a--
u -"2v + E(lu - R) 3.14a

Ot "r • 2

v ?+ 2u E(Av - 1 314

Ow 2Op
- = -" + Edw 3.14c
Tt Or_

I Awith initial condition u =0 for t < 0 and boundary condition u = k x r on all solid bound-

aries.

Define a stream function, V1, such that

r r- andw= Ir 3.19

where the subscripts indicate partial differentiation. The coordinate equations for (3.18) in

the case of an axisymmetric cylinder become
4,r - 2v = -Pr + E(A(- lip,) + 3.20a

r ,r r3

V1 =r + E(A v - r3.20b



14

and-Ir• = - Pz + E-d(-rFI')• 3.20c

Rearranging (3.20b) and eliminating p from (3.20a and c) provides

EAv - -1) - v, + 2Z = 0, and 3.21ar2 r

E(Ll(- -lip.)) + LrO+ 1(pr - lipr + V~z~ + 2v, = 0 . 3.21b

Theinitial conditionis = v = 0 for t < 0, and the boundary condition is 1p - -0,

and v = r on the lateral boundary.

Since the time scale of interest for the infinite parallel disks was shown to be order

E-112Q we begin our analysis of the circular cylinder by scaling as follows:
I I

IElt, and p = E',X, 3.22

where we have scaled the radial and vertical flow to be higher order in Ekman number than

the azimuthal flow which is 0(1). Sibstituting r and X into equations (3.21) we obtain
I½v v 2II EI -- ) - v,+ X=0, and 3.23a

r2I((- - + 2v, = 0. 3.23b

i The flow can be divided into an interior and boundary layer flow such that

Iv = v' + v, an•X = XI + XB. 3.24

The equations (3.23) for the interior flow to O(E0) become

1 v -- x2 = 0, and 3.25a

Ii = 0. 3.25b

I Thus,

I
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vi = v1(r, r), and 3.26a

2 zr = vi+ X(r,r). 3.26b

This defines the interior flow in terms of (as yet) undetermined functions, v1 and X09 of r

and r.

In the boundary layer, we iatroduce a stretched vertical coordinate, t, such that

z + e- in the lower boundary layer, and 3.27a

Z = -- E't- in the upper boundary layer. 3.27b2

I Then to O(E0 ) the boundary layer equations are

ILower v 2n +! O, and I B 2. =0; 3.28a

I Upper = 2 0, and x + 2+v = 0; 3.28b

SThe boundary conditions for t -- 0o are vB = X8 = 0; for= 0, they are vB + v, = r,

x + xl = 0, and =XB = 0(E"2).

Taking first integrals of (3.28a), we have

+ B = f(r,r), and r -- 2vB = g(r,r); 3.29

wheref and g are equivalent to constants of integration. Eliminating Xe from (3.29) gives

I + 4v = 0. 3.30

I The boundary conditions, v0( o ) = 0, vB(O) = r - v', and vBl 0 = 0, imply that

v= (r - vl(r,r))e-cos•. 3.31

.. ......
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3 A similar analysis shows that the same formula applies on the upper boundary. From (3.28)

xB(O) = r(r-v1) onz= - and 3.32a

(O) - lr(r - vI) on z = 3.32b

The boundary condition, XB + = 0, (3.32), and (3.26b) imply

I vi4(r, r) - X6(r,,r) = L (r - vi), and 3.33a

Svl(r,r ) + X'o(rr) = L(r - u) 3.33b

Adding (3.33a and b), we get

i4(r, r) = 2(r - v/). 3.34

Thus, the interior azimuthal flow is

I vt(r,r) = r(l - e- 2?). 3.35

3 or v1(r, t) = r(1 - e 2E•t) 3.36

3 From this result, we see that the interior azimuthal flow is linearly dependent on r and the

spin-up tJime scale is of order TE = (H2/vQŽ) 1 /2 .I
I
I
I
I
I
I
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Chapter 4

Experimental Equipment and Procedures

The experiments were conducted in the Department of Mathematics Fluid Mechan-

ics laboratory. The laboratory equipment consists of a real-time computer, the turntable

and drive, two flow visualization systems, and the rectangular tank with prepared water. Fig-

ure 4.1 is a schematic of this system, which we describe below.I
I

I
COMPUTER

U Figure 4.1 Schematic of the Computer, Turntable, and Drive Assembly

I
4.1 Real-Time Computer

The command signal to the motor drive was from a Digital Equipment Corporation

MicroVAX Workstation II with analog-to-digital, and digital-to-analog capabilities, as

well as two real-time clocks. In order to minimize transients, we wrote a program to ramp

the voltage smoothly from a user-specified initial voltage to the desired final voltage. The

program allows the user to input the slope of the ramp (i.e., the time to reach the final volt-

I



age). For the experiments described herein, we used a I sec ramp, sending 1000 incremental

voltages to the controller at 1000Hz. The final voltage was then sent to the controller at

1 500Hz for as long as desired. To determine the relationship between voltage and the rotation

rate, Q, of the table, we measured the time for 5 rotations of the table at 12 different voltages.

The calibration curve is shown in Figure 4.2. The curve is approximately linear on a log-log

scale. Our operating window is between 0 and 8 volts, corresponding to rotation rates, EZ

from 0 to 2.1 rad/s.

I '12.5

0-0.5 0 . .

* 1.5

log (voltage)U
Figure 4.2 Motor Calibration CurveI

1 4.2 Turntable and Drive

The rotating table is a Lintech model MR-308180. The platform is 8 inches in

diameter and is mounted to the table shaft with 4 screws located 11/16 inches from the center

of the table (see Figure 4.3). A large square piece of white lucite, 13 1/3 inches on a side,

is mounted on the platform using 2 screws located 3 inches from the center of the table. The

I
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rectangular cylinder is set on the table using a pin and bracket system, which centers the cyl-

inder to within 11500". The pin has a plug on one end that sits in the center of the table;

I the other end fits tightly into a hole on the bottom of the tank. Four metal brackets hold the

container in place. Measurements with a Brown and Taylor dial indicator show that the table

itself rotates about its center with an accuracy of 1/500". The table is level to within 5.8 x

lO- radians.

The cylinder exhibits a high-frequency vibration that varies in frequency and inten-

sity with table speed. This vibration causes high-frequency waves on the water surface.

I Figure 4.4 shows the frequency spectra of these waves versus table speed. The vibration is

minimal when the system turns without the platform, lucite plate, or tank mounted. It inten-

sifies as each of these components is mounted; apparently the vibration increases as weight

is added away from the table center. We placed a rectangular piece of lead between the bot-

tom of the turntable and the laboratory bench in an attempt to minimize this vibration. We

also isolated the entire rotating table assembly from extraneous laboratory vibrations by

3 mounting it to a structural wall of the laboratory.

3 The table drive is provided by a DigiPlan Electronic Motion Control BL Brushless

Servo Drive System. The system consists of a BLI50 Drive with velocity feedback, a TO 170

3 transformer, and an ML-3450, dc brushless motor. The signal travels from the computer to

the drive, .:htough the transformer where it is converted from 120V AC to 170V AC, back

to the drive, and to the motor. The velocity feedback signal then comes back from the motor

3 to the drive which corrects the velocity to ensure steady motion. This servo system broke

down when the input voltage was greater than about 8 V (2.1 rad/s) at which point the rota-

tion rate of the motor was unsteady. We note that prior to the acquisition of this motor we

I
I
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3 drove the rotating table with a stepper motor. Qualitatively, all of the results we report herein

were present when we used the stepper motor, including the high-frequency vibration.

I 4.3 Flow Visualization

We visualized pathlines of the fluid using both a digital imaging and an analog video

Isystem. The first is a Kodak EktaPro EM Motion Analyzer, Model 1012. This system con-

3 sists of a high-gain imager with a Nikon 35mm lens, a video processor, and a Sony Trinitron

Color Video Monitor. The imager sensor has a 192 X 239 pixel array with 256 grey shades.

U The processor can store 1637 full frames of digital images in electronic memory at various

rates from 50 to 1000 Hz. To obtain lower recording rates, and correspondingly longer time

series, one must trigger the imager externally. We used a Tectronix TM502A signal genera-

3 tor to provide a 0-5V square pulse at frequencies between 15-50 Hz for this purpose. The

processor has a reference reticule with built-in X-Y electronic crosshairs and a reference

marker. We mounted the imager on a Bogen 3051 professional tripod. The imager views

3 the rotating tank through a standard mirror mounted at about a 450 angle above the tank.

3 We used the EktaPro to track the location of the eddy centers as a function of time.

(See §5.5) To this end, we used the reticule to determine the position of the center of the eddy.

3 The errors inherent in this procedure are due to (1) the subjectivity of the observer, (2) the

3 limited spatial resolution of the imager, and (3) the optical set-up of the imager/mirror sys-

tem. By comparing the results obtained from two observers, we found that the errors due

to (1) are small compared to those due to (2) and (3). The errors due to (2), which is the dis-

tance between pixels, introduce a standard deviation in position location of ±.07 in. To deter-

mine the errors due to (3), we tracked a mark on the tank bottom during rotation. Figure

3 4.5 displays the pathline we obtained. The error, which is a combination of error due to (2)

I
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and (3), is ±.25 in. We transferred the images to VHS tapes using a Panasonic AG-1960

Multiplex VCR linked to the processor.

The analog video system was a Sony Hi-8 Video Camera Recorder, Model

EVO- 150TR. It records at 30 Hz directly onto tape. We mounted the camera directly above

the rotating tank and used a remote controller for direct recording of the flow paths. We

played the tapes on a Sony EVO-9800 VCR. To obtain "instantaneous" images of the flow,

we photographed the monitor using a Nikon FM2 camera with a 50mm lens. These

photographs are shown in §5.1 - 5.5. We found two problems associated with photographing

the monitor. The first is that the monitor resolution limits the photograph resolution. The

second is that the curvature of the monitor distorts the image. This distortion is especially

apparent in Figures 5.5. It introduces errors of ±0.20 inches into the measurements discussed

in §5.6.

4.4 The Rectangular Tank and Water

We constructed the 11 x 32 in2 tank out of clear lucite, fastening the with a clear,
3

fast-curing solvent cement. To vary the aspect ratio (length/width) from three to two, we

used quarter- and half-inch inserts that fit tightly inside the box. The tank was filled with

distilled water to the desired depth. The depth was measured using a Lory Type C point

gauge accurate to 0.01 mm. Fluid motions were observed using red, green, and blue food

coloring. A drop of the food coloring was applied to the surface and generally sank, creating

a column through the water and a blob on the bottom. In most of the figures in §5, 3 drops

were applied symmetrically along the two long sidewalls.
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Figure 4.5 Data Points Showing Measurement Error for the Position of the Eddy Center
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Chapter 5

3 RESULTS

I In this chapter we present and discuss our observations of the pathlines of fluid that

I spins up in a rectangular cylinder when the rotation rate is impulsively changed from C6 to

Of. We begin by discussing a specific "comparison" case for which the horizontal aspect

I ratio of the cylinder, 6 = 3, Go = 0, Qf = 0.52 rad/s, and the water depth, H = 5 cm. This

3 experiment is similar to one by vHDD, to which we compare our results. Next, we discuss

qualitatively the effects of changing 8, Of, and H. Lastly, we show measurements of the

path of an eddy center and a separation point in the flow. In all of these cases, we assess

the flow as an observer in the inertial reference frame (not in the rotating frame) looking

down on the tank. (We did several experiments in the rotating frame and our conclusions

did not change.) Figure 5.1 is a schematic of the cylinder plan view; it shows what we will

refer to as the "leading" comers, A and C, the "trailing" corners, B and D, the distances

referred to as the "length" and "width" of the tank, and the angle e that we refer to in §5.2.

I

A ( A

0. -- 0
Be B

length
x-sidewall

Figure 5.1 Plan View of the Rectangular Cylinder
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5.1 Comparison Case

The series of photographs in Figure 5.2 show the pathlines of the flow for an experi-

ment in which the fluid's angular velocity was changed from zero (initially it is at rest) to

Of = 0.52 rad/s (the final state is rigid body rotation) when 6 = 3 and H = 5cm. We chose

this experiment as a baseline for comparison with our other experiments and with an experi-

ment performed by vHDD. In the following, we describe horizontal flow observations, ver-

tical flow observations, and compare our results to the flow patterns of a similar experiment

performed by vHDD.

5.1a Horizontal Flow Observations

When the tank began to spin, the fluid in the center of the tank was stationary. Fig

5.2a shows that within three seconds, a large anticyclonic flow developed that was similar

to the initial flow described in §3.2 in the rotating reference frame. The fluid moved quickly

along the x-sidewalls from D to A and B to C. In accordance with the no-slip boundary

condition, the fluid on the wall stayed on the wall, so the edge of thd anticyclonic cell pro-

vided some indication of the boundary layer thickness. Within 5-10 seconds, four cyclonic

eddies formed in the comers of the tank. Figure 5.2b shows that the two cells in the leading

corners were noticeably larger than those in the trailing comers. By about 1 1/3 rotations

(Figure 5.2c) the leading comer cells grew while the trailing corner cells were no longer vis-

ible. Figure 5.2c also shows a separation point in the flow, with two small counter-rotating

eddies on either side. This separation point remained a distinct feature of the flow; we show

measurements of its path in §5.6. As the cyclonic cells grew, their centers moved out of the

leading comers. We show measurements of such a path in §5.5. Figure 5.2d shows that the

cyclonic cells divided the initial anticyclonic flow into a primary anticyclonic cell in the

I center of the tank, and two secondary anticyclonic cells in the trailing comers of the tank.

I
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Figure 5.2e shows that by 2 rotations of the cylinder, the cyclonic cells spanned the width

of the tank and the center anticyclonic cell was more nearly circular. A sharp edge was appar-

U ent between the two cyclonic and the center anticyclonic cells. The distinction was not so

clear at the y-sidewalls of the box, where the secondary anticyclonic cells were still present.

As the flow continued to spin up, the cyclonic cells continued to grow with their centers mov-

Shig just past the y-centerline of the tank; the secondary anticyclonic cells occupied the entire

I y-sidewall with the prominent portion of the eddy now in the leading comers of the tank.

Figure 5.2f shows the spun-up fluid. The pathlines formed an essentially 3--cell pattei n,

with the center anticyclonic cell flanked by two cyclonic cells. The center of the anticyclonic

cell formed on the axis of rotation and remained there throughout spin-up. The size and

position of the secondary anticyclonic cells after spin-up depended on 8, Qf, and H as will

3 be discussed in §5.2 - 5.5. The flow remained roughly antisymmetric about a horizontal di-

agonal of the cylinder throughout the spin-up process.

5.1b Vertical Flow Observations

B A definitive determination of the vertical flow was difficult to obtain for the experi-

3 ments herein. Since the dye is heavier than the water, a slow sinking of dye was indistin-

guishable from a slow, secondary, downward flow. However, a secondary upward flow was

3 unmistakable. From repeated observations, an approximate graph of the vertical flow in the

primary eddies was obtained (See Figure 5.2.1). Figure 5.2. la shows that the dyelines in the

primary anticyclonic eddy spiraled up and into the interior of the eddy. The vertical coordi-

Snate increased like e~o where a is 0(0. 1), while the --dial component decreased like Re- 0 ,

where R is the cell radius and (3 is 0(0.01). Vertical motion in the center of the anticyclonic

eddy appeared to be downward. Figure 5.2.1 b shows that dyeines in the two cyclonic eddies

3 spiraled up and away from the center of the eddy. The vertical coordinate increased like eU,

Uu aa
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U Figure 5.2.1 Approximate Trace for the Observed Vertical Flow Patterns in
the Eddies. (a) anticyclonic, (b) cyclonic.
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3 where a is 0(0. 1), while the radial component increased like RePO - R, where R is the eddy

radius and 0 is 0(0.1). The vertical motion in the center of the cyclonic cells was upward.I
3 5.1c Comparison with vHDD's Experiment

The flow described above differs fundamentally from the flow pattern of a similar

experiment performed by vHDD. Table I shows the relevant parameters and non-dimen-

£ sional numbers for the two experiments, which both had 8 = 3 and QLo = 0. (We note that

vHDD's fluid was either water or a dilute salt solution. It was not clear to the reader which

is the case for this comparison experiment. The value of v given in Table 5.1 was obtained

5 from calculations using given non-dimensional parameters.) The flow in their experiments

began as in our comparison case with the initial anticyclonic cell and 2 cyclonic cells that

I grew out of the leading comers. vHDD, however, observed that the 2 cyclonic cells then

3 divided the original anticyclonic cell into two anticyclonic cells which remained at the ends

of the tank. The two cyclonic cells in the vHDD experiments moved toward the axis of rota-

I tion in the center of the tank where they merged into one cell. The pathlines to the final flow

(rigid body rotation) consisted of three cells, a central cyclonic cell flanked by two anticy-

clonic cells. This final result is in complete contrast to our result of a central anticyclonic

cell, flanked by two cyclonic cells.

We did observe an experiment in which the final result was similar to vHDD's; al-

though, we cannot be sure that the evolution to this state was the same. In this experiment,

I which is discussed in detail in §5.4, f = 1.82 rad/s. The relevant parameters for this experi-

ment are also shown in Table 5.1.

I
I
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Table 5.1 Characteristic Parameters and Non-dimensional Numbers for One of vHDD's
Experiments and Two Experiments Herein. The sense of the vorticity, u, in the 3 main cells
formed by the pathlines of the flow is indicated as cyclonic (+) or anticyclonic (-).

P Present Experiments
Parameters vHDD

Comparison Case Large "f Case

sgn(w) - + - + - + - + -

Of 0.57 s-1 0.52 s- 1.82 s-

3 v 0.005 cm 2/s .01 cm 2/s .01 cm21s

L/H 5.9 5.6 5.6

E-1/ 160 36 65

I EC-1 2  949 140 377

gF .1751 .0431 .5277

I The most notable difference between the paramaters for VHDD's experiment and

that of the comparison case is in the difference between the Ekman numbers, E, of the two

experiments. The magnitude of the Ekman number is affected by two main factors: H and

SOf. However, increases in E-1/2 due to increases in H did not affect the flow cheaacteristics

m herein. For example, we conducted an experiment with 6 = 3, Qo = 0, -f = 0.52 rad/s, and

H = 10 cm. This experiment, for which E-1/2 = 72, showed the same flow characteristics

I as the comparison case. Increases in E-0 due to increases in Of, however, did affect flow

characteristics. With each increase in Qf, the 2 cyclonic vortices moved further toward the

center of the tank (See §5.4 and 5.5). Eventually, when Of = 1.82 rad/s, the cyclonic vortices

Sjoined and remained in the center of the tank. Based on this result, it appears that the - + -

Ijie per
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3 vorticity pattern occurred when the cyclonic cells had enough energy to translate close

enough to the center of the tank that they joined. We conjectured that if the box length was

I decreased, and the rotation rate is held constant, then the angular momentum of the corner

5 cells would also decrease, and the cells may not have enough energy to translate to the center.

Thus, it is likely that there are two scales important in this problem: the traditional Ekman

I number, E, based on depth, which defines the time scale required for spin-up (see §2) and

3 an additional Ekman number, EL = v/(QfL2), based on the box length, which provides some

information on the evolution of the pathlines in route to spin-up. To test this idea further,

3 we conducted an experiment in which Of= 1.82 rad/s, 6 = 3, and 14H = 5.6 (the same parame-

ters which gave us a - + - vorticity pattern), but L was decreased to 8 inches. Here, EL =

I274, a value more comparable to the value of EL for the comparison case. As anticipated,

3 the dyelines in this experiment returned to the + - + vorticity pattern of the comparison case.

Thus, shortening the length of the cylinder decreased the tendency of the cyclonic cells to

I move into the center of the cylinder. Because the values of EL for all of the experiments here-

5 in are actually about the same order of magnitude, further experiments are needed to deter-

mine more precisely if this scaling by cylinder length is an appropriate one.

U Another possible explanation for the discrepancy between our experiments and those

3 of vHDD is the difference in Froude number, F, between the experiments. Greenspan and

Howard (1963) noted that the Froude number is a measure of the importance of free-surface

I effects relative to that of the Ekman layer. This difference does not seem to be a likely ex-

3 planation as we conducted experiments with Of = 1.04 and 1.30 rad/s, discussed in §5.4,

having Froude numbers of 15.93 and 26.92, respectively, which did not display the same

3 final result of a central cyclonic cell as vHDD's experiment did.

I
I
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3 Another possible explanation is the presence of high-frequency waves on the surface

of the water in the present experiments. vHDD attributed the translation of the cyclonic vor-

I tex toward the rotation axis to the parabolic shape of the undisturbed free upper surface of

3 the fluid. It is possible that the high-frequency waves in the present experiments act as a

perturbation of the free-surface that inhibits the cyclonic vortices from moving toward the

I center of the tank. To explore this possibility, consider the frequency spectra of the perturba-

I tive surface waves. The spectral data for the Qf= 1.82 rad/s shows a significant wave com-

ponent at 144 Hz with only a small wave component at 19 Hz. This contrasts with the data

for the comparison case, Of = 0.52 rad/s, which had a number of small components across

the frequency range. This difference in the spectra may support the conclusion that the sur-

face waves affect the translation of the vortices. However, the frequency spectra for -f =

1' 1.30 and 1.56 rad/s is similar to the spectrum for Of = 1.82 rad/s; yet, the dyelines for the

Off= 1.30 and 1.56 rad/s showed the same central anticyclonic vortex as the comparison case

I while the O'f = 1.82 rad/s dyelines showed a cyclonic vortex in the center.

3 5.2 Effects of Varying 6

I A series of experiments was conducted to determine the effect of decreasing the as-

pect ratio, 6, from an approximately odd number, 3, to an approximately even number, 2.

I The first column of photographs in Figure 5.3shows the dyelines after two rotations of the

3 cylinder. Variations in the aspect ratio did not significantly affect the dyelines at this initial

state of spin-up. The second column of photographs in Figure 5.3 shows the dyelines after

I spin-up. When 8 a 2.5, the results were similar to those in the comparison case in §5.1

above. The anticyclonic cells in the leading comers of the cylinder were very weak and each

occupied only about 1/27th of the tank. The centers of the cyclonic cells moved just past

I the centerline of the cylinder toward the trailing comers, leaving the three main cells slightly

I
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diagonalized. Figure 5.3h shows that when 8 = 2.38 the secondary anticyclonic cells were

slightly larger and began to entrain fluid from both the cyclonic cells and the primary anticy-

clonic cell. For 8 < 2.5, the initial state (t/l -a 2) was unchanged from when 6 a 2.5;

however, the final state was different. As 6 decreased from 2.38 to 2, the two secondary anti-

cyclonic cells became more prominent and more off-center. A measure of the diagonaliza-

tion of the three main cells is given by the angle, E, between the line connecting the centers

of the three main eddies and the y-centerline of the tank. Figure 5.4 shows that e varied

from 20 to 300 as 6 decreased from 3 to 2. When 8 = 2.24, each secondary anticyclonic

cell was positioned in the leading corner of the tank and occupied about 1/9 of the tank once

the fluid was spun-up. The cyclonic eddies still dominated, but e was increased. When 6

= 2.13, each secondary anticyclonic cell grew to occupy about 1/6 of the tank at spin-up.

The centers of the anticyclonic cells remained in the leading corners of the tank, while those

of the cyclonic cells moved toward the trailing comers of the tank. Instead of having an es-

sentially 3-cell pattern as resulted when 8 6>: 2.24, Figures 5.3m and 5.3n show that when

8 < 2.13 the pattern consisted of essentially five cells with a large anticyclonic cell in the

middle flanked by a cyclonic and a anticyclonic cell on each side. For all the experiments

above, the flow remained roughly antisymmetric about a horizontal diagonal of the cylinder.

5.3 Effects of Varjing H

Herein we discuss the results of experiments in which the depth, H, varied from 5

to 0.5 cm. The flow pattern was relatively unperturbed by depth variations except at the shal-

low depths of H < 1.0 cm. In Figure 5.5 the first, second, and third columns show dyelines

after 2, 4, and 6 revolutions, respectively. The fluid spun-up in all cases before 6 revolutions

of the tank; when H = 1 and 0.5 cm, the fluid spun-up before 4 revolutions. One consequence

of decreasing depth was a corresponding decrease in the rotation rate of the cyclonic eddies.



I

I 40

I03 . ' 22 ,'S 6. ''• " 0

I 2

I2

I (deg)

I5

i.0 2.2 2.4 .2 .6 2.8 3.0

I6

Figure 5.4 The Angle of the 3-Cell Axis as a Function of Aspect Ratio. T =12. 1s; go =0;

Of = 0.52 radls; IL/H = 5.6; E'If = 36.
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Figure 5.5 Photographs of Dyelines as a Function of Depth, H. T = 12.1 s. = 3; Qo = 0. f2f= 0.52 rad/s; t/T = 2 (C(
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This decrease is evident in column 1 of Figure 5.5 as a lessening in the stretching and wrap-

ping of the dyelines. Another consequence of decreasing depth was a corresponding de-

U crease in the spin-up time. This conclusion is not obvious from Figure 5.5; see §5.7 for

further discussion. Column 2 of Figure 5.3g shows that as a result of the decreasing flow

speed and spin-up time, the shallow fluid (H _< 1.0 cm) spun-up before 3 closed circulation

3 cells formed. This result was especially noticeable when H = 0.5 cm. In that case, the fluid

spun-up before the cyclonic cells moved into the tank. This decrease in spin-up time, TE,

is consistent with Greenspan and Howard's (1963) spin-up time scale, TE = E-If2o-l =

WH(vQP)'2 , for fluid in a circular cylinder for which the secondary flow induced by the Ek-

man layer on the bottom boundary is the mechanism for spin-up (See §2).

We remark that the points of concentrated dye in Figure 5.5h are the original loca-

3 tions of the dye. The striations in the blue dye in column 2 of Figure 5.5h are the high-fre-

quency waves discussed in §4.2. These waves became visible after spin-up when the dye-

I lines were stationary and will be discussed in more detail in §5.6.

1 5.4 Effects of Varying £fU
In the experiments discussed here, the fluid spun-up from rest when 6 = 3, H = 5 cm,

3 and Of was varied from 0.13 rad/s to 1.82 rad/s. Figure 5.6a shows that for the slowest

rotation rate examined, the fluid behaved similarly to the shallow depth cases in that the cy-

clonic eddies moved away from the walls of the tank before they formed closed circulation

3 cells. Column 2 of Figure 5.6a shows that the fluid spun-up before the center eddy closed

off. A doubling of this rotation rate (Figure 5.6b) resulted in dyelines that were similar to

those of the comparison case described in §5.1 and shown in Figure 5.6c. The dyelines at

3 spin-up formed an essentially 3-cell pattern with two secondary anticyclonic cells in the

I
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leading corners of the cylinder. This pattern became more complex when the rotation rate

was six times the slowest considered here. After spin-up (column 2 of Figure 5.6d), the

I dyelines were similar to those for the case of 6 = 2.24, Q0 = 0, and Of = 0.52 rad/s described

3 in §5.2 above; however, the evolution to this pattern was very complicated and not like that

of the 6 = 2.24 case. The flow began similarly with a central anticyclonic cell, which was

I quickly separated from the wall and deformed by the rapidly growing cyclonic cells formed

3 in the leading corners of the cylinder. As the cyclonic cells moved away from the walls, anti-

cyclonic cells were left at the end walls. These grew and wrapped into the cyclonic cells.

3 At the same time, new cyclonic cells were forming in the leading corners of the cylinder.

These secondary cyclonic cells also got pulled into the main cyclonic cells. This process

continued as new cells formed in the comers, grew, and got pulled into the larger cyclonic

3 cells. Column 2 ofFigure 5.6d shows that fluid pathlines after spin-up formed an essentially

5-cell pattern -- a center anticyclonic cell flanked on each side by a dominant cyclonic cell

and a secondary anticyclonic cell. The centers of the cyclonic cells were on the diagonal

3 toward the trailing comers; the centers of the secondary anticyclonic cells were toward the

leading corners. Figures 5.6e, f, and g show that the results for Qf = 1.04, 1.30, and 1.56

I rad/s, which are about ten times the slowest rate, were very similar to those just described.

3 Column 1 of these figures shows that with each increase in Qf the transient flow at the onset

of spin-up became more turbulent. This turbulence was not evident after a few rotation peri-

3 ods as the dyelines became smooth. Column 2 shows the fluid pathlines at spin-up. The

U results most closely resembled those of vHDD, when Of = 1.82 rad/s (see §5.1). For the

large rotation rate, the dyelines at spin up formed an essentially 3-cell pattern. Unlike the

3 results for slower speeds, and like the result of vHDD, the center cell was cyclonic and

flanked by two anticyclonic cells. However, unlike the vHDD result, these cells were not

I
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circular; the center cell was stretched out in an S-shape and the two anticyclonic cells were

elongated on one side. The evolution to this circulation was very turbulent and complicated.

5-5 Path of the Eddy Center

We tracked the path of the center of one of the cyclonic cells formed at the corner

for three different Qf's: 0.26,0.52, and 1.04 rad/s (8 = 3, H = 5 cm, go = 0 for all cases).

Figure 5.7 shows the measured paths. In all cases, the path of the center was a non-mono-

-- tonic spiral to its endpoint with the center of the eddy ending up more toward the center of

1 the cylinder than would be expected if the 3 cells equally divided the tank. The paths show

that the eddy center was also off the y-centerline of the tank after spin-up. The centers of

U the cells ended at a location increasingly distant from the y-centerline as Of was increased.

3 This conclusion is not obviously supported by the data for Qf = 1.04 rad/s in Figure 5.7 be-

cause the cell was not tracked all the way to spin-up, but the photographs in Figure 5.6 clear-

3 ly support the conclusion. Figure 5.8 shows the distance of the eddy center from the corner

of the cylinder as a function of time. As Qf increased, the time required for the eddy center

to move into the center of the tank decreased from t/T - 5 to t/T - 2.

U 5.6 Path of a Separation Point of the Flow

3 We used photographs taken every two seconds as described in §4.3 to track the path

of a separation point of the flow. The separation point formed along the long wall (and stayed

on the wall) where the flow from the cyclonic eddy converged with the flow from the anticy-

clonic eddy, causing a portion of the fluid to move toward the wall where it separated into

two small counter-rotating eddies as discussed in §5. 1. Figure 5.9 shows the distance of the

"3 separation point along the x-endwall from the corner of the cylinder as a function of time.

3 Once the tank began spinning, the separation point moved smoothly down the side of the
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Path of the Eddy Center
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Figure 5.7 Path of the Center of the Cyclonic Eddy. H = 5 cm; . = 0; 6 = 3; E-12 = 36;
Of = (a) 0.26, (b) 0.52; (---) Observer 1, (- -) Observer 2, (c) 1.04 rad/s. The intersection
of the x = L6 and y = W/2 indicates where the center of the eddy would be if the 3 cells
divided the tank equally. (The 1-1 shows the error of measurements.)I
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I- Figure 5.8 Distance from the Cylinder's Comer to the Center of the Cyclonic Eddy as a
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Figure 5.9 Path of a Separation Point of the Flow along the x-endwall. T = 12. 1s; 916
= 0; 8 = 3; E-1'2 = 36; LIJH = 5.6; and Qf = 0.52 rad/s. The dashed line indicates 1/3 of
the distance along the wall.

cylinder. When it reached a position slightly less than 1/3 of the distance along the wall, it

oscillated on the wall about that location.

5.7 Post Spin-un Phenomena

Several interesting flow patterns were observed at the latter stages of the spin-up oro-

cess. We believe these phenomena occurred after the fluid achieved solid body rotation be-

cause they occurred several revolutions after visible changes in the dyelines were noted.

The first phc,,omenon observed was the striations in the fluid dyelines, wLt•h be-

came visible after spin-up in the shallow depth cases as seen in Figure 5.10. These striations

were predominantly seen toward the ends of the cylinder. They are evidence of the high-fre-

quency surface waves discussed in §4.2



IFigure 5. 10 Surface Waves Evidenced in the Dyelines after Spin-up. T =12.1Is; 9-o 0,

Qff~ 0.52 rad/s; 6 3; H =1.0 cm; and t/T = 6.
.,-.

I

I Figure 5.11 Post Spin-up Dyeline Instability. T 12.1s; 0; = 0.52 rad/s;
82 = 2.5; H = 5.0 cm; and t/T = 16.
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The second phenomenon observed was the wavy pattern in the dyelines seen in Fig-

ure 5.11. This pattern was first discernable in the dyelines at the cylinder's center and later

evident at the end walls. The third phenomenon noted was the small vortex formation as seen

in Figures 5.12 and 5.13. These eddies formed first in the center of the cylinder and later

spread throughout the fluid. Figure 5.13a shows a close-up of the eddies. The small count-

er-rotating eddies behind the large cyclonic cell are reminiscent of a Karman vortex street

formed by flow past a cylinder at high Reynolds numbers. It is likely that the cause of the

second and third phenomenon is the difference in surface tension and density of the water

and the dye.
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Figure 5.13 Post Spin-up Vortex Development. T = 12.1 s; g =0; Qf 0.52 rad/s;
8 = 3; H = 2.0 cm; and t/T = 9.75.
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3 Chapter 6

1- CONCLUSIONS

The presence of comers in the rectangular cylinder caused the formation of eddies

5 in the flow as the fluid was accelerated from rest to solid body rotation. The number of ed-

dies, as well as eddy size, position, and rotation rate, were found to be dependent on 8, Of,

Sand H. We evaluated our experiments against a comparison case for which 8 = 3, Qf = 0.52

I rad/s, and H = 5 cm. Horizontal dyelines in this experiment formed a 3-cell, cyclonic-anti-

cyclonic-cyclonic (- + -) pattern. The cells were near-circular. Small secondary anticy-

i clonic eddies were observed In the trailing comers of the cylinder.

I As 8 was decreased from 3 to 2, the size of the secondary anticyclonic cell increased.

When 8 < 2.14, the flow evolved through 3 circular cells into an arrangement of 5 non-cir-

cular anticyclonic and cyclonic cells that were not aligned along a horizontal axis.

5 As H was decreased from 5 to 0.5 cm, a corresponding decrease in the spin-up time

g was observed. This confirmed the importance of the Ekman number, E = v/(QfH2), as a mea-

sure of the spin-up time scale. A decrease in the rotation rate of the cyclonic eddies was also

3 observed as H was decreased.

3 As Of was increased from 0.13 to 1.82 rad/s, the centers of the cyclonic cells became

more diagonalized and the tendency of the cyclonic cells to travel to the center of the cylinder

I increased. These tendencies were confirmed by the measurements of the cyclonic eddy paths

discussed in §5.5. For a large enough Qf, the cyclonic cells joined in the center of the cylin-

der, so that the final pathline of the flow was like that of vHDD. Comparison with the experi-

3 ments of vHDD showed that the length of the cylinder, in addition to "f, was an important

I
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3 factor affecting the tendency of the cyclonic eddies to move into the center of the tank. Thus

EL = v/(9fL2) seems to be an important scale that is relevant to the evolution of the pathlines

I during the spin-up process.

3 Several interesting post spin-up phenomena, including dyeline instabilities and vor-

tex development, were observed. It is likely that these instabilities are due to the differences

in fluid properties, such as density and surface tension, of the dye and the water.

I
I

i
'I

i

I
I

I•
i

n



U
U 58

3 BIBLIOGRAPHY

j Benton, E.R. & Clark, A. 1974 Ann. Rev. Fluid Mech. 6,257-280.

Greenspan, H.P 1968 The Theory of Rotating Fluids. Cambridge University Press.

Greenspan, H.P. & Howard, L.N. 1963 On a time dependent motion of a rotating fluid. J
Fluid Mech. 17, 385-404.

Pond, S. & Pickard, G.L. 1983 Introductory Dynamical Oceanography. Pergamon Press.

van Heijst, G.J.F. 1989 Spin-up phenomena in non-axisymmetric containers. J Fluid Mech.206, 171-191.

van Heijst, G.J.F., Davies, P.A. & Davis, R.G. 1990 Spin-up in a rectangular container. Phys.

Fluids A 2, 150-159.

Wedemeyer, E.H. 1964 The unsteady flow within a spinning cylinder. J Fluid Mech. 20,
383-399.

Weidman, P.D. 1976 On the spin-up and spin-down of a rotating fluid. Part 1. Extending
the Wedemeyer model. J Fluid Mech. 77, 685-708.

Weidman, P.D. 1976 On the spin-up and spin-down of a rotating fluid. Part 2. Measurements
and stability. J Fluid Mech. 77, 709-736.

I
I
I
i
!

I
i
I


