e — s e e e e

AD-A275 458
AR @

1992 LECTURES IN
COMPLEX SYSTEMS

. DTIC

Lynn Nadel | c

Daniel L. Stein

Approv e i pural metey
Distnrunan iinluncted)

\

94-03717
AN

Reproduced From

A LECTURES VOLUME INTHE Best Available Copy

SANTA FE INSTITUTE STUDIES IN THE SCIENCES OF COMPLEXITY

94 2 02 2514

form Approved
OMB No 0704 0188

2,0t 1€DST1NE L " _ PRI SRAN -t ments 1834 0 1R DUTORR SSRBLE (¢ 7 e LIFOE ADETY) 1Ry

L kperg ene

¢ Cnrate o rer 2000 UDeALLAY 400 S Vet aertenson
:"llt‘x\':l:, ::‘:').4‘(! N " W Hogurnioe Fer 001 (0104 Q' 88) wWashingroe [DY
1 AGENCY USE ONLY (Leave biank} 2. REPORT DATE 3 REPORT 1YPEf AND DATES COVERED
5-11-93 Final - 4-01-92 thru 3-3- 93
a TITLE AND SUBTITLE S FUNDING NUMBERS
1992 Lectures in Complex Systems N00O014-92-3-1455
6 AUTHORIS)

Edited by Lynn Nadel and Dan Stein

RGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
. PERFORMING ORG.) AEPONT NUMBER

~

Santa Fe Institute
1660 014 Pecos Trail, Ste. A ISBN 0-201-62498-~2
Santa Fe, NM 87501

. NITORING AGENCY NAME(S) AND ADDRESSIES) 10 SPONSORING / MONITORING
SPONSORING MO AGENCY REPORT NUMBER

w

Office of Naval Research
University of New Mexico
Bandelier Hall West
Albuquerque, NM 87131

11, SUPPLEMENTARY NOTES

N/A

12a. OISTRIBUTION/AVANABILITY STATFMFINT 12b DISTRIBUTION CQOF

unclassified/unlimited

13. ABSTRACT (Maximum 200 words)

The Complex Systems Summer School focuses on developing techniques for measuring
and analyzing complex behavior, and applying these technigues to the study of a limited
number of specific mathematical, physical, and living systems. The 1992 summer school
consisted of approximately twelve short courses together with a number of seminars on
selected topics, and took place over a period of four weeks. Topics covered include chaos,
computational and algorithmic complexity, neural nets and computational neurobiclogy,
paraliel models in cognition, stochastic processes in physical and biological systems and
pattern formation in biological systems. An important component of the schools is the
publication of the complete set of lecture notes in book form, the purpose of which is to
provide students and researchers in the general scientific community with an overview of
the emerging concepts of complex behavior, and their application to specific systerms.

4. SUBJECT TERMS 1S. NUMBER OF PAGES
' . i 687
near dynamics, computation.
Complex systems, nonli Y [oot

17 SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF THIS PAGE OF ABSTRACT
unlimited unlimited unlimited unlimited

rm 298 {Rev 2-89)
[T Y

~

Standard Fo!
N$N 7540-01-280-5500 _'" ':: I Fo

1992 LECTURES IN

COMPLEX SYSTEMS

. Accesion For 7
Editors NTIS CRaas
Lynn Nadel ohc TAB
. , Hannonnced D
Department of Psychology Justt
University of Arizona > hcation
[3 > By e e emm——

Daniel Stein D1st-ibotion {

Department of Physics e

University of Arizona AvidaDility Codes

-Avdﬂ .;n(-i.[or

Dist Special
A |

Lecture Volume V DTIC QUALITY INSPECTED §

Santa Fe Institute
Studies in the Sciences of Complexity

»N
olame
-y
3 .
o'
*

Addison-Wesley Publishing Company

The Advanced Book Program

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan

Paris Seoul Milan Mexico City Taipei

Publisher: David Goehring

Editor in Chief: Jack Repcheck
Production Manager: Michael Cirone
Production Supervisor: Lynne Reed

Director of Publications, Santa Fe Institute: Ronda K. Butler-Villa
Publications Assistant, Santa Fe Institute: Della L. Ulibarmr

This volume was typeset using TiXtures on a Macintosh II computer. Camera-ready
output from a Hewlett-Packard LaserdJet 4M Printer.

i
Copyright (© 1993 by Addison-Wesley Publishing Company. The Advanced Book Pro-
gram, Jacob Way, Reading, MA 01867

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher. Printed in
the United States of America. Published simultaneously in Canada.

123456789 10-MA -96959493
First printing, November 1993

About the Santa Fe Institute

The Santa Fe Institute (SFI) is a multidisciplinary graduate research and teach-
ing institution formed to nurture research on complex systems and their simpler
elements. A private, independent institution, SFI was founded in 1984. Its pri-
mary concern is to focus the tools of traditional scientific disciplines and emerging
new computer resources on the problems and opportunities that are involved in
the multidisciplinary study of complex systems—those fundamental processes that
shape almost every aspect of human life. Understanding complex systems is critical
to realizing the full potential of science. and mayv be expected to vield enormous
intellectual and practical benefits.

All titles from the Santa Fe Institute Studies

in the Sciences of Complexity series will carry
this imprint which is based on a Mimbres
pottery design (circa A.D. 950-1150). drawn

by Betsy Jones. The design was selected because
the radiating feathers are evocative of the out-
reach of the Santa Fe Institute Program to many
disciplines and institutions.

Santa Fe Institute Editorial Board
June 1993

Dr. L. M. Simmons, Jr., Chair
Vice President for Academic Affairs, Santa Fe Institute

Prof. Kenneth J. Arrow
Department of Economics, Stanford University

Prof. W. Brian Arthur
Dean & Virginia Morrison Professor of Population Studies and Economics,

Food Research Institute, Stanford University

Prof. Michele Boldrin
MEDS, Northwestern University

Dr. David K. Campbell
Head, Department of Physics, University of Illinois and
Director, Center for Nonlinear Studies, Los Alamos National Laboratory

Dr. George A. Cowan
Visiting Scientist, Santa Fe Institute and Senior Fellow Emeritus, Los Alamos

National Laboratory

Prof. Marcus W. Feldman
Director, Institute for Population & Resource Studies, Stanford University

Prof. Murray Gell-Mann
Division of Physics & Astronomy, California Institute of Technology

Prof. John H. Holland
Division of Computer Science & Engineering, University of Michigan

Prof. Stuart A. Kauffman
School of Medicine, University of Pennsylvania

Dr. Edward A. Knapp
President, Santa Fe Institute

Prof. Harold Morowitz
University Professor, George Mason University

Dr. Alan S. Perelson
Theoretical Division, Los Alamos National Laboratory

Prof. David Pines
Department of Physics, University of Illinois

Prof. Harry L. Swinney
Department of Physics, University of Texas

Contributors to This Volume

Robert H. Austin, Princeton University

Cathleen Barczys, University of California, Berkeley
Subbiah Baskaran, University of Vienna

Laura Bloom, University of California, San Diego

E. Bonabeau, CNET Lannion B-OCM/TEP

T. David Burns, George Mason University

Joshua M. Epstein, Princeton University

Igor Fedchenia, University of Umeé

Barry Feldman, State University of New York at Stony Brook
Raymond E. Goldstein, Princeton University

Charles M. Gray, The Salk Institute for Biological Studies
Tad Hogg, Xerox Palo Alto Research Center

V. Holden, The University, England

Bernardo A. Huberman, Xerox Palo Alto Research Center
A. Atlee Jackson, Beckman Institute, University of Illinois
Leslie Kay, University of California, Berkeley

Brian L. Keeley, University of California at San Deigo
Robert S. Maier, University of Arizona

Gottfried Mayer-Kress, University of Illinois

Melanie Mitchell, Santa Fe Institute

Kai Nagel, Universitit zu Koln

David Noever, George C. Marshall Space Flight Center
Garry D. Peterson, University of Florida

Stefan Schaal, MIT

U. R. Smith, Yale University

Dagmar Sternad, University of Connecticut

Villy Sundstrom, University of Umea

A. T. Winfree, University of Arizona

David H. Wolpert, Santa Fe Institute

G. Yagil, The Weizmann Institute of Science

Jonathan S. Yedidia, Harvard University

Kay-Pong Yip, University of Southern California

Henggui Zhang, The University, England

Santa Fe Institute
Studies in the Sciences of Complexity

Vol.
1

11
11
v
\%

Vol.
1

11
111

Vol.

Vol.
II

1
v

VI
VII
Vil

IX

XI

X1
XHI

X1V

XV

Lectures Volumes
Editor

D. L. Stein

E. Jen

L. Nadel & D. L. Stein
L.. Nadel & D. L. Stein
L. Nadel & D. L. Stein

Lecture Notes Volumes
Author

J. Hertz, A. Krogh, &

R. Palmer

G. Weisbuch

W. D. Stein & F. J. Varela

Reference Volumes
Author
A. Wuensche & M. Lesser

Proceedings Volumes
Editor

D. Pines

A. S. Perelson

A. S. Perelson

G. D. Doolen et al.

P. W. Anderson, K. Arrow,
D. Pines
C. G. Langton

G.1. Bell & T. G. Muur
W. H. Zurek

A. S. Perelson &

S. A. Kauffman

C. G. Langton et al.

J. A. Hawkins &

M. Gell-Mann

M. Casdagli & S. Eubank
J. E. Mittenthal &

A. B. Baskin

D. Friedman & J. Rust

A. S. Weigend &
N. A. Gershenfeld

ditle

Lectures in the Sciences of Complexity, 1989
1989 Lectures in Complex Systems, 1990
1990 Lectures in Complex Systems, 1991
1991 Lectures in Complex Systems, 1992
1992 Lectures in Complex Systems, 1993

Title

Introduction to the Theory of Neural Computation.
1990

Complex Systems Dynamics, 1990

Thinking About Biology, 1993

Title

The Global Dynamics of Cellular Automata:
Attraction Fields of One-Dimensional Cellular
Automata, 1992

Title

Emerging Syntheses in Science, 1987
Theoretical Immunology, Part One, 1988
Theoretical Immunology, Part Two, 1988
Lattice Gas Methods for Partial Differential
Equations, 1989

The Economy as an Evolving Complex System,
1988

Artificial Life: Proceedings of an Interdisciplinary
Workshop on the Synthesis and Simulation

of Living Systems, 1988

Computers and DNA, 1989

Complexity, Entropy, and the Physics of
Information, 1990

Molecular Evolution on Rugged Landscapes:
Proteins, RNA and the Immune System, 1990
Artificial Life 11, 1991

The Evolution of Human Languages, 1992

Nonlinear Modeling and Forecasting, 1992
Principles of Organization in Organisms, 1992

The Double Auction Market: Institutions,
Theories, and Evidence, 1993

Time Series Prediction: Forecasting the Future
and Understanding the Past

Contents

Preface
Lynn Nadel and Dan Stein XV
Lecturers 1

Genetic Algorithms
Melanie Mitchell 3

Rhythmic Activity in Neuronal Systems: Insights Into
Integrative Function
Charles M. Gray 89

Better Than the Best: The Power of Cooperation
Tad Hogg and Bernardo A. Huberman 163

The Emergence of Computational Ecologies
Bernardo A. Huberman and Tad Hogg 185

The Geometry of Excitability
A. T. Winfree 207

Quenched Disorder: Understanding Classes Using a
Variational Principle and the Replica Method
Jonathan S. Yedidia 299

Complexity in Biological Molecules
Robert H. Austin 353

1992 Lectures in Complex Systems, Eds. L. Nadel & D. Stein, SFI Studies in .
the Sciences of Complexity, Lect. Vol. V, Addison-Wesley, 1993 xi

P

Xii

Contents

Nonlinear Dynamics of Pattern Formation in Physics and
Biology
Raymond E. Goldstein

On the Mathematical Biology of Arms Races, Wars, and

Revolutions
Joshua M. Epstein

An Adaptive Dynamic Model of Combat
Joshua M. Epstein

Seminars

Chaos Concepts
E. Atlee Jackson

Combining Generalizers by Using Partitions of the
Learning Set
David H. Wolpert

Large Fluctuations in Stochastically Perturbed Nonlinear
Systems: Applications in Computing
Robert S. Maier

On the Structural Complexity of Designed Systems
G. Yagil

Global Information Systems and Nonlinear Methods in
Crisis Management
Gottfried Mayer-Kress

Student Contributions

Excursion Sets and a Modified Genetic Algorithm:
Intelligent Slicing of the Hypercube
Subbiah Baskaran and David Noever

Applying Genetic Algorithms to Improve EEG
Classification and to Explore GA Parametrization
Cathleen Barczys, Laura Bloom, and Leslie Kay

Symbiosis in Society and Monopoly in Nature:
Mixed Metaphors from Biology and Economics
T. David Burns

401

425

437

461

463

489

501

519

531

553

555

569

579

Contents Xiii

Disordered Models of Chemical Reactions in Complex
Molecules
Igor Fedchenia and Villy Sundstrom 585

A Game Theoretic Interpretation of the Spin Glass
Barry Feldman 593

Lattice Games with Strategic Takcover
Barry Feldman and Kai Nagel 603

Is There Room for Philosophy in the Science(s) of
Complexity?
Brian L. Keeley and E. Bonabeau 615

Animal Aggregation: Experimental Simulation by Using
Vision-Based Behavioral Rules

Garry D. Peterson 623
Learning of Passive Motor Control Strategies with Genetic
Algorithms

Stefan Schaal and Dagmar Sternad 631
How to Get “A Biologist’s Guide to Internet Resources”

U. R. Smith 645
A Genetic Algorithm for Evolution from an Ecological
Perspective

Dagmar Sternad and Stefan Schaal 647

Bifurcation of Kidney Hemodynamics in Hypertension
Kay-Pong Yip and Henggui Zhang 663

Measuring the Complexity of Attractors from Single and

Multichannel EEG Signals
H. Zhang and A. V. Holden 671

Index 679

Preface

The 1992 Complex Systems Summer School once again provided an exciting
atmosphere for research, learning, and discussion in a wide varietv of ficlds and
topics. As in previous volumes, the contents of this book reflect the topics dis-
cussed in the 1992 summer school, although a few do not appear within. We make
special note of the fact that one of our lecturers, Joshua Epstein of the Brookings
Institution, has used his Summer School lectures as the basis for a hook, Nonlinear
Dynamics, Mathematical Biology, and Sacial Science, to be published as a separate
volume within the SFI con. lexity series. We are also pleased to include a number
of contributions from the participants themselves. These are the result of research
by individuals or working groups set up during the school. The results are quite
impressive. Special thanks to Brian Keeley for his efforts on this part of the vol-
ume, and to Cathleen Barczys for arranging the student seminar series during the
Summer School itself.

We are also pleased to note that Una Smith. a participant in the School. has pre-
pared a biologist’s guide to Internet resources. This contains an overview and lists of
free Internet resources such as scientific discussion groups and mailing lists: research
newsletters, directories, and bibliographics: huge data and software archives: and
tools for finding and retrieving information. The guide is a formal Usenet FAQ: that
is, it is posted in various *.answers newsgroups in Usenet and archived in the FAQ
repository on rtfm.mit.cdu, where the most current version can be found via F1TP

1992 Lectures in Complex Systems, Eds. L. Nadel & D. Stein, SFi Studies in
the Sciences of Complexity, Lect. Vol. V, Addison-Wesley, 1993 XV

XVi 1992 Lectures in Complex Systems

or e-mail. For more detailed information, please refer to Una Smith’s contribution
in the text.

ACKNOWLEDGMENTS

Many people contributed to the success of the summer school. The planning for
the school, its day-by-day functioning, and the follow-up after the school finishes
are all a reflection of the efforts of a number of people at the Santa Fe Institute.
Ed Knapp and Mike Simmons gave much of their time and effort to the Summer
School; Ginger Richardson and Andi Sutherland were indispensable from start to
finish, as usual; Ronda Butler-Villa and Della Ulibarri played a major role in getting
this volume together; Marcella Austin handled the rather complex financial side;
and Brent McClure got the computational laboratory up and running, and kept it
that way. Stuart Kauffman of the Santa Fe Institute committed much of his time to
the students, and could often be seen in heated discussion with groups of them in
the courtyard of the Institute. Most critical of all, Peter Hraber performed myriad
tasks which kept the school running smoothly.

We thank also our advisory board, and several institutions that provided com-
puters and associated peripherals. We also thank the University of Arizona, and its
Center for the Study of Complex Systems, for permitting the two of us to spend
time on this rewarding but time-consuming enterprise. Finally, we must thank those
agencies that contributed the funds needed to make the school a reality: financial
support was provided by the National Science Foundation, the Department of En-
ergy, Office of Naval Research, the National Institute of Mental Health, Sandia
National Laboratories, the Center for Nonlinear Study at Los Alamos National
Laboratory, Institutional Collaborative Research Program of the University of Cal-
ifornia (INCOR), the Los Alamos Graduate Center of the University of New Mexico,
the University of Arizona, and Professor Marcus Feldman: student support was pro-
vided by the University of Florida, University of Michigan, and Stanford University;
and computer equipment was provided by the University of New Mexico, Digital,
Sun Microsystems, Silicon Graphics, and Computerland of Santa Fe.

Lynn Nadel Daniel L. Stein
University of Arizona "Iniversity of Arizona
Tucson, ZA 85721 Tucson, AZ 85721

May 31, 1993

Lectures

Melanie Mitchell
Santa Fe Institute, 1660 Old Pecos Trail, Suite A, Santa Fe, NM 87501

Genetic Algorithms

CONTENTS

Section 1: Introduction
1.1 The A peal of Evolution
1.2 Elements of Genetic Algorithms
1.3 A Simple GA
1.4 Overview of Some Applications of Genetic Algorithms
1.5 A Brief Example: Using Genetic Algorithms to Evolve Strategies to the
“Prisoner’s Dilemma”
1.6 How and Why Do Genetic Algorithms Work?
Section 2: Genetic Algorithms in Problem Solving
2.1 Automatic Programming
2.2 Complex Data Analysis and Prediction
2.3 Evolving Neural Networks
Section 3: Genetic Algorithms in Scientific Models
3.1 Modeling the Interaction Between Learning and Evolution
3.2 Adding Culture
Section 4: Theoretical Foundations of Genetic Algorithms
4.1 Walsh Analysis and GA Deception
4.2 Statistical Structure of Fitness Landscapes
4.3 Royal Road Landscapes

1992 Lectures in Complex Systems, Eds. L. Nadel & D. Stein, SF| Studies in
the Sciences of Complexity, Lect. Vol. V, Addison-Wesley, 1993

e —— .

4 Melanie Mitchell

1. INTRODUCTION

The advent of electronic computers has brought about a revolution in all areas of
science and engineering and has opened up the possibility for scientific investiga-
tions and technological accomplishments of a wholly new kind. Computers have
permitted the in-depth study and modeling of systems of great complexity, such
as stellar and galactic dynamics, atmospheric processes, biological cells, brains, the
human immune system, natural ecologies, and economies. The importance of un-
derstanding such systems is enormous: many of the most serious challenges facing
humanity—e.g., environmental sustainability, economic stability, or the control of
disease-—as well as many of the hardest scientific questions-—e.g., the nature of
intelligence or the origin of life—will require a deep understanding of complex sys-
tems. Computers have also provided the ability to address previously intractable
practical problems such as large-scale combinatorial optimization, the automatic
analysis of complex data, and the creation of autonomous learning systems, all of
which will have tremendous significance for science and technology.

As research in such areas has progressed, the need for increasingly powerful
and sophisticated computational systems has become critical. The recent develop-
ment of massively parallel computers holds much potential promise for addressing
these problems. However, powerful hardware is almost never enough for making
significant progress on the types of problems listed above; at present the main bot-
tleneck lies in the creation of new computational methods—-algorithms, interfaces,
and analysis tools—that are more sophisticated and that fit these problems more
naturally than do traditional computational and mathematical methods.

What is required are methods that naturally take advantage of parallel process-
ing, methods in which appropriate complex behavior emerges from the interaction
of simple parts rather than being laboriously (and most often inadequately) pre-
programmed, and methods that can efficiently search through large spaces, that
have sophisticated pattern-recognition abilities, and that are “adaptive™ —i.e., able
to automatically improve their performance (according to some measure) over time
in response to what has been encountered previously.

Such features have been the basis of some novel approaches to computation
that have been developed in recent years, many of themn inspired by natural adap-
tive systems. In particular, almost since the advent of the computer age, a small
number of computer scientists have been inspired by the process of biological evolu-
tion. They have attempted to develop “evolutionary™ approaches to computational
problems and, in turn, to use computers to model evolutionary processes. The field
of genetic algorithms springs from one such approach.

Genetic Algorithms 5

1.1 THE APPEAL OF EVOLUTION

Why use evolution as an inspiration for solving computational problems? Natural
evolution addresses many of the requirements discussed above, in the context of
biology. Evolution can be thought of as a massively parallel search through a huge
space of possible solutions to a problem, where the “problem” is to create an organ-
ism that can survive and flourish in a given environment and the “solutions” are the
genetic blueprints for different organisms. Evolution results in emergent complexity
from simple rules—the rules of evolution under natural selection are simple to state,
and yet their effects are hard to predict and their repeated action has given rise to
extremely complex structures. One example is the human nervous system, which
is, among other things, the paramount existing system for sophisticated pattern
recognition.

1.2 ELEMENTS OF GENETIC ALGORITHMS

Genetic algorithms (GAs), computational methods inspired by ideas from evolution
under natural selection, were invented in the 1960s by John Holland of the Univer-
sity of Michigan and were first described at length in his book Adaptation in Natural
and Artificial Systems.3® A GA searches through a space of “chromosomes,” each of
which represents a potential solution to a given problem (in some cases, a solution
consists of a set of chromosomes). These chromosomes often take the form of bit
strings; each bit position (“locus”) in the chromosome has two possible values (“al-
leles”), 0 and 1. (These biological terms are used in the spirit of analogy with real
biology, though the entities they refer to are, of course, much simpler than the real
biological entities.) Each chromosome can be thought of as a point in the search
space of potential solutions. The search takes place by processing populations of
chromosomes, moving from one population to another. This is different from most
search methods, which move between single points in the search space. The GA
most often requires a “fitness function” that assigns a score (fitness) to each chro-
mosome in the current population. The fitness of the chromosome depends on how
good a solution that chromosome is to the problem at hand.

For example, a common application of GAs is in function optimization, where
the goal is to find a set of parameter values that optimize a complex multiparameter
function. As a simple example, one might want to maximize the one-dimensional
function”®

f(z) = = + |sin(32z){, ze[0 ... 7].

Here the potential solutions are values of x; these might be encoded as bit strings.
The fitness function would translate a given bit string into a real number and then
apply the function at that value. The fitness of a string would be the function value
at that point.

6 Melanie Mitchell

E%Z;_

0 L]

00 =Backward; 01 =Left; 10=Forward; 11 =Right

FIGURE 1 A robotic
navigation problem, in
which one potential solution
(a series of “forward,”
“backward,” “left, and “right”
moves) is encoded as a bit
string.

10100110110010 ...
F FL F RB F

As another example, the GA might be applied to the robotics problem illus-
trated in Figure 1. Here the problem is to find a good strategy for traversing the
maze efficiently to reach the goal, where a strategy is a sequence of FORWARD,
BACKWARD, LEFT, and RIGHT moves. As shown in the figure, each of these
possibilities can be represented by two bits. A bit string encoding a potential so-
lution is also shown. The fitness of a strategy might be calculated by letting the
robot follow the strategy and measuring the Euclidean distance between its final
position and the goal.

The preceding two examples show two different contexts in which potential
solutions to a problem are encoded as abstract bit-string “chromosomes” and fitness
functions are defined on the resulting space of bit strings. A search space together
with a fitnes: function is known as a “fitness landscape,” analogous to the notion
of a fitness landscape in biology.?® The GA is a method for searching a fitness
landscape for high-fitness strings. The GA, in its simplest form, involves three
“genetic” operators:

s Reproduction: This operator makes identical copies of some of the chromo-
somes in the population (the fitter the chromosome, the more copies are likely

to be made).

Genetic Algorithms 7

s Crossover: This operator exchanges subparts of two chromosomes. For ex-
ample, the strings
10000100

and
11111111

could be crossed over after the third bit to produce two offspring:
10011111

and
11100100.

This operator roughly mimics sexual recombination between two single-
chromosome organisms.

s Mutation: This operator randomly flips some bits in the chromosome. For
example, the string 00000100 might be mutated in its second position to yield
01000100. Mutation can occur at each bit position in a string with some prob-
ability, usually very small.

1.3 A SIMPLE GA

With these three genetic operators, we can now give a simple genetic algorithm:

1. Start with a randomly generated population of chromosomes (potential solu-
tions to a problem).

2. Calculate the fitness of each chromosome in the population.

3. Apply genetic operators (reproduction, crossover, and mutation) to the popu-
lation to create a new population.

4. Go to step 2.

This process is iterated over a number of time steps (“generations”). After several
generations, the result is often one or more highly fit solutions in the population.

This simple procedure is the basis for most applications of the GA. There are
a number of details to fill in, such as the size of the population or how exactly to
apply the genetic operators, and often the success of the algorithm depends very
much on these decisions. There are also much more complex versions of the GA
(e.g., GAs that work on representations other than bit strings or GAs that have
different types of crossover and mutation operators). Some examples will be given
later in this chapter.

As a more detailed example of the simple GA, suppose that the fitness of a bit
string is equal to the number of 1’s in the string and suppose that the population
contains four strings.

8 Melanie Mitchell

The initial (randomly generated) population might look like:

Fitness
00000110 2
11101110 6
00100000 1
00110100 3

A common way to perform reproduction in GAs is known as fitness-propor-
tionate reproduction: each individual in the population is assigned an expected
number of copies value equal to its fitness divided by the average fitness of the
population. These values are given helow:

Fitness ExpectedCopies

00000110 2 2/3
11101110 6 6/3
00100000 1 1/3
00110100 3 3/3

Since an individual cannot have a fractional number of copies. some kind of
sampling procedure must be used to assign an integral number of copies to each
individual, based on the expectation values. Usually this is done so that the total
actual number of copies equals the population size. The distribution above might,
for example, yield zero copies for the first string, two copies for the second, and one
each for the third and fourth under a random sampling procedure biased by expec-
tation value. (The zero copies for the first string is just the luck of the draw here.
If the selection procedure were repeated several times, the average results would be
closer to the expected values.) Pairs of strings are then randomly chosen from the
copies, and each pair crosses over to produce two offspring. The simplest form of
crossover is single-point crossover, in which a single crossover point is chosen ran-
domnly with uniform probability over the entire string, and substrings of the parents
before and after the crossover point are exchanged. The two offspring from the cross
then undergo mutation with some probability-—for example, the probability might
be fixed at 0.01 per bit, which, in the case of strings of length 8, would mean an
0.08 chance that a given string would be mutated in one position. The resulting
strings then are placed in the new population, and the entire procedure is repeated
for the next generation.

The GA described above is very simple; many other, more complicated versions
have been developed, some of which are described in this chapter. This chapter does
not include a general discussion of the issues involved in implementing a GA: such
discussions can be found in Goldberg,?” Davis,!® and Michalewicz.”®

Genetic Algorithms 9

1.4 OVERVIEW OF SOME APPLICATIONS OF GENETIC ALGORITHMS

The algorithm described above is very simple. but variations on this basic thewe
have been used in a large number of scientific and engineering problems and models.
including the following:

a Optimization: GAs have been used in a wide variety of optimization tasks.
including numerical optimization (e.g.. De Jong'®) as well as combinatorial
optimization problems such as circuit design (e.g.. Shahookar and Mazumder?)
and job shop scheduling (e.g., Nakano®).

a Automatic programming: GAs have been used as a means to evolve com-
puter programs to performn various tasks™ 13 one such project will be dis-
cussed in detail later in this chapter.

» Machine and robot learning: GAs have been used in some machine learn-
ing tasks such as classification and prediction {e.g.. prediction of dyvnamical
systems,® weather prediction.”® and prediction of protein structure™'). the de-
sign of neural networks (e.g., Belew et al..® Chalmers.’? Harp and Samad.?!
Miller et al.,%% and Montana and Davis®™). and the evolution of hehavioral rules
for a cognitive system.3°

a Economic models: GAs have been used by cconomists to model processes of
innovation, to model the development of bidding strategies. and to model the
emergence of economic markets.23’

a Immune system models: GAs have heen nsed to model the evolution of
immunological antibodies in a changing environment of antigens.®?

a Ecological models: GAs have been uscd in models of ecological phenomena
such as biological arms races, host-parasite coevolution. symbiosis. and resource
flow in ecologies.38-39:50.73.74

This list is by no means exhaustive, but it gives the Havor of the kinds of things
GAs have been used for, both in problem-solving and scientific contexts. Because
of the GA's success in these and other arcas. interest has been growing rapidly in
the last several years among rescarchers in many disciplines and the field of GAs
is becoming its own subdiscipline of computer science. with its own conferences,
journals, and scientific society.

A BRIEF EXAMPLE: USING GENETIC ALGORITHMS TO EVOLVE
STRATEGIES TO THE “PRISONER’S DILEMMA”

As a warm-up to more extensive discussions of GA applications. T will describe an
application of the GA to evolve strategies for the Prisoner’s Dilemma. !

The Prisoner’s Dilemtna is a simple two-person game that has been studied ex-
tensively in game theory, cconomics, and political scienee hecause it can be seen as
an idealized model for real-world phenomena such as arms races. On a given turn.

10 Melanie Mitchell

Player B
Cooperate Defect
Cooperate 3,3 0,5
Player A
Defect 5,0 1,1

FIGURE 2 The payoff matrix for the Prisoner's Dilemma (adapted from Axelrod?).
The numbers given in each box are the respective payoffs for players A and B in that
situation.

each player independently decides whether to “cooperate” or “defect.” The game is
summarized in the payoff matrix shown in Figure 2. If both players cooperate, they
each get three points. If player A defects and player B cooperates, then player A
gets five points and player B gets zero points; vice versa if the situation is reversed.
Finally, if both players defect, they each get one point. What is the best strategy
to take? If there is only one turn to be played, then clearly the best strategy is
to defect: the worst consequence for a defector is to get one point and the best
is to get five points, which are better than the worst score and the best score,
respectively, for a cooperator. The dilemma is that if the game is iterated, that is, if
two players play several turns in a row, the strategy of always defecting will lead to
a much lower total payoff than the players would get if they both cooperated. How
can reciprocal cooperation be induced? This question takes on special significance
when the notions of “cooperating” and “defecting” correspond to actions in, sav. a
real-world arms race.

Robert Axelrod of the University of Michigan has studied the Prisoner’s
Dilemma and related games extensively. His interest in what makes for a good
strategy led him to organize two Prisoner’s Dilemma tournaments (described in
Axelrod®). He solicited strategies from researchers in a number of disciplines. Each
participant submitted a computer program that implemented his or her strategy.
and the various programs played iterated games with each other. During each iter-
ated game, each program remembered what move its opponent made on the three
previous turns, and its strategy was based on this memory. The programs were
paired in a round-robin tournament, where each played with many or all of the
other programs over a number of turns. The first tournament contained 14 dif-
ferent programs and the second tournament contained 62 programs. Some of the
submitted strategies were rather complicated, using techniques such as Markov

Genetic Algorithms 1

processes and Bayesian inference to model other players and to determine the best
move. However, in both tournaments the winner (the strategy with the highest
average score) was the simplest of the submitted strategies: TIT FOR TAT. TIT
FOR TAT cooperates on the first move and then, on subsequent moves. does what-
ever the other player did last. That is, it offers cooperation and then reciprocates
it, but if the other player defects, TIT FOR TAT will punish that with a defection.

After the two tournaments, Axelrod decided to see if the GA could evolue strate-
gies to play this game successfully. The first problem was figuring out how to best
encode a strategy as a bit string. The encoding used by Axelrod follows. Suppose
the memory of each strategy is one previous move. There are four possibilities for
the previous move:

CC (case 1)

CD (case 2)

DC (case 3)

DD (case 4)
Case 1 is when both players cooperated on the previous move, case two is when
player A cooperated and player B defected, and so on. A strategy is simply a rule
that specifies an action in each case. For example, TIT FOR TAT is the following

strategy:
If CC (case 1), then C.

If CD (case 2), then D.
If DC (case 3), then C.
If DD (case 4), then D.

This strategy can be encoded by a string of length 4 which says what to do in each

of the four cases:
CDCD.

To use the strategy, the player determines the case corresponding to the previous
move and uses the letter corresponding to that case in the string (e.g.. in case 1.
the player uses the letter in the first position in the string. here C).

Axelrod’s tournaments involved strategies that used three previous moves.
There are 64 possibilities for the previous three moves:

CC CC CC (case 1)
CC CC CD (case 2)
CC CC DC (case 3)

etc.
Thus a strategy can be encoded by a 64-bit string, e.g.,

cChbCcCcCDDCCCDD

12 Melanie Mitchell

Axelrod actually used a 70-bit string where the six extra bits (C’s or D’s) were
not part of the strategy but encoded three hypothetical “previous moves” used by
the strategy to decide what to do on the very first move of the game. The number
of possible strategies is thus 27; the search space is thus far too big to search
exhaustively.

In Axelrod’s first experiment, the GA had a population of 20 strategies. The
fitnesses of strategies in the population were determined as follows. Axelrod had
found earlier that eight of the human-generated strategies from the second tour-
nament were representative, in the sense that a given strategy’s score playing with
these eight was a good predictor of the strategy’s score playing with all 62 entries.
This set of eight strategies (which did not include TIT FOR TAT) served as the
“environment” for the evolving strategies in the population. Each strategy S in the
population played iterated games with each of the eight fixed strategies, and $’s
fitness was its average score over all the games it played.

The GA was run for 50 generations, with fitness-proportionate reproduction,
crossover, and mutation being applied at each generation. Forty replications were
made of the GA run, with different random number seeds used for each replication.
Most of the strategies that evolved were similar to TIT FOR TAT, having many of
the properties that make TIT FOR TAT successful. However, the GA often found
strategies that scored substantially higher than TIT FOR TAT. This is a striking
result, especially in view of the fact that in a given run the GA is testing only
20 * 50 = 1000 individuals, out of a huge search space of 27° individuals.

It is not correct to conclude that the GA evolved strategies that are “better”
than any human-designed strategy. The performance of a strategy depends very
much on its environment—that is, the other strategies that it is playing with. Here
the environment was fixed—it consisted of eight human-designed strategies that
did not change over the course of a run. The highest-scoring strategies produced
by the GA were ones that “learned” how to exploit specific weaknesses of the
eight fixed strategies. It is not necessarily true that these high-scoring strategies
would also score highly in some other environment. TIT FOR TAT is a generalist,
whereas the highest-scoring evolved strategies were more specialized to their given
environment. Axelrod concluded that the GA is good at doing what evolution often
does: developing highly specialized adaptations to specific characteristics of the
environment.

To see the effects of a changing (as opposed to fixed) environment, Axelrod
carried out another experiment in which the fitness of a strategy was determined
by allowing the strategies in the population to play with each other rather than
with the fixed set of eight strategies. The environment changes from generation
to generation because the strategies themselves are evolving. At each generation,
each strategy played iterated games with each of the nineteen other members of
the population, and its fitness was again its average score over all games.

In this second set of experiments, Axelrod observed the following phenomena.
The GA initially evolves uncooperative strategies, because strategies that tend to
cooperate early on do not find reciprocation among their fellow population members

Genetic Algorithms 13

and thus tend to die out. But after about 10 to 20 generations, the trend starts to
reverse: the GA discovers strategies that reciprocate cooperation and that punish
defection (i.e., variants of TIT FOR TAT). These strategies do well with each other
and are not completely defeated by other strategies, as were the initial coopera-
tive strategies. The reciprocators score better than average, so they spread in the
population, resulting in more and more cooperation and higher and higher fitness.

This example illustrates how one might use a GA both to evolve solutions to
a complex problem and to model evolution and coevolution in an idealized way.
One can think of many additional possible experiments, such as running the GA
without crossover and seeing the effect this has on the evolution of strategies (this
experiment was done by Axelrod?) or allowing a more open-ended kind of evolution
where the amount of memory available to a given strategy is allowed to increase
with evolution (such an experiment was performed by Lindgren®?).

1.6 HOW AND WHY DO GENETIC ALGORITHMS WORK?

GAs are simple to describe and program, but their behavior can be complex and
many open questions exist about how and why they work and what they are
good for. Much work has been done on the foundations of GAs (see, for example,
Holland,38 Goldberg,?” Rawlins,”? and Whitley®?). The last section of this chapter
describes some approaches toward answering these questions. Here I give a brief
overview of some fundamental concepts related to the theory of GAs.

At a very general level of description, it is believed that GAs work by discov-
ering, emphasizing, and recombining high-quality building blocks of solutions in a
highly parallel way. The idea here is that good solutions tend to be made up of
good building blocks—combinations of bit values that often confer higher fitness to
the string in which they are present.

Most studies of the theory of GAs start with the notion of schemas (or
“schemata”),38 which formalizes the informal notion of “building blocks.” A schema
is a set of bit strings that can be described by a template made up of 1's, 0's, and
*'s, where the *’s represent wild cards (or “don’t cares”). For example, the schema
s = 1****1 represents the set of all 6-bit strings that begin and end with 1. The
strings that fit this template (e.g., 100111 or 110011) are said to be instances of s.
The schema s is said to have two defined bits (the number of non-*’s) or, equiv-
alently, to be of order 2. Its defining length (the distance between its outermost
defined bits) is 5.

Note that not every possible subset of the search space of bit strings can be
described as a schema; in fact, the huge majority cannot. In a search space of bit
strings of length {, there are 2! possible strings and thus 9% possible subsets of
strings, but only 3' possible schemas. However, a central tenet in GA theory is
that schemas are the building blocks that the GA processes effectively under the
operators of reproduction, mutation, and single-point crossover.

14 Melanie Mitchell

How does the GA process schemas? Any given bit string of length [is an
instance of 2! different schemas. For example, the string 11 is an instance of **
(the schema that contains the entire search space), *1, 1% and 11 (the schema
that contains only one string, 11). Thus any given population of N strings contains
between 2! and N x2¢ different schemas (if all the strings are identical, then there are
exactly 2! different schemas; otherwise, the number is less than N x 2!). This means
that at a given generation, while the GA is explicitly evaluating the fitnesses of the
N strings in the population, it is actually implicitly estimating the average fitness of
a much larger number of schemas. For example, in a randomly generated population
of N strings, on average half the strings will be instances of 1***...* and half will
be instances of 0*** .. .* The evaluations of the approximately N/2 strings that are
instances of 1*** ... * give an estimate of the average fitness of that schema. (The
average fitness of a schema is defined to be the average fitness of all strings in the
search space that are instances of that schema.) Similarly, in evaluating a population
of N strings, the GA is implicitly estimating the average fitnesses of all schemas
that are present in the population. This simultaneous evaluation of large numbers
of schemas in a population of N strings is known as implicit parallelism.?® The
effect of reproduction is to gradually bias the sampling procedure toward schemas
whose fitness is estimated to be above average. Over time, the estimate of a schema
s’s average fitness should in principle become more and more accurate since the
GA is sampling more and more instances of s (some possible problems with this
assumption are discussed in the last section in this chapter).

We can calculate the dynamics of this sample biasing as follows. Let s be a
schema present in the population at time t (i.e., there is at least one instance of s
at time t). Let N(s,t) be the number of instances of s at time ¢, and @(s.t) be the
observed average fitness of s at time ¢ (i.e., the average fitness of instances of s in
the population at time t). We want to calculate N(s,t + 1), the expected number
of instances of s at time ¢ + 1. Assume that reproduction is carried out as described
earlier: the expected number of copies of a string is equal to F(z)/F(t), where
F(xz) is the fitness of string z in the population and F(t) is the average fitness
of the population at time t. {For now, we will ignore the effects of crossover and
mutation.) Then,

N(s,t+1) =Z;((f))

[2res F(2)]

(s, t)
T F()

N(s,1), (1.1)

by definition, since u(s,t) =3, , F(x)/N(s,t) for r in the population at time ¢.

Genetic Algorithms 15

This is known as the Schema Theorem3® (see also Goldberg?”). It says that
schemas whose observed average fitness stays above the population average fitness
will receive exponentially increasing numbers of samples over time.

Crossover and mutation can both destroy and create instances of s, so the right
side of Eq. (1.1) can be thought of as a lower bound on N(s,t + 1) if we include
the effects of crossover and mutation. First, let us consider the disruptive effects of
crossover. Let p. be the probability that single-point crossover will be applied to a
string. Then we can state a lower bound on the probability S.(s) that a schema s
will survive under crossover:

Sc(s) =1 ~pc (ld(j)l>

.where d(s) is the defining length of s and ! is the length of bit strings in the
search space. That is, crossovers occurring within the defining length of the schema
can destroy the schema, so we multiply the fraction of the string that the schema
occupies by the crossover probability to obtain an upper bound on "i. probability
that it will be destroyed. (The value is an upper bound because sotie crossovers
inside a schema will not destroy it, e.g., if two idcutical strings cross with each
other.) In short, the probability of survival under crossover is higher for shorter
schemas.

The disruptive effects of mutation can be quantified as follows. Let p,, be the
probability of any bit being mutated. Then S,,(s), the probabiiity that schema s
will survive under mutation, is the following:

Sm(s) = (1~ pm)o(s)7

where o(s) is the order of s (i.e., the number of defined bits in s). That is, for each

bit, the probability that it will not be mutated is 1 — p,,, so the probability that no

bits of schema s will be mutated is this quantity multiplied by itself o(s) times. In

short, the probability of survival under mutation is higher for lower-order schemas.
These disruptive effects can be used to amend Eq. (1.1):

ﬂ(s,t) . d_(s_)_ _ ofs
N(s,t+1) > F(t) N(s,t) [1 —pcl - 1] [(1 Pm) ()]. (1.2)

The conclusion is that short, low-order schemas whose average fitness remains above
the mean will receive exponentially increasing numbers of samples over time.

The Schema Theorem as stated in Eq. (1.2) is incomplete in that it only deals
with the destructive effects of crossover and mutation. However, crossover is believed
to be a major source of the GA’s search power, taking the high-fitness schemas
that are emphasized in the population and recombining them to form even fitter
higher-order schemas that are themselves then emphasized via reproduction. The

16 Melanie Mitchell

supposition that this is the process by which GAs work is known as the “Building-
Block Hypothesis”3827: it proposes that the GA produces fitter and fitter strings
by combining building blocks.

The Schema Theorem and the Building-Block Hypothesis deal with the roles
of reproduction and crossover in GAs. What is the role of mutation? Holland®®
proposes that mutation is what prevents loss of diversity at a given bit position.
For example, without mutation, all the strings in the population might come to
have a 1 at the first bit position, and there would be no way to obtain a string
beginning with a zero. Mutation provides a kind of “insurance policy” against such
fixation.

The reader may have noticed that the Schema Theorem given in Eq. (1.1) ap-
plies not only to schemas but to any subset of strings in the search space. The reason
for specifically focusing on schemas is that they (in particular, short, high-fitness
schemas) are a good description of the types of building blocks that are combined
effectively by single-point crossover. Thus, a belief underlying this formulation of
the GA is that schemas will be a good description of the relevant building blocks
of a good solution. GA researchers have defined other types of crossover operators
that deal with different types of building blocks and have analyzed the generalized
“schemas” that a given crossover operator effectively manipulates (e.g., Radcliffe”!
and Vose??).

2. GENETIC ALGORITHMS IN PROBLEM SOLVING

In the previous section some applications of GAs were listed, including applications
both for solving practical problems and for modeling natural evolutionary systems.
This section describes three projects in which the GA is used in problem solving.
These three projects each include different GA representations and techniques and
give a good flavor for the diversity of possible uses for GAs.

2.1 AUTOMATIC PROGRAMMING

Automatic programming—having computer programs automatically write com-
puter programs-—has a long history in the field of artificial intelligence, but auto-
matic programming methods have not had much success in producing the complex
and robust programs needed for real applications. John Koza of Stanford Univer-
sity has used a form of the GA to evolve computer programs to perform various
tasks?34% and claims that his method—“Genetic Programming” (GP)—has the
potential to produce programs of the necessary complexity and robustness. The
programs are expressed in the programming language Lisp. Programs in Lisp can
easily be expressed in the form of a “parse tree,” the object the GA will work on.

Genetic Algorithms 17

For example, consider a program to compute the area of a circle. In a programming
language such as FORTRAN, such a program might be:
PROGRAM AREA-QOF-CIRCLE
R = 45
PI = 3.1415
AREA = PI = (R = R)
PRINT AREA
END AREA-OF-CIRCLE

In Lisp, this program could be written as

(DEFUN AREA-OF-CIRCLE ()
(SETF R 45)
(SETF PI 3.1415)
(=« PI (* R R)))

(In Lisp, the value of the last expression in the program is automatically printed.)
Assuming we know PI and R, the important statement here is (* PI (* R R)), which
can be expressed as the parse tree shown in Figure 3. In Koza’s GP algorithm,
the population does not consist of bit strings but of such trees, and new genetic
operators are defined to work on them.

Each tree consists of functions and terminals. In the tree shown in Figure 3,
the multiplication operator * is a function that takes two arguments. PI and R
are terminals. Notice that the argument to a function can be the result of another
function, as in the expression above where one of the arguments to the top-level *
is (* RR).

Koza’s algorithm is:

1. Choose a set of possible functions and terminals for the program. The idea
behind GP is, of course, to evolve programs that are difficult to write and,
in general, one does not know ahead of time precisely which functions and
terminals will be used in a successful program. So the user of GP has to make
an intelligent guess as to a reasonable set of functions and terminals for the
problem at hand. For example, for the area-of-circle problem, the function set
might be {+, —, % /, \/} and the terminal set might be {PI, R, C, D} (where
C is the circle's circumference and D is its diameter).

2. Generate an initial population of random trees (programs) using the set of pos-
sible functions and terminals. These random trees must be syntactically correct
programs—that is, the number of branches extending from each function node
must equal the number of arguments taken by that function. Three programs
from a possible randomly generated initial population are displayed in Figure 4.
Notice that the randomly generated programs can be different sizes (different
numbers of nodes and levels in the trees). In principle a randomly generated
tree can be any size, but in practice Koza restricts the size of the initially
generated trees.

3. Calculate the fitness of each program in the population. The fitness of a program
is calculated by running it on a set of “training cases” —a set of inputs for which

1

18

Melanie Mitchell

the correct output is known. For the area-of-circle example, the training cases
might be a set of experimental observations in which the areas of a set of
circles were measured experimentally (assuming that the user did not know
the formula ahead of time). Another application might be to evolve a robot
program to navigate a maze; there the training cases might be a number of
mazes, and the desired output is a set of moves that takes the robot to the goal
of the maze. The fitness of a program is a function of the number of training
cases on which it performs correctly (some fitness functions might give partial
credit to a program for getting close to the correct output).

The randomly generated programs in the initial population are not likely to
perform well but, with a large enough population, some of them will perform
better than others by chance. This initial fitness differential provides a basis
for “natural selection” to get off the ground.

Apply reproduction, crossover, and mutation to the population. Reproduction
in GP is the same as in the simple GA described above, with the expected
number of copies of a program being its fitness divided by the average fitness
of the population. Crossover is performed by selecting pairs of parents from the
set of copies made under reproduction and allowing them to exchange subtrees.
Figure 5 displays one possible crossover. Here, a random point is chosen in
each parent (the top two trees) and the subtrees beneath those two points
are exchanged, to produce two offspring (the bottom two trees). Notice that
crossover allows the size of a program to increase or decrease.

FIGURE 3 Parse tree for
the Lisp expression for
PI*R2

Genetic Algorithms 19

R*[(PI*C)- VR] PL/{[(PI/Pl)/(PI/PI)]}

FIGURE 4 Three programs from a possible
randomly generated initial population for

the area-of-circle task. The expression
represented by each tree is printed beneath
R+(Vp *D) the tree.

Mutation might performed by choosing a random point in a tree and replacing
the subtree beneath that point by a randomly generated subtree. Koza generally
does not use a mutation operator in his applications.

20 Melanie Mitchell

Steps 3 and 4 are repeated for some number of generations.

It may seem difficult to believe that this procedure would ever result in a
program that would perform the desired task; the famous example of a monkey
randomly hitting the keys on a typewriter and producing the works of Shakespeare
comes to mind. But surprising as it might seem, the GP technique has succeeded
in evolving correct programs to solve a large number of specific problems in various
domains, including optimal control, planning, sequence induction, symbolic regres-
sion, image compression, robotics, and many others. One example (described in
detail in Koza®?) is the problem of block stacking. This is a common “microworld”
used to develop and test planning methods in artificial intelligence. The specific
problem to which GP was applied is illustrated in Figure 6. Here, the problem is to
find an algorithm that takes any initial configuration of blocks--some on the table,
some in a stack-——and places them in the stack in the correct order. Here the correct
order spells out the word “universal.”

For the terminals and functions for this problem, Koza used the set defined
by Nilsson.%¢ The terminals consisted of three sensors (available to a hypothetical
robot to be controlled by the resulting program):

m CS (“current stack™) returns the name of the top block of the stack. If the
stack is empty, this sensor returns NIL.

» TB (“top correct block”) returns the name of the topmost block on the stack
such that it and all blocks below it are in the correct order.

s NN (“next needed”) returns the block needed immediately above TB in the
goal “universal.” If no more blocks are needed, this sensor returns NIL.

In addition to these terminals, there were five functions available to GP:

s MS(x) (“move to stack”) moves block x to the top of the stack if x is on the
table.

s MT(z) (“move to table”) moves the top of the stack to the table if block x is
anywhere in the stack.

s DU(expressionl, expression?) (“do until”) executes expressionl until expres-
ston2 (a predicate) becomes satisfied (i.e., returns TRUE).

s NOT(expressionl) returns TRUE if expression! is NIL and returns NIL
otherwise.

s EQ(expressionl, expression?) returns TRUE if expressionl and expression2
are equal (i.e., return the same value).

The prograimns in the population are generated from these two sets. The fituess of
a given program is the number of sample environmental cases (initial configurations
of blocks) for which the stack is correct (i.e., spells “universal”) after the program
is run. Koza used 166 different environmental cases, carefully constructed to cover
the various classes of possible initial configurations (see Koza! for details).

Genetic Algorithms 21

FIGURE 5 An example of crossover in the Genetic Programming algorithm. The two
parents are shown at the top of the figure and the two offspring are shown below. The
crossover points are indicated by slashes in the parent trees.

22

Melanie Mitchell

R
S
A

L U | N v E

FIGURE 6 One initial state for the block-stacking problem. The goal is to find a plan
that will stack the blocks correctly (spelling “universal”) from any initial state. (Adapted
from Koza.3)

The initial population contained 300 randomly generated programs. Some ex-

amples (written in Lisp style rather than tree style) follow:

(EQ (MT CS) NN)

“Move the current top of stack to the table, and see if it is equal to the next
needed.” This clearly does not make any progress in sorting the blocks, and the
program'’s fitness is 0.

(MS TB)

“Move the top block on the stack to the stack.” This program effectively does
nothing, but doing nothing allows it to get one environmental case correct: the
case where all the blocks are already in the stack in the correct order. Thus
this program’s fitness is 1.

(EQ (MS NN) (EQ (MS NN) (MS NN)))

“Move the next needed block to the stack three times.” This program makes
some progress and gets four environmental cases right, giving it fitness 4. (Here
EQ serves merely as a control structure. Lisp executes the first expression.
then executes the second expression, and then compares their value. EQ thus
performs the desired task of executing the two expressions in the proper order --
we don’t actually care whether their values are equal.)

By generation 5, the population contains some much more successful programs.

The best one is:

(DU (MS NN) (NOT NN))

“Move the next needed block to the stack until no more blocks are needed.”
Here we have the basics of a reasonable plan. This works in all cases in which
the blocks on the stack are already in the correct order; the program moves the
remaining blocks on the table onto the stack in the correet order. There were
ten such cases in the total set of 166, so this programn’s fitness is 10. Notice that
this program uses a building block (MS NN) that was discovered in the first
generation and found to be useful there.

Genetic Algorithms 23

In generation 10 a completely correct program (fitness 166) was discovered:

s (EQ (DU (MT CS) (NOT CS)) (DU (MS NN) (NOT NN)))
This is an extension of the best program of generation 5. The program empties
the stack onto the table, and then moves the next needed block to the stack
until no more blocks are needed. GP thus discovered a plan that works in all
cases, although it is not very efficient. Koza*? discusses how to amend the fitness
function to produce a more efficient program to do this task.

Koza’s GP technique has produced some interesting and impressive results, but
there are some open questions about its capabilities. Does it work well because the
space of Lisp expressions is in some sense “dense” with correct programs for the
tasks Koza has tried? This was given as one reason for the success of the artificial
intelligence programs AM and Eurisko,*® which used Lisp expressions to discover
“interesting” conjectures in mathematics, such as the Goldbach conjecture (every
even number is the sum of two primes). Koza refutes this hypothesis about GP
by demonstrating how difficult it is to randomly generate a successful program
to perform some of the tasks for which GP evolves successful programs. However,
one could speculate that the space of Lisp expressions (with a given function and
terminal set) is dense with useful intermediate-size building blocks for the tasks on
which GP has been successful. The fact that GP is often extremely quick to find
solutions (e.g., within 10 generations using a population of 300) lends credence to
this hypothesis.

Some other questions are:

a Will the technique scale up to more complex problems for which larger programs
are needed?

a Will the technique work if the function and termiral sets are large?

s How many environmental cases are typically needed? In many of Koza's exam-
ples, the evolving programs are tested on all possible environmental cases. In
most real-world problems, such exhaustive (or even near-exhaustive) testing is
infeasible. It is important to know the extent to which GP produces programs
that generalize well after seeing only a small fraction of possible environmental
cases.

a To what extent can programs be optimized for correctness, size, and efficiency
at the same time?

The success of GP over a wide range of problems is encouraging and makes it well
worth the effort to address these questions in future research.

24 Melanie Mitchell

2.2 COMPLEX DATA ANALYSIS AND PREDICTION

One major impediment to scientific progress in many fields is the inability to make
sense of huge amounts of data that have been collected via experiment or computer
simulation. There has been much work on developing automatic methods for finding
significant and interesting patterns in complex data, or for forecasting the future
from such data, but in general this remains an open problem.

Norman Packard of the Prediction Company has developed a form of the GA to
address this problem® and has applied his method to a number of data analysis and
prediction problems, including work with Thomas Meyer on forecasting a particular
chaotic dynamical system.58

The general problem can be stated as follows. A series of observations from
some process (e.g., a physical system or a formal dynamical system) take the form

of a set of pairs:
{(j‘l’yl)i"‘7(fN7yN)})

where £ = (xy,...,z,) are independent variables and y is a dependent variable.
For example, in a visual pattern-recognition task, the independent variables might
be some set of features of the visual image (e.g., number of edges, number of ver-
tices, curvature of lines, etc.) and the dependent variable might be the category of
the visual image (e.g., “the letter ‘A””). Or in a time-series prediction task, the in-
dependent variables might be £ = (z(t,), z(t2),. .., z(t,)), representing the values
of a state variable at successive time steps, and the dependent variable might be
y = z(tn+k), representing the value of the state variable at some time in the future.
(In these examples there is only one dependent variable y, but a more general form
of the problem would allow any number of dependent variables.)

Packard used the GA to search through the space of sets of conditions on
the independent variables for sets of conditions that give good predictions for the
dependent variable. An individual in the GA population is a set of conditions such
as:

C= {(.’L‘) =eyVepVe)A(xs =d Vdy) Az = ey Vez)}.

This individual represents all the situations in which x, is equal to one of the values

¢, €3, Or ¢3, and x5 is equal to either dy or dj, and z¢ is equal to either e, or es.

Here c1, c3, c3, etc. are the values of some feature; they do not have to be numerical.

No requirements are made on the values of any of the other independent variables.
If the independent variables are numerical, a set of conditions might be

C={(CS.’L‘1SC’)/\(dSI5_<_d’)/\...}.

Such a condition set C specifies a particular subset of the data points. Packard’s goal
is to use a GA to search for condition sets that are good predictors of something—in
other words, to search for condition sets that specify subsets of data points whose
dependent-variable values are close to being uniform. In the character-recognition
example, if the GA found a condition set such that all the characters satisfying that

Genetic Algorithms 25

set are instances of the letter ‘A,’ then we might be confident to predict that some
new character satisfying those conditions is also an ‘A’

The fitness of each individual C is calculated by running all the data points
(% y') in the training set through C and, for each 7* that satisfies C, collecting the
corresponding y° After this has been done, a measurement is made of the uniformity
of the resulting set of y’s. For numerical y’s, Meyer and Packard used the following
fitness function:

Here o is the standard deviation of the set of y’s for data points satisfying C, oy is
the standard deviation of the distribution of y’s over the entire data set, N¢ is the
number of data points satisfying condition C, and « is a constant. The first term of
the fitness function measures the amount of information in the distribution of y's
for points satisfying C, and the second term is a penalty term for poor statistics—if
there is a small number of points satisfving C, then the first term is less reliable,
so C should have lower fitness. The ~onstant o can be adjusted for each particular
application.
Meyer and Packard usc t} . following version of the GA:

1. Initialize the populiution with a random set of C’s.

2. Calculate the fituess of each C by running all the data points through it (note
that this can be very computationally expensive!).

3. Rank the population by fitness.

4. Discard some fraction of the lower fitness individuals and replace them by new
C’s obtained by applying crossover and mutation to the remaining C's.

5. Go to step 2.

Meyer and Packard usg a form of crossover known in the GA literature as
“yniform crossover.”®3 This operator takes two C’s, and exchanges approximately
half the “genes” (conditions). That is, at each gene position in parent A and parent
B, a random decision is made whether that gene should go into offspring A or
offspring B. An example follows:

Parent A: {(3.2 <z <55)A(0.2< 13 <48)A(3.4< 19 <9.9)}
Parent B: {(6.5 <x32 <6.8)A(1.4<x4<48)A(1.2<x9<1.7)
A (4.8 < x16 <5.1)}
Offspring A: {(6.5 <x2 <6.8)A(1.4<x4 <48)A(34<129<99)}
Offspring B: {(3.2 <26 <55)A (0.2 <28 <4.8)A(1.2<x9 <1.7)
A (4.8 < x16 < 5.1)}

- m——— o

26 Melanie Mitchell

FIGURE 7 Plot of time series from Mackey-Glass system with 7 = 150. Time is plotted
on the horizontal axis and z(t) is plotted on the vertical axis. (Reprinted from Meyer
and Packard.5® Copyright ©) 1992 by T. P. Meyer.)

Offspring A '.as one gene from Parent A and two genes from Parent B. Offspring
B has two genes from Parent A and two genes from Parent B.
In addition to crossover, four different mutation operators are used:

® Add a new condition:
{(32 <26 <55)A(0.2 < x5 < 48)} — {(3.2 < 76 < 55) A (0.2 < 4
4.8)A (3.4 < xp <9.9)}
s Delete a condition:
{(32 <z < 55) A(0.2<xg < 48) AN(B4A<z9 < 9.9)} — {(3.2 < g
5.5) A (34 < x9 <9.9)}
® Broaden or shrink a range:
{(3.2 <z <5.5)A(0.2 <25 <4.8)} — {(3.9 <16 < 4.8)A(0.2 < 25 < 4.8)}
s Shift a range up or down:
{(32 <z <55)A(0.2 <25 < 4.8)} — {(3.2 < z6 < 55)A(1.2 < zg3 < 5.8)}

IA

A

Meyer and Packard applied this technique to the problem of finding “regions
of predictability” in time series generated by a chaotic dynamical system. The

particular system they used is defined by the Mackey-Glass equation®?:

dt _ az(t-7)
dt 1+ [z(t-1)° bx(t).

Here z(t) is the state variable, and a, b, ¢, and 7 are constants. A plot of the time
series from this system (with T set to 150) is given in Figure 7.

To form the data set, Meyer and Packard did the following: for each data point
i, the independent variables £* are 50 consecutive values of z(t) (one per second):

£ = [al, 2. 2ol

The dependent variable for data point i, 3/ is the state variable at a given time in
the future: y* = %, ,.. Each data point (z*,y*) is formed by iterating the Mackey-
Glass equation with a different initial condition, where an initial condition consists
of values for {x,_,,...,z0}.

Genetic Algorithms

(z25 < 1.330)

Cy = (z3s < 1.156)
(x4 < 1.311)

,.\
i
|

(35 < 1.090)

(24 > 0.992)
(.'1'45 > 0591)

219 < 0.967)

¢y = 4 e < 1.066)

(.1'2!, <]“0)
(> 1.304)

(g6 > 1.177)
(‘1'40 < 125())
(ryo > 1.070)

(g0 < 1.150)
(rq0 < 0.951)
{40 < 0.763)

(r22 < 1.049)
(.1‘33 > 0‘“())
(.Tq() < 0911)

> >

(196 > 1.163)
(249 > 1.262)

(1'31 > 1.127)
(z46 > 1.194)

(30 > 1.020)
(742 > 0.599)
(rs0 > 0.576)

(.‘1'26 > 0487

(.1‘41 > 0.654

> >

>

27

} —-y=0.18+0.014

} —y =0.27+0.019

} oy =1.22 4002

—y=1.3410.034

> > > >
> > > >

{)
((35 < 1.008)
(3'37 < 1331))
(v42 > 0.262))

(‘1'43 > 0();()) (.'1'49 < 0.814

FIGURE 8 The four best condition sets found by the GA for the Mackey-Glass system
with 7 = 150. (Adapted from Meyer and Packard.>8)

The results of running the GA using this data from the 7 = 150 time series with
t' = 150 are illustrated in Figures 8 and 9. Figure 8 gives the four best condition sets
found by the GA, and Figure 9 shows the four results of those condition sets. Each
of the four plots in Figure 9 shows the trajectories corresponding to data points
(&%, y*) that satisfied the condition set. The leftmost white region is the initial
50 time steps during which the data was taken. The vertical lines in that region
represent the various conditions on & given in the condition set. For example, in plot
a, the leftmost vertical line represents a condition on xz¢ (this set of trajectories
is plotted starting at this point), and the rightmost vertical line in that region
represents a condition on z49. The shaded region represents the period of time not
covered by &, and the rightmost vertical line represents the point at which the
observation was made. Notice that in all of these plots, the values of the y*'s fall into
a very narrow range, which means that the GA was successful in finding subsets of
the data for which it is possible to make highly accurate predictions. (Other results
along the same lines are reported in Meyer.%¢)

28 Melanie Mitchell

(b)

()

FIGURE 9 Resulits of the four best condition sets from Figure 8. Each plot shows
trajectories of data points that satisfied that condition set. The leftmost white region is
the initial 50 time steps during which data was taken. The vertical lines in that region
represent the various conditions on T given in the condition set. The vertical line at the
right-hand side represents the time at which the prediction is to be made. Note how the
trajectories narrow at that region, indicating that the GA has found conditions for good
predictability. (Reprinted from Meyer and Packard.5® Copyright © 1992 by T. P. Meyer.)

Genetic Algorithms 29

These results are very striking, but some questions immediately arise. First and
most important, are the results significant? That is, do the discovered conditions
yield correct predictions for data points outside the training set (i.e., the set of
data points used to calculate fitness) or do they merely describe chance statistical
fluctuations in the data that were learned by the GA? Meyer and Packard performed
a number of “out of sample” tests with data points outside the training set that
satisfied the evolved condition sets and found that the results were robust—the y*
values for these data points also tended to be in the narrow range.

Another question is: how exactly is the GA solving the problem? What are the
schemas that are being processed? What is the role of crossover in finding a good
solution? Uniform crossover of the type used here has very different properties than
single-point crossover, and its use makes it harder to figure out what schemas are
being recombined. Meyer found that turning crossover off and relying solely on the
four mutation operators did not have a large effect on the solution time or solution
quality®”; this brings up the question as to whether or not the GA is the best
method for this task. An interesting extension of this work would be to perform
control experiments in which the performance of the GA is compared with other
search methods such as hill climbing.

Yet another question is: to what extent are the results restricted by the fact
that only certain conditions are allowed (i.e., ones that are conjunctions of ranges
on independent variables)? Packard®® proposes a more general form for conditions
that also allows disjunctions (V’s); an example might be:

{[(82 <26 <5.5) V(1.1 <z <2.5)]N[0.2< x5 < 4.8}

Here we are given two non-overlapping choices for the conditions on zg. A
further generalization proposed by Packard would be to allow disjunctions between
sets of conditions.

A final question is: to what extent will this method succeed on other types
of prediction tasks? Packard®® proposes applying this method to tasks such as
weather prediction, financial-market prediction, speech recognition, and visual pat-
tern recognition. It is an open question to what extent this method will succeed on
such “real-world” prediction tasks.

2.3 NEURAL NETWORKS

Neural networks are becoming an increasingly popular approach to machine learn-
ing, and recently some efforts have been made to combine GAs and neural networks,
by using GAs to evolve aspects of neural networks.

30 Melanie Mitchell

corrections

"/

output pattern

weight
corrections

1

activation

input pattern

FIGURE 10 A schematic diagram of a simple teedforward neural network and the
learmning process by which weight values are adjusted.

In its simplest form (illustrated in Figure 10), a neural network is a collection
of connected units in which the connections are weighted, usually with real-valued
weights. The network is piresented with an input pattern on its input units (e.g.,
a set of numbers representing features of an image to be classified). Activation
spreads over the weighted connections according to some predefined method and
winds up as an activation pattern over the output units that encodes the network’s
“answer” to the input (e.g., a classification of the input pattern). In many applica-
tions, the network learns a correct mapping between input and output patterns via
a learning algorithm in which a set of inputs are presented to the network. After
each input has propagated through the network and an output has been produced,
the weights in the network are adjusted in order to reduce the difference between
the network’s output and the correct desired output. The most common weight ad-
justment method for feedforward networks is known as back-propagation.” (For an
overview of neural networks and their applications, the reader can consult Rumel-
hart and McClelland®>78 and Hertz, Krogh, and Palmer.3?)

There are many possible ways to apply GAs to neural networks. Some possible
aspects that can be evolved are:

- e

Genetic Algorithms 31

w the weights (and thresholds) in a fixed network;
s the network architecture; and
m the learning rule used by the network.

In this subsection, I will describe three different projects, each using a GA to evolve
one of these aspects.

EVOLVING WEIGHTS IN A FIXED NETWORK. David Montana and Lawrence Davis®3
took the first approach—evolving the weights and thresholds in a fixed network.
That is, Montana and Davis were using the GA instead of back-propagation as a
way of finding a good set of weights and thresholds. Several problems associated
with the back-propagation algorithm (including the tendency to get stuck at local
optima in weight space) often make it desirable to find alternative weight-training
schemes.

Montana and Davis were interested in using neural networks to classify under-
water sonic “lofargrams” (similar to spectrograms) into two classes: “interesting”
and “not interesting.” The overall goal is to “detect and reason about interesting
signals in the midst of the wide variety of acoustic noise and interference which
exist in the ocean.” The networks were to be trained from a database containing lo-
fargrams and classifications made by experts as to whether or not a given lofargram
is “interesting.” Each network had four input units representing four parameters
used by an expert system that performs the same classification. Each network had
one output unit and two layers of hidden units with seven and ten units respec-
tively. The networks were fully connected feedforward, meaning that each unit was
connected to every unit in the next higher layer. Thus there were a total of 108
weights on connections between units, and an additional 18 weights on connections
between the non-input units and a bias (threshold) unit—a total of 126 weights to
evolve.

The GA was used as follows. Each chromosome is a list (or “vector”) of 126
weights. Figure 11 shows (for a much smaller network) how the encoding was done:
the weights are read off the network in a fixed order and placed in a list. Notice
that, here, each “gene” in the chromosome is a real number rather than a bit.
To calculate the fitness of a given chromosome, the weights in the chromosome
are assigned to the links in the corresponding network, the network is run on the
training set (here 236 examples from the database of lofargrams), and the sum of
the squares of the errors (i.e., differences between the desired output and the actual
output) is returned. Here, low error means high fitness.

32 Melanie Mitchell

FIGURE 11 lllustration
of Montana and Davis’
encoding of network
weights into a list

that serves as a
“chromosome” for the
GA.

(3 -4 12,8 -3 -1 7 -63) (3 -4 12 22 -3 14 7 -48)

FIGURE 12 lllustration of Montana and Davis’ mutation method. The weights on
incoming links to the right-hand node in the middle layer (underlined weights) are
mutated.

Genetic Algorithms 33

Parent 1

(3 -412 8 -3 -1 .7 -63) (7 -9 13 4 18 -2 21 .5)

(7 -9 12 .4 -3 -2 7 .5

FIGURE 13 lllustration of Montana and Davis’ crossover method. The offspring is
created as follows: for each non-input node, a parent is chosen at random and the
weights on the incoming links to that node are copied from the chosen parent.

An initial population of 50 weight vectors was chosen randomly, according to
the probability distribution given by e~!%l. (Each weight is between -1.0 and +1.0.)
Montana and Davis tried a number of different genetic operators in various exper-
iments. The mutation and crossover operators they used for their comparison of
the GA with back-propagation are illustrated in Figures 12 and 13. The mutation
operator selects n non-input units and, for each incoming link, adds a random value
to the weight on the link. In their experiments, n = 2 and the random values were
selected between —1.0 and +1.0 from the e~!*! distribution. The crossover operator

34 Melanie Mitchell

Genetic Algorithm

= = - - Backpropagation FIGURE 14 Montana and
Davis’ results comparing the
performance of the GA with
back-propagation. The figure
plots the best evaluation
(lower is better) at a given
iteration. (Reprinted from
Montana and Davis®3 by
permission of the authors.
Copyright ©International
Joint Conference on Attificial
Intelligence, Proceedings
of the International Joint
Conference on Artificial
Intelligence, Morgan
Kaufmann, 1989. Copies
of this and other |JCAI
0.06 4 4 —t -t 3 proceedings are available
from Morgan Kaufmann

0 2¢403 4e403 6e403 8e+03 let0d) opors inc., 2929

. Campus Drive, San Mateo,
Iterations CA 94403.)

0.18

0.15 1

0.12 1

Best Evaluation

0.09 -

takes two parent weight vectors and, for each non-input unit in the offspring vector,
selects one of the parents at random and copies the weights on the incoming links
from that parent to the offspring.

The performance of a GA using these operators was compared with the per-
formance of a back-propagation algorithm. The GA had a population of 50 weight
vectors, and a selection method was used in which the population was ranked by
fitness and the rankings (rather than absolute fitness) determined the probability
of allowing a given weight vector to reproduce (either via direct copying, crossover
with another weight vector, or mutation). The GA was allowed to run for 200
generations (or 10,000 network evaluations). The back-propagation algorithm was
allowed to run for 5,000 iterations, where one iteration is a complete cycle through
the training data. Montana and Davis reasoned that two network evaluations under
the GA are equivalent to one back-propagation iteration, since back-propagation
on a given training example consists of two parts—the forward propagation of ac-
tivation (and the calculation of errors at the output units) and the backward error
propagation (and adjusting of the weights). The GA performs only the first part,
and since the second part requires more computation, one GA evaluation takes less
than half the computation of a single back-propagation iteration.

Genetic Algorithms 35

from unit: 1 2 3 4 5 bias
to unit: 1 0000 0 —= 000000 ()
2 00000 0 —————e 000000
3 LL0O0OO L —m———————e 11000} o
4 LLO0O0O L 110001) @
5 0O0LLO L 001101 »‘
S R B B

O @

000000000000110001110001001101

FIGURE 15 An illustration of Miller, Todd, and Hegde’s representation scheme. Each
entry in the matrix represents the type of connection on the link between the from unit
(column) and the to unit (row). The rows of the matrix are strung together to make
the bit-string encoding of the network, given at the bottom of the figure. The resulting
network is shown at the right. (Reprinted from Miller et al.50 by permission of the
authors.)

The results of the comparison are displayed in Figure 14. Here one back-
propagation iteration is plotted for every two GA evaluations. The z-axis gives
the number of iterations, and the y-axis gives the best evaluation (lowest sum of
squares of errors) found by that time. It can be seen that the GA significantly
outperforms back-propagation on this task, obtaining better weight vectors more
quickly. (Montana and Davis also presented other experimental results not discussed
here. See Montana and Davis®® for details.)

This experiment shows that in some situations, the GA is a better training
method for networks than is simple back-propagation. This does not mean that
the GA will outperform back-propagation in all cases. It is also possible that en-
hancements of back-propagation might help it overcome some of the problems that
prevented it from performing as well as the GA in this experiment. More research
needs to be done to characterize the problems for which the GA will outperform
back-propagation for discovering weight vectors.

EVOLVING NETWORK ARCHITECTURES. The second approach to applying GAs to
neural networks—evolving the network architecture—is illustrated in work done
by Geoffrey Miller, Peter Todd, and Shailesh Hegde (MT&H).60 Here, “network
architecture” refers to structural aspects of the network: the number of units in
the network and their topological arrangement in terms of interconnections. The
neural network community has produced many heuristics for designing network
architecture (e.g., “more hidden units are required for more difficult problems”),
but there is no sure recipe to follow in designing the best architecture for a given
problem. MT&H propose that the GA is a promising method to automate the
design procedure.

Of course, the first problem is to decide on a scheme for representing network
architectures as chromosomes. MT&H restricted their initial project to feedforward

36 Melanie Mitchell

networks with a fixed number of units, for which the GA will evolve the connection
topology. MT&H used the representation scheme illustrated in Figure 15. The con-
nection topology is represented by a 2 x 2 matrix, in which each entry represents
the type of connection from the “from unit” to the “to unit.” Here there are only
two possible elements: “0,” meaning no connection, and “L,” meaning a “learn-
able” connection—i.e., one for which the weight can be changed through learning.
Figure 15 also shows how the connection matrix is transformed into a bit-string
chromosome for the GA (“0” corresponds to 0 and “L” to 1) and how the bit string
is decoded into a network (the connections from a bias unit to units 3, 4, and 5
are not shown). Connections that were specified to be learnable are initialized with
small random weights. Since MT&H currently restrict these networks to be feed-
forward, any connections to input units or feedback connections specified in the
chromosome are ignored.

MT&H used a simple fitness-proportionate reproduction method and the usual
mutation operator (bits in the string were flipped with some low probability). Their
crossover operator chose the bits corresponding to a random row in the matrix, and
those bits (representing the entire row) were swapped between the two parents to
produce the two offspring. The intuition behind that operator is similar to that
behind Montana and Davis’ crossover operator—each row represents all the incom-
ing connections to a single unit, and this set is thought to be a functional building
block of the network.

The fitness of a chromosome is calculated in the same way as in Montana and
Davis’ project: for a given problem, the network is trained on a training set for
a certain number of epochs (one “epoch” is one pass through the training set),
using back-propagation to modify the weights. The fitness of the chromosome is a
function of the sum of the squares of the errors on the training set at the last epoch.
Again, low error translates to high fitness.

MT&H tried their GA on three tasks (XOR, a “four quadrant” problem, and
pattern copying) that are relatively easy for neural networks to learn. The networks
had different numbers of units for different tasks (ranging from five units for the
XOR task to 20 units for the pattern-copying task); the goal was to see if the
GA could discover a good connection topology for each task. For each run the
population size was 50, the crossover rate was 0.6 (probability for a given pair of
parents to cross over), and the bitwise mutation rate was 0.005. In all three tasks,
the GA was easily able to find networks that readily learned to map inputs to
outputs over the training set with little error. However, the three tasks were too
easy to be a rigorous test of this method—it remains to be seen if this method can
scale up to more complex tasks that require much larger networks with many more
interconnections.

Genetic Algorithms 37

EVOLVING A LEARNING RULE. David Chalmers!? took the idea of applying GAs to
neural networks one step further and applied GAs to the task of evolving a good
learning rule for neural networks. Chalmers limited his initial study to single-layer,
fully connected feedforward networks. A learning rule is used during the training
procedure for modifying network weights in response to the network’s performance
on the training data. At each training cycle, one training pair is given to the net-
work, which then produces an output. Assuming a single-layer, fully connected
feedforward network, a learning rule might use the following local information for
a given training cycle to modify the weight on the link from input unit i to output
unit j:

a;: the activation of input unit i;

o;: the activation of output unit j;

tj: the training signal (i.e., correct activation) on output unit j; and

w;j: the current weight on the link from i to j.

The amount to modify the weight w;; is a function of these values:
Aw,-j = F(ai,oj, t]‘, wij)-

The chromosomes in the GA population encode such functions.

Chalmers made the assumption that the learning rule should be a linear func-
tion of these variables and all their pairwise products. That is, the general form of
the learning rule is:

Aw;; = ko(k1wij + ka2a; + k3o; + katj + kswija; + kewijo; + kqwijt; + ksa,o;
+ kgaitj + kmojtj).

(Here, ko is a scale parameter, which affects the learning rate of a network.) The
assumption about the form of the learning rule came in part from the fact that a
known good learning rule for such networks—the “Widrow-Hoff” or “delta” rule—
has this form: Aw;; = n(tjo; — a;0;).™ (Here, 7 is a constant representing the
learning rate.) One goal of this work was to see if the GA could evolve a rule that
is as good as the delta rule.

The task of the GA is to evolve values for the k;'s. The chromosome encoding
for the set of k;’s is illustrated in Figure 16. The scale parameter kg is encoded as
five bits, with the zeroth bit encoding the sign (1 encoding + and 0 encoding -),
and the first through fourth bits encoding an integer n: ko = 0 if n = 0; otherwise,
|ko| = 2% Thus ko can take on the values 0, +1/256, +£1/128, ..., +32, +64. The
other coefficients k; are encoded by three bits each, with the zeroth bit encoding
the sign and the first and second bits encoding an integer n. Fori =1...10, k, =0
if n = 0; otherwise, [k;| = 2"~ 1

It is known that single-layer networks can learn only input-output mappings
that are linearly separable.”® As an “environment” for the evolving learning rules,

38 Melanie Mitchel!

Genome encoding:
ko kq ky k3
10010 001 000 110

ko encoded by 5 bits:

sign
integer n

kol = 2772

Other k’s encoded by 3 bits each:

sign
\ integer n
b, b, b,
n-1

FIGURE 16 lllustration of the method for encoding the k's in Chalmers' system,

Chalmers used 30 different linearly separable mappings to be learned via the learn-
ing rules. The mappings always had a single output unit and between two and seven
input units.

The fitness of each chromosome (learning rule) was determined as follows. A
subset of 20 mappings was selected from the full set of 30 mappings and, for each
mapping, 12 training examples were selected. For each of these mappings, a network

Genetic Algorithms 39

was created with the appropriate number of input units for the given mapping (each
network had one output unit). The network’s weights were initialized randomly. The
network was run on the training set for some number of epochs (typically 10), using
the learning rule specified by the chromosyme. The performance of the learning
rule on a given mapping was a function of the network’s error on the training set,
with low error meaning high performance. The overall fitness of the learning rule
was a function of the average error of the 20 networks over the chosen subset of
20 mappings—low average error translated to high fitness. This fitness was then
transformed to be a percentage, where a high percentage means high fitness.

Using this fitness measure, the GA was run on a population of 40 learning
rules, with two-point crossover (crossover was performed at two points along the
chromosome rather than at one point) and standard mutation. The crossover rate
(probability of two parents crossing over) was 0.8 and the bitwise mutation rate
was 0.01.

The results of a run of the GA were that, over 1000 generations, the fitness
of the best learning rules in the population rose from between 40%-60% in the
initial generation (indicating no significant learning ability) to between 80% and
98%, with a mean (over several runs) of about 92%. The fitness of the delta rule
is around 98% and, on one out of ten runs, the GA discovered a successful form of
this rule with 98% fitness. (On three other runs, it discovered slight variations of
this rule with lower fitness.)

These results show that, given a somewhat constrained representation, the GA
is able to evolve a successful learning rule for simple single-layer networks. To what
extent this method will be successful in finding learning rules for more complex
networks (including networks with hidden units) remains an open question, but
these results are a first step in that direction. Chalmers points out that it is unlikely
that evolutionary methods will discover learning methods that are more powerful
than back-propagation, but speculates that the GA might be a powerful method for
discovering learning rules for unsupervised learning paradigms (e.g., reinforcement
learning) or for new classes of network architectures (e.g., recurrent networks).

Chalmers performed a second interesting study in which he asked the question:
How much diversity in learning tasks is needed to produce a general learning rule?
That is, to what extent were the learning rules that evolved effective only on the
specific environment of the given 20 mappings and to what extent were they more
general? This is similar to the issues brought up in Axelrod’s Prisoner’s Dilemma
study described earlier, in which the initial experiment yielded rules that were
specifically adapted to a fixed environment of strategies and in which more generally
successful strategies evolved only in a more diverse environment (the environment
made up of the other evolving strategies).

To study this issue, Chalmers first measured the generality of the best rules
evolved in the set of ten runs by testing each one on the ten mappings that had
not been used in the fitness calculation for that rule. The mean fitness of the best

40 Melanie Mitchell

100
90
J
- 80 4
o
s
F
70 - —0— Evolutionary Fitness
—&—— Test Fitness
60 -
]
50 v T - T v —
0 10 20 30

Number of Tasks

FIGURE 17 Results of Chalmers’ experiments testing the effect of diversity of
environment on generalization ability. The plot gives the evolutionary fitness and
test fitness as a function of the number of tasks in the environment. (Reprinted from
Chalmers!? by permission of the author.)

rules on the original mappings was 92%, and Chalmers found that the mean fitness
of these rules on the test set was 91.9%, indicating that the environment of 20
mappings was sufficiently diverse for the GA to evolve general rules.

Chalmers then looked at the question of how diverse the environment has to be
to produce general rules. He repeated the original experiment, varying the number
of mappings in each original environment between 1 and 20. A rule’s evolutionary
fitness is the fitness obtained by testing a rule on its original environment. A rule'’s
test fitness is the fitness obtained by testing a rule on ten additional tasks not in the
original environment. Chalmers then measured these two quantities as a function of
the number of tasks in the original environment. The results are shown in Figure 17.
The two curves are the mean evolutionary fitness and the mean test fitness for
rules that were tested in an environment with the given number of tasks. This
plot shows that while the evolutionary fitness stays roughly constant for different
numbers of environmental tasks, the test fitness increases sharply with the number
of tasks, leveling off somewhere between 10 and 20 tasks. The conclusion is that

Genetic Algorithms 41

the evolution of a general learning rule requires a sufficiently diverse environment
of tasks although, in this case of simple single-layer networks, the necessary degree
of diversity is fairly small.

3. GENETIC ALGORITHMS IN SCIENTIFIC MODELS

In *his section I describe two modeling projects, one project on modeling the in-
teraction between evolution and learning, and a related project in which a simple
model of culture is added to the original model.

3.1 MODELING THE INTERACTION BETWEEN LEARNING AND
EVOLUTION

Many people have drawn analogies between learning and evolution as two adap-
tive processes—one taking place during the lifetime of an organism, and the other
taking place over the evolutionary history of life on Earth. A major question in
evolutionary theory and in psychology is: to what extent do these processes in-
teract? In particular, can learning that occurs over the course of an individual’s
lifetime guide the evolution of that individual’s species to any extent? The famous
(or infamous) Lamarckian hypothesis states that traits acquired during the life-
time of an organism can be transmitted genetically to the organism’s offspring.
Lamarck’s hypothesis is generally interpreted to refer to acquired physical traits
(such as physical defects due to environmental toxins), but something learned dur-
ing an organism’s lifetime also can be thought of as a type of acquired trait. Thus,
according to Lamarck, learning might guide evolution directly. However, because of
overwhelming evidence against it, the Lamarckian hypothesis has been rejected by
virtually all biologists; in addition, it is very hard to imagine a direct mechanism
for “reverse transcription” of acquired traits into a genetic code.

Does this mean that learning can have no effect on evolution? In spite of the
rejection of Lamarckianism, the (perhaps surprising) answer seems to be that learn-
ing can indeed have significant effects on evolution, though in less direct ways than
Lamarck proposed. One proposal of a mechanism by which learning affects evolution
is due to J. M. Baldwin, and is known as the “Baldwin Effect.”® (Similar mecha-
nisms were proposed by Lloyd Morgan®! and Waddington.8¢) Baldwin pointed out
that if learning helps survival, then organisms best able to learn will have the most
offspring, thus increasing the frequency of the genes responsible for learniry. And
if the environment remains relatively fixed so that the best things to learn remain
constant, then this can lead, via selection, to a genetic encoding of a trait that
originally had to be learned.>® For example, an organism that has the capacity to
learn that a particular plant is poisonous will be more likely to survive (by learning
not to eat the plant) than organisms that are unable to learn this information,

42 Melanie Mitchell

and thus will be more likely to produce offspring that also have this learning ca-
pacity. Evolutionary variation will have a chance to work on this line of offspring,
allowing for the possibility that the trait—a oiding the poisonous plant—will be
discovered genetically rather than learned anew each generation. Having the de-
sired behavior encoded genetically would give an organism a selective advantage
over organisms that were merely able to learn the desired behavior during their
lifetimes, because learning a behavior is generally a less robust process than de-
veloping a genetically encoded behavior. Too many unexpected things could get in
the way of learning during an organism’s lifetime. In short, the capacity to acquire
a certain desired trait allows the learning organism to survive preferentially, thus
giving genetic variation the possibility to independently discover the desired trait.
Without such learning, the likelihood of survival—and thus the opportunity for ge-
netic discovery—decreases. In this indirect way, learning can guide evolution, even
if what is learned cannot be transmitted genetically.

Some computer scientists and computational biologists have constructed com-
puter models that explore issues related to the interaction between learning and
evolution (e.g., Hinton and Nowlan,3* Belew,” Nolfi et al.,®” Fontanari and Meir,°
Ackley and Littman,! and Parisi et al.”®). In this section I describe one model con-
structed by Geoffrey Hinton and Steven Nowlan and an extension constructed by
Richard Belew.

Hinton and Nowlan used the GA to construct a computer model of the Baldwin
effect.34 Their goal was to empirically demonstrate this effect and to measure its
magnitude, using the simplest possible model. An extremely simple neural-network
learning algorithm modeled learning, and the GA played the role of evolution, evolv-
ing a population of neural networks with varying learning capabilities. In Hinton
and Nowlan’s model, each individual is a neural network with 20 potential con-
nections. Each connection can have one of three values: “present,” “absent,” and
“learnable.” These are specified by “1,” “0,” and “?,” respectively, where each “?”
connection can be set during learning to either 1 or 0. There is only one correct
setting for the connections (i.e., only one correct set of 1's and 0’s). The problem
to be solved (the learning goal) is for each network to find this single correct set of
connections. This will not be possible for those networks that have incorrect fixed
connections (e.g., a 1 where there should be a 0), but those networks that have
correct settings in all places except where there are ?’s have the capacity to learn
the correct settings.

Hinton and Nowlan used the simplest possible “learning” method: random
guessing. On each learning trial, a network simply guesses a 1 or 0 at random
for each of its learnable connections.

Genetic Algorithms 43

fitness

combinations of alleles

FIGURE 18 Ilustration of the fitness landscape for Hinton and Nowlan's search
problem. (Adapted from Hinton and Nowlan®*; copyright (©) 1987 by Complex Systems
and reprinted by permission.)

This is, of course, a “needle in a haystack™ search problem, since there is only
one correct setting in a space of 220 possibilities.!!l The fitness landscape for this
problem is illustrated in Figure 18—the single spike represents the single correct
connection setting. Introducing the ability to learn changes the shape of this land-
scape, as shown in Figure 19. Here the spike is smoothed out into a “zone of
increased fitness,” within which it is possible to learn the correct connections.

For the GA, each network is represented by a string of length 20 consisting
of the U’s, 0’s, and ?’s making up the settings on the network’s connections. The
initial population consists of 1,000 individuals, generated at random but with each
individual having on average 25% 0's, 25% 1’s, and 50% ?'s. The fitness of an in-
dividual is calculated as follows. Each individual is given 1,000 learning trials—
on each learning trial, the individual tries a random combination of settings for

(1T he problem as stated has little to do with the usual notions of neural-network learning; Hinton
and Nowlan presented this problem in terms of neural networks so as to keep in mind the possibility
of extending the example to more standard learning tasks and methods.

44 Melanie Mitchell

™ zone of increased fitness

fitness

combinations of alleles

FIGURE 19 With the possibility of learning, the fitness landscape for Hinton and
Nowlan’s search problem is smoother, with a zone of increased fitness. (Adapted
from Hinton and Nowlan34; copyright © 1987 by Complex Systems and reprinted by
permission.)

the ?’s. The fitness is a function of the number of trials needed to find the correct

solution: 19
n
it _ 19n
Fitness = 1 + 1600°

where n is the number of trials (out of 1000) left after the correct solution has
been found. Thus an individual that already has all its connections set correctly
would have fitness 20, and an individual that never finds the correct solution would
have fitness 1. Hence, a tradeoff exists between efficiency and flexibility: having
many ?’s means that, on average, many guesses are needed to arrive at the correct
answer, but the more connections that are fixed, the more likely it is that one or
more of them will be fixed incorrectly, meaning that there is no possibility to find
the correct answer.

Hinton and Nowlan’s GA is similar to the simple GA described in subsection 1.3.
An individual is selected to be a parent with probability proportional to its fitness,
and can be selected more than once. The next generation is created by 1,000 single-
point crossovers between pairs of parents. No mutation occurs. An individual’s
chromosome is, of course, not affected by the learning that takes place during its
lifetime—parents pass on their original alleles to their offspring.

Genetic Algorithms 45

20 1

18}

0-0
16 + /O'
144 /

124

o
o
o
=
.

10 +

8-.

? [)
I.,
5 -* ,. O- P-250
[]
.« 4 4 - P.1000
el *- P.4000
2+ '.o’
0-0’..
0 05:0:0:00°05-00-0-0-00-0-00-0. 0000 REXL Ly iyt

1 3 5§ 7 9 $11131517192123 2527 293133353739 41434547 49

w3 ~"Tm

Generations

FIGURE 20 Mean fitness versus generations for one run of the GA on each of three
population sizes. The solid line gives the results for population size 1000, the size used
in Hinton and Nowlan's experiments. These plots are from a replication by Belew.”
(Reprinted from Belew?; copyright © 1990 by Complex Systems and reprinted by
permission.)

Hinton and Nowlan ran the GA for 50 generations. A plot of the mean fitness
of the population versus generation for one run on each of three population sizes
is given in Figure 20. (This plot is from a replication of Hinton and Nowlan’s ex-
periments performed by Belew.”) The solid curve gives the results for population
size 1000, the size used in Hinton and Nowlan’s experiments. This plot shows that
learning during an individual’s “lifetime” indeed guides evolution by allowing the
population fitness to increase. This increase in fitness is due to a Baldwin-like effect:
those individuals that are able to efficiently learn the task tend to be selected to
reproduce, and crossovers among these individuals tend to increase the number of
correctly fixed alleles, increasing the learning efficiency of the offspring. With learn-
ing, evolution could discover individuals with all their connections fixed correctly
(and such individuals were discovered in these experiments). Without learning, the
evolutionary search never discovered such an individual.

46 Melanie Mitchell

o

- — - Incorrect Alleles
------- Correct Alieles
Undecided Alleles

o
o

o
»

o
o

Relative Frequency of Aliele
[o]
~

[=]
(4]

0.4}
O..'.lL
..... PR .:.\
0.2} .
\
o.1¢ \
\
o.o A - e A A —d
0 10 20 30 40 50

Generations

FIGURE 21 Relative frequencies of correct, incorrect, and undecided (i.e., “?”) alleles
in the population plotted over 50 generations. (Reprinted from Hinton and Nowlan34;
copyright © 1990 by Complex Systems and reprinted by permission.)

Figure 21 shows the relative frequencies of the correct, incorrect, and undecided
(i.e., “7”) alleles in the population plotted over 50 generations. As can be seen, over
time the frequency of fixed correct connections increases and the frequency of fixed
incorrect connections decreases.

On inspection of Figure 21, one question immediately comes up: why does the
frequency of undecided alleles stay so high? Hinton and Nowlan answer that there
is not much selective pressure to fix all the undecided alleles, since individuals
with a small number of ?’s can learn the correct answer in a small number of
learning trials. If the selection pressure were increased, then the Baldwin effect
would be stronger. Figure 22 shows these same results over a much-extended run
(these results come from Belew’s replication and extension of Hinton and Nowlan’s
original experiments’). This plot shows that the frequency of 7’s goes down to about
30%. It would go down to zero given enough time but, under this selection regime,
the convergence is extremely slow.

Genetic Algorithms 47
1
0.9
A 0.8
: 0.74...-...co...o.-o....o-o-oo-to-o.o-o-o-o04040-0...0-o-ooa-o‘o-too-o
e el - e
0.6
|e ~— Undefined
0.5 - Correct
4 [
a 0.4 ©- Incorect
t
i 0.3
Q
s

0.2

o
E
[} Q*0-0-0-0-0-0-C0-0-00-00-0-0-0-0-00-0:0-0: 00 0000000000000 0 0-0-0-00-0000-0
] 100 200 300 400 500
Generations

FIGURE 22 Relative frequencies of correct, incorrect, and undecided (i.e., “?") alleles
in the population plotted over 500 generations, from Belew’s replication of Hinton

and Nowlan's experiments. (Reprinted from Belew”; copyright © 1990 by Complex
Systems and reprinted by permission.)

In short, learning allows genetically coded partial solutions to get partial credit,
rather than the all-or-nothing reward that an organism would get without learning.
A common argument for the benefits of learning is that learning makes it possible
to deal with genetically unpredictable aspects of the environment (e.g., aspects that
change too quickly for evolution to keep up). While this is clearly one benefit of
learning, the Baldwin effect is different: the Baldwin effect says that learning helps
organisms adapt to genetically predictable (but difficult) aspects of the environ-
ment, and that learning allows these adaptations to eventually become genetically
encoded. Thus the Baldwin effect is important only on fitness landscapes that are
hard to search by evolution alone, such as the extreme example given by Hinton
and Nowlan.

The “learning” mechanism used in Hinton and Nowlan's experiments—random
guessing—is, of course, completely unrealistic as a model of learning. However,
their goal was to keep the model as simple as possible, without compromising the
model’s generality too much. Hinton and Nowlan point out that “a more sophisti-
cated learning procedure only strengthens the argument for the importance of the
Baldwin effect” (see Hinton and Nowlan,34 p. 500). This is true insofar as a more so-
phisticated learning procedure would further broaden the “zone of increased fitness”

48 Melanie Mitchell

shown in Figure 19. However, if the learning procedure were too sophisticated—
that is, if learning the necessary trait were too easy—then there would be little
selection pressure for evolution to move from the ability to learn a trait to a genetic
hardwiring of that trait. Such tradeoffs occur in evolution and can be seen even
in Hinton and Nowlan’s simple model. Computer simulations such as theirs can
help us to understand and to measure the details of such tradeoffs, as well as other
details of subtle processes such as the Baldwin effect.

3.2 ADDING CULTURE

Belew” carried out a careful replication and analysis of Hinton and Nowlan’s model
of learning and evolution and also extended the model to incorporate a third fac-
tor, culture. He defined culture as an “adaptive system that allows the hard-won
knowledge learned by an individual to improve the evolutionary fitness of other
conspecifics (i.e., members of the same species) via nongenetic informational path-
ways.” Belew’s models of culture were, like Hinton and Nowlan’s model of learning,
extremely simple; these models are not meant to be realistic in their details but
rather to be first steps in assessing the effects of the interaction among learning,
evolution, and culture.

In his first experiment, Belew made one addition to Hinton and Nowlan’s model:
an offspring from a successful parent (one who has found the correct solution within
the allotted number of learning trials) is given a “cultural advantage” (CA). This
cultural advantage gives the offspring a better than 0.5 chance of guessing the
correct values of learnable connections. In most of Belew’s simulations, CA = 0.1,
which means that the offspring of a succcssful parent has a 0.6 chance of guessing
the correct value for any learnable connection.

The results of adding this form of “culture” to the model are shown in Fig-
ure 23, where plots (for a single, typical run) of the mean population fitness versus
generation with and without CA are shown. The population fitness with CA = 0.1
rises much more quickly than that without CA, but does not get as high. This is
because a culturally advantaged individual with many learnable connections (?’s)
has a much better chance of being successful (guessing the right answer)-—the more
effective learning procedure (guessing plus CA) serves to broaden the “zone of in-
creased fitness” shown in Figure 19. Culturally advantaged individuals thus tend to
reproduce more quickly and, via crossover, spread ?’s in the population, leading to
worse average performance. In the model with CA, the population tends to converge
to a suboptimal solution (an individual with a relatively large number of 7’s).

To counter this convergence, Belew introduced a small probability of mutation
into the GA (recall that Hinton and Nowlan’s GA had no mutation). The results
are shown in Figure 24. The four curves give (in the order given in the plot’s key)
the original results with no mutation and no CA, the results with no mutation but

Genetic Algorithms

20

18

16

14

12

10

wueen~—mxq

-~ Base
8- With CA {0.1)

2 +

v
0‘—,—..—..

1 2 3 4 5 6 7 8 9 10111213141518171819202122232425
Generation

3 I Y] i
¥ 1] 1 L L4 L2

]
T 1

FIGURE 23 Mean population fitness versus generation with and without “cultural
advantage" (CA). Each piot is for a single, typical run from Belew's experiments.
(Reprinted from Belew?; copyright 1990 by Complex Systems and reprinted by
permission.)

with CA = 0.1, the results with no CA but with a mutation probability of 0.001
per bit, and the results with both CA and mutation. It can be seen that the model
with both CA and mutation retains the advantages of CA alone and avoids the
disadvantages.

Belew carried out a third experiment, in which he studied how culture helps a
system to deal with a changing environment. The environment here is the specific
correct connection settings. Belew changed the environment by varying several of
the bits in that correct solution every 25 generations. He found that the original
model (with no mutation or CA) was not able to adapt to these changes in the
environment; the population converged on certain alleles that were correct during
the first 25 generations and was not able to modify these when the environment
changed. Introducing a small probability of mutation into the original model allowed
the population to adapt to changes, but the adaptation process was relatively slow.
On the other hand, introducing cultural advantage with mutation allowed the popu-
lation to adapt very quickly to changes. Cultural advantage allowed the population

50 Melanie Mitchell

to stay flexible (i.e., retain more learnable connections) so it could adapt to envi-
ronmental changes, while mutation prevented a too-fast convergence to many ?’s
and thus kept the mean fitness of the population high.

Belew also experimented with a different model of culture—a “broadcast”
model—which will not be described here.

Belew’s model of cultural advantage is, of course, much too simple to be realistic
but, even in its simplicity, it captures something about how culture interacts with
evolution and learning. These simulations are a first step in using abstract computer
models to help us to understand these complex interactions. Belew’s results show
two advantages for culture: it allows faster convergence on a solution and it allows
robustness in the face of a changing environment.

20 T

18 -+
r—
,.-—l-—"‘.—"'"“"':
16 + a—a—2>" o~
/oao
14 1 [} .
) ~
MRER : o—a G0N e
t @ /
n 101 / b
] L)
: eq /)
s / — Base
6T 8- Cult(0.1;
o o uld(0. 1
PRm § / ° / ©- Mute(10-3)
.-
2 + . / d goth
) /. o/
0 BB N 8L g a0 W — O — Qe G O ————+— . g |
1 2 3 4 5 8 7 8 910111213141516171319202122232425

Generatson

FIGURE 24 Mean population fitness versus generation with and without CA, and with
and without CA with a small probability of mutation added. Each plot is for a single,
typical run from Belew's experiments. (Reprinted from Belew”; copyright © 1990 by
Complex Systems and reprinted by permission.)

Genetic Algorithms 51

4. THEORETICAL FOUNDATIONS OF GENETIC ALGORITHMS

As GAs become more and more widely used for practical problem solving and
for scientific modeling, increasing emphasis has been put on understanding the
theoretical foundations of this class of algorithms. Some major questions in this
area are:

m What are the laws describing the behavior of schemas in GAs?

s How can we characterize the types of fitness landscapes on which the GA is
likely to perform well?

s What does it mean for a GA to “perform well”? That is, what is the GA good
at doing?

s How can we characterize the types of fitness landscapes on which the GA out-
performs other search methods, e.g., hill climbing?

The first question above is answered in part by the Schema Theorem. As was
described in subsection 1.6, the Schema Theorem states that those schemas whose
average fitness remains above the population mean will receive exponentially in-
creasing numbers of samples over time. This idea is related to the solution of the
two-armed bandit problem discussed in Holland.3® The two-armed bandit problem
asks: Given a slot machine with two arms, each with an unknown average pay-
off rate, what strategy of dividing one’s play between the two arms is optimal for
making a profit? The solution states that the optimal strategy is to be willing at
all times to sample either arm, but with probabilities whose ratio diverges increas-
ingly fast as time progresses. In particular, as more and more information is gained
through sampling, the optimal strategy is to exponentially increase the probabil-
ity of sampling the better-seeming arm relative to the probability of sampling the
worse-seeming arm. (One never knows with absolute certainty which of the two ac-
tually is the better arm, since all information gained is merely statistical evidence.)
The possible schemas in a search space can be likened to the arms on a multiarmed
bandit, and the evaluation of a given string in a population is like sampling a num-
ber of arms at once—the arms corresponding to the schemas of which the string is
an instance. The Schema Theorem shows how the GA implicitly obtains statistical
averages (without explicit calculations) for the various schemas (arms), and then
implicitly allocates exponentially increasing numbers of samples to those schemas
(arms) that are observed to be above-average.

There are some limitations, though, to this analogy between the behavior of
GAs and the solution to the multiarmed bandit problem. The analogy assumes
that the observed average fitness of a schema is close to its actual average fit-
ness. However, this can fail for several reasons,3° including large variation within a
schema, small population size, and biased sampling due to premature convergence
(e.g., the population might converge to a set of strings that are mostly instances
of 1111** ... * this would result in a biased estimate of the average fitness of, say,
schema 11****...*).

52 Melanie Mitchell

In addition, the Schema Theorem addresses only the negative aspects of
crossover—i.e., to what extent it disrupts schemas. It does not address the question
of how crossover works to recombine highly fit schemas. What is needed is a more
detailed description of the dynamics of building-block processing and combination.

There have been other approaches to understanding GAs and characterizing
the landscapes on which they will perform well. In this section I will describe three
of these approaches: Walsh analysis and GA deception, characterizing the effects of
the statistical structure of fitness landscapes, and studying schema processing in de-
tail on specially designed fitness landscapes. Several other approaches are described
in the proceedings of the Foundations of Genetic Algorithms workshops.”2:8°

4.1 WALSH ANALYSIS AND GA DECEPTION

(This subsection is adapted from Forrest and Mitchell?? by permission of the au-
thors; copyright © by Morgan Kaufmann.)

As mentioned above, two of the goals for a theory of GAs are (1) to describe
in detail how schemas are processed and (2) to predict the degree to which a given
problem will be easy or difficult for a GA. Albert Bethke addressed these issues by
applying Walsh functions®” to the study of schema processing in GAs.!% In partic-
ular, Bethke developed the Walsh-schema transform, in which discrete versions of
Walsh functions are used to efficiently calculate the average fitnesses of schemas.
He then used this transform to characterize functions as easy or hard for the GA to
optimize. Bethke’s work was further developed and explicated by Goldberg.?>:26 [n
this subsection I introduce Walsh functions, describe how the Walsh schema trans-
form can be used to understand GAs, and sketch Bethke’s use of this transform
for characterizing different functions. This discussion is similar to that given by
Goldberg.?®

SCHEMAS AND PARTITIONS

Before introducing Walsh functions, it is necessary to explain the notion of a par-
tition of the search space. Schemas can be viewed as defining hyperplanes in the
search space {0,1}, as shown in Figure 25. Figure 25 shows four hyperplanes (cor-
responding to the schemas 0****, 1****, *0***, and *1***). Any point in the space is
simultaneously an instance of two of these schemas. For example, the point in the
figure is a member of both 1**** and *0*** (and also of 10***). The hyperplanes
defined by schemas induce a partitioning of the search space.*® For example, as
seen in Figure 25, the partition d**** (where “d” means “defined bit") divides the
search space into two halves, corresponding to the schemas 1**** and 0****. That is,

Genetic Algorithms 53

has ok dFe**
Q¥ ¥+ k(O ***
1**** *HH*

Search Space

FIGURE 25 Schemas define hyperplanes in the search space.

the notation d**** represents the partitioning that divides the space into two halves
consisting of schemas with a single defined bit in the leftmost position. Similarly,
the partition *d*** divides the search space into two different halves, corresponding
to the schemas *1*** and *0*** The partition dd*** represents a division of the
space into four quarters, each of which corresponds to a schema with the leftmost
two bits defined. Any partitioning of the search space can be written as a string in
{d,*}, where the order of the partition is the number of defined bits (number of d’s).
Each partitioning of n defined bits contains 2™ partition elements and each partition
element corresponds to a schema. Each different partitioning of the search space
can be indexed by a unique bit string in which 1’s correspond to the partition’s
defined bits and 0’s correspond to the nondefined bits. For example, under this
enumeration, the partition d***...* has index j = 1000...0, and the partition
dd***...* has index j = 11000...0.

WALSH FUNCTIONS AND WALSH DECOMPOSITIONS

Walsh functions are a complete orthogonal set of basis functions that induce trans-
forms similar to Fourier transforms. However, Walsh functions differ from other
bases (e.g., trigonometric functions or complex exponentials) in that they have
only two values, +1 and —1. Bethke demonstrated how to use these basis functions
to construct functions with varying degrees of difficulty for the GA. In order to do
this, Bethke used a discrete version of Walsh’s original continuous functions. These
functions form an orthogonal basis for real-valued functions defined on {0,1}%

54 Melanie Mitchell

00 01 10 11 00 01 0o n 00 01 10 11l 00 01 10 1l

FIGURE 26 Plots of the four Walsh functions defined on two bits.

Fitness
Qrsee F _______
2see —— U
l“.‘ ______
F(x) 3
2 _§
1]
0 .
8| 16] 24] 32 X
-1
2 4 FIGURE 27 Example Function. The solid
3 | line indicates the function and the dashed
] lines indicate some schemas. The shaded
region is the fittest region of the space.

The discrete Walsh functions map bit strings z into {1, —1}. Each Walsh func-
tion is associated with a particular partitioning of the search space. The Walsh
function corresponding to the jth partition (where, as was described above, the
index j is a bit string) is defined as follows'%:84:

bi(x) = 1, if z A j has even parity (i.e., an even number of 1’s);
JY 71 =1, otherwise.

Here, A stands for bitwise AND. For example, ¥9001{1001) = 0 since 1001 A
0001 = 0001 which has an odd number of 1’s. Notice that ;(x) has the property
that the only bits in = that contribute to its value are those that correspond to 1’s

in j. This is an important property, as will be seen below.
Plots of the four Walsh functions defined on two bits are given in Figure 26.

[IS

Genetic Algorithms 55

A. Partition = **, j = 00 B. Partition=*d,j=01 C. Pantition=d*,j=10 D. Partition=dd,j= 11

FIGURE 28 Four different partitionings of the space of 2-bit strings.

Since the Walsh functions form a basis set, any function F(z) defined on {0,1}!
can be written as a linear combination of Walsh functions:

where z is a bit string, [is its length, and each w; is a real-valued coefficient called
a Walsh coefficient. For example, the function shown in Figure 27 can be written
as

F(z) = 2401000(T) + ¥10000(Z)-

The Walsh coefficients w; of a given function F can be obtained via the Walsh
transform, which is similar to a Fourier transform. Below I will explain how the
Walsh transform works and discuss the close relationship between Walsh analysis
and schemas.

As a simple example of the Walsh transform, consider the function F(z) = z?,
where z is a two-bit string. The space of two-bit strings can be partitioned into sets
of schemas in four different ways, as illustrated in Figure 28.

The Walsh transform works by transforming F(z) into the summed series of
Walsh terms F(z) = Zf;_ol w;%;(x), in which increasingly longer partial sums
provide progressively better estimates of the value of F(z). The terms in the sum are
obtained from the average values of F in progressively smaller partition elements.

In this example Walsh analysis will be used to get better and better estimates
for F(11) (=9).

Consider first the average value of F' on the entire space, which is the same
as the average fitness u(**) of the schema ** in the partition j = 00 (part A of
Figure 28):

u(**) = F = (F(00) + F(01) + F(10) + F(11))/4 = 14/4.

Let wgo = u(**) = F. This could be said to be a “zeroth order” estimate of F(11)
(or of F(z) for any x).

56 Melanie Mitchell

Now to get a better estimate for F(11), some corrections need to be made to
the zeroth-order estimate. One way to do this is to look at the average value of F
in a smaller partition element containing F(11)—say, *1 (the right-hand element
shown in part (B) of Figure 28). The average value of the schema *1 is

u(*1) = wog — deviation.y;

that is, it is equal to the average of the entire space minus the deviation of u(*1)
from the global average. Likewise, the average value of the complement schema *0
is

u(*0) = wog + deviation.y,

since u(*1) + u(*0) = 2u(**) = 2wgo. (The assignment of + or — to deviation.;
here is arbitrary; it could have been reversed.) The magnitude of the deviation is
the same for both schemas (*1 and *0) in partition *d. Call this magnitude wq;. A
better estimate for F(11) is then wgp — wp;.

The same thing can be done for the other order 1 schema containing 11, namely
1* Let wig be the deviation of the average value in d* from the global average. Then,

u(1*) = woo — wio-
An even better estimate for F(11) is wgp — wpy — wiyp. This is a first-order estimate
(based on 1-bit schemas). The two deviation terms are independent of each other,
since they correct for differences in average values of schemas defined on different
bits, so we subtract them both. If the function were linear, this would give the exact
value of F(11). (In some sense, this is what it means for a function defined on bit
strings to be linear.)

However, since F(z) = z? is nonlinear, one additional correction needs to be
made to account for the difference between this estimate and the average of the
order 2 schema (i.e., the string 11 itself):

F(11) = wpp — wp; — wyg + correctiony,.

The magnitude of the order 2 correction term is the same for each F(z). This
can be shown as follows. We know that

F(11) = wgg — w1 — wyp + correctiony,
and, by a similar analysis,

F(10) = wgp + wo; — wyo + correctiono.
Adding both sides of these two equations, we get

F(11) + F(10) = 2wop — 2wyo + correctiony; + correctionyo.

Genetic Algorithms 57

But F(11) + F(10) = 2u(1*) (by definition of u(1*)), so we have
F(11) + F(10) = 2u(1x) = 2wgg — 2w)o

since, as was discussed above, u(1*) = wgg—wyo. Thus, correction;; = —correctionyg.
Similarly,
F(01) = wgp — wo1 + wio + correctiong;,
S0
F(11) + F(01) = 2wpg — 2wqy + correctiony + correctiong;
and, since
F(Il) + F(OI) = 2’LL(‘1) = 2weo — 2wo1,
we have correction;; = — correctiong,.
Finally,
F(00) = wgp + wo1 + wio + correctiongy,
S0
F(00) + F(01) = 2wop + 2w10 + correctiony + correctiong,
and since

F(00) + F(01) = 2u(0%) = 2wqo + 2wio,

we have correctiongy = — correctiong;. Thus the magnitudes of the second-order
correction terms are all equal. Call this common magnitude wy;.

This discussion shows that, for this simple function, each partition j' has a
single w;s associated with it, representing the deviation of the real average fitness
of each schema in partition j’ from the estimates given by the combinations of
lower-order w;’s. The magnitude of this deviation is the same for all schemas in
partition j’. This was easy to see for the first-order partitions and, as shown, it
is also true for the second-order partitions (which are the highest-order partitions
in this simple example). In general, for any partition j, the average fitnesses of
schemas are mutually constrained in ways similar to those shown above, and the
uniqueness of w; can be similarly demonstrated for j’s of any order.

Table 1 gives the exact Walsh decomposition for each F(r).

TABLE 1 Expressions for F(x) for
each ze{0,1}2

F(OO) = wpp + wo1 + wio + Wi1.
F(01) = wgo — wo1 + wio — wi1.
F(10) = wop + wor —wip —wn.
F(11) = wpo — wo1 — wip + wil.
.]

58 Melanie Mitchell

It has now been shown how function values can be calculated in terms of Walsh
coefficients, which represent progressively finer correction terms to lower-order esti-
mates in terms of schema averages. A converse analysis demonstrates how the w;’s
are calculated:

woo = u(™*)
C0+1+4+9
_T
‘ 14
'74_'.
wo1 :woo—u(*l)
_0+1+4+9 1+9

4 2
! _0-1+4-9
: B 4
! 6
‘ - 4

w10=w00—u(1*)
_0+144+4+9 4+9

4 2

_0+1-4-9

N 4

__12

=-

w1 = F(11) — first-order estimate

| = F(11) — (wgo — wo1 — wio)
i
i

o (M,6, 12
B 4 4 4
4
r 4
And to check:
F(ll) = wpo — Wp] — Wig + Wi = 14/4 +6/4+ 12/4 + 4/4 =9,
In general,
1 2'~1
w; =51 3 Fla)v,().
r=0
This is the Walsh transform (it is derived more formally in Goldberg?®). Once
the w;’s have been determined, F can be calculated as

2 -1

F(z) =) wjuy(x).
§=0

e

Genetic Algorithms 59

How does one decide whether or not a deviation term w; is added or subtracted
in this expression? The answer to this question depends on some conventions: e.g.,
whether u(*1) is said to be wggp — wo1 Or wyp + woe1. Once these conventions are
decided, they impose constraints on whether higher-order Walsh coefficients will be
added or subtracted in the expression for F(z). If = happens to be a member of a
schema s whose average deviates in a positive way from the lower-order estimate,
then the positive value of the w; corresponding to s’s partition goes into the sum.
All that is needed is a consistent way of assigning these signs, depending on the
partition j and what element of j a given bit string z is in. The purpose of the
Walsh functions v;(z) is to provide such a consistent way of assigning signs to
w;’s, via bitwise AND and parity. This is not the only possible method; a slightly
different method is given by Holland for his hyperplane transform.36

THE WALSH-SCHEMA TRANSFORM

There is a close connection between the Walsh transform and schemas. It was
shown above that, using Walsh coefficients, a function’s value on a given argument
' z can be calculated using the average fitnesses of schemas of which that z is an
instance. An analogous method, proposed by Bethke,!® can be used to calculate
the average fitness u(s) of a given schema s. Bethke called this method the Walsh-
schema transform. This transform gives some insight into how schema processing is
thought to occur in the GA. It also allowed Bethke to state some conditions under
which a function will be easy for the GA to optimize, and allowed him to construct
functions that can be difficult for the GA because low-order schemas lead the search
in the wrong direction.

Formal derivations of the Walsh-schema transform are given by Bethke,!®
Goldberg,? and Tanese.?* Here the the transform is presented informally.

Using the same example as before, the average fitness of the schema *1 is
1 u(*1) = wgo — wo1; this comes from the definition of wg;. The value of u(x1) does
not depend on, say, wjo; it depends only on Walsh coefficients of partitions that
either contain *1 or contain a superset of *1 (e.g., ** D *1). In general, a partition
7 is said to subsume a schema s if it contains as an element some schema s’ such
that ' O s. For example, the 3-bit schema 10* is subsumed by four partitions:
dd* d**, *d* and *** which correspond respectively to the j values 110, 100, 010,
and 000. Notice that j subsumes s if and only if each defined bit in j (i.e., each 1)
corresponds to a defined bit in s (i.e., a0 oral, not a*).

The Walsh-schema transform expresses the average fitness of a schema s as a
sum of progressively higher-order Walsh coefficients w;, analogous to the expression
of F(z) as a sum of progressively higher-order w;’s. Just as each w; in the expression
for F(x) is a correction term for the average fitness of some schema in partition
J containing x, each w; in the expression for u(s) is a correction term, correcting
the estimate given by some lower-order schema that contains s. The difference is
that, for F(z), all 2! partition coefficients must be summed (although some of them

L S

60 Melanie Mitchell

may be zero). But to calculate u(s), only coefficients of the subsuming partitions
(“subsuming coefficients”) need to be summed.

The 2-bit function example given above is too simple to illustrate these ideas,
but an extension to three bits suffices. Let F(z) = z2 as before, but let z be defined
over three bits instead of two. The average fitness of the schema *01 is a sum of the
coefficients of partitions that contain the schemas *** **1, *0*, and *01. An easy
way to determine the sign of a subsuming coefficient w; is to take any instance of
s and to compute 3;(z). This value will be the same for all z € 5, as long as j is a
subsuming partition, since all the ones in j are matched with the same bits in any
instance of s. For example, the partition **d (j = 001) subsumes the schema *11,
and g01(z) = —1 for any z € *11. Using a similar method to obtain the signs of
the other coefficients, we get

u(*11) = wopo — woo1 — wo1o + Wo11-
In general,
us) = Y., w¥y(s)
j:j subsumes s
where ¥;(s) is the value of ¥;(z) (= +1 or —1) for any z € s.
The sum
u(*11) = wooo — Woo1 — Wo10 + Wo11
gives the flavor of how the GA actually goes about estimating u(*11). To review, a
population of strings in a GA can be thought of as a number of samples of various
schemas, and the GA works by using the fitness of the strings in the population to
estimate the fitness of schemas. It exploits fit schemas via reproduction by allocating
more samples to them, and it explores new schemas via crossover by combining fit
low-order schemas to sample higher-order schemas that will hopefully also be fit. In
general, there are many more instances of low-order schemas in a given population
than high-order schemas (e.g., in a randomly generated population, about half of
the strings will be instances of 1**...*, but very few, if any, will be instances of
111...1). Thus, accurate fitness estimates will be obtained much earlier for low-
order schemas than for high-order schemas. The GA’s estimate of a given schema s
can be thought of as a process of gradual refinement, where the algorithm initially
bases its estimate on information about the low-order schemas containing s and
gradually refines this estimate from information about higher and higher order
schemas containing s. Likewise, the terms in the sum above represent increasing
refinements to the estimate of how good the schema *11 is. The term wpgo gives
the population average (corresponding to the average fitness of the schema ***) and
the increasingly higher-order w;’s in the sum represent higher-order refinements of
the estimate of *11’s fitness, where the refinements are obtained by summing w;’s
corresponding to higher and higher order partitions j containing *11.

Thus, one way of describing the GA’s operation on a fitness function F is
that it makes progressively deeper estimates of what F's Walsh coefficients are,
and biases the search towards partitions j with high-magnitude w;’s, and to the
partition elements (schemas) for which these correction terms are positive.

Genetic Algorithms 61

THE WALSH-SCHEMA TRANSFORM AND GA-DECEPTIVE FUNCTIONS

Bethke!® used Walsh analysis to partially characterize functions that will be easy for
the GA to optimize. This characterization comes from two facts about the average
fitness of a schema s. First, since u(s) depends only on w;’s for which j subsumes
s, then if the order of j (i.e., the number of 1's in j) exceeds the order of s (i.e., the
number of defined bits in s), then w; does not affect u(s). For example, w111 does not
affect u(*11): *11’s two instances 011 and 111 receive opposite-sign contributions
from wy);. Second, if the defining length of j (i.e., the distance between the leftmost
and rightmost 1’s in j) is greater than the defining length of s (i.e., the distance
between the leftmost and rightmost defined bits in s), then u(s) does not depend
on w;. For example, wyp; does not affect u(*11), since u(*11)’s two instances again
receive opposite-sign contributions from wig;.

Bethke suggested that if the magnitude of the Walsh coefficients of a function
decrease rapidly with increasing order and the defining length of the j's—that is,
the most important coefficients are associated with short, low-order partitions—
then the function will be easy for the GA to optimize. In such cases, the location of
the global optimum can be determined from the estimated average fitness of low-
order, low-defining-length schemas. As was described above, such schemas receive
many more samples than higher-order, longer-defining-length schemas: “low order”
means that they define larger subsets of the search space and “short defining length”
means that they tend to be kept intact under crossover. Thus the GA can estimate
their average fitnesses more quickly than those of higher-order, longer-defining-
length schemas.

Thus, all else being equal, a function whose Walsh decomposition involves high-
order j’s with high-magnitude coefficients should be harder for the GA to optimize
than a function with only lower-order j’s, since the GA will have a harder time
constructing good estimates of the higher-order schemas belonging to the higher-
order partitions.

Bethke’s analysis was not intended as a practical tool for use in deciding
whether a given problem will be hard or easy for the GA. A Walsh transform
of F requires evaluating F' at every point in its argument space (this is also true for
the “Fast Walsh Transform,”2%) and is thus an infeasible operation for most fitness
functions of interest. It is much more efficient to run the GA on a given function and
to measure its performance directly than to decompose the function into Walsh co-
efficients and then to determine from those coefficients the likelihood of GA success.
However, Walsh analysis can be used as a theoretical tool for understanding the
types of properties that can make a problem hard for the GA. For example, Bethke
used the Walsh-schema transform to construct functions that mislead the GA, by
directly assigning the values of Walsh coefficients in such a way that the average
values of low-order schemas give misleading information about the average values
of higher-order refinements of those schemas. Specifically, Bethke chose coefficients
so that some short, low-order schemas had relatively low average fitness, and then
chose other coefficients so as to make these low-fitness schemas actually contain the

62 Melanie Mitchell

global optimum. Such functions were later termed “deceptive” by Goldberg?4-26:28
who carried out a number of theoretical studies of such functions. Deception has
since been a central focus of theoretical work on GAs.13:17:26,48.49.88 Wy|sh analysis
can be used to construct problems with different degrees and types of deception,
and the GA’s performance on these problems can be studied empirically. The goal
of such research is to learn how deception affects GA performance (and thus why
the GA might fail in certain cases) and to learn how to modify the GA or the
problem’s representation in order to improve performance.

Intuitively, it seems that a deceptive problem will be difficult for the GA. The
GA works by accumulating information about schemas and using this information
to bias its future samples. If some schemas give the GA the wrong information about
the location of the global optimum, then the GA should have difficulty finding the
global optimum. However, the GA is often able to find the optimum fairly readily
even on functions with a large number of deceptive schemas.2” There is not yet any
rigorous understanding of the relation between different types of deception and the
performance of the GA. Some critical discussions of the notion of deception and its
role in understanding GAs are given in Forrest and Mitchell?? and Grefenstette.?®

4.2 STATISTICAL STRUCTURE OF FITNESS LANDSCAPES

Stuart Kauffman of the Santa Fe Institute has studied in detail how certain statistics
of a particular class of fitness landscapes affect the process of evolution over those
landscapes?!. In particular, Kauffman has defined a class of parameterizable fitness
landscapes called “NK landscapes.” 2l The purpose is to define the simplest class of
landscapes whose “ruggedness” can be varied; one can then create landscapes with
various degrees of ruggedness and study the effects of the degree of ruggedness on
evolution over these landscapes.

A NK landscape is defined over a space of bit strings. To create an NK land-
scape, one chooses a value for N and K, where N is the number of bits in the
string and K is the degree of “epistasis”—the number of other bits that each bit’s
fitness contribution depends on. One then chooses, for each locus i, the K other

VAN AR

FIGURE 29 The network of dependencies for
locus 1 locus 2 locus 3 the example NK landscape.

(2lKauffman's NK landscapes are a slightly different formulation of his “random Boolean
networks.”40.42

Genetic Algorithms 63

loci that affect i’s fitness contribution. That is, the fitness contribution of the allele
at ¢ depends on itself and the alleles at these K other loci. There are 2X+! possible
configurations of these K 4 1 alleles, and one assigns to each such configuration
a randomly chosen fitness contribution between 0 and 1. The fitness of the entire
string is defined to be the average of the contributions of each locus.

For example, consider a simple NK landscape with N = 3 and K = 1. Suppose
we have decided that the fitness contribution of locus 1 (the leftmost locus) depends
on locus 2, the contribution of locus 2 depends on locus 3, and the contribution of
locus 3 depends on locus 2. This network of dependencies is illustrated in Figure 29.
Now we randomly assign fitness contributions for each possible configuration (the
asterisks denote the loci that are not taken into account in determining the fitness
contribution for a given locus):

Fitness contribution of locus 1:

00« : contribution = 0.6
01x: contribution = 0.2
10% : contribution = 0.3
11%: contribution = 0.8

Fitness contribution of locus 2:

* 00 : contribution = 0.2
* 01 : contribution = 0.4
*10: contribution = 0.1

* 11 : contribution = 0.3
Fitness contribtion of locus 3:

*x 00 : contribution = 0.1
*x 01 : contribution = 0.9
* 10 : contributicrn = 0.2
*11: contribution = 0.1

To calculate the fitness of a given string, we determine the contributions from
each locus in that string and average them. For example, F(000) = (0.6 + 0.2 +
0.1)/3. Now that the fitness of each possible chromosome has been determined, the
entire fitness landscape has been defined.

NK landscapes, though highly simplified, are meant to capture some important
aspects of fitness landscapes in nature. In particular, the N sites can roughly be
theught of as representing N traits in an organism, with the fitness contribution
of each trait depending on the value of K other traits. With a fixed N, when K
is tuned from 0 to N - 1, the resulting landscape goes from being very smooth

64 Melanie Mitchell

(few local optima) to very rugged (many local optima). NK landscapes are closely
related to spin glass models in physics.4!

Kauffman has looked in detail at how the statistical structure of NK landscapes
varies for different values of N and K.4! The statistical structure includes, among
other properties, the number of local fitness optima in the landscape, the average
length of an “adaptive walk” from a given point to a fitness optimum, and the
average number of alternative optima that can be reached via an adaptive walk
from a given point. Kauffman has used his results on the statistical structure of NK
landscapes to predict some aspects of the dynamics of evolution on these landscapes
and to hypothesize about what features of landscapes would allow organisms of
significant complexity to evolve.

The notion of the statistical structure of a fitness landscape assumes a metric
over the space of genotypes (here, bit strings). For example, in defining the “average
length of an adaptive walk to a fitness optimum,” one needs to specify a metric
in terms of which length will be measured. Kauffman'’s metric (like that for most
studies of fitness landscapes) is in terms of single mutations, or Hamming distance.
The Hamming distance H between two bit strings is the number of bit positions
in which they differ (e.g., H(1001,1000) = 1 and H(1001,0110) = 4). Kauffman's
statistics on NK landscapes are all in terms of this metric. For example, the length
of a “walk” from string A to string B is the number of single mutations needed to
transform A into B (an “adaptive walk” is a walk in which each step leads to an
improvement in fitness).

If mutation were the only genetic operator used in a GA, one could straightfor-
wardly apply Kauffman’s results to predict some aspects of the performance of GAs
on NK landscapes. However, the main source of variation in GAs is crossover, which
defines a different metric on the space of genotypes. What characteristics must a
fitness landscape have in order for crossover to be a useful operator? Kauffman
offers some intuitive answers in the context of NK landscapes.! If K = 0, then the
contribution of each of the N loci is independent, and each locus can be thought
of as an independent building block. In this case, crossover may help speed up the
search for the optimum since, in a single step, it can combine different substrings
of optimized alleles from different strings. That is, if string A and string B have
high fitness, then their offspring are likely to have even higher fitness. Likewise, if
K is small and the epistatic interactions are restricted to be among near neighbors,
then crossover may be useful since it can combine distant regions of strings that are
functionally independent. Kauffman also hypothesizes that crossover will be useful
when the fitness landscape contains pairs of fitness peaks that together contain
mutual information about good regions of the space. When strings located at such
peaks cross over, there is a good possibility that they will produce fit offspring.

These are all intuitive arguments similar to the Building-Block Hypothesis men-
tioned earlier, and Kauffman has given some experimental evidence to support these
hypotheses.

Bernard Manderick, Mark de Weger, and Piet Spiessens of the Free University
of Brussels have extended Kauffman’s work and have applied their results to the

Genetic Algorithms 65

problem of predicting the GA’s performance on a given landscape.>? In their work
they looked at two types of correlation measures:

m Operator-specific correlation coefficients:

covariance(Fparents: Foffspring)

o(Fparents)o (F; offspring)

Given a certain operator that creates offspring from parents, these correlation
coefficients measure how well the offsprings’ fitness is correlated with the par-
ents’ fitness.

w Correlation length of landscape:
This measure gives the length (in Hamming distance) at which fitnesses are no
longer correlated (see Manderick et al.>® for details).

Manderick et al. measured the corvelation coefficient of crossover as a function of
the Hamming distance between the two parents for four different NK landscapes, in
which N was fixed at 10 and K was varied. Their results are displayed in Figure 30.

° —a— k=0
E —— k=2
2 —0— k=6
5 —n— k=9
o

distance

FIGURE 30 Correlation coefficient of crossover as a function of the Hamming distance
between the two parents for four different NK landscapes, in which N was fixed at

10 and K was varied. (Reprinted from Manderick et al®3 by permission of the authors;
copyright © 1991 by Morgan Kaufmann Publishing.)

66 Melanie Mitchell

TABLE 2 Relation between correlation length 7 of an NK landscape and GA performance
Imp. (number of improvemerits after 2,048 generations). These results (each averaged
over five runs) are given for several different values of K. .Vis fixed at 96. (Adapted from

Manderick et al.53 by permission of the authors.)
L. ___]

K 0 1 2 4 8 16 32 48 95

T 29.96 24.37 1951 1415 7.06 390 1.72 1.00 0.52

Imp. 1980 16.00 15.20 11.60 8.60 6.20 3.80 540 5.20
L& .]

Each curve corresponds to the results on a landscape with the given K value, and
each point on a curve was obtained by randomly selecting 100 pairs of parents (each
separated by the given Hamming distance), crossing over each pair at a random
locus, and computing the correlation coefficient between the fitnesses of the parents
and the fitnesses of their offspring. As can be seen, the correlation goes down
as Hamming distance increases and, the greater the K, the faster the decrease
in correlation. Assuming that crossover is useful only when there is a correlation
between the fitness of parents and the fitness of offspring, Manderick et al. point
out that their results help to quantify a qualitative heuristic used by some GA
practitioners: crossover performs best when it is restricted to similar parents.

Manderick et al. also measured the relation between the correlation length of
a landscape and GA performance. These results are given in Table 2. Here N was
fixed at 96 and K was varied. For each K, the correlation length was calculated
by sampling a number of random walks on the landscape. The correlation length
is roughly the average number of single mutation steps from a given string needed
until the fitness of the resulting string and the fitness of the original string are no
longer correlated (see Manderick et al.53 for details). The performance of the GA
was measured in terms of the number of improvements in a fixed number M of
generations—that is, the number of strings in generation M whose fitnesses are
higher than that of any string in the initial population (here M = 2048 and the
results are averaged over five runs). Table 2 shows that both correlation length and
GA performance decrease with K. Manderick et al.’s conclusion is that the GA
performs well on an NK landscape when the correlation length of the landscape is
high.

The results of Kauffman and of Manderick et al. are initial steps in characteriz-
ing, in terms of statistical properties, the types of fitness landscapes on which GAs
are likely to perform well. However, the NK landscapes are a limited class that may
not capture the landscape features most relevant to the performance of GAs. The
next subsection describes an attempt to define a parametrizable class of landscapes

Genetic Algorithms 67

that more directly captures such features and that yields some surprising results
related to the Building-Block Hypothesis.

4.3 ROYAL ROAD LANDSCAPES

(This subsection is adapted from Forrest and Mitchell?! by permission of the au-
thors; copyright © 1993 by Morgan Kaufmann.)

Stephanie Forrest of the University of New Mexico and I are currently car-
rying out research to answer the four questions posed at the beginning of this
section.?121 Our strategy for answering these questions consists of the following
general approach. We begin by identifying features of fitness landscapes that are
particularly relevant to the GA’s performance. A number of such features have been
discussed in the GA literature, including local hills, “deserts,” deception, hierarchi-
cally structured building blocks, noise, and high fitness-variance within schemas.
We then design simplified landscapes containing different configurations of such
features, for example, varying the distribution, frequency, and size of different fea-
tures in the landscape. We then study in detail the effects of these features on the
GA'’s behavior. A longer-term goal of this research is to develop statistical meth-
ods of classifying any given landscape in terms of our spectrum of hand-designed
landscapes, thus being able to predict some aspects of the GA’s performance on
the given landscape.

It should be noted that by stating this problem in terms of the GA’s perfor-
mance on fitness landscapes, we are sidestepping the question of how a particular
problem can best be represented to the GA. The success of the GA on a particular
function is certainly related to how the function is encoded (e.g., using Gray codes
for numerical parameters can greatly enhance the performance of the GA on some
problems!!) but, since we are interested in biases that pertain directly to the GA,
we will simply consider the landscape that the GA “sees.”

In this subsection I describe some initial results from this long-term research
program. A starting point for our research is the Building-Block Hypothesis, which
states that the GA works well when short, low-order, highly-fit schemas (“building
blocks”) recombine to form even more highly fit, higher-order schemas. In Gold-
berg’s words, “...we construct better and better strings from the best partial solu-
tions of past samplings” (see Goldberg,26 p. 41). As has been emphasized in earlier
sections, the ability to produce fitter and fitter partial solutions by combining build-
ing blocks is believed to be the primary source of the GA's search power. However,
in spite of the presumed central role of building blocks and recombination, the
GA research community lacks precise and quantitative descriptions of how schemas
interact and combine during the typical evolution of a GA search. Thus, we are in-
terested in isolating landscape features implied by the Building-Block Hypothesis,
and studying in detail the GA’s behavior—the way in which schemas are processed
and building blocks are combined—on simple landscapes containing those features.

68 Melanie Mitchell

One major component of this endeavor is to define the simplest class of land-
scapes on which the GA performs “as expected,” thus confirming the broad claims of
the Building-Block Hypothesis. However, the task of designing such landscapes has
turned out to be substantially more difficult and more subtle than we originally
anticipated. Our initial choices of simple landscapes have revealed some surpris-
ing and unanticipated phenomena. The story of how small variations of a basic
landscape can make GA search much less effective reveals a great deal about the
complexity of GAs and points out the need for a deeper theory of how low-order
building blocks are discovered and combined into higher-order solutions.

Below I introduce the Royal Road functions, a class of nondeceptive functions in
which the building blocks are explicitly defined. I then present experimental results
that demonstrate how simple variants of these functions san have quite different
effects on the performance of the GA and discuss the reasons for these differences.

STEPPING STONES IN THE CROSSOVER LANDSCAPE

The Building-Block Hypothesis suggests two landscape features that are particu-
larly relevant for the GA: (1) the presence of short, low-order, highly fit schemas
and (2) the presence of intermediate “stepping stones” —intermediate-order higher-
fitness schemas that result from combinations of the lower-order schemas and that,
in turn, can combine to create even higher-fitness schemas. Two basic questions
about stepping stones are: How much higher in fitness do the intermediate step-
ping stones have to be for the GA to work well? And how must these stepping
stones be configured? To investigate these questions, we first defined the Royal
Road functions which contain these features explicitly.

s; = L1111 T1TH*#F s aasknbbdbh 0k RRRERLRERERDORERERELELELRLELRRRRRE, 0 O
= L6 =
I ITI L . —

Sg = FEEREERE]]]][][REFRFEEERELERELRLRLRRRRRLRRERRERRRS * FREERE o 8
AEAEE, —

§3 = FPEERERAERERRRRER]|]]] [][EERERERRRRROOECERRERRRR RO RS **.00 =8

Sq = FERRERRRRRAAR R KRR AR R | [[]] | [REEREERERERRRbE AR R Rk 0 8

55 = FERARRRRRRRRRRRERRRRERRR RS RRRRRE] | | |][]] [FFORRRRRRRREEREORRROERAE. g

56 = FRRRRRRRR AR KRR R R RR R R | [[[[] [FRAFeReaktnstss o g

S7 = FEEREERRERRE R AR TR R ORI | [[] eERsrer o — g

sg = FERARRR AR AR R R R R KRR R KRR AR KRR R E k42] 1 111]]]; cg = 8

Sopt=11111T11 111111 TR R I T A LA I AL I LT L LT L L R L LT T L]

FIGURE 31 An optimal string broken up into eight building blocks. The function
R1(x) (where z is a bit string) is computed by summing the coefficients ¢,
corresponding to each of the given schemas of which z is an instance. For example,
R1(1111111100...0) = 8, and R1(1111111100...011111111) = 16. Here

cs = order(s).

Genetic Algorithms 69

To construct a Royal Road func*’on, we select an optimum string and break
it up into a number of small building blocks, as illustrated in Figure 31. We then
assign values to each low-order schema and each possible intermediate combination
of low-order schemas, and use those values to compute the fitness of a bit string x
in terms of the schemas of which it is an instance.

As illustrated in Figure 31, the function Rl is computed very simply: a bit
string x gets 8 points added to its fitness for each of the given order 8 schemas of
which it is an instance. For example, if z contains exactly two of the order 8 building
blocks, R1(z) = 16. Likewise, R1(111...1) = 64. Stated more generally, the value
R1(x) is the sum of the coefficients c¢; corresponding to each given schema of which
z is an instance. Here ¢, is equal to order(s). The fitness contribution from an
intermediate stepping stone (such as the combination of s; and s3 in Figure 31) is
thus a linear combination of the fitness contribution of the lower-level components.
R1 is similar to the “plateau” problem described by Schaffer and Eshelman.”

According to the Building-Block Hypothesis, R1’s building-block and stepping-
stone structure should lay out a “royal road” for the GA to follow to the global
optimum. In contrast, an algorithm such as simple steepest-ascent hill climbing,
which systematically tries out single-bit mutations and only moves in an uphill
direction, cannot easily find high values in such a function, since a large number
of single bit positions must be optimized simultaneously in order to move from
an instance of a lower-order schema (e.g., 11111111**...*) to an instance of a
higher-order intermediate schema (e.g., 11111111********11111111**...*). While
some initial random search may be involved in finding the lowest-level building
blocks (depending on the size of the initial population and the size of the lowest-level
blocks), the interesting aspect of R1 is studying how lower-level blocks are combined
into higher-level ones, and this is the aspect with which we are most concerned.
Part of our purpose in designing the Royal Road functions is to construct a class
of fitness landscapes that distinguishes the GA from other search methods such as
hill climbing. This actually turned out to be more difficult than we anticipated, as
will be discussed below.

This class of functions provides an ideal laboratory for studying the GA’s
behavior:

s The landscape can be varied in a number of ways. For example, the “height”
of various intermediate stepping stones can be increased or decreased. Also,
the size of the lowest-order building blocks can be varied, as can the degree
to which they cover the optimum. Finally, different degrees of deception can
be introduced by allowing the lower-order schemas to differ in some bits from
the higher-order stepping stones, effectively creating low-order schemas that
lead the GA away from the good higher-order schemas. The effects of these
variations on the GA’s behavior then can be studied in detail.

s Since the global optimum and, in fact, all possible fitness values are known in
advance, it is easy to compare the GA’s performance on different variations of
Royal Road functions.

70 Melanie Mitchell

m All of the desired schemas are known in advance, since they are explicitly built
into the function. Therefore, the dynamics of the search process can be studied
in detail by tracing the histories of individual schemas.

We are using the Royal Road functions to study some questions about the effects
of crossover on various landscapes, including the following: For a given landscape,
to what extent does crossover help the GA find highly fit schemas? What is the effect
of crossover on the waiting times for desirable schemas to be discovered? What are
the bottlenecks in the discovery process? How does the configuration of stepping
stones and size of steps defined by stepping stones affect the GA’s performance?
Answering these questions in the context of the idealized Royal Road functions is
a first step toward answering them for more general cases.

We first investigated the effect of the step size of the intermediate stepping
stones on the GA’s performance. To do this, we compared the performance of the
GA on R1 with its performance on a second function R2, where the fitness contri-
butions of certain intermediate stepping stones are much higher. R2 is illustrated
in Figure 32. R2 is computed in the same way as R1: the fitness of a bit string z is
the sum of the coefficients corresponding to each schema (s;-s14) of which it is an
instance. For example, R2(1111111100...011111111) = 16, since the string is an
instance of both s; and sg, but R2(111111111111111100. ..0) = 32 since the string
is an instance of s;, s9, and sg. Thus, a string’s fitness depends not only on the
number of 8-bit schemas to which the string belongs, but also on their positions in
the string. The optimum string 11111111...1 has fitness 192, since the string is an
instance of each schema in the list.

5y = 111111lltt#t#****t‘t*t#tt***#*t*t**tttt##t***#***t####**ttt#ttt# ¢ = 8
Sy = #t***‘*tlllll111**#t*t#*t***ttt#*t#*t**ttt***t*t***t#**ttt**tt#t ¢ = 8
s3 = t#*t#*t#ttt*t**tllll111l**##*tt#tt**t*t*t*ttttt#t**tt#*tttttt*tt €3 = 8
54 = ****t##t****t*t#t***ttttllllll11t***t*ttt**t#t*****t****ttt*ttt# cq = 8
sy = *‘ttt#*tt*tt#t#*t#*#**t*#*t**#*#l1]1l11]tt**#'&*t**ttt*ttttttttt‘ Ce = 8
56 = #‘t##*#t**‘**##*#*###‘##t*i##**###t*tt#*11111lllt*ttlt*ttﬁt*t*tt Ce = 8
sy = #*##*#‘tt*#t*t#*****#*t****1“tt#*t‘tttt*t*#tttt*lllllllltt#*t*tt c7 = 8
s = **tt#t‘ttt**##***t#tt******it#tt*#t#*ttt‘*tt##*#*tttt**tlllll]ll cg = 8
s9 = 11111111]lll1ll1**#**ttt***tt**#t**#t#ttl**#***t**t*#‘*tt*#tt#t# co = 16
510 *t‘##t*#t#t*#t##llll]]l]11111lllt*#tttttt#*t*##*t#ttttttt#tttttt cig = 16
sll ##l#t#t*tt*tttttt**t#t***tt*tttt1lllllllllllllllt*tt#t#‘tttttttt c1y = 16
s = tt*t#thﬂr#ttt#tttttt#ttttt#tttttttttttttt*tttt#tl11111“lll““l cj2 = 16
$13 =11111111111111111111llll1111111l‘“‘“'"“”“"“"““““"“; c1a =32
Spg SHEEEEEEARER A R R R LI LT LI LI L LI LR R LD LD ¢y g = 32

Sopt=11111T11 LT LI 1T R LR LRI R 0L R LI TI 22002001110 00010100001

FIGURE 32 Royal Road Function R2. R2(x) is computed in the same way as
R1: by summing the coefficients c, corresponding to each of the given schemas of
which z is an instance. For example, R2{1111111100...011111111) = 16, but
R2(111111111111111100...0) = 32. R2(11111111...1) = 192.

Genetic Algorithms 71

ROYAL ROAD EXPERIMENTS

For our initial experiments, we used functions defined over strings of length 64. The
GA population size was 128, with the initial population generated at random. In
each run the GA was allowed to continue until the optimum string was discovered,
and the total number of function evaluations performed was recorded. We used a
standard GA with single-point crossover and sigma scaling, an alternative scheme
for assigning t ~ expected number of copies to each individual. Under sigma scaling,
an individual s expected number of offspring is 1 + (F; — F)/20, where F; is i’s
fitness, F is the mean fitness of the population, and ¢ is the standard deviation.
The maximum expected offspring of any string was 1.5—if the above formula gave
a higher value, the value was reset to 1.5. This is a strict cutoff, since it implies that
most individuals will reproduce only 0, 1, or 2 times. The effect of this selection
scheme i< to slow down convergence by restricting the effect that a single individual
can ha on the population, regardless of how much more fit it is than the rest of
the population. Even with this precaution, we observe some interesting premature
convergence effects, described below. The crossover probability was 0.7 per pair of
parents and the mutation probability was 0.005 per bit.

EXPERIMENTS ON R1 AND R2

We expected the GA to perform better—that is, find the optimum more quickly—
on R2 than on R1. In R2 there is a very clear path via crossover from pairs of the
eight initial order 8 schemas (s,-sg) to the four order 16 schemas (sg9-s;2), and
from there to the two order 32 schemas (s13 and s14), and finally to the optimum
(Sopt). We believed that the presence of this stronger path would speed up the
GA’s discovery of the optimum, but our experiments showed the opposite: the GA
performed significantly better on R1 than on R2. Statistics summarizing the results
of 500 runs on each function are given in Table 3. This table gives the mean and
median number of function evaluations taken to find the optimum over 500 runs
each on R1 and R2. Each run on a given function uses identical parameters but
starts with a different random-number seed.

It we hope to understand the GA’s performance in general, we need to under-
stand in detail what are the potential bottlenecks for discovering desirable schemas.
This has been studied extensively in the deception literature, but R2 is a nonde-
ceptive function that nonetheless contains some features that keep the GA from
discovering desirable schemas as quickly as in R1. What slows down the GA in
the case of R2? To investigate this, we took a tvpical run of the GA on R2 and
graphically traced the evolution of each schemna shown in Figure 32. Figure 33 gives
this trace for three sets of schemas: s, s2, and sg; 83, s4, and s10; and ss. sg, and
s11 (see Figure 32). In each plot, the density (% of population) of each schema is
plotted against time (generations). The density is sampled every 10 generations.

e —— e —

72 Melanie Mitchell

TABLE 3 Summary of results of running the GA on R1 and
R2. The table gives the mean and median number of function
evaluations taken to find the optimum over 500 runs on each
function. The numbers in parentheses are the standard errors.
. __J}

Function Evaluations to Optimum

500 runs R} R2
Mean 62099 (std err: 1390) 73563 (std err: 1794)
Median 56576 66304

These plots show a striking phenomenon. In the top plot in Figure 33, s; and s
appear early and instances of them quickly combine to form sg9. Once each schema
is discovered, its density in the population rises quite quickly to over 90% of the
population by generation 60 or so. Around generation 220 there is a distinct dip in
the densities of these three schemas.

The middle plot shows a very different evolution for s3, s4, and s19. The schemas
s3 and s4 are both present in the initial (randomly generated) population (though
s3’s presence at generation 0 is not visible on the plot) but, while s4 rises quickly, s3
dies out by generation 10, is fleetingly rediscovered (along with s;0) at generation
120 (see blip on the z-axis), and does not return until the very end of the run, at
which point a mutation brings it (along with sjo) back (see blip on the z-axis).
This same mutation is responsible for creating sop. at generation 535, when the run
ends. After a quick initial rise, the schema s4 enters a pronounced dip at the same
time the milder dip can be seen in the top plot of Figure 33, around generation 220.

What is the cause of these dips, and what prevents s3 from persisting in the
population? A likely answer can be inferred from the bottom plot. Schema s¢ ap-
pears around generation 30, rises fairly quickly, and takes a sharp upturn around
generation 220, rising to about 95% of the population. Schema s5 appears briefly
around generation 20 (dot close to the z-axis) and dies out, but appears again at
generation 220. The instance of it in the population is also an instance of s1;, and in-
stances of sy rise very quickly. This rise exactly coincides with the minor dip in s;,
2, and sg and the major dip in s4. What & cars to be happening is: in the first few
instances of s;;, along with the sixteen 1’s in the fifth and sixth blocks are several
0’s in the first through fourth blocks. An instance of s1; has fitness 8 + 8+ 16 = 32,
whereas an instance of an order 8 schema such as s4 has fitness 8. This difference
causes 8, to rise very quickly compared to s4, and instances of sy, with some 0’s in
the fourth block tend to push out many of the previously existing instances of s4 in
the population, and prevent the rediscovery of s3. This phenomenon has been called

Genetic Algorithms 73

Evolution of schemas 1, 2, and 9

100 — ~ T T
s . O N~
60 |- B
Density
40 -
| Schema 1l - |
20 ¥ Schema 2 —
. Schema 9 —
0 1 1 1 i 1
0 100 200 300 400 500
Generation
Evolution of schemas 3, 4, and 10
100
80 |
60 |-
Density
40 |
Schema 3 - |
PV Schema 4 —1
Schema 10 —
0 1 1 i - 1
0 100 200 300 400 500
Generation
Evolution of schemas 5, 6, and 11
100 n |
80
60
Density
40 |
Schema 5 - |
20 k Schema 6 —t
0 o | . } LSchema IIL-—“
0 100 200 300 400 500

Generation

FIGURE 33 Evolution of three sets of schemas in a typical run of the GA on R2.
(See Figure 32 for schema numbers.) In each plot, the density of each schema (% of
population) is plotted against the generation. Note that in the middle plot, schemas 3
and 10 are visible only as tiny bumps on the r-axis at generations 120 and 535.

74 Melanie Mitchell

“hitchhiking,” where 0’s in other positions in the string hitchhike along with the
highly fit s1;. The most likely positions for hitchhikers are those close to the highly
fit schema’s defined positions, since they are less likely to be separated from the
schema’s defined positions under crossover. Such effects are seen in real population
genetics and have been discussed in the context of GAs by Schraudolph and Belew 39
and Das and Whitley,!® among others. Note that this effect is pronounced even with
the relatively weak form of selection used in our GA. (We also compared the GA’s
performance on R1 and R2 using a linear rank-scaling method® instead of the
sigma-scaling method described above, and obtained results similar to those given
in Table 3.)

The plots given in Figure 33 come from a single run, but this run was typical;
the same type of phenomenon was observed on many of the other runs on R2 as
well. Our hypothesis is that this hitchhiking effect is what causes the relatively
slower times (on average) for the GA to find the optimum on R2. The power of
crossover to combine lower-level building blocks was hampered, since some of the
necessary building blocks were either partially or totally suppressed by the quick rise
of disjoint building blocks. This suggests that there is more to characterizing a GA
landscape than the absolute direction of the search gradients. In these functions,
it is the actual differences in relative fitnesses for the different schemas that are
relevant.

In R1, which lacks the extra fitness given to some intermediate-level schemas.
the hitchhiking problem does not occur to such a devastating degree. The fitness
of an instance of, say, s;; in R1 is only 16, so its discovery does not have such a
dramatic effect on the discovery and persistence of other order 8 schemas in the
function. Contrary to our initial intuitions, it appears that the extra reinforce-
ment from some intermediate-level stepping stones actually harms the GA in these
functions.

These results point to a pervasive and important issue in the performance of
GAs: the problem of premature convergence, in which the GA population converges
on some suboptimal set of alleles at some set of loci. The fact that we observe a
form of premature convergence even in this very simple setting suggests that it can
be a factor in any GA search in which the population is simultaneously searching
for two or more nonoverlapping high-fitness schemas (e.g., s4 and s;;), which is
often the case. The fact that the population loses useful schemas once one of the
disjoint good schemas is found suggests one reason that the rate of effective implicit
parallelism of the GA%27 may need to be reconsidered. (For another discussion of
implicit parallelism in GAs, see Grefenstette and Baker.??)

DO INTRONS SUPPRESS HITCHHIKERS?

In order to understand the hitchhiking behavior more precisely, we performed an
experiment that we believed would eliminate it to some degree. Our hypothesis

Genetic Algorithms 75

was that hitchhiking occurred in the loci that were spatially adjacent to the high-
fitness schemas (e.g., s;1 above). In order to reduce this effect, we constructed a
new function, R2introns, by introducing blocks of 8 “introns”—8 additional *’s—in
between each of the 8-bit blocks of 1’s. Thus in R2inirons, strings were of length
128 instead of 64. For example, in R2introns, S1 18 11T1TT11****e***e= * o is
Frmsmmrwkrexstex11111111** ... % and their combination, sq, is

11111111 *** 11111111** ...~

The optimum is the string containing each block of eight 1's, where the blocks are
each separated by eight loci that can contain either 0’s or 1’s. The idea here was that
a potentially damaging hitchhiker would be at least 8 bits away from the schema
on which it was hitchhiking, and would thus be likely to be lost under crossover.
(Levenick?® found that inserting introns into individuals improved the performance
of the GA in one particular set of environments.)

As shown in column 1 of Table 4, the GA on R2j,;0ns Was not faster than the
GA on R2. This was contrary to our expectations, and the reasons for this result
are not clear, but one hypothesis is that once an instance of a higher-order schema
(e.g., s11) is discovered, convergence is so fast that hitchhikers are possible even in
loci that are relatively distant from the schema’s defined positions.

VARYING THE COEFFICIENTS IN R2

It is clear that some intermediate-level reinforcement is necessary for the GA to
work. Consider RY’, a variant of R1, where R1'(z) = 8 if is an instance of at least
one of the 8-bit schemas, and R1’(x) = 64 if z is an instance of all the 8-bit schemas.
Here the GA would have no reason to prefer a string with block of sixteen 1's over
a string with a block of eight 1’s, and thus there would be no pressure to increase
the number of 1's. Intermediate schemas in R1 provide additive reinforcement. since

TABLE 4 Summary of results of 200 runs of the GA on two
variants of R2.

Function Evaluations to Optimum

200 runs R2introns R2ﬂat
Mean 75599 (std err: 2697) 62692 (std err: 2391)
Median 70400 56448

76 Melanie Mitchell

the fithess of an instance of an intermediate-order schema is always the sum of
the fitnesses of instances of the component order 8 schemas. Some schemas in R2
provide additional reinforcement: the fitness of an instance of, say, sg is much higher
than the sum of the fitnesses of instances of the component order 8 schemas s; and
82. Our results indicate that the extra reinforcement given by some schemas is too
high—it hurts rather than helps the GA’s performance.

Does such additional reinforcement ever help the GA rather than hinder it? To
study this we constructed a new function, R2g,¢, with a much weaker reinforcement
scheme: for this function, c;—-c14 are each set to the flat value 1. Here there is still
additional reinforcement (an instance of sg will have fitness 1 + 1 + 1, which is
greater than the sum of the two components), but the amount of reinforcement is
reduced considerably.

The results of running the GA on K24, is given in the second column of Table 4.
The average time to optimum for this function is approximately the same as for R1.
Thus the smaller fitness reinforcement in R2g,; does not seem to hurt performance,
although it does not result in improved performance over that on K1.

DISCUSSION

The results described above show that the GA’s ability to process building blocks
effectively depends not only on their presence but also on their relative fitness.
If some intermediate stepping stones are to. much fitter than the primitive com-
ponents, then premature convergence slows down the discovery of some necessary
schemas. Simple introns do not seem to alleviate the premature convergence and
hitchhiking problems.

Our results point out the importance of making the Building-Block Hypoth-
esis a more precise and useful description of building-block processing. While the
disruptive effects that we observed (hitchhiking, premature convergence, etc.) are
already known in the GA literature, as yet no theorem exists associating them with
the building-block structure of a given problem.

In our experiments we have observed that the role of crossover varies consid-
erably throughout the course of the GA search. In particular, three stages of the
search can be identified: (1) the time it takes for the GA to discover the lowest-
order schemas, (2) the time it takes for crossover to combine lower-order schemas
into a higher-order schema, and (3) the time it takes for the higher-order schema to
take over the population. In multilevel funrtions, such as the Royal Road functions,
these phases of the search overlap considerably, and it is essential to understand the
role of crossover and the details of schema processing at each stage (this issue has
also been investigated by Davis'4 and by Schaffer and Eshelman,” among others).
In previous work,%! we have discussed the complexities of measuring the relative
times for these different phases.

. —— e —————— e

Genetic Algorithms 77

EXPERIMENTS WITH HILL CLIMBING

As was mentioned earlier, part of our purpose in designing the Royal Road func-
tions is to constr' the simplest class of fitness landscapes on which the GA will
not only perform well, but on which it will outperform other search methods such
as hill climbing. In addition to our experiments comparing the GA’s performance
on R1 and R2, we compared the GA’s performance with that of three commonly
used iterated hill-climbing schemes: steepest-ascent hill climbing, next-ascent hill
climbing,%* and a scheme we call “random-mutation hill climbing,” that was sug-
gested by Richard Palmer.%® Qur implementation of these various hill-climbing
schemes follows:

w Steepest-ascent hill climbing (SAHC):

1. Choose a string at random. Call this string current-hilltop.

2. Systematically mutate each bit in the string from left to right, recording
the fitnesses of the resulting strings.

3. If any of the resulting strings give a fitness increase, then set current-hilltop
to the resulting string giving the highest fitness increase. (Ties are decided
at random.)

4. If there is no fitness increase, then save current-hilltop and go to step 1.
Otherwise, go to step 2 with the new current-hilltop.

5. When a set number of function evaluations has been performed, return the
highest hilltop that was found.

s Next-ascent hill climbing (NAHC):

1. Choose a string at random. Call this string current-hilltop.

2. Mutate single bits in the string from left to right, recording the fitnesses of
the resulting strings. If any increase in fitness is found, then set current-
hilltop to that increased-fitness string without evaluating any more single-
bit mutations of the original string. Go to step 2 with the new current-
hilltop, but continue mutating the new string starting after the bit position
at which the previous fitness increase was found.

3. If no increases in fitness were found, save current-hilltop and go to step 1.

4. When a set number of function evaluations has been performed, return the
highest hilltop that was found.

This method is similar to Davis’ “bit-climbing” scheme.!® In his scheme, the
bits are mutated in a random order, and current-hilltop is reset to any string
having equal or better fitness than the previous best evaluation.

78 Melanie Mitchell

TABLE 5 Summary of results of 200 runs of various hill-climbing algorithms on R2.

Function Evaluations to Optimum

200 runs SAHC NAHC RMHC
Mean > 256,000 (std err: 0) > 256,000 (std err: 0) 6551 (std err: 212)
Median > 256,000 > 256,000 5925

» Random-mutation hill climbing (RMHC):

1. Choose a string at random. Call this string best-evaluated.

2. Choose a locus at random to mutate. If the mutation leads to an equal or
higher fitness, then set best-evaluated to the resulting string.

3. Go to step 2.

4. When a set number of function evaluations has been performed, return the
current value of best-evaluated.

Table 5 gives results from running these three hill-climbing schemes on R2.
In each run the hill-climbing algorithm was allowed to continue either until the
optimum si. - was discovered or until 256,000 function evaluations had taken
place, and the total number of function evaluations performed was recorded. The
entries in the table are each means over 200 runs. As can be seen, steepest-ascent
and next-ascent hill climbing never found the optimum during the allotted time,
but random-mutation hill climbing found the optimum on average more than ten
times faster than the GA. Note that random-mutation hill climbing as we have
described it differs from the bit-climbing method used by Davis'® in that it does
not systematically mutate bits and it never gives up and starts from a new random
string; rather it continues to wander around on plateaus indefinitely. Eshelman'®
has pointed out that the random-mutation hill-climber is ideal for the Royal Road
functions—in fact, much better than Davis’ bit-climber—but will have trouble with
any function with local minima. (Eshelman found that Davis’ bit-climber does very
poorly on R1, never finding the optimum in 50 runs of 50,000 function evaluations
each.)

These results are a striking demonstration that, when comparing the GA with
hill climbing on a particular problem or test-suite, it matters which type of hill-
climbing alrorithm is used. Davis'® has also made this point.

Genetic Algorithms 79

CONCLUSION

The research on Royal Road landscapes is an initial step in understanding more
precisely how schemas are processed under crossover. By studying the GA’s be-
havior on simple landscapes in which the desirable building blocks are explicitly
defined, we have discovered some unanticipated phenomena related to the GA’s
ability to process schemas efficiently, even in nondeceptive functions. The Royal
Road functions capture, in an idealized and clear way, some landscape features
that are particularly relevant for the GA, and we believe that a thorough under-
standing of the GA’s behavior on these simple landscapes will be very useful in
developing more detailed and useful theorems about GA behavior.

The results described in this subsection represent work in progress, and there
are several directions for future investigation.

In the short term, we plan to study more carefully the bottlenecks in the discov-
ery of desirable schemas and to quantify more precisely the relationship between
the fitness values of the various building blocks and the degree to which these
bottlenecks will occur. Hitchhiking is evidently one bottleneck, and we need to un-
derstand better the way in which it occurs and under what circumstances. Once we
have described the phenomena in more detail, we can begin developing a mathe-
matical model of the schema competitions we observe (illustrated in Figure 33) and
how they are affected by different building-block fitness schemes. The hill-climbing
results need to be further analyzed and explained. An important part of this re-
search is to construct versions of “royal road” landscapes that will fulfill our goal
of finding simple functions that distinguish GAs from hill climbing. Some steps in
that direction are reported in Mitchell and Holland.%?

The Royal Road functions explore only one type of landscape feature that is
relevant to GAs: the presence and relative fitnesses of intermediate-order building
blocks. Our longer-term plans include extending the class of fitness landscapes
under investigation to include ¢ :r types of relevant features; some such features
were described in Mitchell et a1.! We are also interested in developing statistical
measures that could determine the presence or absence of the features of interest.
These might be related to work on determining the statistical structure of fitness
landscapes described in subsection 4.2. If such measures could be developed, they
could be used to help predict the likelihood of successful GA performance on a
given landscape.

80 Melanie Mitchell

ACKNOWLEDGMENTS

A number of people have contributed to this chapter in direct and and indirect
ways. The work described in subsections 4.1 and 4.3 was carried out in collabo-
ration with Stephanie Forrest, and mtch of the text there is excerpted from two
papers co-authored with her. Emily Dickinson and Julie Rehmeyer helped produce
the figures given in subsection 4.1. Thanks to Robert Axelrod, Richard Belew,
Stuart Kauffman, and Thomas Meyer for answering questions and for helpful dis-
cussions about the research projects described here. Thanks to Robert Axelrod,
Aviv Bergman, Lashon Booker, Arthur Burks, Michael Cohen, Marcus Feldman,
Stephanie Forrest, Rick Riolo, and Carl Simon for many helpful discussions on
issues related to genetic algorithms, and special thanks to John Holland for con-
tinuing to produce and share his insights about genetic algorithms and adaptive
complex systems. Finally, thanks to Daniel Stein for inviting me to lecture at the
1992 Santa Fe Institute Summer School, and to the Summer School students for
incisive questions and comments on my lectures.

Genetic Algorithms 81

REFERENCES

1.

10.

11.

12.

13.

Ackley, D., and M. Littman. “Interactions Between Learning and Evolution.”
In Artificial Life II, edited by C. G. Langton et al. Santa Fe Institute Studies
in the Sciences of Complexity, Proc. Vol. X, 487-507. Reading, MA: Addison-
Wesley, 1991.

. Andreoni, J., and J. H. Miller. “Auctions with Adaptive Artificial Agents.”

Working Paper 91-01-004, Santa Fe Institute, Santa Fe, New Mexico, 1991.

. Axelrod, R. The Evolution of Cooperation. New York: Basic Books, 1984.
. Axelrod, R. “The Evolution of Strategies in the Iterated Prisoner’s Dilemma.’

1]

In Genetic Algorithms and Simulated Annealing, edited by L. D. Davis, chap-
ter 3. Research Notes in Artificial Intelligence. Los Altos, CA: Morgan Kauf-
mann, 1987,

. Baker, J. E. “Adaptive Selection Methods for Genetic Algorithms.” In Pro-

ceedings of the First International Conference on Genetic Algorithms and
Their Applications, edited by J. J. Grefenstette. Hillsdale, NJ: Lawrence Erl-
baum, 1985.

. Baldwin, J. M. “A New Factor in Evolution.” Amer. Natur. 30 (1896): 441-

451.

. Belew, R. K. “Evolution, Learning, and Culture: Computational Metaphors

for Adaptive Algorithms.” Complex Systems 4 (1990): 11-49.

. Belew, R. K., J. McInerney, and N. N. Schraudolph. “Evolving Networks:

Using the Genetic Algorithm with Connectionist Learning.” In Artificial Life
II, edited by C. G. Langton et al. Santa Fe Institute Studies in the Sciences
of Complexity, Proc. Vol. X, 511-547. Reading, MA: Addison-Wesley, 1991.

. Bergman, A., and M. W. Feldman. “More on Selection For and Against Re-

combination.” Theor. Pop. Biol. 38(1) (1990): 68-92.

Bethke, A. D. Genetic Algoritt ms as Function Optimizers. Ph.D. Thesis, Uni-
versity of Michigan, Ann Arbor, MI. Dissertation Abstracts International,
41(9), 3503B, No. 8106101. Ann Arbor, MI: University Microfilms, 1980.
Caruana, R. A., and J. D. Schaffer. “Representation and Hidden Bias: Gray
vs. Binary Coding for Genetic Algorithms.” In Proceedings of the Fifth In-
ternational Conference on Machine Learning. San Mateo, CA: Morgan Kauf-
mann, 1988.

Chalmers, D. J. “The Evolution of Learning: An Experiment in Genetic Con-
nectionism.” In Proceedings of the 1990 Connectionist Models Summer School,
edited by D. S. Touretzky et al. San Mateo, CA: Morgan Kaufmann, 1990.
Das, R., and L. D. Whitley. “The Only Challenging Problems are Decceptive:
Global Search by Solving Order 1 Hyperplanes.” In Proceedings of the Fourth
International Conference on Genetic Algorithms, edited by R. K. Belew .. .d
L. B. Booker. San Mateo, CA: Morgan Kaufmann, 1991.

82

14.

15.

16.

17.

18.

19.
20.

zl.

22.

23.

24.

25.

26.

27.

28.

Melanie Mitc veli

Davis, L. D. “Adapting Operator Probabilities in Genetic Algorithms.” In
Proceedings of the Third International Conference on Genetic Algorithms,
edited by J. D. Schaffer. San Mateo, CA: Morga.. Kaufmann, 1989.

Davis, L. “Bit-Climbing, Representational Bias, and Test Suite Design.” In
Proceedings of the Fourth International Conference on Genetic Algorithms,
edited by R. K. Belew and L. B. Booker. San Mateo, CA: Morgan Kaufmann,
1991.

Davis, L. D., ed. Handbook of Genetic Algorithms. New York: Van Nostrand
Reinhold, 1991.

Deb, K., and D. E. Goldberg. “Sufficient Conditions for Deceptive and Easy
Binary Functions.” IIliGAL Report No. 92001, Illinois Genetic Algorithms
Laboratory, Department of General Engineering, University of Illinois at
Urbana-Champaign, 1992.

De Jong, K. A. “An Analysis of the Behavior of a Class of Genetic Adaptive
Systems.” Ph.D. Thesis, University of Michigan, Ann Arbor, MI, 1975.
Eshelman, L. Private communication, 1992.

Fontanari, J. F., and R. Meir. “The Effect of Learning on the Evolution of
Asexual Populations.” Compler Systems 4 (1990): 401-414.

Forrest, S., and M. Mitchell. “Relative Building Block Fitness and the Build
ing Block Hypothesis.” In Foundations of Genetic Algorithms 2, edited by L.
D. Whitley. Los Altos, CA: Morgan Kaufmann, 1993.

Forrest, S., and M. Mitchell. “What Makes a Problem Hard For a Genetic
Algorithm? Some Anomalous Results and Their Explanation.” Mach. Learn.
(1993): to appear.

Forrest, S., and A. S. Perelson. “Genetic Algorithms and the Immune Sys-
tem.” In Parallel Problem Solving from Nature, edited by H. Schwefel and R.
Maenner. Lecture Notes in Computer Science. Berlin: Springer-Verlag, 1990.
Goldberg, D. E. “Simple Genetic Algorithms and the Minimal Deceptive
Problem.” In Genetic Algorithms and Simulated Annealing, edited by L. D.
Davis, chapter 6. Research Notes in Artificial Intelligence. Los Altos, CA:
Morgan Kaufmann, 1987.

Goldberg, D. E. “Genctic Algorithms and Walsh Functions: Part I, A Gentle
Introduction.” Complex Systems 3 (1989): 129-152.

Goldberg, D. E. “Genetic Algorithms and Walsh Functions: Part II, Decep-
tion and Its Analysis.” Compler Systems 3 (1989): 153-171.

Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Machine
Learning. Reading, MA: Addison Wesley, 1989.

Goldberg, D. E. “Construction of High-Order Deceptive Functions Using
Low-Order Walsh Coefficients.” Technical Report 90002, Illinois Genetic Al-
gorithms Laboratory, Department of General Engineering, University of Illi-
nois, Urbana, 1L, 1990.

Genetic Algorithms 83

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Grefenstette, J. J. “Deception Considered Harmful.” In Foundations of Ge-
netic Algorithms 2, edited by L. D. Whitley. Los Altos, CA: Morgan Kauf-
mann, 1993.

Grefenstette, J. J., and J. E. Baker. “How Genetic Algorithms Work: A Crit-
ical Look at Implicit Parallelism.” In Proceedings of the Third International
Conference on Genetic Algorithms, edited by J. D. Schafler. San Mateo, CA:
Morgan Kaufmann, 1989.

Harp, S. A, and T. Samad. “Genetic Synthesis of Neural Network Architec-
ture.” In Handbook of Genetic Algorithms, edited by L. D. Davis, 202-221.
New York: Van Nostrand Reinhold, 1991.

Hertz, J., A. Krogh, and Richard G. Palmer. Introduction to the Theory of
Neural Computation. Santa Fe Institute Studies in the Sciences of Complex-
ity, Lect. Notes Vol. I. Reading, MA: Addison-Wesley, 1991.

Hillis, W. D. “Co-Evolving Parasites Improve Simulated Evolution as an
Optimization Procedure.” Special issue edited by S. Forrest. Physica D 42
(1990): 228-234.

Hinton, G. E., and S. J. Nowlan. “How Learning Can Guide Evolution.”
Complex Systems 1 (1987): 495-502.

Holland, J. H. “Escaping Brittleness: The Possibilities of General-Purpose
Learning Algorithms Applied to Parallel Rule-Based Systems.” In Machine
Learning II, edited by R. S. Michalski, J. G. Carbonell, and T. M. Mitchell,
593-623. San Mateo, CA: Morgan Kaufmann, 1986.

Holland, J. H. “The Dynamics of Searches Directed by Genetic Algorithms.”
In Evolution, Learning, and Cognition, edited by Y. C. Lee, 111-128. Tea-
neck, NJ: World Scientific, 1988.

Holland, J. H., and J. H. Miller. “Artificial Adaptive Agents in Economic
Theory.” Working Paper 91-05-025, Santa Fe Institute, Santa Fe, New Mex-
ico, 1991.

Holland, J. H. Adaptation in Natural and Artificial Systems, 2nd Edition.
Cambridge, MA: MIT Press, 1992. (First edition, 1975.)

Holland, J. H. “Echoing Emergence: Objectives, Rough Definitions, and Spec-
ulations for Echo-Class Models.” Working Paper 93-04-023, Santa Fe Insti-
tute, Santa Fe, New Mexico, 1993.

Kauffman, S. A. “Emergent Properties in Random Complex Automata.”
Physica D 10 (1984): 145-156.

Kauffman, S. A. “Adaptation on Rugged Fitness Landscapes.” In Lectures
in the Sciences of Complexity, edited by D. Stein. Santa Fe Institute Studies
in the Sciences of Complexity, Lect. Vol. I, 527-618. Reading, MA: Addison-
Wesley, 1989.

Kauffman, S. A. “Requirements for Evolvability in Complex Systems: Orderly
Dynamics and Frozen Components.” Physica D 42 (1990): 135-152.

84

43.

44,
45.

46.

47.
48.

49.

50.

51.

52.
53.

54.
55.

56.

57.
58.

Melanie Mitchell

Koza, J. R. “Genetic Programming: A Paradigm for Genetically Breeding
Populations of Computer Programs to Solve Problems.” STAN-CS-90-1314,
Department of Computer Science, Stanford University, Stanford, CA, 1990.
Koza, J. R. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. Cambridge, MA: MIT Press, 1993.

Lenet, D. B., and J. S. Brown. “Why AM and Eurisko Appear to Work.”
Art. Intel. 23 (1984): 260-294.

Levenick, J. R. “Inserting Introns Improves Genetic Algorithm Success Rate:
Taking a Cue from Biology.” In Proceedings of the Fourth International Con-
ference on Genetic Algorithms, edited by R. K. Belew and L. B. Booker, 123~
127. San Mateo, CA: Morgan Kaufmann, 1991.

Liberman, U., and M. W. Feldman. “A General Reduction Principle for Ge-
netic Modifiers of Recombination.” Theor. Pop. Biol. 30(3) (1986): 341-371.
Liepins, G. E., and M. D. Vose. “Representational Issues in Genetic Opti-
mization.” J. Ezper. & Theor. Art. Intel. 2 (1990): 101-115.

Liepins, G. E., and M. D. Vose. “Deceptiveness and Genetic Algorithm Dy-
namics.” In Foundations of Genetic Algorithms, edited by G. Rawlins. San
Mateo, CA: Morgan Kaufmann, 1991.

Lindgren, K. “Evolutionary Phenomena in Simple Dynamics.” In Artificial
Life II, edited by C. G. Langton et al. Santa Fe Institute Studies in the Sci-
ences of Complexity, Proc. Vol. X, 295-312. Reading, MA: Addison-Wesley,
1991.

Lloyd Morgan, C. “On Modification and Variation.” Science 4 (1896): 733-
740.

Mackey, M. C., and L. Glass. Science 197 (1977): 297.

Manderick, B., M. de Weger, and P. Spiessens. “The Genetic Algorithm and
the Structure of the Fitness Landscape.” In Proceedings of the Fourth Inter-
national Confere