
RE[AD-A275 431 Form AE *ove

IdE EE I I~ld. seteeft ~ WgU

0 am lwuwa ea.Se OJ.Adg h.,• evcp m16?O•44Sg&LWmavmge OC 161

1. AGENCY USE ONLI|i. REPORT TYPE AND DATES COVERED

1 1/94 IScientific Paver
4. TITLE AND SUBTITLE S. FUNDING NUMBlERS

An Efficient Algorithm for 3D Connect-the-dots

6. AUTHOR(S)

J.John Kim

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION

U.S. Army Topographic Engineering Center REPORT NUMBER

ATTN: CETEC-PAO R-210

7701 Telegraph Road

Alexandria, VA 22310-3864

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORINGIMONITORINGD T IC AGENCY REPORT NUMBER

! ELECTE
FE£B 02 1994

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public releasq;
distribution is unlimited.

13. ABSTRACT (Maximum 200words)

This paper proposes an efficient algorithm to solve the problem.

In the algorithm, piecewise cubic Bezier curves will have a

tangential continuity at the end points of each piece, so that

the whole curve is continuous and differentiable everywhere. The

curvature around a given point and the shape of the whole curve

are controllable with user parameters. This paper analyzes the

effects of the user parameters on the whole curve and will

discuss the implementation of the algorithm in an efficient way

using matrix operations.

14. SUBJECT TERMS MS, NUMBER OF PAGES
10

terrain, visualization, flight path 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

unclassified unclassified unclassified
NSN 7540-01-2W0-$500 Standard Form 296 (Rev. 2-89)

PeftCrb. by ANSI Std Z3918

'I

An Zfficient Algorithm for 3D Conzect-the-dots

J. John Kim
U.S. Army Topographic Engineering Center

Battlefield Visualization Division
Fort Belvoir, Virginia 22060-5546

(703) 355-3838
jjkim@tecsunl.tec.army.mil 94-03371

1iihlllll
"ASTRACT \\vQ 6

Given a sequence of points in 3D space, finding a smooth curve
containing all of the points is called a "connect-the-dots"
problem and is not computationally easy to solve when the curve
must be continuous and differentiable. Many known algorithms
produce a curve which only approximates the points, a curve which
is not "smooth" enough, or a curve which takes too long to
compute for use in a realtime situation such as terrain data
visualization sequences.

This paper proposes an efficient algorithm to solve the problem.
In the algorithm, piecewise cubic Bezier curves will have a
tangential continuity at the end points of each piece, so that
the whole curve is continuous and differentiable everywhere. The
curvature around a given point and the shape of the whole curve
are controllable with user parameters. This paper analyzes the
effects of the user parameters on the whole curve and will
discuss the implementation of the algorithm in an efficient way
using matrix operations.

The algorithm has been designed and implemented to generate a
realtime flight path which is required to pass through a given
sequence of points and to give a directional vector determining
yaw and pitch at any point on the path. This paper illustrates
the actual 3D flight paths generated and used in a 3D terrain
visualization project.

INTRODUCTION

When playing "connect-the-dots", a child can easily draw a smooth
curve through dots by changing its curvature constantly, dot
after dot in a sequence. This capability of connecting dots with
a smooth curve in real time is often necessary in computer
graphics. Given a sequence of discrete points in 3D space,
generating a continuous curve that connects all the points is a
well defined problem. This problem should not be confused with
the problem of approximating points. The approximation problem
does not require the resulting curve to pass through the points
but does require the pre-determined order of the curve to be
fitted over all the data points. On the contrary, the connect-
the-dots problem requires that the curve must pass through all
the points but does not have to fit all the data points at once

94 2 01 197 2C~~~~1.~L

as long as the resulting curve is smooth enough.

This paper proposes an efficient algorithm for the connect-the-
dots problem. To meet the requirement, the algorithm uses a set
of piecewise cubic Bezier curves having a tangential continuity
at the end of each piece. Any neighboring curves shall have a
common tangential value at the shared point (i.e., at the ending
point of one curve and the starting point of the next curve) so
that the combined curve is differentiable everywhere.

A cubic Bezier curve can be expressed as a function of a set of
four points and derived from the general cubic curve equation
over t as shown below.

Cubic(t) = at 3 +bt 2 + ct + d, 0 1 t 1 1

The above equation can be written as a vector product:

Cubic(t) = [t3 t2 t 1] [b]

The coefficient column matrix determines the shape of the curve
and can be defined as a function of a set of four control points
{pl p2 p3 p4) as expressed below:

where the matrix M will characterize the relationship between the
curve shape and the control points. The matrix M is called the
basis of the curve. The cubic curves can be classified on the
basis of the bases. Cubic Bezier curves are one such class. A
cubic Bezier curve passes through the first and fourth control
points and has the slopes determined by the second and third
control points. This property of a Bezier curve can be written
mathematically as follows:

Bezier (0) = pl
Bezier(1) = p4
Bezier'(0) = 3 (p2 - p1)
Bezier'(1) = 3 (p4 - p3)

From the above set of equations, the Bezier basis M is derived.

-1 3 -3 1'
3 -6 3 0

M= -3 3 0 0
1 0 0 0.

The Bezier cubic curve is now expressed as a function of only a
set of four control points over t.

-1 3 -31 -

Bezier(t) = [t 3 t 2 ti 11 3 -6 3 2 0t1
-3 3 0 0 p31 0

This Bezier curve is applied to the control points given as 3D
dots in the "connect-the-dotsm problem. The application details
and the control mechanism over the shape of the curve are
described in the next two sections. The last two sections show
implementation details and the illustrations of the curve as a
smooth flight path in a 3D terrain visualization system.

PIZLNCISN BEZIUR CURVI

In generating a curve that passes through a long sequence of
control points, it is practical to make the curve a piecewise
polynomial because such a curve is easy to manipulate. Among
many different piecewise polynomial curves, a piecewise Bezier
curve was chosen to meet the requirement of the "connect-the-
dots" problem. A piecewise Bezier cubic curve requires a given
sequence of control points to be grouped into a sequence of sets
of four control points to which the Bezier equation derived in
the previous section applies. The grouping should be done
carefully, though. Otherwise, neighboring pieces of Bezier curves
would not meet at the same slope and result in a not-so-smooth
piecewise Bezier curve. To remedy the problem, it is possible to
use overlapped sets of four control points such as (al a2 a3 a4},
{a3 a4 a5 a6), {a5 a6 a7 a8), and so on. The overlapping grouping
will neither generate a curve passing through all points nor give
room for controlling the behavior of the resulting curve. They
may also be grouped unevenly.

This paper proposes that two extra points be inserted between
every two consecutive control points in the sequence such that
any control point and two extra points newly inserted before and
after the control point become collinear (See Figure 1). In the
figure, the quartets (each of which defines a Bezier curve) are
Control Point i, Control Point i+1, and two inserted points
between, i = 1, 2, 3, 4, and 5. The extra points not only make a
smooth piecewise Bezier curve passing through all the given

control points but also provide the leverage to control the shape
of the curve, which will be discussed in the next section.

2 4 6
1 3 5 _, 1-

: Control Points
* Inserted Points

Figure 1. Two points are inserted between control
points. A control point and its nearby inserted points
are collinear.

CONTROL OF CURVEZ SHPE

The manipulation of the inserted points controls the curvature
and the slope of a piece of Bezier curve independently. The
position and orientation of the inserted points mostly affect the
behavior of the piecewise Bezier curve constructed by the method
described above. Consider a sequence of given control points
denoted by C and inserted points by i as described in the earlier
section:

CI, 21, 13, Cd, 15, 16C,, , , 1,4 CIO, 4V,.

The distance between the inserted points and a control point, say
i 3 and C4, determines the curvature of the incoming curve into
the control point C4. It is intuitive to see that the closer the
inserted points i 3 and i 5 are located to the control point C4 the
smaller the curvature of the curve around C4 is. This intuition
is well illustrated in Figure 2.

Figure 2. The distance between inserted points
(smaller dots) and a control point affects the
local curvature around that control point.

It may be practical to maintain equal distances between the
inserted points and a control point so that the incoming and
outgoing curves at the control point have the same curvature.
The orientation of the line consisting of a control point and two
inserted points is another controlling factor. Let's revisit the
above sequence. The slope at C4 of the Bezier curve for the set
of four points (C 1 i 2 i 3 C4) is determined by the difference of i 3
and C 4 , and the slope at C 4 of the curve for the next set (C4 iS i 6
C 7) by the difference of i 5 and C 4 . The two slopes at C 4 must be
the same since the inserted points are placed to make the points
i 3C4 i 5 collinear. Both the incoming and outgoing curves at C 4 have
a commnon tangential line, which is the line i 3C4 i 5 . The setup of
collinearity and equal distance of inserted points around a
control point guarantees a continuous and differentiable curve
and leaves the orientation of the collinear line and the distance
of the inserted points as input parameters to control the
behavior of the curve.

IMPLEMENTATION

The implementation of the Bezier curve is straightforward. The
traditional forward difference algorithm is very effective for
computing any number of discrete points in a Bezier curve
successively. This section describes in detail the implementation
of a forward difference matrix for a Bezier curve.

A curve is regarded as an infinite number of sequenced points.
What is actually needed from the piecewise Bezier curve is enough
sequenced points to reconstruct the curve as closely as an
application requires. The number of required sequenced points
varies depending on an application. For example, drawing a
piecewise Bezier curve as a solid curvy line on a graphics
monitor requires fewer points than using the same curve as a 3D
flight path in a mission rehearsal. Any number of points can be
generated by evaluating Bezier(t) for 0<=t<=l. If n denotes the
number of points, Bezier(t) will be evaluated n+l times for the
following t values:

n n n

The points generated will be as follows:

-1 3-311 [PI'
Eezier(O) = [0 0 0 1] -6 3 00 p3-3 3 001j3

1 0 00 LP'J

[-1 3 -3 1]PI

Beziez(1) =[(1I)3 (1) 2 1]I -6 3 0 p2

'-1 3 -31' IP1

Bezier(n) =[()3 (.) 2 2-- 3 0 p2n [n n nj-3 3 0 0 p

1 0 00

-13-3 11 [PI

Eeziez (n) 3.1 -6 301 p2

1 0 0 0. 4.

Each of the n points can be computed easily, when the forward
difference algorithm is used, by one iteration of adding the
third row to the fourth row, the second to the third, and the
first to the second in a certain matrix. Such a matrix is called
a forward difference matrix and it is not difficult to construct.
Let's consider the matrix F shown below:

6 0 00a
n

3

6 2 00
F= n3 n2

1 1 1 0
n 3 n2 I

0 0 0 1

The bottom row of the above matrix F initially gives a quartet to
be used as the first factor in the Bezier equation for the
computation of the first point of the n+l points to be generated.
After one iteration of adding the third row to the fourth row.
the second to the third. and the first to the second of F, the

bottom row of the updated matrix gives another quartet to be used
as the first factor in the Bezier equation for the computation of
the second point. And this iteration goes on until the n-th
iteration produces the last quartet in the bottom row for the
last point of the n+l points. The following sequence shows the
n+l quartets generated by the successive iteration of the matrix
F.

(0,0,0,1); ((1)3 (_)21 I); ((21)3, (2)2, 2 I)* ; (1,1,1,1
n n n n n n

To make it even simpler, a forward difference matrix is
constructed as the product of matrices F, M, and a single column
matrix of [pl p2 p3 p4] as shown below. The resulting 4X4 matrix
is called a Bezier forward difference matrix.

6 0 00

6 2 00 3 -6 3 0p2
3 n2 -- 3 3 00 p3

1 1 O 1 0 00 [ps]

n3 n2 n

0 0 01

The above Bezier forward difference matrix will generate a
sequence of n+l points between the points pl and p4 with the
first in the sequence being P1 and the last p4. In our
application, pl and p4 can be any neighboring control points in
the given input sequence, and p2 and p3 are the inserted extra
points between the neighboring control points. It should be noted
that the extra points inserted may or may not be among the
sequence of n+l points.

FLIGHT PATH APPLICATION

Using piecewise Bezier curves for solving *connect-the-dot-
problems is useful for many application areas. In this section,
the curves are illustrated as flight paths used in a 3D terrain
visualization system.

A smoothly generated flight path provides a smooth sequence of
view points in a 3D visualization, where abrupt positional
changes of the view point are undesirable. The directional
derivatives at any point in the path show the change rates of
yaw, pitch and orientation at that point quantitatively.

In the flight path examples (Figure 3), first, the inserted
points (denoted by i's) are placed such that the collinear points
ik_,Ckik+1 are parallel to the line Ck. 3Ck÷3except when Ck is the
first or the last control point. At the first control point C1,

the inserted point i 2 is placed to make the line C1i 2 parallel to
the line C1 C3, and at the last control point Ciast, the inserted
point i1a~t_1 is placed to make the line il,,t-iCl,,t parallel to the
line Cias,- 3Cl,,t. The orientation of the collinear points shown in
Figures 1 and 2 of the earlier sections illustrates this setup.
Second, the distances between inserted points and control points
are locally adjusted interactively before a control point is
selected and marked on a terrain image (or a map). Since the
distance controls the curvature of a flight path, the minimum
distance could depend on the capability of a specific aircraft.
Third, the number of samples taken from each piece of Bezier
curve is dynamically adjusted so that the distance between any
two samples, called frame distance, is maintained constant
through out the whole curve. Typical frame distances for a flight
path application are 10, 20, 30, 40, and 50 meters. For example,
a 20 meter frame distance gives a new aircraft position (or a new
view point) every 20 meters along the whole flight path. This
means a new 3D perspective terrain scene is automatically redrawn
on the screen every 20 meters when the auto-flight mode is chosen
in a 3D terrain visualization system. The following figure shows
three flight paths drawn on three different terrain (SPOT image
or map) backgrounds, where the altitudes of the paths are drawn
along the cross-sectional view of the terrain at the bottom of
the map. The altitude of a control point is set to a constant
value above the corresponding terrain elevation to simplify the
illustration.

S

Figure 3. Three fight paths - Top and Middle: 1:50,000
and 1:250,000 scale maps of Sarajevo area, Bottom: SPOT
image of Foca area

b

CONCLUSION

This paper has presented an efficient method to solve the
connect-the-dots problem computationally. The method
systematically inserts extra points in a given sequence of dots
(control points) and applies a Bezier cubic curve to each quartet
of points in the sequence to get a piecewise Bezier curve. The
piecewise Bezier curve is guaranteed to have a directional
derivative anywhere by the systematic insertion of the extra
points. The inserted points were shown to control the behavior of
the curve. The method was applied to flight path generation and
is empirically proven to be robust.

