ﬁ

AD-A275 419 ton pace One e Ehoeoren

ol i il

u |mmm ﬂ"[?Y‘H w:w:ngm.mwwtmwmn:qwnu«;nmmu:m
":, Ll . s el) Watingion =esdquerters e, C 10rm 4100 Ope _,_mam') p“' m" ',:
Os Aanagement and Budget. Paperwore Redurton Progect 197040188, Washington, OC 20503

1. AGENLY UDE UNLY (Leave DIank) | 4. KEPUMI UATE 3. REPORT TYPE AND OATES COVERED |
4J 1/94 Scientific Papner /)

Caometric Constraints

4. TITLE AND SUBTITLE $. FUNDING NUMBERS o&]
Neural Network Solutions to Logic Prograns with

6. AUTHOR(S)

Jo Ann Parikh

Anne Werkheiser

V.S. Subrahamanian
7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION

™ . REPORT NUMBER .

U.S. Army Topographic Engineering Center _
ATTN: CETEC-PAQ

R-206
7701 Telegraph Road
Alexandria, VA 22310-3864
9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

ELECTE ;
FEBO41994 . +

e
-

12a. OISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release;
distribution is unlimited.

Pabt

13. ABSTRACT (Maximum 200 words)

Hybrid knowledge bases (HKBs), proposed by Nerode and Snbx:ahmmiln,. provide a nniform A
theoretical framework for dealing with the mixed data types and m.ultxp}e reasoning modes reqmred
for solving logical deployment problems. Algorithms based on mixed integer hnetr prognmm;:
techniques have been developed for the syntactic subset of .HKB' corresponding to function-
Prolog-like logic programs. In this study, we examine the 'tbilsty of neural networks to solve a more
comprebensive set of problems expressed within the hybrid knowledge base framework.

obiective of this research is to design and implement a nonlinear optimization prom(clm
for ;ro];:mg J:cxttended logic programs with neural networ'h. We focus upon two types of extensions
which are typically required in the formulation of logical deth problem.s. The ﬁnt type
of extension, which we shall refer to as a Type I extension, conmt, of embeddmg numerical and
geometric constraints into logic programs. The second type of fxtenmfn, which we shall call a Type
II extension, consists of incorporating optimisation problems into logic clauses.

14. SUBJECT TERMS 1s. NUMBER OF PAGES

Neural Networks, Logic Programs, Logical Deployment 1&9&(&2&3&
Problems, Geometric Constraints, and Optimization Problems

B. GISTRIBUTION: COOE

17. SECURITY CLASSIFICATION] 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. UMITATION OF ABSTRACT |
OF REPORT OF THIS PAGE OF ABSTRACT
unclassified unclassified unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Preacrbed by ANSI Stg 239-18
294-102

Neural network solutions to logic programs with geometric constraints

Jo Ann Parikh

Computer Science Department DTIC QUALITY INSPECTED 8
Southern Connecticut State University
501 Crescent Street

New Haven, CT 06515 Accesion For |

E-mail : parikh@scsu.ctstateu.edu NTIS CRA&I ‘95
DTIC TA -
Anne Werkheiser Unanr.ou:.?@d '.?
U. S. Army Topographic Engineering Center Justiticaton
Fort Belvoir, VA 22060-5546 -
E-mail: anne@pooh.tec.army.mil BY o
Distribution |

V.S. Subrahmanian
Computer Science Department &

Availability Cocnrs

Institute for Advanced Computer Studies Dist Avail and|or
University of Maryland s Special
College Park, MD 20742
E-mail : vs@cs.umd.edu A"
ABSTRACT

Hybrid knowledge bases (HKBs), proposed by Nerode and Subrahmanian, provide a uniform
theoretical framework for dealing with the mixed data types and multiple reasoning modes required
for solving logical deployment problems. Algorithms based on mixed integer linear programming
techniques have been developed for the syntactic subset of HKBs corresponding to function-free

Prolog-like logic programs. In this study, we examine the ability of §e¥ n%orh to solve a more
comprehensive set of problems expressed within the hybrid knowledge base framework.

The objective of this research is to design and implement a nonlinear optimization procedure
for solving extended Jogic Erggama with neural networks. We focus upon two types of extensions
which are typically required in the formulation of W The first type
of extension, which we shall refer to as a Type I extension, consists of embedding numerical and
Eeomgﬁric constraints into logic programs. The second type of extension, which we shall call a Type

extension, consists of incorporating Wiﬂo logic clauses.

1. INTRODUCTION

A potentially useful way of organizing the massive volume of terrain information available
from multiple sensors with human expertise and decision-making criteria is through facts and rules
that can be accessed by logic programs. In these systems numerical, geographical, and geometric
information must be combined uniformly with logical information as in human inference to solve

. 94-03
IIIIIIIIIIIIlll'llllllllllllilllllllllllllﬂl 94 2 02 061

logical deployment problems. The rules in the system must be able to express various types of
relationships, including constraint relationships and relationships framed as optimization problems.
Hybrid knowledge bases!, proposed by Nerode and Subrahmanian, provide a general mechanism for
uniformly dealing with mixed data types and multiple reasoning modes including reasoning about
time and uncertainty.

The hybrid knowledge base (HKB) that was proposed! consists of a set of statements of the

form:
A:fug,to) — Z|| By :[u,t1)&...& By : [tn, tn)

where A, B,,..., B, are atoms of an underlying logical language L, Z is a constraint over a con-
straint domain, ¥, and each u; is a non-negative real number and ¢; is a set of non-negative real num-
bers. = is called the constraint part of the above clause, and A : [ug, %] — By : [u1, 1] & ... & B, :
[tn, t) is called the annotated clause part of the above formula. The intuitive reading of the above
clause is: “If = is true with respect to the constraint domain ¥, and for all 1 < & < n, B; is true
with a certainty of u; or more at all time points in ¢;, then A is true with certainty uo or more at
all time points in ¢.”

Nerode et al.! extend HKB theory to include non-monotonic modes of negation as well, but for
the purposes of this paper, we will consider only positive HKBs obtained as follows: first, £ is the
domain of real numbers |2, R'. Thus, all constraints occurring in HKB clauses are over the real
domain. Second, we assume that time is static, and uncertainties are not present. This means that
the ¢;’s all refer to the same point in time, and the u;’s are all 1.

Development of efficient implementation paradigms for the full range of features encompassed
by the HKB framework is a challenging problem. A mixed integer linear programming methodology
has been developed by Jeroslow? and by Nerode and Subrahmanian® to compute stable models for
function-free Prolog-like logic programs. In order to handle nonlinear constraints (without reducing
them to linear constraints), a different methodology must be adopted.

In the class of Constraint Logic Programming (CLP) languages, due to Jaffar and Lassez!, linear
and nonlinear constraints in extended logic programs are solved by a combination of techniques
that includes linear programming methods and unification. CLP(R), a constraint programming
language over the domain of real numbers, solves linear constraints by generalizing unification and
solves nonlinear constraints by delaying the solution until a sufficient number of variables have been
solved to reduce the nonlinear constraints to linear constraints. CLP(M), a constraint programming
language for solving optimization problems, uses the "ConstrainedMin” and ”ConstrainedMax”
routines in Mathematica to solve embedded optimization problems.

In this paper we describe a neural network approach for solving logical deployment problems
expressed within the hybrid knowledge base framework. The approach concentrates on solving logic
programs which contain clauses requiring satisfaction of geometric constraints and optimization
problems in conjunction with logical constraints. The constraints express facts and relationships
describing terrain characteristics, terrain reasoning, and user requirements.

The remainder of the paper is organized as follows. Section 2 introduces the nonlinear op-
timization procedure and an illustrative site identification system. Section 3 discusses the neural

network algorithm and numerical simulator. Section 4 contains experimental results obtained using
the neural network approach on the site identification system. Conclusions and recommendations
for future research are briefly outlined in Section 5.

2. NONLINEAR OPTIMIZATION PROCEDURE

The goal of the nonlinear optimization procedure is to map deductive systems with embedded
geometric constraints and/or embedded optimisation problems into combinatorial optimisation
problems. Combinatorial optimization problems can be defined as the class of problems which deal
with maximizing or minimizing a function of many variables subject to inequality and equality
constraints and integrality restrictions on some or all of the variables. We will be concerned with
the equality-constrained optimization problem

minimize f(z),
subject to A(z) =0, (1)

where f: R®* 2 R, A: R" - R™ and f and h are nonlinear functions.

The procedure to solve a logic program with recurrent neural networks consists of the following
three steps:

1. Construction of Completion(Ground(P)),
2. Transformation of Completion(Ground(P)) into a Combinatorial Optimisation Problem, and

3. Transformation of the Optimization Problem into an Energy Minimization Problem.

2.1. Construction of completion(ground(P))

In order to construct the completion of the ground version of a logic program P, variable-free
clauses in ground(P) are converted into equivalence clauses. The ground version of P is obtained
by replacing any logic clause in P that contains variables with the set of all clauses obtained by
substitution of atoms for variables. In the completion of the ground version, no two clauses have
the same head and the implication operator is replaced by the equivalence operator. For example,
if there are two or more clauses with the same head, they can be combined as below:

B11&By2& ... & By~ A
Bur&Buzk ... & Bun— A
can be rewritten as
(Bia&B12& ... &B1n) V...V (Br1&Bra& ... & Bpp) o A

A more detailed description of the procedure for comstruction of the completion of the ground
version of a logic program can be found in Bell et al.3

For the site identification system in Figure 1 below, the results of the first step of the pro-
cedure for the rules best_house(X,Y), ezisting_construction(X,Y), possible building site(X,Y),
and possible_restaurant_site(X,Y) are respectively

best_house(a, b) « house(a,b) &

(a,b) = arg{maz (distance from (R, S)t0(2,2))}.
ezisting_construction(a,b) « chemical_plant(a,b) V house(a,d) V interstate(a,bd).
possible_building_site(a, b) + flat_terrain(a,b) & - ezisting_construction(a, b).
possible_restaurant_site(a,b) + possible_building site(a,b)&a>3&b> 3&

(distance from (a,bd)to(5,5) < 1.2).

where a and b are constants obtained by substituting one of the values 1,2,3,4,5for X and Y.

Logic Program P:
chemical plant(2, 2).
flat_terrain(1,1). flat_terrain(1,2). flat_terrain(1,3). flat.terrain(2,1). flat_terrain(2,2).
flat_terrain(2,3). flat_terrain(2,4). flatterrain(3,1). flat_terrain(3,2). flat_terrain(3,3).
flat_terrain(4,1). flat_terrain(4,2). flat_terrain(4,4). flat_terrain(4,5). flat_terrain(5,2).
flat_terrain(5,3). flat_terrain(5,4). flat_terrain(5,5).
house(1,4). house(1,5). house(2,5).
interstate(5,5).

lake(5,1).

ezisting_construction(X,Y) « chemical plant(X,Y).

ezisting_construction(X,Y) « house(X,Y).

ezisting_construction(X,Y) + interstate(X,Y).

possible building_site(X,Y) « flat_terrain(X,Y)& ~ezisting_construction(X,Y).
TYPE I EXTENSION (Embedded Geometric Constraint):

possible_restaurant_site(X,Y) + possiblebuilding site(X,Y)& X >3&Y > 3&
(distance from (X,Y)to(5,5) < 1.2).

TYPE II EXTENSION (Embedded Optimization Problem):

best_house(X,Y) « house(X,Y)&
(X,Y) = arg{maz (distance from (R, S)t0(2,2), R, S €{1,2,3,4,5})}.

Figure 1: Site Identification System

2.2. Construction of the combinatorial optimization problem

The next step in the nonlinear optimisation procedure is to construct the constraint func-
tions and the objective function for the combinatorial optimisation problem. Each logical predicate
appearing in the completion of the ground version of a logic program is associated with a real vari-
able in the range [0, 1] with 0 denoting a true predicate and 1 a false predicate. Upper and lower
boounds are established for any slack variables which may be added when transforming inequality
constraints in the logic program into equality constraints for the combinatorial optimization prob-
lem. For logic programs with no extensions, the objective function is formulated as the negative of
the sum of the associated variables. Minimizing the objective function while satisfying the system
of constraints given in equation (1) ensures that any logical predicate which cannot explicitly be
inferred as true will receive a value of false.

The system h(z) = 0 of numerical constraints represents the following categories of logical
constraints:

o Fact Constraints

e Domain Constraints

o Logic Constraints

e Geometric Constraints

e Optimization Constraints

Fact constraints are represented by equating the associated variable to gero. For Logic Program
P, there are 24 facts in the completion of the program, each of which has a corresponding variable
associated to it. The fact chemical plant(2,2), for example, is represented by a variable C; ;.
The constraint equation that requires this fact to be true is C33 = 0. C3 3 will be zero when the
corresponding predicate is true and non-zero when the corresponding predicate is false.

Domain constraints are also imposed on the values of the associated variables. In order to
ensure that the value of each associated variable will be either true or false, constraints of the form
V(1 - V) = 0 must be included for each variable associated with a logical predicate. For the site
identification system without any extensions, there are a total of 175 domain constraints. Each of
the seven predicates in the program, i.e. chemical_plant(X,Y), flat_terrain(X,Y), house(X,Y),
interstate(X,Y), lake(X,Y), ezisting_construction(X,Y), and possible building site(X,Y), ex-
pands into 25 predicates in the program completion, making a total of 175 associated variables.

Logic constraints for a given clause are represented by equating to zero functions that are non-
zero for a combinations of truth values that is logically invalid and which are zero for all logically
valid sets of truth values. The construction of appropriate sets of functions can be completely
automated. First, we will illustrate the technique for selected logic clauses in Logic Program P and
then we will outline the general procedure.

The technique for the function construction is illustrated below for the two clauses in Logic
Program P, ezisting_construction(a, b) and possible_building_site(a,b). The following notation will
be used. Associated with predicates ezisting_construction(a,bd), chemical_plant(a,b), house(a,bd),
interstate(a,b), possible_building_site(a,b), and flat_terrain(a,bd) are the variables E, 3, Cap, Hap,
Iop, Pap, and F, 3, respectively. The invalid sets of truth combinations for (Es5,Ca b, Hep,lap) are
{t.£5.1}, {f.t.8.8), {f.8.8.0), {L.t.0t}, {f.t.5,1}, {f.1t,t}, {{.1,t,1}, and {f.f1,t} where ¢ denotes true and
fdenotes false. The invalid sets of truth combinations for (P, 5,Fas,Eap) are {t,t,t}, {tf,t}, {11},
{f,t,f}. For each invalid truth combination, a function is formed by associating a value of (1 — V)
to a truth value of ¢, a value of V to a truth value of f, and then multiplying together the terms
corresponding to truth values appearing in an invalid combination.

The corresponding constraints for ezisting_construction(a, b) and for possible building_site(a, b)
are given below:

Logic Constraints for existing_construction(a,b)

(1 — Egp)CopHaplap =0

Eap(1 - Cap)(1 — Hap)(1—Iap) =0
Eap(1 — Cap)(1 — Hop)lap =0
Eap(1 = Cap)Hap(l ~Inp) =0
Ea,b(l - Ca.b)Ha,bIc,b =0

Eo,bcc,b(l - Ha,b)(l - Ia.b) =0
Ea.bco.b(l - Ha,b)Ia,b =0
EapCoapHap(l — Inp) =0

Logic Constraints for possible_building_site(a,b)

(' - Pﬂ,b)(l - Fc,b)(]- - Ea,b) =0
(1= Pap)Fap(l ~ Eqp) =0

(1= Pap)FapEap=0

Pop(1 — Fap)Eqap =0

The general procedure for construction of functions for nonlinear equality constraints to repre-
sent logic constraints consists of the following steps:

1. Enumerating Invalid Truth Value Combinations for Clauses in Completion(Ground(P)),
2. Associating true to a term of the form (1 — V') and false to a term of the form V', and
3. Multiplying Associated Terms for Each Invalid Combination.

Numeric and geometric constraints embedded in rules are treated analogously to logical con-
straints. During the process of substitution of values for variables in the first stage of the procedure,

several simplifications may be directly applied. For example, in the site identification system, pos-
sible sites considered for a restaurant may be limited to those sites where X and Y are both greater
than 3. This means that there are possibly four sites, sites (4,4), (4,5), (5,4), and (5,5), which need
to be considered in the formulation of the optimization problem. All possible truth combinations
for the rule for possible_restaurant_site are then considered. The inequality constraint that the
distance between a possible restaurant site and the site (5,5), where the interstate is located, must
be less than 1.2 is turned into an equality constraint by adding a slack variable. Thus, the distance
condition inequality d((a,b),(5,5)) < 1.2 becomes a distance condition equality of the form

d((a,b),(5,5)) — 1.2 + slack(a,d) =0 (2)

where slack(a,b) is the slack variable associated with d((a,b),(5,5)). Let us denote the square of
the expression on the left-hand side of the equality in equation 2 above as Distl »- Whenever, in
one of the invalid sets of truth combinations, the truth value for the distance condition evaluate
to false, Distd » i8 inserted into the associated optimization constraint product. When the truth
value for the distance condition is true, a desirable function for the associated term in the product
would have the property of being close to zero when the distance condition is not satisfied and
non-zero if the distance condition is satisfied. A function which we have used in our experiments
is 1/(1 + ezp(Dist3 ;)). Using this function, the logic constraints for possible_restaurant_site are

Geometric Constraints for possible_restaurant_site(a,b)

(1-Rap)Pap=0
(1 - Rap)(1— Pap)Dist3y =0
Rap(1— Pap)(1/(1+ ezp(Distd;))) = 0

where Rqap and P, are the variables associated respectively with possible_restaurant_site and
possible_building_site(a, b), respectively.

Embedded optimization problems in logic clauses effect both the format of the optimization
constraints and the format of the objective function. If the sample logic program consists only
of logical information or logical information combined with geometric constraints, the objective
function to be minimized is simply the negative of the sum of the associated variables. With an
embedded optimization problem, both the negative of the sum of the associated variables and the
embedded optimization condition must be simultaneously optimized. In addition to the logical
constraints, a uniqueness constraint must be added to ensure that exactly one solution is found to
the optimization problem. The form of the constraints for the best_house clause, which contains
an embedded maximization problem, is illustrated below:

Optimization Constraints for best_house(a,b)
24 —~) Bap=0
abe{1,2,34,5}
(1- Bop)Hap =0

where B, s and H,p are the variables associated respectively with best_house(a,b) and house(a, b).
The form of the objective function for the Site Identification System consisting of Logic Program
P with TYPE II extension for best_house(a,b) is

Objective Function for Logic Program P with TYPE II Extension

- Z C.,b+Fc,b+H¢J+IQ,E+L.,5+EC,6+P..O+BIJ
a,0¢{1,2,3,4,5}

-). (distance from (a,b) to (2,2))(1 - Bep)
a,be{1,2,3,4,5}

where Bay, Cas, Eapy Fop, Hapy Iop, Lap and P,y are the variables associated respectively with
best_house(a, b), chemical_plant(a,b), ezisting_construction(a,b), flat_terrain(a,b), house(a,d),
interstate(a,b), lake(a,b), and possible building_site(a, b).

2.3. Transformation of optimization problem into energy minimization problem

The goal of this step of the nonlinear optimisation procedure is to transform the combinatorial
optimisation problem into an energy minimization problem which can be solved by recurrent neural
networks. An energy function is constructed consisting of the sum of the constraint functions and
the objective function. The basic form of the resultant energy function E is

E =) Ai("violation of constraint i”) + B("cost") (3)

where 4;,B > 0 and "cost” is an optimization cost function that is independent of constraint
violations.5

3. NEURAL NETWORK MODEL

The motivation behind using neural network approaches for solving combinatorial optimization
problems is to find near-optimal solutions in reasonable amounts of time to problems of realistic
sizes.®> Many combinatorial optimization problems, such as the Traveling Salesman Problem, are
NP-complete problems (problems whose solution time is of order ezp(n)). For this class of problems,
which, in addition to being NP-complete, typically have associated energy functions with multiple
local minima, Looi® points out that "optimal solutions are unattainable for problems of realistic
sizes” and that "neural network models can be promising for certain optimization problems which
can be readily expressed as the minimisation of an energy function”.

Recurrent neural networks are single-layer feedback networks which represent nonlinear dynam-
ical systems. The state trajectories of the networks evolve over time to attractors which tend to
minimize an associated energy function. Specific classes of recurrent neural networks have been
identified which are asymptotically stable and which can generate optimal solutions to linear pro-
gramming problems. Hopfield® and Cohen and Grossberg” have shown that discrete and analog
recurrent neural networks with no auto-connections and with symmetric connection weights are
asymptotically stable. Wang® has developed sufficient conditions for asymptotic stability of analog
recurrent neural networks with time-varying interconnection weights. Wang® also developed suf-
ficient conditions for the feasibility and optimality of solutions to convex programming problems
generated by this class of recurrent neural networks.

A numerical simulator for recurrent neural networks with time-varying penalty parameters,
which was developed by Wang® and modified based on suggestions by the author, was used to solve
the energy minimization problems obtained by applying our nonlinear optimization procedure to
logic programs. A brief overview of Wang’s technique (as used in our experiments) appears below.
Experimental results for the Site Identification System (Figure 1) are described in the next section.

3.1.Energy Function Design

The first task in the development of a recurrent neural network for solving an optimization
problem is to design an energy function whose minimum represents the solution to the optimiza-
tion problem. Let us assume that the optimization problem can be formulated as a nonlinear
programming problem with a single objective function f(¥) in which the goal is to

minimize f(¥) subject to the constraint p(#) = 0

The penalty function p(%¥) is assumed to be a non-negative, differentiable function which is equal
to zero if and only if ¥ is a feasible solution to the optimization problem. An energy function can
then be defined as

E[#(t), X(t)] = f(#(t)) + M()p(¥(2))

The penalty parameter A(t) is assumed to be a positive, monotonically increasing function of ¢
and #(t) which is initialized to a low value and increased slowly to avoid numerical instability and
overpenalization. A suitable function for A(t) is

t
VT
MO =3, S5

3.2. Algorithm for numerical simulation

The next task is to develop an update algorithm so that the system will evolve in the general
direction of the negative gradient of the energy function® to a stable minimum. For the numerical
simulation, the network was discretized based on the first-order Euler’s method. In addition to
selecting a function for the penalty parameter, the capacitive parameter ¢, must be determined
and activation functions F must be selected for each neuron. Sigmoidal activation functions are
typically used for mapping outputs back to inputs in recurrent neural networks. For a variable
ranging between [0, M), a sigmoidal activation function may be constructed as follows:

M . . .
T e where u;, v; are the input, output respectively for neuron ¢

vi(t) =
The following update algorithm (slightly modified from the algorithm in Wang®) was used for
the experiments:

Step 0: Input values for the parameters At, ¢, A(0), and € (used in the termination criterion).
Also input initial values for the vector ¥ and determine the corresponding initial input vector
4 by taking the inverses of the sigmoidal activation functions.

Step 1: Evaluate the gradieat by computing
#t) = VT f(#2)) + M)V p(#(2))
Step 2: Compute the new state:

it + At) = @(t) — Atg(t)p(T)e,
#t + At) = Fl(t + Af]

The capacitive parameter c,, is defined as ;}; and F denotes sigmoidal transformations. The
parameter ¢, should be selected sufficiently small to make the network stabilise quickly.

Step 3: Adapt the penalty parameter:

if E(t) < E(t+ At) + ¢, then Mt + At) = A(t) + p(—‘ga

Step 4: Check for termination:

if p(¥) > € then STOP else go to Step 1.

4. EXPERIMENTAL RESULTS

Experiments were conducted using the neural network approach on the Site Identification
System for (1) Logic Program P, (2) Logic Program P with the TYPE I extension, and (3) Logic
Program P with the TYPE II extension. The initial terrain configuration specified by the set of
facts in Logic Program P is illustrated in Figure 2 below. All variables associated with known facts
or with predicates which did not appear at the head of non-empty clauses were pre-set to 0 or 1
respectively and not allowed to change during the neural network update process.

For the first case, Logic Program P, convergence to a correct solution was obtained after only
three iterations. The twenty-five variables associated with the ezisting_construction clause and
the twenty-five variables associated with the possible building._site clause were correctly identified
as 0 for true and 1 for false. The results are illustrated in Figure 3 below.

For the second optimization problem, Logic Program P with TYPE I extension, convergence
was obtained in under 10,000 iterations to the correct solutions. Figure 4 shows the solutions
obtained for the four variables associated with possible_restaurant_site and for the fifty variables
associated with the possible_building site and ezisting_construction clauses. The neural network
correctly deduced that a restaurant could not be built on site (5,5) because it was not a possible
building site and that a restaurant could not be built on site (4,4) because it was not within a
distance of 1.2 from the interstate site. Sites (4,5) and (5,4) were found to be possible sites for
building a restaurant.

INITIAL TERRAIN
CONFIGURATION * @ * _@

‘w | I

LEGEND:

(a - ¢) tacts for chemical plant, fiat
terrain, house, interstete and lake,
respectively;
mmmmm
S ions tor prssitis betdin
(h) solutions for possibie restaurant
sites.

Figure 2: Initial Terrain Configuration for Site Identification System: (a-e) sites for chemical plant,
flat terrain, house, interstate, and lake, respectively

NEURAL NETWORK
SOLUTIONS:
LOGIC PROGRAMP

12

"1©

LEGEND:
{® - @) facts for chemical plamt, fist
ferrain, house, interstate and luke,

weos 4 2 3 4 S

Figure 3: Solutions to Nonlinear Optimization Problem for Logic Program P: (a-e) sites for chemical
plant, flat terrain, house, interstate, and lake, respectively; (f) solutions for existing construction
sites; (g) solutions for possible building sites

NEURAL NETWORKSOLUTIONS:
LOGIC PROGRAM F
WITH TYPE | EXTENSION .

1G4

F===

A WER

1@

LEGEND:
(@ - 0) facts for chemical plant, flst
forrain, house, interstate and lake,

respectively;
mu_uunmomm

solutions for possible buiiding
(1) solutions for possible resteurant
oltee.

Figure 4: Solutions to Nonlinear Optimization Ptoblem for Logic Program P with TYPE I Ex-
tension: (a-e) sites for chemical plant, flat terrain, house, interstate, and lake, respectively; (f)
solutions for existing construction sites; (g) solutions for possible building sites; (h) solutions for
possible restaurant sites

NEURAL NETWORKSOLUTIONS:
LOGIC PROGRAM P
WITH TYPE Il EXTENSION . e

agng——
b & i
>

i I

LEGEND:
{a - ¢) facte for chamical plant, filst
tarrain, houss, interstate and lake,

respectively;
sohstions for existing construction
solutions for poseible buliding
sohalons for restaurant
Q‘ possible

B B 2 3 4 5
Figure 5: Solutions to Nonlinear Optimization Problems for Logic Program P with TYPE II
Extension: (a-e) sites for chemical plant, flat terrain, house, interstate, and lake, respectively; f)
solutions for existing construction sites; (g) solutions for possible building sites; (h) solutions for
best house site

In the experiments conducted on the network for the third optimization problem, Logic Program
P with TYPE II extension, convergence was again obtained in under 10,000 iterations. The best
bouse, i.e. the one furthest away from the chemical plant, was found to be the house at site (5,1).
The solutions for this problem are illustrated in Figure 5 above.

In our experiments, parameters and initial values had to be set appropriately to prevent in-
stability (oscillation or lack of convergence) and convergence to local minima. All variables in our
experiments that were not associated with facts or with predicates that did not appear at the head
of non-empty clauses were initialized to 0.5. Typical values for A(0) were 0.01, for At were 0.00001,
and for ¢, were 0.001. The network first gravitated toward the unconstrained solution and then,
as a result of the time-varying penalty parameter, converged toward a feasible solution.

8. CONCLUSIONS

This research has provided a design methodology for executing queries to hybrid knowledge
bases with extended logic programs containing embedded gcometric constraints and embedded
optimization problems. A particularly innovative aspect of our approach is the encoding of logical
information with geometric constraints as an energy minimization problem that can be solved with
recurrent neural networks. The feasibility of the approach has been demonstrated on a small, but
realistic, example. The conclusion reached is that this method has the potential to compute fast
and efficient solutions to logical deployment problems and that it should be the subject of more
investigation in order to realize its full potential in real-world applications.

Future research directions include:

o Investigation of Synergistic Algorithms.

Synergistic algorithms that combine the strengths of traditional mathematical programming
techniques, neural network models, and genetic algorithms need to be investigated in order to
build fast, robust, and efficient systems for solving logical deployment problems. Traditional
mathematical programming techniques provide a well-understood foundation for solving, in
particular, linear and mixed integer programming problems. Neural networks provide a fast
and efficient architecture for local search and for computing feasible solutions to nonlinear
constraint problems. Genetic algorithms perform efficient global search but, when the objec-
tive function is a time-varying function which asymptotically resembles the penalty function,
the mating of two distinct feasible solutions may not result in a feasible solution?3.

e Extension to Full-fledged Hybrid Knowledge Bases.
Methods need to be developed to process queries to logic programs which handle classical and
non-monotonic negation, reasoning about time, and reasoning about uncertainty. The results
of our present study and the success of neural network methodology in handling reasoning
about time and reasoning about uncertainty augur well for future investigations in neural
network methodology for implementation paradigms for full-fledged hybrid knowledge bases.

6. ACKNOWLEDGMENTS

This work was supported by the U. S. Army Topographic Engineering Center under the auspices
of the U. S. Army Research Office Scientific Services Program administered by Battelle (Delivery
Orders 436 and 532, Contract No. DAAL03-91-C-0034). Subrahmanian was supported by the
Army Research Office under grant number DAAL03-92-G-0225 and Parikh was supported in part
by National Science Foundation grant IRI-9108638. It is a pleasure to acknowledge Barbara Jayne
and Vanessa Zalegowski for illustrations and slides, and Cathy Wiley, research librarian at the Navy
Center for Applied Research in Artificial Intelligence, for help with references and reprints. This
paper could not easily have been completed without them.

7. REFERENCES

1. J. Lu, A. Nerode, J. Remmel and V.S. Subrahmanian, “Outline of a Theory of Hybrid
Knowledge Bases”, 1992 (submitted for publication).

2. R. E. Jeroslow, “Computation-oriented reductions of predicate to propositional logic”, De-
cision Support Systems, Vol 4, pp. 183-187, 1988.

3. C. Bell, A. Nerode, R. Ng, and V. S. Subrahmanian, “Computation and implementation of
non-monotonic deductive databases”, University of Maryland Technical Report CS-TR-2801, 1991.

4. J. Jaffar and J.-L. Lassez, “Constraint Logic Programming”, Proc. 1986 ACM Symp. on
Principles of Programming Languages, 1986.

5. C.-K. Looi, “Neural network methods in combinatorial optimization”, Computers Ops. Res.,
Vol. 19, No. 3/4, pp. 191-208, 1992.

6. J. J. Hopfield and D. W. Tank, “Neural computation of decisions in optimization problems”,
Biolog. Cybern., Vol. 52, pp. 141-154, 1985.

7. M. A. Cohen and S. Grossberg, “Absolute stability of global pattern formation and parallel
memory storage by competitive neural networks”, IEEE Trans. Syst. Man. Cybern., Vol. 13, PP.
815-826, 1983.

8. J. J. Wang, “On the asymptotic properties of recurrent neural networks for optimization”,
International Journal of Pattern Recognition and Artificial Intelligence, Vol. 5, No. 4,pp. 581-601,
1991.

9. R. Shonkwiler, R. and K. R. Miller, “Genetic algorithm/neural network synergy for non-
linearly constrained optimization problems”, Proc. International Workshop on Combinations of
Genetic Algorithms and Neural Networks (COGANN-92), pp. 248-257, 1992.

