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The research that was performed under the terms of this contract in the years
1988-1992 falls in two categories: A. Bulk properties, point defects and impurities, and
C,, @ B. Surface morphology and growth. Brief descriptions of the accomplishments are given

\\( low. More detailed accounts can be found in the attached published papers.
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\ ., cb\o-g A. BULK PROPERTIES, POINT DEFECTS, AND IMPURITIES

?‘3’ & Impurity Diffusion in Silicon

The atomistic mechanisms that mediate dopant impurity diffusion in Si have been
debated for many years. Experimental data cannot distinguish different mechanisms in
e an unambiguous way. We have carried out a variety of first-principles calculations in
- order to determine the relative importance of different mechanisms. In particular, we
explored the role of vacancies and self-interstitials. We computed the corresponding
activation energies for several dopant impurities and compared them with experimental
diffusion activation energies. We found that for boron, phosphorus, and arsenic both
vacancies and self-interstitials contribute with activation energies in thc observed range,
whereas for antimony only vacancies contribute with an activation energy in the exper-
imentally observed range In addition, we carried out a systematic study of non-
equilibrium diffusion, e.g. when excess self-interstitials are injected, and were able to
account for several experimental observations. This work is described in the attached
papers A and B.

Hydrogen in Si

Hydrogen in Si generated a significant amount of attention because a large number
of experimental data did not yield a consistent picture. Major questions were the charge
state of diffusing H in n-type or p-type Si, how H passivates shallow impurities, and the
atomic configurations of H-impurity pairs. Semiempirical theories or even first-principles
theories that looked only at a few chosen configurations did not resolve the issues but
rather contributed to the puzzles. We carried out a set of comprehensive calculations
that provided a systematic description of H in Si. We identified different diffusion paths
for the different charge states and showed that H is likely to exhibit negative-U behavior,
i.e. it’s favored to be either positive or negative, never neutral. We determined the
total-energy surfaces for H in the vicinity of impurities such as B and P and found that
H rotates around B with an activation energy of 0.2 eV. Independently, experiments es-
tablished that indeed H rotates about B with such an activation energy. Finally, we used
the total-energy surfaces of H in Si to compute a diffusion constant in agreement with
experimental data.. This work is described in the attached papers C-G.
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Auger Recombination Rates !

Calculations of Auger recombination ratcs are quite difficult bccauso the involve
summations over two initial and two final states. Available calculations involved many
approximations. Calculated carrier life times in Si were typically too large compared with
observed valucs, suggcesting that phonon-assistcd proccsscs may play an important rolc.
We performed very detailed calculations without any compromiising approximations,
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FIG. 1. Total-energy contour plot depicting the migration of
a neutral B interstitial through the Si crystal. The labeled sites
are T (tetrahedral), H (hexagonal), BC (bond ceater), and C
(at the center of a rhombus formed by three adjacent Si atoms
and the nearest 7). The encrgy difference between contours is
0.13 eV. The dashed line is the kick-out pathway.

mediated mechanisms, Q7 is the sum of the formation
and migration energies for the diffusing species.

For defect-mediated mechanisms, the first task of
theory is to determine which defect or complex leads to
diffusion with the smallest Q;. For vacancy-mediated
(V-mediated) diffusion, we find that the relevant diffus-
ing species is the vacancy for B and the impurity-va-
cancy (XV) pair for P, As, and Sb.'*"" For interstitial-
mediated (/-mediated) diffusion, a global total-cnergy

-surface was needed in order to determine the precise mi-

gration pathways and the diffusing species.'? A contour
plot of such a surface in the (110) diamond-structure
crystal plane for a neutral B interstitial (B;) is shown in
Fig. 1. We find that the energetically preferred diffusion
pathway in all cases is the kick-out process,'®!! o that
the diffusing species is the interstitial impurity atom.

The determination of Qf for the CE mechanism
necessitates mapping out the entire exchange path and
identifying the lowest-energy saddle point. Pandey car-
ried out such a'task in the case of self-diffusion (Si-Si
exchange), but the reoptimization of the entire path for
impurity-Si exchange is an unduly demanding computa-
tional task. For our purposes, it was adequate to obtain
an upper bound for the saddle~-point energy. !!

The calculated activation energies for V-, I-, and CE-
mediated mechanisms for substitutional B, P, As, and Sb
diffusion under equilibrium conditions are shown graphi-
cally in Fig. 2. A scrected range of experimental values
are shown as well.'> For comparison, we also show the
corresponding activation energies for seif-diffusion. In
all cases, the activation energies are thorc for neutral
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FIG. 2. The calculated activation energies under equilibri-
um conditions for vacancy-mediated (), interstitial-mediated
(D, and concerted-exchange (CE) mechanisms for Si self-
diffusion and various impurities. The boxed areas are a select-
ed range of experimental results from Ref. 13. The self-
diffusion CE activation energy is from Ref. 4.

species. Species of different charge states have been
found to contribute with only slightly different activation
energics at the temperatures of interest.'! We note that
for B, P, and As, the V- and [-assisted-mechanism ac-
tivation energies are the same within the accuracy of the
calculation (0.4 ¢V is the maximum difference). Be-
cause the theoretical CE activation energies are only
upper bounds, we view them as comparable to those of
defect-mediated mechanisms. Only in the case of Sb
does the large difference betweea activation energies al-
low us to conclude that the V-assisted mechanism dom-
inates, in agreement with conclusions drawn from experi-
mental data.’ In summary, our calculated activation en-
crgies, being in the same range as experimental values,
confirm the reliability of our theoretical methods but do
not establish the relative importance of the various
mechanisms, with the exception of Sb. For such a task,
it would be neccessary to determine the values of the
respective preexponentials, which is currently unfeasible.
Nevertheless, we show in the remainder of this paper
that theoretical calculations combined with experiments
involving injection of excess point defects allow a number
of important definitive conclusions to be made.

Excess point defects can be injected into the bulk by
surfsce treatments. For example, evidence has accumu-
lated that oxidation injects self-interstitials whereas ni-
tridation injects vacancies.>>'4!3 Under these condi-
tions, the dopant diffusion cocfficicat in buried impurity
J=yers is either retarded or enhanced. Conclusions de-
rived from such experiments have, however, widely
conflicted, largely because they were based on unsatis-
factory assumptions. The most serious shortcoming was
the implicit assumption that the concentrations of vacan-
cies and self-interstitials determine the dopant diffusion
coefficient. As we made clear carlier in this paper, the
relevant concentrations. are gencrally those of ecither the
impurity-vacancy pair (X¥) or the interstitial impurity
(X;). The key element of a correct theory of nonequili-
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brium diffusion is to recognize that the diffusion
cocflicient D is still given by a sum of terms of the form
of Eq. (1) where the diffusivities d; have the same values
as in equilibrium. It is then the task of theory to deter-
mine the correct expressions for all the relevant C;. We
present here the essential elements of such a theory un-
der injection of interstitials (the theory for vacancy in-
jection is completely analogous).

We first determine the effect of excess point defects on
the CE mechanism for which D; is proportional to the
concentration of substitutional impurity atoms, Cy,.
Point-defect injection occurs at comparatively low levels
so that it affects Cx,, and hence Dcg, only minimally
through the formation of XV pairs or X;. As a result, if
the CE mechanism is the dominant impurity diffusion
mechanism, the diffusion coefficient cannot be retarded
by moderate levels of injection. But this is in contsadic-
tion with experimental observation.>* We therefore do
not discuss the CE mechanism any further in the follow-
ing treatment.

We now turn to the effects of defect injection on
defect-mediated diffusion and, specifically, on the con-
centrations of the relevant diffusing species, the XV pair
or X;. For this purpose, it is essential to identify all the
reactions that govern the defect concentrations. These
are as follows:

S&V and S22/, )
I1+X,2X;, . (4)
V+X, 22XV, (5)
I+XxvaX,, (6)
I+veao, ¢))
VXX, ®)

Reactions (3) are written schematically and indicate
that a free or internal surface S can produce or absorb
both vacancies and interstitials independent of each oth-
er. In reaction (7), the symbol O represents bulk Si.
Starting with the seven reactions given abave, one can
immediately obtain four expressions of the form

8C
o ~Ze T "’

for each of the four defect species j (V, I, XV, X;). The
terms g, are generation rates and r, are recombination
frequencies. At steady state, we require 8C;/8¢ =0 for
all four species. The resuiting four equations comprise a
complete and exact set which can in principle yield solu-
tions for all relevant concentrations.

By invoking a series of approximations, analytical ex-
pressions for the concentrations can be obtained which
manifest the essential physical results.!" The concentra-
tions of Cx, and Cxv under injection of self-interstitials
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are
Cx,=CRx,+K{Cx,Ci. (10)
1/Cxv =1/Cv+BCilCx,C} , an

where C/ denotes the injected interstitial concentration.
K. is the equilibrium constant of reaction (4) and 8 is a
constant containing the reverse rate constant of reaction
(7) divided by the forward rate constant of reaction (6).

Combining Egs. (1), (10), and (11), the total diffusion
coefficient has the form

D=D;+Dy, 12)
where

Dy=D}! +Dj (13)
and

1/Dy=1/D¢ +1/Dy , (14)

where the subscript 7 (V) denotes the I- (V-) assisted
diffusion component. The primes denote the nonequili-
brium contribution to diffusion. D/ and 1/D} are pro-
portional to C/ and 1/Cj, respectively, as in the corre-
sponding terms in Eqs. (10) and (11). D] and Dy are
activated with activation energies given by

Qi =Einj—AE+Ey, , 1s)

where Ej, is the activation energy of the interstitial in-
jection process, AE is the energy difference between X;
and X, +1 as in reaction (4), and E,, is the migration en-
ergy of X;; and

Q) =(Ewj+EPYP)-(EF+ ENS*)+E,,  (16)

where EMF* (EJ'¥*) is the energy barrier to recom-
bination of interstitials (vacancies) with X¥ pairs (X,),
EF is the formation energy of vacancies, and E,, is the
XV migration energy.

We now discuss three distinct cases. If, under equilib-
rium, the 7 component is dominant, interstitial injection
leads to an enhanced total diffusion coefficient of the
form of Eq. (13), where the activation energy of D' is

given by Eq. (15). Hill'®* measured the diffusion coef- -

ficients of B, P, and As under interstitial injection and
found that they obey Eq. (13). This finding immediately
suggests that these impurities diffuse predominantly via
an interstitial mechanism. Furthermore, we have calcu-
lated the activation energy for these impurities from Eq.
(15) using our theoretical values for AE and E,, and an
experimental value for Eiy; extracted from Ref. 17. The
results, as well as Hill’s measured values, are given in
Table 1. The excellent agreement between two values
corroborates the conclusion that these impurities diffuse
primarily assisted by interstitials.

On the other hand, if, under equilibrium, the ¥ com-
ponent is dominant, interstitial injection can lead to ei-
ther diffusion retardation or enhancement, depending
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TABLE 1. Activation energies for diffusion mediated ex-
clusively by interstitials under interstitial injection [theory, Eq.
(15)] and measured activation enthalpies under oxidation con-
ditions (experiment from Hill, Ref. 16). All quantities are in
eV.

——

Qr (theoryT

Species Q' (experiment)
B 26 2.3
| 2.5 24
As 2.3 23

upon the level of injection. At low levels of injection, the
I component remains small while the ¥ component is re-
tarded according to Eq. (14). It is generally believed
that Sb diffusion under interstitial injection is such a
case,'? but data are usually reported at a single tempera-
ture. We predict that temperature-dependent data
would obey Eq. (14) so that a reciprocal Arrhenius plot
(i.c., 1/D vs 1/T) would be appropriate to extract an ac-
tivation energy for Dy to be compared with Eq. (16).
Such data would provide a test of our theory and assess
the conclusion that Sb diffuses predominantly by a V'
mechanism. If interstitial injection were to occur at high
levels, the term Dj will ultimately overwhelm all other
contributions and enhanced diffusion with an activation
energy given by Eq. (15) would be observed.

Lastly, if, under equilibrium, the V" and I components
are comparable, interstitial injection can lead to cither a
net enhancement or a net retardation, according to Eqgs.
(12)-(14). Temperature-dependent plots would be rath-
er complex but under certain conditions the new curve
will cross the corresponding equilibrium curve. Such
crossing is a definitive experimental signature of a dual
mechanism. Unfortunately, temperature-dependent data
of diffusion under vacancy or interstitial injection,
though highly desirable, are scarce.

We acknowledge many helpful discussions with J.
Bernholc and P. M. Fahey. This work was supported in
part by ONR contract No. N000014-84-C-0396.
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carrying out for the first time the appropriate multiple sum over thec Brillouin zone.
We found that in electron Auger lifetimes are much smaller than previously thought and
compare well with experimental values, thus obviating the need to invoke phonon as-
sistance. This work is described in the attached paper H.

Doping Levels and Compensation in ZnSe

It has long been known that ZnSe is easily doped n-type but very difficult to dope
p-type. In contrast, ZnTe is easily doped p-type, but not n-type. A number of explana-
tions have been proposed, e.g., native defects are such that they trap the would-be free
holes in ZnSe or the would-be [ree clectrons in ZnTe; large lattice relaxation makes the
would-be shallow acceptors deep in ZnSe; other configurations of the impurity, such as
interstitial, may have deep levels that capture the free carriers; solubility may be low al-
together. Neither experiment nor theory could determine which one of these possible
mechanisms actually operate and why such similar materials behave so differently. We
first computed the concentrations of native defects and showed that they are too small
to matter. Then we constructed a comprehensive theory in terms of which we could ac-
tually calculate both solubilities and doping levels, including the Fermi level. Through
first-principles calculations we implemented the theory for ZnSe and found that the
major problem for doping is one of solubility, because of formation of other competing
phases. The existence of interstitial impurities played a secondary role. We found that
nitrogen would be the most effective dopant, as found independently by experiments.
This work is described in the attached papers I-K

Forces on dopant impurities at semiconductor interfaces

Diffusion of dopants across interfaces is a central problem in device fabrication. The
potential barrier felt by a neutral impurity at an interface depends simply upon the
enthalpies in the respective materials. However, the potential felt by a charged impurity
or defect, such as a dopant, is a more subtle problem. While it was recognized that a
charged impurity would respond to electric fields, it was unclear what rolc the band
lineup played, since for electrons the lineup plays a role analogous to an electric field.
This remained an outstanding puzzle until we provided a rigorous solution. We showed
that the donor or acceptor level of the defect plays much the same role for the ion that
the band edge plays for an electron or hole in defining the effective potential. This work
is described in the attached paper L.

Carbon Impurities in Silicon

The predominant defect in silicon is dissolved (substitutional) carbon. Substitutional
carbon also forms complexes with other defects. Our calculations provided the first
theoretical perspective on the energetics of carbon defects and defect rcactions in silicon.
Moreover, we showed that the accepted experimental value for the enthalpy of substi-
tution was incorrect. Not only did our calculation give a differcnt value, but a re- O
analysis of the measured data confirmed this result. This is particularly important since .
the enthalpy of substitution controls the solubility of carbon in silicon, and hence the
driving force for precipitation (a major source of imperfections in commercial silico :
wafers). This work is described in the attached paper M. m
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B. SURFACE MORPHOLOGY AND GROWTH

Steps on Si (001) Surfaces

In the last few years there has been great interest in surface steps, because steps are
crucial in controlling growth. Steps on Si(001) can be cither one or two atomic layers
high. Single-layer steps lead to antiphase boundaries in GaAs grown on Si, while double
steps do not. The competition between single and double steps on Si(001) has therefore
been studied intensely. It was believed that stress-related interactions between steps led
to an abrupt transition, from single steps on surfaces oriented within a critical angle of
(001), to double steps for orientations above this critical angle. Yet we showed that the
behavior is actually quite different. As the surface orientation is varied, the transition
from single steps to double steps takes place through a “devil’s staircase” of intermediate
phases, consisting of ordered mixtures of single and double steps. Moreover, we showed
that the dominant thermal excitation of double steps is break-up into single-step pairs.
As a result, there is an unanticipated critical point in the surface phase diagram, above
which the thermodynamic distinction between single and double steps disappears. Thus
the temperature as well as the angle is crucial in controlling anti-phase domain forma-
tion in growth of GaAs on Si.

We also identified an entirely new surface phase defined by wavy steps. A certain
density of steps is energetically favorable, because steps create stress domains. For very
flat surfaces, where the step density becomes too low, the steps spontaneously become
wavy, effectively increasing the step density without the need to nucleatec new steps. This
behavior has been observed experimentally.

The above work is described in detail in the attached papers N-P.

Surface segregation and bulk ordering in alloys

Semiconductor alloys are generally expected to be almost perfectly disordered. It
was therefore quite a surprise when, in 1985, ordering was seen in MBE-grown samples
of Si-Ge and I1I-V alloys. Such bulk ordering is thermodynamically unfavorable; yet it
quickly proved to be as ubiquitous as it was mysterious. Ordering is important since it
changes the band gap and other properties.

The surprising explanation came from studies of surface segregation in Si-Ge alloys, in
conjunction with the experimental work by LeGoues et al. We found that the
dimerization at a Si or Ge (001) 2x1 surface creates large stresses down to the fourth
layer, driving a remarkable /ateral segregation in the third and fourth layers. The "bulk”
ordering arises when the pattern of stress-driven surface segregation is frozen into each
layer as it is buried by the next layer. Experiments directly confirmed the surface origin
of the ordering, highlighting the importance of a microscopic understanding of growth,
This work is described in detail in the attached paper Q.

Growth of strained lay=ts

Strained layers are becoming increasingly important in semiconductor technology,
so the question of thcir growth and stability has acquircd somc urgency. LEpitaxial
strained layers tend to break up into islands; yet the growth of uniform layers is an es-
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sential step in the fabrication of many semiconductor devices. For thc simplest such
case, Ge on Si(001), the Ge grows up to three atomic layers as a uniform film, but any
additional Ge forms islands. By a series of calculations of {ilm energy, we identified the
principal factor stabilizing the three-Jayer {ilm. It is energetically favorable for the local
distortions associated with surface dimerization to lie in a soft matcrial, and Ge is softer
than Si. For the first three layers, this energy gain is enough to offset the strain encrgy
from the mismatch between Ge and Si. Thus the thickness of the stable film is dcter-
mined by the depth of the elastic distortions associated with the surface reconstruction.
This work is described in detail in the attached paper R.
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Mechanisms of dopant impurity diffusion in silicon

C. S. Nichols, C. G. Van de Walle,* and S. T. Pantelides
IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598
(Received 20 April 1989)

We present a comprehensive investigation of dopant diffusion in silicon under equilibrium and
nonequilibrium concentrations of intrinsic point defects. Using first-principles total-energy calcula-
tions combined with available experimental data, we seek to resolve a series of outstanding contro-
versies regarding the diffusion mechanisms of B, P, As, and Sb in silicon. We find that, under equi-
librium conditions, vacancies and interstitials mediate the diffusion of all dopants with comparable
activation energies, except Sb, for which the interstitial component has a high activation energy.
Under nonequilibrium conditions, e.g., under injection of excess point defects, we derive the
relevant expressions for the activation energy for a variety of possible diffusion mechanisms and in-
jection conditions. Under oxidation, the calculated values are in excellent agreement with the avail-
able experimental data. In addition, theory and experiment suggest that the concerted exchange
mechanism, involving no point defects, plays only a minor role in dopant diffusion.

L. INTRODUCTION

Diffusion of impurity or host atoms through crystalline
solids has been studied extensively for many years.!?
There are two basic types of mechanisms by which substi-
tutional dopant impurities can diffuse. Diffusion can be
mediated either by native point defects, such as vacancies
and self-interstitials, or by an intrinsic mechanism that
occurs spontaneously (i.e., in the absence of defects) in
the bulk. In addition, there have been some suggestions
that “extended defects” may glay a role in high-
temperature diffusion processes.” While experimental
and theoretical approaches have considered these atomis-
tic mechanisms of diffusion, most evidence for or against
a particular mechanism has been indirect; for example,
the comparison between an impurity profile measured ex-
perimentally and one derived analytically or numerically.
In recent years, however, both experimental and theoreti-
cal tools have been developed with which diffusion can be
studied from a microscopic, atomistic viewpoint directly.
Despite these advances, there is no general consensus re-
garding the relative contributions of the various mecha-
nisms to impurity diffusion.

It has been observed that a number of surface process-
ing conditions* alter the bulk point-defect concentration
in Si. Oxidation, for example, has been shown to inject
excess self-interstitials, while nitridation of the surface in-
jects excess vacancies.* Although the details of such pro-
cesses are not completely understood, measurement of
dopant diffusion coefficients under equilibrium concentra-
tions of point defects and under oxidation or nitridation
conditions affords the possibility of discriminating be-
tween the mechanisms responsible for dopant diffusion.
However, the theories underlying the interpretation of
such experiments are incomplete, relying for the most
part on assumptions whose validity is uncertain.® For ex-
ample, in oxidation experiments, Antoniadis and
Moskowitz’ observed that the P diffusion coefficient is
enhanced with respect to its equilibrium value. They
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concluded that P diffuses via a dual vacancy-interstitial
mechanism, although the microscopics of the interstitial
mechanism were not sPeciﬁed. Also under interstitial in-
jection, Fahey et al® found an identical P diffusion
enhancement. However, under injection of excess vacan-
cies they observed a retardation of the P diffusion
coeflicient with respect to its equilibrium value. From
these two experiments, they concluded that P diffusion is
almost exclusively mediated by self-interstitials. No at-
tempt has been made to assess the contribution of any in-
trinsic mechanism in these experiments.

Numerical solution of the coupled system of equations
governing diffusion in Si offers relatively inexpensive and
quick insight into possible mechanisms. However, the
complexity of the relevant equations has made solution of
the full problem unfeasible, and the consequent simplify-
ing assumptions made are often unrealistic.'® In one
such simulation, the authors concluded that P diffuses ex-
clusively by a vacancy mechanism,!’ in conflict with the
nonequilibrium experimental conclusions above.

First-principles calculations have also recently ad-
dressed the problem of impurity diffusion pathways and
mechanisms.'>!? The work of Ref. 12 considered only
the migration of aluminum as an interstitial and did not
address the issue of a vacancy mechanism. The work of
Ref. 13 focused on equilibrium conditions and considered
defect-mediated mechanisms. This work established that
native point defects mediate impurity diffusion with ac-
tivation energies comparable to experimental values, ob-
viating the need for “extended defects.” No definitive
conclusion was reached in this work regarding the domi-
nance of one point-defect species over the other, however.
Finally, although thorough first-principles calculations
have demonstrated that a concerted exchange (CE) mech-
anism is energetically comparable to defect mechanisms
for self-diffusion,'* no quantitative support that this
mechanism is relevant for dopant impurity diffusion has
been offered. An excellent overview of the various exper-
iments, simulations, and theoretical calculations probing

5484 © 1989 The American Physical Society
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Mechanisms of Equilibrium and Nonequilibrium Diffusion of Dopants in Silicon

C. S. Nichols, C. G. Van de Walle, and S. T. Pantelides

IBM Research Division, T. J. Watson Research Center, Yorktown Hciglu.r New York 10598
(Received 23 November 1988)

We have developed a theory of impurity diffusion in silicon under equilibrium and nonequilibrium
concentrations of point defects. The results of first-principles calculations of several key quantities are
combined with this theory and compared to experimental data. We find that vacancies and self-
interstitials mediate the equilibrium diffusion of B, P, and As with comparable activation energies, but
interstitials are dominant. Sb diffusion, op the other hand, is mediated primarily by vacancies. We also
find that the direct-exchange mechanism plays only a minor role for all dopants studied.

PACS numbers: 61.70.Bv, 66.30.Jt, 71.55.Ht

The microscopic mechanisms of dopant-impurity
diffusion in Si are of intrinsic scientific interest and also
form the cornerstones of modeling programs for the
design and fabrication of devices. Despite extensive
research on the subject, there exists no general consensus
regarding the relative contributions of the various mech-
anisms. For example, some authors analyze or numeri-
cally fit experimental data and conclude that phosphorus
(P) diffusion is primarily assisted by vacancies,' whereas
others conclude that P diffusion is mediated in part or
primarily by self-interstitials.>> More recently, Pandey*
extrapolated his results for self-diffusion and suggested
that the concerted exchange (CE), which requires no in-
trinsic defects, may be the dominant mechanism for
dopant-impurity diffusion. Dopant diffusion experiments
under injection of excess concentrations of point defects
have offered promise for unraveling these controver-

sies.>> However, theories underlying the interpretation
of such experiments are unsatisfactory, relying for the
most part on assumptions whose validity is uncertain.’

In this Letter, we present the main results of an exten-
sive theoretical investigation of the energetics of dif-
fusion for several dopant impurities (B, P, As, and Sb) in
Si under both equilibrium and nonequilibrium condi-
tions. In the first part, we report the theoretical activa-
tion energies for equilibrium diffusion and compare with
available experimental data. In the second part, we
present a systematic theory of impurity diffusion under
injection of excess point defects. In particular, we derive
expressions for the activation energies of diffusion and
predict the expected form for the diffusion coefficient.
Combining available experimenta] data with our theoret-
ical results allows us to draw a number of definitive con-
clusions. We conclude that B, P, and As all have sub-
stantial self-interstitial diffusion components, that Sb is
primarily assisted by vacancies, and that the exchange
mechanism plays only a minor role in substitutional-
dopant diffusion.

In the calculations we use densnty-functnonal theory,*
the local-density approximation, and norm-conserving
pseudopotentials.” The supercell method is used to solve
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the relevant Schrodinger equation following the metho-
dology of Ref. 8. Convergence with respect to all vari-
ables has been carefully studied. In particular, it was
found necessary to use plane waves up to a kinetic ener-
gy of 20 Ry for the wave functions and potentials (plane
waves above 10 Ry are included in second-order Lowdin
perturbation theory), up to 32-atom supercells, and up to
three special k points in the irreducible wedge of the
Brillouin zone.® Unless otherwise stated, relaxation of
the surrounding Si network was calculated for every lo-
cation of the impurity or defect. We estimate our total
error to be less than 1 eV, depending upon the particular
impurity and the particular atomic configuration. The
majority of the error comes from the local-density-
approximation uncertainty in the defect- and impurity-
related levels in the energy gap. Nevertheless, this
scheme has a proven reliability in calculating a sumber
of properties of semiconductors.

The diffusion coefficient D is a sum of contributions of
the form

D;=C;d//Cx,, (1)

where C; is the concentration of the defect j whose
long-range migration effects diffusion of the substitution-
al dopant, 4, is the corresponding diffusivity, and Cyx, is
the concentration of substitutional impurities. For the
CE mechanism, the pertinent defect is the substitutional
impurity itself, whereas for defect-mediated diffusion,
this species needs to be identified (e.g., it can be cither
the isolated vacancy, the impurity-vacancy pair, etc.). In
all cases, under equilibrium conditions, D, can also be
written in the Arrhenius form

D =Dloexp(— QS /kT) , Q)

where D)o is the preexponential which contains a variety
of factors, Q is the activation energy, k is th: Boltz-
mann’s constant, and T is the temperature. The asterisk
denotes equilibrium quantities. For the CE mechanism,
Q is the energy needed to place a pair of atoms (the
impurity atom and one of its nearest-neighbor Si atoms)
at the saddle point of the exchange path. For defect-
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dopant diffusion is given in the review by Fahey et al.'

We recently published a brief account of an extensive
theoretical study of dopant diffusion mechanisms in Si.'®
In this paper, we give a more extensive and detailed expo-
sition of that work. In particular, we use first-principles
state-of-the-art calculations to investigate vacancy-,
interstitial-, and CE-mediated diffusion pathways of sub-
stitutional B, P, As, and Sb in Si. Activation energies for
equilibrium conditions are calculated and compared to
available experimental work. In addition, we discuss a
systematic framework for impurity diffusion under non-
equilibrium concentrations of point defects. Expressions
for the activation energies of diffusion in terms of theoret-
ically and experimentally available numbers are found
and predictions for the expected form of the diffusion
coefficient are given. Using these results, in conjunction
with available experimental data, we can discriminate be-
tween the different mechanisms. We find that P, As, and
B diffusion have substantial interstitial components, while
Sb diffusion is vacancy dominated. Theoretical results
and experimental data suggest that the CE mechanism
has a limited role in dopant diffusion. In large part, we
confirm the picture advocated by Fahey and co-workers®
with regard to the point-defect mechanisms.

. METHODOLOGY

Our calculations are based on Hohenberg-Kohn
density-functional theory, the Kohn-Sham local-density
approximation (LDA) for exchange and correlation,'’
and norm-conserving pseudopotentials'® for the electron-
ion interaction. The relevant Schrédinger equation is
solved to obtain the total energy by a momentum-space
formalism'® in a supercell geometry.?® We describe the
essential aspects of this methodology below. A useful
and more comprehensive discussion can also be found in
a recent review by Pickett.?!

For the electron-electron interactions, density-
functional theory, within the LDA, is utilized. The LDA
consists of the assumption that the exchange and correla-
tion energy at a point r is a function of the electron densi-
ty only at r. The approximation is considered valid for
systems with slowly varying electron densities. In prac-
tice, in semiconductors the LDA has proven remarkably
successful. But it is by now well known that the LDA
predicts conduction-band states and levels derived mostly
from conduction-band states to be too low in energy.
This is the major source of error in the methodology.

The pseudopotentials used in our calculations are gen-
erated according to the Hamann-Schliter-Chiang
scheme.'® More details concerning the specifics of the Si
potential and results of test calculations carried out for
this potential are given in Ref. 22. For B impurities, we
use a pseudopotential first discussed by Dentencer et
al.?*  The cutoff radii of the B pseudopotential were ad-
justed so as to minimize the basis-set size, but still faith-
fully describe the properties of B impurities in Si. The
convergence properties of this pseudopotential are fully
discussed in Ref. 23. For the donor impurities treated
here, P, As, and Sb, we used the pseudopotentials as tab-
ulated by Bachelet, Hamann, and Schliiter.?*
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The solution of the relevant Schrdodinger equation in a
supercell geometry has been extensively exploited in
many calculations, including superlattice geometries, de-
fects, and amorphous semiconductors. In the present
work, we follow the methodology of Bar-Yam and Joan-
nopoulos®® for combining density-functional theory and
the pseudopotential approximation in a supercell frame-
work. The supercell approach artificially introduces
periodicity by translating a unit cell, which contains the
defect or impurity, along its three direct-lattice vectors
until all of space is filled. Convergence of the unit-cell
size is achieved when the defects in neighboring cells in-
teract by less than some desired tolerance (as manifested
by the dispersion of the defect levels). Furthermore,
enough neighbors of the impurity are required so as to
obtain accurate relaxations. For example, an impurity
atom at the bond-center (BC) position causes a large dis-
ruption of the crystalline network such that relaxation of
at least two shells of neighbors are important.

The wave functions and potentials are expanded in a
plane-wave basis. Convergence of the basis-set size was
extensively and thoroughly tested. Plots of the total-
energy difference between As impurities in two different
sites in the crystal are shown in Fig. 1. Figure 1(a) shows
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FIG. 1. Convergence of the total-energy differences in an 8-
atom supercell as a function of the basis-set cutoff energy. (a)
Total-energy difference between As at the T and H sites. (b)
Total-energy difference between As at the BC and T sites.
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the total-energy difference between a neutral As atom at
the high-symmetry tetrahedral () and hexagonal (H)
sites as a function of the energy cutoff. The calculations
were performed in an 8-atom supercell, which is sufficient
for basis-set—convergence studies. The abscissa is the ki-
netic energy E of the plane waves used in diagonalizing
the Hamiltonian. The points plotted are for the highest-
energy plane waves included in any basis set; plane waves
from O to E/2 are utilized in the exact diagonalization
process, while those between E/2 and E are treated in
second-order Lowdin perturbation theory.?® We intro-
duce the notation (E|;E,) to indicate the two energy
cutoffs. From Fig. 1(a) we conclude that the total-energy
difference has achieved convergence at a cutoff of (10;20)
Ry to within 0.05 eV of its final value. We have also test-
ed the Lowdin perturbation theory for this particular
total-energy. difference by computing the total energy at
the cutoff (20;20) Ry. Results of these calculations show
that at (10;20) Ry, the additional plane waves cause devi-
ations only on the order of 0.03 eV.

Figure 1(b) depicts a somewhat different test case. The
total-energy difference between neutral As at the T and
(BC) sites is shown. At a cutoff of (10;20) Ry, the total-
energy difference is within 0.02 eV of its fully converged
value. Test calculations have also been performed in 16-
and 32-atom cells [up to (12;24) Ry] and show that the
cutoff (10;20) Ry is sufficient for reliable conclusions. We
have also performed similar tests for P and Sb and ob-
serve that these impurities have convergence properties
analogous to As.

We have performed supercell-size convergence tests for
all impurities in 8-, 16-, and 32-atom cells. The max-
imum error in total-energy differences encountered in
scaling from 16- to 32-atom cells is found to be 0.3 eV for
P, As, and Sb impurities in Si. For B impurities, the
maximum change in total-energy differences between any
two atomic configurations is much smaller, only 0.1 eV.
We therefore use 32-atom cells throughout these calcula-
tions, such that the distance between defects in neighbor-
ing cells is 9.4 A.

Integrations over the Brillovin zone to obtain the
charge density are performed using a special-points
scheme. The special points are generated according to
the algorithm of Monkhorst and Pack.?® In 32-atom
cells, a sampling of two special points has proven ade-
quate for high-symmetry configurations. Lower-sym-
metry configurations require a larger, but equivalent, set,

Unless otherwise explicitly stated, relaxation of the
surrounding Si host network is calculated for every loca-
tion of the impurity or defect. Hellman-Feynman forces
are not obtained in the present calculations. Instead, we
relax the first-neighbor shell of atoms to at least three
different positions, and use the resulting total energies to
fit a parabola to obtain the minimum-energy distance.
All relaxations reported in this work are radially away (or
towards) the defect and hence are symmetry preserving.
Tests have indicated that other relaxations have only
minor effects on the total energy. For configurations
which cause little distortion of the network (e.g., H or T,
only the first shell of neighbors is relaxed. For
configurations which cause severe disruption (e.g., BC),
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two shells of neighbors are relaxed.

In order to test all elements of this methodology, we
have calculated the relaxation of the Si host surrounding
neutral substitutional impurities. The four Si neighbors
of substitutional B, which has a covalent radius =~75%
that of Si,”’ experience an inward “breathing”-mode re-
laxation of 0.2 A, with an accompanying decrease of the
total energy of 0.8 eV. Despite its small size with respect
to Si and its tendency of form threefold-coordinated mol-
ecules, B remains at the nominal substitutional site (to
within 0.1 A). Substitutional P, with a covalent radius
slightly smaller than Si, is found to cause no distortion of
the host network. Both As and Sb have larger covalent
radii than Si and cause an outward ‘‘breathing”-mode
distortion of the four neighboring Si atoms. The Si-As
interatomic distance is calculated to be 2.43 A and the
Si-Sb interatomic distance is 2.54 A. The Si-As distance
is in excellent agreement with extended x-ray-absorption
fine-structure (EXAFS) measurements,?® which give 2.41
A. The results for P and As are also in good agreement
with previous total-energy calculations on positively
charged substitutional donors.”®

We estimate our total error to be less than 1 eV, de-
pending, of course, upon the atomic configuration and
the particular impurity. The majority of the error comes
from the LDA uncertainty in the defect- and impurity-
related levels in the energy gap. Overall, this scheme has
a proven reliability in calculating bulk properties of semi-
conductors, reconstruction of semiconductor surfaces,
and general properties of defects.?!

IIL. EQUILIBRIUM DIFFUSION

A. Background and atomistic mechantisms

Under either equilibriam or nonequilibrium conditions,
the diffusion coefficient D is given by a sum of contribu.
tions of the form

(n

where C, is the concentration of the defect i whose long-
range migration effects diffusion of the substitutional
dopant, d, is the corresponding diffusivity, and Cy is the
total concentration of impurities.

For the CE mechanism, the pertinent defect is the sub-
stitutional impurity itself, whereas for defect-mediated
diffusion this species needs to be identified. For impurity
diffusion mediated by vacancies, it is convenient to identi-
fy two distinct limits. In the first limit, impurity-vacancy
binding is weak, so that when a vacancy positions itself
next to an impurity, the two switch places, the vacancy
migrates away, and the impurity awaits the arrival of
another vacancy in order to migrate another step. Such a
process is the same as that for self-diffusion; i.e., the Si
vacancy is the relevant diffusing species. The impurity
diffusion activation energy is equal to the sum of the
vacancy-formation energy and the migration energy of ei-
ther a Si atom or an impurity atom into a vacant adjacent
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site, whichever is larger. Thus, the impurity diffusion ac-
tivation energy for this mechanism is equal to or larger
than the activation energy of self-diffusion. In the second
limit, impurity-vacancy binding is strong, so that when a
vacancy positions itself next to an impurity atom, migra-
tion of the pair occurs. After exchanging positions, the
vacancy moves away from the dopant atom around a six-
fold ring to at least a third-neighbor position. It can then
return by a different path, placing itself next to the im-
purity. The vacancy and the impurity exchange and the
process repeats itself. The net activation energy is the
sum of the pair-formation and migration energies and can
be less than the activation energy for self-diffusion.
Self-interstitial-mediated diffusion can occur in a
variety of ways. Two processes believed important are
what we call “coordinated push” of a self-interstitial on a
substitutional impurity along the bonding direction to-
wards a Si neighbor' [see Figs. 2(a)-2(c)] and the kick-
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FIG. 2. Schematic diagram showing two interstitial-mediated
diffusion processes considered in this paper. (a)—(c) Schematic
diagram of the (110) plane in diamond structure Si depicting the
*“coordinated push” diffusion process. Panel (a) depicts the ini-
tial positions of all atoms, while panel (c) depicts the final posi-
tions. Panel (b) shows the saddle-point configuration. (8)-(D
The same crystal plane in Si, but now depicting the kick-out
diffusion process. Panel (d) depicts the initial atomic positions,

while panel (f) shows the final positions. Panel (b) depicts the
saddle-point configuration.
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out mechanism'® [see Figs 2(d)-2()]. The coordinated
push mechanism, similar to the vacancy-mediated mech-
anisms described above, has two extreme limits, depend-
ing upon the binding energy of the impurity-self-
interstitial pair. In either extreme limit, at the saddle
point of the coordinated push process [Fig. 2(b)] the im-
purity atom is at the BC site, while the neighboring Si
atom is pushed off its substitutional site towards the
channel T site. The impurity ends up in the next substi-
tutional site, its former Si neighbor now in the channel as
a self-interstitial [Fig. 2(c)). The original self-interstitial
is a nearest neighbor of the impurity. In the weak-
binding limit, the new self-interstitial can readily migrate
away and, to move to the next substitutional site, the im-
purity must await the arrival of another self-interstitial.
In this limit, then, it is the self-interstitial which mediates
long-range migration of the substitutional impurity. The
activation energy for diffusion is the sum of the formation
energy of the substitutional impurity -self-interstitial pair
plus the migration energy of the impurity over the BC
saddle point. The activation energy may thus be equal to
or larger than the activation energy for self-diffusion, de-
pending upon the differences in migration energy. In the
strong-binding limit, the new self-interstitial remains
bound to the substitutional impurity and the former can
then execute exactly the same coordinated push. In the
strong-binding limit, it is the self-interstitial-impurity
pair which effects long-range migration of the impurity.
The activation energy for the strong-binding limit may be
less than the activation energy for self-diffusion as a re-
sult of binding. The second interstitial process involves
the kick-out of the substitutional impurity [Fig. 2(e)] into

~ the low-electron-density channel in which it migrates

with a rather small barrier. After migration along the
channel, the impurity kicks back into a substitutional
site, ejecting a Si atom into the channel. The diffusing
species is thus the interstitial impurity.

For all mechanisms, under equilibrium conditions, the
individual diffusion coefficients D, can also be written in
the Arrhenius form

‘-.= ,-"oexp("Qf/k,T) . )

The preexponential D%, contains a variety of factors,
including the entropy of diffusion. Q° is the activation
energy, k is Boltzmann’s constant, and T is the tempera-
ture. The asterisks denote equilibrium quantities. For
the CE mechanism, Q' is the energy required to place an
impurity atom and one of its Si neighbors at the
exchange-path saddle point. For defect-mediated mecha-
nisms, Q° is the sum of the formation and migration en-
ergies for the diffusing species. ‘

The determination of Q" for the CE mechanism neces-
sitates mapping out the entire exchange path and identi-
fying the lowest-energy saddle point. Pandey'* has car-
ried out such a task in the case of self-diffusion (Si-Si ex-
change), but the reoptimization of the entire impurity-Si
exchange is an unduly demanding computational exer-
cise. For our purposes, it was adequate to obtain an
upper bound for the saddle-point energy. We assumed
the same path as for the Si-Si exchange, calculated the to-
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tal energy of the saddle point, and included the relaxation
of the neighboring atoms by using Pandey’s calculated re-
laxation for pure Si (0.75 eV).

In general, for defect-mediated diffusion, the defects re-

sponsible for diffusion may exist in several charge states,

each of which can contribute to diffusion. For the tem-
peratures at which diffusion experiments are performed
(900—-1100°C), even for relatively high doping levels (e.g.,
10*—10" cm ™), the Fermi level is at midgap. Previous
calculations" on dopants in Si have shown that all charge
states have roughly the same formation energies for inter-
stitial impurities or impurity-vacancy pairs when the Fer-
mi level is near midgap (to within approximately 0.3 eV).
The energetics of diffusion are therefore relatively insens-
itive to the dopant charge state. In this paper, we report
results for neutral species only.

Formation energies for any impurity-defect complex
are always defined in our calculations with respect to the
substitutional impurity in.the absence of any defects.
The formation energy for an impurity-vacancy pair (X¥)
in an N-atom cell is defined as

E,(XV)EE(XV)—E(X,HI—:,-EM : 3)

where E (XV) is the calculated total energy per supercell
containing an impurity-vacancy pair, E(X,) is the total
energy per supercell containing a substitutional impurity,
and Ey,,;, is the total energy per supercell of pure bulk Si.
The formation energy for an interstitial impurity (X;) in
an N-atom cell is defined as

E/X)=EAD+[E(X,)-E(X,-D], @

where E (I) is the formation energy of a Si self-
interstitial, E(X;) is the total energy per supercell con-
taining an interstitial impurity, and E(X,-I) is the total
energy per supercell containing a (substitutional im-
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purity-I) pair. The formation energy of an I in pure Si is
defined as
N+1

EAN=E(D="5"Epn » (5)

where E(I) is the total energy per supercell containing a
Si interstitial. Note that it makes no difference in finding
the formation energy of an interstitial impurity which po-
sition we use for the Si interstitial, as long as we use a
consistent choice throughout Eq. (4). Note also in Eq. (4)
that the second term is just the energy of exchanging an
interstitial Si and a substitutional impurity.

For defect-mediated pathways, the first task of theory
is to determine which defect or complex leads to diffusion
with the smallest Q;*. For all impurities, the formation
energies of the impurity-vacancy complexes are calculat-
ed with appropriate relaxations, etc. However, because a
supercell beyond present computer capacity is required to
obtain the migration energy, we have taken these values
from experiment (for P, As, and Sb) (Ref. 30) or used a
simple estimate (for B). See Table I for the actual values
used. For vacancy-mediated (¥-mediated) B diffusion, we
find that there is a relatively small binding energy be-
tween the impurity and the defect, where the binding en-
ergy of an impurity-defect complex is defined as the
difference between the formation energy of the defect in
pure Si and the formation energy of the impurity-defect
complex (see Table I). In particular, we note that the
binding energy of the BV pair is smaller than our estimat-
ed migration energy. Given the error bars of our calcula-
tion, we cannot discern between a simple vacancy mecha-
nism or a BV-pair mechanism. For all other impurities,
however, the relevant diffusing species is the impurity-
vacancy pair.

For interstitial-mediated pathways, a global total-
energy surface depicting the interactions between N Si
atoms and a single impurity in an N-atom supercell was

TABLE 1. Calculated activation energies (Q*) under equilibrium conditions for B, P, As, and Sb
diffusion as well as Si self-diffusion. Listed also are the separate contributions to Q* and the binding
energies (E,) of impurity-vacancy pairs. All quantities are in eV and all species are in their neutral
charge state. The experimental binding energies are from Ref. 15 and the Si CE value is from Ref. 14.

Species Q* E, E,, E,(theor) E,(expt)
B, 3.9 39 0.0

BY a 3.0 1.0 0.5

B(CE) 49

P, 3.8 3jo 0.8

Py 34 2.5 0.94 1.0 1.04
P(CE) 4.6

As, 36 32 04

AsY 34 23 1.07 12 1.23
As(CE) 39

Sb, 4.9 4.7 0.2

1] 4 3.6 2.3 1.28 1.2 1.44
Sb(CE) 45

Si; 4.0 36 04

Siv 38 35 0.3

Si(CE) 4.3

*Since E,, > E,, the BV pair is not a stable diffusing species. See the text for further explanation.
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required in order to ascertain the lowest-energy diffusion
pathways and the migrating species. Such a surface re-
sults from the collection of the total energies of N +1
atoms competing for N substitutional sites with the relax-
ation of the surrounding host crystal included for each
configuration. The details of generating a total-energy
surface are described elsewhere.2 Because the total-
energy surface is a function which depends upon the
three spatial dimensions, it is easiest to examine a slice
through a given crystal plane. The energy surface can be
displayed cither as a contour plot (the contours depicting
constant energies) or as a perspective plot (the in-plane
coordinates are the chosen diamond-structure coordi-
nates and the third axis is the energy). We emphasize
that for either type of plot, the relaxation of the host
crystal is included in obtaining the total energy, but the
positions marked as atoms serve only as a template for
identifying positions in the crystal plane.

A contour plot of the total-energy surface depicting the
diffusion of a neutral B atom through the diamond-
structure (110) plane is shown in Fig. 3(a). A perspective
plot for the same species is shown in Fig. 3(b). In con-
structing both figures, the zero of energy was chosen at
the saddle point of the B kick-out process [see Fig. 3(a)
and below]. In the perspective plot, regions of different
energy have been color-coded: the lowest-energy regions
are red, follow by blue, with the highest-energy regions in
green. The lowest-energy migration pathway for neutral
B is along the low-electron-density channels; indeed,
there is virtually no barrier to migration from the H to
the T site, etc. If, instead of moving along the channel,
the B atom continues in a {(111) direction towards a sub-
stitutional Si atom, a kick-in process is initiated. The im-
purity climbs up energy contours in the direction of the
saddle point. The saddle point for this process is roughly
two-thirds of the way from the T site to the substitutional
site. Although it is not shown in Figs. 3(a) and 3(b), the
relaxation of the two Si atoms along the {111] direction
ahead of the B atom is accounted for in constructing the
total-energy surface, as are relaxations of the second
neighbors. The energy barrier to the kick-in process via
this pathway is =1 eV. Once the B atom has passed the
kick-in saddle point, its energy decreases towards the
substitutional site, while the furthest Si atom is kicked
out into the channel. The reverse of the kick-in process
depicted in the total-energy surfaces is the kick-out pro-
cess, and it represents the lowest-energy mechanism by
which substitutional B becomes an interstitial. In sum,
the diffusing species is thus the interstitial B atom. We
find qualitatively similar results for all dopants studied;
the diffusing species for interstitial-mediated pathways is
always the interstitial impurity which is created by the
kick-out process.

B. Results and discussion

The calculated activation energies for CE-, V-, and I-
mediated mechanisms for substitutional B, P, As, and Sb
diffusion under equilibrium conditions are shown graphi-
cally in Fig. 4. A selected range of experimental values is
shown as boxed areas in Fig. 4 as well. Actual values for
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FIG. 3. Total-emergy surface plots. (a) Total-energy contour
plot depicting the migration of a neutral B interstitial through
the Si crystal. The labeled sites are T (tetrahedral), H (hexago-
nal), BC (bond-center) and C (at the center of a rhombus formed
by three adjacent Si atoms and the nearest 7). The energy
difference between contours is 0.13 eV. The dashed line is the
kick-out pathway. The values of the contours near the channel
regions are =0.2 eV higher than those reported in our previous
publication (Ref. 16). This is a consequence of generating the
surface with a higher plane-wave cutoff and does not change
any of our conclusions based on that previous figure. (b) Per-
spective plot of the same process. The areas colored red are
lowest in energy, blue are intermediate, followed by the
highest-energy regions in green. Relaxations of the host atoms
are not indicated in the figure, but are taken into account in the
total-energy calculations.




3490

CE . 1
e | CE CE )

D
| ﬂm“;?*

- . I

<

Si Aa Sb

FIG. 4. The calculated activation energies under equilibrium
conditions for vacancy-mediated (¥), interstitial-mediated (D,
and concerted exchange (CE) mechanisms for Si self-diffusion
and various impurities. The boxed areas are a selected range of
experimental results from Ref. 20.

Q. and the contributions to it are given in Table I. For
comparison, the calculated values for Si self-diffusion are
also shown (the CE value is that reported in Ref. 14).
The calculated values presented in Fig. 4 and Table I for
interstitial-mediated diffusion are those for impurity in-
terstitial diffusion, effected by the kick-out mechanism.
Calculated activation energies for both extreme binding
limits of the coordinated push mechanism are
significantly larger than the activation energies for the
kick-out mechanism, thereby ruling out the
impurity —self-interstitial pair and the self-interstitial as
the relevant diffusing species. For B, P, and As, the
differences between V- and I-type mechanisms are smaller
than our estimated error bar (0.4 eV is the maximum
difference). Furthermore, because the CE activation en-
ergies are upper bounds, we view them as comparable to
defect-assisted pathways. Only for Sb impurities is one
mechanism dominant: the V-assisted pathway is a full
1.3 ¢V lower than the I-assisted pathway, so that the va-
cancy mechanism prevails, in greement with conclusions
drawn from experimental data.

From our calculations we can also obtain the binding
energies of the various impurity-vacancy complexes The
binding energies of some 1mpunty-vacancy pairs have
been measured experimentally’® and are included in
Table I along with the theoretical values. We note for P,
As, and Sb that the impurity-vacancy binding energies
are slightly larger than the pair-migration energies, sug-
gesting that it is at least energetically feasible for such
complexes to migrate. None of these impurities is in the
strong-binding limit and we therefore consider the range
of activation energies between the simple vacancy mecha-
nism and the impurity-vacanc y pair as the error bar for
the vacancy-mediated process.”’ However, as pointed out
in the preceding subsection, the binding energy of BV
pairs is rather small (0.5 eV smaller than our estimated
migration energy), so that if B diffuses by a vacancy
mechanism, it is probably effected by the isolated vacan-
cy, as opposed to the pair mechanism. We discuss this
point more fully in the next section. The relative magni-
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tudes of the binding and migration energies also have im-
portant consequences for the electrical deactivation of
heavily doped S§i.*?

In summary, our calculated equilibrium activation en-
ergies, being in the same range as experimental values, es-
tablish the reliability of our calculational approach, but
do not establish the relative importance of the various
mechanisms, with the exception of Sb. In order to do
this within the confines of equilibrium diffusion, calcula-
tions of the various preexponentials are required. Reli-
able entropy calculations are not currently possible, how-
ever. Nonetheless, we will demonstrate in the remainder
of this paper that, within a suitable framework for non-
equilibrium diffusion, theoretical calculations of various
barrier heights, etc., combined with experiments involv-
ing injection of excess point defects, do allow a number of
definitive conclusions to be drawn.

IV. NONEQUILIBRIUM DIFFUSION

A. Theory of externally stimulated diffusion

Under equilibrium conditions, the point defects re-
sponsible for diffusion are created thermally. However,
evidence has accumulated that surface treatments selec-
tively inject point defects into the bulk. Oxidation, for
example, ln_]ects self-mterstmals while direct nitridation
injects vacancies.® Under injection conditions, the
dopant diffusion coeflicient has been observed to be either
enhanced or retarded. Such experiments have, however,
led to widely conflicting conclusions regarding the dom-
inant diffusion mechanism, largely because of contradic-
tory assumptions. Virtually all attempts at constructing
a theory for diffusion under point-defect injection have
relied on unclear postulates, mainly with regard to the
relevant diffusing species. Most theories assume that the
concentrations of vacancies and self-interstitials deter-
mine the dopant diffusion coefficient. A review and cri-
tique of the early work may be found in Ref. 6. As we
showed in Sec. III of the present paper, for P, As, and Sb,
it is certainly true that the relevant diffusing species are
cither the interstitial impurity or the impurity-vacancy
pair. For B, the interstitial impurity, the isolated vacan-
cy, or the impurity-vacancy pair may control long-range
dopant migration.

A correct theory of nonequilibrium diffusion rests upon
the realization that the diffusion coefficient D is still given
by a sum of expressions of the form of Eq. (1) with the in-
dividual diffusivities the same as under equilibrium. The
task, then, of such a theory is to determine the relevant
species concentrations, taking account of their creation,
annihilation, and interaction with the other species
present. In this subsection, we present the details of such
a theory under self-interstitial injection (the case for va-
cancy injection is entirely analogous). In the second part
of this subsection, these results are combined with experi-
mental results to assess the contribution of the various
mechanisms to the diffusion of dopant impurities.

Nonequilibrium dopant diffusion experiments provide
a convenient framework within which the contribution of
the CE mechanism can be investigated. The CE diffusion
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coeflicient is proportional to the fraction of impurities
that are substitutional, Cx'. Thus, point-defect injection

can only affect the CE mechanism through changes in
Cx,: e-g-» through formation of impurity-vacancy pairs or

interstitial impurities. However, injection occurs at low
levels relative to Cx, 50 that it affects Cx, and hence D

only minimally. Therefore, if the CE is the dominant
mechanism, the diffusion coefficient should be either un-
changed, or, if the injection process is efficient, so that
diffusion may proceed by a vacancy- or interstitial-
mediated mechanism, then enhanced diffusion should be
observed. Under no circumstances should diffusion be re-
tarded by moderate rates of injection. This is in contrad-
iction to the experimental observation that B, P, As, and
Sb all show significant retardation under one or another
defect-species injection.””® The CE mechanism therefore
cannot be the dominant impurity diffusion mechanism
and we do not discuss it any further in the following.

The task remaining is thus to determine the effects of
point-defect injection on point-defect-mediated diffusion.
This is accomplished by finding the concentrations of the
relevant diffusing species which may be the impurity in-
terstitial, the impurity-vacancy pair, or, for the case of B,
the Si vacancy. The concentrations of all species are
governed by the following complete set of reactions:

S=V, (6)
S=1I, 7))
ky
I+X,=2X,, (8)
K}
k,
V+X, 2 XV, 9)
k3
k,
1+XV1:'2 X, (10)
3
k,
VX, e X, , (1)
kg
ky
I+v==0. (12)

Reactions (6) and (7) are schematic and represent the in-
dependent thermal generation or annihilation of intersti-
tials or vacancies by free or internal surfaces, S. Rate
constants for the various reactions are denoted k,, k),
etc. In Eq. (12), O represents bulk Si. From first-
principles calculations,” we have found significant bar-
riers for the reverse reactions (10)-(12), indicating that

the bulk plays only a small role in supplying point de-
fects.
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Following experimental measurements of the dopant
diffusion coefficient under point-defect injection, we dis-
tinguish two time domains. All data to date show on the:
time scale of S 1 hour nonconstant diffusion coefficients:
D is initially equal to the equilibrium value, attains an ex-
tremum value, and finally decreases or increases to some
final steady-state value. During the transient period, un-
der injection of either vacancies or self-interstitials, all
impurities are expected to show enhanced diffusion. This
phenomenon is a consequence of the increased concentra-
tion of I or ¥ which, because the concentration of X, is
many orders of magnitude larger than that of XV or X,
drives Eqs. (8) or (9), respectively, further to the right, in-
creasing the concentration of the diffusing species. In ad-
dition, we have calculated a barrier of =1 eV for I-V
recombination,? indicating that the point defects do not
readily recombine. Observation of the initial transient
behavior initially led Antoniadis and Moskowitz’ to sug-
gest the existence of such a recombination barrier. From
their data, they estimate a barrier of = 1.4 eV. Enhanced
diffusion is observed experimentally® for B, P, As, and Sb
under interstitial injection, and for As and Sb under va-
cancy injection on the short-time scale. P under vacancy
injection does, however, show consistently retarded
diffusion for all times measured. It is not clear why this
should be the case.

We now turn to consideration of the diffusion problem
under point-defect injection at steady state. From the
seven reactions listed above [Egs. (6)-(12)}, four expres-
sions for the time rate of change of the concentrations of
I, V, XV, and X; may be readily obtained:

aC _ , ,

—a"-'xm-’mcl'*‘ginj“klclcx,"‘klcx,
“kJCley’*‘kSCx’—kSC’Cy+k;Cg=o » (13)

aCy _ , 4 ,

37 &w —raCr —k,CyCx +k3Cry —kyCyCy,
+k;Cx"'k5Cle+k'sCSi=o y (14)

any , ’

a' =k1Cny’_kIny_kschxy'*‘k:Cx'zo » (15)
acy,
T=k|Clel"‘k"Cxi—k‘Cnyl+k“Cx‘=0 » (16)

where g, (g}) is a thermal surface generation rate for J
(M, rh, (r}) is a thermal surface recombination frequency
for J (W), gi; is the surface injection rate for interstitials,
Cg is the concentration of Si lattice sites, and all other
terms are as defined above. We have excluded any spatial
dependence in the concentrations for reasons of
simplification. This amounts to assuming that the impur-
ity profile is flat in the region of interest. The resulting
set of four equations is a complete and exact set, which
can, in principle, be solved for all the relevant concentra-
tions. This result is singular and contrasts strikingly with
previous work wherein differing sets of equations were
written down which were either incomplete or taken as
self-evident.®

In practice, a series of approximations are required be-
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fore analytical results can be obtained. For each species,
the dominant generation and recombination term or
terms are identified and are then used to solve for the
concentrations. The general guiding principle in deter-
mining the dominant terms is based on a knowledge of
the relative barrier heights as found from our first-
principles calculations. For example, our calculations
show that bulk generstion of J and V defects through
Frenkel-pair formation requires at least 8 ¢V, making this
an unlikely source of either point defect. We extend this
result to the reverse of reactions (10) and (11). Further-
more, because the binding energies of XV or X,-I pairs
are relatively small (=1 eV, see Table I), we assume that
Eqs. (8) and (9) are in local equilibrium. Finally, for the
case of self-interstitial injection, the annihilation of X; by
vscancies (the minority species) is likely to be a second-
order effect, and thus we ignore it.

From these general considerations, the point-defect
concentrations sre

]

+

re

re +k,C ky(Cr+¢C;)
1 _Tn vs 1=L‘+ 5 zy 1l (18)
Cy 49 Cy &

The asterisks denote equilibrium quantities, while the
primes denote just that component due to the nonequili-
brium process. We note in passing that the often-quoted
relationship

used in the analysis of injection experiments does not hold
for the general case under consideration here. Hu has
discussed the shortcomings and fallacies associated with
the assumption of Eq. (19) more extcnswely, and we refer
the interested reader to that article.®

Using Eqgs. (17) and (18), and the general considerations
outlined above for choosing the dominant terms for gen-
eration and recombination, we find, for the non-
equilibrium concentrations of C x, and Cyy,

k,Cy C;
=Cy +———, (20)
] k)
1 [ seren (a1, kG o1
Cxv 24 Cxv ki CxCp

The species whose concentration is enhanced by intersti-
tial injection, C; or Cx, exhibit a simple additive depen-
dence on the injected species. On the other hand, the
species which may be annihilated by interstitial injection,
Cy or Cyy, show an inverse dependence on the intersti-
tial concentration. We will return to this point later.

Combining Eqgs. (1), (20), and (21), the total diffusion
coefficient is of the form

D=D,+D,, (22)

where
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D;=D}+D; (23)
and
1 1 ]
—_—=—t—, (24)
Dy Dp; Dy

where the subscript I (V) denotes the I- (V-) assisted com-
ponent of diffusion. In principle, each component may
consist of several terms. For example, B diffusion assist-
ed by vacancies may be mediated by either the isolated
vacancy, the B-V pair, or by both. However, for all other
impurities studied here, the I- or V-assisted mechanism is
mediated by a single species.

Activation energies for the nonequilibrium part of
diffusion may be obtained by combining Egs. (1) and (2)
with the relevant species concentration. The latter quan-
tity is expressed in terms of the various barrier heights,
etc. Specifically, D; is activated with an activation ener-
gy

Q;=E,—AE+E,, , 25)

where E,, is the activation energy of the interstitial injec~
tion process, AE is the energy difference between X; and
X,-1 as in reaction (8), and E,, is the migration energy of
X,. The first term follows from experiments performed
by Hu® in which it was observed that interstitial injection
results in the growth of stacking faults and that this pro-
cess is activated. We infer that the interstitial injection
process is itself also activated and therefore the J concen-
tration is given by

AN 26)
The second term follows from
Kk AEhT an

ki
In the limit that the vacancy concentration is unper-
turbed from its equilibrium value, then Eq. (21) may be
simplified to
1 _ 1
Cxv Cyv

ki Cq
kaCxCP

21)

From Eq. (21'), Dy, is activated with an activation energy
Qv =(Ei +EPS5™)—(E{+EPF )+ E, , (28)

where EPS" (EJ'F) is the energy barrier to reoombma-

tion of interstitials (vacanclcs) with XV pairs (X,), EJ 7 is
the thermal formation energy of vacancies, and E,, is the
XV migration energy. The various terms in the activa-
tion energy arise as above or from the following expres-
sions:

kw5 M (29)
ERT sk, T
ky e vx N» ' (30)
and
EY ik, T
Coxe /0 | (31
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Equation (28) has a simple physical interpretation. The
first term in parentheses is the energy required to annihi-
late the diffusing XV pairs, while the second term
represents the energy required to produce the pairs ini-
tially. The overall activation energy is the competing
cost of these two terms, in addition to the migration ener-

Diffusion coefficients measured under point-defect in-
jection at several temperatures may appear misleadingly
complex. From Egs. (23) and (24), both diffusion
cocflicients can display non-Arrhenius behavior which
obscures determination of an activation energy. To ex-
tract meaningful information from temperature-
dependent data, it is necessary to isolate the equilibrium
and nonequilibrium contributions to the total diffusion
coefficient. If diffusion is mediated by self-interstitials,
then under interstitial injection the nonequilibrium
diffusion coefficient (D;) is obtained by subtracting the
(known) equilibrium diffusion coefficient (D) from the
total diffusion coefficient (D;). The two possible resulting
forms for D; are shown schematically in Figs. 5(a) and
5(). Such figures, which assume Arrhenius behavior for
the nonequilibrium diffusion contribution, clearly assume

(a)

wT

(v)

T

FIG. 5. (a) and (b) Arrhenius plot for interstitial-mediated
diffusion under interstitial injection. D;” denotes the equilibri-
um diffusion coefficient, D, the total diffusion coefficient under
nonequilibrium conditions, and the dashed line is the nonequili-
brium contribution (D))
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only one species contributes to interstitial-mediated
diffusion.

On the other hand, if diffusion is mediated by vacan-
cies, then under interstitial injection the diffusion
cocficient displays an inverse behavior [Eq. (24)]. This
dependence naturally suggests introducing an inverse Ar-
rhenius plot of 1/D, versus 1/7. The nonequilibrium
diffusion coefficient (D) is thus determined from rear-
ranging Eq. (24),

= 24)

The two possible forms for measured diffusion coefficients
are shown in Figs. 6(a) and 6(b). From any of these four
plots, Figs. 5(a), 5(b), 6(a), and 6(b), the contribution due
solely to the nonequilibrium process can be isolated and,
hence, a corresponding activation energy that can be
compared to either Eq. (25) or (28) may be found.

B. Results and discussion

We now turn to a discussion of three distinct cases.
Consider the instance in which, under equilibrium, the I

{a)

1/0

T

I/70

VT

FIG. 6. (a) and (b) Reciprocal Arrhenius plot for vacancy-
mediated diffusion under interstitial injection. Dy denotes the
equilibrium diffusion coefficient, D), the total diffusion
coefficient under nonequilibrium conditions, and the dashed line
is the nonequilibrium contribution (D).
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TABLE II. Activation energies (Q’) for diffusion mediated
exclusively by interstitials under interstitial injection (theory)
and measured activation energies under oxidation conditions
(experiment from Hill, Ref. 34). All quantities srein eV.

Specics Q'(theor) Q'(expt)
B 2.6 2.3
P 2.5 24
As 2.3 2.3

component is dominant. Interstitial injection leads to
enhanced diffusion of the form

D=D*+D', (32)

where the activation energy of D’ is as given in Eq. (25).
The measured diffusion coeficient may have either of the
forms depicted in Fig. S(a) or 5(b). Hill** has measured
the diffusion coefficients of B, P, and As under interstitial
injection and found that they indeed obey Eq. (32) and
are similar to that depicted in Fig. 5(a). This observation
suggests therefore that these impurities diffuse principally
by an interstitial mechanism. In order to further test this
possibility, we have calculated the activation energy for
these impurities under interstitial injection [Eq. (25)] us-
ing our calculated values for AE and E,, and a value for
the interstitial injection energy, E;y;, extracted from the
data of Ref. 35. These results, along with Hill's experi-
mental values, are given in Table II. The excellent agree-
ment between the two sets of values corroborates the con-
clusion that these impurities diffuse primarily assisted by
interstitials.

Using a damaged layer created by Ar-ion implantation
as the inte.stitial source, Bronner and. Plummer® ob-
served P diffusion enhancement over a limited tempera-
ture range. They measured a ‘dependence for the
diffusion coefficient very similar to Fig. 5(a), as was found
by Hill, but did not take data at temperatures high
enough to discern any curvature in the Arrhenius plot.
Furthermore, they did not determine E;,. But, using
their measured activation energy for the total diffusion
coefficient, 1.3 eV, we may infer a value for E;;. Because
the total diffusion-coefficient curve and the nonequilibri-
um contribution to it are essentially parallel over the lim-
ited temperature range investigated, solving Eq. (25) for
E, and inserting our theoretical values, we find
E;,j=1.1¢V, a value which can be tested experimentally.

We noted in the preceding subsection on equilibrium
diffusion that the BV pair has a rather small binding ener-
gy compared to its migration energy. This means that it
is more likely that the isolated vacancy, rather than the
pair, effects long-range migration of B, if indeed a vacan-
cy mechanism is appropriate. In turn, then, the diffusion
coefficient of B is determined not by the BV concentra-
tion, but by the isolated V concentration [Eq. (18)]. Un-
der interstitial injection, the isolated vacancy concentra-
tion is less than or equal to the equilibrium concentra-
tion, so that either no change in the diffusion coefficient is
observed or diffusion is retarded. This is clearly in con-

tradiction to Hill's experiments, which show enhance-
ment. We cite this finding as further proof that B migra-
tion is mediated predominantly by Si self-interstitials.

If equilibrium diffusion is mediated primarily by vacan-
cies, interstitial injection can lead to either enhanced or
retarded diffusion depending upon the level of injection.
At low injection levels, which may be achieved by oxida-
tion at moderate temperatures, the majority V' com-
ponent is retarded according to Eq. (24), while the I com-
ponent remains small, with a diffusion coefficient given by
Eq. (23). There are a number of data which support the
contention that Sb diffusion does indeed exhibit retarda-
tion under interstitial injection.® Based on the theory
presented in the preceding subsection, we predict that
temperature-dependent data would obey Eq. (24), 50 that
a reciprocal Arrhenius plot would be required in order to
find an activation energy for Dy to be compared with Eq.
(28). The measured diffusion coefficient under such con-
ditions would have a form schematically similar to either
Fig. 6(a) or 6(b). Such experiments, which have not been
performed to date, would provide a test of our theory and
furnish a basis by which the conclusion that Sb diffusion
is vacancy dominated can be assessed. At high intersti-
tial injection levels, the interstitial contribution will ulti-
mately overwhelm all other terms, and enhanced
diffusion with an activation energy given by Eq. (25)
would be observed. However, data are usually reported
at a single temperature, so that no crossover from retar-
dation to enhancement has been observed.

Lastly, if both the I and ¥ components under equilibri-
um conditions are comparable, plots of the diffusion
coefficient under interstitial injection would be rather
complex. Enhanced or retarded diffusion could, accord-
ing to Eqgs. (23) and (24), be observed. However, examin-
ing the various possible combinations of Figs. 5(a) and
5(b) with Figs. 6(a) and 6(b) yields, under certain condi-
tions, a unique diffusion coefficient which crosses the cor-
responding equilibrium curve. This is depicted schemati- *
cally in Fig. 7. Such a crossing provides a definitive ex-
perimental signature that the I and ¥ components con-
tribute with comparable magnitudes. Temperature-

TAl

FIG. 7. Predicted schematic form for the diffusion coefficient
if, under equilibrium, the J and ¥ components are comparable.
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dependent data of diffusion under point-defect injection,
which may be utilized to search for this crossing, are
currently not available.

V. CONCLUSIONS

In this paper we have developed a consistent frame-
work for understanding dopant diffusion in semiconduc-
tors on a microscopic level. This framework provides im-
portant insight into the dynamics of diffusion both ener-
getically (through expressions or calculated values for the
activation energy) and pictorially (through the use of a
total-energy surface). The expressions for the activation
energies under various assumptions regarding the
diffusion mechanism and the injected species of point de-
fect also provide a readily accessible link between first-
principles theoretical calculations and experiment.

Specifically, we conclude that B, P, and As diffusion is
mediated predominantly by interstitials, whereas Sb
diffusion is mediated primarily by vacancies. In large
part, we confirm the conclusions of Fahey and co-
workers® with respect to the point-defect mechanism.
However, we contradict the finding of Mathiot and
Pfister’ with regard to P diffusion. The discrepancy be-

a2l

tween the two conclusions can be traced to the fact that,
due to the symmetry of the relevant equations, the simu-
lations of Mathiot and Pfister could only discern that one
of the two point defects is dominant. Their choice of va-
cancies over interstitials was based solely on comparisons
of impurity diffusion with conclusions regarding self-
diffusion which exhibit the same ambiguity. In other
words, the equations governing self-diffusion are sym-
metric with respect to the choice of vacancies or intersti-
tials and this ambiguity propagates to the choice of a
dominant defect for impurity diffusion.

The methodology presented here is by no means limit-
ed to the study of dopants in Si, but can foreseeably be
applied to other impurities in semiconductors or even in
metallic systems. Furthermore, the expressions
developed for the activation energies can be used to probe
the various external processing conditions themselves.
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A variety of experiments have revealed several puzzling properties of hydrogen-impurity pairs. For
example, H atoms passivate the electrical activity of some impurities, whereas they induce electrical ac-
tivity in others; they appear to tunnel around some impurities but not around others. We report first-
principles pseudopotential-density-functional calculations for several hydrogen-impurity complexes and
unravel the origins and intricacies of the rich behavior of H bound to different substitutional impurities

in Si and Ge.

PACS numbers: 61.70.Bv, 66.30.J1, 71.55.Ht

Over the years experimental observations have un-
veiled a very diverse role for hydrogen atoms in semicon-
ductors containing impurities. In virtually all cases, H
atoms are found to form pairs with substitutional impuri-
ties but their effect on electrical activity has been puz-
zling.!”? In some cases, as for example substitutional
boron or phosphorus in Si, H passivates the clectrical ac-
tivity of the impurity.”? In other cases, as for example
substitutional Si in Ge, H converts a normally inactive
impurity into a shallow acceptor.>® Alternatively, this
amphoteric effect of H on the electrical activity of im-
purities can be described? by stating that sometimes the
complex behaves as a substitutional atom that lies one
column to the lefr of the impurity in the Periodic Table,
e.g., the (H,Si) complex in ultrapure Ge, whereas in oth-
er cases the complex behaves as a substitutional atom on
column to the right of the impurity in the Periodic
Table, ¢.g., the (H,B) complex in Si. Suggestions for the
origins of this unusual behavior have been made on the
basis of semiempirical calculations,® but the conclusions
were only tentative.

A second question that has been debated extensively
over the years is whether H is tunneling around the im-
purity as opposed to occupying a particular site close to
the impurity. For example, certain cxperimental evi-
dence led to the belief that H tunnels around Si and C in
Ge,? but subsequent experiments showed that a static
model with trigonal symmetry was more appropriate for
the acceptor complexes.? In contrast, Muro and Sievers®
found evidence of tunneling hydrogen in the hydrogen-
beryllium acceptor complex in Si. The experimental
findings were satisfactorily accounted for by the dynamic
tunneling model of Ref. 2. On the other hand, there is
no evidence that H tunnels around Be in Ge. No
theoretical understanding of the conditions that favor
tunneling is available.

A third question that attracted considerable attention
is the specific atomic configuration of H-impurity pairs.
Most of the attention so far has focused on the (H,B)
pair in Si. A large number of theoretical calculations
has been reported contrasting the properties of only a
few configurations.'®'’ Though the configuration hav-

ing H in one of the four Si—B bonds is favored on the
basis of total-energy calculations, the results are not
definitive because no scarch has been made for the global
total-energy minimum with full relaxation of the host
crystal. Also, it is generally believed that the (H,Be)
complex in Si consists of an H atom tunneling around Be
between four equivalent antibonding (A4B) sites on the
extension of Si—Be bonds. There is no experimental or
theoretical evidence, however, that establishes this over
other possible paths.

All of the above questions regarding the interaction of
H with substitutional impurities in semiconductors can
be addressed simultaneously by calculating the total-
energy surfaces for an H atom around each specific im-

“purity and by a concomitant examination of the corre-

sponding energy levels in the energy gap. In this Letter
we report the results of such a study for three qualita-
tively different hydrogen-impurity complexes. The main
conclusions are as follows: Acceptor impurities such as
B or Be bind an H atom rather strongly at several
symmetrically equivalent sites in their immediate vicini-
ty. Barriers for H motion around the impurity between
such sites are small by comparison with the binding ener-
gy, so that motion around the impurity can occur either
thermally or quantum mechanically (tunneling), depend-
ing on subtle differences between the complexes. In con-
trast, isovalent impurities, such as Si in Ge, bind an H
atom very weakly, and the barrier for possible motion
around the impurity is significantly larger than the bind-
ing energy so that the resulting pairs are static. The
effect of H on the electrical activity of the impurity in
cach case follows naturally from the bonding properties
of the complexes.

The calculations are carried out using the first-
principles pseudopotential-density-functional method.
The method is well documented '* and has been shown to
accurately reproduce and predict ground-state properties
of semiconductors. Its successful application to defects
and defect complexes is documented in Refs. 15-17. We
use periodically repeated supercells to describe the host
crystal (including the substitutional impurity) in which
H resides. In order to include all relevant relaxations of
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H in $i:B,

— befow -1.35 ev
— below -.7 &V
—— below .05 eV

(111) plone through bonds

FIG. 1. Energy surface for an H atom in the (111) plane
through three bond-minima (BM) positions in Si:B,. The
plane does not contain atoms, but the unrelaxed lattice position
of the B atom is located just 0.4 A outside the plane in the
center of the red ring. The contours are color coded in three
different ranges for presentation purposes. For clarity, the sur-
face is cut off at an energy value of 0.05 ¢V, resulting in the
green plateaus. The zero of energy is chosen at the tetrahedral
interstitial site.

the host crystal for all of the H positions considered it is
necessary to use supercells of up to 32 atoms.'® We find
that most properties of the complexes are described ac-
curately when we use expansions of the wave functions in
plane waves with kinetic energy up to 12 Ry.'® In order
to calculate energy barriers with an accuracy of $0.1
eV, kinctic energy cutofls of up to 20 Ry in 32-atom cells
are used. Two to four special k pointe (depending on the
symmetry of the H position) are used to integrate over
the first Brillouin zone of the 32-atom cell, which is
found to induce negligible error bars on calculated ener-
gy differences. Complete energy surfaces for an H atom
in the neighborhood of a substitutional impurity in cither
Si or Ge are obtained by making use of the symmetry of
the host crystal. '¢!*

The main result of our calculations is that both (H,B)
and (H,Be) in Si exhibit a low-energy shell around the
impurity, primarily going through sites close to the
center of a Si-impurity bond (bond minimum or BM
site) and sites labeled C (midway between any two of the
impurity’s nearest neighbors). The low-energy shell is
ciearly visible as a ring in the total-energy surface for an
H atom in the (111) plane shown in Fig. 1. In the con-
tour plot of Fig. 2 for H in the (110) plane only half a
ring containing the BM and C sites is visible. The lower
part of Fig. 2 contains antibonding sites (4B), which are
clearly saddle points, another C site, and the tetrahedral
interstitial site (T7), which is a local maximum. The AB

NOND)/

FIG. 2. Contour plot of the energy surface for an H atom in
the (110) plane in Si:B,. Big dots indicate (unrelaxed) atomic
positions; bonded atoms are connected by solid lines. The sub-
stitutiona! boron atom occupies the center of the plot. Posi-
tions of special interest are indicated (see text). Sites denoted
C and C are equivalent if the B atom in the middle is replaced
by a Si atom. The unit of encrgy is eV and the spacing be-
tween contours is 0.25 eV. Close to the atoms contours are not
shown above an energy value o: 0.05 ¢V. All relevant relaxa-
tions are taken into account to calculate total energies, but the
relaxations of the host-crystal atoms are not shown in the
figure because they are different for different positions of H.

site is 0.5 eV higher in energy than the BM site and can
only be mistaken for a minimum if only sites for H along
the {111) direction are considered.!' The result that the
AB site is a saddle point definitively rules out as the
stable site for H.

The energy surface for (H,Be) in Si is qualitatively
the same as for (H,B) in Si. In each case a low-energy
path through BM and C sites is available. In the case of
(H,B) the BM site is the global minimum with a site
close to C being the saddle point for motion of H,
whereas in the case of (H,Be) the roles of BM and C are
reversed. More specifically, for (H,B) the saddle point is
0.2 eV higher in energy than the BM site, whereas for
(H,Be) the C site is 0.1 eV lower than the BM site. For
(H,Be) the AB site is 0.4 £V higher than the C site and
again a saddle point. In the lowest-energy (BM)
configuration for (H,B) the Si and B atoms closest to H
relax outward by the large amounts of 0.24 and 0.42 A,
respectively. Second-nearest-neighbor relaxations are
also significant in this configuration. In contrast, the
lowest-energy (C site) configuration for the (H,Be) com-
plex only involves a small relaxation of Be of 0.14 A
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away from H.

The BM configuration for (H,B) is in agreement with
a wealth of experimental observations,’>?? although
sometimes a slightly off-axis position close to the bond
center is proposed for H.?? Also the majority of theoret-
ical calculations appear to agree now on a configuration
similar to the BM configuration.'®'*'> Furthermore,
our calculated vibrational frequency of the H stretching
mode for the BM configuration of 1830 100 cm ~'isin
good agreement with the experimental value?' of 1903
cm ~'. Similar experimental information for the (H,Be)
complex is presently not available, but since all of the
features of the microscopic structure of the (H,B) com-
plex are in excellent agreement with experimental obser-
vations, we can be confident of our description of the
(H,Be) complex.

In contrast to the case of (H,B) and (H,Be) in Si,
where we find a low-cnergy region surrounding the im-
purity, in the case of (H,Si) in Ge the total-energy sur-
faces of H in various charge states are virtually identical
to the surfaces one obtains in the pure material without
low-energy regions restricted to the neighborhood of the
impurity.'® This is to be expected since Si and Ge are
very similar. For the three charge states considered
(positive, neutral, and negative) the global energy mini-
ma for H in Ge:Si, are the bond-centered site for H™
and H° and a site close to the Ty site (displaced from
T4 over 0.2 A toward Si) for H ™. Although Si and Ge
are very similar and one would not expect the isovalent
impurity Si in Ge to be able to bind H, the (H,Si) com-
plex in Ge has a positive binding energy.?* The binding
energics for the three minimum configurations turn out
to be very small, but consistently positive (i.e., the com-
plex is bound); we find E, =20, 28, and 52 meV for H*,
H® and H ™, respectively. Since barriers for movement
of H around the Si impurity are much larger than these
binding energies (e.g., for H ™ there is a saddle point for
possible motion of H at the hexagonal interstitial site
with a barrier of 0.35 eV), the H atom cannot move
around the Si impurity while still being bound. We will
return to the question of motion of H around impurities
later on in the paper.

Regarding the effect of the H atom on the electrical
activity of substitutional impurities, we arrive at the
surprising result that in all cases the H-impurity pair has
an energy level that is virtually identical to the level of
an H atom at the same site without the impurity.
Whether the impurity is deactivated or activated by H is
merely a consequence of the specific site that H occupies
near the impurity. In the case of B and Be, H is located
in the region close to the impurity (containing BM and C
sites). For such positions the H-related level occurs at
midgap.'® The electron of H drops in the empty acczp-
tor level and reduces the activity of the impurity by one
unit: The (H,B) complex is completely inactive and the
(H,Be) complex is a single acceptor. For the (H,Si)
complex in Ge the influence of H on electrical activity
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depends on the Fermi-level position, since the Fermi-
level position determines which charge state and site are
favored. We find that for p-type Ge (Fermi level close to
the top of the valence bands) H* is 0.2 eV lower in ener-
gy than H ™, which is 0.2 eV lower in energy than HO.
Therefore, in p-type Ge, H acts as a donor, just like in
p-type Si.'® As a consequence a (H,Si) complex in p-
type Ge would behave as a donor (this is, of course, a hy-
pothetic case since H would first pair with the acceptors
before pairing with isovalent Si impurities). In n-type
Ge, H ™ close to Ty is the lowest-energy state. In ultra-
pure Ge, in which (H,Si) complexes have been observed,
the Fermi level is cffectively located in the middie of the
gap. In that case, H™ close to 7y is the lowest-energy
state. For a position of H close to Ty an H-related level
is found below the top of the valence bands. The level
will be doubly occupied leaving a hole in the top of the
valence band. Therefore, the (H,Si) complex with H
close to the Ty site acts as an acceptor in agreement with
the experimental observation in ultrapure Ge.?

We now turn to the question of motion of the H atom
in H-impurity pairs. As we saw above, in the (H,Si)
complex in Ge, H cannot move around the impurity
since the binding energy of (H,Si) is much smaller than
any barrier H would have to overcome. However, in
both the cases of (H,B) and (H,Be) in Si, the H atom is
firmly bound with a binding energy of about 1 ¢V (refer-
enced with respect to a dissociated state of isolated ion-
ized acceptors and neutral H atoms in Si and with the
Fermi level close to the top of the valence bands). From
the energy surfaces discussed above we already saw that
barriers for motion of H around the impurity are small:
0.2 eV for (H,B) and 0.1 eV for (H,Be). Such barriers
can casily be overcome when H is moving thermally.
Very recently, in experiments using the optical dichroism
of the H-B absorption bands under uniaxial stress, an ac-
tivation energy of 0.19 ¢V was found for H motion from
one BM site to another, in agreement with our calculated
result.

We now consider the possibility that H would tunnel
around the substitutional impurity. Such tunneling may
occur because of the small mass of the H atom. The
much heavier Si or impurity atoms do not participate in
the quantum-mechanical process, and merely define the
potential in which the light particle moves. These poten-
tial wells should be calculated by keeping the host crystal
atoms fixed at the positions they have for the initial
lowest-energy configuration. For tunneling to occur, the
resulting potential must have two or more identical or
similar wells separated by small barriers. >

In the case of (H,Be), the global minimum is at the C
site, with little relaxation of the host. Tunneling between
equivalent C sites can occur if there is a path that does
not require motion of the host atoms and the correspond-
ing barrier is small. Tunneling through the BM site is
not possible because, with the host atoms frozen, we find
a barrier of 2.4 eV. We have, however, identified a tun-
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neling path going through an AB site, with a barrier of
0.4 ¢V. An estimate of tunneling frequencies in a one-
dimensional model has shown that such a barrier is con-
sistent with the possibility of tunneling in this system.

In the case of (H,B), the global minimum is at the
BM site, which requires large relaxations of the neigh-
boring B and Si atoms. With H located at one bond
center, these relaxations are such that the adjacent bond
centers are high in energy and thus do nor provide a po-
tential well for the H atom to tunnel to. Thus, tunneling
between equivalent BM sites is not possible.

In conclusion, our theoretical calculations reveal that
H occupies different sites when it pairs with different im-
purities, and that the nature of the site determines both
the electrical activity of the pair and the possibility of
thermal and quantum-mechanical motion around the im-
purity.
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The behavior of hydrogen in crystalline silicon is examined with state-of-the-art theoretical tech-
niques, based on the pseudopotential-density-functional method in a supercell geometry. Stable
sites, migrotion paths, and barsiers for different charge states are explored and displayed in total-
energy surfaces that provide immediate insight into these properties. The bond-center site is the
global minimum for the neutral and positive charge states; in the negative charge state, the
tetrahedral interstitisl site is preferred. The positive charge state is energetically favorable in p-type
material, providing 8 méchanism for passivation of shallow acceptors: electrons from the H atoms
annihilate the free holes, and formation of H-acceptor pairs iollows compensation. Also addressed
are the issues of molecule formation and hydrogen-induced damage. A number of different mecha-
nisms for defect formation are examined; hydrogen-assisted vacancy formation is found to be an

exothermic process.

L INTRODUCTION

The topic of hydrogen (H) in semiconductors has re-
cently attracted a great deal of interest. From a funda-
mental point of view, it i attractive to study the interac-
tion between H, the most elementary atom, and silicon
{Si), the prototypical semiconductor. The role of H in
crystalline semiconductors has also emerged as an impor-
tant technological problem: its effects have recently most
dramatically been observed in the passivation of shallow
impurities. In this paper we will concentrate on the be-
havior of hydrogen itself as it diffuses through a Si crys-
tal. The information about stable sites and charge states
obtained here is essential for understanding not only iso-
lated hydrogen, but also its reactions with other impuri-
ties.

Hydrogen has been known for a long time to saturate
dangling bonds at surfaces, vacancies, and grain boun-
daries, and to passivate deep-level defects, such as those
due to transition-metal impurities.! In cases where deep
levels are detrimental for device properties, their elimina-
tion by hydrogenation is of great benefit. The fact that
hydrogen can also passivate shallow impurities has only
been appreciated more recently.! ”® Shallow levels deter-
mine the doping of the semiconductor, which determines
its characteristics in device operation; accidental passiva-
tion of these impurities can cause outright failure of the
device. On the other hand, one can envision applications
in which intentional passivation of certain areas of a de-
vice could be an integral part of the fabrication process.
Since hydrogen is present, intentionally or not, during
many of the processing steps for fabricating modern
semiconductor devices, its potential effects, whether
harmful or beneficial, should be thoroughly understood.

There exist indeed a wide variety of ways in which H
can penetrate Si, a number of which are discussed in Ref.
10. They include crystal growth, high-temperature per-
meation,'! ion implantation,'* chemomechanical polish-
ing,!’ wet etching, unintentional hydrogenation during
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ion bombardment, plasma etching, boiling in water, and
surface exposure to monatomic H. The latter can be
achieved by placing the sample in or downstream from a
microwave plasma.*'* If the sample is shielded from the
plasma, this is the preferred way for introducing H under
the best controlled conditions, avoiding any additional
damage in the material.

Passivation of the electrical activity of p-type silicon
was first observed in metal-oxide-semiconductor (MOS)
capacitors by Sah et al.,? who suggested H as the prob-
able cause. Subsequent experiments by Pankove et al.’
and by Johnson* unambiguously showed the correlation
between H and acceptor profiles, and established the ex-
istence of H-acceptor pairs. Initially, passivation of shal-
low donors was thought to be nonexistent™* or very
weak.? Recently, however, conclusive evidence has been
provided for passivation of samples doped with P, As,
and Sb, in which a reduction of up to 80% was observed
in carrier concentrations.® This passivation, while
dramatic, is still not as complete as can be obtained in p-
type samples.

Apart from its role in interacting with existing defects
and impurities, hydrogen has recently been shown to in-
duce defects as well.'* Extended defects (described as
“platelets”) in the near-surface region were observed after
hydrogenation, and correlsted with the presence of large
concentrations of H.

A number of authors? %7 have offered interpretations
of the passivation data seeking to unravel the underlying
mechanisms. Attempts to explain the observed phenome-
na led to a number of contradictory assumptions regard-
ing the nature of the charge states of H along its diffusion
path, and hence about the H-impurity reactions that can
occur. Particular models were advanced for the structure
of the hydrogen-impurity complexes that are a resuit of
passivation. The electronic structure of these complexes
is such that all impurity levels are removed from the
band gap. A complete understanding of the passivation
process can only be obtained, however, by considering
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the reactions that lead to H-impurity pairing. This re-
quires a description of the behavior of H as an isolated
impurity, an aspect that was first stressed in a paper by
one of the present authors.'!® On the basis of available
data, it was proposed that H has a donor level in the
band gap. Accordingly, passivation of p-type material is
due to compensation, i.e., the electron from the H annihi-
lates a free hole, and H* is formed. Pairing of the H*
and the negatively charged acceptor then follows com-
pensation. The present calculations will confirm this sug-
gestion, but will also show that the behavior of H is more
complex, and depends upon the doping of the host ma-
terial. Brief accounts of some of the ma.jor results of this
work have been published elsewhere.!”!

Until recently, no experimental observations were
available for isolated paramagnetic hydrogen centers.
However, a large amount of experimental effort has been
devoted to the study of muonium, a pseudoisotope of H.
The muon-spin-rotation technique allows the measure-
ment of the hyperfine splitting of muonium, by studying
the spin precession in a magnetic field.” Two paramag-
netic forms of u have been observed: the so-called “nor-
mal” muonium (Mu), with an isotropic hyperfine interac-
tion, and “anomalous” muonium (Mu*), with trigonal
symmetry and a strong anisotropy of its hyperfine tensor.
Normal muonium is usually associated with the
tetrahedral interstitial site (T). Recently, anomalous
muonium was shown to be located at the bond center.?
This site was actually suggested by Cox and Symons,?!
based on chemical arguments. It has to be noted that the
muonium lifetime is only 2.2 us, and its mass is § that of
H. Even though electronic properties do not depend on
mass of lifetime, the observed behavior of muonium may
differ from that of H, and conclusions about muonium do
noi necessarily apply to H. Nonetheless, we will see that
certain of our results are in good agreement with the ex-
perimental observations on muonium. An extensive over-
view of the field of muonium in semiconductors has re-
cently been compiled by Patterson.'?

There has been one recent report of a paramagnetic hy-
drogen state, with indirect evidence that it would be asso-
ciated with the bond center. Gordeev et al.2 observed
by ESR a paramagnetic state due to H in Si, called the
AA9 center. They also showed that the characteristics of
AA9 are similar to those of anomalous muonium (Mu®*).
Since Mu® is now known to be associated with the bond
center” (a fact not appreciated in Ref. 22), this provides
indirect evidence for the presence of a paramagnetic H
state at the bond-center site.

Over the past ten years a number of theoretical studies
were carried out that were aimed at determining the loca-
tion and properties of H in Si. Many of these studies im-
plicitly assumed that H would retain its atomic character
in its interactions with bulk Si, i.e., no strong binding to
the crystalline network would occur, and H would favor
interstitial locations where the interaction with the Si
charge density would be minimal. This point of view led
to the neglect of relaxation of the network in many of the
carlier studies of the location of H in the Si crystal. It is
now known, and will emerge very clearly from the
present study, that relaxation of the host crystal around
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the H impurity is an essential feature of the interaction;
most of the essential physics is missed when relaxation is
not allowed. For instance, the global energy minimum
for H in the positive and neutral charge states occurs at
the bond-center position, i.e., midway between two Si
atoms, provided these atoms are allowed to relaxed out-
ward over a significant distance in order to accommodate
the H atom. If no relaxation is allowed, H cannot insert
into the bond.

An overview of the literature has been included in a re-
cent review by Patterson.!” In the following we will not
attempt a complete listing, but rather point out some
relevant features and deficiencies of previous work.
Among the first theoretical investigations were the
extended-Hiickel-theory cluster calculations of Singh
et al.”® Empirical-pseudopotential Green’s-function cal-
culations were carried out by Rodriguez et al.2* Main-
wood and Stoneham,? using the semiempirical Hartree-
Fock-based method of complete neglect of differential
overlap (CNDO), addressed the possibility of different
charge states for the H. This issue was also addressed in
the work of Johnson et al.,’ where empirical tight-
binding theory was used to derive the stable site for H in
pure Si.

We also mention the empirical-pseudopotential super-
cell calculations of Pickett er al.,?® even though they
were carried out for H at the tetrahedral interstitial site
in Ge, not Si. Their band structures showed a H-induced
deep donor state more than 6 ¢V below the valence-band
maximum. In contrast, recent calculations?’ using ab ini-
tio norm-conserving pseudopotentials have shown that H
at T in Ge induces a level just below the valence-band
maximum, very similar to the situation in Si. The errone-
ous result of Pickett et al. can be ascribed to lack of self-
consistency, and/or the use of empirical pseudopoten-
tials. Starting from this result, it was argued that a spin-
polarized treatment was necessary, which would intro-
duce a shift in the defect level of up to 0.5 Ry, bringing it
closer to the gap region. We will show in Sec. I1 E that
this is incorrect, and that spin polarization has only a
minor effect on the energy-level structure.

Katayama-Yoshida and Shindo®® actually carried out
spin-density-functional calculations for H at the
tetrahedral interstitial site in Si. They found a defect
state in the upper part of the band gap. In our calcula.
tions (also including spin polarization) this state is close
to and just below the top of the valence band. The result
of Ref. 28 may be due to an insufficiently converged basis
set. )

A wide variety of cluster calculations have been ap-
plied to the problem. Besides the CNDO listed above, we
mention the MNDO (modified neglect of diatomic over-
lap) method, used by Corbett et al.,? and minimal-
basis-set Hartree-Fock calculations by Sahoo er al.’®
More recent cluster calculations have included relaxation
of the Si atoms: Estreicher’! has used the metho. * par-
tial retention of diatomic differential overlap (PRLDO)
and ab initio minimal-basis-set Hartree-Fock calen-
lations, and Deik and co-workers®? have applied the
MINDO/3 (modified intermediate neglect of differential
overlap) method.
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The results obtained from these cluster calculations
display wide variations and inconsistencies, which illus-
trates the inadequacy of many of these methods to treat
the problem at hand. The CNDO, MNDO, PRDDO,
and MINDO/3 calculations are based on methods taken
from quantum chemistry, which were developed to pro-
duce good results for molecules. Their application to
solid-state problems, in which the semiconductor host is
modeled by a cluster, is usually not justified. Very few
cluster calculations test for convergence as a function of
cluster size, or examine the effect of the termination of
the cluster (usually with H atoms) and possible interac-
tions with the defect states. Furthermore, the Hamiltoni-
ans used in those calculations contain parameters which
are usually fitted to molecular properties. Certain aspects
of local bonding may therefore be well reproduced, but
there is no guarantee that the specific solid-state aspects
of the interaction of the defect with a crystalline environ-
ment can be predicted. Systematic studies to investigate
these problems in cluster calculations are very rare, and
the few accounts that have been published are far from
encouraging. For instance, Dedk and Snyder** concluded
that MNDO, CNDO, and MINDO/3 all have serious
difficulty in producing the band structure of the host lat-
tice (Si is found to be metallic in most of their cyclic-
cluster calculations), and that calculated ground-state
properties for defects may be subject to significant errors.
One should therefore apply great caution in applying re-
sults from such calculations to the analysis of solid-state
properties. The cluster calculations of Estreicher’! scem
to have been tested most carefully for some of the poten-
tial problems mentioned above.

In contrast with most previous approaches, in this
study we have used state-of-the-art theoretical methods
which were developed with the explicit purpose of study-
ing a wide variety of properties of solid-state materials.**
These techniques will be described in Sec. II. Section III
contains our results for a single H atom in crystalline Si;
they are most clearly displayed in the form of total-
energy surfaces, which provide immediate insight into
stable sites and low-energy paths for different charge
states. We will also explore the stability of the different
charge states in intrinsic, p-type and n-type material.
Section IV deals with interactions between several H
atoms, including molecule formation and mechanisms for
defect formation. Section V contains a brief summary.

II. METHODS

The calculational procedure used in this work is based
on density-functional theory in the local-density approxi-
mation®® (LDA) and ab initio norm-conserving pseudopo-
tentials.’® The total energy is calculated using a
momentum-space formalism:*’ wave functions and po-
tentials are expanded in plane-wave basis sets, and in-
tegrations over the first Brillouin zone are performed us-
ing the special-points algorithm.>® A thorough descrip-
tion of the theoretical approach can be found in Ref. 39.
Here, the properties of different charge states of H in Si
are studied in a supercell geometry.*® We carried out
spin-polarized calculations for a number of representative
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configurations; the major conclusion is that the devia-
tions from the spin-averaged calculations are small. Our
results for total energies are most clearly displayed in the
form of total-energy surfaces; we have used a novel tech-
nique to generate such surfaces, taking the full symmetry
of the host crystal into account. We now proceed to de-
scribe and analyze each of these features in more detail.

A. Pseudopotentials

For Si we use a pseudopotential generated according to
the Hamann-Schliiter-Chiang scheme,*® with cutoff radii
of 0.99, 1.49, and 1.11 a.u., respectively, for s, p, and d
potentials. The d potential is generated using an ionized
configuration: s'p%7°d%%. Test calculations carried out
with this pseudopotential for Si in the diamond structure
yield a theoretical lattice constant of 5.41 A, and a bulk
modulus of 0.94 Mbar (to be compared with the experi-
mental values of 5.43 A and 0.99 Mbar). At an energy
cutoff of (6;12) Ry, at which most of our calculations for
lattice relaxations are carried out, the theoretical lattice
constant is 5.42 A. [The notation (Ey;E;) Ry means that
plane waves with kinetic energy up to E; Ry are included
in the expansions of wave functions and potentials; waves
with kinetic energy up to E; Ry are included in an exact
diagonalization of the Hamiltonian matrix, while those
with kinetic energy between E, and E, Ry are included
in second-order Léwdin perturbation theory.!! We al-
ways choose E;=2E,.] These results indicate the relia-
bility of the Si pseudopotential for structural studies.

- The band structure produced by this pseudopotential is
in satisfactory agreement with experiment, except for the
well-documented problem of local-density-functional
theory that the band gap is too small. We calculate a
conduction-band minimum along the I'-X direction, at
about 0.8 times the distance to the X point, at 0.48 eV
above the top of the valence band. The implications for
our defect calculations will be discussed later.

For H we have simply used the Coulomb potential.
Test calculations have shown that no gain in convergence
properties is obtained by using a pseudopotential, and
that the 1/r divergence of the Coulomb potential near the
core presents no difficulties.

B. Plane-wave basis set

We have performed extensive tests to establish the con-
vergence as a function of the plane-wave basis set which
is used for expanding wave functions and potentials.
Typical plots showing convergence of total-energy
differences as a function of energy cutoff are shown in
Fig. 1. The ordinate shows the energy difference between
two reference configurations in an eight-atom cell. (The
eight-atom cell size is generally two small for extracting
meaningful results, but is adequate for a study of the
plane-wave convergence.) Figure 1l(a) is for the energy
difference between H™ at the T site and H™ at the hexag-
onal interstitial site (H). Figure 1(b) is for the energy
difference between H™ at the T site and H™ at the bond-
center site (including only first-neighbor relaxation). The
negative charge state was chosen to avoid problems with
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level occupations. Indeed, the H atom induces a level
near the band gap in the band structure, which has to be
left unoccupied (half-occupied) in the positive (neutral)
charge state. The occupation for the negative charge
state is most easily accomplished, since it only requires
filling up all levels with two electrons. Charge states are
discussed in more detail in Sec. I1F. The abscissa of both
plots in Fig. 1 is the energy cutoff E used in the plane-
wave expansions: plane waves with kinetic energy up to
E /2 are included in an exact diagonalization of the Ham-
iltonian matrix, while those with kinetic energy between
E /2 and E are included in second-order Lowdin pertur-
bation theory.*

In Fig. 1(a) the energy difference is converged (within
0.01 eV of its final value) at a cutoff of (9;18) Ry. Figure
1(b), for the bond center, shows tha: at (9;18) Ry the en-
ergy difference is within 0.15 ¢V of its final value, which
i$ only reached above (18;36) [note the different scale of
panels 1(a) and 1(b)]. We thus see that the convergence
properties depend on the position of the H atom. In fact,
as we will see later, one can distinguish two regions in the
Si crystal in which the H impurity shows distinctly
different behavior. The first region is that of high elec-
tron density, including the bond-center site (B), the sites
C and C’ (at the center of a rhombus formed by three ad-
jacent Si and the nearest T), etc. The location of these
sites is illustrated in Fig. 2. The second region consists of
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FIG. 1. Convergence of total-energy differences between

reference configurations in an eight-atom cell, as a function of
energy cutoff. (a) is for the energy difference between H™ at T
and at H. (b) is for the energy difference between H™ at T and
st B.
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FIG. 2. Schematic illustration of the (110) plane through the
atoms in the Si crystal, with labels for relevant high-symmetry
positions. T is the tetrahedral interstitial site, H is the hexago-
nal interstitial site, B the bond center, and C (and C’) is at the
center of a rhombus formed by three adjacent Si atoms and the
nearest T site.

the low-electron-density “channels” and includes the
high-symmetry tetrahedral (T) and hexagonal (H) inter-
stitial sites. Energy differences between H positions lo-
cated within the same region generally converge quite
fast [cf. Fig. 1(a)], while those between positions in
different regions [cf. B and T, in Fig. 1(b)] are slower in
convergence. Reference configuration (b) was chosen for
this test because it presents the extreme “worst case” in
terms of convergence properties; energy differences be-
tween other configurations have consistently been found
to converge faster than presented in Fig. 1(b). We have
also carried out test calculations in 16- and 32-atom su-
percells up to (12;24) Ry that confirm that the behavior
as a function of cutoff is the same for all cell sizes.

We have found that inclusion of plane waves with ki-
netic energy up to (6;12) Ry (i.e.,, waves up to 6 Ry in-
cluded in exact diagonalization, between 6 and 12 Ry in
second-order perturbation theory) is sufficient for obtain-
ing the general features of the energy surfaces. Since
some of the configurations (e.g., the B site) are particular-
ly sensitive to the energy cutoff, all of the calculations
necessary to derive energy differences for those sites were
also carried out at the higher cutoff of (9;18) Ry. This
cutoff corresponds to a basis set of ~5500 plane waves in
the 32-atom cells. The values for energy differences and
barriers that will be quoted all result from these high-
cutoff calculations. This may lead to small quantitative
differences with values that were quoted in earlier brief
accounts of the present work.'™'®

Finally, we have also examined the reliability of
Lwdin second-order perturbation theory*' for deriving
total-energy differences in this system, by comparing re-
sults obtained at (E/2;E) Ry with those obtained at
(E;E), i.e, without any perturbation theory, for various
values of the cutoff E. We found that the deviations were
always smaller than 0.1 eV [e.g., only 0.07 eV at (6;12)
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Ry), and decreased rapidly to zero when the cutoff was
increased {being smaller than 0.01 eV at (15;30) Ry],
showing that the values converge to the same limit at
infinite cutoff.

C. Supercells

To study the atomic and electronic structure of an im-
purity in the crystalline environment, while still preserv-
ing the translational symmetry of the system required for
our theoretical formalism, we artificially introduce
periodicity by constructing a supercell in which the im-
purity is surrounded by a sufficiently large number of Si
atoms. We typically use supercells containing 32 Si
atoms, such that the distance between neighboring de-
fects if 9.4 A. The convergence as a function of supercell
size was tested by performing calculations on supercells
containing 8, 16, and 32 Si atoms. For energy differences
between H positions in the same (high- or low-electron-
density) region, the 16-atom cell was found to suffice; en-
ergy differences between different locations for the same
charge state were converged to within 0.1 eV, and
differences between different charge states to within 0.2
eV. For energy differences between H positions in high-
versus low-density regions, however, the error bar in a
16-atom cell is larger. Compared with a 32-atom cell, de-
viations of up to 0.4 eV may occur in the energy
differences. These deviations can be attributed to the
larger extent of the defect wave functions, as observed in
plots of the charge density (see Sec. III B), which causes
more significant interactions between neighboring 16-
atom supercells for H at the bond center.

The 32-atom cells also facilitate the extraction of band
positions for an isolated defect, since the dispersion of
this level (caused by interactions with defects in neigh-
boring supercells) is less than 0.5 eV in this case. The po-
sition of the level that would correspond to an isolated
defect (i.e., without dispersion) was determined by taking
a weighted average over the band positions at the special
points. It changed by less than 0.1 eV when the cell size
was increased from 16 to 32 atoms.

Dispersion of the defect levels due to interactions be-
tween neighboring supercells places an error bar on the
derived position for any defect level. A more important
source of uncertainty, however, is due to the intrinsic
deficiencies of the local-density approximation (LDA),
particularly the fact that the LDA predicts conduction
bands and hence conduction-band-derived energy levels
to be too low. We will therefore refrain from quoting
specific results for positions of energy levels in the band
gap. We note, however, that a qualitative distinction be-
tween various positions of the H-induced level can still be
made. We also note that, while the absolute position of
the defect level is uncertain, its relative motion induced
by displacements of the impurity or by changes in the
charge state is quite reliable. These observations will al-
low us to derive conclusions about the deep levels in-
duced by hydrogen, as described later in the paper. Only
in the section where we discuss the relative stability of
various charge states as a function of the Fermi-level po-
sition will we be confronted with the limitations of the
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L.LDA.

For each position of the impurity, we need to let the
neighboring Si atoms relax to find the lowest-energy
configuration. Relaxation of two shells of Si atoms sur-
rounding the H impurity is included in the full calcula-
tions. The need to relax two shells of Si atoms was
another reason to carry out the calculations in 32-atom
supercells, since 16-atom cells are too small to include
anything but first-neighbor relaxations in a meaningful
way. Second-neighbor relaxations can lower the energy
by several tenths of an eV, e.g., for H at the bond center.
Relaxation of further shells causes less than 0.1 eV
change in the total energy, as was checked with a Keat-
ing model.*?

D. Special points

Integrations over the first Brillouin zone are performed
using the special-points scheme.’® In the 32-atom cells,
two special points in the irreducible part of the zone are
used for trigonal symmetry situations (e.g., H on the ex-
tension of a-Si-Si bond), and equivalent larger sets for
lower-symmetry configurations. We test the convergence
as a function of the special-point sample as follows: If we
increase the parameter g in the Monkhorst-Pack®®
scheme from 2 to 4, the number of special points generat-
ed in the irreducible part of the Brillouin zone increases
from two to seven for the T site, and from two to twelve
for the B site. Even though the absolute value of the to-
tal energy changes significantly when the larger k-point
set is used, all energy differences between different sites
change by less than 0.05 V.

E. Spin polarization

In this work we report local-density-functional results
for total energies and defect levels; spin polarization,?
which affects only the neutral charge state (with an un.
paired electron), was not included. We established the
validity of this approach by carrying out self-consistent
spin-density-functional calculations, which are much
more time consuming, at selected sites. For the bond-
center position the inclusion of spin polarization has very
minor effects: the total energy goes down by less than
0.02 eV, and the defect level is split by only 0.04 eV,

The deviation from the spin-averaged results is expect-
ed to be largest for H at the T site, where the crystal
charge density reaches its lowest value so that the impuri-
ty is most “free-atom’-like. (Note that the T is not a
stable site for H? in Si, as we will see in the next section.)
It is worthwhile to point out here, for the purposes of the
present study, namely the derivation of total energies,
what the effect is of neglecting spin polarization in the
LDA calculation for the free H atom. The total energy
deviates from the spin-polarized value by ~0.9 eV. The
error can be associated with the absence of exchange
splitting, which would lower the occupied level. In the
solid, such exchange splittings are known to be substan-
tially reduced from the free-atom values; this was ob-
served in calculations for transition-metal impurities.*?
These qualitative arguments were confirmed by the full
spin-polarized calculations. For H° at the T site, we
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found that inclusion of spin polarization lowered the total
energy only by 0.1 eV. The defect level was split into a
spin-up and a spin-down level, which were separated by
0.37 eV. These results are consistent with spin-polarized
linearized muffin-tin orbital (LMTO) Green's-function
calculations for H in Si.4

The overall conclusion is that the effects of spin polar-
ization on the total energy are very small. They are
therefore not included in the calculations that lead to the
total-energy surfaces presented in the next section. We
will, however, show contour plots of spin densities, which

provide valuable information about the electronic struc-

ture of the impurity at different sites.

F. Charge states

The calculation of charge states requires careful treat-
ment, since the LDA pseudapotential expressions for the
total energy are all derived assuming charge neutrality in
the unit cell3”* Such neutrality is indeed necessary to
avoid divergence of the long-range Coulomb terms. Tak-
en individually, the G=0 terms of the electron-ion,

electron-electron (Hartree), and ion-ion interactions are

infinite. A finite result is obtained, however, by appropri-
ate combination of terms, leading to two well-defined and
finite contributions: (1) the Ewald energy, which is the
energy of a periodic array of positive point ions in a uni-
form ncuttalizin% (negative) background, and (2) the so-
called aZ term,”’ which represents the Fourier com-
ponent for G =0 of the electron-(pseudolion interaction.

Our approach for performing the calculations on a
charged system is as follows: We define the occupation of
the electronic energy levels to represent the system that
we want to study (i.e.,, positively or negatively charged,
by taking out an electron, or putting in an extra electron
with respect to the neutral system). The charge density is
then calculated from the wave functions of the occupied
states, and all summations in the total-energy terms, as
well as the generation of a new potential in the self-
consistent process, are carried out with this charge densi-
ty. However, the G=0 terms (i.e., the Ewald and aZ
terms) are always calculated for the neutral system (the
charge being determined by the ionic charges in the su-
percell). Neutrality is essential here, because a non-
neutral system would surely lead to diverging terms. It is
also the appropriate approach to the physics problem, for
the following reasons,

Since charge neutrality is a fundamental requirement,
all calculations should really be set up with a number of
electrons that exactly equals the number of positive
charges in the unit cell. Since the latter is determined by
the structure, use of the Ewald and aZ terms for the neu-
tral system is appropriate. The neutrality condition
leads, strictly speaking, to the requirement of the pres-
ence of an additional charge that would compensate the
extra charge in our system. Specifically, if we put an ex-
tra electron on a defect, then we should have a hole (com-
pensating positive charge, or absence of an electron)
present in the same unit cell—and very far removed from
the extra electron, 30 as not to lead to spurious interac-
tion terms. This setup is generally impractical, since it
leads to a requirement of very large supercells, and makes
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separation of the terms in the total energy that are relat-
ed to the defect (and not to the compensating charge)
very difficult. Nevertheless, it was used by Vanderbilt
and Joannopoulos*’ in a study of defects in Se, in con-
junction with an elaborate scheme for specifying level oc-
cupations.

Since the compensating charge is not supposed to in-
teract with the charge on the defect, and basically only
serves to maintain charge neutrality for the calculation of
G =0 terms—something which we impose anyway —we
can take the shortcut of leaving it out of the calculation
altogether. By doing this, we are neglecting a
Madelung-type term which would describe the interac-
tion between (screened) positive and negative charges,
and which would vanish in the limit of an infinite super-
cell. This approach will therefore be justified if the re-
sults are shown to be converged as a function of supercell
size. In that case, the supercell is large enough to avoid
spurious interactions between charged defects in neigh-
boring cells. A test as a function of supercell size is
therefore essential, and has been carried out in this study
with satisfactory results.

As a final check on the procedure, we have examined
one test case in which the “strict” application of charge
neutrality was obeyed, by having two oppositely charged
defects present in the supercell. Our calculations on indi-
vidual defects in a 32-atom cell {to be described in more:
detail in the next section) established that at the bond-
center site H is most stable in the positive charge state,
while at the tetrahedral interstitial site the negative
charge state is favored. We also obtained values for the
total energies for each of these configurations. We then
proceed to construct a 32-atom supercell in which both
defects are present at the same time: one impurity at a
bond center, B (with appropriate relaxation of the sur-
rounding lattice), the other at the tetrahedral interstitial
site (T). The minimum-energy electronic structure for
this arrangement should put the H at B in the positive
charge state, and the H at T in the negative charge state.
This is indeed what we find by analyzing the charge den-
sity. This supercell is now overall neutral (since it con-
tains one positive and one negative defect), and therefore
the calculation strictly follows the treatment of G=0
terms, as discussed above. Such an arrangement of de-
fects therefore follows the scheme proposed by Vander-
bilt* for performing calculations for charged states. We
want to check whether the total energy obtained from
this calculation is equal to the sum of the total energies
obtained from separate calculations for the individual de-
fects. Spurious interactions between the positive and neg-
ative charges within the unit cell (and with neighboring
cells) may be present, of course; assumning, however, that
the defects are sufficiently well separated so that the only
interaction would be through a screened Coulomb in-
teraction, the resulting changes in the total energy would
be quite small. That allows us to obtain a value for the
total energy for a pair of (to a good approximation)
noninteracting defects. This total energy turns out to be
the same (within 0.1 eV) as the sum of total energies ob-
*ained from calculations for individual defects, in which
the prescription outlined above was followed. This agree-
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ment confirms the validity of our prescription for charge
states.

G. Energy surfaces

To study the behavior of an impurity (in a particular
charge state) in a semiconductor, one needs to know the
total energy of many different configurations, in which
the impurity is located at different sites in the host crys-
tal. For each position of the impurity, the surrounding
atoms should be completely relaxed. The resulting ener-
gy values as a function of the coordinates of the impurity
define an energy surface: E =E(R;q,). Notice that this
function does not depend on the coordinates of the host
atoms; that is because for each position R;,, an energy
minimization procedure has been performed (i.e., relaxa-
tion) that determines what the coordinates of the host
atoms are. Once the function is known, it immediately
provides information about stable sites, migration paths,
and energy barriers along these paths.

A function such as E = E(R;y,,) that depends on three
dimensions is difficult to visualize. Symmetries of this ob-
ject can play an important role in simplifying both the
calculational task and the conceptual understanding.
The crucial point here is the realization that the energy
surface possesses the full symmetry of the crystal. To
make effective use of this symmetry, an analytic descrip-
tion of the surface is essential. We achieve this through
expansion in a basis set with the appropriate symmetry.
A natural choice for a basis set with the full symmetry of
the lattice is a set of symmetrized plane waves. Such a
description is used, for instance, in self-consistent plane-
wave basis-set calculations to represent charge densities;
experience indicates that relatively few coefficients suffice
to adequately describe the overall features of the func-
tion. A progressively better description can be obtained
by including more symmetrized plane waves.

In order to test the representation, we worked with a
large data base of energy values (more than 16 locations
of H in the lattice). For each test we selected a particular
subset of these, containing m values, and used this set to
determine the expansion coefficients when n basis func-
tions (symmetrized plane waves) were included in the ex-
pansion of the energy surface. With m 2n, a least-
squares-fitting procedure was used. We found that a
minimum of six basis functions is required to represent
the features of the surface; the quality of the representa-
tion could be judged by taking the predicted energy value
at a data point that was not included in the subset of m
points, and comparing it with the value that was indepen-
dently calculated from first principles. Increasing the
number of basis functions from eight to ten led to energy
changes in the relevant areas of the surface of less than
0.05 eV. (Near the atoms, the surface rises very rapidly;
relative variations with the number of basis functions
may be larger in these regions, but are of no consequence
for the physical behavior). We conclude that eight to ten
calculated data points suffice to determine the expansion
coefficients.

While it is impossible to pictorially represent the ener-
gy surface as a function of all three dimensions, our
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choice of data points and our fitting procedure assure
that we take the full three-dimensional character into ac-
count. For visualization, we restrict the coordinates of
the H impurity to a particular plane {e.g., the (110) plane
through the atoms]. The energy surface can then be
displayed as a contour plot (the curves presenting lines of
constant energy), or as a perspective plot of the energy
(along the vertical axis) as a function of the coordinates in
the plane. Both types of plot will be used here. Note that
the Si relaxations for each position of the impurity atom
are different but are not displayed in these figures.

In Figs. 3-5 we show contour plots and perspective
plots for different charge states of H in Si, with the im-
purity coordinates restricted to the (110) plane through
the atoms. In all plots the (arbitrary) zero of energy is at
the T site. The contour plots are self-explanatory; bigh-
symmetry sites (cf. Fig. 2) have been included for easy in-
spection. The perspective plots have been color-coded to
allow straightiorward identification of the relevant re-
gions. Red regions present the lowest-energy values, blue
is intermediate, and green is for the highest energies. The
plots should be interpreted as a perspective view of a
landscape, in which the low-lying regions (‘valleys”)
represent the most favorable positions for the impurity.
The plateaus around the perfect-crystal Si atomic sites
are not real: when the H atom approaches any Si atom
too closely, the energy rises rapidly; this gives rise to a
very steep “mountain” in the surface, which would ob-
scure everything behind it in a perspective plot. We have
therefore cut off these mountains at a value listed as the
upper limit of the green regions in the plots. A quantita-
tive discussion of these plots will be given in the next sec-
tion.

III. RESULTS FOR A SINGLE HYDROGEN
IMPURITY IN CRYSTALLINE SILICON

The energy surfaces for H in the positive, neutral, and
negative charge states, as depicted in Figs. 3-S5, exhibit a
number of common features. In all three charge states
there are two distinct regions in which the H atoms ex-
hibit significantly different behavior. First, there is the
region of high electron density, which includes the B
(bond-center) site and the C site (at the center of a
rhombus formed by three adjacent Si and the nearest T).
In this region the nearby Si atoms relax strongly. For ex-
ample, when the H atom is placed at the bond-center site,
the adjacent Si atoms relax out by 0.4 A for a net gain in
energy of more than 4 eV. If no relaxation were includ-
ed, the red low-energy region in Fig. 3(b) would com-
pletely disappear. Figure 6 shows the energy surface cal-
culated for a rigid Si lattice; the bond-center and other
positions in the high-density region are indeed high in en-
ergy now. Coming back to the case in which relaxation is

. included, we find that in the high-density region a H-

induced defect level occurs in the upper part of the ener-
gy gap; it is identified as a state formed out of an anti-
bonding combination of Si orbitals. The second region
consists of the low-clectron-density ‘“channels” and in-
cludes the high-symmetry tetrahedral (7) and hexagonal
(H) interstitial sites. Here, the Si atoms in the vicinity of
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H relax very little if at all. Furthermore, a H-related lev-
el now occurs just below the top of the valence bands.
The precise position of the defect levels changes only by
~0.1 eV as a function of charge state. We now discuss
the various charge states and their relative stability in
more detail.
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FIG. 3. (a) Contour plot and (b) perspective plot of the ener-
gy surface for H* in a (110) plane through the Si atoms. The
zero of energy is arbitrarily chosen at 7. The black dots
represent Si atoms at their unrelaxed positions; the relaxations
(which are different for different H positions) are not shown but
are taken into account in the total-energy calculations. In (a)
the contour interval is 0.1 V. The color coding of the perspec-
tive plot in (b) is indicated in the figure: the energy values below
—1.02 eV are shown in red; between —1.02 and —0.58 eV in
blue; and between —0.58 and 0.3 eV in green. The surface is cut
off at an energy value of 0.3 eV.
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A. Positive charge state

Figure 3 shows the energy surface in the (110) plane for
a positively charged H (H*). The global minimum is at
the bond center (B) site, symmetrically located between
two Si atoms. In contrast, the energy of H* in the low-
density region is more than 0.5 ¢V higher (the bond
center is 1.2 eV lower in energy than the T site). Of
course, the state H* in the low-density region actually
does not occur, because the H-related level which must
be kept empty lies inside the valence bands. Note that
the positive charge state does not imply that H occurs as
a bare proton; at the bond center, the missing charge is
actually taken from the region near the Si atoms, corre-
sponding to the state occurring in the band gap. In a
simplified picture of combination of orbitals on the H and
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FIG. 4. (a) Contour plot and (b) perspective plot of the ener-
gy surface for H° in a {110) plane through the Si atoms. See
caption of Fig. 3.
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the neighboring Si atoms, this state can be considered to
be formed out of an antibonding combination of Si orbit-
als; viewed as a state of the defect complex, it is
effectively nonbonding in character, since it has a node
through the H atom. For H at the bond center, our use
of the notation H* therefore implies that the actual de-
fect is a complex formed by the H and the surrounding
Si, the electron being removed from an antibonding com-
bination of Si orbitals rather than from the H itself.

A migration path in the (110) plane can be traced be-
tween the bond-center positions; the barrier along this
path is ~0.2 ¢V high. This path can clearly be seen as
the red region winding its way around the Si atoms in
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FIG. 5. (a) Contour plot and (b} perspective plot of the ener-
gy surface for H™ in a (110) plane through the Si atoms. See
caption of Fig. 3.
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FIG. 6. Perspective plot of the energy surface for H* in a
(110) plane through the Si atoms. To generate the values for
this plot (unlike all others) the Si atoms were kept fixed in their
rigid lattice positions. Comparing with Fig. 3, we sce that the
low-energy regions have disappeared.

Fig. 3(b). The saddle point occurs very close to the point
indicated with C in the contour plot; the points C’ are
symmetry-related points along equivalent paths perpen-
dicular to the plane of the figure. At the saddle point in
the (110) plane, H is located 1.25 A away from the T site.
The Si atom below it, on the line through T and the sad-
dle point, relaxes down by 0.16 A to make the Si-H dis-
tance equal to 1.63 A. Since we cannot show the energy
surface as a function of all three dimensions, the (110)
plane and the indicated migration path should only be
considered as a representative example. We have also
studied the behavior in various other planes. Figure 7
shows the energy surface in a (110) plane parallel to the
plane in Fig. 3 and lying halfway between equivalent
planes through the atoms. In particular, we are interest-
ed in the behavior around the M site, which is midway
between two C sites [only one of which lies in the (110)
plane]. Corbett et al.?® proposed this site as the
minimum-energy location for neutral H in Si. In our en-
ergy surfaces for H*, we find it to be at approximately
the same energy as the bond center B, with no barrier be-
tween the two. Migration along a path involving the M
sites still involves a barrier of ~0.2 eV. As can be seen
in Fig. 7, the M point also lies on a line perpendicular to
the Si—Si bond, connecting the bond center with the
neighboring hexagonal interstitial site; all points between
B and M on this line have approximately the same ener-
gy. For these “buckled” configurations, the Si-H dis-
tance remains almost constant (equal to 1.6 A), due to ap-
propriate relaxation of the Si atoms. In all cases, the H
prefers to be symmetrically located with respect to two Si
atoms.

Figure 8, finally, shows a cross section which contains
the B, M, and H sites, but also goes through the atoms,
The flatness of the surface along the line from B to M is
once again evident. It can also be observed that the ener-
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gy surface rises steeply along the bond direction ([111}).

For H at the bond center itself, in the positive charge
state, the neighboring Si atoms move out over 0.41 A, to
make the Si-H distance equal to 1.59 A. This distance is
slightly larger than the Si—H bond length in molecules
such as SiH,, where it is 1.48 A. This is understandable
since H at the bond center is bonded to two Si atoms,
forming a three-center bond. The second neighbors move
by 0.07 A; the distance between first and second neigh-
bors is equal to 2.31 A

These motions of the Si atoms are quite large, and
must involve a significant energy cost. To estimate this

(110) cut through bonds

FIG. 7. (a) Contour plot and (b) perspective plot of the ener-
gy surface for H* in a (110) plane through the sites B, C, H, and
M. This plane is parallel to the plane of Fig. 3, and midway be-
tween equivalent planes through the atoms. The M point is lo-
cated midway between a bond center and the nearest hexagonal
interstitial gsite. The zero of energy is arbitrarily chosen at T
{not in the plot). See caption of Fig. 3.
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raise in energy due to strain, we have performed a calco-
lation of the Si atoms in the positions described above,
but in the absence of the H impurity. The total energy is
1.55 eV higher than for the lattice in equilibrium. This
means that the energy gained due to bonding between H
and Si must be greater than 1.55 eV, in order for the
bond-center configuration to be stable. This “cost of re-
laxation” can also be interpreted in the following fashion:
If a situation could be created in which outward motion
of the Si atoms would levy no energy cost, the bond-
center configuration for H* would be more stable by 1.55
eV, compared to the situation in crystalline Si. This ob-

o,
g
)

(211) through B, ¥, H

FIG. 8. (a) Contour plot and (b) perspective plot of the ener-
gy surface for H* in a (211) plane through the Si atoms, con-
taining the sites B, H, and M. The M point is iocated midway
between a bond center and the nearest hexe gonal interstitial
site. The zero of energy is arbitrarily chosen at T (not in the
plot). See caption of Fig. 3.

e —




39 THEORY OF HYDROGEN DIFFUSION AND REACTIONSIN ...

servation might be relevant for amorphous Si, in which
bond distortions are readily allowed.

B. Neutral charge state

For neutral H the same features and relative positions
of extrema can be recognized as in the case of H™, in-
cluding a global minimum at the bond center. For H at
the bond center the neighboring Si atoms move out over
0.45 A, to make the Si-H distance equal to 1.63 A, i.e.,
slightly larger than in the positive charge state. The

second-neighbor relaxation is the same as for the positive.

charge state. The ¢nergy cost due to Si motion, as de-
scribed at the end of Sec. III A, is 1.73 eV for the case of
the relaxations appropriate for neutral H. As in the case
of H*, we have examined carefully whether there is any
tendency for H? to preferentially bind to one of the Si
neighbors, leading to an asymraetric configuration, as
suggested by DeLeo et al.* In contrast to Ref. 46, we
find that the symmetric situation is lowest in energy. The
saddle point of the migration path in the (110) plane is
again located on the line between C and T, but closer to T
than in the case of H*: H is 0.60 A away from T now.
Relaxation of the Si atoms is negligible for H at this site.
The energy is less than 0.2 eV higher than at the bond
center. Figure 9(a) shows the charge density in a (110)
plane for neutral H at the bond center. A concentration
of charge around the impurity is immediately obvious.
Most of this charge in the bond region is related to H-
induced levels buried in the valence band. 1t is interest-
ing to also examine the spin density which results from a
spin-polarized calculation, as described in Sec. I E. Fig-
ure 9(b) shows the difference between the spin-up and
spin-down densities. This figure is remarkably similar to
one that would result from plotting the charge density as-
sociated with the H-induced defect level in the band gap
(this being the level that is occupied with one, e.g., spin-
up, electron in the neutral charge state). It is clear that
this density corresponds to an antibonding combination
of Si orbitals, with mainly p-type character. Notice that
virtually no spin density is to be found at the bond center
itself. These observations can be relevant for interpreta-
tion of muon-spin-resonance experiments.'’

The charge density for neutral H at the T site is shown
in Fig. 10(a). Note that the T site is not a stable site for
H? in Si, but it is educational to inspect Fig. 10 and com-
pare it with Fig. 9. The difference between spin-up and
spin-down densities is displayed in Fig. 10(b). Once
again, it corresponds closely to the density associated
with the H-induced defect level, which is now below the
top of the valence band. This density is now clearly asso-
ciated with an s-like state centered on the impurity.

Turning back to the energy surface for H°, we note
that the path through the region of high electron density
is favored (as for H*), but the low-density path is only
0.2 eV higher. Thus, neutral H seems to be able to move
rather freely through the network with very small energy
barriers. We note that the T site is a local maximum of
the energy surface for H. Moving from T towards a sub-
stitutional site, the energy first decreases and then in-
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creases in the [111) direction. However, the lowest ener-
gy in this antibonding direction (less than 0.1 eV lower
than at T) does not correspond to a local minimum, but
to a saddle point, i.e., the energy can be lowered by mov-
ing the H off the [111] direction. The same conclusion
holds for the hexagonal interstitial {H) site, which lies in

(a)

(b)

FIG. 9. (a) Contour plot of the charge density in the (110)
plane through the atoms for neutral H at the bond center. The
Si atoms in their relaxed positions are indicated with black dots
and connected with solid lines. Dashed lines connect the unre-
laxed atomic positions. The contour interval is 50; units are
electrons per unit cell (for a supercell containing one H and 32
Si atoms). (b} Contour plot of the difference between spin-up
and spin-down densities in the (110} plane through the atoms for
neutral H at the bond center. The contour interval is 2.5
electrons/(unit cell).
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the [111] direction halfway between two T sites. The H
site is a local minimum along the [111] direction, but only
a saddle point when considered in three dimensions.
Similar conclusions regarding antibonding and hexagonal
sites hold for the positive charge state, where the energy
differences are more pronounced. It is interesting to note

"

N

{a)

(b)

F1G. 10. (a) Contour plot of the charge density in the (110)
plane through the atoms for neutral H at 7. The Si atoms are
indicated with black dots; no relaxation occurs. The contour in-
terval is 50; units are electrons per unit cell (for a supercell con-
taining one H and 32 Si atoms). (b) Contour piot of the
difference between spin-up and spin-down densities in the (110)
plane through the atoms for neutral H at T. The contour inter-
val is 10 electrons/(unit cell).
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that the instability of the antibonding site also occurs for
H around a boron acceptor in Si,*’ eliminating this site as
a candidate for the structure of B-H complexes that re-
sult from passivation (see further).

C. Negative charge state

The negative charge state distinctly differs from H*
and HO in that it is now the low-electron-density regions
of the crystal which provide the most stable sites for the
impurity. This can be understood by realizing that the
energy cost of placing a second electron in the level in the
gap (which was the trademark of the high-density sites)
becomes too high, and it is more favorable to move the H
to locations where the induced defect level occurs at
lower energies. The T site is now the lowest in energy,
with the energy rising sharply outside the low-density re-
gions. In particular, the B site is now more than 0.5 eV
higher in energy than the T site. The barrier for migra-
tion along a path through the low-density region and go-
ing through the hexagonal interstitial site is 0.25 eV.

The negative charge state is thus the only one for
which the T site is a stable site (local and global
minimum in the energy surface). The charge density as-
sociated with this state is quite similar to that depicted in
Fig. 10. This is the position for which the analysis of Al-
tarelli and Hsu applies, showing why the H level is ex-
pected to be deep and not effective-mass-like.**

D. Relative stability of different charge states

We now examine the relative energies of the different
charge states, in order to determine the lowest-energy
state. To alter the charge state, electrons must be taken
from or removed to a reservoir; the Fermi level deter-
mines the energy of electrons in this reservoir. The rela-
tive energies therefore depend on the position of the Fer-
mi level. Figure 11 shows the relative formation energies
for different charge states, as a function of Fermi-level
position. To simplify the plot, we only show the forma-
tion energies for the impurity positions which correspond
to the global minimum for a particular charge state, i.e.,
B for H* and H° and T for H™. Figure 11(a) shows the
values directly obtained from the LDA calculations. As
pointed out above, these suffer from an uncertainty in the
position of the defect ievel. Rigorous calculational
schemes which could eliminate these uncertainties by go-
ing beyond the LDA are presently prohibitively complex
and too computationally demanding to apply to defect
calculations. We have therefore applied a very simple a
posteriori correction, amounting to a rigid shift of the de-
fect level together with the conduction bands, to bring
the band gap into agreement with experiment. The result
of this procedure is shown in Fig. 11(b). The energies are
shifted now, according to the number of electrons present
in the level. We stress that Fig. 11 is not intended to
display quantitative results, but merely to provide a qual-
itative indication of the stability of different charge states.

In p-type material (Fermi level at the top of the valence
band), the lowest-energy state is H* in the high-density
region; thus, H* diffuses via the high-density path and
exhibits donorlike behavior. These conclusions are
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unambiguous and independent of any error bars in our
LDA calculations. This result confirms the suggestion
that the passivation of p-type material is a direct result of
compensation, i.e., electrons from neutral H atoms an-
nihilate the free holes in the valence band.!® Pairing be-
tween H* and ionized acceptors follows compensation.
The structure of the hydrogen-impurity complexes that
result from this Pairing will be addressed in a forthcom-
ing publication.*

From Fig. 11 we see that our calculations predict H to
be a negative-U impurity, much like the Si self-
interstitial.** In p-type material the stable state is H* in
the high-density region; as the Fermi level is raised, how-
ever, the stable state becomes H™ in the low-density re-
gion. HYis not the stable state for any Fermi level. How-
ever, the uncertainty in the LDA energy levels (and in
our simple correction procedure) makes the error bar too
large to unambiguously exclude the occurrence of HC.

E. Vibrational frequencies

The frequencies of the hydrogen stretching mode for
H* and H? at the bond-center site are calculated in a 32-
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FIG. t1. Relative formation energies for different charge
states of a H interstitial impurity in Si. (a) shows the straight
LDA values, while (b) results from applying a simple correction
scheme to the energy levels (see text). The zero of energy is ar-
bitrarily chosen as the energy of H® at T. This figure is not in-
tended to display quantitative results, but merely to provide a
qualitative indication of the stability of different charge states.
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atom cell at a cutoff of (10;20) Ry. The H atom is moved
from the equilibrium position in the [111] direction (to-
wards the Si atoms) over distances of 2% and 4% of the
Si—Si equilibrium bond length. Since the proton is much
lighter than the Si atoms, it is a good approximation to
assume that the Si atoms do not move on the time scale
of the H vibration. Relaxation of the host crystal is
therefore kept fixed to that of the equilibrium position.
The energy differences obtained from the calculations for
different H positions are fitted to a parabola, from which
the vibrational frequency can be determined. This pro-
cedure leads to 2210 cm ™! for H* and 1945 cm ™" for H.
The error bar on these values is £100 cm™'. Experimen-
tal values®®*' for stretching modes involving a single H
atom in hydrogenated amorphous or crystalline Si range
between 2000 and 2200 cm™!. It has often implicitly
been assumed that such stretching modes involve single
Si—H bonds (such as for H tying off a dangling bond at a
vacancy). The present results show, however, that bond-
centered H in crystalline Si gives rise to similar frequen-
cies.

F. Discussion

A large amount of experimental information has been
accumulated in recent years based on observations of in-
teractions of H with shallow impurities. Interpretations
of the data were often based on contradicting assump-
tions, as pointed out by Pantelides.'® The comprehensive
theoretical description provided in the present study now
allows a coherent interpretation of all the data. We will
also discuss results from experiments which directly ad-
dress the problem of the location of H {(or muonium) in
the Si crystal.

1. Passivation of shallow impurities

It is known that the final result of the passivation
mechanism in p-type material is the formation of neutral
acceptor-H pairs, as observed in infrared spectroscopy
measurements,’*3? Raman studies,”* and ion-channeling
measurements.>*** The structure of these pairs will be
addressed in a separate publication.*’ In order to under-
stand the formation of these H-acceptor pairs, however,
one needs to know the nature of the charge states of H
along its diffusion path, which will determine which
hydrogen-impurity reactions can occur. The assumptions
that had been made previously were often contradicting
and mutually inconsistent. Pantelides'é showed that the
only way to acconnt for all the available data in p-type
material was for H to have a deep donor level in the band
gap. This conclusion has now been confirmed by the
present theoretical results.

Hydrogen atoms in p-type material (where the Fermi
level is below the hydrogen's donor level) prefer the posi-
tive charge state and will lose their electrons; these elec-
trons can annihilate the holes through a mechanism of
direct compensation. Pairing of hydrogen with acceptors
is not necessary for compensation and passivation of p-
type material, as has clearly been shown in recent experi-
ments by Johnson and Herring.’® Once H* has been
formed, however, its high mobility and Coulombic attrac-

U
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tion to negatively charged acceptor impurities will readi-
ly lead to the formation of acceptor-hydrogen pairs:
H* + B~ —(HB)® (where boron has been chosen as a typ-
ical acceptor). The pair formation is therefore a conse-
quence of passivation in p-type material.

The term compensation is often presumed to imply
that the stable state of the system is such that the atoms
which act as donors are spatially separated from the ac-
ceptors which they compensate. This occurs, for in-
stance, in the case of compensation by counterdoping,
e.g., adding phosphorus to boron-doped Si. The term
compensation, however, in general applies to any situa-
tion in which electrons from donor atoms annihilate free
holes, and as such correctly describes the hydrogenation
of p-type material. Because of the high mobility of the H
species, the final experimentally observed situation will
usually be such that H is paired with acceptors; pairing is
only absent during the initial (transient) phase of hydro-
genation, or at a temperature sufficiently high to dissoci-
ate H-acceptor pairs. Under those conditions, compensa-
tion is the accurate description for the state of the sys-
tem. Our major goal in stressing the compensation as-
pect is to make clear that pairing is not essential for pas-
sivation, and that, indeed, the reaction of pair formation
can only be correctly understood if compensation is con-
sidered to be the initial step. It should be clear that cal-
culations in which only the structure of the resulting H-
acceptor pairs is addressed cannot have any bearing on
the issue of compensation as the initial step in the pas-
sivation mechanism. The statements by Chang and
Chadi,” claiming that compensation is not involved in
the passivation, are therefore unfounded, since they are
inferred solely from an analysis of the already formed H-
B pair.

The sequence of events in which pair formation follows
compensation is essential for understanding a wide
variety of experimental results, which will be summarized
below.

(1) Since the diffusing species in p-type material is posi-
tively charged, electric fields are expected to significantly
influence the diffusion properties. The observed electric
field dependence™® of hydrogen neutralization of shallow
acceptors follows immediately, without having to invoke
participation of free holes in the reaction.’

(2) When the p-type (B-doped) material is counter-
doped, making it effectively n type, H diffusion is retard-
ed and H-acceptor pairing is suppressed; the final H con-
centration is 2 orders of magnitude smaller than in p
type.* Our theory shows indeed that if the Fermi level is
raised the H* concentration will decrease. Neutral or
negative H will not react with B~ the way H* does, and
the final concentration of (BH) pairs will be significantly
lower. A thin n-type overlayer was also observed to
block the penetration of hydrogen.””® Once again, no H*
can be formed in this layer. If H™ is formed, it is kept
out of the p-type substrate by the electric field in the de-
pletion region. If H® would be formed, it would not as
readily pair up with B~ as H* does.

(3) Reverse bias of the junction formed by an n *-type
overlayer on a p-type substrate during hydrogenation re-
sults in a suppression of neutralization in the space-
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charge layer. The actual experiments were carried out
with deuterium, an isotope of hydrogen which is more
readily detectable with secondary-ion mass spec-
trometry.’ The concentration of deuterium in the space-
charge layer can greatly exceed the boron concentration,
without neutralization occurring. These observations are
consistent with molecule formation in that region, and a
suppression of (BH) pairing due to the absence of H*.
Similar results from experiments by Tavendale? were ex-
plained as due to field drift of a positively charged species
under an electric field. The fact that this positively
charged species is H* (and not free holes) has recently
been unambiguously established by Johnson and Her-
ring,%* who carefully analyzed the variation with depth
of the H concentration in p-n junctions. Their results
show that H must have a deep donor level, not far from

- midgap.

(4) Recent experiments by Johnson and Herring’6 have
also provided direct support for the compensation mech-
anism. By carrying out electrical measurements in real
time during hydrogenation they were able to directly
study the migrating species, rather than having to infer
its properties from formation kinetics of various H-
related complexes. At 300°C a temperature at which any
(HB)® complexes should be completely dissociated, they
still observed a sharp increase in the resistance upon hy-
drogenation. These observations must be due to the
indiffusion of H* and compensation. :

Johnson and Herring® have also analyzed deuterium
concentrations in uniformly doped n-type material, as
well as epitaxial layers of varying n-type doping on a sin-
gle substrate. They concluded that H can occur in a neg-
ative charge state, with an acceptor level close to the
donor level found in the experiments described above.
While not as conclusive yet as the results for p-type ma-
terials, these observations do lend support to our predic-
tion that H™ is the stable charge state in n-type material.
Further experimental work is required to test our predic-
tion that H is actually a negative-U impurity.

2. Location of H (and muonium) in the Si crystal

Let us now turn to experiments in which the Jocation
of H in the lattice was the object of investigation. A
number of ion-channeling experiments have been per-
formed in order to determine the location of hydrogen in
pure and doped Si. Once again, deuterium (D) is used,
this time in order to take advantage of a nuclear reaction
for detection. Picraux and Vook® found that D would be
located predominantly in a single interstitial site 1.6
along a [111] direction from a Si atom in the antibonding
direction. A major problem of the technique is the intro-
duction of lattice damage due to the ion beam, and the
resulting attachment of D to these defects. The observed
D positions are therefore likely not those in pure, but in
damaged Si, and may not only correspond to atomic, but
also to molecular H. This problem has been addressed in
careful experiments by Nielsen,'? in which beam-induced
damage was kept to a minimum. He found 80% of deu-
terium atoms to be located close to bond-center sites,
while 20% are close to tetrahedral sites. The occurrence
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of D at the bond center was ruled out by Nielsen on the
ground of older theoretical calculations.?**% His low-
temperature results are consistent, however, with a
significant fraction of D located at the bond-center site,
which emerges as the lowest-energy position for H* and
H° from the present study.

As mentioned in the Introduction, a wealth of experi-
mental information has been generated from muon-spin-
resonance experiments. Our results for the behavior of
neutral H in Si are in general agreement with the obser-
vations on the paramagnetic center. Muonium has been
found to diffuse very rapidly in Si,%' in agreement with
the low barriers found in our total-energy surface for HC.
Recently, “anomalous muonium™ has been unambiguous-
ly identified as occupying a bond center,” in agreement
with the global minimum that emerges from our calcula-
tions for H. The so-called “‘normal muonium” is usually
associated with the tetrahedral interstitial site.®' Our en-
ergy surface for H? shows that the T site is not a stable
site. The bond-center site is the only local minimum in
this surface (to an accuracy of ~0.1 eV; a barrier of 0.1
eV would, however, be far too small to confine the muon
anyway, given its Jarge zero-point motion). However,
other locations around T (in the low-density region of the
crystal) may account for the observed signal, with the
muonium tunneling rapidly between different sites. Such
sites, while not being global minima of the energy sur-
face, are the only locations accessible to the muon which
do not require the large relaxations of the Si host atoms
necessary for a bond-center position.5? On the time scale
of the muon lifetime, such relaxations may be sufficiently
slow to effectively trap the muon in the low-density re-
gions of the crystal, where relaxation of the host atoms is
negligible.

These observations lead us to the following remarks.
Our calculated results and energy surfaces correspond to
zero temperature, and a static approximation; the mass of
the particles does not enter into this description. At
finite temperatures, phonon displacements of the Si atoms
will create a continuously varying potential environment
for the hydrogen atom; its insertion into the bond center,
and diffusion along the migration paths shown above, will
necessarily be coupled to the motion of the Si atoms.
Even at zero temperature, the zero-point motion of the
very light H atom will have significant amplitude. In
principle, the total energy surfaces and information about
relaxation obtained above can form the basis of an
analysis in which the quantum nature of the particle is
taken into account. We do not address this issue any fur-
ther here.

IV. RESULTS FOR INTERACTIONS
OF SEVERAL HYDROGEN ATOMS

A, H,; molecules

First, we examine how two neutral H atoms may com-
bine and form a H; molecule in the Si crystal. We have
found the minimum-energy position for the molecule
straddling the tetrahedral interstitial site, oriented ig the
(100) direction, with the atoms separated by 0.86 A (to
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be compared with 0.75 A in vacuum). This configuration
is illustrated in Fig. 12. At the hexagonal interstitial site,
which would lie on a migration path, the energy of the
molecule is 1.1 eV higher. The binding energy of H, (as
compared with isolated neutral H atoms at their lowest
interstitial position, i.c., at the bond center) is 210.5 eV
per molecule, or ~1 eV per atom. This binding energy
applies to the case where H, is formed out of two isolated
neutral H atoms. If instead the molecule were formed
out of one H® and one H* (a possibility suggested by
Johnson and Herring®®), the binding energy would be
lowered by the energy difference between H* and HP.
From Fig. 11, we see that in p-type material this
difference can be up to 1 eV. If the molecule is formed
out of (or dissociated into) H® and H*, this result may ex-
plain the observation of Johnson and Herring that the
binding energy of the molecule is lower than the diffusion
barrier.

B. H-induced defects

Another phenomenon that involves the cooperative in-
teraction of several H atoms with the Si lattice is related
to the recent observation'®*®? that hydrogenation can in-
duce microdefects in a region within ~1000 A from the
surface. Care was taken to eliminate radiation damage
that could result from direct exposure to the plasma dur-
ing hydrogenation. The defects, studied with transmis-
sion electron microscopy (TEM), have the appearance of
platelets along {111} crystallographic planes, range in
size from SO to 100 A, and exhibit no net Burgers vector.
They cannot be categorized as intrinsic Si defects, such as
dislocation loops or stacking faults. Some clastic-strain
contrast was observed around the defects. The thickness
of the platelets is comparable to a single {111} Si plane.
By correlating the density of platelets with the deuterium
concentration, one or two H atoms per Si—Si bond are
present. Furthermore, Raman measurements'® showed
spectral features at 1960 and 2100 cm ™', which were at-

FIG. 12. Schematic illustration of the minimum-energy posi-
tion of a H; molecule in the Si crystal: located at the
tetrahedral interstitial site and oriented along (100).
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tributed to H incorporated in the Si crystal.

We have examined several possibilities (some of which
were mentioned in Ref. 63) for the structure of these
platelets, by performing total-energy calculations in a su-
perlattice geometry; edge effects at the platelet boundary
are thus neglected. First, we explore the situation in
which one H atom is inserted into each of the Si—Si
bonds of a {111} plane, as schematically illustrated in
Fig. 13(a). Recalling that H in the bond-center position
requires large relaxations of the neighboring Si atoms, it
might be expected that the presence of H in a particular
bond center would favor the introduction of other H in
nearby bond centers. As discussed in Sec. IIIE, the vi-
brational frequency associated with such a bond-center
configuration (1945 cm™! for H?) is close to the experi-
mentally observed frequencies (1960 and 2100 cm™!); the
Raman measurements alone are therefore not sufficient to
exclude a model in which H is bonded not to one, but two
Si atoms. However, we can eliminate this mode] as a can-
didate for the defects by inspecting the total energy. The
problem is now two dimensional; we assume that no in-
plane relaxation occurs. The first plane of Si atoms near
the bond center moves out over 0.45 A; the second plane
relaxes by 0.09 A. These values are very similar to those
obtained for relaxation near a single bond-centered H.
For the relaxed configuration we find that the energy per
H is more than 0.5 eV higher than it is for the isolated
impurity, i.c., the formation of this type of extended de-
fect is clearly unfavorable.

Another possibility for extended defect formation is
the insertion of two H atoms in each Si—Si boxnd, i.e., the
formation of two Si—H bonds out of each Si—Si bond.
It is essential to place the H atoms off the Si-Si axis in or-
der to find a favorable configuration, as illustrated in Fig.
13(b). A representative position is for the H atoms at two
M sites associated with each Si—Si bond. The energy per
H atom is now similar to that for isolated atoms. Howev-
er, this indicates that this structure would be unstable to
H, molecule formation. We conclude that these pro-
posed configurations are energetically not favorable.

We have therefore examined a different type of mecha-
nism, based on the removal of Si atoms from the defect
region, with the resulting dangling bonds tied off by H
atoms. This mechanism is based on our calculated result
that H atoms csn assist Frenkel-pair creation. In a per-
fect crystal the creation of a Frenkel pair (vacancy-
interstitial pair) normally costs about 8 eV.% If, howev-
er, a sufficient number of H atoms are available in the im-
mediate neighborhood of a particular Si atom, Frenkel-
pair formation can actually be exothermic with a slight
gain of energy. In the final configuration a self-interstitial
is emitted while four H atoms saturate the dangling
bonds of the vacancy. The calculated energy gain for the
process in which a neutral interstitial H atom passivates a
dangling bond is ~2.2 eV per Si—H bond.%® This value
is obtained by comparing the total energy of a fully sa-
turated vacancy (i.e., four H atoms tying off the dangling
bonds) with the sum of the energies of (a) a vacancy in
which only three dangling bonds are saturated by H, and
(b) an isolated HO at its most favorable site in the lattice.
This energy value was confirmed in a superlattice calcula-

tion modeling an extended defect in which a double row
of Si atoms was removed in a {111} plane, with all dan-
gling bonds tied off by H, as illustrated in Fig. 13(c). The
energy gain per Si—H bond is equal to that calculated at
a single vacancy.

These theoretical results for the interaction of several
H atoms lead us to the following conclusions. On the
basis of energetic considerations, H, molecules are the

(a)

(b

(c)

FIG. 13. Schematic illustration of possible structures for H-
induced defects (“platelets”) in crystalline Si. In (a) single H
atoms are situated in the bond centers of [111] Si—Si bonds. In
(b} each Si-—Si bond is replsced by two Si—H bonds, with the H
located off axis. In (c) a double layer of Si atoms has been re-
moved through a vacancy-formation process described in the
text, and the resulting dangling bonds are tied off by H.
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preferred state for several neutral H atoms in pure crys-
talline Si. Kinetic considerations also suggest that H-
assisted Frenkel-pair creation would be a rare event.
However, H-assisted ejection of threefold- or twofold-
coordinated Si atoms is kinetically more favorable, such
that enlargement of a preexisting defect is likely. The
particular atomistic processes that lead to defect nu-
cleation and enlargement cannot be described in more de-
tail at this point; however, the energetic arguments given
above for defect formation and extension suggest the
vacancy-formation mechanism is likely to be involved in
the observed hydrogen-induced damage.

V. SUMMARY

This work provides a comprehensive description of the
diffusion and reactions of H in crystalline Si, based on
the first-principles pseudopotential-density-functional
method. Hydrogen as an impurity shows distinctly
different behavior as a function of its charge state, as
exemplified by the total-energy surfaces that we generat-
ed (Figs. 3-5. H* and HC prefer the high-electron-
density regions of the crystal, with a global energy
minimum at the bond-center site. H™ prefers the low-
electron-density region and has its lowest energy at the
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tetrahedral interstitial site. The vibrational frequencies
for the H stretching modes at the bond center (1945
cm™! for H® and 2210 cm™! for H*) are very close to
measured frequencies for single H atoms in a-Si:H or
crystalline Si.

The stability of different charge states depends on the
Fermi-level position: H* is favored in p-type material,
providing a straightforward mechanism for passivation of
p-type Si through compensation and subsequent pair for-
mation. The calculations for n-type material produce H™
as the stable charge state, and indicate hydrogen would
be a negative-U impurity, but within the error bar H
cannot be excluded.

H, molecules are the most stable state for H in crystal-
line Si in the absence of other defects. Hydrogen can also
induce defects; we have discussed a mechanism for ex-
tended defect formation through spontaneous Frenkel-
pair generation.
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The microscopic structure of hydrogen-boron complexes in silicon, which result from the passiva-
tion of boron-doped silicon by hydrogen, has been extensively debated in the literature. Most of the
debate has focussed on the equilibrium site for the H atom. Here we study the microscopic struc-
ture of the complexes using parameter-free total-energy calculations and an exploration of the entire
energy surface for H in Si:B. We conclusively show that the global energy minimum occurs for H at
a site close to the center of a Si—B bond (BM site), but that there is a barrier of only 0.2 ¢V for
movement of the H atom between four equivalent BM sites. This low energy barrier implies that at
room temperature H is able to move around the B atom. Other sites for H proposed by others as
the equilibrium sites are shown to be saddle points considerably higher in energy. The vibrational
frequency of the H stretching mode at the BM site is calculated and found to be in agreement with
experiment. Calculations of the dissociation energy of the complex are discussed.

L INTRODUCTION

The role that hydrogen plays in semiconductors has be-
come the subject of intense research!? following the
discovery that hydrogen is able to passivate the electrical
activity of shallow acceptors in silicon. This passivation
effect is of considerable importance for technological
reasons. The properties of electronic devices are largely
determined by the presence and activity of shallow im-
purity levels and passivation of their activity by om-
nipresent (accidentally or intentionally) hydrogen would
alter the properties of those devices in an uncontrollable
way as long as the passivation mechanism is not
thoroughly understood. The passivation effect was first
suggested by Sah et al. in an inventive analysis of exper-
iments on metal-oxide-semiconductor (MOS) capacitors.
The connection between hydrogen and boron (as the pro-
totypical acceptor-type impurity) concentrations was
soon established in studies of the passivation effect under
controlled exrerimental conditions by Pankove et al.*
and Johnson.” This discovery supplemented the under-
standing of the role of hydrogen in semiconductors,
which was previously known to be the saturation of dan-
gling bonds at defects, surfaces, and interfaces, or pas-
sivation of deep levels in the energy gap, e.g., those due to
transition-metal impurities. At first, the passivation
effect was found to be considerably smaller in case of sil-
icon doped with donor-type impurities (n type).5 Recent-
ly, however, it was found that also in n-type material
there is a strong passivation effect, although still not as
strong as in p-type material.’

A large number of experiments was performed to eluci-
date the fundamental reactions underlying the passiva-
tion mechanism and they generally claimed to support
each other. For some time, however, the analysis of these
experiments contained contradictory assumptions regard-
ing the charge state of H. A step forward in the under-
standing of the passivation mechanism was made in Ref.
8, in which one of the present authors suggested that hy-
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drogen is a deep donor in silicon and was able to account
for a large portion of the experimental observations. As-
suming that H is a deep donor in Si, passivation in p-type
material would come about in two steps: (1) compensa-
tion, i.e., the annihilation of free holes associated with the
ionized acceptors by the electrons of the H atoms, and (2)
formation of a neutral complex (or pair) out of a nega-
tively charged acceptor and a positively charged H atom.
We stress that the first step already establishes passiva-
tion and that the second step is only the logical conse-
quence of the first step. On the basis of first-principles
total-energy calculations, Van de Walle et al.® con-
clusively showed that H indeed acts as a donor in p-type
material, confirming the proposed passivation mecha-
nism. This conclusion could be reached from calcula-
tions for H in different charge states in pure Si. Ques-
tions pertaining to the nature and quantitative properties
of the hydrogen-acceptor complex were not addressed in
that work.

Soon after the hydrogen-acceptor complexes were
discovered, a controversy arose regarding their micro-
scopic structure. Pankove et al.,* on the basis of in-
frared spectroscopy of boron-doped Si (Si:B), proposed
that H would be inserted in a Si—B bond with the substi-
tutional B pushed out toward the plane of three neighbor-
ing Si atoms. This configuration was confirmed in
theoretical calculations by DeLeo and Fowler,'® who
used a semiempirical cluster method. These authors also
reproduced the measured vibrational frequency of the H
stretching mode. However, Assali and Leite,'' using a
method very similar to the one DeLeo and Fowler em-
ployed, proposed a site for the H atom on the extension
of a Si—B bond, the so called antibonding site. Using a
spring-constant model they too were able to reproduce
the measured H vibrational frequency, although Deleo
and Fowler!? found a very different frequency if H were
to be at the antibonding site. Based on tight-
binding-model calculations for the hydrogenated vacan-
cy in pure Si, Baranowski and Tatarkiewicz'® speculated
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that H would occupy a site on the extension of a B—Si
bond (backbonding site), forming a Si(p}—H(s) bond.
Hartree-Fock cluster calculations were used by Amore
Bonapasta et al.,'* who found a position near the center
of a Si—B bond as the equilibrium site for H.

Experimental investigations into the microscopic struc-
ture of hydrogen-acceptor complexes (in which the accep-
tor usually is boron) have included infrared measure-
ments and Raman studies of the H vibrational frequen-
cy,** 13717 jon-channeling measurements of the lattice lo-
cation of H and ithe displacement from the substitutional
site of B,'*~2! the perturbed-angular-correlation tech-
nique to explore hydrogen-indium pairs in Si,?? x-ray-
diffraction studies of the lattice relaxation due to passiva-
tion,” and uniaxial-stress studies of the H-stretching
mode.?* Generally, the picture emerges from these stud-
ies that H dominantly occupies a site near the center of a
Si—B bond, although smaller percentages are seen to re-
side at antibonding or tetrahedral interstitial sites.'%20-2
The latter observations, however, could also be connected
with damage induced by H. The vibrational frequency of
the H-stretch’ng mode is found to be 1903 cm ™ for low
temperatures'®'’ { ~5 K). We will discuss some of the
results in these papers in more detail in Sec. 111, where
the theoretical results of the present paper are given.

In previous theoretical work'?~'42%26 only a Jimited
set of possibilities for the equilibrium site of the H atom
was considered. Since it is to be expected that anytime
the H atom is located close to the B atom it will remove
the electrically active level from the gap, it is necessary to
study the entire total-energy surface for H in B-doped Si
in order to determine the favored site. Furthermore,
since the energy differences between configurations in
which H occupies different sites are small, there is a need
for accurate calculations of such energy differences.
Most of the theoretical approaches above use either a
cluster model, usually without studying the effect of en-
larging the cluster or the effect of terminating the cluster
in different ways, and/or semiempirical Hamiltonians
that contain a number of parameters that have been fitted
to reproduce the properties of molecules. If tests are per-
formed one invariably finds (see, e.g., Ref. 25) that these
methods are unable to reproduce the properties of even
simple bulk semiconducting crystals. When the tech-
niques are used for small clusters to simulate defects in
crystals, quite often some of the results are in agreement
with either experiment or more sophisticated calcula-
tions. Typically, however, other results may be in serious
error. In general, the lack of tests of convergence and ac-
curacy renders most predictions of such calculations as
questionable. In this work, we use a parameter-free
method of calculating total energies, the pseudopoten-
tial-density-functional method (see Sec. II), which has
proven to be very reliable in calculating and predicting
properties of a wide variety of semiconducting systems,
such as bulk solids, surfaces, interfaces, and localized and
extended defects. Furthermore, we test all of our results
for convergence and accuracy with respect to numerical
approximations involved. Finally, we have developed a
way to visualize the entire energy surface for a H intersti-
tial atom in B-doped Si similar to the method used by
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some of the present authors in a study of H in pure si.?

The remainder of the paper is organized as follows: In
Sec. II we discuss calculational details of our method that
are especially pertinent to the present study, as well as
tests of how the results depend on the inevitable numeri-
cal approximations involved. In Sec. IIl the results of
our approach are presented and compared with available
experimental data. Finally, we summarize the paper in
Sec. IV,

II. CALCULATIONAL DETAILS

The Hamiltonian in the Kohn-Sham equations®’ for
the valence electrons in a crystal is constructed using
norm-conserving pseudopotentials?® to describe the in-
teraction between atomic cores (nuclei plus core elec-
trons) and valence electrons. For the exchange and
correlation interaction we use the local-density approxi-
mation (LDA) to the exchange and correlation functional
that was parametrized by Perdew and Zunger® from the
Monte Carlo simulations of an electron gas by Ceperley
and Alder.

We solve the Kohn-Sham equations by expanding all
functions of interest {one-electron wave functions, poten-
tials, etc.) in plane waves and solving the resulting matrix
eigenvalue problem. This procedure is iterated until a
self-consistent solution is obtained, i.c., until the effective
potential for the valence electrons that enters the Hamil-
tonian equals the effective potential that is calculated
from the wave functions that are solutions for this Hamil-
tonian. From the self-consistent one-clectron energies
and wave functions the total energy of the crystal is most
conveniently caculated in momentum space.’’3? This
pseudopotential-density-functional method is a “first-
principles” method in that it contains no adjustable pa-
rameters derived from experiment. This method has been
very successful in calculating and predicting the ground-
state Propertics of a wide variety of semiconducting sys-
tems.”?

We calculate the total energy for a silicon crystal with
a substitutional boron atom and an interstitial hydrogen
atom for a large number of inequivalent sites of the H
atom. For every position of the H atom that we consider,
the atoms of the Si:B host crystal are allowed to relax by
minimizing the total energy with respect to the host-
crystal atomic coordinates. Relaxations up to second-
nearest neighbors are investigated as to their importance.

As the method in general is well documented, we will
discuss only the calculational details that are especially
pertinent to the present study.

A. Norm-conserving pseudopotentials

For Si and B norm-conserving pseudopotentials are
generated according to the scheme of Ref. 28. We use
the degrees of freedom that one has in generating such
pseudopotentials to our advantage by carefully choosing
core cutoff radii r, (outside of which true and pseudo-
wave-functions are identical®®). These cutoff radii can be
chosen such that a pseudopotential is generated whose
Fourier transform converges more rapidly in g space, im-
plying that a smaller number of plane waves will be re-
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quired to describe the pseudopotential.“ Generally,
moving r, outward improves the psecudopotential in the
above respect. However, moving r, outward deteriorates
the description of the atom by the pseudopotential.
Cutoff radii are chosen such that a reasonable balance be-
tween both effects is found. The Si pseudopotential is the
same as used in previous work and is described else-
where.?3% The pseudopotential for B is newly generated
and is discussed here in more detail. We generate pseu-
dopotentials for angular-momentum components /=0
and 1 only. The cutoff radii for / =0 and 1 are 1.10 and
1.18 a.u, respectively. These 7, arc somewhat larger
than those used in Ref. 36 (1.0 and 0.9 a.u. for ! =0 and
1, respectively). The generated pseudopotential is tested
by calculating the equilibrium lattice constant a., and
bulk modulus B, of boron phosphide (BP) in the zinc-
blende structure for consecutively larger values of the
kinetic-energy cutofis £, and E,, which determine the
numbers of plane waves in the expansion of the wave
functions (plane waves with kinetic energy up to E, are
included in the calculation, those between E, and E, in
second-order Lowdin perturbation theory;'’ we invari-
ably choose E,=2E,). In the following, we will use the
notation (E,;E,) to denote the choice of cutoffs. The
calculations are performed both for the newly generated
B pseudopotential as well as for the one that is tabulated
in Ref. 38. For phosphorus we use in both cases the tab-
ulated pseudopotential of Bachelet, Hamann, and
Schiiiter® (to be called the BHS pseudopotential). The
Fourier transform of the P pseudopotential falls off more
rapidly for large ¢ than the Fourier transform of the B
pseudopotential. Therefore the convergence with respect
to kinetic-energy cutoff will be determined by the B pseu-
dopotential. For each choice of energy cutoffs, ¢, and
B, are calculated by computing the total energy of BP at
five lattice constants ranging between —5% and + 5% of
the experimental lattice constant.’® The resuits are fitted
to Murnaghan’s equation of state for solids, which con-
tains ., and B, as parameters.*

We combine the results for a.q and By in Fig. 1. The
single points in Fig. 1 (a,,=4.56 A and B,=1.66 Mbar)
are results obtained in Ref. 36 using a pseudopotential for
B and P very much like the BHS pseudopotential and an
energy cutoff of 20 Ry (no Lowdin perturbation tech-
nique was used in their calculation). QOur results indicate
that the results of Ref. 36 have not entirely converged
with respect to increasing the energy cutoff. The main
conclusion to be drawn from Fig. 1 is that the newly gen-
erated B potential results in virtually the same a., and B,
as found with the BHS pseudopotential, but that it con-
verges faster 10 these values than with the BHS pseudo-
potential. Both converged values for a, (4.48 and 4.49 A
for the new and BHS pseudopotential, respectively) are in
fair agreement with the lattice constant of 4.538 A that is
found experimentally.*' The calculated bulk moduli of
1.62 and 1.68 Mbar for the new and BHS pseudopoten-
tial, respectively, cannot be compared with any experi-
mental result. Therefore, we have reached our goal of
generating a norm-conserving pseudopotential that can
be represented by fewer plane waves than the one so far
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available, while it still accurately describes a B atom in a
solid-state environment.

To illustrate the point that the cutoff radii 7. cannot be
pushed out too far, we mention that the converged result
for a,, using a potential for B generated by choosing the
r. to lie at radii for which the outermost maxima of the
radial wave function for the respective [ values occur
(r.,=1.52 and 1.56 a.u. for /=0 and 1, respectively) is
4.34 A. The percentage of deviation from the experimen-
tal value is more than 3 times as large as for the two oth-
er pseudopotentials.

For hydrogen we did not use a psecudopotential, al-
though it is possible to generate one. Instead we use the
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FIG. 1. Convergence of ground-state properties of BP as a
function of kinetic energy cutoff £,y (determining the number
of plane waves in the expansion of the wave functions) for two
different pseudopotentiais for boron. The dots represent results
obtained using the tabulated pseudopotentials for B and P from
Ref. 38, whereas the triangles represent results obtained using a
newly generated pseudopotential for B and the tabulated pseu-
dopotential from Ref. 38 for P. The solid squares represent re-
sults obtained in Ref. 36 using pseudopotentials for B and P
very similar to the pseudopotentials in Ref. 38. Plane waves
with kinetic energy up 10 yEpw are included exactly in the cal-
culation, and those between 3 Epw and Epw in second-order
perturbation theory (Ref. 37). (a) Equihbnum latuice constant
G.q of BP (in A). The cross on the vertical axis denotes the ex-
penimental latuce constant (Ref. 41). (b) Equilibrium bulk
modulus B, of BP (in Mbar).
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exact 1/r Coulomb potential of the proton. In this we
follow our earlier work™* and we refer to those papers
for a more detailed discussion.

We note that Fig. 1 is not instrumental in determining
the energy cutoffs that will be sufficient for the problems
to be addressed in this paper. Those cutoffs depend on
the properties and accuracy one is interested in and can
only be determined by explicitly calculating those proper-
ties for consecutively larger cutoffs. This will be dis-
cussed in more detail in Sec. IID. Figure 1 does show
qualitatively that these properties may be obtained at
lower cutoffs by using the newly generated B potential as
compared to the (standard) BHS pseudopotential.

B. Supercells

To model simple and complex defects we use supercells
that are periodically repeated. We investigate how calcu-
lated properties depend on supercell size and we deter-
mine when they become independent of supercell size
(within a desired accuracy). As in previous work® 3542 we
use supercells of 8, 16, and 32 atoms in which defects are
separated by 5.43, 7.68, and 9.41 A, respectively.

In addition to the finite separation between defects,
another artifact particularly pertinent to defect calcula-
tions in general arises from using a (finite-size) supercell.
Defect levels that show no dispersion for a truly isolated
defect do have dispersion when using finite-size super-
cells. This is, however, not a big problem in the present
calculation. The substitutional B and interstitial H atoms
together exactly supply the four valence electrons of the
Si atom that has been replaced by the substitutional B
atom. Therefore an equal number of bands is filled as in
the case of pure Si. Therefore, a H-related defect level,
which is found to be located in the energy gap exactly as
in the case of H in pure Si (See Ref. 35 and also Sec.
IITA) is unoccupied. Even if a large dispersion of this
level causes it to drop into the valence bands for certain
points in the first Brillouin zone (1B2), the level can be
left unoccupied when it is properly identified [this
identification can be done in a variety of ways: (1) the
charge density associated with the defect level is localized
and correlated with the position of H; (2) by comparing
the band structure of Si with a substitutional B atom
(Si:B) with and without the H atom, (3) the H-related de-
fect level will move significantly with respect to the other
bands if the band structure is calculated with the H atom
at a different position].

The dispersion of the H-related defect level for H in
Si:B is about 2.0, 1.1, and 0.6 ¢V for the 8-, 16-, and 32-
atom cells, respectively. See Sec. III A for a further dis-
cussion of these levels,

C. Brillouin-zone integrations

In two distinct stages of the calculation of the total en-
ergy, an integration over the 1BZ has to be performed:
(1) calculation of the valence charge density from the
one-clectron wave functions, and (2) calculation of the
band-structure energy term from the one-electron ener-

gies.’? Both integrations are replaced by summations
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over special k points in the irreducible part of the 1BZ
(IRBZ).**** 1t has been established in many calculations
that by using only a very small number of k points (be-
tween 1 and 10) very accurate total-energy differences can
be obtained. In general, one has to test for every applica-~
tion how many k points are sufficient for a certain accu-
racy. Such tests are reported below.

We employed the general Monkhorst-Pack (MP)
scheme* to generate special points sets with their param-
eter g equal to 2. The number of special points generated
with this choice of g depends on the position of the H
atom in the unit cell. It is also different for the different
supercell sizes that we use. When H is located at a gen-
eral position on the extension of a Si—B bond, 4 =2 re-
sults in two, five, and two special points for the 8-, 16-,
and 32-atom cell, respectively. For less symmetric H po-
sitions this number can be as high as 16 in the 16-atom
cell and 4 in the 32-atom cell. The following test was exe-
cuted to determine the accuracy that is obtained with the
q =2 choice for special points in the MP scheme: We
calculate the total-energy difference between config-
urations in which H occupies a position near the center
of a Si—B bond and one in which H is located on the ex-
tension of a Si—B bond. These two reference
configurations are defined only for the purpose of carry-
ing out meaningful tests of the Brillouin-zone integra-
tions (this subsection) and the dependence of results on
supercell size and basis-set size (next subsection). They
should not be confused with the fully relaxed
configurations that will be described later. In the first
configuration [to be called the bond-minimum (BM)
reference configuration] the H atom and the Si and B
atoms constituting the bond in which H is located are al-
fowed to relax their position in order to find the
minimum-energy configuration. In this BM reference
configuration the Si and B atoms relax outward by 0.24
and 0.42 A, respectively. In the second configuration [to
be called the antibonding ( AB) reference coafiguration]
only the H and B atoms are relaxed. In this configuration
the H atom has a distance of 1.32 A from the B atom,
which relaxes inward (away from H and towards a Si
atom) by 0.09 A. The relaxation of B is an artifact
springing from the fact that the Si atoms are kept fixed.
In the fully relaxed AB configuration the four Si neigh-
bors of B relax inward because of the smaller size of the B
atom (see Sec. III B). Although we do not allow all atoms
to relax, these reference configurations are certainly
sufficiently close to the fully relaxed configurations to
make tests meaningful. In the 16-atom cell using energy
cutoffs (E,;E,)=(6;12) Ry, we find an energy difference
of 0.316 eV for ¢ =2. By choosing ¢ =4, we enlarge the
number of k points in the 1BZ by a factor of 8 and find
30 special points in the JRBZ. For g =4 the above ener-
gy difference drops to 0.306 eV. In the 32-atom cell we
obtain an energy difference of 0.287 &V using ¢ =2 (two
points in the IRBZ), whereas ¢ =4 (15 points in the
IRBZ) yields 0.286 eV. We conclude that the g =2
choice is good enough to give energy differences between
configurations with different H positions and different re-
laxations with an accuracy of about 0.01 eV. This is
slightly better than in the earlier work on H in pure Si,*
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since here we always integrate over a set of completely 08 T T T T T
filled states. Finally, in the 8-atom cell the ¢ =2 choice is
not as good as in the 16- and 32-atom cells. Tests show < a—b—a
that g =4 (10 points in the IRBZ) provides the same ac- 2 06 ./"‘—‘—‘-.- T
curacy as ¢ =2 in the larger cells. The 8-atom cell, how- 8 P
ever, will only be used to test the convergence of energy S 8* o—o"""
differences with respect to increasing the energy cutoffs S 04} 3" §
(see next subsection). For that purpose the ¢ =2 choiceis S 16,28~
sufficient. & 32*
2 02} 7
D. Energy cutoffs and supercell size W
Calculations using the pseudopotential-density- 0.0 ) ; 1 ! L

functional method and a plane-wave basis set are general-
ly performed with a choice of energy cutoffs (E,;E,) for
which calculated results still depend on this choice (E, is
the kinetic-energy cutoff for plane waves included in the
calculation; those with kinetic energy between E, and E,
are included using second-order Lowdin perturbation
theory”’). For a given accuracy the size of the computa-
tional problem (i.c., rank of matrices to be disgonalized)
is proportional to the volume of the unit cell, whereas
processing time and memory usage are cubic and quadra-
tic, respectively, in these sizes. Only for very small unit
cells the usual computational limitations (central-
processor-unit time and memory usage) allow one to fully
converge the calculations with respect to increasing E,
and E,. One therefore has to make a careful study of the
dependence on cutoffs in order to come to a judicious
choice and quantitatively reliable results.

As indicated in Sec. I1 A, the choice of supercell size
can also affect calculated energies, because if defects in
neighboring cells are too close one is modeling a system
with interacting defects. Here we present a study of the
dependence on energy cutoffs and supercell size of the en-
ergy difference between the BM and AB reference
configurations described in the preceding subsection.
Table 1 and Fig. 2 show the results. In Fig. 2 we see that
the three curves for the three supercell sizes are very well

TABLE 1. Energy difference (in eV) between situations in
which hydrogen occupies the bond-minimum (BM) and anti-
boading ( AB) reference configurations (sce text) as a function of
energy cutoffs (£,;E;) in (Ry) and as a function of number of
atoms in the supercell. The results for the 8-atom cell are only
used to study the dependence on energy cutoff since they have
not been fully converged with respect to enlarging the mesh
used in the k-space integrations (see text).

{E;Ey)
Ry} 8 atoms 16 atoms 32 atoms
(6;12) 0.481 0.316 0.287
8;16) 0.518 0.358 0.333

(10;20) 0.554 0.399 0.370

(12;24) 0.586 0.433 0.400

(14;28) 0.602 0.451

(16;32) 0.607 0.471

(18;36) 0.610 0475

(20;40) 0.615

(22;44) 0.621

(24;48) 0.625

(26;52) 0.628

o
-
o

20 30 40 50 60
Energy cutoff Epy (Ry)

FIG. 2. Convergence of energy difference between the BM
and AB reference configurstions (see text) in which H occupies
two different sites close to substitutional B in Si, as s function of
kinetic-energy cutoff Epw (see caption of Fig. 1) and of supercell
size. Supercells used contain, besides the H atom, 8, 16, or 32
host-crystal stoms. The results for the 8-atom cell are only used
to further probe the dependence of the energy difference on E py
and are not fully converged with respect to enlarging the mesh
used in the k-space integrations (see text).

.behaved; they have the same (regular) form and are mere-

ly shifted with respect to each other by an almost con-
stant amount. The curves for 16- and 32-atom cells do
not differ by more than 0.03 eV. The 8-atom-cell curve
shows that the behavior as a function of cutoff is the
same as for the larger cells and convergence is eventuaily
reached. The 8-atom-cell curve is not converged with
respect to the number of k points used in the Brillouin-
zone integrations (¢ =2 was used; see preceding subsec-
tion), which is unimportant for the present purpose of
testing the dependence of energy differences on energy
cutoff. For E,=36 Ry we consider the energy difference
to be converged, since the changes resulting from using
higher cutoffs are very small compared to other numeri-
cal approximations employed (e.g., the Brillouin-zone in-
tegrations described in the preceding subsection).

We further study the energy-cutoff dependence of cal-
culated energy differences by examining a larger set of
positions for the H atom. The different sites considered
here lie in the (110) plane and are depicted in Fig. 3. We
use the 32-atom cell and all atoms up to second-nearest
neighbors of the H atom are allowed to relax. In addi-
tion, the Si neighbors of the B atom are always allowed to
relax. Table II summarizes the results. For the purpose
of discussing Table I1 and following results, we find it
useful to subdivide the different positions for the H atom
into three regions. In region I the valence-electron densi-
ty is very high (e.g., the BM site) and putting a H atom
there will induce large relaxations of the crystal. In re-
gion II the electron density is lower but still considerable
(e.g., the AB, BB, C, and C' sites); consequently, relaxa-
tions of the crystal are also still considerable. In region
I11 the electron density is very small (7, and K’ sites)
and the H atom will aot induce much relaxation. Of
course, one always has the relaxation of the Si neighbors
of the B atom because of the em~'-
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T,

.

BB, BB,

T,.

FIG. 3. Location in the (110) plane, containing a zig-zag
chain of Si atoms and a substitutional B atom, of sites often re-
ferred to in the text. BM denotes the bond-minimum site, AB
the antibonding site, BB the backbonding site, 7, the
tetrahedral interstitial site, and H and H' are (inequivalent) hex-
agonal interstitial sites. The C and C’ sites are equivalent in
pure Si, but not in the presence of a substitutional B atom.

Regarding convergence with respect to increasing the en-
ergy cutoffs, we make the following observation: energy
differences between sites in the same region change by
less than 0.05 ¢V by going from cutoffs (6;12) Ry to
cutoffs (10;20) Ry and therefore may be considered fairly
well converged at (6;12) Ry. In these calculations the re-
laxations are determined at the lower cutoffs and kept
fixed for the higher cutoffs so that variations of energy
differences are due solely to the change in cutoffs. Energy
differences between sites in different regions change by
about 0.1 eV when the combination of sites is region
I-region II. This observation is useful if one wants to ex-
trapolate calculated energy differences to very high ener-
gy cutoffs, which because of computational limitations
cannot be handled together with large supercells. Tables
I and II together provide means of extrapolating to
higher cutoffs in order to obtain reliable quantitative esti-
mates for energy barriers. We observe from Table I that
the amount of change in going from cutoffs (6;12) Ry to

TABLE I1. Energies (in eV) of situations in which hydrogen
occupies different sites (see text and Fig. 3) in Si:B as a function
of energy cutoffs (E;E;). As the zero of energy, the energy of
the global energy minimum (BM site) is chosen. Energies are
calculated in a 32-atom cell including relaxation up to second-
nearest neighbors of the hydrogen atom. 8 is the difference be-
tween the (6;12)- and (10;20)-Ry calculations.

Site (6;12) Ry (10;20) Ry 5 (eV)
BM 0.00 0.00 0.00
AB 0.26 0.37 0.11
BB 097 1.10 0.13
o 0.11 0.20 0.09
c 136 1.44 0.08
H 1.06 1.26 0.20
T, 1.61 1.85 0.24
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cutoffs (10;20) Ry is about the same as that of going from
(10;20) Ry to the converged values that we consider
reached at (18;36) Ry. Therefore, calculations of energy
differences between two sites at {(6;12) and (10;20) Ry al-
low one to extrapolate to the converged energy differ-
ences. Using Table II we find that the BM site is 0.48 eV
lower than the 4B site and 0.29 eV lower than the C'site.
One should not apply such extrapolations to energy
differences between sites in regions I and III (e.g., BM
and T sites) before a table like Table I for sites in regions
I and III is calculated.

Considering the above results, we come to the follow-
ing choice of supercell size and energy cutoffs that we will
use to calculate total energies for a large number of
different H positions: We use 32-atom cells and energy
cutoffs of (6;12) Ry. The use of the 32-atom cell allows us
to take relaxations up to second-nearest neighbors of the
H atom into account. Furthermore, the (artificial) disper-
sion of the H-related defect level in the gap is manage-
able, although a larger dispersion is not a big problem for
the neutral H-B pair in Si as discussed in Sec. IIB. The
energy cutoffs (6;12) Ry are large enough to obtain quali-
tatively correct energy differences between different posi-
tions of the H atom, whereas it is still possible to calcu-
iate energies for a large number of different positions, in-
cluding those that destroy all point-group symmetry of
the system. It is necessary to calculate the energy for a
large number of different H positions to get a picture of
the entire energy surface for H in Si:B. For cases of spe-
cial interest the energy difference can also be found in a
quantitatively reliable way by using higher cutoffs and ex-
trapolation, as shown above.

Occasionally, for positions of H for which the system
has very low symmetry, the total-energy difference with a
position for which the system has higher symmetry, but
that lies in the same density region, is calculated in a 16-
atom cell. This difference is then assumed to be the same
in the 32.atom cell.

E. Energy surfaces

It is very illuminating to combine the results of total-
energy calculations for different positions of an impurity
atom in a host crystal into an energy surface E(R;,,)
with the position of the impurity atom R, as the coor-
dinate (note that this does not exclude the possibility that
the host crystal contains other impurities). Such a sur-
face provides immediate insight in the migration path-
ways, migration barriers, and stable sites for the impurity
atom.

Quite generally, the observation can be made® that the
function E(R;p,) has the complete symmetry of the host
crystal (without the tracer impurity), i.e., for any opera-
tion R of the space group of the host crystal structure,
we have

E(Rypy)=E(RR;p,) - m

For instance, in a pure Si crystal, positions R;,,, of a H
atom in the center of different Si—Si bonds will render
the same total energy, if all the appropriate relaxations
are taken into account. Of course, different atoms relax
for different bond-centered (BC) sites, since the Si atoms
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forming the bond in which the H atom resides will relax
most strongly. However, the relaxations for two different
BC sites are connected by the same symmetry operation
that connects the two sites. To obtain the energy surface
E(Ri,,) we now proceed as follows: The function
E(R;,;) is expanded in a basis set of functions that all
have the symmetry of the host crystal. The expansion
coefficients are obtained by a least-squares fit to calculat-
ed values E(R;, ;) for different positions Rimp, i
(i=1,...,N). By varying the degree to which the prob-
lem is overdetermined (where overdetermined means that
the number of calculated data points, N, is larger than
the number of symmetry functions, M, in the expansion),
one can check the stability and, thus, the reliability of the
fit.

For host crystals with a high degree of translational
symmetry, a suitable set of basis functions is the set of
symmetrized plane waves ®,(r):

] (),
Pr)= 3 em"' ¢ . 2

where the K{}) are vectors of the reciprocal lattice that
corresponds to the Bravais lattice of the crystal. For
cach I, the N; vectors K'” transform into each other un-
der operations of the crystallographic point group.

In previous work on H in pure Si,™** typically eight
symmetrized plane waves and 10 calculated points
E (Ripp,; ) were sufficient to obtain stable energy surfaces.
However, for the problem we are addressing in this pa-
per, the behavior of a H atom in a boron-doped Si crystal,
the translational symmetry is essentially lost, and sym-
metrized plane waves are a less obvious choice of basis
functions for the expansion of the energy surface. A pos-
sible solution to this problem would be to add a set of lo-
calized functions, e.g., Gaussians centered on the atoms,
to the basis set or use a basis set consisting completely of
localized functions. The disadvantage of such an ap-
proach is that a more complicated (nonlinear) fitting
problem is encountered, since also th: decay constants
that appear in the Gaussians need to be fitted. We have
chosen the following approach: In the same spirit as used
in the supercell approach discussed in Sec. I1 B, we use as
basis functions for the expansion of the energy surface
symmetrized plane waves of a supercell. In this way,
periodicity is restored so that symmetrized plane waves
are suitable basis functions, but the repeat distances can
be chosen so large that the region around the substitu-
tional impurity atom that we are interested in is not
affected by impurities in neighboring cells. By studying
the behavior of the total energy when the H atom is
moved away from the B atom, and comparing this with
the case of H* in pure Si, we establish (see Sec. I1I C)
that the influence of the B atom has disappeared at a dis-
tance of about 2.1 A from the B atom. Therefore, to de-
scribe the energy surface around a B atom, it is allowed
to assume that it has the symmetry of the 8-atom super-
cell, which has repeat distances of 5.43 A in three perpen-
dicular directions. This, in turn, implies that the sym-
metrized plane waves ®,(r), with K!" reciprocal-lattice
vectors belonging to the (simple-cubic) lattice of the 8-

atom cell, are suitable functions to expand the surface in.
We would like to stress that this choice of supercell is in-
dependent of the choice of supercell one uses in calculat-
ing the total energies E(R;,, ;). For the latter purpose
one needs supercells of 32 atoms to take into account all
relevant relaxations of the host crystal, as argued before.

Using this approach, the total energy still has to be cal-
culated for a large number of different positions Ry, ; of
the H atom. We have found that about 40 inequivalent
sites in the 8-atom cell are needed to get a good descrip-
tion of the energy surface. This number is consistent
with the number of points (ten) typically used in fitting
the energy surface for H in pure Si, the diamond struc-
ture of which has a unit cell 4 times as small. Typically,
25 symmetrized plane waves are used in the fit of the en-
ergy surface of H in Si:B. Results of this procedure will
be shown below.

III. RESULTS AND DISCUSSION

A. Electronic structure

The band structure for the Si crystal with the H-B
complex closely resembiles that of Si with a substitutional
B atom; there is no acceptorlike level in the gap showing
that the acceptor is passivated. We note that a supercell
calculation of the band structure of Si with a substitu-
tional B atom, but without the H atom, will only produce
an acceptorlike level in the gap if very large supercells are
used. The hydrogenic state corresponding to such a shal-
Jow level is known to extend over several tens of
angstroms and can therefore not be described by small
supercells. Indeed, we do not find such a level in calcula-
tions without the H atom with supercells of up to 32
atoms. We do find a level near the gap that behaves al-
most identically to the level found in the case of H in
pure Si;¥ this level is therefore related to H. We find that
the wave function associated with this level is mostly lo-
calized around the position of the H atom and that the
position of this level in the gap moves when the H atom
is moved. As already discussed in Sec. II B, we note that
our use of supercells induces defect levels to have disper-
sion. To obtain a dispersionless level from our calcula-
tions, we take a weighted average of the defect-level posi-
tion over the special k points for which the band struc-
ture is calculated during the total-energy calculation
(more symmetric k points carry less weight because they
map onto fewer points in the 1BZ). The position of this
level depends on the location of the H atom and roughly
two cases may be distinguished. If the H atom is in one
of the regions of high or intermediate electron density
(regions I and II as defined in Sec. I1 D), the H-related de-
fect level is located slightly above the bottom of the con-
duction bands. If the top of the valence bands is chosen
as the zero of the energy scale, the bottom of the conduc-
tion bands of Si with one substitutional B atom is found
to be at 0.46 eV (an underestimation of the experimental
energy gap of 1.17 eV as is usual in LDA calculations).
For H at the BM, 4B, C, and C' sites (see Fig. 3), the de-
fect level is at 0.50, 0.56, 0.62, and 0.53 eV, respectively.
If the H atom is in the low-density region (region III), the
defect level appears as a resonance slightly below the top
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of the valence bands. For H at the T, and H’ sites of
Fig. 3, the defect level is at —0.37 and —0.09 eV, respec-
tively. If the H atom is located in region III, it is not
bound to any atom and acts as an acceptor. The position
of the defect level is sensitive to the energy cutoffs used;
the quoted results were obtained using 32-atom cells and
cutoffs of (6;12) Ry and have only qualitative value. One
should also bear in mind here that it is a well-known
deficiency of the LDA that, while the valence bands of a
semiconductor are well described, the conduction bands,
and also conduction-band-related levels, are not in agree-
ment with experiment. This problem has recently been
overcome for bulk solids by including many-body correc-
tions.** Since for defect calculations this solution in-
volves a prohibitive computational effort, it has not yet
been applied to such calculations, which are already very
demanding by themselves.

In the selfconsistent calculation of tbe total energy,
the H-related level is always unoccupied, since the substi-
tutional B and interstitial H atoms together exactly sup-
ply the four valence electrons of the Si atom that has
been replaced by the B atom, so that only the “pure-Si”-
like bands are occupied if the defect level is in the con-
duction bands. If the defect level is just below the top of
the valence bands, it is still left unoccupied, since for the
k points at which the band structure is calculated during
the self-consistency process the defect level usually lies
between the valence- and conduction-band levels. If it
lies below :ae top valence-band level, we leave it unoccu-
pied artificially to obtain a consistent comparison with
the total-energy calculations for H at the other sites.

B. Relaxation of the host crystal

In this subsection we present results for the relaxation
of the host crystal (Si:B) for some characteristic positions
of the H atom. For every position the total energy is
minimized with respect to the positions of the atoms in
the host crystal.

We first mention that in the absence of the H atom the
four Si neighbors of the B atom relax toward the B atom
in a “breathing-mode”-type relaxation, whereas the B
atom shows a very slight tendency to become threefold
coordinated by moving towards a plane with three Si
neighbors (it moves less than 0.1 A). Both for neutral B
(B%) and negatively charged B (B~ ) the relaxation of the
Si neighbors is 0.21 A, reducing the Si—Si bond distance
of 2.35 A by 9%. The energy gain of this relaxation is 0.9
eV. The relaxation results in a Si—B distance of 2.14 A,
which is very close to the sum of covalent radii of Si and
B (1.17 and 0.90 A, respectively). It is interesting to com-
pare this result for the Si—B distance with an experimen-
tal result from x-ray-diffraction measurements of the lat-
tice contraction in B-doped Si. To make the comparison,
some assumptions have to be made, the validity of which
is not easily assessed. We first assume that the lattice
contraction is solely caused by the difference in covalent
radii of Si and B (in general, there is also a, possibly com-
peting, electronic contribution caused by the pressure
dependence of the band-gap edges*’). Using our result of
2.14 A for the Si—B distance and following the simple
argument of Shih et al.,*’ the “natural-bond” length
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defined in Ref. 48 for a Si—B bond becomes 2.07 A If
we now use Végard’s law for the average bond length in
B-doped Si (with pure Si and “zinc-blende” BSi as ex-
treme structures), we may extract the contraction
coefficient B, defined by

Aa/a=pBCy , 3)

where Cy is the boron concentration and Aa/a is the rel-
ative change in average lattice constant. We find

= —4.8X10~2 cm¥/atom, which is in agreement with
the experimental results of B=—(6+2)x107*
cm’/atom (see the references in Ref. 23).

The relaxation of the host crystal in the presence of a
H atom is most appreciable if H resides in the BM site
(see Fig. 3). This site is located in a Si—B bond slightly
displaced from the bond center toward the B atom. We
distinguish it from the geometrical bond center (BC),
which was found to be the global energy minimum for -
H* in Si in previous work.® The BM site is the global en-
ergy minimum for H in Si:B (see the next subsection).
For H at this site the neighboring Si and B atoms relax
outward (as measured from their ideal lattice positions)
by 0.24 and 0.42 A, respectively. The smaller outward
relaxation of the Si atom is easily explained by the fact
that it would relax inward by 0.21 A if the H atom was
absent. Put differently, the above relaxations allow for
close to ideal H—Si and H—B distances since they result
in a H—Si distance of 1.65 A and a H—B distance of
1.36 A. For comparison, we mention that for H® (H*) in
the BC site in pure Si the two Si atc as forming the bond
relax outward by 0.45 A (0.41 A), resulting in a H—Si
distance of 1.63 A (1.59 A). Typical HL-B distances in
B,H, (diborane) are 1.20 A for H in a terminating bond
and 1.34 A for H in a bridging bond.® The second-
nearest Si neighbors of the H atom in the BM site relax
outward along the original bond axes by 0.05 A if they
are bonded to the Si neighbor of H and relax inward
along the original bond axes by 0.14 A if they are bonded
to the B neighbor of H. These relaxations result in Si—Si
and Si—B bond distances of 2.33 and 2.11 A, respective-
ly, which are very close to the Si—Si distance in pure Si
(2.35 A) and the Si—B distance in Si:B (2.14 A). The gain
in energy of these relaxations compared to the
configuration in which H occupies the exact bond-center
site and all other atoms occupy their ideal lattice posi-
tions is calculated to be 3.2 eV.

Our calculated relaxed configuration for the BM site is
in qualitative agreement with the results of previous work
using a variety of methods.'®'42¢ Notable differences are
as follows. In Ref. 14 the H atom was found to reside
closer to Si than to B. The outward relaxation of the B
atom of 0.58 A found by DeLeo and Fowler'® (which we
extract from their Fig. 1) significantly exceeds our result
of 0.42 A, which, in turn, is larger than the experimental
result of 0.28+0.03 A from ion-channeling measure-
ments.!” The error estimate of the experimental value re-
sults from the analysis of the data and does not include
the inherent insensitivity of the channeling method,
which is about 0.1 A."®

For H at the AB site (see Fig. 3), which is a minimum
along the (111) axis, but a saddle point of the entire en-
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ergy surface (see next subsection), the H—B distance is
1.32A. The B atom hardly moves from its substitutional
site (less than 0.05 A towards H) and the three Si neigh-
bors relax toward B by 0.14 A. Our calculated H—B dis-
tance is in between those found in Refs. 10 and 11, where
very different distances of 1.19 and 1.8 A, respectively,
were found using similar semiempirical cluster calcula-
tions.

If H is positioned at the Csite (Fig. 3), the B atom does
not move from its substitutional site. This may again be
explained by the fact that the H—B distance in this case
is close to ideal (1.36 A). Note that this is different from
the case of H* in pure Si, where the distance is smaller
than the ideal H—Si distance of ~1.6 A. In that case an
appreciable relaxation of the Si atom away from the H
atom results. For H at the C site in Si:B, the inward re-
laxation of the two Si atoms bonded to B and next to H
(see Fig. 3) is obstructed by the presence of H and is only
0.05 A, whereas the two Si atoms bonded to B but far
away from H (in the plane perpendicular to that of Fig. 3)
have the same inward relaxation as for the BM and 4B
sites discussed above. The minimum energy for H along
the line connecting the C site and the B substitutional
atom is not at the C site, but slightly displaced (0.24 A)
from it toward the B atom. For that position the B atom
does relax away from the H atom to restore the preferred
H—B distance of 1.36 A.

Finally, if H is put at the tetrahedral interstitial site
(T,) or hexagonal interstitial site { H or H' in Fig. 3) the
only relaxation is a *‘breathing-mode" relaxation of 0.21
A of the Si atoms bonded to the B atom. This is exactly
the same reiaxation as in the complete absence of the H
atom (see above), which is consistent with the earlier
finding’ that there is no appreciable relaxation for H at
the T, or H' sites in pure Si.

From the results of first-principles total-energy calcula-
tions presented here, it can be inferred that the relaxa-
tions of the host crystal are roughly determined by the
tendency of two neighboring atoms to be separated by
some preferred distance. The preferred distance is rough-
ly determined by the sum of covalent radii {for H a co-
valent radius of 0.43 A has to be used). However, there
are also deviations from this general behavior, e.g., the
H-obstructed relaxation of two Si neighbors of B for H at
the Csite. Ir any case, the examples described above can
be considered as a data base to allow for an efficient
search for the configurational energy minimum for an ar-
bitrary H position.

C. Energy surface for H in Si:B

The effect of introducing a substitutional boron impuri-
ty in the silicon crystal on the behavior of H is clearly
demoastrated in Fig. 4. We compare the energy of a H
atom in Si:B with the energy of a positively charged H
(H*) atom in pure Si for various positions of the H atom
along the line connecting two bonded Si and B atoms
{two Si atoms in the case of pure Si). We note that with
H" in pure Si we do not mean a bare proton in pure Si;
the notation is a mere shorthand for the fact that one
electron is left out of the system.’” The other electrons
are still allowed to distribute themselves self-consistently
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FIG. 4. Energy for positions of the hydrogen atom along the
(111) axis for H* in pure Si (dashed line) and for H° in Si:B
(solid line). For all positions of the H atom, coordinates of the
hostcrystal atoms have been relaxed to minirmuze the energy.
The curves have been truncated at 0.08 eV for positons very
close to the Si (in pure Si) or B atom (in Si:B) at ¥ = —0.25. The
smalier truncated region for B refiects that H can approach the
B atom closer than the Si atom.

according to Schrodinger’s equation. The line connecting
two bonded atoms we call the (111) axis and the posi-
tion along this line is given by the single coordinate u; a
coordinate ¥ means that the position has Cartesian coor-
dinates (u,u,u) in units of the Si diamond-structure lat-
tice constant of 5.43 A. A coordinate v = —0.5 denotes
the unrelaxed Si atomic position, u = —0.25 the unre-
laxed B atomic position, and u=0 and 0.25 are T, sites.
The comparison with H' in pure Si is the most meaning-
ful comparison that one can make, because H behaves as
a donor in p-type material and will give up its electron to
annihilate the free holes resulting from the ionized accep-
tor. (This does not imply that H behaves as a bare proton
everywhere in p-type Si; just as for H at the bond-center

_position in pure Si,* in the H-B complex the missing

electron is not removed from the immediate neighbor-
hood of the H atom, but from a region extending past the
neighboring atoms.) The two curves have been obtained
from the energy surfaces for the two cases (H™ 1« S1 and
H in Si:B) by extracting the energy values for coordinates
along the (111) axis. The energy scales have been
aligned at the distant T, site, u=0.25. It is clear from
Fig. 4 that the influence of the substitutional B atom does
not stretch out further than u = —0.03, corresponding to
2.1 A from the B atom. Beyond that point the curves
coincide to within better than 0.1 ¢V (which is about the
estimated error of energy calculation and fit together).
The above observation justifies the use of symmetnzed
plane waves with the periodicity of the §-atom (conven-
tional) unit cell of the diamond structure as basis func-
tions for the expansion of the energy surface. We repeat
(see Sec. I11 E) that this observation does not imply that it
is sufficient to do the total-energy calculations tn a super-
cell of eight atoms. This procedure for the expansion of
the energy surface is satisfactory if one 1s interested in
this surface in the neighborhood of the B atom (see Sec.
11 E). Further away from the B atom, the surface is iden-
tical to the one for H” in pure Si (see Fig. 4; we have also
established this for H positions that are not on the (111)
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axis). Figure 4 also shows that B acts as an attractor to
the H atom, since the bond-centered and antibonding
minima are lowered and moved towards the B atom.
From the three-dimensional and contour plots of the en-
ergy surface in the complete (110) plane containing the
(111) axis (to be discussed below with Figs. 5 and 6), it
follows that the BM site is an actual (and even global)
minimum, whereas the AB site represents a saddle point.
There is no energy barrier between the AB site and an
equivalent BM site that is not located along this (111)
axis.

In Figs. 5(a) and 5(b) we show three-dimensional plots
of the energy surface for H in Si:B for positions of H in
the (110) plane (containing a chain of atoms as in Fig. 3)

and the (111) plane through three bond-minima sites, re-

spectively. Figure 5(a) shows the low-energy region (in
red) around the B atom. The region does not contain the
AB and BB sites on both extensions of the Si—B bond;
these sites appear as saddle points of the energy surface.
From Fig. 5(b) it is clear that the low-energy region ex-
tends all around the B atom, which is located slightly out
of the (111) plane, which is shown in Fig. 5(b).

In Fig. 6{a) we show a contour plot of the energy sur-
face for H in the (110) plane in Si:B. It shows most of the
salient features of the complete energy surface, which
cannot be shown in one picture since the energy is a func-
tion of three independent coordinates. The BM site is the
global minimum, whereas we see again that the AB site is
a saddle point. In Fig. 6(b) we show exactly the same
part of the energy surface for the case of H* in pure Si.
From the comparison we see that the H atom gets
trapped close to the B atom and has no low-energy path-
way to migrate away from the B atom. The H atom can
move between equivalent BM sites around the B atom by
passing over an energy barrier close to the C site (between
the C site and the B atom) of only 0.2 eV. Of course, for
this to happen the relaxation of the host crystal has to ad-
just accordingly. There is no barrier between the BM and
C sites. The low-energy barrier implies that at room tem-
perature the H atom will be able to move around the B
atom between the four equivalent BM sites. Very recent-
ly, in experiments using the optical dichroism of the H-B
absorption bands under uniaxial stress, an activation en-
ergy of 0.19 eV was found for H motion from one BM site
to another.?* This activation energy is in excellent agree-
ment with our calculated barrier of 0.2 eV.

We find that the BM site is 0.48 eV lower than the AB
site and 0.29 eV lower than the C site. The energy
difference between BM and AB sites of 3.12 ¢V, obtained
in Ref. 14 from Hartree-Fock calculations, we consider to
be very unreliable. A final observation from Fig. 6(a) is
that the C and C’ sites, which are completely equivalent
in pure Si, are not only symmetrically inequivalent (e.g.,
C is at 1.36 A from the B atom, C’ at 1.92 A), but that
they differ in energy by the large amount of 1.2 eV. This
site inequivalence in the neighborhood of a substitutional
impurity leads us to a brief discussion of the accuracy
with which ion-channeling exPeriments are able to deter-
mine the site of hydrogen.'*?® The analysis of ion-
channeling experiments involves a statistical average over
the possible substitutional sites for the impurity B atom.*
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After such an average, the energy surface for a H atom in
Si:B has the complete symmetry of the diamond structure
of pure Si. This implies that, for instance, the C and C’
sites are considered to be completely equivalent in the
analysis of ion-channeling experiments. The same holds
for the AB and BB sites (see Fig. 3), which in our calcula-
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FIG. 5. Energy surface for a hydrogen atom in Si with one
substitutional boron atom in {a) a (110) p.ane containing & chain
of atoms, and (b) a (111) plane through three equivalent bond-
minima ( BM) positions. The black dots represent Si atoms and
the pink dot the B atom. Yhe plane in (b) does not contain
atoms, but the unrelaxed lattice position of the B atom is locat-
ed just 0.4 A outside the plane in the center of the surface.
Atoms are shown at their unrelaxed positions since they relax
differently for different positions of the H atom, but relaxations
are taken into account in the total-energy calculations. The en-
ergy is below —1.35 ¢V in the red region, between —1.35 and
—0.7 ¢V in the blue region, and between —0.7 and 0.05 eV in
the green region. The surface is cut off at an energy value of
0.05¢V. The zero of energy is chosen at the tetrahedral intersti-
tial site.
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tion differ by about 0.7 ¢V in energy (the AB site being
the lower-energy site). Therefore, ion-channeling experi-
ments are able to discriminate between sites that remain
inequivalent when averaging over the possible substitu-
tional sites for the B atom, e.g., BM and 4B sites. They

@\M/@

Q\@/@

FIG. 6. Contour plots of the energy surface of s H atom in
the (110) plane in boron-doped and pure silicon. Large dots in-
dicate (unrelaxed) atomic positions; bonded atoms are connect-
ed by solid lines. Positions of special interest are indicated (cf.
Fig. 3). The unit of energy is eV and the spacing between con-
tours is 0.25 eV. Close to the atoms contours are not shown
above a certain energy value. (a) H® in Si:B. The boron atom
occupies the center of the plot. Highest contour shown is 0.05
eV. (b)H* in pure Si. Highest contour shown 0.65 eV.
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cannot discriminate, however, between, ¢.§., 4B and BF
sites. On account of this, the conclusion from these ex-
periments that H resides predominantly in a Si—B bond
(a Si—Si bond can be excluded since a large displacement
from the substitutional site of the B atom is also ob-
served'!) is indisputable, but the further detailing of per-
centages of H at other sites®™ is not necessarily relevant to
the microscopic structure of the H-B complex. Observa-
tion in ion-channeling experiments of H at other sites is
most likely related to defects which may be located far
away from the B atom.

In Fig. 7 we present contour plots of the energy surface
in a few other planes, showing that the BM site is indeed
the global energy minimum and that there is a spherical
shell-like region (with some holes in it) at a radial dis-
tance of about 1.3 A from the B atom, for which the en-
ergy is between —1.45 and — 1.7 eV (with respect to the
energy at & far T, site). Thus the H atom can move
around adiabatically on this shell with an energy barrier
at a gite closer to the C site of only 0.2 eV.

D. Hydrogen vibrational frequencies

Because infrared measurements of the hydrogen vibra-
tional frequency have been an important source of experi-
mental information on the H-B complex,*'*! it is
worthwhile to make a connection with that work by cal-
culating the vibrational frequency for the H-stretching
mode. We have done this for a number of different sites
for the H atom that all have been proposed as the equilib-
rium site for the H atom on account of theoretical calcu-
Iations,

The sites for which we calculated the frequency of the
H-stretching mode are the BM and AB sites already dis-
cussed extensively above, as well as the backbonding
(BB) site shown in Fig. 3. For H in the latter site, the
H—Si distance is again 1.60 A, while the Si atom closest
to H relaxes toward the B atom by 0.3 A. For each of the
three sites, we determine the minimum-energy config-
uration by allowing up to eight atoms around the H atom
as well as the H atom itself to relax. Subsequently, we
move the H atom away from its equilibrium position in
directions corresponding to a stretching mode over dis- -
tances of 2% and 4% of a Si—Si bond length. The relax-
ation of the host crystal is now kept as in the minimum-
energy configuration.’’ The procedure described above
induces energy changes of typically up to 30 meV. Thest
energy differences AE are fitted to a parabol:
AE =} fu}, where uy is the displacement of the H aton
and f the force constant of the stretching mode. If f i
expressed in units of eV/A?, the wave number « for the
stretching mode is given in units of cm ™! by

flev/AY) mxm, - ‘
938.25 cm™, “

where we have taken the vibrating object to be a proto:
(with rest mass m,c2=938.25 MeV). A very similar pro
cedure to the one described here was used successfully b:
Kaxiras and Joannopoulos® to calculate vibrational fre
quencies of H atoms saturating dangling bonds at Si an«
Ge (111) surfaces.

1

2
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In Table III we summarize our results and list the re-
sults of previous theoretical calculations using a variety
of methods. From varying the number of calculated
points used in the parabolic fit and from calculations at
lower energy cutoffs, we estimate the error bar on our
calculated frequencies to be 100 cm™!. Also, results ob-

tained from the same calculations in a 16-atom cell fall
within this error bar. Considering the error bar, our re-
sult for the H vibrational frequency at the BM site is in
fair agreement with the low-temperature (5 K) experi-
mental results'®!? of 1903 and 1907 cm™'. The agree-
ment with the result obtained at 273 K (1870 cm™!) (Ref.

FIG. 7. Contour plots of the energy surface of a neutral H atom in various planes in Si:B [see Fig. 6(a) for the (110) plane]. Indica-
tors are the same as in Fig. 6. (a) (211) plane containing one B—Si bond (B atom on the left). H AB denotes the hexagenal antibond-
ing site, a saddle point of the energy surface about halfway between the hexagonal interstitial site H and the B atom. (b) (111) plane
through three bond minima (BM sites). The M sites lie halfway between two C sites, one of which is in the (110) plane (sez Figs. 3
and 6). In this plane there is a ringlike low-energy region around the B atom (that is not located in this plane). The perspective plot
for this plane is shown in Fig. 5(b). {c) (001) plane through two bond minima (BM sites). This plane is perpendicular to the (110)

plane of Fig. 6(a).
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TABLE III. Calculated wave numbers Ky ucy (in cm ™) of vi-
brational frequencies of hydrogen-stretching modes for hydro-
gen in the bond-minimum (BM), antibonding ( 4B), and back-
bonding (BB) sites in Si:B compared with previous theoretical
calculations vsing s variety of methods.

Previous
Present theoretical
result calculations
Site Ketronch Kotreteh
BM 1830 1880, 1820*
AB 1680 1000,> 1870, 2590
BB 1590
gt. 1903¢
e ————
*Reference 10.
*Reference 26.
‘Refezence !1.
“Reference 12.
*Reference 16

13) is even better, but that is not the appropriate number
to compare with.

In view of the error bar of 100 cm ™!, the results for the
BM and AB sites are not that different, and would not

- supply strong enough evidence for one to conjecture that

the infrared data exclude the AB site as the equilibrium
site for H. Previous authors did make this claim on ac-
count of their finding that the H vibrational frequency is
very different for the BM and AB sites. The peculiar fact
pecurnd, however, that their results for the BM site are
in general agreement with experiment, but DeLeo and
Fowler'? find the result for the AB site to be much larger
(2590 cm™!), whereas Chang and Chadi® find it to be
much smaller (1000 cm™!) than the experimeatal value.
These authors did not discuss the accuracy of their calcu-
lated result. We stress that, of course, the AB site can be
ruled out as the equilibrium site for the H atom because
of the fact that it is a saddle point of the energy surface
and 9.48 eV higher in energy than the BA site, without a
barrier between the two sites [see Fig. 6(a)]. The result
for the AB site of 1870 cm ™! in Ref. 11 was obtained by
fitting a force-constant model to the experimental value
that was known at that time. Not too much value must
be attached to this result.

It is interesting to compare our results of Table III
with the vibrational frequency for H° (H*) in a BC site
(geometrical bond center) in pure Si. For that case we
calculate a frequency of 1945 (2210 cm ™). This is much
larger than the result for the BB site in Table III. Since
th'e frequency for the BM site is in between those ob-
tained for a H atom close to one Si atom (at the BB site in
Si:B) and a H atom in between two Si atoms (at the BC
site in Si), we infer that at the BM site there is still a fair
amount of bonding between H and B besides the bonding
between H and Si. The fact that the H atom is also bond-
ed to the B atom (which is a modification of the original
description of the bond-centered configuration by Pan-
kove et al.*) can also be inferred from the fact that the H
atom can easily move around the B atom between
eguivalent BM sites, as discussed in the preceding subsec-
tion.
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Infrared frequencies that have been associated with
stretching modes involving a singie H atom in hydro-
genated amorphous Si and hydrogenated crystalline Si
range between 2000 and 2200 cm~'.*** The fact that
our results of 1945 and 2210 cm ™" (for H? and H” at the
bond-centered site in pure Si, respectively) are close to
these frequencies and also to the vibrational frequency of
H saturating a dangling bond at a Si (111) surface (2085
cm™!) is remarkable. We also observe that the AB-site
frequency of 1680 cm ™! resulting from a stretching H—B
bond is apparently greatly modified with respect to fre-
quencies of 2560 cm ™! (for terminal H bonding) and 1985
cm ™! (for bridge bonding) found in diborane.*

To conclude this subsection we briefly discuss the side
bands in the infrared transmission spectra that were re-
cently found for the H-Al and H-Ga complexes in Si (for
the H-B complex the side bands are not resolved, but
they are expected to be there).' Stavola et al.!S suggest-
ed that these side bands are the result of a low-frequency
excitation, for which they proposed two possibilities.
The first possibility is the tunneling of H between
different but equivalent BM sites. This must be con-
sidered unlikely, because of the rather large adjustments
in the relaxation of the host crystal that have to happen
for these sites to be indeed equivalent. This explanation
was more. recently sbandoned by Stavola and co-
workers.? The second possibility is that the H atom re-
sides slightly off the BM site and off the (111) axis; the
vibration would then be modeled by that of a 1uwlmear
molecule, which is known to have side bands.”’ In that
case, the configuration would resemble that of oxygen
bridging a Si—Si bond.*® We have investigated this pos-
sibility by positioning the H atom slightly off axis from
the BM site on the (111) axis. While keeping the retaxa-
tion of the surrounding crystal fixed, the energy remained
constant for small displacements ( <0.1 A) of the H atom
in several directions. We did not allow the surrounding
crystal to adjust its relaxation, but this can only lower the
energy. However, by moving the H atom off axis, we .
change the symmetry of the system considerably, and the
changes in energy that we obtain fall within the accuracy
of our calculations. We conclude that an off-axis position .
for the H atom is very well possible, but cannot be quan-
titatively assessed by our calculations.

E. Dissociation energy of the H-B complex

It is found experimentally that at temperatures above
150°C the conductivity of the passivated samples starts
to recover and can eventually be restored completely.**
It seems natural to attribute the increase in conductivity
to the dissociation of the H-B complexes and subsequent
diffusion of H out of the passivated region. As we saw
earlier, H-induced passivation arises from compensation
followed by pair formation. By the same token, one can
consider the dissociation reaction:

(BH)*—B~ +H"* . (5)

This reaction, however, produces no free holes (i.e., the
material is still compensated) and leaves open the possi-
bility of reformation of the pairs by the reverse reaction.
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Restoration of the conductivity requires an additional re-
action, for instance,

HY*=2H+ht , (6)

where h* denotes a free hole. Reaction (6), which
denotes an electronic process, equilibrates very fast. The
relative amounts of H* versus H? are determined by the
position of the Fermi level. If the conditions are such
that H® is overwhelmingly favored over H*, the follow-
ing reaction would apply:

(BH—B~+H%+hat . v))

Since B is a shallow acceptor, we can assume that its pre-
ferred state (after dissociation of the H-B complex) is an
ionized B~.

We see that there is no unique, single reaction describ-
ing the dissociation of the H-B pair. Nevertheless, we
have calculated dissociation energies associated with
specific dissociation reactions. By dissociation energy we
mean the energy difference between the initial and final
configurations of the breakup reaction. Quite generally,
one can define for any reaction that can occur in two
directions the reaction activation energies for the forward
and reverse reactions. The dissociation energy as defined
above is also precisely the difference between the two re-
action activation energies associated with the dissociation
reaction.

The dissociation energy associated with reaction (5) is
found by calculating the following total energies:3! (i)
E(HB), the total energy of the fully relaxed Si:B crystal
with H at the BM site; (i) E(B™), the total energy of the
fully relaxed Si crystal with a substitutional B~; (ii)
E(H"), the total energy of a fully relaxed Si crystal with
a H* at the BC site; and (iv) E(Si), the total energy of a
pure Si crystal. The dissociation energy E, may now be
defined as

E,=—E(HB)+E(B~)+EH*)—E(Si) . 8)

This dissociation energy does not depend on the Fermi
level, because no electrons or holes are involved in reac-
tion (5). This formula results in E;=0.59 eV.

To calculate the dissociation energy based on reaction
(7), one has to use the following formula:

Eq4=—E(HB)+E(B™)+EHY+E(h*)~E(Si), (9

where E(h*) is the energy of a free hole, for which we
take minus the Fermi energy Ey (a hole is the absence of
an electron). The dissociation energy in (9) does depend
on the Fermi level because it involves reaction (6). From
(9) we find a dissociation energy E,=1.09 eV —Ej.

Experimentally, one can determine a dissociation ener-
gy if the dissociation is governed by first-order kinetics,
i.e., the rate of change with time of the number of pairs N
is proportional to N:

—d—;‘—'—vN y (10)

where v is the dissociation rate constant. This assump-
tion would have to be tested by demonstrating a linear

DENTENEER, VAN de WALLE, AND PANTELIDES -3

dependence of In(N) on time for several temperatures
[In(N)=—vt]. For v, an Arrhenius-type temperature
dependence is usually assumed:

v=voe—£‘/kT' an

where v, is an attempt frequency and E , the activation
energy. If the assumption of first-order kinetics holds,
the measured temperature dependence of v allows one to
extract the activation energy E . This activation energy
is the energy barrier that must be overcome for the
breakup to occur [for instance, the forward-reaction ac-
tivation energy of reaction (5)]. It does not correspond to
a dissociation energy in the sense of the energy difference
between the pair and the isolated breakup products.

The experimental procedure ;ust described has not
been carried out. Wichert ez al.? followed the simplified
procedure of isochronal annealing in which they assumed
first-order kinetics. They extracted an activation energy
of 1.3 ¢V in the case of H-In pairs. They estimated that
the H-B pairs would break up with a smaller activation
energy. We note, however, that it has been found®’ that
first-order kinetics is not obeyed, so that this number may
not be particularly meaningful and cannot be compared
with theoretical values. A more sophisticated analysis of
the data would be needed to extract energies that can be
compared with theory.

Finally, we mention that one may define the binding
energy of the H-B complex as the difference between the
energy of the H-B complex in a Si crystal and the sum of
the energies of a (neutral) H atom in free space and of a
(neutral) B substitutional in Si. This binding energy is
more of a conceptual quantity, contrary to the dissocia-
tion energy discussed above (which, however, is often
called a binding energy as well). According to this
definition a binding energy of 3.31 eV is obtained.’®

IV. CONCLUSIONS

The study of the total-energy surface for H in Si:B us-
ing the first-principles pseudopotential-density-functional
method presented in this paper conclusively shows that a
H-B complex is formed in which the H atom occupies a
site close to the center of a Si—B bond (BM site). This
complex is the net result of the passivation mechanism
that removes the shallow-acceptor level from the gap,
thereby neutralizing the electrical activity of boron-
doped silicon. Other sites that were previously proposed
to be equilibrium sites for H by others are shown to be
saddle points of the energy surface that are higher in en-
ergy by at least 0.48 eV. We find that the H atom can
move between four equivalent BM sites over a spherical
shell-like region with an energy barrier of only 0.2 eV.

The calculated vibrational frequency for the H-
stretching mode centered on the BM site is in good agree-
ment with infrared and Raman experiments. The oc-
currence of sidebands in the infrared spectrum can be
qualitatively understood since H can reside slightly off
the bond axis from the BM site.
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Here the two-dimensional integral is performed over the saddle surface S; separating cells i and j, anc the three-
dimensional integral is performed over the cell ¥, at X,. The probability distribution is given by

P(x)=Z "lexpl—F(x,T)/ka T},

(s

where Z is a normalization constant and F(x,T) is the free energy of the system with the impurity constrained to a po-

sition x. This free energy is in general given by

F&,T) =~k Tia7 o0 [ dg ’”"Jh-x(q)lup[—#l’(q)] : ©

where x(q) represeats the functional dependence of the [

impurity's position relative to the host-atom positions,
¥(q) is the potential energy depending on the positions
q=(q1,....qn) of all N atoms in the crystal, and A7 is
the thermal de Broglic wavelength. The total transla-
tional degree of freedom has been excluded in the in-
tegration.

The above formalism is exact. For a practical im-
plementation we introduce only two approximations.
First, we take I'=T0, setting the so-called efficiency fac-
tor equal to 1. Efficiency factors have been studied for
model solids and have in many cases been found to
change the results for the diffusion constant by only a
small fraction.!>'"-'* The second approximation of this
approach is the way we calculate F(x,7). We note that

Fa.D=Fa0- [ arsan), ™

where S(x,7) is the entropy of the system with the im-
purity fixed at x. We propose to approximate F(x,T)
by its value at 7=0. The free energy F(x,0) is the total
energy obtained with the impurity at x and all other
atoms relaxed. This approximation corresponds to the
assumption that the vibrational frequencies of the Aost
atoms depend only weakly on the position of the impuri-
ty, when the latter is fixed. The second term in Eq. (7)
can actually be calculated in a rather straightforward
but time-consuming manner in the local harmonic ap-
proximation.'® Such calculations (to be discussed
below) show, however, that this contribution to F(x,T)
is small. In many cases of interest this term can there-
fore be neglected, making the method very practical.

The present approach reduces the many-body problem
of treating the diffusing particle together with all the
particles in the embedding crystal to the problem of
diffusion of a single particle in a three-dimensional
cffective potential. This effective potential has the full
space-group symmetry of the crystal, and can, therefore,
be expanded in symmetrized plane waves.” Thus, calcu-
lations of the total energy at only a few selected sites can
be used to determine an analytic form for the complete
effective potential.

The total-energy surface, which we will use to extract
the diffusion constants for H*, has been obtained from
state-of-the-art electronic structure calculations using
the local-density approximation and ab inmitio norm-
conserving pseudopotentials.” The proton is treated, like

1402

all other n\elei. as a classical particle. The impurity is
placed in a supercell with 32 Si atoms and the atomic
positions up 1o second-nearest neighbors are relaxed.
The total energy 1s czlculated for eight inequivalent posi-
tions of the impurity. These values have been used to
determine the expansion coefficients for a suitable set of
symmetrized plane waves. The resulting analytical ex-
pression provides the free-energy surface F(x,0) from
which we calculate diffusion coefficients. The reievant
total-energy surfaces have been published in Ref. 7.

In order to test the approximation of peglecting the
host-atom entropy [second term of Eq. (7))}, we calculat-
ed the vibrational frequencies of the bost atoms. Even
though this can, in principle, be done with ab initio cal-
culations, we have used here a generalized Keating po-
tential*¢ for the Si-Si interactions and a suitably chosen
Morse potential for the H-Si interactions.!” The resuit-
ing entropy, obtained within the local harmonic approxi-
mation, was found to differ by ~1k, between the most
dissimilar sites [e.g., the bond-center (BC) and
tetrahedral sites] and significantly less between rather
similar sites. At 1000 K these differences translate into
corrections of less than ~0.1 eV for F(x,7). That is
precisely the level of accuracy with which F(x,0) can be
calculated from first principles.’ We expect this to be a
conservative estimate for other impurities as well be-
cause of the relatively large relaxations of neighboring Si
atoms when H is at the BC position. Thus a time-
consuming calculation of this term from first principles is
not warranted. We did test, however, the effect of 0.1-
eV uncertainty in F(x,0) on the final diffusion
cocflicients and results are given below,

For the calculation of the diffusion cocflicient, we first
determine the minima X; in the total-energy surface.
These form the so-called diffusion-site lattice. A
Wigner-Seitz-like construction then yields the volumes
Vi, related to the sites X;, and the saddie surfaces Sj) as
the faces of the Wigner-Seitz polyhedra. For the posi-
tively charged state of H there exists only one set of
equivalent minima X,. These lie in a disk-shaped region
of almost degenerate sites centered at the BC position. '
H atoms can hop from bond to bond via the so-called C
site, which is located midway between two second-
nearest Si neighbors. The Wigner-Seitz cell of the
diffusion-site lattice formed by the BC sites has the
shape of a rhombohedron (see Fig. 1). Every face con-

T
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FIG. 1. Wigner-Scitz cell for the diffusion-site lattice of H*
in Si. All six faces are equivalent. The corners of the cell are
formed by six tetrahedral interstitial sites and two atomic sites.
C sites are located in the center of the faces. The hexagonal
interstitial sites lie on the edges of the cell, midway between
two neighboring tetrahedral interstitial sites.

tains one C site as the only saddle point. The occupation
and the saddle-surface probability are obtained from in-
tegrals over the Wigner-Seitz polyhedron and one of its
faces, respectively.

Our results for the diffusion constant are shown in Fig.
2. They agree with the theoretical results of Buda et
al.** within their error bars, and with the experimental
results of van Wieringen and Warmoltz'® within a factor
of 3, which is within the expectations for the accuracy of
the method and the accuracy of the measurements.

The number of distinct diffusion pathways can always
be obtained from the number of inequivalent saddle
points on the saddle surface. Their relative contribution
can be obtained from partial integrals over the saddle
surface. The total-energy surface of H* in Si has only
equivalent minima and only identical saddle points.
Thus, according to our definition, we have only one path-
way. At higher temperatures, however, the impurity
need not pass through total-energy minima or saddle
points, giving rise to a variety of trajectories. For exam-
ple, the impurity may diffuse by cutting through bonds
or it may merely “rub” against the bond without actual-
ly crossing it. Anharmonic effects in the effective poten-
tial, which are evident from the curvature in the Ar-
rhenius plot of Fig. 2, enhance the possibility of trajec-
tories that avoid the bond region at high temperatures.

Our approach does not seek to determine the actual
trajectories, Instead, it determines the diffusion coeffi-
cient as an integral over all possibl: trajectories. The ap-
proach assumes implicitly that the motion of H is ran-
domized after each saddle-surface crossing. Thus, it

1000/7 (K]

FIG. 2. Diffusion coefficients for H* in ¢-Si as a function of
inverse temperature. Solid line: present calculation for HY;
solid circles, theoretical results of Buda et al. (Ref. 9); dotted
line: D=9.41%10 " 3expl( —0.48 eV)/kaT) as obtained by van
Wicringen and Warmoltz (Ref. 19) (the solid part indicates
the actual temperature range of the experimeants).

neglects the effect of dynamical correlations, ic., trajec-
tories in which successive saddle-surface crossings occur
in a correlated fashion. In contrast, Buda et al. carry
out a time integral over the trajectories that actually
occur. The two “paths” identified by them are, in our
terminology, two dynamical trajectories. The excellent
agreement between the results in Ref. 9(a) and ours
scems to indicate that dynamical correlations, even
though extremely important for the time evolution of the
system, do not substantially affect the value for the
diffusion constant. This result is consistent with earlier
findings."

The accuracy of our calculation depends of course on
the accuracy of the energy surface used as input. The
crror bar is related to the accuracy of the individual
total-energy calculations, as well as to the number of cal-
culated points used for the analytic representation of the
energy surface. Both contributions have been estimated
to be on the order of 0.1 ¢V.” As we saw above, the
correction from the host-atom entropy is even smaller.
In order to see how sensitive our results are to these un-
certainties, we have artificially introduced changes of the
order of 0.1 eV in the regions where they count the most,
i.c., the stable site and the saddle surface. The resulting
changes in the activation barrier are comparable to the
changes in the total-energy surface. The preexponential,
obtained from the Arrhenius plot at high temperatures,
however, is surprisingly insensitive and varies only by a
factor of 5. This is understandable because at high tem-
peratures the impurity explores a large region of phase
space and is therefore insensitive to small local changes
in the total-energy surface.

In conclusion, we have shown that diffusion constants
can be calculated with considerable accuracy from static
total-energy calculations. The technique is applicable to
systems with low or high activation barriers and is valid
over a wide temperature range. We have applied this
approach to the calculation of the diffusion constant of
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H in Si. Our results compare well with experiment and
recent calculations of Buda er al.,”® which describe the
time evolution of all particles without approximations.
This work was supported in part by the Office of Na-
val Resecarch Contract No. N00014-84-0396. We are
grateful to R. Car and J. Tersoff for helpful discussions.
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The existing discrepancy baween theoretical models and experimental results for hydrogen-
donor complexes in crystalline silicon is resolved using first-principles pseudopoteatial-density-
functional cakculations for the hydrogen-phosphorus pair. In the configuration which is the giobal
energy mmmmm. H is located on the extension of a P—Si bond on the Si side, with the Si-H pair

- relaxing away from P by 0.6 A, leaving the P atom threefold coordinated. The calculated stretch-
ing and wagging vibrational frequencies associated with this configuration are in accord with ex-

periment.

The structure and properties .of hydrogen-impurity
complexes in semiconductors have been studied intensive-
lyinthelmfew#unum g both experimental and
theoretical methods.! ™' For the hydrogen-boron com-

plex in silicon, which is the prototypal hydrogen-acceptor.

complex that has been studied most elaborately, a con-
sistent picture has emerged (see, e.g., Ref. 5 and refer-
ences therein). In the equilibrium configuration of the
complex, the H atom resides inside 2 Si—B bond, forming
8 three-center bond. Also for the qualiutively different
(H,Be) pair in Si and (H,Si) pair in Ge, theory has pro-
vided satisfactory explanations of the experimental results
as well as new insights (see Ref. 6 and references therein),
The H stom in the (H,Be) pair is able to tunnel around
the Be atom because its lowest-energy location is close to
the C site (midway between two Si atoms bonded to Be),
where the relaxation of the surrounding Si atoms is small.
The H atom in the (H,Si) complex in Ge is located close
10 & tetrahedral interstitial (7)) site.

In contrast, the structure of hydrogen-donor complexes,
eg.. (HP) in Si, has 50 far not been determined con-
clumely. Experiments® have shown that all H-donor
pairs in Si have similar infrared absorption spectra, sug-

gesting that H is nor bonded to the donor. The observa-

tion of a nondegenerate stretching mode around 1560
cm ! nnd a doubly degenerate wagging mode around 810
cm ! suggests that the center has trigonal symmetry.
Theoretical models have so far not reproduced these fre-
quencies. In Ref. 7, a model was proposed in which H is
located on the extension of s P—Si bond on the side of Si.
Using empirical tight-binding calculations this “AB (anti-
bonding) of Si” configuration was found to be lower in en-
ergy than the “AB of P” configuration. The frequency for
the H stretching mode was calculated to be 2145 cm -
which is very different from the experimentally deter-
mined value of 1555 cm ~'.® 1n a subsequent caiculation
by the same group, but using the more reliable first-
principles pseudopotential-density-functional method, the

. 41

configuration was qualitatively confirmed.'® However, in
“the latter calculauon the stretching mode was found to be
at400cm ™. .

Recently, a number of groups using various kinds of
cluster calculations*'!? have proposed a configuration
similar to the one in Ref. 10 with the distinction, however,
that the Si atom closest to H relaxes from its lattice site
towards H to become almost coplanar thh its three
nearest-neighbor Si atoms. Estreicher ez al.!! discuss the

_ inherent difficulties in calculating vibrational frequencies

to within a reasonable accuracy using quantum-me-

chanical cluster calculations and do not attempt to calcu-

late any re?uency DeLeo and Fowler* and Amore Bona-

puu et al.'? calculate a H stretching frequency of 2150

cm ~!, again in disagreement with experiment. .
. Summarizing, it can be said that theoretical studies so

far have not been able to put forward a microscopic model
for the (H,P) complex that can be conclusively identified
as the one that is experimentally observed.

In this paper, we present results of accurate first-
principles calculations for the (H,P) pair. We determine
the lowest-energy configuration and show that this
configuration is responsible for stretching and wagging vi-
brational frequencies that are in agreement with experi- .
ment. We have successfully used the pseudopotenual-
densxty-funcuonal method before in studies of H in pure
Si and of various complexes in Si and Ge.>*? If the cal-
culations are properly converged with respect to all the
numerical approximations involved, the method is very re-
liable in determining defect configurations. In particular,
lotal-encrgy differences between different defect config-
urations can be calculated to within an accuracy of
0.05-0.1 eV and typical H vibrational frequencies can be
calculated with an accuracy of about 100 cm ™! (Ref. 5).
For details of calculations in which such accuracy is
achieved we refer to Refs. 5 and 9. In the present study,
we closely examine various configurations with rigonal
symmetry (see below), as well as the regions close to the C

3885 ©1990 The American Physical Society
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and C sites (i.c, H midway between two Si atoms bonded
to P and H midway between P and a next-nearest-

acighbor Si, respectively).® The C and C' sites are at least’

1.5 eV higher in energy than the lowest-cnergy config-
uration; we will not consider them further. The configura-
tions with trigonal symmetry, which can be classified ac-
cording to the order in which the H, Si, and P atoms are
found along a (111) axis (H-Si-P, Si-H-P, and Si-P-H, re-
spectively), are optimized by relaxing up to nine atoms ac-
cording to th: Hellmann-Feynman forces on these atoms.
These forces can be calculated with the same level of ac-
curacy as total energies from the self-consistent solutions
of the Schradinger equation for the valence electrons. ?
In order to optimize the configurations we move the atoms
in the direction of the calculated forces until the forces be-
come negligible, thereby minimizing the total energy.

We find that each of the three trigonal-symmetry
configurations, including appropriate relaxations of all the
atoms, constitutes a local minimum of the total-energy
surface. Furthermore, the three minima are very close in
energy: they all lie in an energy range of only 0.5 eV (see
Fig. 1). These small energy differences open the way for
the occurrence of metastable states of the complex.

Now we describe the two local minima and one global
minimum configurations mentioned above. Of these
three, the configuration highest in energy is the one in
which H resides between & Si and P atom forming a bond.
We call this configuration “BC (LLR of P)” since it in-
volves a very large lattice relaxation (LLR) of the P atom
(BC stands for bond-center site). The P atom rclaxes out-
ward (away from H) by 1.22 A, whereas the Si atom re-
laxes outward by only 0.10 A. The H-Si distance in this
configuration is 1.50 A, similar to the H-Si distances
found in molecules, e.g., SiH4, and at a hydrogenated va-
cancy. The H atom breaks the Si—~P bond and saturates
the Si dangling bond; this allows for the large relaxation
of P through the plane of its three neighboring Si atoms to
a position whers it is threefold coordinated. The charge
density for this configuration is shown in Fig. 2(a) and
displays a lone pair on the P atom pointing in the direction

of the nearest T, site on the line Si-H-P. The H~Sibond

that is formed has a calculated stretch frequency of 1900
cm "', much larger than the observed frequency. In the
other Jocal minimum configuration, which we call AB of
P, the H atom is located very close to the Ty site closest to
the P atom. The energy of AB of P is only 0.10 ¢V lower

) —f_——' AB of 8! (iir of 81)

FIG. 1. Relative energies of different configurations with tri-
gonal symmetry for (H,Si,P) complexes in silicon. AB stands
for antibonding site, BC for bond-center site, and LLR for large
lattice relaxation. A more detailed description of the four
configurations is given in the text (see also Fig. 3).

Al A

-

-than that of BC (LLR of P) (see Fig. 1). In this

configuration, none of the atoms relax appreciably from
their ideal lattice position, resulting in a H-P distance of
almost an undistorted Si—Si bond length (2.35 A). The
calculated H stretch frequency for this configuration is
570 ¢cm ~!, much smaller than the observed frequency.
Finally, the global energy minimum configuration is the
one called AB of Si (LLR of Si). It has an energy 0.35 eV

FIG. 2. Total valence charge density in the (110) plane for
(a) the BC (LLR of P) and (b) the AB of Si (LLR of Si
configurations for a (H,Si,P) complex in Si. The black dots in-
dicate atomic positions and the straight lines connect bonded
atoms. The broken Si—P bond and the Si—H bond are indicat.
ed by dashed lines. The contour spacing is 1.87 ¢/, where Q1 is
the unit cell volume of bulk Si (which contains 8 electrons in
bulk Si). The lowest-density contour shown (in the channels be-
tween the two atomic chaint) is 2.32 e/ and the highest
density contour shown (around the H atomic position; is 34.1
e/n in (a) and 28.5 ¢/0 in (b). The maximum density in &
Si—~Sibond is 24.0 ¢/ 0.
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fower than AB of P, and H is located close to the 7y site
of a Si atom bonded to P. This Si atom relaxes outward
by 0.59 A (leaving the P atom threefold coordinated; see
Fig. 3). The P atom relaxes by the small amount of 0.14
A (in the direction of the Si relaxation, ccatrary to the re-
sults of cluster calculations). The H-Si distance is 1.66 A,
which is somewhat larger than a typical value for a H—S;i
bond distance (see above), indicating a slight weakening
of the bond. The H stretch frequency is therefore expect-

i ed to be lower than for a typical Si—H bond. Indeed, we
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calculate a frequency of 1460 cm ~', which in view of the
error bar on calculated frequencies discussed above, is in
agreement with the experimental number of 1555 cm ~'.
Also the calculated frequency of the H wagging mode of
740 cm ~! is in agreement with the experimental result of
809 cm ~'. The agreement df both calculated frequencies
with experiment, taken together with the fact that the AB
of Si (LLR of Si) configuration has the lowest energy of
all configurations studied justifies the identification of the
experimentally observed complex with this AB of Si (LLR
of Si) configuration.

In Fig. 2(b), we show the valence charge density of the
(H,P) pair in the AB of Si (LLR of Si) configuration.
The P—Si bond is effectively broken and a lone-pair-like
density, which is a remnant of the previous P—Si bond, is
extending in the direction of the former bond. All the
valence electrons of P are accounted for in this way. The
Si atom has gone from an sp * bonding configuration to an
sp? bonding configuration with respect to its three Si
neighbors. The surplus electron of Si (which does not
have to go in a P—Si bond) pairs with the H electron to
form s Si—~H bond. Indeed, the charge density between
Si and H is very similar to the one found in the case of H
saturating a Si dangling bond. Bonding is indicated by
the fact that the charge density around the H atom is
clearly modified from the spherical form it has when Si
and H are far apart (sec, ¢.g., the charge density for the
AB of Si configuration in Ref. 10).

For the sake of completeness and to make the connec-
tion with the results of other work, we mention that if we
do not allow for relaxation of the Si neighbors of the Si
atom between H and P, this Si atom relaxes outward by
oanly 0.19 A. This results in a AB of Si (without large lat-
tice relaxation of Si) configuration which is still lower in
energy by 0.16 eV than the AB of P configuration (see
Fig. 1), but higher in energy by 0.19 ¢V than the AB of Si
(LLR of Si) configuration. For this AB of Si configu-
ration, which is similar to the one found in Ref. 10, the
H-Si distance is 2.1 A, much larger than a typical H—~Si
bond distance, and the eorresPonding H stretch frequency
is calculated to be 600 cm ~'. The H wagging mode for
this configuration has a calculated frequency of 600 cm !
ss well, indicating the absence of H bonding. The
configuration that we find to be lowest in energy is almost
the same as the one found in Refs. 4, 11, and 12. In those
calculations, the Si atom relaxes by an amount between

MICROSCOPIC STRUCTURE OF THE HYDROGEN-PHOSPHORUS . ..

FIG. 3. Schematic representation of the AB of Si (LLR of
Si) configuration, which is the lowest-energy configuration for a
(H,Si,P) complex in Si (see also Fig. 1). One Si atom has re-
laxed from its lattice position (indicated by a vertical bar) by
0.59 A towards H and is only 0.19 A away from being coplanar
with its three Si neighbors.

0.6 and 0.8 A and a Si-H distance between 1.4 and 1.5 A
is found, which is smaller than our value of 1.66 A. Con-
sequently, those calculations render a much larger stretch-
ing mode frequency of about 2150 cm ~!. More recently,
Chadi et al.'* repeated the calculations of Ref. 10 and
found similar results to those presented here by us.

Both configurations with large lattice relaxations dis-
cussed above are reminiscent of recently proposed models
for the EL2 and DX defect centers in GaAs.'>'® In the
case of EL2, it is proposed that an As antisite can be in-
duced by optical excitation to move by about 1.3 A from -
its lattice position to a metastable configuration.'* In the
case of the DX center, a Si donor in GaAs may move 1.2
A from its lattice site.'® In both cases, the configuration
with a large lattice relaxation is inherently associated with
a simple point defect and can be provoked to materialize.
In the subject of our present study, it is the H atom with
its one unpaired electron that is able to promote different
bonding environments for the simple substitutional P
donor involving large lattice relaxations of either a P or Si
atom. In this way, the P atom can yield to its natural ten-
dency to be threefold coordinated. The configuration with
a large lattice relaxation of Si is found to be lowest in en-
ergy. We suggest that such complexes with large lattice
relaxations be further investigated experimentally by
means of ion-channeling techniques to confirm our
findings. : _

In conclusion, we have shown on the basis of first-
principles caiculations of total energy that the configu-
ration with H at an antibonding position of a Si neighbor
of P, in which this Si atom relaxes by 0.6 A, can be
identified with the complex that is experimentally ob-
served. In doing so, the discrepancy between results of
carlier theoretical studies and experiments is resolved.

This work was supported in part by the U.S. Office of
Naval Research under Contract No. N00014-84-C-0396.
One of the authors (P.J.H.D.) thanks the IBM Research
Division for hospitality during part of the execution time
of the work presented here.
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Band-to-band Auger recombination is the dominant recombination mechanism in silicon at high
carrier concentrations. Previous calculations found Auger rates too small to account for experi-
ment. These calculations, however, contained uncontrolled approximations. We calculate accurate
Auger recombination rates in both ntype and p-type silicon, avoiding approximations made in all
prior Auger work. Our cakulations show that Auger recombination is an order of magnitude
stronger than previously thought. Our results for n-type Si agree well with experimental lifetimes.
In contrast, a phonon-assisted mechanism is indicated for p-type Si. This conclusion can be under-

stood based on details of the band struc ture.

INTRODUCTION

Electron and hole lifetimes are a key factor in semicon-
ductor physics and technology. The study of these life-
times is complicated by the variety of carrier-
recombination mechanisms that determine them.
Recombination mechanisms can be divided into two
categories: defect and band to band. Defect recombina-
tion can be reduced by avoiding deep-level impurities
that act as recombination centers. Band-to-band process-
es, which are present even in a perfect crystal, provide
the ultimate limit to long lifetimes. The two main band-
to-band recombination mechanisms are radiative and
Auger recombination (AR). In AR an electron recom-
bines with & hole and the energy of recombination is
transferred to another electron or hole (Fig. 1)."2 In sil-
icon and other indirect-band-gap semiconductors, where
radiative recombination is inefficient, band-to-band AR
dominates at high carrier concentrations. AR is impor-
tant for technology as well: It competes with radiative
recombination, reducing the efficiency of semiconductor
lasers,’ and it shortens the carrier diffusion lengths, re-
ducing the efficiency of semiconductor solar cells.* By
converting excess electron-hole pairs to excited carriers,
AR plays a role in laser annealing of indirect-band-gap
semiconductors.

Many authors have calculated Auger rates in a variety
of semiconductors. Calculated Auger rates for silicon®¢
(without phonon assistance) were an order of magnitude
lower than experimental rates.”® Because of this
discrepancy, the observed recombination was attributed
to a phonon-assisted mechanism, in which the carriers
emit or absorb phonons during the Auger transition.%'°
Calculations for silicon that included phonon-ssisted
transitions'! were somewhat more successful in compar-
ison with experiment. Careful examination, however, re-
veals potentially compromising approximations in all of
these calculations (both with and without phonons). Ex-
amples include dropping a summation over the reciprocal

42

lattice, and using model energy bands and wave func-
tions. The validity of these approximations went untest-
ed.

In this paper we describe accnrate calculations of the
“pure” (no-phonon) Auger recombination rate in both n-
and p-type silicon. We use accurate energy bands and
wave functions and perform all summations until they are
numerically converged. The Auger rate contains an
cight-dimensional surface integral, which we evaluate
over a cubic mesh. Furthermore, we have performed de-
tailed convergence studies of all of the parameters that
enter the calculation (e.g., the size of the mesh). This
provides a quantitative measure of the accuracy of our re-
sults. Our theoretical recombination rates agree very
well with experiment for heavily doped n-type silicon
over the entire temperature range; theoretical rates for
p-type silicon are much smaller than experiment. These

10 VB 20 04

e—e—h

2'o
FI1G. 1. ¢-e-h and h-h-¢ Auger recombination. CB and VB
are conduction- and valence-band edges, respectively.
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results suggest that pure AR is the dominant recombina-
tion mechanism in n-type Si, but that phonon-assisted
recombination is in fact dominant in p-type Si. The band
structure of silicon provides a simple explanation of this
difference.

A brief summary of our results has been presented pre-
viously.'>! Here we give a detailed discussion of both
our methods and results.

AUGER RATES AND THEIR MEASUREMENT

In this section we describe the relationship between
Auger rates and lifetimes, and two of the experimental
techniques used to measure them. This will provide a
better understanding of the relation between the experi-
mental and theoretical results.

Auger recombination involves either two electrons and
a hole (electron-electron-hole, or e-e-h AR) or two holes
and an electron (hole-hole-electron, or h-h-e AR). The
interaction is mediated by the Coulomb repulsion be-
tween the like particles. The different AR mechanisms
are characterized by nature of the electron and hole wave
functions: in band-to-band AR, all particles are in the
bulk bands; in defect AR, one or more particles are
bound to crystal defects;'* and in excitonic AR, the
recombination is enhanced by the presence of electron-
hole correlations.'*~!" In pure AR, the initial and final
electronic states must conserve both energy and momen-
tum. Momentum conservation can be relaxed by phonon
emission or absorption (phonon-assisted AR) (Fig. 2).
We have investigated the simplest of these processes—
pure band-to-band AR.

The e-e-h Auger rate, R, is proportional to n2p, where
n and p are the electron and hole concentrations, respec-
tively. [This is because an e-e-h Auger transition requires
two electrons and a hole; the occupation probability for
electrons (holes) is proportional to n (p) using Boltzmann
statistics.] Accordingly, the e-e-h Auger coefficient, C,,
is defined by R =C,n?p. In heavily doped a-type silicon,
where e-e-h AR is the dominant recombination mecha-
nism, the hole lifetime is determined by dp /dt=—R.
Using the deflnition of C,, the hole lifetime is given by

N

/

%‘\

FIG. 2. Phonon-assisted Auger recombination.

r7'=R/p=C,n® The n 2 dependence of the hole life-
time is the hallmark of AR. (It is assumed here that the
carriers are nondegenerate.) The relations for heavily
doped p-type silicon, where h-h-e AR dominates, are
completely garallel: the h-h-e Auger coefficient is defined
by R=C,p’n, and r~'=R/n=C,p>. In the following,
we will discuss the case of e-e-h recombination; h-h-e re-
lations can be obtained by and interchanging the pairs
(n,p) and (e,h).

The simplest way to determine Auger coefficients’ is
from measured carrier lifetimes [C, =(722)~!]. The hole
lifetime is measured as a function of electron concentra-
tion in a series of heavily doped n-type samples. Excess
electron-hole pairs are created optically. After the exci-
tation is removed, the hole lifetime is determined by mon-
itoring the weak luminescence produced by the sample.
The excited carrier concentration is much smaller that
the dopant concentration, so that n remains constant dur-
ing carrier recombination. In the region where AR is the
dominant recombination mechanism, 7 will be propor-
tional to # ~2, and C, will be given by the proportionality
constant. This technique has two advantages. First, be-
cause the electron concentration is the equilibrium value,
it can be measured easily, producing more accurate
Auger rates. Second, C, and C, can be measured in-
dependently, by repeating the experiment with n-type and
p-type materials. The one disadvantage of this method is
that all measurements are made on heavily doped sam-
ples. Chemical impurities distort the band structure of
doped material and the Auger rate may not be the same
as for pure material. :

The second technique measures the Auger rate in in-
trinsic material.® Here we have n =p, ind the Auger rate
becomes R =(C, +C,)n’. As in the first method, excess
electron-hole pairs are created by an external excitation,
and luminescence is used to track the decay of the carrier
concentration. With this method, however, the excess
carrier concentration is no longer small compared to the
equilibrium value. (AR is usually seen only for carrier
concentrations much higher than the intrinsic values.)
Hence, the total carrier concentration will decrease as a
function of time during the luminescence decay. The
Auger rate is determined by fitting n (¢) to the solution of
the nonlinear differential equation

R=—dn/dt=(C,+C,)n’*+S(n),

where S(n) is the rate for all other (significant) recom-
bination processes. This method can only measure the
combined Auger rate C, +C,. The technique is compli-
cated, because of the need to measure excited carrier con-
centration, and to include all other significant recombina-
tion processes in S(n). Fortunately, the Auger rates in
silicon as measured by cither method are in agreement.
This demonstrates that heavy doping does not affect AR
in silicon.

BASIC THEORY

In this section we will present the equations that are
used in our theoretical calculations.
The total rate of pure AR is'?




| S178 D. B. LAKS, G. F. NEUMARK, AND S. T. PANTELIDES 42

B S 2 - _
R=23 0 fazfazfufazwl SEENENN = fEN[1—=f(E)]

XS(E|+E2"EV—E2' )8(k1+k2"k1'—kz')dk| dkzdkl'dkz' > (l)

where k,, k;, k;,, and ky are the crystal momenta of the electrons and holes, and E,, E,, E|., and E, are their energies
(see Fig. 1). M is the Auger matrix element (see below), 5(E) and 8(k) are the energy- and momentum-conserving 5
functions, and f(E) is the probability that an electron is occupying the state with energy E. (For h-A-¢ AR, f(E) is the
occupation probability for a hole.) The k integrals span twelve dimensions; the momentum-conserving 8 function can
be used to eliminate the integration over k,, leaving a nine-dimensional integral. Contracting 8(E) reduces R to

R=2

P IMI2 £ (ENFE,)1— FE )1~ f(E;)] 2
N

fi (27) |V(E,+E;—E,—E,)

Here S is an eight-dimensional surface in k space defined by E,+E,=E+E, and k,+k,=k, +k,.. The term in the
denominator is the nine-dimensional gradient of E, + E, — E,. — E,. with respect to (k 1,k ky).
The Auger matrix element is given by

M=f f ﬂ,(fl)ﬂl(fz)\'(rl—rz)ﬂl,(rl);#kz,(rz)dr,drz+exchange term ,

(3)

= _ﬁﬂ_ + ilq+G)r
v(r) %faz (217_),1'((1 Ge ’

where ¢,(r) is the wave function of the electron (or hole) with wave vector k, v(r) is the screened Coulomb potential,'®
and G is a reciprocal-lattice vector. The exchange term is found by changing i (1)) tO ¢kz(r,) and ¢kz(r2) to ¢kn( 1 98

The g integration runs over the first Brillouin zone (BZ). v(q+G) is given by the product of the dielectric function and
the Coulomb potential in reciprocal space:

v(q+G)=3 ealgl(q)—"—mz—; , @
G lq+G’|
where €, ;.(q) is the dielectric function of the material.?® Using a diagonal approximation for €~} reduces vir) to
2
wWr)= f__d_q_.i’L‘;_eiqf , ) (5)

(27) e(q)g?

where the integral now runs over all space. '

Because of the periodicity of the crystal lattice, we can put the Auger matrix elsments into a form that is easier to
evaluate. The wave functions can be expanded in a Fourier series:

-1 iR+G)r (6
hin=753 4+ O :

Using the Fourier expansion of all four wave functions and Eq. (5), the matrix element becomes
2
M=2TC 5 S 33 4°(,+6) A%k +G Bk, +Gy) Alky+Gy)
¥ 0, G, 6,. G,

1
X
|k|'+‘G|r—kl—Gl!ZE(k"‘}'Gt"’k‘ "G')

+exchange term . ¥))

Gy, G2, Gy, and Gy are all reciprocal-lattice vectors. B is used to represent the Fourier components of the wave func-
tion with momentum k. to indicate that it is in a different band than the other wave functions. All other band indices
are suppressed. Applying momentum conservation and substituting G =G, — G, gives

4rre? 1
M= A*(k,+G,)B(k,.+G,~G)
Vv & e(k,—k,.+G)lk,-k,-+Gl’02| P

X3 A*(k,;+G,) A(k,+k,—k,+G,+G)+exchange term . 8)
G,
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In this expression the summations over G, and G, are in-
dependent. As a result, the number of terms in each ma-
trix element is reduced from N3 to 2N?, where N is the
number of reciprocal-lattice vectors used in the calcula-
tion. Note that because € is a function of k+ @G, it cannot
be factored from the G summation.

REVIEW OF PRIOR AUGER THEORY

Theoretical study of Auger recombination in semicon-
ductors dates back to the pioneering work of Beattie and
Landsberg.! In 1958 they investigated the rate of Auger
recombination in InSb. To perform the integrals analyti-
cally, they made several major approximations in Egs. (2)
and (8). These approximations were designed for a
narrow-band-gap direct-transition semiconductor (E,
=0.18 eV in InSb), where all of the k vectors are very
near the band edge. During the last two decades these
calculations were extended to other semiconductors, in-
cluding Ge and $i,% GaAs?'~%* GaSb,?' and InP.2>?
Other authors calculated ?honon-assisted Auger recom-
bination rates in silicon,'' and compound semiconduc-
tors.1525.26

For silicon, Huldt® estimated the no-phonon Auger
coefficient as C,=0.2X1073! cm®sec™! and predicted
that C, is much smaller than C,, A later calculation by
Hill and Landsberg® found C,=0.12X1073" em®sec™.
On the expcnmenta] side, szewxor and Schmid’ deduced
minority carrier lifetimes from luminescence decay in
highly doped n-and p-type silicon at 77, 300, and 400 K.
T‘ne\r experimental Auger coeﬂicxents C,=2.8x10*
cm®sec™! and C,=0.99X107% cm®sec =T are much
larger than the theoretical values. This led to the sugges-
tion that phonon-assisted Auger recombmatnon was re-
sponsible for the experimental rates.!® Support for this
thesis came from the temperature dependence of the
Auger rate. The measured Auger rates C(7T) remain
nearly unchanged in the temperature range T =4 to 400
K."® Huldt et al.?’ fitted these values to an expected
analytical C(T) for both no-phonon and phonon-assisted
AR. With the given analytic forms a good fit could be
made for the ghonon-assisted case but not for the no-
phonon case.!® [The form used for phonon-assisted
recombination was C(T)=C,coth{#w/2kT) where o is
the frequency of the phonon emitted during recombina-
tion. The form used for no-phonon AR was C(T)
=C,V'T expl—E, 7kT) where Ep, is the threshold en-
ergy and is defined in the Results and Discussion section.]
A subsequent calculation of the phonon-assisted Auger
rate in silicon by Lochmann and Haug!' found C, in
good agreement with experiment, but C, was still four
times too small. They concluded that phonon-assisted
AR, not pure AR, is the dominant recombination mecha-
nism in highly doped silicon. This conclusion was ex-
tcndcit'i to other indirect-band-gap semiconductors as
well.

Careful examination shows that all existing Auger rate
calculations —for both pure and phonon-assisted mecha-
nisms and for any of the materials studied—retained
many of the approxlmauons of the original Beattie and
Landsberg work,' even though they were never tested.

The underlying assumptions of Beattic and Landsberg’s
approximations is that all of the k vectors in Eqs. (2) and
(8) will be near the band edge, which is true only for a
small direct band gap. These approximations may not be
valid for wide band gap or indirect-transition semicon-
ductors, where k,. will be far from the band edge.

Before discussing the particulars of the approxima-
tions, it should be noted that there are two categories of
theoretical papers under discussion. The difficulty of
evaluating the quantities in Eqs. (2) and (8) has been met
using two strategies. The first strategy is to introduce as
many approximations as are needed to determine the
Auger rate. This is the approach used by most authors.
The second strategy is to give up on evaluating the full
Auger rate in Eq. (2) and concentrate instead on deter-
mining the Auger matrix elements alone [Eq. (8)] using
fewer approximations.?'~242* Approximations used in
papers in the first category include the following

In the integration over k [Eq. (2)):

(1) Of the eight dimensions in the k-space integral, the
matrix elements are integrated over, at most, six dimen-
sions. (The reduction occurs because of other approxi-
mations, not all mentioned here, that are made.)

(2) Model (k-p or parabolic) band structures are used
to find the energy conservation surface.

In the matrix element calculation [Eq. (8)}:

(3) The first summation over the reciprocal-lattice vee-
tors (G) is dropped. This approximation is often called
neglecting “umklapp terms.”

(4) The electron and hole wave functions are taken
from k-p perturbation theory.

(5) The dielectric function, €, which is in fact a func-
tion of k, is either replaced by the static dielectric con-
stant, €, or left out entirely.

(6) Some authors do not calculate both the direct and
the exchange terms of the matrix elements.

The papers that evaluate only the matrix elements
make fewer approximations in Eq. (8). In particular,
Brand and Abram?? appear to be the only authors before
this work to include both the sum over G and k depen-
dence of €. (They also use an empirical pseudopotential
for the wave functions.) But, as noted above, these calcu-
lations are done for only a few matrix elements. As a re-
sult, these papers do not provide any estimate of the rate
of Auger recombination, which is the quantity of interest,
Of the previous evaluations of the total Auger rate,
Beattie’s work on InSb (Ref. 29) is probably the most ac-
curate. Beattie used the Monte Carlo method to in-
tegrate the matrix elements over a full six dimensions in k
space. The use of k-p band structure and wave functions,
a static dielectric constant, and the omission of the sum
over G are all appropriate for k vectors very near the
band edge. These approximations may be adequate for
InSb, where k|, kj, k;, and k,. are all near the band edge.

DESCRIPTION OF PRESENT WORK

We have performed a thorough calculation of the rate
of pure e-e-h and h-h-e Ar in silicon. We do not use any
approximations of unknown consequence; in particular
all of the approximations described in the previous sec-
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tion are avoided. In addition we have verified the accura-
cy of our numerical approximations through extensive
convergence studies.

For the band structure [in Eq. (2)] and the wave func-
tions [in Eq. (8)] we use empirical pseudopotentials.’
(Nonlocal corrections and spin-orbit splitting were not
included; both of these produce very small corrections to
the bands that contribute to the total AR rate) We
chose an empirical potential over a first-principles pseu-
dopotential because the latter produces errors in the band
gap and the dispersion of the energy bands. In Eq. (2) the
integration over k space is performed numerically over
an eight-dimensional cubic grid without factoring any of
the terms from the integrand. The integration is per-
formed over all regions of k space where the integrand is
non-negligible. Auger transitions between the light- and
heavy-hole valence bands and the bottom conduction
band are included. For the h-h-e process the split-off
valence band was used as well. Thus our results include
all of the 27 different possible h-h-¢ transitions with holes
1, 2, and 2' in the heavy-hole, light-hole, and split-off
bands. Fermi-Dirac statistics are used to describe the oc-
cupation probabilities for the majority carriers [f(E,),
f(E,), and f(E,)] and Boltzmann statistics are used for
the minority carriers [ f(E,.)]. This corresponds to the
physical conditions of the experiment’ to which we com-
pare our results. In the matrix element equation [Eq. (8)],
all of the summations over the reciprocal lattice have
been retained. The ¢ dependence of the dielectric func-
tion is included in the form of Nara and Morita.3! In our
earlier work on AR in silicon'>!? we used, in addition to
the dielectric screening, a Thomas-Fermi screening fac-
tor, A, for the free-electron screening. Since then, howeyv-
er, Burt® has pointed out that Thomas-Fermi screening
is static, while the screening in Auger transitions is dy-
namic.?® Since the frequencies in Auger transitions (1
eV) are much larger than the plasma frequency of the free
carriers (0.1 eV), A=0 is probably a better approxima-
tion. In this paper we present our results using A=0.
This results in Auger rates that are about 25% larger
than those presented in our previous paper. This
difference is of the order of the experimental errors of
measurement, and does not affect any of our conclusions.

Because our calculations are a radical departure from
previous work in the field, it is interesting to see which of
the corrections that we have included are most
significant. To this end we have checked some of the ap-
proximations that have appeared in previous Auger cal-
culations by performing the same calculation (in silicon)
both with and without each approximation. Of those
tested, the two worst approximations are the neglect of
the sum over the reciprocal lattice (“umklapp” terms),
and the use of a static dielectric constant in the matrix
clements. Each of these approximations decrease the to-
tal Auger transition rate by an order of magnitude.
(Neglecting the dielectric screening altogether increases
the rate by an order of magnitude.) These approxima-
tions may be better in the direct-band-gap materials,
which have been the focus of much of the recent theoreti-
cal Auger work. Nonetheless, our resuits serve as a clear
warning that such approximations should not be taken
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for granted, or buried in equations, as has often been
done in the past. The use of Fermi-Dirac statistics (as
opposed to Boltzmann statistics) increases the recombina-
tion rate when the carriers are degenerate. For example,
at T=77 K, C, increases by one-third between n=10"
cm ™’ and 10%° cm ™. The effect of the statistics on C, is
even greater, because the effective density of states of the
valence bands is lower than that of the conduction band.
Because almost all of the previous Auger rate calcula-
tions use either k-p or parabolic band structures, we at-
tempted to estimate the importance of accurate band
structures. To this end we evaluate the Auger rate using
parabolic bands (with the same effective masses as our
pseudopotentials). Parabolic bands were used only in the
evaluation of the energies in the statistical functions
S(E), [Eq. (2)]; the full band structure was used for the
energy conservation condition. Nevertheless, the total
Auger rate was off by 50%. We did not attempt to evalu-
ate the influence of accurate wave functions on our re-
sults. Brand et al.?' compared pseudopotential and 15
band k-p wave functions in their matrix-element formula
and got similar results in either case. (Much of the previ-
ous Auger work, however, used only four band k-p wave
functions, which are less accurate.)

We will now describe the method used to perform the
k-space integration [Eq. (2)). The key to making the
eight-dimensional surface integral tractable is to restrict
our attention to those regions where the integrand is
non-negligible. The occupation probability functions,
S(E), guarantee that these regions occur when k,, k,,
and k. fall near their respective band edges. We have re.
stricted the integration over k to those regions of k-space
satisfying E . =(E\—E ) H(E,—E )—(E.—EYXE_,
for eeh AR, and E, .=—(E,—E,)-(E,~E,)
+(E,. —E,) <E, for h-h-e AR. This choice is based on
the fact that the total occupation probability (using
Boltzmann statistics) is proportional to expl —E . /kT),
The values of E_, used in our calculations range from
200 to 350 meV, depending on the temperature. For sil-
icon, which has an indirect band gap with the
conduction-band minimum at k=0,85 (all k vectors are
units of 2/ A, where A is the lattice constant), there are
several different regions where the integrand is non-
negligible. For hA-h-e recombination there are six regions,
in which k, and k, are holes near the center of the Bril-
louin Zone and k,. is in the valley near one of the six
conduction-band minima. Because &ll six regions are
equivalent, the calculation for h-h-e recombination need
be done for only one of the regions, and multiplied by 6.
The situation for e-e-h recombination is more complicat-
ed; bere there are three inequivalent types of regions. In
the first type, k, and k, are the same conduction-band
valley [for example k, =k, =(0.85,0,0)]. There are six
regions of this type. In the second type, k, and k, ar= in
ortbogonal valleys [k;=(0.85,0,0) and k,=(0,0.85,0)).
There are 12 regions of this type. In the third type, of
which there are three regions, k, and k, sre in opposite
valleys [k, =(0.85,0,0) and k,=(—0.85,0,0)}. The con-
tnibutions to the Auger rate from the first two types of re-
gions are about the same size. The contnbution from the
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third type of region is 2 orders of magnitude smaller than
that of either of the first two, and is not included in any
of the results presented here.

To produce the mesh for the k-space integration, a
three-dimensional cubic mesh is generated for each of k,,
k), k., and ky. The side of each cube has length Ak.
The pseudopotential energies for the appropriate bands
(three valence bands for holes, one conduction band for
electrons) are evaluated at each grid point of the four
meshes. The Cartesian product of these four meshes pro-
duces a twelve-dimensional mesh of the form
(k,,k,,k;,k;). Applying momentum conservation to fix
ky reduces the mesh to nine dimensions
(k;, k3 k., ki +ky—k; ). The grid points form the ver-
tices of a collection of 9 cubes in k space. The set of 9
cubes that intersect the energy-conservation surface
(E,+E,=E | —E,) define a mesh over the surface. To
determine whether a cube intersects the energy-
conservation surface, E, +E;—E —E, is evaluated at
the 512 vertices of each 9 cube; if this quantity crosses
zero between any two vertices, then the cube is placed on
a list of cubes that make up the final integration mesh.
Next, we construct the wave functions that are needed
for the evaluation of the matrix elemeénts. The list of
cubes that intersect the energy-conservation surface is
used to find the grid points at which the wave functions
are required. First, we shift the grids by Ak /2 in each di-
mension, so that the grid points now lie at the center of
the cubes, rather than at the vertices. The pseudopoten-
tial wave function of a point in the k, grid is evaluvated if
that value of k, occurs as the first component of the coor-
dinates (k;,k;, k., k;.) of the center of one of the 9 cubes
on the list. The same is done for k,, k,, and k,. Next
the matrix clements are calculated at the center of each
cube using Eq. (8) and the wave functions. The pseudo-
potential energies are used to evaluate the Fermi (or
Boitzmann) functions. The advantage of using a cubic
mesh is clear. The number of points in each dimension of
the mesh is proportional to N=1/4k. The number of
cubes in the grid over the energy conservation surface (
and thus the number of points at which the Auger matrix
element need be calculated) is of order N%: the number of
points in each of the grids over k, k,, k;., and k,, is pro-
portional to N3, Thus the total number of wave func-
tions evaluated is about 4N 2, which is much smaller than
the N® matrix elements that they determine. In a typical
calculation, we used fewer than 1000 wave functions to
calculate 300 000 matrix elements.

We performed careful convergence tests on all of the
numerical cutoffs in our calculations. Each parameter
was tested separately (with all other parameters held con-
stant), and the tests were performed for all of the calcula-
tions {both e-e-h and h-h-e recombination and at all tem-
peratures). We achieved convergence to within 1% in
nearly all cases. (For some low temperature h-h-¢ results
only 10% convergence was achieved.) Convergence tests
were performed for the following numerical parameters:
the number of plane waves used in the energy-band calcu-
lation; the number of reciprocal-lattice vectors used in
the matrix-element sums; the size of the k-space mesh
(Ak) used in the integration; the energy cutoff (E,).
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FIG. 3. (s) Convergence of the e-e-h Auger lifetime when the
mesh size (Ak) is changed with all other parameters held con-
stant. (b} Convergence of the e-e-h Auger lifetime when the en-
ergy cutoff (E,,, ) is changed with all other parameters held con-
stant.

Two of the convergence curves (for Ak and E_,) are
shown in Fig. 3.

RESULTS AND DISCUSSION

We compare our results (Fig. 4) with the experimental
lifetimes of Dziewior and Schmid,” who measured the
minority-carrier lifetimes in heavily doped n-type and p-
type silicon. We chose this experiment for comparison,
because it gives the simplest and most direct measure-
ment of the Auger lifetimes. The authors also give
separate lifetimes for both e-e-h and h-h-e AR, over a
broad temperature range. (They also measure the Auger
rate at =4 K, but we did not extend our calculations to
such low temperatures.) A more complex experiment by
Svantesson and Nilsson® produced very similar results for
highly excited intrinsic silicon.

The differences between our results for e-e-h and h-h-e
AR are striking. For e-e-h recombination, the theoretical
and experimental lifetimes are in very good agreement at
both high and low temperatures. For hA-h-e recombina-
tion, in contrast, the theoretical lifetimes are an order of
magnitude slower than the experimental values, at best.
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FIG. 4. Experimental and theoretical Auger lifetimes. Ex-
perimental results of Dziewior and Schmid (Ref. 7) indicated by
circles (T=77 K), and X's (T=300 K). Theoretical results in-
dicated by dashed (T=77 K) and solid lines (T=300 K). For
comparison, the theoretical results of Hill and Landsberg (Ref.
6) (for n-type Si) are indicated by a dotted line (T =300 K).

The temperature dependence of the theoretical rates
differs as well. While the e-e-h rates are nearly tempera-
ture independent, the h-h-e rates increase rapidly with
temperature. The experimental rates show a very weak
temperature dependence for both e-e-h and h-h-e AR.
Our pure AR results account for the observed lifetimes in
n-type silicon but not in p-type silicon.

These results are consistent with the assertion of
Huldt? that pure e-e-h Auger transitions are much more
probable than pure A-h-e transitions. Huldt’s theoretical
e-e-h rate is, however, an order of magnitude smaller than
experiment. Later calculations by Hill and Landsberg®
produced similar results. The authors cautioned, howev-
er, that because of the uncertainties in the calculations,
their rates were not definitive. These theoretical results
led to, the conclusion that phonon-assisted Auger recom-
bination dominates in both n-type and p-type silicon.
The weak temperature dependence of the Auger lifetimes
was cited as additional evidence of the role of phonon-
assisted processes; Haug® found that this temperature
dependence could be fitted by phonon-assisted mecha-
nism (where the temperature enters through the statisti-
cal probability of phonon emission), but not by a pure
AR mechanism (where the temperature enters through
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the occupation probabilities of the electrons; see below).
When Lochmann and Haug'! calculated the phonon-
assisted Auger rate for both e-e-h and h-h-e transitions,
they obtained good agreement for h-h-e AR, but their re-
sults for e-e-h recombination were still four times smaller
than the experimental values. The point we wish to em-
phasize here is that the assertion that pure AR is not im-
portant in silicon rests entirely on the results of prior
theory. But our work shows that, in an accurate theory,
both the magnitude and the temperature dependence of
the pure e-e-h rate agree very well with experiment. We
now reopen the question of which recombination mecha-
nism dominates in silicon, pure or phonon-assisted AR?
In prior theory the phonon-assisted rates are faster, but
both the pure and phonon-assisted calculations used ap-
proximations that we have already demonstrated to be in-
valid. Besides, the theoretical values for the pure and
phonon-assisted mechanisms were obtained using
different approximations. In particular, the phonon-
assisted Auger recombination rate calculation'! does not
include dielectric screening (€=1), while the pure Auger
rate calculations™® use static dielectric screening (e=12).
Because the Auger rate depends on €2, using the same €
in both theories would give a pure Auger rate an order of
magnitude larger than the phonon-assisted rate. To our
knowledge, no one has calculated both pure and phonon-
assisted AR rates using consistent approximations,
Ideally, we should answer this question by calculating the
phonon-assisted AR rates in silicon to the same degree of
accuracy as our pure AR calculation, but accurate
phonon-assisted rates, which involve an additional in-
tegration over phonon momenta, are beyond the limits of
present computational capabilities. Instead we present a
physical argument to explain why pure AR should dom-
inate in n-type silicon, and phonon-assisted AR in p-type
silicon.

The key to understanding the differences between e-e-h
and h-h-e AR and the relation of pure AR to phonon-
assisted AR lies in the concept of recombination thresh-
olds. The thresholds are a consequence of the energy-
and momentum-conservation conditions that must be
satisfied by the initial and final electronic states. As men-
tioned above, these conditions determine an cight-
dimensional surface in k space, and Auger transitions can
occur only for configurations that lie on this surface. The
largest contributions to the Auger rate are those for
which k,, k,, and K. are nearest to their respective band
edges: otherwise, the statistical function
fE)Sf(ED[1—f(E;)] will be vanishingly small
SENF(ED[(1—f(E,)] obtains its maximum value for
the configuration that has k;, k;, and k;. at the band
edges, but the energy-conservation surface need not con-
tain this configuration. The recombination threshold is
the configuration on the energy conservation surface that
has the maximum value of f(E,)f(E)[1—f(E,)). Us-
ing Boltzmann statistics for f(E), we have

FENS(ENI=f(E )]

2y (—(F,—E \~(E,- -
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for e-e-h AR, and
SENF(E—=f(E)]

__mp? GBI =B )+ By~ B)—(E ~ E /KT
N.N;

for h-h-e AR. {Note that the statistical functions intro-
duce, besides the explicit exponential dependence, a
T7%7 dependence through the presence of N, and N,.)
In either case, f(E,)f(E,){1— f(E )]} is proportional to
exp(—E_.,/kT). (E,, is defined in the previous sec-
tion.) Thus, when Boltzmann statistics is applicable, the
threshold configuration is simply the configuration that
has the minimum value of E,,. We call this
configuration the Boltzmann threshold configuration.
The threshold energy, Eq,, is defined as this minimum
value of E [ Eny =En{kn), where kpy, is the thresh-
old copfiguration]. When Fermi-Dirac statistics applies,
FE(EP[1—f(E,)] will not, in general, achieve its
maximum value at the minimum value of E,,,,. Here the
threshold configuration will depend on the carrier con-
centrations, and a threshold energy cannot be defined.
Nonetheless, if the carriers are not strongly degenerate,
the difference between the two configurations will be
small. We will assume that this condition holds, and will
use the Boltzmann threshold configuration in our discus-
sions. (This approximation does not enter our calcula-
tions, where we use Fermi-Dirac statistics and calculate
the Auger rates without direct reference to the thresh-
old.)

Because the total Auger rate is very sensitive to the
value of Ep,, the relative importance of pure and
phonon-assisted AR depends on the difference in thresh-
olds between the two processes. Huldt® estimated that
for e-e-h recombination in silicon 0< Ep, =52 meV, but
that the A-h-e recombination threshold was so large that
phonon-assisted recombination was likely to dominate.
In the work of both Huldt and of Hill and Landsberg,’ a
threshold of zero was used for calculation of the pure e-
e-h rate. If the threshold is in fact zero, it is unlikely that
phonon-assisted recombination, a second-order process,
dominates over pure e-e-k recombination, a first-order
process. Although accurate thresholds are crucial to
determining the dominant mechanism, there are no other
theoretical investigations of the threshold for pure AR in
silicon. We have evaluated E, for both e-e-h and h-h-¢
recombination as the minimum value of E,,,, for all of
the transitions included in our calculations. We find
thresholds of 8 meV for e-e-h AR and 76 meV for h-k-e
AR. Inspection of the band structure of silicon confirms
that is easy to find e-e-h transitions near the band edge
(Fig. S(a)] but not h-h-e tramsitions {Fig. 5(b)}. (The
figures show Auger transitions in which the k vectors are
all restricted to a single dimension. In our evaluation of
Eq, we have included k vectors in all dimensions.) These
thresholds explain why the theoretical e-e-k rate is far
larger than the A-h-e rate, and why the theoretical h-h-e
rates have a much stronger temperature dependence than
the e-e-h rates. We can also understand why phonon-
assisted AR dominates in p-type silicon, and pure AR in
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FIG. 5. (a) A possible e-e-h transition for silicon. (The top
three valence bands and the one lowest conduction band are
shown in the {100) direction, using a repeated zone scheme.
The apparent cusp in the conduction band is caused by a band
crossing at the X point.) (b) A possible k-h-e Auger transition.
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n-type silicon. For h-h-e AR, where the pure Auger
mechanism has a high threshold, a phonon-assisted pro-
cess, even though it is second order, can compete by re-
ducing the threshold. For e-e-h AR, where the pure AR
threshold is already very low, there is no advantage for
phonon-assisted recombination.

One experiment was conducted to test which type of
AR dominates in n-type silicon. It was claimed that the
results demonstrate that phonon-assisted AR dominates;
in fact, the results are inconclusive. Abakumov and Yas-
sievich’ examined theoretically the effect of uniaxial
stress on the AR rate in silicon. If unaxial stress is ap-
plied along one of the { 100) axes of the crystal, the two
conduction-band minima along the stressed axis will be
lowered with respect to the four other conductios-band
minima. As a result, conduction electrons move from the
other valleys to the two valleys that lie along the stressed
axis. If enough pressure is applied, these two valleys will
eventually contain all of the conduction electrons in the
crystal, tripling their population. Abakumov and Yassie-
vich assume that pure Auger transitions can occur only
between electrons in the same conduction-band valley.
With this assumption they conclude that the application
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of uniaxial pressure should triple the pure Auger rate.
Subsequently, Grekhov and Delimova®® measured the ex-
perimental pressure dependence of the AR rate in silicon
at room temperature. They found the recombination rate
to be independent of applied pressure, even when the
pressure-induced difference in the conduction-band mini-
ma was 40 meV. They concluded that the observed
recombination is phonon assisted. (The authors claim
that the phonon-assisted transition rate is not affected by
uniaxial stress.) The crucial point in this analysis is the
assumption that pure AR can only occur between elec-
trons in the same conduction-band valley. Our calcula-
tions disprove this assumption; at room temperature the
largest contribution to the pure Auger rate comes from
the transitions involving electrons in the orthogonal val-
leys. We have repeated the analysis of Abakumov and
Yassievich using the two components of C, (for electrons
in the same and in orthogonal valleys) from our calcula-
tion in place of the single Auger coefficient (for electrons
in the same valley) used by Abakumov and Yassievich.
We find that—even in the case when all of the electrons
are transferred to the two preferred valleys—the rate of
pure AR is increased by only 25%, which is within the
range of experimental uncertainty. In addition, the
pressure-induced change in the band structure has an un-
known effect on the pure Auger rate, and may well offset
the increase caused by the redistribution of the electrons.
Also, it has not been demonstrated that the phonon-
assisted Auger is independent of applied pressure. We
maintain that, because of these arguments, the results of
this experiment are inconclusive.

One further point to be explained is the behavior of the
Auger cocfficients at lower carrier concentrations. The
experimental signature of AR is the carrier dependence
of the Auger lifetimes, 7' =C,n? for e-e-h AR, or C,p?
for h-h-e AR. For heavily doped n-tyPe Si, the Auger
coefficient, C, is constant at 2.7X 10~ ¢cm®sec ™! when
n is above 5X10'® cm™, but jumps suddenly to about
2X107% cm®sec™! when n is below this value.’* ™% The
behavior of C, is similar. (According to Yablonovitch
and Gmitter,*® the carrier dependence of the e-e-h Auger
rate is best described by an n "% law, which has been ex-
plained cither by equilibrium population effects,’® or by a
combination of band-to-band and trap-Auger recombina-
tion.“%) Our calculations for n-type Si correctly predict
the high-density Auger rates, but not the sudden increase
of C, below 5X10'" cm™2. The dramatic change in the
Auger coefficient is hard to explain. One possible ex-
planation is that degeneracy reduces the Auger rate at
high carrier concentrations. But the effects of degeneracy
should be minimal at n=5X10'"* cm™~? and should be
more noticeable in the n =10'" cm ™ to 10% cm ~? range,
where, in fact C, is constant. Our calculations show that
Fermi-Dirac statistics causes only a minor change in C,
even at n=10 cm~?, and that it increases the recom-
bination rate. Another possible explanation is that the
effects of heavy doping on the band structure diminish
the rate of AR. This can be ruled out because experimen-
tal measurements of C, produce the same results in high-
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ly excited intrinsic silicon® as in heavily doped material.”

A more likely explanation of the experimental results is
that the Auger rate is not reduced when n is large, but
enhanced when n is small. The enhancement of the
recombination rate can come from two sources: exciton-
ic AR and AR through electrons in shallow levels. In ei-
ther case the enhancement would end when the material
undergoes a phase transition (caused by increased carrier
screening). The abrupt nature of the change suggests
that a phase transition is in fact present; the effects of de-
generacy, band-structure shifts, and the like, should pro-
duce a gradual change that becomes more marked as n
increases. Excitonic Auger processes involving actual ex-
citons have been investigated theoreticaily by Hang-
leiter,'!” and Auger tramsition enhancement by
electron-hole plasma interactions by Takeshima.!> The
increase in the Auger rate predicted by either of these pa-
pers is enough to account for the observed change in C,.
The excitonic Auger mechanism would be suppressed at
higher carrier concentrations, where electron screening
would be large enough to nullify the electron-hole attrac-~
tion. The other possible source of enhancement is AR
through donor electrons in shallow levels (or holes in ac-
ceptor states for h-h-e recombination). These electrons
have localized wave functions that are spread over a
much larger region of k space than the thermal distribu-
tion of conduction-band electrons. Bound electron AR,
in combination with pure AR, would dominate below the
metal-insulator transition, where there are bound.
electron states available, Above the metal-insulator tran-
sition these bound states disappear and only pure Auger
transitions can occur. Indeed, the change in the Auger
coefficient occurs almost exactly at the metal-insulator
transition in both n-type and p-type silicon.

In summary, we have presented an accurate method of
calculating pure Auger recombination rates in semicon-
ductors. Applying this method to silicon produces very
good agreement with the experimental lifetimes in 2-type
material. We conclude that pure AR dominates in n-type
silicon and phonon-assisted recombination dominates in
p-type cilicon. Our calculations also show that many of
the approximations that have become standard in Auger
theory are unreliable. We address the question of the
sudden increase in the Auger coefficients below
n=5X10" ¢cm™3, and suggest that it is caused by cither
excitonic or bound-electron AR. ’
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Wide-band-gap semiconductors typically can be doped either a-type or p-type, but not both. Compen-
sation by native defects has often been invoked as the source of this difficulty. Using first-principles
total-energy calculations we show that, for ZnSe and diamond, native-defect concentrations are too low
to cause compensation. For nonstoichiometric ZnSe, native defects compensate botk n-type and p-type
material; thus deviations from stoichiometry cannot explain why ZnSe can be doped only one way. In
the absence of a generic mechanism, specific dopants should be examined case by case.

PACS numbers: 71.55.Gs, 61.70.Bv, 72.20.Jv

Wide-band-gap semiconductors (such as ZnSe, ZnS,
CdS, ZnTe, BN, or diamond) have ideal band gaps for
optical applications using blue or green light, including
semiconductor lasers and light-emitting diodes. There is,
however, a fundamental problem with these materials: It
is difficult, if not impossible, to make diamond and ZnTe
n-type, and to make the rest p-type.'™ The simplest ex-
planation' -7 suggested for this phenomenon is that na-
tive defects compensate, say, acceptors in ZnSe. Be-
cause of the wide band gap, some of the energy needed
to form a native donor defect can be recouped when elec-
trons from defect levels in the gap recombine with holes
at the Fermi level in p-type material. The spontancous
formation of native defects would thus prevent the Fermi
levei from moving below a fixed value that is determined
by the formation energies and electronic levels of the na-
tive defects, independent of the dopant and of how the
material was prepared. This picture has some very ap-
pealing features. It would explain why doping problems
occur in all wide-band-gap materials, and are less severe
in medium-gap materials such as CdTe. It would also
explain why the difficulty in producing p-type (or n-type)
material is universal, appearing for all growth and dop-
ing techniques, and for all dopants. That these materials
can be doped n-type and not p-type, or vice versa, can be
explained if the native defects with the lowest formation
energy are donors in some materials and acceptors in
others. For example, Jansen and Sankey’ have suggest-
ed that the native-defect mechanism can account for the
difference between ZnSe, which can be made n-type, and
ZnTe, which can be made p-type, even though the two
materials are strikingly similar in other ways. There is,
however, no direct evidence to either confirm or deny the
role of native defects in wide-band-gap semiconductors.

In this Letter we report on theoretical determinations
of native-defect concentrations in ZnSe. The underlying
calculations attain for the first time the level of accuracy
that has so far been practical only for materials like Si
and GaAs. We find that (1) the native-defect concentra-
tions are too low to be a significant source of compensa-

tion in stoichiometric ZnSe; (2) undetectably small devi-
ations from stoichiometry can produce large concentra-
tions of native defects. We find that the defects formed
depend on whether the sample is n-type or p-type, but al-
ways compensate. Hence deviations from stoichiometry
cannot explain why ZnSe can be doped n-type but not
p-type, because they are as likely to compensate n-type
material as p-type. We have further determined native-
defect concentrations in diamond, and find again that
compensation by native defects is insignificant. In the
absence of a generic mechanism, potential dopants need
to be examined case by case.

Our determination of defect concentrations is based on
calculating the total energy of each defect using
density-functional theory (DFT) and the local-density
approximation (LDA), norm-comserving pseudopoten-
tials and supercells.® These techniques have been very
successful in elucidating defect properties in Si (Refs. 9
and 10) and GaAs.!' Applying the same tools to ZnSe,
however, presents a problem. Zinc contains a fully occu-
pied band of 3d electrons, which are tightly bound to the
nucleus, and yet fall within the valence bands of ZnSe.
Standard defect calculations are performed with a
planc-wave basis set, which would require far too many
plane waves to represent the d states. If the d states are
treated as core states of the pseudopotential, it is not
necessary to represent them in the basis set; unfortunate-
ly, this procedure is unzcceptable because it does not
correctly represent the properties of ZnSe.'? To treat
the 4 states properly, and still be able to perform super-
cell calculations, we use an all-new mixed-basis-set pro-
gram, similar in spirit to that of Louie, Ho, and
Cohen.'*' The usual planc-wave (PW) basis set is sup-
plemented by a set of pseudoatomic tight-binding (TB)
functions situated on each zinc atom. Calculations of
the bulk properties of ZaSe (and other semiconductors)
show that this scheme describes material properties very
well: The predicted lattice constant and bulk modulus
agree with experiment to within 1% and 10%, respec-
tively.

648 © 1991 The American Physical Society




VOLUME 66, NUMBER 5

PHYSICAL REVIEW LETTERS

4 FEBRUARY 1991

For defect calculations, the convergence of the results
with respect to basis sets and supercell size was checked
to ensure overall accuracy of better than 0.5 eV.'> An
additional uncertainty is introduced by the local-density
approximation, which is well known to underestimate
band gaps. In p-type material, this uncertainty is negli-
gible because all levels in the energy gap are empty. The
uncertainty in n-type material is larger and can be es-
timated from the error in the band gap itself. In our dis-
cussion of the results for n-type materials, we assumed
the worst-case values.

Calculations were performed for all native point de-
fects: Zn;, Se; (interstitials), Vz,, Vs, (vacancies), Zns,,
and Sez, (antisites) in a variety of charge states; 29
different cases were examined, and detailed results will
be published elsewhere. Calculations for these native de-
fects have been reported earlier by Jansen and Sankey,’
using more approximate techniques.'® We will refer to
their results where appropriate.

For a compound semiconductor like ZnSe, the forma-
tion energies and hence the concentrations of native de-
fects are a function of the stoichiometry of the material.
The stoichiometry itself is related to the chemical poten-
tials of the constituents of the compound, in our case Zn
(u2.) and Se (us.) atoms. The two chemical potentials
are constrained by the condition that (in equilibrium)
their sum must equal the total energy of a two-atom unit
of perfect ZnSe (uznse™uzn+use). (We use the total
energy of a perfect ZnSe cell at T=0 K for pzns..)
Given the Zn and Se chemical potentials, the formation
energy of each native defect is well defined and can be
derived from a supercell calculation as follows. The total
energy of a supercell for the ith defect containing N Zn
atoms and M Se atoms (E;) is calculated. The defect
formation energy is then

E;—=Npza—Muse=E;—(N—M)uy— (N+M)u;
& —nig .,

where uy=(uza—psc)/2, py=(uz,+usc)/2 (a con-
stant), ;=N —M, and §=E,—~(N+M)us. n; is the
number of extra Zn atoms that must be added to form
the defect (+1 for Vg, —2 for Seza, ctc.), independent
of the size of the supercell. Using this prescription, all of
the defect formation energies, and hence their concentra-
tions (C;), are unique functions of u,. The concentra-
tions, in turn, determine the stoichiometry. In practice,
however, it is more convenient to fix the stoichiometry
first, and then determine C;. To do this we write C; in
terms of the total energies and entropies (S) of forma-
tion as

C] -eslk.e -(l|"ll'[l|)/k.7-eslk. —c,/l:.Tyn, -aly"l ,

where y =exp(u1/kgT). The stoichiometry parameter is
X~ };mC; -1 ;m,a:y"'

(X =0 for perfect stoichiometry, and X > 0 for Se rich).
To find defect concentrations as a function of stoi-
chiometry, one simply chooses a value of X (and the
temperature) and solves for y. (The problem is essen-
tially finding a root of a polynomial, which can be done
quickly and easily using standard algorithms.)

Defect concentrations are a function of formation en-
ergies and entropies. We have checked that our results
are insensitive to the value of the entropies in the range
S=(0-10)ks. By comparison, a recent accurate calcu-
lation'” of the formation entropy of the Si self-interstitial
found a formation entropy of (5-6)ks for the ground
state. The Si self-interstitial represents an extreme case
in that the ground-state configuration has low symmetry,
which accounts for half of the formation entropy. It is
therefore highly unlikely that the entropies for native de-
fects in ZnSe or diamond could be larger than 10ks.
Similarly, the defect formation energies are high enough
that, even with a generous estimate of the atomic relaxa-
tion energies, the concentrations remain very low. Re-
laxations are calculated explicitly for the dominant de-
fects in p-type ZnSe¢ and found to be less than 0.6 eV.
The concentrations of other defects remain small even if
relaxations up to 2 eV are assumed.

Figure 1 shows the concentrations of minority carriers
produced by native defects for p-type stoichiometric
ZnSe. The results shown arc for material with 10'3.
cm ~? dopants. The dominant native defects are Zn; %,
V2,9, and Sez,2*. At molecular-beam-epitaxy- (MBE-)
growth temperatures (T =600 K) the concentration of
minority carriers produced is less than 10'2 cm ™3, For
material grown at higher temperatures, excess native de-
fects will recombine during cooling, unless the sample is
rapidly quenched. '®

We have also calculated native-defect concentrations
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FIG. 1. Concentration of minority carriers produced by all
native defects in stoichiometric p-type and n-type ZnSe. (The
range of values shown for p-type ZnSe is bounded by assuming
an entropy of 10ks per defect for an upper bound and Ok for
a lower bound.)
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in n-type ZnSe (Fig. 1). The dominant defects are
Vz.2~ and Zng. ~. Well-conducting n-type ZnSe can be
casily produced; thus it is an experimental fact that na-
tive defects do not compensate n-type doping. As shown
in Fig. 1, native-defect concentrations in n-type ZnSe are
comparable to, if not greater than, defect concentrations
in p-type.'” This is additional proof that native-defect
compensation cannot explain why p-type ZnSe is harder
to grow than n-type.

To further support our conclusions, we have derived
native-defect concentrations for diamond from the first-
principles defect energies of Bernholc et al.?® The dop-
ing level is again 10'® cm ™’ At a chemical-vapor-

" deposition-growth temperature of 1100 K, the number of

holes produced in n-type diamond by native defects is at
most 2x10'? ¢cm 73 (Fig. 2). Clearly, the concentrations
of native defects in both stoichiometric ZnSe and dia-
mond are far too low to produce significant compensa-
tion.

Jansen and Sankey have estimated native-defect con-
centrations in ZnSe and ZnTe.” They concluded that
native-defect compensation could explain why ZnSe
prefers to be a-type and ZnTe prefers to be p-type.
However, their results were reported for a very high tem-
perature (T ~1658 K), and thus do not apply to the
question of compensation for material that is grown at
600 K and never thermally annealed at higher tempera-
tures. At lower temperatures, their results also show a
low concentration of native defects. Furthermore, for
ZnSe their numbers indicate that compensating native-
ficfcct concentrations are Jower in p-type material than
in n-type.

Our conclusion that the concentrations of native de-
fects in stoichiometric ZnSe are very low does not mean
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FI1G. 2. Concentration of minority carriers produced by all
native defects in n-type diamond. (The results for n-type dia-
mond use the worst-case correction for the LDA bahd-gap er-
ror: The conduction-band edge is taken at the experimental
value without shifting up any of the defect levels. True defect
concentrations are probably much lower.)

650

that native-defect compensation in ZnSe never occurs.
If the sample is grown with even a slight deviation from
perfect stoichiometry, the concentration of native defects
will necessarily be very large, even at T=0 K.»' Be-
cause the density of atomic sites in ZnSe is 4x102
cm~? a deviation from stoichiometry as small as 10~
implies a defect concentration of about 10 cm ™3 We
find that the native defects that accommodate deviations
from stoichiometry are always those that compensate the
majority carriers. For p-type ZnSe, the dominant defect
is Zn; in Zn-rich material, and Sez, in Se-rich material;
we find that both are double donors. For n-type ZnSe,
the dominant (acceptor) defects arc Zns, and Vza for Zn
and Se rich materials, respectively. Similar results were
found by Jansen and Sankey.” This defect structure is
much richer than that used in many previous analyses of
native defects in 1-VI semiconductors.® The difficulty in
producing p-type ZnSe cannot be explained by devia-
tions from stoichiometry because any deviation that
compensates p-type doping would ‘compensate n-type
doping equally well.

The deviations from stoichiometry that we are discuss-
ing are too small to measure experimentally, which pre-
cludes a direct confirmation of our predictions. There is,
however, indirect evidence to verify one of our predic-
tions, namely, that the zinc vacancy is the dominant na-
tive defect in n-type Se-rich ZnSe. As-grown bulk ZnSe
samples are highly compensated, and must be annealed
in a Zn-rich atmasphere to be made well conducting.
One known cause of this compensation is large numbers
of “self-activated” (acceptor) centers, which are donor-
V. pairs.?? This shows that zinc vacancies are a prom-
inent defect in as-grown n-type ZnSe. Furthermore,
analysis of the Zn-Se phase diagram suggests that ZnSe
grown under equilibrium conditions from a melt is Se
rich. Thus, our results for Se-rich n-type ZnSe provide a
natural explanation of the occurrence of self-activated
centers in ZnSe.

Having scttled the native-defect compensation issue
quantitatively, we now reexamine the notion that native-
defect compensation increases with the width of the band
gap. Let us restate the standard argument for this trend:
For p-type material, imagine a prototypal compensating
native donor defect that, when neutral, introduces one
electron into a state in the gap; the formation energy for
this defect, E°, is assumed not to depend on the width of
the band gap. The energy gained by transferring the
clectron from the level in the gap (E1) to the Fermi level
(E¢) should, in contrast, increase with the width of the
gap; thus the net energy needed to form compensating
defects, E°—(E. —Er), should decrease as the band
gap increases. The flaw in this argument is that it as-
sumes that the level in the gap (E.) and E° are indepen-
dent of one another. Actually, the level in the gap is
defined by E,=E°—E*, where E*+Er is the
(Fermi-level-dependent) energy of formation of the posi-

e E—




VOLUME 66, NUMBER 5

PHYSICAL REVIEW LETTERS

.

4 FEBRUARY 1991

tive charge-state defect. Using this definition, we find
that the net energy required to create a compensating
defect is E®—(E, —Er) =E * +Ep, independent of the
energy of formation of the neutral defect. We see that
native-defect compensation will increase with the width
of the band gap if and only if E *+ Er decreases with in-
creasing band gap. The existence of such a trend has not
been convincingly established. '

Having eliminated native defects as a generic source
of compensation in wide-band-gap materials, it is fruitful

to identify problems associated with specific dopants.

We are studying the technologically important case of
Liz,, a promising acceptor in ZnSe.?* In a separate pub-
lication, we will report on the properties of Li impurities
in ZnSe, including possible defect reactions.

In conclusion, we have shown that native defects alone
canniot be responsible for difficulties in doping the wide-
band-gap semiconductors ZnSe and diamond. Native-
defect concentrations in MBE-grown stoichiometric
ZnSe are too low to compensate. Deviations from
stoichiometry in ZnSe do produce large numbers of na-
tive defects which, however, compensate n-type as well
as p-type material.
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Wide-band-gap semiconductors typically can be doped either 7 type or p type, but not both. Compen-
sation by native point defects has often been invoked as the source of this difficulty. We examine the
wide-band-gap semiconductor ZnSe with first-principles total-energy calculations, using a mixed-basis
program for an accurate description of the material. Formation energies are calculated for all native
point defects in all relevant charge states; the effects of relaxation energies and vibrational entropies are
investigated. The results conclusively show that native-point-defect concentrations are too low to cause
compensation in stoichiometric ZnSe. We further find that, for nonstoichiometric ZnSe, native point de-
fects compensate both n-type and p-type material; thus deviations from stoichiometry cannot explain
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why ZnSe can be doped only one way.

1. INTRODUCTION

Wide band-gap semiconductors, such as ZnSe, ZnTe,
ZnS, and diamond, have potential technological applica-
tions, especially for optical devices involving green or
blue light.! ™ Despite decades of research, many prob-
lems remain, mostly related to doping difficulties; some
wide-band-gap materials can easily be made n type but
not p type; others can be made p type, but not n type.*
The cause of this difficulty remains a puzzle. At least five
different explanations have been suggested,*~° but there
is no firm evidence for any of them. One of the oldest
and most popular explanations is that the doping of
wide-band-gap semiconductors is compensated by native
point defects.?”'? According to this mechanism, the
wide band gap could promote the formation of compen-
sating native point defects because the formation energy
of the defect is offset by the energy gained when electrons
are transferred between the defect’s electronic state in the
gap and the Fermi level. For example, p-type doping
may be compensated by defects that introduce electrons
in levels near the conduction band. When the electrons
drop from the level in the gap to the Fermi level (which is
near the valence-band edge), the net formation energy for
the compensating defect would be reduced by nearly the
width of the band gap. This mechanism would be umiver-
sal: 1t 1s independent of the dopant and the growth
method used The native point defect properties would
directly determine the behavior of the matenal A wide.
band-gap semiconductor would tend to he a type if the

4

dominant native point defects introduce full states near
the conduction-band edge. It would be p type if the dom-
inant defects introduce empty electronic states near the
valence bands.

Our goal is to examine the native-point-defect mecha-
nism using first-principles theoretical techniques based on
density-functional theory and ab initio pseudopotentials.
We will study native point defects in ZnSe, which is the
wide-band-gap semiconductor that has received the most
attention in thc past decade. ZnSe can be grown n type,
but only limited progress has been made growing p-type
material. '*'* Theoretical tools have been very useful in
elucidating the properties of common semiconductors
such as Si and GaAs.!*~ ! Much less has been done for
ZnSe, or any of the other II-VI semiconductors. For
these materials, the plane-wave pseudopotential method,
the standard for semiconductor defect calculations, does
not work well. This is because the d electrons of the
group-1I metals are too tightly bound to be represented
as valence electrons with a plane-wave basis set. In all
previous pseudopotential calculations for ZnSe,*'%" the
zinc 3d electrons were treated as core states. Using this
method, Jansen and Sankey'’ suggested that native-
point-defect compensation 18 the cause of doping
difficulties in ZnSe and ZnTe and on the same basms ex-
plained why ZnTe (which prefers to be p type) is different
from ZnSe (which prefers to be n type). Unfortunately,
the “d-in-thecore” pseudopotentis) spproech 18 inaccu-
tate 1t cannot predict the experimentai bulk properties
of ZnSe.” and 13 therefore highly suspect for d=fect cai-
culations
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We solve the d-electron problem by using a mixed-basis

scheme, which adds to the plane-wave basis a set of .

tight-binding functions that can represent the d electrons
as valence states. The mixed-basis scheme is implement-
ed in a program that is efficient enough for large-scale de-
fect calculations. Our defect calculations are the first for
a II-VI semiconductor that include a proper treatment of
the d electrons, and reach the level of accuracy previous-
ly attained for Si and GaAs. We calculate the formation
energies of all native point defects in ZnSe. Using these
formation energies we derive upper bounds for the defect
concentrations. The results show clearly that native de-
fect compensation in stoichiometric ZnSe is insignificant.
Additional support for this conclusion is provided by cal-
culations of native-point-defect concentrations in another
wide-band-gap semiconductor, namely diamond. Here
we derive the concentrations from published native-
point-defect energies.?! In nonstoichiometric ZnSe,
native-point-defect compensations will occur, but will
compensate n-type as well as p-type material. Deviations
from stoichiometry, therefore, do not explain why it is
easy to make n-type but not p-type ZnSe. Our results
clearly indicate that native defects are not responsible for
self-compensation in ZnSe and thus impose no intrinsic
limitation on the ability to obtain both n-type and p-type
conduction.

This paper is organized as follows: In Sec. II we de-
scribe the details of our mixed basis scheme. By relying
on fast-Fourier-transform (FFT) routines and the convo-
lution theorem,? total-energy calculations for a defect
(which require a cell with a large volume) can be per-
formed efficiently. A description of our test calculations
follows; these establish the credibility of our theoretical
methods. In Sec. III we describe our own total-energy
calculations for the native point defects, and a discussion
of the structure of each defect. Because ZnSe is a com-
pound semiconductor, the formation energy of a single
defect is not well defined. In Sec. IV we show how chem-
ical potentials can be related to stoichiometry, yielding an
unambiguous definition of formation energies in terms of
the calculated total energies. Defect concentrations can
then be obtained as a function of temperature,
stoichiometry, and the Fermi level of the crystal. We
then present our calculated native-point-defect concen-
trations (Sec. V), which show clearly that the native point
defects do not affect the doping of ZnSe. We also show
that the same 1s true of diamond. Having shown quanti-
tatively that native point defects are not responsible for
compensation, we present a qualitative analysis of wheth-
er native-point-defect concentrations increase with the
width of the band gap

Il. THE MIXED-BASIS METHOD

In this section we Jes nbe oyt implementation of the
mised baus methad  Our formalinm iy based on denuty
functional theary in the local density  approumation
TDA 7 aung ub imine pseudapatentials
al pvewdopotential
set. the bulk of the  omputation . anusis o f salving the e
grnvelue problem for the Hamiltosan matiin The

4
In tradition
alculations with a plane wave hasn
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mixed-basis scheme produces a much smaller Hamiltoni-
an matrix by replacing many high-frequency plane waves
with a few tight-binding functions. The price paid for the
smaller Hamiltonian is that introducing tight-binding
functions complicates the matrix elements and the in-
tegration of the charge density. We handle the added
complications of the tight-binding functions by expand-
ing them over the reciprocal lattice. The tight-binding
functions ¢ are written as :

Pu(n)=3 ¢;(k+G)e/*+0r (n
G

where G is a reciprocal-lattice vector. Functions of this
form automatically have the correct translational symme-
try (Bloch’s theorem). There are two principal advan-
tages to the reciprocal-space expansion. One is that the
choice of tight-binding functions is not restricted to any
particular analytic form, such as Gaussians or Slater or-
bitals. This will allow us to use so-called pseudoatomic
wave functions as basis functions, as discussed below.
The second is that the reciprocal-space expansion is par-
ticularly well suited for treating the tight-binding func-
tions and the plane waves in a unified fashion. (Note that
the exponentials in the expansion for ¢ are simple plane
waves.) This simplifies the calculation of the matrix ele-
ments between tight-binding functions and plane waves,
as well as the calculation of the charge density. The
scheme is similar to that used by Louie, Ho, and
Cohen.?® The programs are all new, and both the pro-
grams and the algorithms were carefully optimized to
make large-scale defect calculations possible. We now
discuss the details of our methods, using the work of
Louie, Ho, and Cohen? as a starting point. A detailed
description of the evaluation of the various matrix ele-
ments is presented in the Appendix. Further details on
the method are given elsewhere. 26

A. Basis set

Although a mixed basis. allows great freedom in the
choice of the basis set, our approach has been to keep our
ZnSe calculations as similar as possible to the plane-wave
calculations for Si and GaAs. Consequently, we use
tight-binding functions to represent only the rapidly
changing part of the zinc 4 orbitals. All other contribu-
tions to the wave functions are represented by plane
waves. In this way we recover most of the advantages of
a pure plane-wave calculation, and reduce the effort need-
ed to choose and optimize the basis set. We have per-
formed ZnSe calculations using two different forms for
the zinc 3d orbitals: Gaussians and pseudoatomic wave
funcuons  The pseudoatomic functions are the 3d
pyeudo-wave functions for the isolated zinc atom, as cal-
culated by the program that generates the atomic pseudo-
potentialy - We multiply the pseudostomic basis funcuons
by a smooth radial cutoff function that goes to zerc for
large r to remove the long range tail IFig 1) (Basis func-
tons with long range tails become numencally unstable
av the overlap hetween baus functinns on different sites

auses the haus set to hecome hnearly dependent | Using
Crausuans requires at Jeast two basis funchions for each
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FIG. 1. Zn 3d wave function and pseudoatomic basis func-
tions. The all-electron wave function is given by the dashed
line. The pseudoatomic wave function is given by the solid line.
The basis function (pseudoatomic wave function multiplied by a
cutoff function) is given by the dotted line.

zinc d orbital (ten functions per zinc atom to represent
five d orbitals). With the pseudoatomic basis functions,
one orbital per state suffices (five functions per zinc
atom). The total energy of a perfect ZnSe unit cell calcu-
lated with one set of pseudoatomic orbitals is lower than
that calculated with two sets of Gaussians, even when the
decay constants of the Gaussians are optimized. We con-
clude that the pseudoatomic basis functions provide a
good description of the d states in the solid.

The reciprocal-space grid represents a parallelepiped
placed about the origin in G space. Because of the shape
of the parallelepiped, rotations that are symmetry opera-
tions for the crystal will map some G vectors that are in-
side the FFT grid into G vectors that are outside the
grid, and vice versa. As a result, the functions represent-
ed on the FFT grid will no longer have the correct rota-
tional symmetry. To correct this problem we set the
Fourier coefficients to zero for all G vectors that lie out-
side the largest sphere that fits inside the FFT grid. This
substantially reduces the number of nonzero G vectors.
For example, a simple cubic lattice has a FFT grid that is
a cube and the ratio of the volume of the inscribed sphere
to the volume of the grid is 7/6=0.5236. For other lat-
tices, the ratio is even smaller. To avoid unnecessary
storage, the program maps the full FFT G-vector grid
onto a smaller G-vector grid containing only the points
in the sphere. This grid is mapped back onto the FFT
grid whenever an FFT is needed. No such reduction is
possible for the real-space grid; the full FFT grid must be
used in this case. Because of the asymmetry between real
and reciprocal space, it is advantageous to store the func-
tions and perform operations in reciprocal space whenev-
er possible. Thanks to the convolution theorem and
high-speed FFT routines, this can be done in most places.

The ught-binding functions used 1n our basis set are
not orthogonal; as a result, a generalized eigenvalue prob-
lem must be solved to find the eigenstates of the Hamil-
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tonian matrix. This is commonly done using the Chole-
sky decomposition.?’” Using this technique requires
simultaneous storage of three matrices the size of the
Hamiltonian matrix. In addition, the mixed-basis set
with a large number of plane waves can suffer from over-
determination problems: the basis set may become nearly
linearly dependent, which makes the generalized cigen-
value problem ill-conditioned. To avoid this problem and
to save storage space, we have made the tight-binding
functions orthogonal to the plane waves.'? Using the
reciprocal-space expansion of the tight-binding functions,
this is done simply by setting the Fourier components of
the tight-binding functions to zero for every reciprocal-
lattice vector that is included in the plane-wave part of
the basis set. Because the tight-binding functions are
now orthogonal to all of the plane waves, and because the
plane waves themselves are mutually orthogonal, the
overlap matrix of the Cholesky decomposition is reduced
to. nqp Xnyp, where np is the number of tight-binding
functions in the basis set.

Although the mixed-basis scheme reduces the size of
the basis set by several orders of magnitude, for a super-
cell calculation the Hamiltonian matrix is still on the or-
der of 2000X2000. To reduce the computation time for
the eigenvalue problem, we use group theoretical
methods to block diagonalize the Hamiltonian matrix.?®
We also use an iterative diagonalization scheme to solve
the eigenvalue problem.?

B. Test calculations

We performed a great number of calculations to test
the reliability and accuracy of the programs, the basis set,
and the pseudopotentials. Test calculations were per-
formed for the two-atom unit cell of ZnSe and for a series
of supercells. Because these are the first accurate pseudo-
potential calculations for a II-VI semiconductor, special
care was devoted to these tests.

The two-atom cell tests were performed for three basic
material parameters: the lattice constant a,,,, the bulk
modulus B, and the transverse optical (TO) phonon fre-
quency, vro. The lattice constant and the bulk modulus
are then derived from a fit of Eg,, (a,,) for five or six
different lattice constants to the Murnaghan equation of
state.*® We calculated more than 50 sets of Murnaghan
equation fits, determining the lattice constant and the
bulk modulus as we changed different calculational pa-
rameters. In these tests we varied such things as the form
of the tight-binding functions (either pseudoatomic func-
tions or Gaussians with different radii), the plane-wave
cutoff, the size of the FFT grid, the local component, and
the cutoff radii of the pseudopotentials. In all of our
tests, the lattice constant was predicted to within a few
percent of experiment, and the bulk madulus to within
30%. The ability of these tests to reproduce small energy
differences (about 1 meV) guarantees the accuracy of our
defect calculations. Based on these tests, we have chosen
for our defect calculations a basis set of all plane waves
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with energies up to 9 Ryd, and one set of five pseudoa-
tomic basis functions per zinc atom. The calculated lat-
tice constant and bulk modulus are 5.65 A and 0.62
Mbar, compared with the experimental values of 5.67 A
and 0.63 Mbar.

The first-principles norm-conserving pseudopotentials
used in this work were generated according to the
Hamann-Schliiter-Chiang scheme.?* The s, p, and d
cutoff radii were 1.6, 1.56, and 1.01 a.u. for the zinc po-
tential and 1.40, 1.40, and 1.51 a.u. for the selenium po-
tential. The Zn d cutoff radius lies beyond the maximum
of the zinc 3d wave function (which is at 0.56 a.u.). We
tested the effects of this large cutoff radius on the pseudo-
potential by comparing it to a pseudopotential with a
zinc d cutoff radius, 0.5 a.u., within the wave-function
maximum. In a comparison of the bulk properties of
ZnSe, the only one that was affected by the change in
cutoff radius was the zone-center TO phonon frequency.
The calculated TO phonon frequency using the smaller
radius was 26.2 meV (=6.33 THz) compared with experi-
mental values of 25-26 meV;3! using the larger cutoff ra-
dius induces a 10% error in the calculated frequency. In
our defect calculations, we used the larger core radius,
which produces a smoother pseudopotential and pseu-
doatomic function. (This allows us to use a smaller FFT
grid.) We have confirmed in supercell defect tests that in-
creasing the core radius changes defect formation ener-
gies by less than 0.1 eV. We have also calculated the
band structure of ZnSe, and find agreement to within
0.25 eV with the band structure calculated using all-
electron methods.’> Figuré 2 shows our calculated band
structure. We note that the band gap is smaller than its
experimental value, due to the well-documented LDA er-
ror. The implications of this deficiency for our defect cal-
culations will be discussed where appropriate.

We also performed a series of defect supercell tests to
check the effects of the basis set, pseudopotentials, and
FFT grid on defect formation energies. The error bar
due to the combined effects of plane-wave cutoff, the FFT
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set of narrow bands associated with the 1inc 3d electrons
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grid size, and the pseudopotential is 0.1-0.2 eV. We
have also checked our results with respect to supercell
convergence. Comparative tests were performed for 8-,
16-, and 32-atom supercells. We calculate the cell-size
correction between an N,-atom supercell and an N,-atom
supercell as

AN /N )=E ke~ Eplten
— Bt FE g » @)

where E X, and E :,v,,fec, are the calculated total energies
of an N-atom supercell with a defect and a perfect N-
atom supercell, respectively. Cell-size corrections were
calculated for the zinc vacancy and the zinc interstitial in
different charge states. (As discussed later, these two de-
fects are the most abundant native defects in
stoichiometric p-type ZnSe.) Two trends emerge from
these calculations, One is that the defects in the neutral
charge state are well converged in a 32-atom cell, but that
the charged defects (either positive or negative) may have
cell-size errors of up to 0.4 eV. The second is that the
correction terms are positive when going from a smaller
to a larger supercell, indicating that the true defect-
formation energies are larger than those calculated in the
32-atom supercell. (Cell-size corrections are not included
in our results, however.) Since our main conclusion will
be that the defect-formation energies are too large to al-
low for substantial compensation, the supercell tests
strengthen our results by showing that the true formation
energies are likely to be even larger than our calculated
values.

III. RESULTS FOR INDIVIDUAL
NATIVE POINT DEFECTS IN ZaSe

Using the methods described above, we have calculated
the energies of all of the basic native point defects in
ZnSe: Zn;, Se; (interstitials), Vz,, Vs, (vacancies), Zng,,
and Se, (antisites). Interstitial energies were calculated

FIG 3 Location of the two tetrahedral interstitial sites in
ZnSe. Zinc atoms are represented by sohid circles, selenium
atoms by open circles. The x axis 15 1a the [110] direction and
the y axis in the [001] direction  Each tetrahedral site 1s sur-
rounded by four atoms of the same type (two of which sre out of
the plane of the figure and are not shown)
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at the two tetrahedral interstitial sites in ZnSe. The one
site (T7,) is tetrahedrally surrounded by four Zn atoms
while the other site ( T, ) is surrounded by four Se atoms
(Fig. 3). These two sites are the most favorable intersti-
tial sites for large atoms because they are surrounded by
a large empty space. In fact, the nearest-neighbor
configuration of the tetrahedral interstitial sites is the
same as that of the atomic sites of the perfect crystal.
Separate calculations were performed for the different
charge states of each defect. Our calculated energies for
each charge state of each defect (E;) are presented in
Table I

A. Relaxation

The formation energy of a point defect can be reduced
by relaxation of the atoms surrounding the defect. The
lattice-relaxation energy is the energy difference between

the unrelaxed defect (all atoms around the defect in their
ideal lattice sites) and the relaxed defect. To find these
relaxations, we must map out the total energy as a func-
tion of the positions of the surrounding atoms, and find
the energy minimum. This is an arduous task because
the relaxation of each atom is a function of the relaxation
of the others. For practical applications, we limit the
number of degrees of freedom in our relaxation calcula-
tions. The minimum of the total energy is found by cal-
culating the total energy with different relaxations, and
fitting the total-energy surface to a parabolic form about
the minimum. We limit our calculations to symmetric re-
laxations in which each shell of atoms relaxes by the
same amount (“breathing-mode” relaxations). A possible
cause of nonsymmetric relaxation is the Jahn-Teller
effect, which occurs when a degenerate electronic state in
the band gap is partially filled with electrons.?® Our pri-

TABLE 1. Native-point-defect energies, in eV. E; is the calculated energy for a supercell containing
the defect in a 32-atom cell geometry (excluding relaxation energy). The energy of a perfect (“bulk™)
32-atom supercell is —27363.522 eV. €, =E,—(N3z,+ Ng.)Ezus.; €; includes the appropriate shift for
charge states (referred to a state with the Fermi level at the top of the valence band). E; and ¢, individ-
ually should not be interpreted as carrying physical meaning; in particular, they depend on the pseudo-
potential and on the choice of reference for the Fermi level. F, is the formation energy for the defect in
stoichiometric p-type ZnSe (doped with 10" cm™> Li) at T=600 K; it is based upon specific reference
energies for individual Zn and Se atoms, calculated by solving the complete set of reaction equations, as
described in the text. F, includes the relaxation energy (which is set to 1 eV where not calculated). R,
is the calculated relaxation energy. Although F, is a physically meaningful energy, it should not be
construed as the formation energy of a single defect; as explained in the text, such a concept is not

defined in a compound semiconductor.

Defect Charge n, E, € F, R;
’n 2- 1~ —25906.228 598.343 2.20 0.00
¥, to- 1~ —25908.114 598.378 2.09
U 1- —25909.881 598.532 1.81
Ln; L. o : 1+ —28 809.490 —~590.856 3.87
Zn; (Tg) 1+ 1+ —28813.860 —~592.538 2.97 043
Zn, (Ts,) 2+ 1+ —28818.018 —594.007 1.80 0.34
Zn, (T3,) 0 1+ —28810.117 —591.483 3.24
Zn; (Ty,) 1+ 1+ —28814.075 -~592.753 2.82 0.22
Zn, (Ty,) 2+ 1+ —28817.795 —~593.784 2.16 0.20
Vs 0 1+ —27099.998 —~591.585 3.14
Vse 1+ 1+ —27102.872 —592.381 2.55
Vse 2+ 1+ —27105.503 —~592.935 2.21
Se; (T3,) 2~ 1- —27609.480 604.039 6.94
Se, (T3,) 1- 1~ —27613.571 602.530 5.59
Se; (T3,) 0 1~ —27617.084 601.550 4.83
Se, (Tz,) 1+ 1- —27620.356 © 600.810 4.30
Se; (Tz.) 2+ 1— —27623.412 600.287 3.98
Se, (T3,) 3+ 1- —27626.280 599.950 3.86
Se; (Tz,) 4+ 1—- —27628.975 599.787 391
Zng, 2— 2+ —28 542.164 —1183.563 6.46
Zng, 1~ 2+ —28546.076 —1185.014 522
Zng, 0 2+ —28 549.775 —1186.252 420
Zng, 1+ 24 —28553.036 ~1187.051 3.61
Zns, 24 2+ —28 556.086 —1187.640 3.61 0.62
Sezq 2~ 2— —26159.399 1199.827 6.96
Sezq 1- 2— —26 163.706 1197.699 501
Sez, 0 2- —26167.784 1195.739 3.29
Seza 1+ 2— -2611.3717 1194.295 206
Sez, 2+ 2—  —26174.689 1193132 195 0.16
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F1G. 4. Relaxations around the Tg, site. Outward relaxa-
tions are shown for the first-, second-, and fourth-nearest neigh-
bors (NN, 2NN, and 4NN, respectively) around a zinc intersti-
tial on the T, site. Four of the fourth-nearest neighbors relax
in the same direction as the first-nearest neighbors. The magni-
tude of the relaxations is exaggerated for clarity.

mary objective is to study the behavior of defects in
doped ZnSe, where defect states in the gap will either be
completely full (in n-type material) or completely empty
{(in p-type materiall. Consequently, we will calculate re-
laxations only for defects that do not have partially filled
states in the gap. For these cases, no Jahn-Teller relaxa-
tion will occur.

For substitutional site defects, we have relaxed the
shell of four nearest-neighbor atoms. (The nearest-
neighbor distance in ZnSe is 2.45 A.J We have found the
relaxations to be small in all cases (smaller than 0.2 A),
and the second-nearest-neighbor relaxation should be
even smaller. (The second-nearest-neighbor distance is
4.01 A.) For the tetrahedral interstitial sites, we relaxed
both the first- (consisting of four atoms) and the second-
neighbor (six atoms) shells simultaneously. For the relax-
ation of the nearest-neighbors around a tetrahedral inter-
stitial site (7, and T ), it turned out to be important to
also include relaxations of fourth-nearest-neighbor atoms
that are located on a line through the tetrahedral intersti-
tial site and the first neighbors (Fig. 4). The reason is that
a breathing relaxation of the nearest neighbors will
change the length of the bond to these fourth-nearest
neighbors. Since bond-stretching forces are larger than

s TABLE II. Calculated relaxations for native point defects in
ZnSe. Calculsted energies E,,y,, and relaxations of nearest (NN)
and next-nearest (NNN) neighbors. A positive relaxation indi-
cates relaxation outward from the defect. All relaxations in the
table are symmetric. For relaxations about interstitial defects,
the fourth-nearest neighbors relaxed by the same amount as the
NN's.

Relaxation (A)

Defect E s (eV) NN NNN
Zn,* (Te) 0.43 o.n 0.05
Zn2* (Ts,) 0.34 0.06 0.09
Zn, " (Tz,) 0.22 0.09 0.03

R 0.0 0.0

Zng?* 0.62 0.2

Sez,’* 0.16 0.1

D. B. LAKS ef al. s
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bond-bending forces, it is energetically more favorable to
move the fourth-nearest neighbors outwards. This effect
was not included in previous calculations. '?

As a rule, the calculated relaxations were small: the
largest relaxation energy that we found was about 0.6 eV
and the typical relaxation distance was 0.1 A, which is
only 4% of the ZnSe bond length of 2.54 A. Our calcu-
lated relaxations are listed in Table II. We will now de-
scribe our results for the individual native defects.

B. Zinc self-interstitial

We start with the zinc self-interstitial (Zn,). The neu-
tral zinc interstitial has two electrons occupying a single
level in the band gap. The possible charge states are
therefore 0, 1+, and 2+, making the defect a double
donor in p-type material. The zinc interstitial in ZnSe is
a particularly interesting defect because it was the first
isolated native interstitial directly observed in a semicon-
ductor.* Using optically detected magnetic resonance,
Rong and Watkins identified the isolated zinc self-
interstitial in the 1+ charge state. The defects were pro-
duced by electron irradiation of ZnSe at a temperature of
4.2 K. They found that the interstitial occupied the T,
site, and that there were no asymmetric relaxations of ei-
ther the nearest-neighbor Se atoms or the second-
nearest-neighbor Zn atoms. They also found the transi-
tion level from the 1+ to the 24 charge state to occur
when the Fermi level is at 1.9 ¢V above the valence-band
edge. (This energy is the thermodynamic level in the
gap.) The interstitials were observed to be mobile at tem-
peratures above 260 K.2* Although experiment can
determine the site of the defect and its symmetry, the
magnitudes of the relaxations and their energies must be
determined from theory. In our calculations for the zinc
self-interstitial, we have performed relaxations for the
T, site in the 2+ and the 1+ charge states and for the
T4, site in the 1+ charge state. The calculated relaxa.
tions are listed in Table II. The calculated valence.
charge-density contours for the T'g, site interstitial (in the
1+ charge state) are shown in Fig. 5. Including relaxa-
tions, the energies of the 1+ charge state at the two in-
terstitial sites are the same to within the accuracy of our
calculations. Rong and Watkins actually also found a
signal which they tentatively identified as the Zn self-
interstitial at the T, site. Although this defect is not
stable, its energy may be only slightly higher than that of
the self-interstitial at the T, site. We calculate (includ-
ing relaxation energies) a value of 1.4 eV for the level in
the gap between 2+ and |+ interstitial on the T, site.
The agreement with experiment is reasonable, in light of
the large errors in the band gap inherent in LDA. For
the 1+ T, site, Van de Walle and Laks’® have calculated
the values of the hyperfine parameters for the central Zn
atom, and the first- and third-nearest-neighbor Se stoms.
The hyperfine calculations included the relaxations of the
neighboring atoms. The agreement between the theoreti-
cal and experimental hyperfine parameters* is very good.
This confirms both the experimental identification of the
defect and the accuracy of the calculated relaxations.
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F1G. 5. Valencecharge density of the Zn self-interstitial.
Contour plot of the valence-charge density around a zinc inter-
stitial at the Ts, site, in the 1+ charge state. Relaxations of
neighboring atoms are included. The x axis is along the [110]
direction and the y axis along the [001] direction. The intersti-
tial atom is at the center of the plot. The charge density is given
in units of electrons per 32-atom cell volume (=728.2 A’) and
the contour spacing is 40.

C. Zinc vacancy

The other native point defect in ZnSe that has been
positively identified is the zinc vacancy. This defect was
also observed in electron-irradiated ZnSe at low tempera-
tures by Watkins.?’ The neutral zinc vacancy has a
threefold-degenerate level in the band gap (with a capaci-
ty of six electrons), of which four are occupied. The pos-
sible charge states are | — and 2—, making the vacancy
an acceptor in n-type ZnSe. Watkins observed the 1—
charge state using clectron paramagnetic resonance and
found that it undergoes a Jahn-Teller distortion, The 1—
vacancy fills five electrons out of the six electron states in
the gap. The remaining hole is localized by the Jahn-
Teller effect on one of the four nearest-neighbor Se
atoms, The Se atom with the hole moves in toward the
vacancy and the symmetry of the defect is lowered from
tetrahedral (point group T,) to trigonal (C;,). The ener-
gy lowering from the Jahn-Teller relaxation is estimated
by Watkins®® to be 0.35 ¢V. The level in the gap between
the 2— and the 1— charge states is found to be at 0.66
eV above the valence-band edge. We have calculatzad the
relaxation for the 2— charge state, which is expected to
be symmetric, No relaxation (to within 0.02 A) was
found for the nearest neighbors. We did not explicitly
calculate the low-symmetry relaxations for the 1-—
charge state. To compare with experiment, we can look
at the level in the gap for the 2— to (unrelaxed) 1 — tran-
sition, which we find at —0.03 eV. Adding in Watkins's
estimate of the Jahn-Teller energy of the 1— vacancy
{0.35 ¢V) brings the level to 0.32 eV. Taking the LDA
deficiency into account, this value is once again in reason-
able agreement with experiment (0.66 eV).

D. Other defects

There is no direct experimental evidence about the Se
interstitial or the Se vacancy. The neutral Se interstitial
has four electrons in a threefold-degenerate level. The
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possible charge states range from 4+ to 2—. Of the two
tetrahedral interstitial sites, the T, site is preferred. The
neutral Se vacancy has a single level in the gap that is ful-
ly occupied by two electrons. The possible charge states
are 1+ and 2+. We find that the formation energy of ei-
ther of these defects is so high that they do not play any
important role in ZnSe.

Nothing is known experimentally about the two an-
tisite defects, either. Both the neutral Zn-on-Se antisite
and the Sec-on-Zn antisite have two electrons in a
threefold-degenerate level in the gap. Possible charge
states range from 2+ to 4—. For the neutral Se on Zn,
we find a large lattice relaxation, in which the antisite
lowers its energy by about 0.7 ¢V by moving about 1 A
along the (111) direction toward a tetrahedral intersti-
tial site. This relaxation is favorable because it lowers the
energy of the electrons in the states in the gap; it does not
occur for the 2+ charge state, where the states in the gap
are empty. This relaxation is similar to that found
theoretically for the As-on-Ga antisite defect in
GaAs.’% The large lattice relaxations of the antisite in
GaAs have explained the puzzling properties of the de-
fect known as EL2. The occurrence of a similar relaxa-
tion in ZnSe may also be observable experimentally.

. IV. DETERMINATION
OF DEFECT CONCENTRATIONS

In this section we will describe how to determine the
concentration of the native point defects from their cal-
culated formation energies. Determining defect concen-
trations for a compound semiconductor is more difficult
than for an elemental system, where the total energy of a
single bulk atom is well defined. In the latter case the
formation energy of a native point defect can be unambi-
guously determined from an N-atom defect supercell cal-
culation: the defect formation energy is the difference be-
tween the calculated supercell energy and M times the en-
ergy of a single bulk atom. In the case of a Si self-
interstitial, for instance, an extra Si atom is placed inside
the crystal. This Si atom can be thought of as taken
“from the surface,” a process which does not change the
nature of the surface; the crystal simply becomes one
arom larger, and the reference energy is simply the ener-
gy of a bulk Si atom, which can be determined from a
bulk calculation. This analysis cannot be applied to a
compound semiconductor like ZnSe. Here, the energy of
a pair of zinc and selenium atoms is well defined, but the
energy of a single zinc or selenium atom depends on in-
teractions between the crystal and its external environ-
ment. Hence energies and concentrations of the native
defects will also depend on the environment.

Well-defined energies for defects in a compound semi-
conductor, such as ZnSe, can be determined in one of iwo
ways. The first way is to define the energies of reactions
that conserve the relative number of zinc and selenium
atoms. For example, the reaction energy for forming a
pair of zinc and selenium interstitials can be defined in
the same way as the formation energy of a single silicon
self-interstitial. This is true because removing a pair of
zinc and selenium atoms from the surface does not
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change the nature of the surface. The energy of a pair of
zinc and selenium atoms can be determined from a bulk
calculation. The second way to define defect formation
energies is to introduce an external reservoir of zinc
atoms. Zinc atoms may be added to the crystal from the
reservoir, or removed from the crystal and added to the
reservoir. The energy of zinc atoms in the reservoir is
constant, and in thermal equilibrium with the crystal.
The reservoir allows us to assign an energy to the zinc
atoms. Since the sum of the zinc and selenium energies is
determined by the total energy of the perfect ZnSe cell,
the zinc energy determines the selenium energy. This, in
turn, allows us to determine the formation energy of any
defect.

The one problem with the latter prescription is that we
must choose a zinc reservoir and calculate its energy.
The choice of the reservoir depends on the conditions un-
der which the crystal is grown. Instead of limiting our
choice to a single reservoir energy, we picture a reservoir
in which we can change the energy of the zinc atom to
any value that we choose. Or, equivalently, we can set
the difference between the zinc and selenium energies,
S8E, to be any value that we want. The formation energy
for the ith defect F, can then be expressed as

Fi=E;—Nz,Ez,— Ns Es,
=Ej —(N2n+‘NSe)ElnSc—(NZn "NSQ)SE
=€,—n,5E . (3)

Here E, is the total energy of the supercell for the ith de-
fect, containing N, zinc atoms and Ng, selenium atoms,

BE=(Ey,—E)/2,
Egus.=(Eq, +Es)/2 ,
€=E,—(Nz, + N JE s »

and n;=Nz,—Ns.. E;.. is determined from a calcula-
tion of the energy of a perfect ZnSe supercell. (At T=0
K, E;, and Eg, can be identified with the chemical po-
tentials for Zn and Se.) n, is the number of extra Zn
atoms that must be added to form the defect (1 + for Vg,
2— for Sez,, etc.), independent of the size of the super-
cell.

From the formation energy of the defect and its entro-
'py S we can determine its fraction C; by

C, EMMM/Mmc:eS”‘De —F /kyT
[ i

=S /ha, N mOEV Iy T
=e$/k,-(‘/k,Tyn‘=a‘yn, ) @)
where M2 and M are the total number of defects
and the total number of defect sites in the crystal,
y=expl8E/kgT), and a,=exp(S/ky—¢€,/kyT). The
concentration of defects per unit volume is found from
the fraction by multiplying by the site concentration,
which, for ZnSe, is 2.2X 10% em™?, (The site concentra-
tion is the number of atoms of each type per unit volume,
not the fotal number of atoms per unit volume.)
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The stoichiometry parameter is defined as
Ms.— My,

XE———'—'—‘——:—.'. ,=—| 'l
Mo 3, : ; nC, 72‘ nay . {5)

M2, and Mg, are the total numbers of zinc and selenium
atomns in the crystal. X =0 for perfect stoichiometry, and
X > 0 for Se-rich. The factor of § enters this equation be-
cause the stoichiometry parameter is defined by dividing
by the total number of atoms in the crystal, while the
fractions are divided by the number of sites of each type.
The stoichiometry parameter defined in this way only
takes into account the deviations fromn perfect
stoichiometry due to native point defects. In real crys-
tals, deviations from stoichiometry may also be present
because of higher dimensional defects, surfaces, and pre-
cipitates. Substitutional impurities are counted as the

"host species that they replace, since this replacement docs

not directly introduce native defects.

This formulation allows us to determine native-point.
defect formation energies and concentrations for any
value of 8E. In practice, it is more convenient to fix the
stoichiometry parameter X and determine from X the
value of 5E. We can do this simply by solving for y given
X, using Eq. (5). The problem is essentially finding a root
of a polynomial, which can be done quickly and easily us-
ing standard algorithms.? For our purposes, it will be
clearer to talk about the stoichiometry X rather than the
value of 8E. However, we stress that our approach is
quite generally valid for describing a system in cquilibri-
um with other solids or gases which impose certain con-
ditions on the chemical potential and thus determine §E.

The defect-formation energies for charged defects de-
pend on the Fermi level. (The Fermi level is used here as
the chemical potential of the electrons.) Consider a reac-
tion in which a neutral defect D with formation energy
E°+is ionized to its positive charge state D * with energy
E™:

D’ D*4e” . (6)

The energy of this reaction is EC—(E * + E;) where Ey is
the Fermi level. We can treat the combination of
D*+e™ as a single entity with energy E*+E,. The
quantity E * is the energy of the charge-state defect when
the Fermi level is at zero. To follow the convention of
choosing the zero of the Fermi level in a semiconductor
at the valence-band maximum, we must change E* 1o
E*+E, and Ef to Ec—E,, E, being the valence-band
maximum. This can be generalized to any charge state:
the defect energy for charge state m is E'™'+mE(, where
we change E'™ to E'™'+mE, to place the zero of the
Fermi level at the top of the valence band.

Dealing with charged defects thus requires that we
know the energy of the top of the valence band in the de-
fect cell. The quantity that we want is (the energy of) the
top of the bulk valence band in the defect cell. One can-
not simply use the k=0 band structure of the defect su-
percell because it includes the distortion of the band
structure in the immediate vicinity of the defect. We
should use the valence-band energy far away from the de-
fect, which would correspond to a pure bulk calculation
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However. there is no absolute reference for potentials or
eigenvalues in supercell calculations; ‘C we therefore need
additional information in order to “line up” the bulk
band structure with the defect supercell. Here we use the
*“model solid” theory of Van de Walle and Martin,*"*?
which allows us to calculate the average electrostatic po-
tential of a system of atoms on an absolute energy scale.
Since the defect supercell and the bulk supercell in gen-
eral contain a different set of atoms, the average electro-
static potentials will be shifted; the magnitude of the shift
is predicted by the model solid theory. We have verified,
by inspection of the locally averaged self-consistent elec-
trostatic potential in the defect cell, that the model-solid
lineup indeed provides an adequate description of the po-
tential shift. N

V. RESULTS AND DISCUSSION

In this section we present our calculated native-point-
defect concentrations in ZnSe and discuss the general
question of native-point-defect compensation in wide-
band-gap semiconductors. As described in the preceding
section, we need to know the formation energy and entro-
py of the defect to determine its concentration. Entropy
calculations are unnecessary because our results are in-
sensitive to values in the range 0 <8 <10k, (see Fig. 6).
By comparison, a recent accurate calculation** of the
formation entropy of the Si self-interstitial found a for-
mation entropy of (5~6)ky for the ground state. The Si
self-interstitial represents an extreme case in that the
ground-state configuration has low symmetry, which ac-
counts for half of the formation entropy. It is therefore
highly unlikely that the entropies for native point defects
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FIG. 6. Native-point-defect compensation in stoichiometric
ZnSe. For p-type ZnSe the net number of electrons produced by
all native point defects is shown. For n-type material, the net
number of holes is shown. The range of values shown for p-type
ZnSe is bounded by assuming relaxations of 1 ¢V and entropy of
10 k5 per defect for an upper bound and k, for a lower bound.
For n-type ZnSe, the uncertainty of the results is increased by
the LDA band-gap error, and no error estimate is included.

in ZnSe could be larger than 10k,.

We have explicitly calculated relaxation energies for
the defects which are dominant in p-type ZnSe. As
shown in Table I, the relaxation energies are all smaller
than 0.7 eV, which is of the same order as calculated re-
laxations in other semiconductors including Si,'*'¢ dia-
mond,?! and GaAs.’*¥%*5 The defect-formation energies
of other defects are high enough that, even with a gen-
erous estimate of the atomic relaxation energies (we as-
sume 1 eV), the concentrations remain very low. Even a
relaxation of 2 eV does not change our results (that is, the
native-point-defect concentrations are still too low to
compensate in stoichiometric material).

It is important to assess to what extent the LDA
band-gap problem affects the formation energies. The
band-gap problem has no direct effect on the concentra-
tions of defects in p-type material, where electron levels
in the band gap are empty. For n-type material, the posi-
tion of occupied electron levels in the gap is uncertain
due to the LDA band-gap error. We will treat this uncer-
tainty by using the worst-case value of the defect energy.

Figure 6 shows the concentrations of minority carriers
produced by native point defects for p-type
stoichiometric ZnSe. The individual native-point-defect
concentrations are given in Table III. The error bar is
determined by allowing the formation entropy to range
from O to 10 kz. The results shown are for material with
10" e¢m™? dopants. The dopants are used to determine
the position of the Fermi level. As the temperature in-
creases, the Fermi level moves closer to the middle of the
band gap. (This is because the intrinsic carrier concen-
tration increases with temperature.) This effect slows the
increase of the defect concentrations with increasing tem-
perature. (Jansen and Sankey, 12 4 their determination of
the defect concentrations at T=1658 K, set the Fermi
level at the valence-band edge. Taking into account the
shift of the Fermi level with temperature would substan-
tially lower their concentrations.) The dominant native
point defects are Zn; (a double donor) and Vz, (an accep-
tor). At molecular-beam epitaxy growth temperatures
(T=600 K) the concentration of minority carriers pro-
duced is less than 10'? cm ™. For ZnSe grown at higher
temperatures and not rapidly quenched, excess native
point defects will be annihilated during cooling, as long

TABLE IHI.  Native-point-defect concentrations in
stoichiometric p-type ZnSe, at T=600 K. Only defects with
concentrations greater than 10° cm® are shown. A formation
entropy of 5 k, is assumed for each defect.

Defect Charge Concentration {em™*)
Zn; (Ts) 2+ 2.48x10°
Vza 0 2.14x10°
Sez. 2+ 146X 10*
Seza 1+ 1.71x 107
V2 1- 8.70x 10°
Vza 2-— 1.17x10°
Zn; (Tz,) 2+ 2.21x10*
Ve, 2+ 8.58x10*

ortimans b v n



10 974

as the defects are free to move. The temperature that
determines the native-point-defect concentration is that
at which the defects become immobile. The dominant
native point defects in p-type material, V5, and Zn,, are
known experimentally to be mobile at temperatures
above 400 and 260 K, respectively.’® At 400 K the
native-point-defect concentrations in p-type ZnSe are at
most 10° cm ™3,

We have also determined the concentrations of native
defects in n-type ZnSe (Fig. 6 and Table IV). The dom-
inant native point defects are V7,2~ and Zng,~. It is an
experimental fact that n-type ZnSe can be produced
much more easily than p type. If native-point-defect
compensation were the cause, we would expect that de-
fect concentrations would be much larger in p-type ma-
terial than in n type. Instead, we find that defect concen-
trations are actually somewhat larger in n-type ZnSe.
This is an additional proof that native point defects do
not compensate p-type ZnSe. (For n-type ZnSe the levels
in the band gap were shifted up by the LDA band-gap er-
ror, which increases the defect-formation energies. Actu-
al defect concentrations may be higher than shown; this
would further support the notion that native-point-defect
compensation is no greater in p-type ZnSe than in n
type.) We conclude that, in stoichiometric ZnSe, native-
point-defect compensation will be insignificant.

To further support our conclusions, we have derived
native-point-defect concentrations for diamond (Fig. 7)
based on the first-principles defect energies of Bernhole
et al.' The doping level is again 10'® cm™>. The calcu-
lations show that only the vacancy is found in significant
concentrations. Experimentally, diamond i3 easy to make
p type but difficult to make n type. In our results for n-
type material, we once again made a worst-case assump-
tion about the LDA error (the LDA band-gap error is
about 1 eV here): the Fermi level was shifted rigidly with
the conduction-band edge, but the levels in the gap for
the vacancy were not shifted at all. This assumption
significantly increases the defect concentrations. The
true concentrations are probably much smaller still. Ata
chemical-vapor-deposition-growth temperature of 1100
K, the number of holes produced in n-type diamond by
native point defects is at most 2X10'* cm ™. Clearly, the
concentrations of native point defects in both
stoichiometric ZnSé and diamond are far too low to pro-
duce significant compensation.

TABLE IV. Native—point-defec; concentrations in a-type
ZnSe. Same conditions as Table II1.

Defect Charge Concentration (cm™?)
Vi 27— 137X 10"
Zng, 1- 5.23% 107
Zne, 0 126X 1012
Zng, 2- 3.54 % 10"
Ve, 0 3.65X10°
Zn, (Tz,) 0 5.07X 10"
Zng, 1+ 6.19%x10’
Ve 1+ 1.70X10° N
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FIG. 7. Native-point-defect compensation in diamond. The
native-point-defect concentrations are shown for both n-type
and p-type diamond containing 10'* dopants. For n-type dia-
mond, a8 worst-case treatment of the LDA band-gap error is
used; the Fermi level is shifted up by the band-gap error, while
the defect levels in the gap are not shifted. This gives an upper
bound on the defect concentrations; actual defect concentra-
tions in n-type diamond are probably much lower.

Jansen and Sankey'? have calculated the formation en-
ergies of native defects in ZnSe and ZnTe, using psecudo-
potentials that treat the Zn d clectrons as frozen-core
states. From their defect-formation energies they derived
defect concentrations as a function of temperature and
stoichiometry. To derive ‘defect concentrations from
their calculated energies, Jansen and Sankey impose the
stoichiometry parameter as an external constraint. This
is equivalent to using our own method with an unknown
chemical potential that produces the same stoichiometry.
Their results exhibit the same trends as our own, al.
though the actual defect concentrations are different, due
in part to their approximate treatment of the d electrons,
They salso find the zinc interstitial and the selenium-on-
zinc antisite defect to be the dominant defects in p-type
ZnSe, which are both donors. In n-type ZnSe, they find
that the zinc vacancy and the selenium antisite are dom-
inant (both acceptors).

Jansen and Sankey suggest that their results explain
why ZnSe prefers to be p type. Their calculated defect
concentrations for a-type ZnTe are higher than those for
n-type ZnSe, while their defect concentrations for p-type
ZnSe are higher than those for p-type ZnTe. Based on
these results, Jansen and Sankey propose that native
point defects hamper the doping in p-type ZnSe and n-
type ZnTe. Careful examination reveals that this con.
clusion is doubtful. For ZnSe, their numbers indicate
that native-point-defect concentrations are 3,000 times
lower in p-type material than in n type. Thus, if any.
thing, native-point-defect compensation should prevent
the growth of n-type ZnSe. Furthermore, their results
were reported for a very high temperature (T=1658 K),
and do not apply to the question of compensation for ma-
terial that is grown at 600 K and never thermally an-
nealed at higher temperatures. At the lower temperature,
the native-point-defect concentrations derived from their
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calculated energies are only ~ 10® cm ™3, even lower than
our own predictions, and far too small to compensate
doping.

Our conclusion that the concentrations of native point
defects in stoichiometric ZnSe are very low does not
mean that native-point-defect compensation in ZnSe nev-
er occurs. If the sample is grown with even a slight devi-
ation from perfect stoichiometry, the concentration of
native point defects will necessarily be very large, even at
T=0 K (assuming that deviations from stoichiometry are
accommodated by native point defects alone). Because
the density of atomic sites in ZnSe is 4X 102 cm™?, a de-
viation from stoichiometry as small as 10™* implies a de-
fect concentration of about 10" ¢cm™3. Our major con-
clusion for nonstoichiometric material is that the native
point defects that accommodate deviations from
stoichiometry are always those that compensate the ma-
jority carriers. For p-type ZnSe, the dominant defect is
Zn, in Zn-rich material, and Se,, in Se-rich material; we
find that both are double donors. For n-type ZnSe the
dominant (acceptor) defects are Zng, and V,, for Zn- and
Se-rich materials, respectively. Similar results were
found by Jansen and Sankey. !2

This defect structure is much richer than that used in
many previous analyses of native point defects in I1-VI
semiconductors. Ray and Krager, ' for example, studied
the properties of ZnSe as a function of Zn partial pres-
sure, and analyzed their results in terms of only two na-
tive defects: Vg, (an acceptor) in Se-rich material and
Vs (a donor) in Zn-rich material. Their model predicts
that Zn-rich material should be n type and Se-rich ma-
terial p type. Our results show that this model is
oversimplified; changing the stoichiometry from Zn-rich
to Se-rich will not convert n-type ZnSe to p-type ZnSe.
Instead, the greater the deviation from stoichiometry in
cither direction, the greater the level of compensation.

Having addressed the native-point-defect compensa-
tion issue quantitatively, we now reexamine the notion
that native-point-defect compensation increases with the
width of the band gap. Let us state precisely the stan-
dard argument for this trend: For p-type material, imag-
ine a prototypal compensating native-donor defect that,
when neutral, introduces one electron into a state in the
gap; the formation energy for this defect, EY, is assumed
not to depend on the width of the band gap. The energy
gained by transferring the electron from the level in the
gap E; to the Fermi level E¢ should, in contrast, increase
with the width of the gap; thus, the net energy needed to
form compensating defects, E°—(E; —E), should de-
crease as the band gap increases. The flaw in this argu-
ment is that it assumes that E; and E° are independent
of one another. Actually, the level in the gap is deffned
by E,=E°—E™*, where E*+E; is the (Fermi-level
dependent) energy of formation of the positive charge-
state defect (Fig. 8). Substituting this definition into the
formula for the net energy of compensation, we find

E°—(E, —E;)=E°~(E°-~E*—E;)=E*+E, ,

independent of the energy of formation of the neutral de-
Sect. We see that native-point-defect compensation will
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FIG. 8. Level in the gap for a donor defect. Total energy as a
function of the Fermi level for the positive and neutral charge
state of a prototypal donor defect. The level in the gap (£, ) is
the value of the Fermi level at which the two charge states have
the same energy.

increase with the width of the band gap if and only if
E* + Eg decreases with increasing band gap. For this to
be true, additional assumptions would have to be made
about how the formation energy of the charged defect
changes as the band gap widens. In particular, there is
no a priori reason to assume that E* would be lower in
wide-band-gap materials. The first-principles results re-
ported in this paper definitely show that, whatever the
qualitative trends may be, the native-point-defect concen-
trations in stoichiometric ZnSe and in diamond are far
too small to be a source of compensation.

V1. CONCLUSIONS

We have described a mixed-basis pseudopotential
total-energy scheme which is fast and efficient enough for
supercell calculations (Sec. 11). These programs are cap-
able of accurately describing the structural properties of
ZnSe, including the important effects of the zinc 3d-
electron states. We use these techniques to examine
native-point-defect compensation in ZnSe; we calculate
the total energies of the native point defects in ZnSe (Sec.
IID) and show how to extract defect concentrations from
these energies (Sec. 1V). We have shown that native.
point-defect concentrations are very low in
stoichiometric ZnSe; in nonstoichiometric material, both
n- and p-type doping would be compensated (Sec. V).
These results indicate that native-point-defect compensa-
tion i8 not responsible for the doping problems in ZnSe
(and other wide-band-gap semiconductors). Efforts at un-
derstanding these problems should be aimed at investigat-
ing the behavior of individual dopant impurities.
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APPENDIX

The mixed-basis set results in a much smaller Hamil-
tonian matrix than a plane-wave basis, but requires more
effort for matrix element evaluation. This appendix de-
scribes the techniques used to calculate various matrix
elements. Setting up the Hamiltonian matrix for the
Kohn-Sham equations requires evaluation of three types
of matrix elements:** (1) kinetic energy and overlap, (2)
local potential, ¥ (pseudopotential plus screening poten-
tials), and (3) nonlocal pseudopotential.

Each type of matrix element must be evaluated be-
tween (1) two plane waves (PW-PW), (2) two tight-
binding functions (TB-TB), and (3) a plane wave and a
tight-binding function (TB-PW). The PW-PW matrix
elements are evaluated in the same way as they are in
standard calculations with a pure plane-wave basis set. *®
We will limit our discussion to {TB-TB) and (TB-PW)
matrix elements.

A tight-binding function centered on atomic site T of
the crystal’s unit cell can be written as

1

¢k(r)=7—a' RE/(r—R—T)e“"“'T’ .

where {} is the unit cell volume, R is a direct lattice vec-
tor, and [ is a localized real function (the pseudoatomic
Zn 3d wave function in this work), which is of the form

S =1(nZ,, () (A2)

where Z;, is a Bethe Kubic-harmonic function. The
tight-binding function may be Fourier transformed to
give

(AD)

$(G)=e~ 0T (k+G), (A3)
_ 4m—=1) )
f(x)--—-n——z,,,(k) fo J KR frdr (A4)

where j, is a spherical Bessel function.

The number of TB-TB matrix elements is proportional
.to nig. (For our supercell calculations, nyy is typically
~ 80.) The TB-TB matrix elements require an integration
over the crystal unit cell, making their evaluation a nu-
merically intensive process. Instead of simply summing
over a real-space grid, it is more efficient to perform these
operations in reciprocal space.

1. Local matrix elements

The overlap and the kinetic-energy matrix elements are
calculated in the manner of Louie, Ho, and Cohen.?
The TB-TB matrix elements of the local potential are

Sl gt P 5 . y Bk
iy b GRS Sl e Sl e o
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complicated by the presence of the V'X(r) term. We can
write the matrix element in reciprocal space as:

H;=3 3 6(GIVHG-G"4,(G") . (AS)
oa

This formula is of order n2, where ng is the number of

reciprocal-lattice vectors, and its evaluation is prohibi-

tively expensive. To convert this expression into a more

convenient form, we define

F(G)= 3 ¢,(GVHG'~G), (A6)
G

so that

HE= g F'(G'),(G"). (A7)

. We can now use the convolution theorem to evaluate

FAG'):
Fn=¢,(r)VEr) . (A8)

This procedure is very efficient because the real-space
operations are limited to nyp sets of multiplications and
2nyp FFT's [for the convolution in Eq. (A8)]. The only
operations that are performed n¢p(nyp+1)/2 imes are a
multiplication and a summation over the reciprocal lat-
tice [Eq. (A7)). Only a small amount of extra computer
memory is needed to store one copy of the function F,.

2. Nonlocal matrix elements

The nonlocal pseudopotential TB-TB matrix elements
can, in principle, be evaluated by applying projection
operators to the reciprocal-space expansion of the tight-
binding functions. Instead, we take advantage of the lo-
calized nature of the tight-binding functions by using the
so-called on-site approximation. In the on-site approxi-
mation, the nonlocal pseudopotential acts only on tight-
binding functions on the same site as the potential. This
approximation is well justified because both the nonlocal
potential and the tight-binding functions used in our cal-
culations are very short ranged. Thus the product of the
nonlocal potential on one site and the tight-binding func.
tion on a different site will be extremely small. The on-
site approximation reduces the nonlocal matrix element
to a single radial integral.?

The nonlocal matrix elements involve one additional
complication. The on-site approximation is based on the
assumption that the tight-binding functions are short-
ranged functions. This is true only for the full tight-
binding functions; the tight-binding functions used in our
calculations are orthogonalized to the plane waves by set-
ting their low-frequency Fourier components to zero.
This orthogonalization leads to tight-binding functions
with long-range oscillations, for which the on-site ap-
proximation is no longer valid. To correct for this we
write the tight-binding functions in the following form:

18, =18 —167) (A9)
where |¢,) is the actual tight-binding function of the
basis set, |¢/) is the “full” tight-binding function before
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orthogonalization, and |¢€) consists of the orthogonali-
zation terms. The [$f) are just the components of the
full tight-binding function for all reciprocal-lattice vec-
tors in the plane-wave basis.

I¢‘C)= E f(k+G)el(k+G)-r ]
k+GP <5,

(A10)

In this form, the nonlocal matrix element becomes
J

(¢fIVl¢f>=—('¥ 3 ¢lrk+G) e

F
k+Gl*<E,,

—[(k+GHt+TB)
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'H/7‘=(¢IIVI¢,>
= ($IVIF) — (4£IMgD)
— (8f1V185) +{4£1MeS) , (A1D)

where the nonlocal potential is now represented by V.
The on-site approximation can now be applied to the first
term. The on-site approximation is also applied to the
second term:

Viglr) fi{r)Z,, (T)dr . (A12)

The T term appears because the tight-binding function is centered about a specific atomic site, while the plane wave is
defined with respect to the origin. By applying both the angular-momentum expansion of the plane waves and the
orthogonality of the Kubic-Harmonic functions, we can reduce this expression to

4 —i)!
(#{IMgf)y ===

Xi<E,,

where K=k+G. We are again left with a set of radial
integrals in real space. The third term is of the same
form as (the complex conjugate of) the second term. The
fourth term is treated as an expansion in terms of plane
waves:

(¢£1M165) =3 S ¢F*(k+G)(k+ G|V ™|k +G')
G G

X¢f(k+G"). (A14)
Because both summations are limited to reciprocal-lattice
vectors in the plane-wave basis set, evaluation of the
fourth term takes about the same amount of time as the
nonlocal plane-wave matrix elements.

3. TB-PW matrix éiements

We now describe the calculation of the TB-PW mixed-
basis terms. These terms are relatively simple. The over-
lap and kinetic-energy matrix elements are all zero be-
cause of the orthogonalization of the tight-binding func-
tions to the plane waves. The local-potential matrix ele-
ments between the ith plane wave and the jth tight-
binding function are '

S e TR KIZ,, (R) [ RV, ARjKNS Y

(A13)

~i(k+0,)
e

Hf =L Vir)g,(r)dr

uc

1 —ik+Q,)r
=f e “Fytr)dr

=F(G,). (A15)
The function F; is the same function that was introduced
in the calculation of the local TB-TB matrix elements
[Eq. (A6)). Thus we get all of the local TB-PW matrix
elements without any extra calculations. We see here the
convenience of expanding the tight-binding functions in
reciprocal space. For the nonlocal TB-PW matrix ele-
ments we will use the on-site approximation and an ap-
propriate correction term once more:

HYt=(k+G |V ¢}
=(k+G,|V¥|¢f) - (k+G, VN ¢f) . (A16)

The (k+G;| represents the ith plane wave. The two
terms here are just the same as the third [Eq. (A13)] and
fourth [Eq. A14)] terms in the TB-TB nonlocal matrix
elements described above, where

f(k+G)=8g,q, - (A1D)

Thus, these terms do not require any extra computation
either.
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l65)= 3

2
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The T, term appears because the tight-binding function is centered about a specific atomic site, while the plane wave is
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We present a comprehensive theoretical approach to determine concentrations of dopant impurities
in semiconductors. The formalism is applied to the problem of acceptor doping in ZnSe. Formation
energies and concentrations of impurities and native defects are expressed as a function of chemical
potentials, for which experimentally accessible ranges are calculated. We show that limitations in the
achievable hole concentrations can be explained by two mechanisms: one is the competition between
various substitutional and interstitial configurations (compensation), the other is the solubility limit
imposed by formation of other phases. Nitrogen is most promising among the dopants examined.

1. INTRODUCTION

Limits to semiconductor doping have been widely dis-
cussed both in III-V and II-VI compounds. In wide-band-
gap semiconductors the problem is particularly acute
because typically one type of conduction (n-type or p-
type) is very difficult to obtain. Detailed understand-
ing of these phenomena has been lacking. In this paper
we present a formalism that allows the determination of
defect concentrations, impurity solubilities, and doping
levels. It includes a unifying treatment of the various
interactions of the dopant with the host lattice (in sub-
stitutional or interstitial sites), the role of native defects,
and the factors that determine solubility. The key quan-
tities that enter this formulation can be obtained from
first-principles electronic-structure calculations.

Our formalism entails the following steps.

(1) Calculation of the total energies of all native defects
and of the various configurations that can be assumed by
the impurity in the crystal, including lattice relaxations
and different charge states.

(2) Application of thermodynamics to express the rel-
evant equilibrfum concentrations at the temperature of
interest, and determination of the resulting Fermi level
from the condition of overall charge neutrality for all im-
purity configurations, native defects, and free carriers.

At this juncture the results remain functions of two chem-
ical potentials (one for the host crystal, which controls
the stoichiometry, and one for the impurity) which are
free parameters to be fixed by growth conditions. The
physical meaning of these chemical potentials and the
way in which they enter the formalism will be discussed in
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detail. Thermodynamics imposes bounds on the exper-
imentally accessible range of these chemical potentials;
the bounds result from the last step of the formalism:

(3) Calculation of the heats of formation of competing
phases that can be formed out of the constituents (i.e.,
the impurity and the component elements of the semi-
conductor).

By imposing these bounds we obtain limits on impurity
concentrations, i.e. we can calculate solubilities,

We llustrate the approach with the technologically im-
portant example of ZnSe, in which n-type doping poses
no difficulties, but well-conducting, reproducible p-type
doping has been very hard to achieve.! Despite some im-
pressive recent experimental advances,>® the cause of
the doping problem has remained unclear. Lithium was
the first dopant to yield reproducible, well-conducting p-
type ZnSe, with a net acceptor concentration of about
10! cm™3.24 More recently, N doping up to 10!® cm~?
was achieved and led to the fabrication of a blue semicon.
ductor laser.® In the case of Li, our results will demon-
strate quantitatively the competition between substitu.
tional and interstitial impurity configurations,” and iden-
tify a regime where the desired substitutional form dom-
inates (earlier work® that proposed this competition as
the source of compensation did not recognize the exis-
tence of such different regimes). Our resuits will also
show that there is a second overriding cause that limits
doping, namely the overall solubility which is constrained
by the formation of a Li;Se phase.® These conclusions
agree with experimental observations on Li-doped ZnSe;
more importantly, they provide guidelines for optimizing
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growth conditions.

Our investigations of Na indicate qualitative similari-
ties to Li, but significant quantitative differences which
render Na unsuitable for p-type doping of ZnSe. Indeed,
its low solubility explains the faiiure of doping attempts
with Na.1? Nitrogen, finally, does not exhibit a substitu-
tional/interstitial competition and, in addition, has t.he
highest solubility.

One of the strengths of the formalism is that it treats
native point defects (vacancies, self-interstitials, and an-
tisites) and dopant impurities on an equal footing, allow-
ing us to investigate whether native defects can form a
significant source of compensation.!! We find that under
appropriate growth conditions the native defect concen-
tration is usually so low as to be unimportant. We previ-
ously arrived at this conclusion from a study of native de-
fect concentrations as a function of Fermi-level position,
in which the exact nature of the dopant impurities was
left unspecified. 2 Our current resuits confirm that native
defects do not form a generic source of compensation in
ZnSe. We also present more detailed information on de-
fect concentrations under various growth conditions.

The present investigation of acceptor impurities in
ZnSe relates to an experimental problem of high current
interest due to the impact on a blue semiconductor laser;
however, we stress that the formalism is a general one
that can be applied to the study of doping in any semi-
conductor system.

1. METHODS
A. Total-energy calculations

In this section we describe how to calculate concentra-
tions of defects and impurities in the semiconductor. In
order to obtain quantitative results, one needs reliable
values for the total energies of defects and impurities; we
have obtained such values from first-principles calcula-
tions. The calculations are based on density-functional
theory in the local-density appraximation,!? and ¢b ini-
tio peeudopotentials .4 Scalar relativistic effects are in-
cluded in the pseudopotentials, but spin-orbit splitting
is neglected; our calculated bands are therefore averages
over the states which would be split due to spin-orbit
interactions. The spin-orbit splitting can be introduced
as a perturbation. The Fermi-level positions which we
will discuss should still be interpreted as referred to the
top of the valence band (I's). We use & mixed-basis ap-
proach, ensuring an accurate description of the structura!
properties by explicitly including the d states of the Zn
atoms. The basis set contains plane waves with kinetic
energy up to 9 Ry, and pseudoatomic orbitals on the Zn
and N atoms.!? In order to achieve a proper description
of Li and Na we implement a nonlinear core exchange-
correlation correction.}?

The defect calculations are performed in a supercell
geometry, with 32-atom supercells providing adequate
accuracy. Relaxations of up to two shells of neighbors
are included. Additional details sbout the calculational
approach are given in Ref. 16. We have used this ap-
proach to obtain total energies for the dopant impurities
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(Li, Na, and N) which are the subject of this study, in
their various configurations in the lattice. Qur calcula-
tions are typically carried out for the charged (positive or
negative) state of the dopant. To avoid divergence of the
long-range Coulomb terms, the G=0 terms in the total
energy are always calculated for a neutral system. A jus-
tification of this self-consistent approach to treat charge
states of impurities was given in Ref. 17. Because of the
extended nature of the wave function the neutral charge
state of a shallow impurity is difficult to treat within the
supercell formalism; instead, we use experimental acti-
vation energies'® to determine the formation energies of
the neutral charge state. Finally, we make use of our pre-
viously calculated!?!¢ energy values for native defects in
all relevant charge states.

B. Formation energies, concentrations,
and chemical potentials

The equilibrium concentration of an impurity or defect
D; is given by

91 Ny (B2,

kT

where Nyiqs is the appropriate site concentration [e.g., for
substitutional Li (sz.,) Niiree is the number of substitu-
tional Zn sites in the crystal, 2.2x10%3cm™3), and Eqorm is
the formation energy. The energy appearing in Eq. (2.1)
is a Gibbs free energy, which should include a pressure-
dependent term; however, this term can be neglected for
the solid phase. The Gibbs free energy also contains an
entropy contribution; these terms are generally small, 12
and they also tend to cancel when comparing relative
free energies.!® The assumption of thermodynamic equi-
librium, which underlies the formalism, is expected to
be satisfied, particularly in light of the high mobility of
various defects and impurities studied here.}?

Before we give a general definition of the formation
energy of an impurity or defect in the compound semi-
conductor, we illustrate the concept with the example of
a Li atom on a substitutional Zn site:

Eiorm(LiZ,) = E(LiZ,) = pps + pzo — EF. (2.2)

E(Liz,) is the calculated energy of a supercell contain-
ing the Li7, impurity, minus the energy of a reference
cell containing the pure bulk semiconductor. These ener-
gies are obtained from first-principles calculations, which
are described in Sec. I A. The other terms in Eq. (2.2)
contain chemical potentials, the physical significance of
which we now discuss in some detail.

gL is the chemical potential of LL. This term enters
because the formation energy is the difference between
the energy of Li as an impurity, and its energy in a refer-
ence state. The reference corresponds to a reservoir of Li
atoms, whose energy (at 7’=0) by definition is the chem-
ical potential. This chemical potential depends on the
abundance of Li under the relevant growth conditions.?°
For an element in thermal equilibrium with the gas phase,
the chemical potential can be related to the partial pres-
sure of the gas;?° for an ideal gas with partial pressure

(2.1)
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pone has g = u® — kTlnp. In the literature one of-
ten finds studies of defect concentrations as a function
of partial pressures. We prefer to work with chemical
potentials for the following reasons: (a) Chemical po-
tentials are thermodynamically defined as energy values,
which can be directly related to the energies which we
calculate from first principles. (b) Although the assump-
tion of thermodynamic equilibrium is likely to be satis-
fied within the solid, allowing the use of expressions such
as Eq. (2.1), it is uncertain to what extent equilibrium
is established between the solid and a surrounding gas
under experimental conditions such as molecular-beam
epitaxy (MBE). Knowledge of the chemical potential in
the gas may therefore not necessarily reflect the relevant
chemical potential for the solid. (c) Even if thermody-
namic equilibrium with the gas is assumed, the relation-
ship between chemical potential and gas pressure is not
well known since the gas sources used in MBE do not
obey simple ideal gas laws. While this precludes a quan-
titative determination of chemical potentials in terms of
experimentally accessible quantities, we wiil see that the
chemical potentials are subject to rigorous bounds that
can be directly related to experimental conditions.

The Zn chemical potential uz, appears in Eq. (2.2)
because, in order to make room for the substitutional
impurity, a Zn atom has to be removed to its reservoir.
It is very important to realize that uz, should be treated
as a variable; indeed, in a compound semiconductor only
the sum of the chemical potentials of the constituents is
fixed, and equal (at T=0) to the energy of a two-atom
unit of the material: .

BZn + [Se = [iZnSe- (2.3)

In an elementary semiconductor, this condition would
uniquely determine the value of the chemical potential;
additional freedom exists, however, in a compound semi-
conductor. We will therefore explicitly present our re-
sults as a function of chemical potentials. Equation (2.3)
fixes pg, Once Uz, is chosen; alternatively, us, could be
chosen as the free variable, leading to a fixed pz,.

The last term in Eq. (2.2) is the Fermi level Er, i.e., the
energy of the reservoir delivering the electron responsible
for the negative charge on the impurity.

In general the total energy Eioi( D) for a defect D; will
be determined from a calculation for a mpercell contain-
ing n?® Zn atoms, n$* Se atoms, and n!* Li atoms (we
continue to use Li as a sample impurity, but the formulas
are valid for a general impurity). The defect formation
energy Egorm(D;) is then

Etoem(Di) = By (D) ~ nPuzq — nf%us,
- n}"pu ~n{Ep

=£(D;) ~ Anyuza ~ ntpu - niEr,  (2.4)
E(D¢) = Euoe(Dy) — n$* uznse, (2.5)
Ang=nl® - nfe, (2.6)

where n{ is the number of excess electrons in the defect,
and An; is the number of extra Zn atoms that must be
added to form the defect (e.g., +1 for Zn; and Vg,, —2
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for Sezn, etc.). Here, we treat iz, as an independent
variable and use Eq. (2.3) to remove us, from the ex-
pression for Eform(D;); alternatively, we could treat ug,
as independent and eliminate ugz,.

C. Self-consistent solution

An expression based on Eq. (2.4) can be written down
for all configurations of the impurity, in their various
charge states, as well as for all native defects. Once the
formation energy is known, the concentration of a spe-
cific defect or impurity can be obtained from Eq. (2.1).
At this point, all concentrations are still functions of the
chemical potentials (2, and py,), as well as of the Fermi
level (EFr). The chemical potentials, as explained above,
are independent parameters; we will therefore express
all our results as functions of these chemical potentials.
The Fermi level, however, is not an independent variable,
since it is determined by the condition of charge neutral-
ity:

net charge=0=p-n-— z n§[D;), 2.7)
’ {

where p and n are the hole and electron densities, respec-
tively. These free-carrier densities are determined from
the standard semiconductor equations. The charge con-
servation equation provides for an interaction between
the concentrations of all charged defects through their
influence on the Fermi level. For example, a positively
charged defect produces extra free electrons that raise the
Fermi level; the higher Fermi level, in turn, increases the -
concentrations of all negatively charged defects and low-
ers the concentrations of all positively charged defects.
As pointed out by Zhang and Northrup,?! this “negative
feedback” reduces the sensitivity of the final results to
possible inaccuracies in our first-principles energies. Us-
ing this prescription, all of the defect formation energies,
and hence the concentrations {D;], are unique functions
of pzn, pLi, 8nd the temperature T'.

The choice of the chemical potential uz, also deter-
mines the stoichiometry; the stoichiometry parameter X
can be defined as

Nge — N2o _ =3, Am(D|]
Nge + Nz 2Nites |

where Nz, and Ng, are the total numbers of Zn and Se
atoms in the crystal. Only deviations from stoichiome-
try due to native defects are included here. X is positive
for Se-rich material and negative for Zn-rich material. In
this paper, we express all our results in terms of chemical
potentials. Alternatively, we could present the results as
a function of the stoichiometry parameter, but because
of the one-to-one correspondence between chemical po-
tential and stoichiometry no new information would be
obtained.

D. Bounds on the chemical potentials

X=

(2.8)

Now we discuss how the relevant range of the chem-
ical potentials is determined. For this purpose one has
to consider the various phases that can be formed out

Se
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of the constituents.!92% For instance, uz, is bounded
from above by the energy of 8 Zn atom in Zn metal:
BT = BZa(dbulk)- Indeed, if one would try to raise puzn
above this level, Zn metal would be preferentially formed.
Similarly, use has an upper bound imposed by bulk Se.
Furthermore,

BZaSe = Bin(bulk) + BSe(bulk) + AHy(ZnSe), (2.9)

where AH;(ZnSe) is the heat of formation of ZnSe
(AH; is negative for a stable compound). Combined
with Eq. (2.3) this expression can be used to impose
a lower bound on th- Zn chemical potential, given by
piir = BzZnpux) + AHy (ZnSe). A lucid discussion of
similar arguments, in the context of surface recontruc-
tions, has been given in Ref. 19. The Zn chemical poten-
tial can thus vary over a range corresponding to the heat
of formation of ZnSe.

To find an upper bound on the chemical potential of
the dopant we explore the various compounds that the
impurity can form in its interactions with the system.
For Li, a possible upper bound on yuy; is of course im-
posed by Li (bulk) metal. However, the most stringent
constraint arises from the compound Li;Se, which leads
to the following constraint on the chemical potentials:

2415 + pBse = PLiSe
= 2upi(bulk) + Hsepu) +AH,(LizSe). (2.10)

Numerical results for the heats of formation, as well as
practical applications of the bounds on the chemical po-
tentials, will be given in the following section.

II1. RESULTS AND DISCUSSION
A. Lithium
1. Configurations of Li in the lattice

We have analyzed various possible configurations and
charge states of the lithium impurity in the lattice. The
substitutional acceptor Liz, induces virtually no relax-
ation of the surrounding host atoms. For the lithium in-
terstitial (LiJ'), which is a shallow donor, we find the Ty
site surrounded by Se atoms (T$*) to be 0.2 eV lower in
energy than the T2" site. For the interstitials, the energy
gained by relaxation of the host atoms is smaller than 0.1
eV. We have also studied other interstitial positions, al-
lowing us to estimate that the barrier for migration of
the interstitial is less than 0.5 eV (i.e., a Li interstitial
can move readily, even at room temperature). Finally,
we have also investigated Li on a substitutional Se site,

but found this configuration to have a prohibitively large
formation energy.

2. Contour plots of total L{ concentration

Our results are presented in the form of contour plots,
which allow us to explicitly show the dependence on
the chemical potentials uz, and uy;. As explained in
Sec. I C, there is no explicit dependence on Fermi energy,
since it is determined by charge neutrality. Figure 1(a)
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shows a contour plot for the total concentration of Li in
ZnSe, at T = 600 K, which is a typical temperature in
MBE growth of ZnSe:Li.24

We first discuss the contour lines themselves. The to-
tal Li concentration ([Li]) increases with increasing sy,
because it becomes more favorable for the impurity to
dissolve in the semiconductor as the energy of the reser-
voir rises. Similarly, [Li] increases with decreasing uza,
which is the energy of the reservoir to which Zn needs to
be removed in order to accommodate Li on Zn sites.

8. Competition between interstitials
and substitutionals

The formation energy for Li in a substitutional location
was given in Eq. (2.2). For the interstitial site, where Lt
is a shallow donor, we have

Eform(Li?) = £(Lit) =B+ EF- (31)
E(Li}) is the calculated energy of an interstitial Li at its
most stable site, which is at the tetrahedral interstitial
site surrounded by Se atoms. Inspection of Eqs. (2.2)
and (3.1) reveals that as the Fermi level moves down
(i.e., as the material becomes increasingly p-type), the
formation energy of the acceptor species rises, whereas
the formation energy of the donor species goes down.
This predicts the existence of a limiting Fermi-level po-
sition (maximum hole concentration), which can be ob.
tained by equating the two formation energies. Attempts
to push the Fermi level lower would result in preferential
formation of donors, which would push the Fermi level
back up. Incorporation of additional Li leaves the Fermi
level unchanged, as each substitutional acceptor is imme-
diately compensated by an interstitial donor.

The position of the Fermi Jevel (at 600 K) is shown
in Fig. 1(b); Li interstitials are responsible for the flat-
tening of the contour lines on the right-hand side of the
plot. For a fixed value of uza, the Fermi level saturates as
pii is raised, even though the total Li concentration still
increases [see Fig. 1(a)]. If no interstitials could form,
the contour lines would continue to rise with the same
slope as in the left-hand side of the plot. The intersti-
tials cause compensation and limit the achievable hole
concentration.” Their presence has been experimentally
observed.3333. A contour plot of the Li interstitial con-
centration is shown in Fig. 1(c).

The position at which the Fermi level saturates due to
interstitial compensation still depends on the Zn chem-
ical potential, as can be noted in Fig. 1. Our results
differ markedly from those of Ref. 8, where it was con-
cluded that compensation by Li interstitials would always
dominate. The authors of Ref. 8 did not recognize that
the level of compensation depends on the Zn chemical
potential, and hence on the growth conditions. This de-
pendence explains the experimental observation that the
degree of compensation by Li interstitials varies widely in
different samples.? Our results actually provide a guide-
line for optimizing the growth conditions: low values of
Uzn lead to lower compensation, as well as higher Liz,
concentrations.
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4. Bounds on chemical potentials — solubilities

In order to determine solubility limits, we need to use
the information about bounds on the chemical potentials
discussed in Sec. IID. The bounds on the Zn chemical
potential are shown as the horizontal lines in Fig. 1. For
Li, the chemical potential is limited by formation of the
compound LizSe. Formation of Li;Se on the growing
ZnSe surface in MBE has actually been experimentally
observed in the case of heavy Li doping.?* The compound
LizSe leads to the line with slope +2 in Fig. 1, which was
defined in Eq. (2.10). The point where thi.s line intersects
the lower bound on uz, is given by s, = pLipux) +
1AH/(LizSe). Our calculated heats of formation for the
various compounds are listed in Table 1. For comparison,
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we also list experimental values. The deviations are in
line with the expected accuracy of the method.

Our calculated contours, together with the bounds on
the chemical potentials, provide important insights in the
ability to dope ZnSe with Li. We note that, over much
of the range of the Li and Zn potentials, the maximum
Li concentration is slightly higher than 10!® ¢cm~3. The
fact that the slope of the contours in this region coincides
with the slope of the Li;Se boundary in Fig. 1(a) is acci-
dental, caused by the fact that in this region the removal
of one Zn atom leads to the incorporation of two Li atoms
(one substitutional and one interstitial). The highest Li
concentration (and lowest Fermi level, i.e., highest hole
concentration) occurs in the lower right-hand corner of
the accessible region, for uzz = uZi® and py,; = 4f;. The
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(c)

Contour plots of (8) logio [Li], where [Li] is the total Li concentration in cm™3, (b) Fermi level (in eV, referred to
the top of the valence band), and (c) logio (Li|, where [Li(] is the interstitial Li concentration in cm™

3, at 600 K in ZnSe:Li,

a3 a function of Zn and Li chemical potentials. Solid lines indicate bounds on uz, and ;.

‘.
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TABLE 1. Theoretical and experimental (Ref. 25) heats Jig 1\

of formation (in eV per formula unit) for various materials

containing Zn, Se, Li, Na, and N. Also listed is the minimum e

formation energy for the neutral substitutional acceptor in
ZnSe, and the corresponding minimum Fermi-level position
(in eV, referred to the top of the valence band), at 600 K.

—_— —

Solubility-limiting compound

AHP™  AH7™ Egn  Er

ZnSe -1.39 -1.69
ZnSeLi LisSe 4.12 -3.96 0.46 0.13
ZnSe:Nsa  NaaSe -3.13 -3.54 1.08 0.4
ZnSeN  ZnsN; 0.4 0.38 0.09

corresponding formation energy of the neutral acceptor,
and the self-consistently determined Fermi level are also
listed in Tuble I. At this point of highest Li incorporation,
the total Li concentration is 1.7 x 10! em~3; fewer than
3% of these Li atoms occur in the form of interstitials.

5. Discussion

Our calculated differences in formation energies and
heats of formation have an estimated error margin of
40.1 eV. At a temperature of 600 K, 0.12 eV roughly
corresponds to an order of magnitude in concentration.
Also, contours with values of [Li} higher than 10*® em=3
are probably inaccurate because Eq. (2.1) is only valid for
dilute concentrations; however, these contours fall out-
side the physically accessible range anyway. While these
uncertainties should be kept in mind when considering
plots such as Fig. 1, the qualitative and even quantita-
tive insights are still clear. Some additional conclusions
can be drawn. First, even though all native point defects
were explicitly included in the calculations, their concen-
trations are very small over the whole of the accessible
range in Fig. 1. The effect of native defects is notice-
able for low uz, values, causing bending of the contour
lines; bowever, their concentration would only become
important if yz, < pJ2, which is physically not allowed.
The dominant native defect is the Sez, antisite, which
is » donor. F‘igure2nbamaeontourplotoftho$e%:
concentration. At the point of highest Li incorporation,
the concentration is [Sez,}=2.6 x 107 em™3, which is
two orders of magnitude smaller than the Li concentra-
tion. Clearly the native defect concentration is too low
to play any significant role in compensation. However,
the concentration may be high enough to be detectable
experimentally. Other native defects have concentrations
significantly smaller (by more than four orders of magni-
tude) than the Sez, antisite

The contour plots presented here were made for a tem-
perature of 800 K, which is typical for MBE growth of
ZnSe. The qualitative features of the plots do not change
when we change the temperature (within physically rea-
sonable limits). To illustrate the quantitative effect of
temperature changes, as we lower the temperature from
600 to 500 K, we find that the total Li concentration is
reduced by a factor of 5; the concentration of interstitial
Li drops by more than an order of magnitude; and the

T
Hi Hu

FIG. 2. Contour plot of logio [Se}s), the Se antisite con-
centration in cm™?, at 600 K in ZnSe:Li, ss & function of Zn
and Li chemical potentials. Solid lines indicate bounds on uz.
and py.

concentration of the dominant native defect (Sez,) drops
by almost two orders of magnitude.

A final point relates to doping of ZnSSe alloys with
Li (alloys containing 6% S are commonly used to obtain
lattice matching with GaAs substrates): since LIS is
even more stable than Li;Se (larger | AH; |), the bound
on uy, in the ZnSSe:Li system will lie even lower, leading
to reduced solubility in the alloy.

6. Complex formation

So far we have only talked about isolated point de-
fects and impurities. In principle we should also consider
complexes. Although our formalism is general enough to
include any possible complexes, an exhaustive treatment
is computationally prohibitive. Inspection of expressions
for formation energies actually shows that a complex will
only occur in appreciable concentrations (i.e., concentra-
tions on the order of or iarger than those of the individual
defects out of which it is formed) if the binding energy
exceeds the larger of the two formation energies of the
individual components of the complex This considera-
tion makes it less likely that complexes would play an
important role.

The only complex we have investigated as part of the
current study is one consisting of a L| interstitial and a .
Li substitutional 2 Formation of such complexes seems
plausible, since the interstitial is quite mobtle, and the ac-
ceptor and donor are Coulombically attracted. Details of
the structure will be published elsewhere.?” The binding
energy of this complex is ~0.3 eV. This value is small
enough 80 that these complexes are largely dissociated
at a growth temperature of 600 K (in other words, their
concentration is small compared to the concentration of
the individual components, as discussed in the preced-
ing paragraph). 1f we assume, bowever, that the cop-
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centration of Li substitutional and Li interstitial atoms
is determined at the growth temperature, and remains
fixed as the sample is cooled down, then the concentra-
tion of Liza-Li; pairs will increase as the temperature is
lowered. The presence of such complexes should be taken
into account in analyses of Fermi level positions and car-
rier concentrations at room temperature and below.23:37

B. Sodium

We now address Na, another column-I impurity which
has been considered as an acceptor dopant in ZnSe.!? The
contour plots for the ZnSe:Na system are shown in Fig. 3.
They are qualitatively similar to those in Fig. 1, but ex-
hibit important quantitative differences. The relevant
bound on the Na chemical potential is imposed by the
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compound NazSe. The most important result is that the
solubility of substitutional Na is significantly lower than
that of Li — the maximum concentration obtained from
the contour plot is lower than 10'® cm~3. At these lower
concentrations, very few Na interstitials are present; we
also find that the barrier for migration of the Na inter-
stitial is much higher than for Lj;. Experimental doping
attempts with Na have been unsuccessful;!® our results
clearly show that the solubility limit is the culprit, rather
than, e.g., compensation due to foreign impurities in the
source.

C. Nitrogen

Finally, we discuss N in ZnSe. Nitrogen on a substitu-
tional Se site (Ns,) is a shallow acceptor. The surround-
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FIG.3. Contour plots of (a) logi0 [Na}, where [Na] is the total Na concentration in cm~3, (b) Fermi level (in eV, referred to
the top of the valence band), and (¢) logio [Na,], where [Na,] is the interstitial Na concentration in em~3, at 600 K in ZnSe:Na,
as a function of Zn and Na chemical potentials. Solid lines indicate bounds on uz. and una.
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ing Zn atoms undergo a significant inward relaxation, re-
ducing the Zn-N distance to 2.1A. This distance is very
close to the Zn-N distance in the compound Zn3N;.2% We
have also investigated other configurations, such as the
substitutional Zn site and interstitial sites, and found
those to be much higher in energy than the substitu-
tional Se site. Thus, N does not suffer from the sub-
stitutional/interstitial competition associated with the
column-I elements, so that the saturation of the Fermi
level which we observed in Fig. 1(b) does not occur here.
In this work, we have not investigated any relaxation of
the impurity away from the ideal lattice site.?® Accord-
ing to Ref. 29, in the case of N such relaxations would
pot interfere with the shallow acceptor character of the
dopant; if any relaxations do occur, they would there-
fore simply lead to a lower formation energy (and hence
enhanced concentration) of the shallow acceptor state.

Two bounds on the N chemical potential arise in this
case: N2 molecules and the Zn3N; compound. The com-
pound Zn3N; has the bixbyite structure,?® which con-
tains 80 atoms in the unit cell. This exceeds the capa-
bilities of state-of-the-art first-principles calculations; we
have therefore resorted to calculating a higher-symmetry
structure, whose energy closely approximates that of
the real compound. With regard to the other bound,
our application of N3 molecules as a solubility-limiting
phase does not imply that we assume equilibrium be-
tween ZnSe:N and N; gas outside. Rather, we envision
formation of some condensed phase involving Nj, such as
in a void or In a chemisorbed state. Because of the diffi-
culty in obtaining converged results for the N3 molecule
with an acceptable basis set, the energy difference be-
tween N3 and Zn3N; was taken from experiment.

Our results are displayed in Fig. 4. The bending of
the contour lines in the upper part of Fig. 4(b) is due
to native defects. Indeed, the N concentration is very
low here [less than 1012 c:m"s see Fig. 4(a)}, and a small
concentration of native defects suffices to pin the Fermi
level. However, native defects play cnly a minor role if
the right conditions (chemical potentials) are present for
high N dopant concentrations. At the point of highest N
inoox;poration. the calculated N concentration is 6.4x101°
cm™3,

The native defect concentration once again increases as
we approach the lower end of the accessible region (low
s, le., Zn-rich conditions). The dominant native de-
fect is the Zn interstitial; its concentration as a function
of chemical potentials is shown in Fig. 5. The compen-
sation due to this native defect is still small enough not
to pose any threat to the doping. We have verified that
this conclusion remains true even if our calculated forma-
tion energy for the native defect would be off by several
0.1 eV. The reason the results are not very sensitive to
such insccuracies is the “negative feedback” mechanism
discussed in Sec. IIC, acting through the coupling of all
defect and impurity concentrations via the charge neu-
trality condition. In addition, the Zn; concentration falls
off rapidly (faster than the N concentration) as the Se
chemical potential is raised, away from its lower bound.
Other native defects have concentrations four orders of
magnitude smaller than the Zn interstitial. Although our
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calculations indicate Zn interstitials should be present in
N-doped samples in concentrations high enough for ex-
perimental observation, other factors have to be taken
into account. One such factor is the high mobility of the
Zn interstitial,’® which may cause it to move into the
substrate or towards the surface. It is also conceivable
that Zn interstitials (donors) would form complexes with
substitutional N acceptors.

Once again, we have investigated the effect of temper-
ature on our results. Lowering the temperature from 600
to 500 K decreases the total N concentration by a factor
of 4; simultaneously, the concentration of Zn interstitials
drops by a factor of 20.
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FIG. 4. Contour plots of Sa) logio {N], where [N] is the
total N concentration in em™?, and (b) Fermi level (in eV,
referred to the top of the valence band) at 600 K in ZaSe:N.
Since N is substitutional on s Se site, us, (rather than uz.)
is chosen as the variable here. Solid lines indicate bounds on
pse and un.
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FIG. 5. Contour plot of logio (Za2*], the Zn interstitial
concentration in cm™2, at 600 K in ZnSe:N, as a function of
Se and Li chemical potentials. Solid lines indicate bounds on
HSe and un.

A comparison with Fig. 1 show that N has a solubility
significantly higher than Li, which is consistent with ex-
perimental results. The failure of nitrogen doping start-
ing from Nj is due to the large kinetic barrier for break-
ing up the molecule; a plasma source or other technique
for obtaining N in an atomic state, or at least Nj in an
excited state, is required.> Once one succeeds in incor-
porating atomic (as opposed to molecular) nitrogen into
the lattice, N should act as a good acceptor, allowing
hole concentrations high enough for useful device appli-
cations.

IV. SUMMARY

We have presented a formalism that enables us to cal-
_culate impurity concentrations and doping levels in semj-
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conductors. The technologically important case of accep-
tor doping in ZnSe was discussed in detail; however, the
formalism is quite general in nature and can be applied
to any semiconductor and any impurity for which reli-
able first-principles calculations can be carried out. The
computed total energies of impurities and defects allow
us to write down formation energies as a function of the
atomic chemical potentials and of the Fermi level; the
latter is then determined by imposing charge neutrality.

The results are presented in the form of contour plots,
which reflect the dependence on chemical potentials. Al-
though the latter are free parameters, which vary with
the growth conditions, they are subject to thermody-
namic bounds corresponding to formation of other phases
(e.g., formation of Li;Se in the case of ZnSe:Li). Impos-
ing these bounds determines the maximum achievable
impurity incorporation. In addition, our results provide
insight in how variations in growth conditions can pro-
mote incorporation of the dopant in the desirabl: config-
uration.

For acceptors in ZnSe, we have reached the following
conclusions: Although Li suffers from a competition be-
tween interstitial and substitutional configurations, ap-
propriate growth conditions can be chosen to suppress
interstitial formation. The limited solubility of Li (im-
posed by formation of Li;Se) is a more severe obstacle to
the success of Li as a p-type dopant. Sodium suffers from
this type of solubility problem to an even greater extent.
Nitrogen, finally, emerges as the best choice among the
dopants examined here.
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The forces on dopant impurities and other defects are crucial in determining defect motion and
diffusion in semiconductor heterostructures. Impurity ions and other charged defects feel electrostatic
forces, just as electrons do. However, at heterojunction interfaces, electrons feel additional forces associ-
ated with band-edge discontinuities. Here, the analogous forces for ions and charged defects are de-
rived, and given a simple physical interpretation. The donor or acceptor level is found to play much the
same role for the ion that the band edge plays for the electron or hole in defining the effective potential.
These forces can in general be spatially discontinuous, because of their dependence on charge state.

PACS numbers: 66.30.Jt, 66.30.Lw, 68.35.Fx

In the last decade, there has been an explosion of in-
terest in semiconductor heterostructures and other com-
positionally modulated structures, because of their use-
fulness in clectronic devices. Originally, attention cen-
tered on the properties of electrons and holes in such
structures; the central theoretical problem was then the
determination of the band-edge discontinuities at semi-
conductor interfaces.! Now that such devices are a real-
ity, however, attention is turning to the factors which
determine the growth and stability of these structures.

Diffusion is often a limiting factor in the design and
manufacture of heterostructures, especially diffusion of
dopants and other impurities.2 Impurity diffusion is of
great interest in its own right, and has been the focus of
intense theoretical study.? But in the context of a het-
crostructure, such diffusion raises a new theoretical is-
sue, which is closely analogous to the band offset prob-
lem for clectrons. Specifically, one needs to determine
what forces act on charged defects at semiconductor in-
terfaces, or in compositionally graded structures. Here,
we derive a simple and intuitive solution to this problem.

For a neutral impurity, the only driving force (other
than entropic) would be the gradient of the enthalpy;? so
the enthalpy, which depends on position through the lo-
cal composition and strain, plays the role of a potential.
For a charged impurity, as for an electron, there is an
additional driving force, the electric field. But in addi-
tion, at a semiconductor interface, an electron or hole
sees an abrupt change in the potential, corresponding to
the conduction-band or valence-band discontinuity.
(Throughout, the word “potential” refers to potential en-
ergy, not clectrostatic potential, unless specifically stat-
ed.) The question, then, is what force the ion sees at the
interface.

Intuitively, one might consider that there is some elec-
trostatic dipole at the interface, and that the ion will see
a force determined by the product of its charge and this
dipole.® However, it is now generally appreciated' that
it 1s impossible, even in principle, to uniquely definc tha
dipole at a heterojunction (except relative to an arbitrary

reference interface). Dur goal, then, is to define an
effective local potential for an ion, or for any charged de-
fect, referring only to physical observables. In particu-
lar, we must evaluate the energy required for a charged
defect to cross an interface, without any explicit refer-
ence to a dipole at the interface.

To do this, we can imagine moving the ion through the
material in two steps: moving the neutral defect or im-
purity, and then ionizing it and returning the electron or
hole to the starting position. In this way we reduce the
problem to two well-understood problems: the motion of
a neutral impurity or defect, and the motion of an clec-
tron or hole.

Consider a donor D, which could be a substitutional
impurity such as a dopant, or more generally a vacancy,
an interstitial, or any other sort of defect. We begin with
the defect in its thermodynamic reference state, D, and
then consider inserting it into the semiconductor in its
neutral charge state, ionizing it, and so forth, writing a
sequence of conversions which conserve energy:

Diy— DR-HJ
— D =l tes—HS
—Di—-I4,+E5—u—H]J. (1)

Here HY is the enthalpy solution for the neutral impuri-
ty in semiconductor A, or more generally the enthalpy of
formation of the neutral defect from its reference state.
In the case of a shallow donor, by the neutral state we
mean the donor with the electron bound in its 1s hydro-
genic orbit. This first step, formation of the defect, typi-
cally results in an energy deficit, since the enthalpy of
formation is usually positive.

The second step in Eq. (1), ionization, entails a fur-
ther energy deficit of /4, the ionization energy of the
neutral defect in semiconductor 4. This step yields an
clectron e, at the conduction minimum in A. The final
step makes use of the role of the Fermi level u as a reser-
voir of clectrons and holes, to convert the extra electron
e4 into a corresponding energy £5 —u, where ES is the
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position in energy of the conduction-band minimum of
A. (As always in the grand-canonical ensemble, particle
number and charge are not conserved microscopically,
only statistically.)

Of course, a similar equation applies for acceptors,
where all of the charges are reversed, the electron is re-
placed with a hole, and the valence-band maximum re-
places the conduction minimum. Double donors and
multiple charge states are discussed below.

Note that the subscript 4 may be taken to fully speci-
fy the local semiconductor, including its composition,
strain, and local electrostatic potential. Thus just as H2
acts as a local potential for the neutral defect, so the cor-
responding effective potential for the charged donor from
(1) may be written

Va=HS+1,—(ES—-p). ()

The conduction-band minimum E€ includes the effects of
any clectrostatic fields associated with band bending,
etc., as well as compositional effects (band discontinui-
ties at interfaces). It is important to remember that
there are compositional effects in graded devices, just as
at abrupt interfaces; in fact, such grading can be viewed
as a sequence of interfaces between regions of slightly
different composition.

The potential for the ion is seen to be determined en-
tircly by local quantities, i.e.,, quantities which depend
only on the local composition and strain, except for the
conduction-band minimum. The latter is not a local
quantity, in that it depends on the distribution of charges
far away; but it is uniquely defined at every point for any
system in which the electrons are in equilibrium, i.e.,
where the Fermi level u is well defined.

The only quantities needed to deduce the force from
Eq. (2) are the band-edge discontinuity, the defect ion-
ization energy, and the enthalpy of the neutral defect.
There are all experimentally measurable quantities, so,
in principle, no further theoretical inputs are needed.

We can place a rather simple physical interpretation
on this effective potential for charged defects. The quan-
tity EG—14 is just the donor level EY*. Substituting
into Eq. (1), one can easily verify that when this energy
level falls below the Fermi level p, i.e., when EY* —p is
negative, the defect’s energy is lower in its neutral state.
But when this energy falls above p, the defect will prefer
the positive state.

Moving the charged donor is analogous to moving the
neutral defect, plus a hole at the level EY*. As this lev-
el moves up or down in response to changes either in the
clectrostatic fields, the local composition, or the strain,
there is a corresponding change in the energy of the de-
fect. The result is an effective potential

Va=HI—(EY* —u). (3)

This can be derived simply by substituting the definition
of EY* into (2). But in addition. it can be interpreted

388

as the effective potential for the neutral defect, plus a
term corresponding simply to shifting the hole state up
and down in energy (the sign would, of course, be posi-
tive instead for an electron). The electronic contribution
to this, for the case of an acceptor, is shown in Fig. 1.

In the special case of a shallow donor impurity, the
ionization potential is quite small and may be neglected
here. In that case, the extra potential seen by the ion is
simply the negative of the conduction-band edge. It is as
if the conduction-band edge represented a real potential
for an electron, while the donor, being positive, simply
sees the opposite potential.

For a deep donor, where the ionization potential is a
crucial term in the effective potential (2), no such simple
interpretation is possible in general. But there may be
cases in which the donor level £%*, or some other defect
level, has only a very small discontinuity across the
heterojunction. Such behavior has been discussed in par-
ticular in the case of transition-metal impurities in com-
pound semiconductors.® In that case, the donor, al-
though charged, would see at most a weak potential
discontinuity across a heterojunction; to a first approxi-
mation, it would only see the “real™ electrostatic fields

(a)
® e
0 = \; . s ———
e Y e
3 $
\.\\

FIG. 1. (a) The band diagram for a semiconductor hetero-
junction, where both sides are n type. Solid lines are valence
maximum and conduction minimum, as indicated. The dashed
line is the Fermi level. Dotted lines are single and double ac-
ceptor levels EY™ and E4/~ ", where signs in parentheses in-
dicate the charge state for the Fermi level in the indicated re-
gion. Very deep acceptor levels are chosen for visual clarity.
(b) The heavy solid line is the electronic contribution to the
effective potential, as in Egs. (3} and (4), but for acceptors; the
contribution from H? is omitted, so this is just the difference
between the potential for the charged and neutral defects. The
horizontal dashed line is the zero of the potential. Light dotted
lines are copied from the band diagram (a). to tllustrate the re-
lation of the effective potential to the band diagram. Note that
the potential is discontinuous at the interface. An arrow indi-
cates a kink in the potential (discontinuity in force) where the
double acceptor level crosses the Fermy level.
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associated with band bending in the semiconductor.

Many defects can exist in multiple charge states. This
possibility arises whenever one of the defect levels (c.g.,
EY*) falls in the band gap, so that it can be either
above or below the Fermi level. The generalization to
other charge states is straightforward. For example, for
a double donor, following the same sort of analysis as
above, one finds

Vet =vh—(EF -, )
where EJ/** =E$—171, I being the second ionization
energy of the defect.

A defect may therefore have several effective poten-
tials, one for each charge state. The defect will assume
whichever charge state minimizes the energy, i.e., which-
ever gives the lowest effective potential. As the defect
moves through regions of different electrostatic potential,
strain, or composition, two potentials (c.g., ¥® and V' *)
may cross, equivalent to the level (in that case E¥*)
crossing the Fermi level. At that point, the defect
changes charge state, and the force (though not the po-
tential) changes discontinuously. Variations in charge
state with defect position may lead to a host of interest-
ing effects.®

The elecironic contribution to the effective potential
(i.c., omitting the enthalpy term H°) is shown for the
casc of an acceptor in Fig. 1. Note the discontinuity in
the poteatial at the interface, and in the force where the
charge state changes. Because we have assumed a con-
stant composition and strain in each region for Fig. 1,
the defect levels track the band edges within each region.

Finally, we consider some subtleties which were
glossed over above. The first concerns the extent to
which quantities such as the conduction-band minimum
can be defined locally in an inhomogeneous system. This
might seem to posc a serious problem here. For exam-
ple, the ionization energy plays a crucial role in the
derivation; but ia a narrow quantum well, the lowest lev-
el into which an electron can be placed is raised, relative
to the nominal condaction minimum, by a confinement
energy. Thus the jonization energy is not strictly a local
quantity.

Fortunately, if we go back to the physical processes
used to derive Eq. (1), we see that the dependence of the
various terms on such effects cancel. Thus £, etc., can
be interpreted in the usual way, as corresponding to the
values for an infinite, homogeneous system having the
composition, strain, and electrostatic potential of the
specified point in the real inhomogeneous system.

This may be illustrated by two simple examples. First,
consider a deep donor, whose wave function is very local-
ized. The neutral-state enthalpy depends only on the lo-
cual composition and strain, and is unatTected by the fuct
that the impurity is in a narrow well. The ionization e¢n-
ergy is increased by the confinement energy of the ion-
1zed electron. But the energy regained when returming

the clectron to the Fermi level is increased by exactly the
same amount, so there is no net confinement effect. Al-
ternatively, consider a very shallow donor. The ioniza-
tion energy is negligible: but the enthalpy of the neutral
impurity is increased by the confinement energy of the
bound hydrogenic level, which is essentially identical to
the confinement energy of the ionized electron, so again
one has a complete cancellation.

Another subtiety neglected above involves the refer-
ence state for defining the enthalpy of the neutral defect.
Consider for concreteness a substitutional P in a Si-Ge
heterostructure. Moving the P from the Si into the Ge
necessarily entails moving one Ge atom into the Si. In
principle, this could be done by switching Si and Ge
atoms at kinks in an interface step, with zero change in
energy. But since we are dealing with a nonequilibrium
process, there is no justification for assuming a particular
final geometry. The actual final position of the Ge atom
in the Si will depend on the diffusion mechanism. So
there is a possible contribution to the enthalpy difference
equal in magnitude to the enthalpy of substitution of one
atom of 4 in B.

Fortunately, for semiconductors which are well
enough lattice matched to be useful in heterostructures,
this enthalpy of substitution is typically exceedingly
small, so we are justified in neglecting it. (For example,
the enthalpy of substitution of Si in Ge, or vice versa, is
estimated to be 10-20 meV.” For cation interchange in
GaAs-AlAs, it is even smaller.) However, cases such as
Ge-GaAs, where the two semiconductors are from
different columns and so the substitution is not isovalent,
present an interesting problem which is beyond the scope
of this discussion.

Also, the neutral-defect enthalpy H? is not strictly lo-
cal: Because of the finite range of the defect’s strain
field, the enthalpy depends on the host composition and
strain over a finite-size region around the defect. How-
ever, the defect strain is typically large only for its
nearest neighbors, making the potential nonlocal only on
a 2-3-A length scale, an effect which we can safely
neglect in discussing diffusion, etc.

Finally, it might be tempting to assume that the
enthalpy of a substitutional impurity, say, P, would be
similar in Si and Ge, so the ion would feel an effective
potential corresponding to the band discontinuity. How-
ever, without accurate measurements or calculations,
such an assumption would be unjustified. It is equally
possible, and perhaps even more plausible. that the ion
has similar enthalpies, so the neutral enthalpy in the two
hosts would differ according to the band discontinuity.

In conclusion. we have shown that an ion (or any
charged defect) in a heterostructure experiences an
ciTective potential, in addition to the enthalpy of the neu-
tral defect, which is given simply by the donor or accep-
tor level (with the appropriate sign), relative to the Fer-
mi level; or for higher charge states, by the sum of the
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intervening levels. This result provides the remaining
term, missing in previous work,? which is needed for a
correct and complete treatment of diffusion in hetero-
structures.

It is a pleasure to acknowledge S. M. Hu for introduc-
ing me to this problem, and F. Stern for helpful com-
ments. [ am also grateful for discussions with R. Lever,
who independently reached similar conclusions. This
work was supported in part by ONR Contract No.
N00014-84-C-0396.
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The energies of carbon defects in silicon are calculated, using ‘an empirical classical potential, and
used to infer defect properties and reactions. Substitutional carbon is found to react with silicon intersti-
tials, with the carbon “kicked out™ to form a (100) split interstitial. This interstitial can in turn bind to
a second substitutional carbon, relieving stress, in three configurations with similar energics. The results
here accord well with a variety of experimental data, including defect structures, activation energies for
defect motion, and coupling to strain. A discrepancy with the accepted values for carbon solubility in
silicon suggests a reinterpretation of the experimental data,

PACS numbers: 61.70.Rj, 61.70.Bv, 61.70.Yq, 71.45.Nt

In recent years there has been tremendous progress in
the theoretical understanding of both dopant and native
defects in silicon.! However, no comparable study has
been made of isovalent impurities. Yet carbon is a ubi-
quitous and important impurity in silicon, exhibiting a
wealth of interesting configurations. 2

As a first step towards a fuller theoretical understand-
ing, extensive calculations of carbon defects in silicon
have been performed, using an empirical classical poten-
tial® to model the atomic interactions. Specific issues ad-
dressed here include the solubility of C in Si, its
diffusion, the formation, migration, and structural prop-
erties of interstitial C, and the binding of C interstitials
to substitutional C, to form C complexes. The results,
summarized in Tables I and II, are in accord with exper-
imental data for a striking variety of properties,
confirming the value of the present simple approach for

TABLE 1. Formation energy (in eV) of defects in silicon
containing onec carbon atom, and of their two-C complexes
with a substitutional carbon. The silicon vacancy is also in-
cluded, to show its interaction with substitutional C. Labels of
two-C complexes are explained in text.

Energy of Energy of Label of
Defect defect complex complex
Substitutional 1.6
Si vacancy 37 50
Interstitials*
B 5.3 5.1 CSsC
6.4 CCs
S 4.6 s.1 SCSC
5.2 SCCS
6.3 SSCC
X 5.9
T (3.8%] 7.4
H 6.7

“Labels B. S. X. T. and H denote bond centered, (100) split. ex-
<hange li.c.. (110) split], tetrahedral hollow site, and hexagonal hollow
site; see Rel. | for structures.

"This small value is believed to be an artifact of the short cutofl dis-
tance used; see Ref. 13 for discussion.

initial studies of this challenging system.

As expected, the lowest-energy form of C in Si is
found to be substitutional C. The calculated activation
energy for substitutional diffusion is a bit less than 4 eV,
in reasonably good agreement with experiment. Com-
parison of substitutional and interstitial energies indi-
cates that a Si sclf-interstitial can “kick out™ substitu-
tional C, or form a C interstitial in the (100) split con-
figuration, precisely the process which has been ob-
served.® The interstitial's migration energy, and its elas-
tic coupling tensor, are in good agreement with experi-
ment.’

The interstitial can in turn bind with another substitu-
tional C; the compressive stress of the interstitial C tends
to cancel the tensile stress of the substitutional C. The
predicted structures for this complex accord with those
observed by Song et al.®

The enthalpy of solution for substitutional C has been
measured’® as 2.3 eV. Here the energy is calculated as
1.6 eV, an apparent discrepancy. However, simple con-
siderations discussed below suggest that the experiment
can be more consistently interpreted as giving an energy

TABLE II. Calculated activation energics, and strain cou-
pling constants, for C defects in Si (in eV); and experimental
values for comparison.

—— —— 4
Property Calculation Experiment
Energy of substitution 1.6 1.5,22.5,°%1.7¢
Interstitial migration >0.74 0.9°*
Diffusion 39 3f
Interstitial C 4,
Aun - 8 7°
An -1 0
An -7 -7
———
“Reference 8.

*Reference 7.

“From reevaluation of Ref. 7: see text and Ref. 12,

%0.9 eV if include estimated barrier of 0.2 ¢V between S and 8 inter-
stitials; see text.

“Reference S.

‘Reference 4.
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of 1.7 eV, in good agreement with the present calcula-
tion.

The empirical classical potential used here to calculate
the energies has been presented clsewhere.? It begins
with potentials derived carlier for elemental Si and C;
parameters describing Si-C interactions are determined
from the clemental parameters by an interpolation
scheme. This approach is necessarily less accurate than
“first-principles” methods, and neglects electronic de-
grees of freedom. However, by simplifying the calcula-
tions, it permits us to get a broad view of the possible de-
fects and reactions, tying together a large body of experi-
mental data.

Extensive tests have confirmed the suitability of this
method for treating point defects, including isovalent im-
purities.? In particular, results for C and SiC have been
compared® with “state-of-the-art” quantum-mechanical
calculations of Bernholc and co-workers.>!® The present
method is rather successful in treating point defects in
those materials, including antisite defects. There is thus
ample reason to expect comparable accuracy for C in Si.

The potential here differs from that described earlier?
only in a small change of the parameters for carbon.
The parameters'' used here are constrained to reproduce
the energy of the vacancy in diamond, as calculated by
Bernholc er al.,® at the expense of a poorer description
of graphite, which was deemed less relevant for the
present application. (In the defects studied here, three-
coordinated C atoms have no opportunity for x bonding.
This is similar to the vacancy in diamond, but in contrast
to graphite.) In addition, since we are not concerned
with dynamical simulations, where the potential must go
smoothly to zero with distance, the potential is here
abruptly truncated at 2.5 A, consistent with the original
nearest-neighbor-only picture.!' This short cutoff leads
to problems only in the case of the tetrahedral intersti-
tial, discussed below.

For consistency, we refer in Table [ and throughout to
the free energy of formation, E — Ngiusi—Ncuc. The
chemical potentials us; and uc are —4.63 and —7.70 eV
here, determined by equilibrium with Si (cohesive energy
4.63 cV/atom with the present potential), and with SiC
(12.33 ¢V per formula unit). All structures are fully re-
laxed in a cubic cell 16.3 A on a side (216 atoms without
defects), with periodic boundary conditions, at zero tem-
perature.

The natural place to begin is with substitutional C,
since this is the simplest and most common carbon defect
in Si. From elementary statistical mechanics,'? the equi-
librium concentration is expected to be 5% 1022exp( — A/
kT) em ™3, Here 5x10%2 cm™3 is simply the atomic
density of pure Si, and A is the energy of substitution per
atom. The energy of an isolated substitutional C impuri-
ty in Si is calculated to be A=1.6 eV; see Table I.

Bean and Newman’ reported an energy of C in Si of
2.3+0.3eV. The discrepancy of 0.7 eV with the present
results would be considered acceptable even for a first-
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principles calculation. However, the experimental value
was determined by a fit to the solubility data, which
yielded a concentration of 3.5%10%exp(—2.3/kT)
cm ~3. Although this result is still cited as the definitive
measurement of carbon solubility, I know of no discus-
sion of the unexpectedly large prefactor.

The actual measured solubility at high temperature
(where the measurement should be most reliable), in
combination with the theoretical prefactor, yields an en-
ergy of substitution of 1.7 ¢V, in good agreement with
the present theoretical result. Morecover, the resulting
solubility curve lies within the scatter of the experimen-
tal data over the entire temperature range, and actually
improves the fit in the more reliable high-temperature
range.

It therefore seems reasonable to propose a tentative
reinterpretation of this experiment, as consistent with a
solubility of 5x10%2exp(—1.7 eV/kT) cm ™. In fact,
an ecarlier experiment by Newman and Wakefield* was
interpreted® as giving an energy of substitution of 1.5
¢V, in excellent agreement with the present result of
A=]1.6¢eV. .

The calculated interaction between substitutional car-
bons is repulsive, with first- and second-neighbor interac-
tion energies of 1.3 and 0.3 eV, respectively. Thus pre-
cipitation of substitutional carbon is not expected in the
absence of structural defects which could relieve strain.

Substitutional C is found to have a more complex in-
teraction with the Si vacancy. The “nearest-neighbor™
interaction, i.e., for C on one of the four threefold sites,
is repulsive: 0.2 eV. The C dangling-bond energy is of
the order of 1 ¢V larger than that for Si,* which would
imply a 1-eV repulsive interaction with the vacancy.
However, this is largely cancelled by the energy gained
from partial relief of the strain, when the C sits on the
less-constrained threefold-coordinated site.

The second-neighbor interaction between substitution-
al C and the vacancy (shown in Table I) is, however, at-
tractive: —0.3 eV. This binding results simply from the
partial release of strain, because the vacancy's neighbor-
hood is more easily deformed than the perfect crystal.
This result suggests how defects such as internal sur-
faces, where steric constraints are weakened, can serve as
centers for the nucleation of SiC precipitates.

From Table I, the lowest-energy C defects in Si, after
the substitutional, are the low-coordination interstitials:
the (100) split interstitial, and after that the bond-
centered interstitial. The structures of these defects are
shown in Fig. 1. (The tetrahedral interstitial is calculat.
ed to have an even smaller energy: however, this is ap-
parently'? an artifact of the short cutoff.)

The formation energy for an interstitial, starting from
a substitutional C, from Table I is 4.6 —1.6=3.0 eV.
This is less than the calculated energy of any Si self-
interstitial.> Thus Si self-interstitials (e.g., generated by
irradiation) should react with substitutional C in an ex-
othermic “kick-out™ process, forming interstitial C in the

9 APRIL 1990
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FIG. 1. Relaxed structure of selected C defects in Si. A
(110) plane is shown, with the vertical and horizontal axes cor-
responding to the [001) and [110] directions, respectively.
Each figure is 8x8 A2, Axis tick marks are chosen to corre-
spond to ideal positions of Si atoms. Solid symbols are atoms
in the plane of the figure; each open symbol corresponds to two
atoms out of the plane, one in front and one behind. Circles
are Si, smaller squares are C. (a) Pure Si, for reference. (b)
Substitutional C in Si. Note inward displacement of neighbor-
ing Si. (c) Interstitial C in (001) split configuration. (d) In-
terstitial C in bond-centered configuration. Note displacement
of C from [111) axis connecting its two Si neighbors. (e)
Complex of substitutional C and C split interstitial, denoted
SCSC in Table I. (f) Complex of substitutional C and C
bond-centered interstitial, denoted CSC in Table L.

(100) split configuration. This reaction has been ob-
served experimentally by Watkins and Brower,’ with the
resulting C interstitials having the expected structure.

The migration energy of the C interstitial, as well as
its formation energy, can be estimated from Table I, and
compared with experiment. One typically assumes' that
the saddle point for interstitial migration is the next
higher-energy interstitial configuration, in this case the
bond-centered interstitial, giving a migration energy of
5.3-4.6=0.7 ¢V. However, the split and bond-centered
interstitials are both found to be (meta)stable minima,
not saddle points, so the calculated migration energy
should be > 0.7 eV,

Watkins and Brower® have measured the interstitial
migration barrier as 0.9 eV. This is consistent with the
calculation if the barrier between the split and bond-
centered interstitials is 0.2 V. In fact, Song et al. ® have
studied a closely analogous system, the two-C substitu-
tional-interstitial complex, and find precisely this behav-
ior. Both the split and bond-centered configurations are
found to be (meta)stable, with a barrier of 0.2 eV be-
tween them. This consistency provides strong, though in-
direct, evidence that the difference between split and
bond-centered interstitial energies in Table [ is rather
accurate.

It is worth noting that in first-principles calculations of
bond-centered interstitial energies, it is often found
necessary due to practical constraints to consider only
symmetry-preserving relaxations.! However, such a cal-
culation for C in Si gives a formation ¢nergy of 6.6 ¢V,
1.3 eV higher than the value in Table I. Such a large

value would qualitatively alter the conclusions for inter-~
stitial migration,

To address the formation energy of the split intersti-
tial, we note that the activation energy for diffusion
should be the sum of the formation energy of the inter-
stitial from the substitutional, 4.6 —1.6 =3.0 eV, plus the
interstitial migration energy, 0.9 eV, giving a diffusion
activation energy of 3.9 eV. This is in rather satisfactory
agreement with the experimental value® of 3.1 eV.
(Even first-principles defect calculations quote uncer-
tainties of 0.5 eV or more.)

A powerful tool in identifying defects of low symmetry
is the analysis of their stress-induced alignment. This
alignment gives information on the elastic coupling ten-
sor, By =dE/de,;, or more precisely, on its traceless part
Ay=B;— ¥ 6, TrB. For the C interstitial, Watkins and
Brower®> found that Ay, =7 eV, A33=0 eV, and
Ajy3=—17 eV. (Other clements are zero by symmetry.)
Using the same orientation convention, the calculated
components are 4, =8 ¢V, A= ~1¢eV,and A3~ ~7
eV, in good agreement with experiment. (Even the
agreement for 42; should be considered good, since the
relevant energy scale here is 7 eV. It is fortuitous that
subtracting the hydrostatic component results in a num-
ber near zero.)

Finally, we consider the interaction of interstitial C to
substitutional C. Table I gives the energies of several in-
tuitively reasonable configurations for the substitu.
tional-interstitial complex, based on the low-energy split
and bond-centered interstitials.

The labeling of the two-carbon complexes in Table | is
intended to be intuitive. For the bond-centered case, the
interstitial atom is bonded to two neighbors. The label
indicates the atoms along the chain, with S for silicon;
¢.g., CSC means a Si interstitial bonded to two C, as in
Fig. 1(f). The split interstitial has two central atoms,
cach threefold coordinated. The label WXYZ means
that the two central atoms are X and Y, W is C if any
neighbor of X besides Y is carbon, otherwise it is S.
Thus SCSC means that the two central atoms are C and
Si, the C has all Si neighbors, while the Si has two C
neighbors (and one Si), as in Fig. 1(e).

From Table I, three of the complexes have calculated
energies distinctly lower than the rest, with about 1 ¢V
binding energy. The two lowest-energy defects, labeled
SCSC and CSC, have been identified by Song er al. ¢ as
the two configurations of a bistable complex, with nearly
identical energics, in agreement with the calculation.
The defect structures are shown in Figs. 1{¢) and 1(f).
The third low-energy configuration, SCCS, has not been
observed.

The strong binding of interstitial C to substitutional C
can be easily understood as arising (at least in part)
from the relief of stress. The split und bond-centered in-
terstitials are both under considerable compression,

} TrB=—8 and —18 eV, respectively. In contrast,
substitutional C, being smaller than Si, is under a large
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tensile stress of 16 eV. The interstitial and substitutional
can bind in complexes with much smaller stress than the
individual defects, since the stresses are of opposite sign
and tend to cancel. For the complexes labeled SCSC
and CSC in Table I, the calculated stresses are only 8
and 12 eV, respectively.

In conclusion, by calculating the energies of a large
number of possible C defects, we provide an overview of
the expected properties of C in Si. The resulting picture
is in excellent accord with a wide body of experimental
data, including defect structures and reactions, activa-
tion energies for diffusion and for interstitial migration,
and even the elastic coupling tensor for the low-sym-
metry C interstitial. For the solubility of C in Si, where
a modest discrepancy exists with experiment, we propose
that the experimental data can be more consistently rein-
terpreted as supporting the results of the present work.
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ful discussions, and R. M. Tromp for comments on the
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Contract No. N00O14-84-C-0396.
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Nature of the Step-Height Transition on Vicinal Si(001) Surfaces
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The Si(001)2x1 surface is expected to undergo a phase transition from single- to double-atomic-
height steps with increasing angle of miscut. Here we show that this transition is quite different than
previously believed, involving something like a “devil’s staircase™ of transitions in a mixed phase consist-
ing of a complex sequence of single and double steps. Even at low angles, where only single steps occur,
the areas of 2x1 and 1 X2 regions are unequal, in agreement with recent experimental results.

PACS numbers: 68.35.Bs, 64.80.Gd

Steps play a crucial role in growth at semiconductor
surfaces. There has been particular interest in the role of
steps of single versus double atomic height on Si(001),
since single-height steps necessarily lead to antiphase
boundaries in III-V semiconductors grown on Si [1].
Moreover, a series of papers by Alerhand and others
(2-7] has revealed that steps on Si(001) exhibit fascinat-
ing behavior, including most notably a phase transition
with increasing angle of surface miscut along {110).

Here we show that the nature of this phase transition,
and the dependence of miscut angle generally, is rather
different than previously believed. In particular, there is
neither an abrupt transition from single- to double-height
steps with angle {2-4] nor a coexistence between spatially
separated regions of single- and double-height steps [5].
Instead, as the angle increases past a critical value, pairs
of single-height steps collapse into double-height steps in
a complex pattern, so that at zero temperature the sur-
face undergoes a cascade of transitions resembling a
“devil’s staircase” [8]. In addition, even for small angles,
where only single-height steps occur, the sizes of the 1x2
and 2x1 terraces are unequal. This explains the surpris-
ing recent measurements of Tong and Bennett (7).

The competition between single and double steps was
first analyzed by Chadi [9], who identified the step atom-
ic structures shown in Fig. |. Because of the symmetry of
the dimerized Si(001)2x | surface, there are two distinct
types of single-height steps, denoted S, and Sz. Single-
height steps separate regions of 2x1 and 1 x2 periodicity,
so on vicinal surfaces one cannot have two S, steps
without an intervening Sy step, or vice versa. Since there
is no corresponding restriction on double-height steps,
only the lower-energy type (denoted Dp) need be con-
sidered [9).

Alerhand et al. [2] pointed out that, in order to fully
understand the competition between single- and double-
height steps, one must include the elastic interaction be-
tween the steps. Because of the anisotropic stress of the
2x 1 surface, the energy of a flat Si(001) surface can al-
ways be lowered by introducing single-height steps, which
break up the surface into domains of alternating orienta-
tion of the dimerization [6].

Single-height steps remain energetically preferred for

small miscut angles. But because of the strong mutual
repulsion between single steps, when the step spacing be-
comes too small (i.c., at large miscut angles) the energy
of a pair of single steps becomes higher than that of a Dy
step, leading to a surface phase transition [2). This pic-
ture was further elaborated by Poon et al. [4], and by
Bartelt, Einstein, and Rottman (5.

From this extensive body of previous work, it is well es-
tablished that there are two principal interactions be-
tween steps on Si(001), which follow directly from ele-
mentary elastic theory and the symmetry of the surface
[2,4,6). First, the anisotropic stress of the surface due to
the 2x1 dimerization leads to a force monopole acting on
the S4 and Sp step edges [6] and, consequently, a loga-
rithmic dependence of the interaction energy on step sep-
aration [10). Second, step edges in general may give rise
to a force dipole, and for Si(001) this dipole is significant
for S and Dg steps. The dipole-dipole interaction cner-
gy shows an / ~2 dependence on step separation / {11]. A
simple elastic model incorporating these interactions has
proven to be very successful in describing the response of
2x | and 1x2 domain sizes to an externally applied strain
[6,12], and in reproducing the results of detailed atomis-
tic simulations [4].

Here we use the same elastic model, augmented by

FIG. 1. Side view of the crystal structure of steps of single
(S» and S,) and double (D;) atomic height on vicinal Si(001)
surfaces. A [170] projection is shown. Horizontal bonds are di-
mers of 2% | terrace; solid circles denote dimers of |1 X2 terrace,
which are normal 1o the plane of the figure.

© 1991 The American Physical Society 465
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atomistic simulations, to show that steps on Si(001) ex-
hibit an even richer and more complex behavior than pre-
viously recognized. We begin our analysis by considering
surfaces miscut at smail angles from the (001), where
only single-height steps are expected. Recently Tong and
Bennett [7] found that the areas of 21 and 1x2 ter-
races were unequal even at small aagles. This implies ei-
ther that S4 and §, steps are not equally spaced, as has
been universally assumed, or else that Ds steps are
present even at small angles.

In order to understand this behavior, we calculate the
energy of a surface with a given miscut angle, and hence
a given step density, as a function of the width of the 2x1
terrace. (Here 2x1 and 1x2 refer respectively to the ter-
races with dimer bonds perpendicular and parallel to the
step edge.) The results are shown in Fig. 2(a) for a rela-
tively small (but otherwise arbitrary) angle. The ter-
race-size asymmetry is immediately apparent.

Before addressing the physical mechanism responsible
for the asymmetry, we should mention some details of the
calculation. As we are in effect extending the work of
Poon et al. {4), we use the same potential model, that of
Stillinger and Weber [13], to permit direct comparison.
However, as discussed below, the qualitative results may
be understood from a rather general perspective, and do
not depend on the precise potential. The effect of the po-
tential on quantitative results is also discussed below.

Because of the long periodicity of the steps, and the
corresponding depth of the strain fields, accurate numeri-
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FIG. 2. Energy of a pair of S4-Ss steps for two fixed miscut
angles 8 corresponding to step separations / vs the width of the
minority terrace. The left-most data point corresponds to a Da
step, representing the smallest possible terrace width, The
right-most point is the symmetric case of equally wide 2x 1 and
1%2 terraces (ie., p=0). Dots are results from numerical re-
laxations of Si atoms interacting via the empirical Stillinger-
Weber potential. Solid line is elastic continuum model, Eq. (1).
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cal relaxations require enormous cells when performed
with traditional methods [4]. We have therefore imple-
mented a more efficient approach, where a few layers of
atoms are coupled to a semi-infinite elastic substrate. We
have used 6-8 layers of atoms, and a continuum elastic
substrate incorporating the full cubic anisotropy of Si.
As it is convenient to have the substrate oriented along
(001), an additional double-height step is included to
simulate the vicinal surface on the flat substrate. This
step is fixed in a rigid ideal geometry, so that it exerts no
force. Details of this method will be given elsewhere.
Comparison with calculations performed as in Ref. [4] in-
dicate that the error from these approximations is less
than | meV/a (a=3.84 A).

Our results, the dots in Fig. 2(a), show two local mini-
ma. The higher local minimum (left-most point) corre-
sponds to a D step. The configuration of minimum ener-
gy corresponds to a pair of single-height steps, with the
S, step considerably displaced from the midpoint be-
tween the two neighboring Sp steps (right-most dot is
midpoint). Only a small barrier separates the single- and
double-height configurations.

The asymmetric terraces can be understood easily
within the elastic model mentioned above. Let 2/ be the
distance between two steps of the same kind, with a being
the surface lattice constant, and (1 —p)! being the size of
the 2x ] terrace, so p describes the asymmetry between
1x2 and 2x 1 terrace sizes. Adopting Poon’s notation,
the parameters A, and A4 describe the force monopole
and force dipole terms, with the remaining local contribu-
tions to the step energy included in a constant term
M(s,.+s, ) Then the energy of the step pair is

E=A{S*S0 -9 1n [-’—cosfl’—]
ra 2

2
+2y ';7] —(3&,14)'n-‘7’-tanﬂ. (1)

2

Using values corresponding [4] to the Stillinger-Weber
potential, Eq. (1) gives the solid curves in Fig. 2. These
continuum results agree well with the full atomistic cal-
culations for step separations = 6a. Since steps are never
this close at the angles discussed in this paper, we can
safely use the elastic model without [urther discussion.

For equal terrace sizes (p=0) the final term in Eq. (1)
drops out, giving the expression used in Ref. [4]. Howev-
er, the energy can be lowered by moving the S, step into
a region of increasing displacements induced by the re-
bonding dipole at the Sp step. For small angles this dis-
placement of the S4 step is roughly constant, approxi-
mately Sa.

With increasing angle of miscut the Ds minimum in
Fig. 2 becomes deeper, until at a characteristic angle 8,
the energy of the Dg minimum becomes lower in energy
than the S4-Sp minimum, giving the transition discussed
by Alerhand et al. and Poon et al. Including the terrace
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asymmetry changes this angle only slightly, from 6.
=1.1° to 6. =1.3°.

At still higher angles, the local minimum associated
with single-height steps disappears entirely, as seen in
Fig. 2(b). At such angles S4-S» steps are not even meta-
stable with respect to step displacement, but collapse
spontaneously into Dy steps.

We now turn to the more complex issue of the nature
of the step-height phase transition, which has been the
subject of recent controversy {2,3,5). Previous analyses
have invariably begun with the assumption that one is
dealing with a transition from a phase of pure single-
height steps to one of pure double-height steps. As noted
by Bartelt, Einstein, and Rottman [5], in this case instead
of an abrupt transition at 8, there should occur an inter-
val] of miscut angles 6; <6 =< 6§, where the two phases
coexist (spatially separated) in thermodynamic equilibri-
um. The critical angles 8, and 8, are determined by a
common tangent construction 5], which for the present
parameters gives 6; =0.7° and 6, =2.0°.

However, Alerhand et al. [3) argued that such coex-
istence of phases would require faceting of the surface,
and hence substantial mass transport, which might not be
kinetically allowed. If one allows local equilibration but
not long-range diffusion, an abrupt transition from single-
to double-height steps with angle would be expected.

Let us first examine the assumption that the phases
remain pure. in that case two-phase coexistence (surface
faceting) clearly gives the lowest energy, regardless of
wheiher such a state is kinetically accessible in experi-
ments. If, beginning from such a state, we then move one
pair of S,-Sp steps into the Dy region, we find that the
energy is lowered. Thus there exists a mixed phase of
lower energy than any combination of pure phases.

To show that this conclusion is rather general, we ex-
amine a simplified model. Consider two types (a and b)
of steps with dipolar interactions; i.c., the interaction en-
ergy between any two steps [ and j is proportional to
(424)V2/L3, where L is the distance between the steps,
and A/ can take two different positive values, one for a
steps and one for b steps. These represent Dy steps and
S4-Sp pairs, neglecting the internal degree of freedom of
the pair spacing. Then, independent of the choice of pa-
rameters, the phase with alternating a and b steps is
lower in energy than spatially separated a and b phases.

So far we have only shown that what was believed to be
the lowest-energy step arrangement is in fact unstable
against formation of a mixed phase. To identify the
structure of the minimum-energy mixed phase, we con-
sider a given angle of miscut, and generate all possible se-
quences of single- and double-height steps up to a given
periodicity. For each such sequence, we calculate the en-
ergy within the elastic continuum model, minimizing the
energy with respect to all step positions. We then choose
the step sequence with the lowest relaxed energy.

The results are shown in Fig. 3 for periodicities up to
five double steps. In every case, the energy of the mixed
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FIG. 3. Fraction of surface with 2x | dimerization vs miscut
angle. Patterns with periods up to five double steps are includ-
ed, permitting treatment of angles up to about 1.5°. Each of
the ten line segments corresponds to a distinct phase; the step
orderings in the respective phases are given in the inset, where
“S" denotes a pair of single-height steps and “D™ a Dj step,
“SD™ stands for a periodic arrangement of S»-S,-Dj steps in
that order, etc. Note that all orderings maximize the distance
between single-step pairs.

sequence identified is lower than the energy for two-phase
coexistence or for either pure phase. For angles higher
than about 1.5°, the 2x 1 area becomes rather small, and
periods longer than five are needed to describe the low-
energy mixed phases.

The pattern of sequences in Fig. 3 is rather simple.
The fraction of double steps increases monotonically with
angle. For any given number of double ste-., the remain-
ing single-step pairs stay as far apart as possible, due to
their strong mutual repulsion. For example, the sequence
11122 is missing in Fig. 3, while 11212, being slightly
lower in energy, can be observed. )

The average length of a 2x1 terrace (i.e., the total
2x1 terrace area divided by the number of single-height
step pairs) remains approximately constant in the region
of mixed phases, while it is, of course, rapidly decreasing
with increasing angle in the pure single-height phase.
Thus the behavior of the mixed phase is qualitatively
reminiscent of the coexisting single- and double-height
phases. Consequently, the staircase in Fig. 3 deviates
only by a small amount from the almost linear curve
(linear in tan®) which one would expect in case of two-
phase coexistence.

The result looks like a devil’s staircase: If we could
treat longer and longer periodicities, we would expect to
see finer and finer structure. In fact, in the simplified
model mentioned above of two steps with dipolar interac-
tions, if we constrain the steps to be equally spaced, the
model reduces to one which has been rigorously proven to
exhibit a true devil’s staircase of transitions [8].

The above results are strictly valid only at zero temper-
ature; duc to the small energy differences involved, the
complicated ordered structures will be destroyed at tem-
peratures where equilibration is feasible. Nevertheless,
our conclusions remain relevant at higher temperatures.
For the pure single-height steps which occur at small mis-
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cut angles, finite temperatures lead to thermal meander-
ing; but this meandering takes place in a nearly sym-
metric potential, and so should result in little change in
the average step position (and hence in the average 2X1
terrace size). Therefore the T =0 theory is directly ap-
plicable to the low-angle data in Tong and Bennett’s ex-
periment {7}

At higher angles, since steps already mix at 7 =0, this
should remain true a fortiori for finite temperatures.
Thus our conclusion that the equilibrium state is mixed
rather than faceted or pure, with the 2x 1 terrace area
varying continuously with angle, remains true at all tem-
peratures. However, as discussed by Alerhand et al. (2],
at higher temperatures the frec energy of the single-
height phase is lowered by step meandering, shifting the
transitions to higher angles.

Before ending, we should return to the question of
quantitative accuracy. The interactions of steps on
Si(001) are well described by the elastic model; but the
values of the parameters in the model are not accurately
known. The values used here were obtained in Ref. [4]
from a specific empirical atomistic model [13]. However,
we have calculated the stress anisotropy for this model,
and find it to be a factor of 2 smaller than the most accu-
rate available value [14]). This results in the crucial pa-
rameter A, being a factor of 4 too small. Use of more ac-
curate parameters in the elastic model would probably
shift the transitions in Fig. 3 to higher angles.

Finally, we note that at any finite temperature, along
any infinite step edge in equilibrium there are necessarily
both S 4-Ss- and Dg-like regions. Thus intermixing is ex-
pected even in the direction parallel to the steps. Figure
2 suggests a way to describe such step meandering, con-
sistently allowing for both S4-Ss and Djg steps within a
unified one-dimensional model Hamiltonian. One simply
replaces the harmonic term in the Alerhand-Poon Hamil-
tonian [2,4] by the full potential of Fig. 2. Preliminary
Monte Carlo simulations for this model, for angles in the
transition region, confirm that along the step edge there
are S4-Sg- and Dg-like regions. This intermixing has
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also been previously inferred experimentally by Tong and
Bennett from their scattering profiles.
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Phase Diagram of Vicinal Si(001) Surfaces

E. Pehlke ® and J. Tersofl

IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598
(Received 22 May 1991)

Vicinal Si(001) surfaces are believed to undergo a phase transition between single and double atomic
height steps as either temperature or angle of miscut is varied. Here we calculate the full temperature-
angle phase diagram, which is found to be quite different than previously believed. In particular, there is
a critical point above which there is no phase transition at all. The results appear to explain the rather

continuous behavior seen in a variety of experiments.

PACS numbers: 68.35.Bs, 64.80.Gd, 68.35.Md

Surface steps are crucial in determining the growth
and shape of crystals, and there has recently been intense
interest in understanding the thermodynamics of steps,
¢.g., bunching, faceting, and step-height transitions [1,2].
In particular, steps on vicinal Si(001) surfaces miscut to-
wards [110] exhibit a fascinating transition from single to
double atomic height steps. Yet there is considerable
controversy concerning the nature or even the existence of
a phase transition for this surface [3,4]. Theoretical
treatments have predicted a first-order phase transition
with temperature and with angle of miscut from (001) -
{5-8]; yet experiments find only a continuous variation of
all observable quantities [9-11].

Here, by calculating the full temperature-angle phase
diagram, and including a more complete and accurate
description of the fundamental thermal excitations of the
system, we reconcile the predicted existence of a phase
transition with the continucus behavior observed experi-
mentally. We show that there is a thermodynamic criti-
cal point in the surface phase diagram, above which there
is no phase transition with angle. If surface equilibration
only occurs at temperatures above the critical point, then
the phase transitions predicted theoretically should not be
experimentally observable. In addition, the nature of the
transitions is such that they should be far more difficult to
identify in experiments than previously believed, even if
they occur in an accessible temperature range.

It is well known from different experiments (see, c.g.,
references in [S]) that at small miscut angles the Si(001)
surface consists of terraces of alternating 1%2 and 2x 1}
dimerization. These terraces are scparated by single
atomic height steps, which are denoted [12] S4 and S»
according to whether the dimerization on the upper ter-
race is perpendicular or parallel to the step edge, respec-
tively. (On vicinal surfaces such steps must occur in
Sa-Ss pairs, which we collectively call S steps.) At
larger miscut angles double atomic height steps (denoted
Ds) dominate [13,14], and the surface approaches a sin-
gle domain structure, consisting of dimers parallel to the
step edges (1x2 dimerization). Alerhand et al. [5]
showed that this transition results from the eclastic in-
teraction between steps (15,16} which favors single height
steps at large step-step separations (small angles of mis-
cut), and double height steps at smaller separations.

The role of temperature has so far been included only
as a contribution to the free energy of single height steps
from meandering. Alerhand et al. [S], and later Poon et
al. [8], calculated the free energy of meandering Sy steps
on a single-height-stepped surface. (Mecandering of the
Sy is believed to be negligible.) They employed a one-

dimensional model Hamiltonian including kink-energy

terms and a harmonic potential (so that the S step ener-
getically prefers a position in the middle between the two
neighboring S 4 steps).

Comparing the free energy of S steps with the energy
of straight Djp steps, Refs. (5] and (8] concluded that
there is a first-order phase transition with angle of miscut
at any temperature, from a pure § phase to.a pure D
phase. However, experiments to date have not observed
the abrupt transition predicted. Instead, only a continu-
ous variation with angle [9,10] and temperature [11] has
been observed.

There are two crucial elements missing in previous
theoretical treatments of the surface at finite tempera-
ture. The first element is 8 correct identification of the
zero-temperature structure. We recently showed that the
transition from single to double steps with increasing an-
gle is not abrupt; rather, it takes place through a
(presumably infinite) sequence of phases consisting of
distinct ordered mixtures of double (D) and pairs of sin-
gle (S) height steps [17].

The second missing clement is a comprehensive de-
scription of step meandering. The meandering of isolated
Sa steps has already been treated in detail [5,8). Howev-
er, a double step may be viewed as a bound pair of single
steps (S and S3). At finite temperature, the Sy step of
this pair may meander, breaking up the double step local-
ly. This excitation has been proposed based on reflection
high-energy electron diffraction experiments of Tong and
Bennett [9), and scen in scanning tunneling microscopy
experiments of Wierenga, Kubby, and Griffith {14). And
it is this excitation which blurs the distinction between
single and double steps at high temperature, leading to a
critical point in the phase diagram.

Before presenting results we briefly sketch our pro-
cedure. Rather than considering a single-step pair, we
must consider at least two pairs of steps, in order to de-
scribe the tendency of the surface to form phases consist-
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ing of alternating single and double steps [17]. Such a
set of two pairs is shown in Fig. 1. The spacing of these
steps, in the absence of meandering, can be described by
four parameters: /, /', d, and L. Here L is the overall
periodicity, which is related to the surface miscut angle 6
and surface lattice constant a by L/a =+/2/tan@; ! and /'
are the widths of the 2x | terraces enclosed by two neigh-
boring S, and S steps; and d is the distance between the
S4 steps. For meandering steps, we can so specify the
spacing along any given atomic row in the [110] direc-
tion, i.c., perpeadicular to the step.

The calculation of the interaction energy v{l,/',d,L) is
based on an elastic model [5,8,15,16,18), which has been
widely and successfully employed to treat this surface.
We include both the force monopole due to the anisotro-
py of the surface stress and the force dipole due to local
rebonding at the Sy and Dy step edges. For the interac-
tion parameters we take the values derived by Poon et al.
{8]. However, one must bear in mind that these elastic
parameter values were obtained by fitting to atomistic
simulations which used an empirical model [19], so they
may not be quantitatively accurate. Thus while the re-
sults here reliably describe the topology of the phase dia-
gram, the actual temperatures and angles at which the
transitions take place are rough estimates.

The geometry of a Dj step is essentially that of an
S4-Ss pair separated by about 1.5a. In fact, by choosing
the spacing to be 1.57a, the long-range interaction field of
the S4-S3 pair becomes equivalent to that of a Dy step
for the parameter values used here. Thus, with respect to
the interaction with other steps, the D; step may be treat-
ed simply as a bound pair of single steps. We need only
add to the elastic model a short-ranged (contact) interac-
tion between single steps to give the correct Dy step ener-

However, unlike earlier treatments, to describe the
binding and unbinding of single-step pairs our elastic
model must accurately reproduce the interaction of steps
at atomic distances. We do this by broadening surface
forces with a Lorentzian of width g, retaining the full
complexity of the resulting cumbersome expressions. We

% S S s

R REE

F1G. 1. Schematic drawing of a vicinal Si{(001) surface with
alternating straight S, and meandering S single atomic height
steps. The direction of dimerization is rotated by 90° on con-
secutive terraces. By 1x2 we denote terraces with Si dimer
bonds parallel to the S4 step edge. When the S, approaches
the S step (separation 1.5a) a local portion of Ds step is
formed, as depicted in the left part of the figure.

have explicitly verified the accuracy of this treatment at
all step separations.

The step meandering occurs in units of 2a paralle! and
perpendicular to the step edge, preserving the local
atomistic structure of the steps [20]. The energy of a
configuration of two meandering step pairs with total
length 2Na parallel to the steps, and terrace sizes /; and
I/ at the ith position along the step edge, is given by the
Hamiltonian

N
H-‘Zl e llie =] +2e (1 = 5Im.h)

+l;|11'+| - l,"l +2€‘-(| - 5["”_1")
+20(l,l/,d,L)]. m

Here A5 denotes the energy per length of the intervening
S step, and & is the corner energy of the kink. We use
the values proposed in Ref. [8].

The free energy per 1 x1 surface unit cell for a fixed
separation d of the S, steps is calculated in the usual way
from the maximum ecigenvalue An,, of the transfer ma-
trix:

kaT
2(L/a)

Here kg is Boltzmann’s constant, and the factor of 2 in
the denominator of the prefactor is due to the unit step of
meandering being 2 times the 1x1 surface lattice con-
stant. In equilibrium the free energy is minimized with
respect to the S4 step separation,

f(T.O)-m‘inj(T.B.d). 3)

S(T,6d)=~ InAma (7,6,d) . )

Note that, technically speaking, due to this minimization
our model is effectively not one dimensional. It is the
clastic interaction perpendicular to the step edges that
leads to the cxistence of ordered structures of S and D
steps, and to the corresponding phase transitions.

Because of the added complexity of treating finite tem-
perature, we restrict ourselves to structures of up to two
step pairs. The value of d that minimizes f(7,6,d) de-
scribes the extent to which these step pairs differ. If
d=L/2, then the two step pairs arc statistically
equivalent; any deviation is a signature of the alternating
SD phase

We start the calculation of Amsx With a mean-field type
of estimate, disregarding correlations of neighboring step
pairs by assuming p(/;,l/) = p(};)p'(1]), where p(l,,I/) is
the probability of simultaneously having terrace sizes /;
and //. In a final step this result is improved by vector
iteration with the full transfer matrix, allowing for addi-
tional anticorrelation of the terrace widths /; and /.
However, the corresponding correction of the free energy
away from the phase transition is quite small.

We can immediately get a qualitative picture of the na-
ture of the phase transition here from Fig. 2, which shows
the dependence of the free energy f(7,0,d) on d, i.c., on
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FIG. 2. Free energy per (1x1) surface unit cell for a given
separation of the S, steps, vs the deviation of this separation d
from the symmetric (equidistant) value d=L/2. The miscut
angle is 6=1.45° and the temperatures were chosen to be
below, near, and above the critical point in the phase diagram.

the degree of step alternation, at different temperatures.
At finite temperature, because of step meandering, the
distinction between S and D steps is not unambiguous.
However, at low temperature the minimum of f in Fig. 2
occurs for d=L/2, i.e., for adjacent step pairs alternating
between S-like and D-like. The latter has also been
verified by direct inspection of the probability distribu-
tions for the 2x 1 terrace sizes of both step pairs.

As the temperature rises, the distinction between S and
D becomes smaller, and so the (thermally averaged) elas-
tic energy gained by SD alternation falls; meanwhile the
SD configuration becomes less favorable for entropic
reasons. At the highest temperature in Fig. 2, entropy
clearly wins, and the lowest f occurs for the symmetric
configuration.

To explain the procedure for constructing the complete
phase diagram, the angle dependence of f(T,0) is shown
in Fig. 3. At low angles we observe a symmetric (ie.,
d=L/2) phase of S steps, at high angles a symmetric
phase of steps of predominantly D character, and in be-
tween the asymmetric SD phase. As we explicitly allow
for periodicities only up to two step pairs, Gibbs's con-
struction formally gives two coexistence regions: oncof §
and SD, and one of SD and D phases. However, from
our earlier more detailed study of the 7 =0 case [17], we
know that there really is no coexistence of phases. In-
stead, these conxistence regions have to be interpreted as
(quite good) approximations to those parts of the phase
diagram where the more complicated ordered phases
(length = 3 step pairs) of mixed S and D steps occur.

The resulting phase diagram is shown in Fig. 4. The
open circles have been determined as described above,
i.e., by Gibbs’s construction at each temperature as de-
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FIG. 3. Free energy per surface unit cell vs tané@ for
T=0.9T., and Gibbs's construction. For case of viewing, a
linear function of tan@ (arbitrarily chosen to equal the T=0
coexistence curve between pure S and D phases) has been sub-
tracted from the data. Solid line: free energy f(T,8). Dashed
line: free energy f(T.6,d =L/2) for equidistant S4 steps, ic,
suppressing SD alternation. Dotted line: (formal) Gibbs's con-
struction for coexistence of S and SD or of SD and D phases.
Existence regions for the pure phases are marked. See text for
the correct physical interpretation of coexistence regions.

)

)

picted in Fig. 3. Note that the boundaries of the pure S,
D, and SD phases agree well with the earlier 7=0
(“devil's staircase™) results (17], shown as squares. Some
other points near 7, were derived in a different way. For
cxample, the diamonds were obtained from temperature
scans. However, at temperatures above T, =490 K the
curves of free energy versus tan(@) are convex, and d
equals L/2 for all values of 8. Thus there is no phase
transition above this critical temperature.

This picture of the phase transition implies a very
differeat interpretation of ecxperimental results. The
freeze-in temperature of step structures on Si(001) is

miscut ongle (deg.)

0
0 100 200 300 400 500
temperature (K)

FIG. 4. Phase diagram for vicinal Si(001) surfaces. The
thin center region corresponds to an SD phase, and the outside
region to the symmetric phase, which at low temperature may
be interpreted as S and D phases. In the intervening regions,
more complicated mixed ordered phases are expected. The
boundaries of the pure-phase regions agree well with results of
an earlier more elaborate treatment at 7 =0, represented by
squares,
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generally belicved to be around 800 K [9,21). If the re-
sult that T,=490 K is even roughly correct (or is too
high), then the experiments measure surfaces equilibrat-
ed above the critical temperature, where there is, in fact,
no phase transition. This would reconcile the theoretical
predictions of a phase transition with the experimental
observations of only continuous behavior.

Because of uncertainty in the values of the parameters
which enter the elastic model, we cannot rule out the pos-
sibility that 7. could be above 800 K. However, the
phase transition might still be extremely hard to observe
experimentally. Even at T=0, the transition takes place
through a quasicontinuous sequence of weak first-order
transitions [17], so that properties such as surface energy
or terrace asymmetry should vary in a nearly continuous
manner. At higher temperatures, this will be all the more
true. Thus in the presence of experimental noise, there
might be no observable qualitative difference between the
behavior above and below the critical temperature.
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prints of their work prior to publication. This work was
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On slightly miscut Si(001) surfaces, straight steps are predicted to be unstable against the formation
of long-wavelength undulations. These undulations lower the energy, by, in effect, redacing the size of
the stress domains; they are thus analogous to the spontancous step {ormation proposed by Alerhand et
al. However, step undulations are expected to be kinetically favored, and therefore to preempt spuntane-
ous step (ormation. Moreover, they lead to an unexpected distinct thermodynamic phase in the surface

phase diagram at small angles.

PACS numbers: 68.35.8s, 68.35.Md

Steps on vicinal Si(001) surfaces have been intensely
studied, especially since Alerhand ef al. predicted such
remarkable effects as spontaneous formation of steps [1],
and a transition in step height with angle of miscut [2-4).
However, theoretical analyses to date have universally as-
sumed that these steps are straight, except for random
thermal meandering {i-7). Yet recently, Tromp and
Reuter [8), using low-energy electron microscopy
(LEEM), observed steps on rather flat Si(001) surfaces
to be sinuous rather than straight on a submicron length
scale.

Here we show that, for sufficiently low step densities,
straight steps are unstable against long-wavelength dis-
tortions, leading to a new phase transition on this surface.
The cause is the interaction between surface stress
domains. These results lead to a new picture of the struc-
ture and phase diagram of vicinal surfaces, and offer a
natural explanation for the remarkable observation of
Tromp and Reuter.

Alerhand et al. first recognized the importance of steps
in creating stress domains on Si(001)2x1, and showed
that a surface with sufficiently low step density could
reduce its energy by introducing extra steps {1]. Given
the strength of their argument, the failure to observe such
extra steps has been a puzzle. The resuits here finally
resolve this puzzle—step undulations can relieve stress
and hence preempt the formation of extra steps.

Moreover, such undulations are kinetically preferred.
There is a large barrier to nucleating extra steps, but lit-
tle barrier to step undulations. Also, during cither
growth or sublimation (e.g., while heat cleaning), step
flow places severe kinetic constraints on the step geom-
etry. Ualike spontaneous formation of up-and-down
steps, step undulations are compatible with step flow.

We begin by recalling the relevant features of the
Si(001)2x 1 surface, and of the continuum elastic model
which has been successfully used to describe step interac-
tions on this surface [1-5). For unreconstructed Si(001),
the surface lattice constant in the {110} direction is
a=3.84 A. For a surface miscut by an angle @ in the
[110] direction, the separation between equally spaced
single-layer steps is

L =a/2V2tané. (1)
316

The Si(001) surface exhibits a 2x1 reconstruction in
which pairs of atoms form dimers. Because of the atomic
geometry, at single-layer steps the dimerization necessari-
ly rotates by 90°, from 2x1 to 1%2 or vice versa. If the
dimers on the upper terrace are perpendicular to the step
edge, the step is called [5) S4, or if parallel, S,.

Becs . *he stress is anisotropic and the domain rotates
90° at a step, the stress is discontinuous at the step. Us-
ing the known [9] stress tensor of the surface, we take the
divergence of the stress to obtain the force on a step, re-
ferred to as a “force monopole” [1,6]. The elastic energy
of the steps is then — t fd2xdx'yy(x —x')f; (x)f;(x'),
where /; is the force deasity at the surface, and y is the
clastic Green's function of the surface. We calculate the
Green's function numerically for a semi-infinite geom-
etry, using the full cubic anisotropy with the experimental
clastic constants. For sinusoidal steps, the Fourier trans-
form of the force density can be calculated analytically.
The integral for the clastic energy then transforms into a
reciprocal-lattice sum, which is performed numericalty.

The only other property needed to describe the steps is
an energy per length for each type of siep (S, or S»),
reflecting a “local™ energy in addition to the energy of the
strain field. We do not include any “corner energy”™ (3],
so that we can treat the continuum limit without consid-
ering the microscopic distribution of kinks in the
meandering steps.

We omit thermal and entropic effects here. These have
been extensively discussed already (2-4]. At large step
separations, the steps meander about their minimum-
energy positions. This mesndering has a short correlation
length; thus while it results in a renormalization of the lo-
cal energies [2], it should not qualitatively affect the
long-wavelength properties studied here.

We restrict consideration here to equally spaced identi-
cal sinusoidal steps, as shown in Fig. 1. Besides simplify-
ing the clasti¢ calculation, this allows the steps to be fully
characterized by two numbers: the period A and ampli-
tude 4 of the sine wave. No distinction need be made
here between S, and S; steps: because of the symmetri-
cal step pattern assumed, only the sum of their energics
enters. These restrictions are discussed further below.

For straight steps the energy E, can be caliculated
analytically, giving the well-known [1.6) logarithmic

© 1992 The American Physical Society
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FIG. 1. Pattern of equally spaced sinusoidal steps used here.
Black and white regions correspond to 2x | and 1 %2 domains,
which are separated by single-layer steps. Step spacing L,
wavelength A, and amplitude A4 are indicated. (1) 4 =0, (b)
A=0.6L, (c) A=3L. L and A are the same in all three figures.
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dependence on step separation L, E,=C; —C2In(L/S),
where C; reflects the strength of the interaction, and C,
characterizes the local energy of the step. Our value of
C; is 29 meV/a, considerably larger than that suggested
previously [1), mainly because of more accurate recent
calculations of the stress anisotropy [9). C; here repre-
sents an average of S4 and Sp local energies; its numeri-
cal value depends upon the (arbitrary) choice of S, and
we adopt the convention S =xa chosen by Alerhand et al.
[1). Since the actual step energy for Si is not well known,
we somewhat arbitrarily choose a local energy such that
C1=58 meV/a. The effect of this choice and of other ap-
proximations is discussed below.

The energy per area, E,/L, has a minimum at the step
separation

Lo-Sexp(l +C|/C2) ’ (2)

giving Lo == 63a for the parameter values used here. [For
the small angles of interest here, in discussing energy per
area it is not necessary to distinguish between surface
area and the projection of that area onto the (100) plane,
or between 6 and tan8.] As was first pointed out by Aler-
hand er al. [1), a sufficiently flat surface could lower its
energy by spontaneously forming additional steps to de-
crease the step separation 10 Lg. Lo thus provides a
second natural length scale in addition to the step separa-
tion L imposed by the miscut.

We now turn to the properties of sinusoidal steps like
those in Fig. 1. Figure 2 shows the step contribution to
the surface energy, on a surface with step separation
L =1000a, corresponding to a miscut of 0.02°. Contours
of constant energy are shown as a function of the ampli-
tude 4 and wavelength A of the undulations. Only con-
tours with energy lower than that for straight steps are
shown, 50 straight steps are unstable over the entire re-
gion within the outermost contour,

The behavior is surprisingly complex. There is a shal-
low local minimum in energy for straight steps, ie.,
A=0. Increasing the amplitude raises the energy up to a
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FIG. 2. Contours of constant step energy per surface area, as
a function of amplitude 4 and wavelength A, for L =1000a.
Only contours with encrgy lower than —0.11 meV/a?, the encr-
gy for straight steps at this sepuration, are shown, There are a
series of local minima along the line A = 0.34, and a weak local
minimum along the line 4 =0. The energy has a local max-
imum with respect to A along a ridge indicated by the dashed
line. Successive contours differ in energy by 0.02 meV/a?, with
some supplemental dotted contours to better show the minima.

ridge indicated by the dashed line in Fig. 2. For still
larger A, the energy drops, and a series of local minima
are clearly seen, falling nearly along a line defined by
A==0.3A4.

To show the behavior along the minima more clearly,
for each value of 4 we minimize the energy with respect
to A, and plot the resulting energy and wavelength in Fig.
3. In all cases studied, the first minimum with respect to
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F1G. 3. Properties of steps on a surface with step separation
L =1000a. For each amplitude A, the wavele: -th A is that
which minimizes the energy. (a) Energy per surf. - area vs re.
duced amplitude A/L. Amplitude is scaled by L to emphasize
nearly perfect periodicity. Dotted line is energy for straight
steps, for comparison. (b) Same as (a), on different scale to
show oscillations. (c) Reduced wavelength A/A4 vs A/L.
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A was the decpest, but there were subsequent small oscil-
lations about an asymptotic value. The period of these
oscillations is simply the step spacing L, suggesting that
the oscillations are due to a preference for having a
specific alignment of the extrema of different steps. The
ratio A/A remains virtually constant beyond the first
minimum in Fig. 3, consistent with the nearly straight
trough in the energy surface seen in Fig. 2. The approach
to an asymptotic value represents an approximate scaling
relationship: The energy depends primarily on A/A, with
corrections due to the discrete step structure with period
L.

Finally, to obtain an overview of the behavior of the
surface, we calculate the minimum-energy step shape for
a range of L. In Fig. 4, we see that, for step separations
of about 200a or less, the straight steps have lower ener-
gy. For separations less than 150a, we could not even
find a local minimum with respect to A and 4. However,
for step separations larger than 2004, straight steps can
lower their energy by developing undulations. At large
step separations the energy appears to be approaching
that of the minimum-energy surface, i.c., of the surface
with step separation Lo.

The amplitude A4 of the minimum-energy steps, shown
in Fig. 5, scales nearly perfectly with L as 4 ==0.8L, over
the entire range L > 200a where wavy steps are favored.
The wavelength A actually decreases with increasing L, so
A/\ increases with L.

From Fig. 4, we see that the surface should undergo a
phase transition with respect to angle of miscut, from a
phase of straight steps to one of wavy steps. Surfaces
with intermediate miscut should (if kinetics allow) facet
into regions with L == Lo and very flat regions of large L.
Such faceting would still be compatible with step flow,
and has apparently been observed by Tromp and Reuter
[8). Alternating up-and-down facets of miscut L =L,
might have slightly lower energy; but like extra up-and-
down steps, such up-and-down faceting would be incom-

FIG. 4. Step energy per surface area vs step separation L
(bottom scale), or angle of miscul (top scale). Dots correspond
to sinusoidal steps, whose amplitudes 4 and wavelengths A are
those which minimize energy: solid curve is a spline fit o guid-
the eye. Dotted curve is the corresponding energy for straight
steps.

patible with step flow.

We can get a semiquantitative undcrstandmg of the
formation of step undulations in a rather simple way. In
Fig. 1, we see that for large 4 substantial portions of the
surface are covered with nearly straight steps st a spacing
much smaller than L. Intuitively, we expect that the step
undulations form in order to decrease the step spacing to
a value closer to the minimum-energy spacing Lo.

The length of wavy steps (composed on an atomic scale
of rectilinear segments) is increased by a factor of
1 +44/%; so we can think of the characteristic step spac-
ing as being reduced roughly by that factor to L/(1
+4A4/2). If we assume that the energy is minimized
when this characteristic spacing approaches Lo, we would
expect that L/(1+4A4/0) = Lg, i.c.,

A/ = (L —Lqg)/4L,. Q)

In Fig. 5(b), this linear relationship is included as a dot-
ted line. (It appears as a curve due to the logarithmic
scale.) The actual calculated results are seen to corre-
spond rather well to the crude prediction (3), confirming
our picture of the driving mechanism here.

Finally, it is important to address the limitations of the
present study. Any inaccuracy in the stress anisotropy
and in the local step energy C) simply changes the overall
energy scale and the length Lo A moderate change in
the energy scale has no affect on our conclusions. While
we have only studied one value of Ly, it is clear that step
waviness should in general occur whenever L becomes
much larger than Ly. We also note that the value of Lg
here is fortuitously close to that inferred by Tromp and
Reuter.

We have treated the case of no applied external strain.
However, even a modest external strain can significantly
affect the stress-domain patterns at small miscut [1,10].
Small strains can easily occur accidentally in experi-
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FIG. 5. Properties of minimum-energy steps vs step separa-
tion L (bottom scale), or angle of miscut (top scale). Each
point corresponds to a point in Fig. 4. (a) Amplitude as frac-
tion of L. (b) Dimensionless amplitude A/A, along with lincar
relationship of Eq. (3) (dotted line).
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ments, and so should be considered before attempting a
detailed comparison with measurements.

We have also assumed a specific shape for the steps,
based on analytic convenience. Thus our variational cal-
culation in the parameters A and A actually provides an
upper bound on the energy of the wavy phase. This is
enough to guarantee our central result, the instability of
straight steps. Moreover, the assumed sinusoidal shape is
physically reasonable, and is qualitatively consistent with
experimental observations [8); so it seems highly unlikely
that a more accurate shape would greatly affect the
overall behavior, see Fig. 4.

It would certainly be of interest to determine the actual
step shape which minimizes the energy. In particular,
meandering of the S steps is favored, since it creates
segments of S, step, which are believed to have rather
small local energy. Meandering of S, steps creates
higher-energy S5 segments. Thus we expect Sp steps to
have undulations of larger amplitude. Aside from the
shapes of the individual steps, more complicated patterns
of steps are possible, which would not repeat every two
steps. Also, the presence of “kissing site” defects [11],
associated with antiphase boundaries in the dimerization,
appears 10 cause significant deviations from ideal behav-
ior [8].

The only apparent discrepancy between theory and ex-
periment [8] is the failure to observe the predicted large
values of A/A for large L. Step flow kinetics would tend
to suppress large A/), especially given the rather weak
dependence of energy on A in Fig. 2. Large A/A could
also be disfavored if the step undulations are coherent
only over small patches, as in the experiments, due to de-
fects. And at very large L, even small external strains
could affect the results.

Spontaneous step formation [1] has the advantage that
only the low-energy S4 steps are created. However, even
if this should prove to be the structure of lowest energy, it
might not be kinetically accessible. A sequence of Sy
steps necessarily has an up-and-down pattern. Step flow
would quickly ecliminate such steps, leaving only the
monotonic sequence of steps associated with the miscut.
Such step flow occurs not only while growing by vapor
deposition, but also during sublimation while heat clean-
ing the surface [8]. At temperatures low enough to
suppress sublimation, the energetic barrier to spontaneous
step formation might be prohibitive.

In contrast, step waviness can reduce the elastic energy
without interfering with step flow. And the phenomena
observed cxperimentally [8] are all in accord with this
picture, including step flow during high-temperature
cleaning, coherent step undulations over large areas, and
apparently even faceting into regions of more closely
spaced straight steps and widely spaced wavy steps. Thus
very flat Si(001) surfaces provide a window onto an unex-
plored regime with a wealth of fascinating new phenome-
na.
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Oscillatory Segregation at the Si-Ge(100) 2 X 1 Surface
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We study surface and bulk equilibrium in Si-Ge alloys by direct simulation. The composition at a
reconstructed (100) surface varies with depth in a complex oscillatory way. Lateral ordering occurs even
in the fourth layer, driven by the local stress ficld. The bulk phase diagram is well described by regular

solution theory.

PACS numbers: 68.35.Dv, 61.55.Hg, 64.75.+g

Theoretical understanding of the equilibrium proper-
ties of semiconductor alloys has progressed rapidly in re-
cent years,' spurred in part by the increasing importance
of such alloys in electronic devices. However, until now
these studies have been restricted to homogeneous bulk
systems; and the theoretical methods employed, such as
the cluster-variation method? (CVM), offer little im-
mediate prospect of going beyond such systems.

Because of the important role of reconstructed sur-
faces in modern epitaxial growth techniques, it is partic-
ularly desirable to understand how the properties of al-
loys are modified in such inhomogeneous edvironments.
Here we report what is apparently the first calculation of
cquilibrium segregation at a semiconductor surface, us-
ing a variant of the grand-canonical Monte Carlo
method introduced by Foiles?® to study metal surfaces.

We find surprising results for the 2x1 dimer recon-
struction of the (100) surface of an Si-Ge alloy. Strong
oscillatory variations with depth are found in the equi-
librium composition profile near the surface. Even the
fourth layer shows striking deviations from bulk behav-
ior, with a marked inequivalence between the two atoms
in the unit cell, which reflects the strain induced by the
reconstruction.

The method used here is a type of direct simulation.
Simulations which allow each site to be either Si or Ge,
with an Ising-type Hamiltonian, are quite standard; but
the evaluation of the appropriate effective interactions,
incorporating the effects of strain implicitly, has only
been feasible in the simple bulk situation. On the other
hand, methods such as molecular dynamics (MD), which
permit arbitrary atomic displacements, and which in-
corporate strain explicitly, cannot, in practice, reach
cquilibrium for solid solutions because of the large bar-
riers to atomic diffusion and the short simulation times
which are feasible.

Foiles® pointed out that the advantages of both ap-
proaches could be combined by using a continuous-space
Monte Carlo (MC) algorithm, which incorporates two
kinds of MC “moves.” The simulation includes small
random atomic displacements, as well as moves which
convert Si atoms into Ge and vice versa, allowing compo-
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sitional equilibration. This approach may be viewed as a
specialized case of the grand-canonical Monte Carlo
method, which has been extensively discussed.?

An equilibrium distribution is obtained in the usual
way, accepting trial moves with a probability

expl(usiAns +puceAnge— AUY/KT)

(but not more than 1), where AU is the change in poten-
tial energy due to the move, u is the chemical potential
for a given species, and An is the change in the number
of atoms of that species. The total number of atoms
remains fixed, so only the difference Au™pusi— uc. is
relevant,

In order to make the simulation tractable, we use an
empirical interatomic potential® to model the interac-
tions. Although less accurate than state-of-the-art
quantum-mechanical calculations, this approach has
been extensively tested. *~® It is well suited to the present
problem because it describes both the surface dimeriza-
tion and the elastic properties reasonably well.

Before addressing the surface problem, we illustrate
the method by considering the bulk Si-Ge phase dia-
gram, which has also been treated recently by Qteish and
Resta.” Since the primary driving force for segregation
here is the atomic size mismatch, this problem provides a
stringent test of our ability to equilibrate both the spatial
and chemical degrees of freedom simultaneously and
consistently.

We map out the phase boundaries in the natural way.,
For each temperature, we equilibrate a periodically re-
peated cubic cell of 216 atoms, at zero pressure, over a
range of values of the chemical-potential difference Ay.
The presence of a first-order transition with Au indicates
a miscibility gap at that temperature, and the alloy com-
positions just before and after the transition represent
the miscibility limits. Such a calculation is illustrated in
Fig. 1.

Because of the finite cell size, the cell can fluctuate be-
tween Si-rich and Ge-rich phases. As a result, the tran-
sition is broadened, and the average cell composition is,
strictly speaking, a continuous function of Ay at all tem-
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FIG. 1. Alloy composition vs chemical-potential difference
(relative to an arbitrary origin) at 150 K.

peratures. As seen in Fig. 1, the cell used here is large
enough that the transition may be quite abrupt. Never-
theless, just below the minimum temperature for com-
plete miscibility, T,, such fluctuations can interfere with
an accurate identification of the miscibility limits, or
even of the existence of a transition.

In order to avoid this problem, we examine not only
the average cell composition, but the probability distri-
bution for this composition. As shown in Fig. 2, for a
temperature just below 7, this distribution is bimodal,
as the cell fluctuates between phases. At a value of Au
where the cell will be found ia either of the two phases
with nearly equal probability, the average compositions
of the respective metastable phases give very good esti-
mates of the miscibility limits. Morcover, the mere ex-
istence of such a bimodal distribution confirms that the
temperature is below T.. Above T, however broad the
distribution, it should be unimodal.

Detailed simulations as a function of Au at a series of
temperatures result in the phase diagram shown in Fig.
3. There is a small but systematic asymmetry in the
phase diagram. Extrapolating by cye gives T, around
1650r 170 K.

For comparison, regular solution theory predicts® that
T.=2AH/k, where AH is the enthalpy of mixing per
atom for the 50-50 alloy, and k is the Boltzmann con-
stant. Since the interatomic potential used here gives*
an enthalpy of mixing (for the perfectly random alloy at
T =0) of 7.3 meV/atom, T, is predicted to be 170 K.

Thus the simulation results are in excellent agreement
with regular solution theory, as expected for this nearly
ideal solution. This agreement, in fact, provides a strong
test of the accuracy of the MC equilibration. If the
atomic positions did not relax sufficiently in response to
atom switching, the effective mixing enthalpy (and hence
T.) would be much higher.

The enthalpy of mixing here is about 30% lower than
that calculated by Qteish and Resta.” This difference
may be due to inaccuracies in our empirical potential,
such as the failure to describe the observed® “bowing" of
the clastic constants with alloy composition. On the oth-
er hand, it may be due to the fact that fully relaxed
geometries are used here, whereas only partial relaxation
was included in Ref. 7. In either case, the associated un-
certainty is only 2-3 meV/atom, and so will prove unim-

00 02 04 086 O3B 1.0
Germanium froction x

FIG. 2. Probability P(x), in arbitrary units, for the simula-

tion cell to have an instantancous Ge fraction x, plotted vs x.
Curve shown is for 160 K, at a value of Au around the lransi-
tion value.

portant in the surface studies below, where the relevant
energy scale is an order of magnitude larger.

Alloy surfaces have been extensively studied for met-
als,*!%!! but not for semiconductors. Experimentally, it
is now possible to measure the composition site by site,
using atom-probe techniques or low-cnergy electron
diffraction.'® Not only is enrichment of one constituent
generally observed at metal surfaces, but in some cases
le.g., Pt-Ni or Pt-Rh(100)] the composition varies non-
monotonically with depth.'® Theoretical approaches'!
for metal surfaces (other than that of Ref. 3) have gen-
erally not included the local strain effects associated with
atomic size mismatch or surface reconstruction, and so
are not applicable to the case of Si-Ge alloys.

The Monte Carlo approach described above is now ap-
plied to the problem of a semiconductor surface. The
simulation cell used here is a 24-layer (100) slab, with
288 atoms per cell (12 per layer) periodically repeated in
two dimensions. The two surfaces are prepared in the
2x] dimer reconstruction,'? which is known to occur
(with minor variations) for both Si and Ge(100).

We begin by considering a relatively low temperature,

* 300 K. It is presumably not possible experimentally to

equilibrate the alloy at such a low temperature, but this
case provides a natural starting point for discussing
higher temperatures.

For simplicity, the surface lattice constant is fixed at
the pure Si value. Since Si-Ge alloys are often grown
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FIG. 3. Calculated phase diagram of Si-Ge alloy. Solid cir-
cles are pointed on the phase boundary, below which segrega-
tion occurs. Statistical error bars are negligible except where
shown. The open square is the result of regular solution
theory, based on calculated enthalpy of mixing for the perfect-
ly random 50-50 alloy at 7=0.
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epitaxially on Si substrates, this case is as physically
relevant as that in which the alloy takes its natural lat-
tice constant. In any case, tests indicate that, at temper-
atures above T, such small variations in the surface lat-
tice constant have little effect. At lower temperatures,
the epitaxial constraint suppresses segregation,'!? per-
mitting us greater freedom in the choice of alloy compo-
sition. A convenient value of Au is used here, which
yields (with the constrained surface lattice constant) a
bulk alloy composition of about 50% Ge.

The results of the simulation are summarized in Fig.
4, which shows the site-by-site composition in equilibri-
um. The most obvious effect is the strong segregation of
Ge to the surface. Ge has a lower surface energy than
Si, about 0.07 eV/atom lower for the (100) 2x1 with
this potential, sc segregation of a layer of Ge to the sur-
face reduces the enthalpy.

A surprising feature of the results is that the Ge con-
centration is strongly reduced in the second layer, rela-
tive to the bulk. Thus the concentration profile at the
surface is oscillatory. Stranger still, the third and fourth
layers show strong deviations from bulk composition,
tending towards one Si and one Ge on the respective sites
of the 2x1 cell at low temperatures.

The striking behavior of these deeper layers can be
casily understood, using the concept of an atomic stress
tensor,'* or more specifically its trace, which defines a lo-
cal compression. Heuristically speaking, some atoms
may be viewed as under compression, if their bonds are
shorter than the sum of covalent radii, while other atoms
are under tension. This can be quantified by considering
a uniform expansion of the system. Then by analogy
with the macroscopic pressure, we define an atomic
compression

pi=—dE;/dlnV, (1)

where E; is the energy of atom i, and V is the volume.
This compression can be converted into units of pressure
by dividing by an appropriate atomic volume.

The decompeosition of the total energy into atomic con-
tributions is, in principle, not unigue, but may often be
made in practice. In particular, this decomposition is
specified explicitly in the definition of the interatomic po-
tential used here.* The value of such a decomposition in
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FIG. 4. Composition vs layer number, for fixed slab compo-
sition at 300 K. as described in text. For layers with ine-
quivalent sites, both sites are shown.
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understanding atomic-scale behavior of complex systems
has already been demonstrated. '

Examining the (100) 2x1 surface of pure Si in this
way, we find that the second layer is under a large
compression, about 0.4 e¢V/atom, corresponding roughly
to a pressure of 30 kbar. Substituting a Ge atom, which
is larger than Si, would obviously tend to raise the enec-
gy of site under compression, but would lower the energy
of a site under tension.

Since the logarithm of the volume ratio of bulk Ge
and Si is 0.12, the above compression can be converted
into an estimate of the energy gained or lost by substitut-
ing Ge for Si, by multiplying the compression (1) by
0.12. For the second layer, this yields an estimate of
0.04 eV/atom, which is very significant on the scale of
thermal energies.

In the fourth layer, the two atoms per cell are ine-
quivalent. One atom is directly below the dimer, and is
under a compression of about 0.3 eV, while the other is
between dimers, and is under a tension of similar magni-
tude. Thus the former site is driven towards being pure
Si at low temperatures, and the latter towards pure Ge.
A similar effect is seen in the third layer, but is a bit
weaker.

For the surface dimer layer, the compression is very
weak, consistent with the relatively unconstrained
geometry. The surface composition is driven by the
reduction of surface energy associated with the dangling
bond, and not by atomic compression.

Understanding the room-temperature equilibrium
structure, and the effects which cause it, we now wish to
get an overview of the behavior with increasing tempera-
ture. For this purpose we adopt a somewhat simpler ap-
proach. Instead of calculating the chemical potential at
each temperature for the bulk composition of interest, we

fix the number of Ge and Si atoms. Only moves which

switch a Ge and a Si simultaneously are considered, thus
permitting diffusion while conserving the cell composi-
tion,

Figure 5 shows the resulting site-by-site composition,
for the first four layers of a slab with 50-50 composition,

1.0 -?—-0 V*o\é n
8 08 L'\. ~O-o
s 0.6} \V:.='—’-’_’
“ 02¢ /./
| ]
o.o ./. A A n "
0 30 600 900 1200
T (K)

FIG. 5. Composition of individual sites vs temperature, for
fixed slab composition, as described in text. As in Fig. 4, open
circles are surface layer, filled circles are second layer, trian-
gles and inverted triangles are third layer, and diamonds and
squares are fourth layer.
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as a function of temperature. The enhancement of Ge
concentration at the surface remains strong even at high
temperature because of the large lowering of the surface
energy. Composition variations in decper layers are re-
duced, but still moderately large. Even the lateral com-
position modulation in the fourth layer is almost 20%,
casily large enough to observe experimentally, up to the
highest temperatures considered, and probably up to the
melting point.

In conclusion, we have demonstrated that it is feasible
to calculate equilibrium properties of semiconductor al-
loys by direct simulation, even for the case of a recon-
structed surface. This approach i3 applicable to a range
of important problems, including segregation at semicon-
ductor interfaces, grain boundaries, and other defects.
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Several experiments have found that Ge initially grows layer by layer on the Si(100)2x1 sur-
face, up to a thickness of 3 atomic layers. Further growth occurs via islands. Here, model calcu-
lations show that layer-by-layer growth is stabilized for up to 3 layers because it reduces the
strain energy associated with the surface dimerization.

The growth of silicon, germanium, and their alloys from
the vapor is surprisingly complex. Several fascinating is-
sues have arisen recently involving steps and domains, -2
alloy ordering and surface segregation,’ > and island for-
mation.*~* Intriguingly, all of these issues revolve around
the role of surface stress and strain. Here we show that an
outstanding puzzle in the growth of Ge on Si, the critical
thickness of 3 Ge layers for the onset of island growth, is
also attributable to the role of surface stress and strain.

Several experiments®™? have found that Ge grows layer
by lay :r on the Si(100)2x | surface, up to a thickness of 3
atomic layers. Further growth occurs via islands, which
are initially coherent despite the 4% mismatch in lattice
constants.®? Such islands hinder the subsequent growth
of sharp interfaces, e.g., for heterojunction devices or su-
perlattices, so it is important to understand the forces
which stabilize the desirable layer-by-layer growth for the
first 3 layers.

The Ge islands which form after 3 layers exhibit in-
teresting and unexpected behavior, such as coherent
Stranski-Krastanow growth®’ and complex faceting.'®
However, here our concern is with the flat Ge film wetting
the Si substrate between islands. We therefore consider
the islands only as reservoirs of Ge, which determine the
Ge chemical potential . Our goal, then, is to determine
the equilibrium film thickness as a function of u, and to
identify the physical mechanism determining this thick-
ness. :

Some care is required in posing the problem of film
thickness as one of equilibrium thermodynamics. In fact,
the growth of Ge on Si is necessarily a nonequilibrium
process, since in equilibrium on a substrate of pure Si, all
the Ge would dissolve into the substrate. However, at typ-
ical growth temperatures of 500-700°C bulk diffusion is
negligible; so it seems reasonable to begin by ignoring in-
termixing between Ge film and Si substrate. This issue is
discussed further below. There is still considerable sur-
face diffusion above 500 °C, though, as indicated, ¢.g., by
the motion of steps in response to stress.!! Therefore, for
sufficiently slow growth rates, an equilibrium will exist be-
tween the Ge film and the Ge islands, maintained by sur-
face diffusion.

To determine the equilibrium film thickness, let U,
denote the energy per 1 X1 cell of a Si{100) substrate plus
n layers of Ge, terminated with the 2 x 1 dimer reconstruc-
tion. The energy required per atom to add an nth layer
from a reservoir of Ge at chemical potential u is E, —p,

43

where

Ey=Uy—=Us~. (1)

The system secks to minimize its total energy including
the reservoir, i.e., to minimize U, —nu, so the condition
for stability is that

)

(Entropy plays little role here as discussed below.) If
Ey <y, a film of n — 1 layers will grow to n layers, while if
E, > u, a film of n layers will shrink to n— 1 layers.

Figure 1 shows our central result, £, vs n, for a
modified Keating model.'? The model and its motivation
are described in detail below; but first we focus on the re-
sults, and their implications for film growth.

Given u, the equilibrium number of layers of Ge for this
model can be read directly from Fig. 1 according to Eq.
(2), by noting where the layer energy E, crosses the line
E,=yu. So before going further, one must determine the
appropriate range of u. For large Ge islands whose strain
is almost fully relieved by misfit dislocations, the chemical
potential approaches that of bulk Ge, which we choose as
our reference value u=0. At the opposite extreme, if the

Ey~u=0.
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FIG. 1. Energy per atom E. to add an nth layer of Ge on a
Si(100) substrate, calculated with a modified Keating model.
The arrow schematically suggests a lowering of the energy, for
the first layer only, by effects neglected in this model, as dis-
cussed in text. Horizontal lines show the physically appropriate
range of chemical potential.
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islands are wide and fully coherent, then the chemical po-
tential approaches that of bulk Ge biaxially strained to the
Si lattice constant, around 30 meV/atom; but u for the is-
land is generally below this due to elastic relaxation of the
island.®? These bounds on u are shown as horizontal lines
in Fig. 1; the true value for a given surface in equilibrium
should lic somewhere in between.

In the early stages of growth, where islands are
coherent,%’ u approaches the theoretical upper bound.
Then from Fig. 1, three layers are expected. This is pre-
cisely the regime in which 3 layers of Ge have been ob-
served experimentally. %™ Thus the results of Fig. 1 ac-
count for the central experimental observation; the under-
lying mechanism is discussed in detail below.

For late-stage growth, where islands are large and
presumably nearly free of strain, u should approach the
lower bound. In that case, from Fig. 1 wetting by only a
single layer of Ge is predicted in equilibrium. Such
single-layer films have not to my knowledge been report-
ed. This may be simply because the film thickness in this
regime of high nominal coverage has not been studied.
However, in addition it may be difficult to attain equilibri-
um in this regime except by halting growth and annealing.

During growth which is not sufficiently slow for fuil
equilibrium, the surface may contain a mixture of islands
of different degrees of strain. For still more rapid growth,
a significant number of isolated atoms or clusters may be
present, which could in effect drive up u beyond the upper
bound of Fig. | (to the extent that it is meaningful to
speak of p having a value at all in this case). This could
lead to a film thicker than 3 layers, but in such a regime
one cannot escape the necessity of considering kinetics ex-
plicitly.

For the entire relevant range of g, onc finds that the
surface will be wetted by at least 1 layer of Ge. In fact, a
surface dangling bond has lower energy cost for Ge than
for Si, by perhaps SO meV or more,* an effect neglected in
the Keating model. So the first point in Fig. 1 should be
displaced downward considerably, as suggested schemati-
cally by the arrow. Thus wetting is expected regardless of
other details, simply because Ge has a much lower surface
energy than Si. (The interface energy between Si and Ge
is negligible on this scale.*)

The energy differences between films of 1, 2, or 3 layers
are of order 10 meV/atom, whereas at 600°C the thermal
energy kT is 75 meV. Nevertheless, there should be little
thermal fluctuation in thickness. The film thickness can-
not vary without forming steps, and these are of too high
energy to be thermally generated except with large ter-
races. But for a large terrace, the differences in energy
between 1, 2, and 3 layers will be correspondingly large,
suppressing thermal fluctuations.

At this point, we have seen that calculated energies of
Ge films can account for the experimentally observed film
thickness. The physical origin of this multilayer wetting
can be understood by noting that there are two primary
differences between Ge and Si that are relevant here.
First, Ge has a larger lattice constant, and second, it has
softer elastic moduli. To separate the contributions of
these effects, the calculation of Fig. | is repeated twice:
once changing the substrate lattice constant to that of Ge,

so that the only difference between film and substrate is
the smaller elastic moduli of the film; and once changing
the substrate elastic moduli to be close to those of the film,
so that the only difference is the larger equilibrium lattice
constant for the film. These two cases are shown in Fig. 2
as diamonds and squares, respectively. The sums of the
respective values are shown as open circles. These “are
quite close to the original values of Fig. 1, shown as filled
circles, confirming that the film's strain energy can be
unambiguously decomposed into these two contributing
factors.

The difference in elastic moduli favors wetting by 2 lay-
ers of Ge, as seen from the diamonds in Fig. 2. This is
casily understood. Because of the dimer reconstruction,
the Si(100) surface is under considerable atomic-scale
strain, especially in the first 2 layers.'® Thus one can save
energy by substituting a softer material in those layers.
Deeper in the bulk, the strain is small and little energy is
gained by a thicker Ge film.

The difference in atomic size gives a somewhat more
complex effect, as seen from the open squares in Fig. 2
The most notable aspect is that the second layer is made
less favorable for Ge, consistent with earlier su;gcstions
that the second layer is under local compression.® On the
other hand, Ge in the third layer is slightly favored, mak-
ing 3 rather than 2 layers of Ge the equilibrium thickness
in the upper range of 4 when both factors are included.
For thick films, each additional layer merely adds a layer
of bulk strained Ge.

The conclusion to be drawn is that the primary effect
leading to a 3-layer Ge film is the energy gained by having
a softer material in the near-surface region, where the
strains associated with the reconstruction are large. How-
ever, the coupling of the Ge size difference to the surface
stresses is also significant, and without this effect the Ge
film would be only 2 layers thick.

Having explained the experimental results and inferred
the physical mechanism at work, we now return to the de-
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FIG. 2. Energy per atom E, to add an nth layer of Ge on a
Si(100) substrate, as in Fig. | (solid circles), plus the same cal-
culation for two related models: where the substrate has its lat-
tice constant modified to be the same as Ge (diamonds), or its
elastic constants modified to be like Ge (squares). Open circles
are sum of diamonds and squares for each a.
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tails of the model. In the present model, the energy is
4
ay,
E=Z| X~ (xf~ % a})?
T /=1 aj
28;
Jk>j QiQik

+

(XU‘ Xik =~ 'I’Z' a;a (:059,-)2 . 3)

Here x); is the vector connecting atoms i and j. Each pure
material is described by three parameters: its lattice con-
stant a;, and its elastic parameters a; and ;. Thus these
parameters take on only two values in Eq. (3), depending
on whether atom { is Si or Ge. For bonds between Si and
Ge, the parameters are assigned the geometric mean of
their elemental values: a;;=(g;a;) "2, and a;;=(a,a;) "2,
For the pure materials this is simply the familiar Keating
model'? for the elastic energy, if we take all 6, as the
tetrahedral bond angle cos ~'(— ).

For the present calculation, this potential is modified
relative to the Keating model in the following way. Re-
cognizing that there is some rehybridization for the three-
fold coordinated surface atoms, which can have an impor-
tant effect on surface stress,'* we allow 8; to take on a
different value for these atoms, denoted 6,.

To determine the appropriate value of 8;, the surface
stress for Si(100)2x 1 is calculated as a function of 4,
and compared with parameter-free quantum-mechanical
calculations of Payne ef al.'® and of Meade and Vander-
bilt'® using the local-density approximation (LDA) for
correlation and exchange. The surface stress tensor is
defined as

0"““- _l_ -di":f-
Y A dS,‘/ ’

Here £ is the surface energy, A the surface area, and ¢
is the two-dimensional strain. Thus a positive value corre-
sponds to tensile stress. Table 1 gives results for oy and
o4, the stress components parallel and perpendicular to
the surface dimers. The average stress (oy+ . )/2 is seen
to be rather sensitive to the value of 6;.

Physically, one expects that the threefold surface atoms
will have a tendency towards sp? bonding,'* favoring
more open bond angles (i.c., a more negative value of
cosf,) and hence a more compressive stress. This is con-
sistent with the fact that an unmodified Keating potential

4)

TABLE L. Calculated surface stress {or Si(100)2% 1 surface,
in eV/(1 x1 cell), parallel and perpendicular to the dimers (os
and o, ), and their sum and difference, which measure the net
tension und anisotropy. Results are for the modified Keating
model (see text), with various values of the parameter 6,, and
for the LDA results of Refs. 15 and 16.

o g, ato, o1—o0,
Ref. 15 0.7 =20 -1.3 217
cosf, = —2/3 0.9 -2.1 -1.2 30
€0s6, = —1/2 1.4 -1.0 0.4 24
€038, = —1/3 1.7 0.1 1.8 1.6
Ref. 16 16 . —09 0.7 2.5
cos6, = — 0 48 15 -08 0.7 23

(cos8, = — %) gives much too tensile a stress, compared
with the LDA calculations.''¢ In fact, the results of
Payne et al.'* are reproduced fairly well by the Keating
model with cos8; = — ¥, while those of Mcade and Van-
derbilt'® are similar to the Keating model with
cos8, = — % . Thus cither of these values scems more real-
istic than the unmodified Keating potential.

In Fig. 3, the calculation of Fig. 1 is repeated for these
three values of 8,. The results suggest that the stability of
the 3-layer film is relatively insensitive to the choice of 6,,
except that for very large values of 8, (cos, S — § ) only
a |-layer film is stable. This is easily understood in terms
of the results of Fig. 2 and of Table 1. Large values of 6,
lead to a more compressive stress. This in turn exacer-
bates the compression in the second layer, making it more
unfavorable for Ge. When this penalty outweighs the gain
from having additional layers with softer elastic moduli,
there is no energy lowering from film thickening beyond 1
layer. (This interpretation has been explicitly verified by
repeating the calculation of Fig. 2 with cos8, = — £ )

Since the results depend somewhat on 8, it seemed
reasonable to choose this parameter to fit the LDA calcu-
lations. We chose'” to fit the resuit of Meade and Van-
derbilt, giving a value of cos8, = ~0.48. However, as seen
from Fig. 3, our conclusions remain valid for essentially
all reasonable values of 8,, except at the extreme of large
compressive surface stress.

Finally, the problem of intermixing of the film and sub-
strate deserves more detailed consideration than we can
give it here, There is a considerable driving force for
interdiffusion, beyond the usual entropic considerations.
First, intermixing lowers the strain energy. Second, in an
alloy additional energy can be gained by arranging the Si
and Ge so as 10 compensate for the stresses associated
with the surface reconstruction. This effect can be rather
large on the present energy scale, of order 30 meV/atom
even in the fourth layer.* Thus any intermixing will con-
siderably complicate the problem by aliowing such effects
to come into play. However, such intermixing is neces-
sarily kinetically determined, and so is beyond the scope

'
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FI1G. 3. Energy per atom E, to add an nth layer of Ge on a
Si(100) substrate, as in Fig. 1, but for three different values of
the parameter 0,; cosf, = — § (circles), cos@, = — } (squares),
and cos8, = — L (dismonds).
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of our quasicquilibrium analysis.

Experimentally, Copel et al.'® have observed that some
intermixing occurs when Ge is deposited at 500°C, but
that intermixing is suppressed when the film is deposited
at room temperature, even when subsequently anncaled at
500°C. This is consistent with the idea that there is con-
siderable surface diffusion, but not bulk diffusion, at this
temperature, since during growth intermixing can occur
by what is essentially surface diffusion,

In conclusion, the energies of thin Ge films on
Si(100)2x 1 are reduced, relative to Si(100) plus biaxially
strained bulk Ge, by having the strain from the surface di-
merization fall in a material of smaller elastic moduli. In

addition, the local stresses associated with surface dimeri-
zation favor having the larger Ge atoms in the third layer.
The net result accounts for the observed 3-layer Ge film
thickness in the initial stages of epitaxial growth. The re-
sults also predict that in true equilibrium between istands
and film, when the islands become large and their strain is
relieved by dislocations, the Ge film should shrink to a sin-
gle atomic layer. ;

This work was supported in part by ONR Contract No.
N00014-84-C-0396. Discussions with D. P. DiVincenzo
and R. M. Tromp are gratefully acknowledged.
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