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Abstract

This thesis studies the feasibility of applying electrodynamic propulsion to three dif-

ferent orbital applications: orbital plane change, Molniya stationkeeping, and rendezvous

and docking. Electrodynamic propulsion uses the forces resulting from electric currents

flowing through conductors as a spacecraft travels through the Earth's magnetic field. A

vehicle-independent expression for the specific power required for any maneuver is derived

and used to assess the feasibility of electrodynamic propulsion. Analytical expressions for

the desired accelerations and combined current-conductor vector for the plane change and

Molniya studies are developed based on Lagrange's planetary equations. Solutions to the

forced Clohessy-Wiltshire equations are developed to study in-plane rendezvous and dock-

ing. Results show electrodynamic propulsion can be used to change either inclination or

right ascension of the ascending node at rates of approximately 0.4 degrees/day or higher

with current spacecraft specific power technology. Electrodynamic propulsion can also be

used to negate the effects of the Earth's oblateness on a 24 hour Molniya orbit at 90" incli-

nation. The energy required for this maneuver is very sensitive to the right ascension of the

ascending node, which determines the orientation of the orbital plane with respect to the

magnetic field. Specific power requirements of the non-optimized acceleration and current-

conductor algorithms are more than required for conventional electric rocket propulsion,

but can be met by current spacecraft specific power technology. Rendezvous and docking

are possible with electrodynamic propulsion, which offers the advantages of allowing a soft

dock - relative velocities and accelerations decay to zero as the chase vehicle approaches

the target - and lack of a thruster plume to impart momentum or contaminate the target

vehicle. Approaches along the target velocity vector with no altitude change are possible

with current spacecraft specific power. Approaches involving changes in altitude will be

possible when modest improvements in spacecraft power are made.

xiii



ORBITAL APPLICATIONS OF

ELECTRODYNAMIC PROPULSION

L. Background and Problem Statement

The concept of electrodynamic propulsion - using the earth's magnetic field as a

source of spacecraft propulsion - has been described by NASA (12) and studied in depth

by Lawrence (8) and Spenny (14). Lawrence and Spenny created a preliminary design for a

large spacecraft, called the Precision Orbital Tracking Vehicle (POTkV), which was capable

of precisely tracking other vehicles, docking, and performing gross orbital maneuvers. The

POTkV used electrodynamic propulsion as its main propulsion source.

The fundamental theory behind the Lawrence design is the Lorentz equation, which

states the force on a current conductor in a magnetic field is (12:131):

_a = L.x A(1)

where F is the force exerted on the conductor by the magnetic field, i is the current flowing

through the conductor, k is a vector with magnitude equal to the conductor length which

points in the direction of positive current flow, and B is the geomagnetic field vector.

The POTkV conductors must make electrical contact with the plasma in the earth's

ionosphere to close the current loop. Lawrence placed plasma-generating hollow cathodes

(12:120-121) at the ends of POTkV conductors to make electrical contact with the plasma

because this technology is the most promising for high current densities (8:1-2).

One of the drawbacks of the Lawrence/Spenny design is the large power requirement

(14:19). One way to reduce the power requirement is to conduct the current through some

medium with less resistance than the ionosphere. Ladouceur's closed loop circuit is just

such a system (7). In Ladouceur's concept, one half of a continuous conductor loop is

shielded from the magnetic field. Theoretically, the current inside the shielded half of the

conductor loop will be unable to interact with both the magnetic field of the Earth and



the magnetic field of the unshielded half. The torque usually associated with a current

flowing through a loop in a magnetic field will not exist (17:204-205); instead, there will

be a non-zero resultant force which can be used for thrust.

The POTkV design can be modified to incorporate the closed loop circuit, but are

there other feasible applications for electrodynamic propulsion and the closed loop circuit?

That is the question this thesis attempts to answer. We will derive a general equation for

the electrical power and energy required to perform an orbital maneuver. Power and energy

will then be used to evaluate the potential performance of the dosed loop conductors for

several candidate applications.

Several criteria can be used to select - or eliminate - potential applications for

electrodynamic propulsion. The first criterion is to perform thrusting at low altitude,

since the magnitude of B drops off with the inverse cube of the distance from the center of

the Earth, as we shall see later. The second criterion is to use relatively small thrust. As

elegant as the Lorentz equation is, the resulting forces for any reasonable current level are

small, and there is no value in studying high thrust applications. A third criterion is for an

application to exploit the unique feature of electrodynamic propulsion: during rendezvous

and docking there is no exhaust plume to impart momentum to a target vehicle from a

chase vehicle (8:3).

A recent survey of electric rocket propulsion (thrust which is dependent upon the

expulsion of mass) by Janson and others identifies near and far term applications (4).

Several of these applications meet the first two criteria, and have been selected for further

study in this thesis. These include stationkeeping the argument of perigee (w.) of a 90"

inclination Molniya orbit (4:9) and controlling the right ascension of the ascending node

(0) of a sun synchronous low Earth orbit.

Other potential applications were inspired by Lawrence and Spenny. The POTkV

design assumed a low inclination orbit, and classical electric propulsion was used for out of

plane thrusts (8:4-16). Therefore, another potential application is the control of inclination.

For this thesis, controlling inclination of a low Earth orbit in the vicinity of 90* will be

studied. The methodology will be nearly identical to the sun synchronous fl control case

2



discussed above, and we will refer to the two collectively as orbital plane change. To satisfy

the third criterion, wt will study rendezvous between two spacecraft in low altitude, low

inclination orbit.

For each application we will model the electrodynamic accelerations and their re-

sulting effects on the orbit, then compute the power and energy required for each ma-

neuver. Janson reports the current state of the art in spacecraft specific power is four

Watts/kilogram (W/kg) (4:3), and we will use this as a benchmark in evaluating the

applications we study. We will determine whether each application is feasible for electro-

dynamic propulsion based on a) ability to perform the stated objective, b) the electrical

power required compared to the four W/kg benchmark, and c) the existence any undesir-

able side effects.

We will not attempt to optimize the implementation of electrodynamic propulsion

- our goal is to show it can be done, not how it can best be done. Optimization is left as

a challenge for future researchers.

In this chapter we have discussed the recent history of studies in electrodynamic

propulsion and identified the potential new applications for electrodynamic propulsion we

will study. Chapter two introduces all the necessary definitions and theory we will use to

study each application. Chapters three through five study the areas of orbital plane change,

polar Molniya stationkeeping, and rendezvous respectively, and may be read independent

of each other. The final chapter summarizes important results and makes recommendations

for further research. The appendices contain computer file listings, and information about

potential conducting metals for the closed circuit conductor.

3



Ii. Theory & Approach

In this chapter we develop the theory necessary to study the proposed applications of

electrodynamic propulsion. We will define the various coordinate frames and the rotation

matrices between each frame. The unforced orbital motion will be described, and then we

will introduce Lagrange's planetary equations as a tool to use in studying the Molniya and

plane change applications. The Clohessy-Wiltshire equations will be presented for use in

the rendezvous problem. We will model the magnetic field and the electrodynamic forces,

and derive an expression for the specific power required for each maneuver. Finally, we

integrate all the theory into an overall approach to each study.

2.1 Coordinate Systems

This section defines the coordinate systems used in this thesis.

2.1.1 Geocentric Equatorial Frame. The origin of the geocentric equatorial frame

(i) is at the center of the earth. The fundamental plane is the equator and the il unit

vector points in the vernal equinox direction. The i3 unit vector points in the direction of

the north pole. The i2 unit vector completes the right-handed orthogonal set (1:55) of this

Cartesian frame. The i frame is the inertial reference frame for this study-

2.1.2 Greenwich Equatorial Frame. The Greenwich equatorial frame (j) frame

differs from the i frame by a single rotation about i3 . The angle of rotation 8, locates the

Greenwich prime meridian with respect to il. This angle is called the sidereal time and is

calculated using the following simple formula (1:99):

of = 9,. + W,(t - to) (2)

where ,,. is the value of #, at reference time to and w9 is the angular velocity of the

earth's rotation. Although 0.. for a given to is readily available from a source such as

The Astronomical Almanac (16), we will use 9,. = 0 for all cases in this study without

changing the significance of the results.
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2.1.3 Geomagnetic Equatorial Frame. For this study, we place the origin of the

geomagnetic equatorial frame (6) at the center of the Earth, and the fundamental plane is

the geomagnetic equator. The b3 unit vector points to the geomagnetic north pole, which

we locate at 78.3* north and 690 west in the g frame. The b1 unit vector points to 11.7"

south and 69" west in the j frame. The b2 unit vector completes the right hand coordinate

system. This definition of the 6 frame is based on Tascione's description of a dipole model

of the Earth's magnetic field (15:33-34).

2.1.4 Spherical Magnetic Frame. The origin of the spherical magnetic frame (th)

is at the center of the Earth. The ih, unit vector is collinear with the satellite's radius

vector r. The unit vector Yh., is perpendicular to r, lies parallel to the geomagnetic

equator, and points in the direction of increasing geomagnetic longitude. The unit vector

Yh,, completes the right handed coordinate system, pointing in the direction of increasing

geomagnetic latitude.

2.1.5 Orbital Frame. The origin of the orbital frame a is at the center of the

Earth. The fundamental plane of the orbital frame is the orbital plane. The unit vector a,

is fixed to .r and points radially outward. The unit vector a3 is perpendicular to the orbital

plane and collinear with the satellite's angular momentum vector. The ad unit vector lies

in the orbital plane perpendicular to r to complete the right handed coordinate system.

The a frame rotates with respect to #.ie i frame with angular velocity W = ia 3 where i> is

the satellite's instantaneous angular velocity.

2.1.6 Orbital Reference Frame. The orbital reference i-ame (ý) is parallel to the

a frame and the origin is at the end of r. If the orbit is circular, the Z# unit vector will

coincide with the satellite's velocity vector. In that special case, this e frame is the same

as Lawrence's e frame (8:2-1). The i frame also rotates with respect to the i frame with

angular velocity (, = Z43.

5



2.2 Rotation Matrices

In this section we will derive the rotation matrices we will need to transform vectors

between the different coordinate systems defined in section 2.1. We use the notation 213,

where R'1 is a matrix which transforms a vector basis from frame 2 to frame 1.

2.2.1 Orbital Fmrme to Geocentric Equatorial Frame. The orientation of a satel-

lite's radius vector in space at any time is defined by three parameters:

* the right ascension of the ascending node, fl, the angle between the vernal equinox

and line of nodes.

* inclination, I, the angle between the orbital plane and the equatorial plane.

* argument of latitude, u, the sum of the argument of perigee w and true anomaly v.

The process of rotating from the i frame to the A frame is described by rotating an

angle 0 about the inertial i3 axis, then rotating an angle I about the new il axis, and

finally rotating an angle u about the newest i axis. The rotation matrix V" is formed by

the product of three intermediate rotation matrices:

=-i P-3(!U)'2 1(I)2 8 (U)

where
[cosfl -sin a 01

P-3(fl) sinfl cosBf 0

0 0 1

1 0 0

0 cosl -sinl

0 sinl cosl I

cosu -sinu 0

2s(u)= sinu cosU 0

0 0 1

6



The resulting rotation matrix is:

[cosalcosu-sinflcosusintu -cosflsinu-sinflcoslcosu sin fl sin 1
= = sinf)cosu+cosflco@lsinu -sinflsinu+cosfncoulcou -cosflsinl

sin I sin a sin I cos u coo I

S.2.2 Geocentric Equatorial Frame to Greenwich Equatorial Frame. As men-

tioned in section 2.1.2, the # frame differs from the i by a rotation about i3 through the

angle 0,. Thus the matrix I'i which rotates a vector from the i frame to the # frame is:

cosil sin9, 0
7 '- -sin$,, cos O,, 0

0 0 1

2.2.3 Greenwich Equatorial Frame to Geonagnetic Equatorial Frame. Trans-

forming a vector from the # frame to the b frame first requires a negative rotation about

#3 through 69° to the intermediate frame #'. Then another negative rotation about #' of

1l.7* completes the transformation to the b frame. The result is:

cosIu.7 0 -sinlI.7 cos69 -sin69 0

'R = 0 1 0 sin 69 coo 69 0

sin 11.7 0 co011.7 0 0 1

coo 11.7 cos 69 - coo 11.7 sin 69 - sin 11.7 1
- sin 69 coo 69 0

sin 11.7 cos 69 -sin 11.7sin69 coi 11.7

2.2.4 Spherical Geomagnetic Frame to Geomagnetic Equatorial Frame. We trans-

form vectors from the Yh frame to the b frame by making a negative rotation about Yh2

through the magnetic latitude 0,,, to the intermediate frame rW. Another negative rotation

through the magnetic longitude A,. about Yht completes the transformation to the b frame.

7



The result is:

[coo A. - sin A.0 cos.,, 0 -.sin-0,,,

gin" = I A,,, coSA. 0 0 1 0

0 I0 1 sin ,ý. 0 Co08.,

cos A.1cos'o,, - sinA. -CosA>'sin,.1

= Asi,, coo Cos,. - sinA., sin
gin , 0 cos .,.

We compute Am and 0.m from the components of r when expressed in the b frame,

denoted by br, in the following manner. By definition

"Or= I
0

Then
Ter = *"t'" "," = fribI + r212 + r313

A, and 0,. are found by taking the inverse trigonometric functions of

tan A,, --
rl

and

Vr3tan4•,,, -

2.3 Orbital Motion

In this section we will describe the Keplerian motion of: in the orbital plane (1:72-

73, 185). The magnitude oft is

a(l - e2) (3)
1 + e coo v

where a is the semi-major axis of the orbit, e is the eccentricity, and v is the true anomaly.

3



Write r = r&h,, treat a and e as constants, and differentiate to find k to be

;(1- e2) (esinYa. + (1 + cos )a.) (4)

To find v we first define the mean motion (n) according to Kepler's third law:

F E 1 dMn= • T =-•-(5)

where j is the gravitational parameter of the central body, and T is the period of the orbit.

Integration of Equation (5) with respect to time yields the mean anomaly (M):

M = n(t - t.) + M, (6)

After numerically solving Kepler's transcendental equation

M = E- esinE (7)

for the eccentric anomaly (E), the inverse trigonometric function of

cosE - e
cos v = (8)1 - e cos E

gives v.

2.4 Lagrange's Planetary Equations

The foci of the plane change and Molniya studies will be how a force, besides the two

body force, changes the orbital elements. For this, we turn to the force form of Lagrange's

planetary equations. These equations describe the time derivatives of the classical elements

a, e, I, fi, w, and M. due to a perturbing acceleration, f,, defined in a frame components

as:

4 Mrfr + fGa + f3G3

9



They are (18:37-38):

da 2esinv f 2aV41-' e9
dt nF i nr

de v'F 7  sinv Yf, + VT a(-e 2a'1-) r(
dt = na na2-e r (10)

dl rcosu f(1)

dfl r sin u
dt na 2,•v.--- e Fsin If3 (12)

dw VV-eCos V f,++ (1+ I+encos&, ) I sifn Ucf (13)d-7 nae nat1 + e cos Y n a• 2v• e. ls 1

dM. 1 ( 2r 1e-c2  &)-ef1e r
d-t- 7 na a'ae- a(I- e2) sin Mf

5 (14)+2 Va5 dt (4

Unfortunately, Lagrange's planetary equations in this form pose several problems

because of the way we intend to use them. First, notice dM./dt has a secular term.

We will be integrating over an entire day, and this secular term will eventually become a

nuisance. Battin shows how to eliminate this problem from the potential form of Lagrange's

planetary equations (2:487-488), and the same procedure will eliminate t in Equation (14).

Recall M = nt + M. and differentiate with respect to time:

dM dn M(15)
- = 1t dT

10



Differentiate n = vrj7a to find
dn 3n da (16)
t = 2adt(

Substitute Equations (14) and (16) into Equation (15) and simplify:

dM nI (2 e i C +-e ( sin(,f'r (17)

Thus we have a new time-independent expression for the mean motion as a function of the

two body mean motion and the perturbing accelerations.

Equations (10), (13), and (17) pose a problem because they are singular in e. This is

undesirable because we intend to study the orbital plane change of initially circular orbits.

The problem is solved for dM/dt in this manner: for our circular orbit, which is perturbed

to a near circular orbit, we can say v A M and , :z , M. Define a new angle called the

mean argument of latitude as

s=w+M (18)

and its derivative as
ds dw dM
-t t dt(19)

If we substitute Equations (3), (13), and (17) into Equation (19), simplify, and then expand

in a Taylor series to first order in e, we find the da/lt term of Lagrange's planetary equations

to be
di 2 sin ud- = n -f 2f, 6 ntinuf3 + O(e) (20)

The last problem to solve, and the most tedious, is the singularity in e of Equa-

tion (10). To do this we introduce two of the equinoctial elements (18:22):

h = esinw

k = ecosw
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Note we easily recover e from e = v12Tk. If we differentiate, substitute in Equations

(10) and (13), neglect e2 terms, and simplify the resulting expressions are:

h = esinw

dh de. dw
d-t = d-•si•+ecoew-T (21)

c U (r + a)sinu + hr1 * kr cot Isinu (= ,-f + - e ,f (22)

k = ecosw

dk de dw
S= T cosw - esinw- (23)

= sinu f, + (r + a)cosu + krf, + hrcotlsinuf3 (24)
= a na n2 A(4

Equations (9), (11), (12), (17), (20), (22), and (24) will be used in the plane change

study. The Molniya study will use Equations (9-13) and (17).

2.5 Clohessy- Wiltshire Equations

We will use the Clohessy-Wiltshire equations to study the application of electro-

dynamic propulsion to rendezvous and docking. The Clohessy-Wiltshire equations are a

linearized set of equations which describe the motion of one body with respect to another

body in a nearby circular orbit. We will use the results of Kaplan's derivation (5:105-108).

Consider a body in a circular orbit with the i frame attached to it as defined in

section 2.1.6. We will refer to this orbit as the reference orbit or the target orbit, and the

origin of the e frame as the target. The position of another body orbiting near the target

p is given by

P = Zel + yel + Z6s

12



and the relative translational equations of motion are:

*- 2nj-3n3z = F3-=1, (25)

i+2n = = -= f. (26)m

+n3z=F =f31  (27)m

where fr, fI, fs are the • frame components of the non-gravitational accelerations acting

on the vehicle. When f, =i fs = 0, Equations (25-27) can be solved in closed form to

yield:

-(t) = - i +33z. cosnt + .i, sinnt +4o, + (28)

y(t) = y. - (3j. + 6nzo)t + 4 + 6z) sinnt + 2-iocosnt (29)

2.
n

z(t) = zcosnt+-i0sinnt (30)
n

where y,, ,, and z, are the components of p at time t = 0.

2.6 Electrodynamics

In this section we will describe our model of the geomagnetic field, model the forces,

define a new vector _s and derive an expression for the specific power required for any

maneuver.

2.6.1 Geomagnetic Field. For this thesis we will use Tascione's simplified dipole

geomagnetic field model (15:33-34). Tascione defines the magnetic field vector as

S2M sin m. . cosMCo (63.r3 r3 M3 (31)

where M is the magnetic moment, 0., is the geomagnetic latitude as defined by section

2.2.4, and r is the distance from the center of the Earth. M for the Earth is approximately

8.05 x 10's kg.meters3 /(couIomb.sec). To express B in the i frame we multiply by the

13



appropriate rotation matrices:

"B = ,,R•,•rI,4 .B (32)

2.6.2 Electrodynamic Forces. To determine the electrodynaraic force, we return

to Equation (1) and explore its derivation, which we find in Orear (11:350,374). We begin

with the definition of force acting on a charge q moving through the magnetic field B with

velocity y:

E = av x A (33)

Now consider the differential force dF due to a differential charge dq, and replace v with

dL /dt:
F = dqLt x &

dt

Rearrange terms and recognize the definition of current is i = dq/dt:

d£= - d x AZ = i d x Adt

Finally, we assume the conductor L is a straight line and integrate over the appropriate

limits to obtain Equation (1)
0 fr 10 L x.AjFfi

The product iL can be combined into one vector. Consider a vehicle with three

mutually perpendicular conductors fixed parallel to the a frame. Let positive current i,

flow through conductor ".4 = {NL, 0 0) in the plus a, direction, where N, is the number

of turns of a coiled conductor and L, is the length of one loop of the conductor exposed

to the B field as shown in Figure 1. Then

I £ = i,/.,x .•= -i,NrL, a3

1 ,N,L,B

14



Divide by the satellite mass m so the acceleration due to the radial current/conductor

becomes 0
L A -' B 3  (34)

L N. L.B
Define the parameter

i, N, L,

m

and rewrite Equation (34) as

f -,c, B 3

Similarly for currents i. and i3 flowing in a positive direction through conductors/L = (0 NLe O}

and L3 = (0 0 N 3L3 } respectively, define

i#N#L.

and
is3N 3L3P3 --- m

Then the accelerations due to K* and #c3 are

L= K.B3
L = o (35)

6-K*c B, J
and f-K-3B*

L = I 3B, (36)

0

15



Cafductor k~op

L

Figure 1. Closed Loop Conductor

Equations (34-36) can be combined to obtain the total acceleration resulting from r.,, Pco,

and 1W: {40 - r-1B
L , -SB, ,S x (37)

g, Bo - coB,J

where _K is a vector defined by

_•= r-r, + MAO + 3 S (38)

The new nomenclature K allows us to refer to the combined product of iNL in any

one conductor without regard to the actual value of either i, N, or L, and retains the 'per

unit mass' definition we desire.

Note that although a can be specified in any direction, we cannot accelerate in any

direction. Accelerations resulting from A x B are constrained to be perpendicular to both

x and -& due to the nature of the cross product. Unless A is perpendicular to the desired

acceleration direction, Equation (37) will generate unwanted accelerations perpendicular

to the desired acceleration direction. We will see the impact of this phenomenon in the

orbital plane change and Molniya stationkeeping applications.

16



L.6.3 Specific Power S Energy. Now we will derive an expression for the spe-

cific power required to deliver the accelerations which result from Equation (37). The

total power (P) required to drive a current through the circuit which describes the mo-

tor/generator action of electrodynamic propulsion is (8:C-3)

P = iV, + OR (39)

where Vj is the voltage induced across the conductor as it moves through the magnetic

field and R is the total resistance of the conductor. Resistance is defined by (11:337-341)

R = Pit (40)

where P. is the resistivity in Ohm-meters, Z is the entire length of conductor the current

flows through in meters, and A is the cross sectional area of the conductor in meters2.

Note C = 2NL, assuming the length of the portion of the conductor perpendicular to L is

neglibly small compared to L, because the resistance dissipates power as the current flows

through the entire conductor, including the shielded part. If we treat each conductor as a

separate circuit, the total power is P = P, + Ps + P3 .

We return to our definition of a component of j, which we now denote by rj (j = r, 9,3),

and solve for i, to find
ij Nj Lj

m

3j

Substituting this result, Equation (40), and C = 2NL into i2 R gives

iR-( m) C, R_ =P2 (41)

Next, we assume a constant conductor cross sectional area Aj and solve for the con-

ductor volume Vj = £.A, = 2NjLj.A, in terms of the conductor mass me, and conductor

mass density Pc:
me _ ___

-4.4, 2NjLA7

17



N,L,4A = me, (42)

2p,

Replacing NjLrAj in Equation (41) gives

m2

=jR 4rj-22!'p~p (43)

which is the power dissipated by the resistance in one conductor.

The induced voltage term of Equation (39) is given by (8:C-1)

i = - (V., x B-). (/,W(44)

= - .a is the relative velocity of the conductor with respect to the magnetic field.

The velocity of the satellite in a frame components is given by Equation (4). To determine

_MB we begin in the # frame, where • is fixed. The velocity ofB due to the Earth's rotation

then follows from

O~a = OW, X Or

"Y. = -,., n"l (45)

where o = {0 0 wq T. For the rest of the derivation we denote v., by

1,1 = V,, a., + Vr.lat + VP,*,13

18



We proceed by expanding iVj with our new expression for i and simplifying as follows:

iv, =

= -i [NLL (Vr.,,Bs - V,.,1,B) + NL, (v,., 3B, - v,.a,, 3) + N3L3 (v,.I,,B - V,.,,')]

S- (i,NL,) (v,.1#0 3 - v,.,1B#) - (i#N#L,) (v., 13 B, - v,.,,0s)

- (i3N3L3 )(vi,,pB. - V,.,,B,)

= -i.m(v.,.Bs - v,.,sB.) - PCOm(v,.,sB, - v..IBs) - r-sm(v,.IB* - u.-,B.)

= -m [4, (v,.aeB3 - v,.,,3B) + icO (vI.,3B, - v,.,,Bs) + K3 (v,.,,Be - v,.,,B,)] (46)

Finally, we substitute Equations (43) and (46) into Equation (39), assume

Mi,, = - Ci = rCn3 = Mn,

and divide by the tý. tal satellite mass to obtain an expression for specific power (P.):

= -P., (v,.#.B3 - v..,. Be) - j4 (v,.#.B, - v,.,Bs)

-,s3 (v,.,,Bo - v,,.,. B,) + 4-psP. (x,' + Pic' + r.32) (47)mc

Equation (47) provides insight to any system we might consider. First, Equation

(47) is not configuration specific, although we must choose values of the conductor mass

fraction m/m, to study. Second, we see the ic terms will dominate P. if icj is large, so it

is important to minimize m/m, and the product pRp,. The limiting value of m/mr is 3,

which implies the entire vehicle is consists of only the three conductors with no bus, power

supply, or payload. For most of this study, we will use the value m/mr, = 10, meaning 30%

of the vehicle mass is in the conductors. To show the affect of varying m/mrn, m/m, = 6

(50% conductor mass) and m/mr. = 3 (100% conductor mass) will also be investigated for

several cases. The product PAP. depends on the conductor material we select. Appendix B

presents the results of a survey of common conducting metals. Aluminum has the lowest

PNP, product, so we use the value (PRP.)AI = 7.2 X I0" Ohms.kg/meter 2 for this study.

19



Although p~p, can potentially be made quite small with a superconductor, this was not

investigated.

Note the last term in Equation (47) is always positive. Other terms can be negative,

depending on the sign of oci and the sign of each bracketed quantity. A negative P0 implies

regeneration, i.e. storage of energy rather than expenditure.

For particular orbits some terms in Equation (47) are small compared to others. For

example, consider a low inclination circular orbit. B, and B# are small compared to B3,

and v,,#, ; 0 and v,,#, ; 0. Therefore the second and third bracketed terms are small

compared to the first. This leads to the conclusion that the K, conductor is the primary

source of any regeneration which may occur in this special case.

In addition to the instantaneous power requirement given by Equation (47), we will

be interested in the total energy (C) required to perform a given maneuver. To find energy

we will simply integrate the power over the thrust duration, or

t P P(t)dt

where t. and t1 mark the beginning and end of the thrust period. We will perform this

integration numerically using the trapezoidal rule (6:979).

Dividing the energy by the thrust time gives the average specific power P.:

ti - to

2.7 Approach

In this section we describe how the theory we have presented is applied to each study.

The general approach is as follows.

1. Specify all constants.

2. Specify initial values of all orbital elements.

3. Calculate or.

4. Rotate r from the a frame to the b frame.
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5. Calculate A. and 4.

6. Rotate Z from the b frame to the Yh frame.

7. Calculate B.

8. Rotate I from the Yh frame to the a frame.

9. Calculate S. This will be done with algorithms developed in later chapters specific

to each case.

10. Calculate and store specific power.

11. Calculate•L = -x .

12. Evaluate Lagrange's planetary equations.

13. Numerically integrate the orbital elements from t1 to t2 with the Euler method

(6:1063-1064).

14. Repeat steps 3 through 13 until the final time.

15. Integrate specific power to obtain total specific energy.

16. Calculate average specific power.

This procedure was implemented with the MATLAS interactive software package (13).

The script and function files are listed in Appendix A. Any case-specific deviations or

simplifications to the procedure are described in Chapters 3-5.
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III. Orbital Plane Change

In this chapter we will investigate the applicability of electrodynamic propulsion to

orbital plane change. First we will study inclination change, then we will look at changing

the right ascension of the ascending node. In both studies we neglect plane changes due

to any other accelerations, such as Earth oblateness or Sun-Moon perturbations.

3.1 Inclination Change

Studying inclination change interests us for several reasons. First, Lawrence re-

stricted his studies to in-plane thrusting and did not study inclination change. Second,

classical inclination change maneuvers are relatively expensive in terms of fuel, so it may be

advantageous to use electrodynamic propulsion rather than chemical or electrical thrusters.

3.1.1 Inclination Forcing Function. To change I we need to find a forcing func-

tion f3, to substitute into Equation (11) to create a net change in I. Recall Equation (11)

is
dl rcosudt = na3 i"1777

and simplifies to
dl cosu (T = As, na(48)

for a circular orbit. Note a constant 13, is not a satisfactory forcing function because the

cos u function in the equation will result in zero average i. Instead, assume f13 is of the

form A, cos u, where A, is a constant we will derive shortly, and examine the average

(I) over one orbit:

±f A, cos2 t'

A, C02i
- 2 cosudu

- A,(2u+o si2v'u 2

2wna 2 4 0o
- At (49)

2na
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Solving Equation (49) for A, gives

A, = 2naI

and the forcing function

As, = 2nalcoso

where I is a desired value we specify.

Similarly, we can check to ensure f3,, does not change f0 by looking at the average (

based on Equation (12):

df? r sin u

dt na2v'--'e-sin If3

sin U
na sin I (2naI cos u)

21
-si I s u cs u

If we assume I is a constant over one orbit, although not strictly correct, then fl is

2-2r21rsinl sinucosu du = 02r sin 1 Jo

Now we must find the vector r. which will result in the desired force vector

L = {0 018,)

To begin, find the unit vector k as depicted in Figure 2 by crossing B- into f. and normal-

izing the result:

k A xt I (50)

= BoA4 - BA4 (51)

[(B.13 )2 + (Br!3 )2 ]"/

Bea . - Ba# (52)
(BO2 + B,2)112
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Figure 2. Geometry of the r. Vector

Thus we can rewrite Kc as

(2+ B1,112 ()

Substitute Equation (53) into the definition of fs from Equation (37), and solve for K:

cB# - KGB, = A,

B# B,
K ( , (B+ B'12 B# K(B .B2)1 B,. =131

3, (54)

(B# + B,2)12

To summarize the results of this section, once we specify a desired I, then _. required

to achieve the necessary f3, is given by r = KK where

PL (55)

Lh= {oo f3,)T (56)
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and
h, 131 (57)

Equations (55-57) guarantee achievement of the desired f1,. However, they will generally

also produce f, and ft accelerations as well. We will see the effects of these unwanted

accelerations in the next section.

This algorithm has another shortfall. The algorithm makes no assumptions about

f, and there are times in the orbit when the denominator of Equation (57) will be near

0, resulting in unreasonable values of r.. To avoid this problem, we will put a limit on the

components of K. Since the algorithm does not consider the varying B field, there may be

an inefficient use of power. To correct this deficiency crosses the line into optimization,

which is beyond the scope of this thesis.

3.1.2 Inclination Change Results. Average inclination change rates of +l1/day

and -0.1l/day at the initial inclination I. = 90* were studied, as well as -0.1*/day at

I. = 450. Results of each case are summarized in Table 1. m/m, = 10 for all cases. To

study the effects of the rotation of the B field, the duration of each case was one sidereal

day (86 160'). The other initial orbital elements of each case were

a = 6578km

h=0

k•=0

f=0

U, = 0

In each case we were able to obtain the desired secular change in I with no net change

in Q. Figures 3 and 4 are representative of the performance of I and 01 in each case.

Figures 5 and 6 show the case I . and P. profiles respectively, before we imposed

a limit on oc. After case 1, we imposed the limit that the magnitude of no component of

i_ exceed 200 Amp.m/kg. Figures 7 and 8 show P, and oc for case 2. Note the effect of
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Table 1. Inclination Change Study Results
Case 1 2 3 4 75 6

I. (deg) 90 90 90 90 90 45 45
r-liis (A.m/kg) n/a 200 200 200 200 200 200

Target I (deg/day 1.0 1.0 -1.0 .10 -. 10 .10 -. 10

t (J/kgx 104) 360 220 210 4.1 2.8 4.0 9.6
P, (W/kg) 42 26 24 ' .47 .33 .46 1.1
P,,,. (W/kg) 6736 287 269 79 100 229 202
Aa (km) 1.496 .349 .144 -.061 .109 -7.336 7.404

91

90.7

90.47

W.1

2 4 6 8 10 12 14 16

Figure 3. Case 2: Inclination Change
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0.40J.

-0.1

k-0.4

0 0 4 6 6 10 12 14 16

Figure 4. Case 2: Right Ascension of the Ascending Node Change

limiting r. in Figure 7. Further, K3 is zero, as would be expected since the numerator of

Equation (55) gives

Br. 0 Be 3 A 1
Be x 0 -B,f 3 ,

B3 0 J
Referring back to Figure 3, note I does not quite reach the target value. This is because

the limit on r. prevented achievement of the desired f3, at times. I can be adjusted to

make up for the shortfall.

In Table 1 we see limiting x resulted in 1/3 less energy required for case 2 compared

to case 1. In cases 3-7 we changed the target I to .1*/day. This one order of magnitude

change resulted in two orders of magnitude change in E and 7:,, bringing 7, in reach of

current spacecraft specific power technology.

Figure 9 shows how the power is divided between i2R and WVi. There is some negative

iVi, but overall the iV, power is negligible compared to the i2R power, indicating the r2

terms dominate Equation (47).

Figure 10 shows f3, is a cosine function, as desired, except for several points near

revolutions 4 and 12 where the limit on ic is invoked. r. must be limited in areas where
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Figure 5. Case 1: oc Profile (Amp.m/kg)
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Figure 6. Case 1: P. Profile (W/kg)
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Figure 7. Case 2: 0 Profile (Amp.m/kg)
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Figure 8. Case 2: P. Profile (W/kg)
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Figure 9. Case 2: O2R and iV, Power

B, and B# are near zero compared to B3 . An example of such a point near revolution 4

is shown in Figure 11. In these instances, I is nearly parallel to L,, thus Equation (57)

becomes singular.

The unwanted f,. = oc#B 3 and fe = -#4,B 3 accelerations rise and fall in phase with

the relatively large B3 oscillations which occur twice per day as the geomagnetic poles

revolve through the orbital plane, as shown in Figure 12. These accelerations manifest

themselves in changes to a. In cases 1-5, a initially diverges and then returns to its initial

value, resulting in no net change over the 24 hour period of interest. Figure 13 shows how

a varies, and is typical of all the cases where I. = 901. However, for I. = 450, a diverges

and never returns to its initial value. Figure 14 shows a for case 6.

3.2 Right Ascension of the Ascending Node Change

There are two potential applications of Af? maneuvers. The first involves a satellite

at I = 90" whose line of nodes is precessed with angular velocity equal to the Earth's mean

angular velocity as it revolves around the sun, or !0 f l/day.

The second application is to fine tune fl, such as might be required to maintain

a specified angular separation between different orbital planes in a constellation. This
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Figure 11. Case 2: Magnetic Field Near Revolution 4

would be an expensive fuel maneuver over the lifetime of a constellation of low Earth orbit

satellites. Perhaps electrodynamic propulsion can perform small Af) maneuvers at low

power using renewable electrical energy.

3.2.1 Right Ascension of the Ascending Node Forcing Furnction. Development

of a forcing function f3.~ will follow the same methodology as section 3.1. Simplifying

Equation (12) for a circular orbit results in

&I sin U
dt~ slGin IfA

Again we find a sinusoid which eliminates a constant f3 from contention as a potential

forcing function. Rather, assume f3. is of the form Bn sin u, where Bn is a constant we

find in the same manner as before:

T Ba si 2U

Owasn . 2w sin2u du (59)

2zasn o

2inas (! -sin ucosu)Iw (60)
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Figure 13. Case 2: Semi-major Axis Change

65701

Figure 14. Case 6: Semi-major Axis Change
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2na sinl (61)
Bn = 2nafl sin 1 (62)

A. = 2n sflsinIsinu (63)

Equation (48) is revisited to see how f3. affects I:

dl = A (64)

' "! (2na' "sinlsinu) (65)

= 2f sinlcosusinu (66)

Again we treat I approximately constant with respect to u and find

20 sinI jW1= 21r J0 cosusinu du=O0

as desired.

The methodology used in section 3.1 to find P. also applies here. Define the desired

force vector as = ({0 .0 }T. Then

JI- Lx.

B + B,)12

and P_ = cic. As before we will see unwanted accelerations f, and fe, and we must limit

the magnitude of r. the algorithm might demand when the denominator of Pc goes to zero.

3.2.2 Right Ascension of the Ascending Node Change Results. Average f0 change

rates of -1-/day and -0.1*/day at initial inclinations 1. = 900 and I. = 450 were studied.

Results of each case are summarized in Table 2. To study the effects of the rotation of the

B field, the duration of each case was 86 160W. The other initial orbital elements of each
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Table 2. Right Ascension of the Ascending Node Change Study Resultsf~ w 11 1 12I1 3 1 41 5 1 oý 7
I. (deg) 90 45 45 45 45 90
Kfi.tm (AKm/kg) 200 200 200 200 200 200
Target Q (deg/day) 1.0 1.0 -1.0 .10 -.10 .10
C (J/kg x104 ) 120 I00 110 1.9 .81 1.5

.7 (W/kg) 14 112 11 .22 .094 .17
P,,... (W/kg) 271 189 242 55 11 16
Aa (kin) -1.59 5.93 -9.20 1.11 -1.08 -.531

case were

a = 6578km

h 0

k 0

U, = 0il =0

In each case we were able to obtain the desired secular change in Q? with no net

change in I. Figures (15 and (16 are representative of the performance of fl and I in each

case.

Figures (17 and (18 show P. and r for case 4, which is typical of the other five cases.
-t-

In Table 2 we again see how the change in fl from 1.00/day to .1/day results in two orders

of magnitude change in E and ?',, bringing ? for the fl change maneuver below the four

Watt/kg benchmark.

In comparing cases 1 and 6 in Table 2 to cases 2 and 4 in Table I we see how the

variation in the B field affects the total energy required for plane change of polar orbits. In

Equation (31) we see B is twice as strong at 40m = 90° than at 0,, = 0. Since f3. = Bn sin u

while f3, = At cos u, the f3. function is able to take advantage of the stronger A_ field near

the poles. The f3, function must expend more energy to achieve the same forces while

thrusting over the equator.
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4a3. Addit inal Afl Caam..

1k Iiv,/-- i2 R/I
*/day (W/kg) (W/kg) (W/kg)

1.0 -0.0766 14.1202 14.0436
.9 -0.0604 11.7560 11.6957
.8 -0.0487 9.5775 9.5288
.7 -0.0464 7.5952 7.5487
.6 -0.0464 5.8287 5.7823
.5 -0.0522 4.2549 4.2026
.4 -0.0580 2.8389 2.7809
.3 -0.0638 1.6818 1.6179
.2 -0.0569 0.7950 0.7382
.1 -0.0279 0.1985 0.1706
0 0 0 0

-. 1 0.0267 0.1985 0.2252
-.2 0.0511 0.7927 0.8438
-.3 0.0515 1.6783 1.7298
-.4 0.0371 2.8319 2.8691
-.5 0.0209 4.2375 4.2584
-.6 0.0001 5.8008 5.8010
-.7 -0.0174 7.5511 7.5337
-.8 -0.0325 9.5160 9.4835
-.9 -0.0429 11.6771 11.6342

-1.0 -0.0499 14.0204 13.9705

Figure 19 shows f3 is a sine function, as desired, except for those times when the

limit on ,K is invoked. The unwanted f, and f, accelerations due to large B3 components

again produce changes in a, as shown in Figure 20 for case 4.

The f? change cases were chosen for investigation of the affect the choice of frm,

has on Po. In addition to case 6, 19 other cases were run at various fl values and the TP.

due to the induced voltage and the ic, terms were tabulated. Table 3 shows the results of

these additional cases. All cases were run at I = 900 and m/me = 10.

Figure 21 is a plot of the iV, power, the i2 R power, and the total T, for all the

cases shown in Table 3. At fl = .1*/day, the power (either expended or regenerated) due

to the induced voltage is about 1/7 the power required to overcome the i2 R losses. At

rz = 1.0°/day, the iV: power is insignificant compared to the i2 R power. The 4 W/kg limit

is exceeded near f? = .5°/day
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In Equation (47) we see the power dissipated as heat can be decreased by lowering

m/m, without changing the iV, power. Lowering m/mr implies more of the total vehicle

mass is taken up by the conductor. In using m/me = 10 and assuming three orthogonal

conductors, 30% of the vehicle is conductor mass. The conductor mass can be increased to

50% of the vehicle mass by using rn/mr = 6. If we retain the three conductor configuration,

the theoretical limit of m/me is 3, meaning the conductors account for 100% of the vehicle

mass.

The existing data can be modified to study the effect of differing m/mn values. For

m/m, = 6, the O2R values of Table 3 are multiplied by .6 and added to the unchanged iV,

power to find a new TP,. Likewise, multiplying the j 2 R values by .3 results in a theoretical

lower bound on T,. The modified data is plotted in Figures 22 and 23 for m/me = 6 and

m/m, = 3 respectively. Note the O2R losses are still significant compared to the iVj power.

The 1.0"/day goal is almost in reach of the 4 W/kg power supply for m/m. = 3, but

further m/m, reductions are not possible without invalidating many of the assumptions

which went into the derivation of Equation (47). Although further power reductions might

be found by deriving a more general form of Equation (47), a more promising way to reduce

P0 is to replace the aluminum conductor with a superconductor.

45



IS

14

12-,

+M i12R___ e42A
,2. V .. ,+÷÷ .

•-0s 0 a.s

Figure 23. Required for AR (m/m, = 3)

3.3 Summary of Orbital Plane Change Results

In this section we summarize the results of the I and f change maneuvers. We

have developed an algorithm which allows us to use electrodynamic propulsion to change

both I and f) as desired. However, the maneuvers can only be achieved with reasonable

power requirements when the magnitude of the plane change is on the order of .40/day.

Until spacecraft power technology advances, this eliminates electrodynamic propulsion

from applications such as changing 0 at 1.0"/day to produce a true polar sun synchronous

orbit or relatively rapid AI maneuvers.

At slower rates such as .10"/day, AI maneuvers are feasible for polar orbits. Plane

changes at lower inclinations may be feasible, provided the change in a can be negated.

Most of the power required to perform the maneuvers is dissipated as heat due to

the resistance in the conductor. A larger conductor mass results in less power, but at the

expense of payload capability. Superconductors should be investigated as a means to lower

t-• power requirements.

Additional study should focus on constraining the change in a and incorporating a

priori knowledge of the B field into the forcing functions. Also, if the only desire is to
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move 0l from fl, to fl2 , less energy may be required if I and A change simultaneously so

the angular momentum vector follows a great circle route, rather than simply precessing

the line of nodes.
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IV. Molniya Orbit Stationkeeping

Now we turn our attention to the application of electrodynamnic propulsion to sta-

tionkeeping the argument of perigee of a polar Molniya orbit. A Molniya orbit is highly

eccentric with a 12 or 24 hour period and large inclination. Thus if the argument of perigee

is 270", the apogee will remain over the northern latitudes of the Earth for a large portion

of the 12 or 24 hour period. This provides multi-hour communications capability with

minimum ground antenna tracking for those users who do not have visibility to equatorial

geosynchronous communications satellites.

Janson has proposed a stationkeeping strategy for a 24 hour, 90" inclination Molniya

orbit using electric thrusters (4:9). In this chapter we will look at effects of the Earth's

oblateness on the Molniya orbit, develop a stationkeeping strategy, and compare our results

with Janson's.

4.1 Effects of the Earth's Oblatenen

The first order approximation of the shape of the Earth is a sphere. The second order

approximation is an oblate spheroid, with the polar diameter some 21 kilometers less than

the equatorial diameter. Meirovitch derives the components of the disturbing acceleration

"L due to oblateness in terms of the Earth's principal axis moments of inertia (9:457-459).

They are
-3G (CH - A2 ) (1 - 3sin2 usinA2 )

-3G (C, - A,) sin 2u sin2 I (67)
2r4

- - 3G (Cj;-A,;)
A20 4  sin u sin 21

where G is the gravitational constant, CS is the Earth's moment of inertia about the polar

axis, and A, is the Earth's moment of inertia about the orthogonal axes. If we substitute

Equations (67) into Equation (13), which we repeat here for reference,

dw = ' co s V f 1 s. -rcotIsinu f

dt nae I 4.+ l" ecos na2V "fe2
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Figure 24. Effect of Earth Oblateness on 24 Hour Polar Molniya Orbit

we can see how the Earth's oblateness affects w. Our reference orbit is defined by

T = 86160'

e = .82501

w = 270*

Figure 24 shows &uW@N.,. due to the Earth's oblateness is approximately -. 071 after

one revolution. Left unchecked, w will continue regressing until the apogee is no longer

over the North pole, making the orbit unusable for polar communications. The goal is to

drive Aw to 0.

4.2 Desired Forcing Function

Finding a suitable forcing function to produce the desired (,, is not as straightforward

as it was for the plane change case. Equation (13) contains all three components of L,
so we have one equation and three unknowns. Even if we choose to neglect f3, which is

reasonable since the cot I term negates its effect on ; for a 90* inclination orbit, we still
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must find some combination of f, and f, to produce the desired C. To solve this problem

we call upon the method of Lagrange multipliers (9:54-55), in which we minimize one

function subject to the constraint imposed by another function. From our experience with

the plane change case we know the # terms dominate Equation (47), so a function worth

minimizing is
2 2 +2 (8

(aar,. + OK* +- (68

The constraint we impose on W comes from Equation (13). We require Equation (13)

to produce -Aw.6,ds. during the thrust time At, and we define

At

We write the constraint function g as

rcotIsinu -
g(_) = -k 1 cosvf, + k1k2 sin ;-T- W 0,i. - =

where

k, =
nae

and
I

1 + ecosv

We simplify g by neglecting the third term, since cot I = cot 90 = 0. Thus

_(1) = -k, coo vf, + k, k2 SinifO - = 0 (69)

Last, we substitute in the definitions of f, and ft in terms of _c from Equation (37):

f, = OB3 - ICA

f ,- PC, A

The result is

g = -kI cosv( icB 3 - C3B#) + kk 2usinV(O 3 B,. - K,B3) -* = 0 (70)
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Augment Equation (68) by multiplying g times the undetermined Lagrange multiplier

A so that

7? + A9

.= + + 3 + %A(-kl coo Y,(K#B3 -asB,)+kk2sinY(r(B3 -IcB,)- -) (71)

Take the partial derivatives of W with respect to P, go, and r., set each equal to

zero, and solve for A:

AL = 2g, - Xklk 2 sin YB3 = 0 t = U.

=2g#=2 ,- AkcosvBs=O0 A2 = &

*_•= 293 + A (k, coovB* + kk 2 sinvB1) = 0 * A3 = Va.VB.+

Since A = A, = A2 = A3, we can solve for x, and X3 in terms of go:

x, = k2tan, Yx (72)

3 go (cos, B# + k2 sinvB,) (73)coo -" P6IB3

Finally, substitute x, and g3 into Equation (70) and find x# is

- B3 coov

=B• (•k2 sin2 a, + k, cos 2 SO) + k, (cos vB# + k2 sin YB,) 2

Substituting Equation (74) back into Equations (72) and (73) yields the complete solution

for _ required to obtained a desired W.

As in Chapter 3, we have a completely analytical algorithm to determine . required

to meet the stated objective. However, it has deficiencies also. Notice Equations (72) and

(73) will call for infinite P, and .3 at Y' = +900. Like the plane change algorithm, this

algorithm makes no assumptions about the B field. Examine Equation (74) at v = 0 and

simplify to
-wB 3Oc = I B + B 2

In Figure 25 we observe B# and B3 both pass through zero at P = 0, making go singular

at that point.
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Figure 25. Geomagnetic Field Strength for 24 Hour Polar Molniya Orbit, ft. 141°

We compensate for the first problem by somewhat arbitra~rily choosing to restrict our

thrusting to the region where cos Y > .1, or -84.3" < Ys < 84.3". This has the added benefit

of not thrusting at higher altitudes where the magntude of B. drops off with the inverse

cube of r, as shown in Equation (31). Another reason to not thrust over the whole orbit

is the dipole model becoms suspect above 2000 km (10:2-21). Additionally, we winl limit

the magnitude of any component of og to 500 Amp.m/kg throughout the thrust period.

Thrusting near Ys = 0 will not be restricted, but the magni tude will be subject to the

above limit.

Earlier we defined

bJ•*

at

where At is a thrust time which can now be specified. To determine At, we find E and M

at cosm, = .I from Equations (8) and (7), set M. -- -M at t. and solve Equation (6) for

At:

cos0 -E0 = e + cog10

I + ecOSm
E = .5662 rad
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M = E-esinE

= .4942 rad

M = nAt+M,

A 2M
n

= 3227"

We make two more points before analyzing the results. Even though our intent is to

minimize Ii, the method of Lagrange multipliers only guarantees we will find an extremum,

not necessarily a minimum. To ensure 7/ is minimized, we must look at a point near the _,a

we solve for and verify W/(&,1) <7i 7 + 6&1). Also, we only chose to use a Lagrange

multiplier solution to aid in solving for the three unknown components of L with respect

to one equation for d. The fact that we somewhat optimized P,, which is supposed to be

beyond the scope of the thesis, is a side benefit.

4.3 Results

The energy required to stationkeep w depends on the initial right ascension of the

ascending node (fl,). We see this in Figure 26, where we plot total energy versus initial

fl. The minimum energy is 2.4 x 103 J/kg at fl. = 214". There are several local minima

with energies from 2.6 x 10' to 2.9 x 105 J/kg. Local maxima of 5.3 x 105 J/kg exist at

fR, = 89" and fl, = 270". The wide variation in energy is caused by the 11.50 tilt of the

magnetic field. Figure 27 shows the B field for fl, = 890. Note the relative flatness of

B3 in Figure 27 compared to B, in Figure 25. Since B3 couples into both f, and fe in

Equation (37), we can expect large values of g# and ic, are required to generate the desired

fr and fe. Hence the 16:ger power requirement where fl. results in a near zero B3.

There is an unwanted side effect on a. Figure 28 shows how the forcing function

affects a as a function of fl,. a changes by as much as ±200 kin, which is undesirable.

There are several places where Aa is 0. Unfortunately, fl, = 214" is not one of them.

However, Aa does cross zero at A, = 1410, which is near a local energy minimum at

53



x 10S

5.

12

I

o% s 100 150o 200 250 300 50o
Inlitmi Right Aecenaion of the Acnding Nod* (degrees)

Figure 26. Specific Energy Required for Molniya Stationkeeping

4x 10.

S.... •_J ._kfhu -Ce3

2 I

0t
• "'".. i ... ,.

-1

.150 .100 - .0 0 so 100 ISO
Tm. A.n*, (4190

Figure 27. Geomagnetic Field Strength for 24 Hour Polar Molniya Orbit, Qo = 89°

54



200

150

.I SO-

-100

-So

Jr20
so5 100 IO 200 250 300 350

Initial Right Ascension of the Ascending Node (degrees)
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1= 139*. We choose to tradeoff an increase in energy for no change in a, and select the

point ft. = 141* for closer study.

Figure 29 shows how w varies over one orbit at n. = 141*. The algorithm produces

Aw = --.0013*, and we could make Aw smaller by fine tuning W. Figures 30 and 31

show changes in I and fl. We can see what causes them by looking at Figure 32, which

shows a large f3. f3 doesn't contribute to Cý because I = 90, but it does change I and

fl. Although unexpected, these changes are acceptable within the scope of this analysis.

Figures 33 and 34 show that by choosing fl. = 141* we are able to keep Aa and Ae near

0, as desired. Finer selection of fl. should drive Aa and Ae closer to 0.

The total specific energy required is 2.94 x 101 J/kg. Figures 35 and 36 show the X

and P. profiles respectively. Peak power is approximately 1000 W/kg, and occurs due to

the large Ks at the beginning of the thrust period. 093 would be even larger if not for a limit

of J1i 1,,,. = 500 Ampere-meters/kg. If we average the energy over At the average power

T. is 91 W/kg, while averaging the energy over the entire orbital period T gives T. = 3.4

W/kg.

Although restricting the beginning of the thrust period to v = -84.3* solved the cos v

singularity in i4, it neglects the fact that B3 also goes through zero at v = 84.0, which is
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also shown in Figure 25. The peak near v = 0 due to the weak Bo and B3 components is

expected. B3 does not pass through zero again until v = 98", hence the asymmetry in the

power profile. The K and power levels are relatively small over the range 20" < IPI < 600

where Be and B, are relatively large. This highlights the necessity to develop algorithms

which incorporate some prior knowledge of the B. field. There is also some regenerative

power in the each conductor at different times during the thrust period. However, it is

negligible compared to the total energy required.

The check on 7% (id) < 7W (, + 6 .1) verified 7i had in fact been minimized at

every point. Although power is minimized at every point, this does not imply total energy is

minimized. For instance, we can look closely at Equation (13) and see any energy expended

near v = 0 is wasted. First, f3 has no affect on i due to the cot I term. Likewise, the sin L,

term negates the affect of fe. An f, would be useful, but we have already seen B, and B3

are zero at v = 0.

Table 4 shows how these results compare with Janson's stationkeeping strategy for

several conventional electric thrusters and a monopropellant system given a four year

mission duration (4:9). Janson's approach to stationkeeping is to use a constant +f, for

six hours per day centered on apogee. Electrodynamic propulsion offers no advantage

to electrical thrusters in terms of energy or power consumed. However, if the energy

can be acquired from the sun and stored on board during the non-thrusting phase then

no consumable fuel is required. If we treat the mass of the conductor as the analog

of propellant mass for comparison purposes only, electrodynamic propulsion (EDP) can

perform the mission for an unlimited time with only 30% 'propellant' mass, compared to

the 38% required for a stationary plasma thruster (SPT).

There are several other advantages to using electrodynamic propulsion in this sceanrio

compared to Janson's. Since all the thrusting is done near perigee when the payload would

not be required for communications, strict attitude requirements which might not be met

because of unwanted torques could be relaxed. Electrical power normally allocated to

the payload could be diverted to the conductors. Any concerns about the possible adverse

affects of the presence of a electrical thruster plume in the line of sight between the satellite

and Earth would also be eliminated.
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Table 4. Specific Power Requirements for a 24 Hour Polar Molniya Satellite
Thruster 1 Monopropellant [Arcjet SPT Ion EDP 1
Energy (J/kg) 60,480 82,080 U16,640 294,000
P. peak (W/kg) 2.8 3.8 5.4 997
-P. (e/at) 2.8 3.8 5.4 91
P. (CIT) .70 .95 1.35 3.4
Duty cycle (Wt/T) .25 .25 .25 .0375
Propellant fraction 98% 73% 38% 23% -

Even with the deficiencies in the forcing function algorithm which cause excessive

energy and power requirements, the T, is feasible today. Incorporating knowledge of sin-

gularities and peaks in the B field into the power, energy, and ; functions and approaching

the problem with the goal of minimizing total energy should give electrodynamic propulsion

a clear P0 advantage over electric rocket propulsion.
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V. Rendezvous & Docking

In this chapter we will study the application of electrodynamic propulsion to ren-

dezvous and docking. A unique feature of electrodynamic propulsion is there is no exhaust

plume to impart momentum on the target as the chase vehicle approaches. Additionally,

if we presume the electrical power comes from some renewable source, we should be able

to thrust continuously and affect a soft dock such that the relative velocity and acceler-

ations decay to zero as the chase vehicle approaches the target. This is in contrast to

a conventional two burn maneuver, in which the chase vehicle arrives at the target with

non-zero velocity and thruster firings are required to change the relative velocities to zero

near-instantaneously.

For simplicity, we take the 11.7* tilt out of the magnetic field model and study a

zero inclination reference orbit. In this scenario the B field is perpendicular to the orbital

plane, so out-of-plane thrusts are not possible. We further assume the chase vehicle is

already in the same plane as the target. With these assumptions we will develop two

different solutions to the Clohessy-Wiltshire equations and evaluate the trajectories and

power requirements of each solution.

5.1 Solutions to the Clohessy- Wiltshire Equations

In section 2.5 we introduced the Clohessy-Wiltshire equations, Equations (25) and

(26):

i -2ni-3n z = f,.

9 + 2ni = f

Our approach to solving the forced Clohessy-Wiltshire equations is to specify a de-

sired z, y, i, j, i, and j, then use Equations (25) and (26) to determine the necessary f,

and fe.
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5.1.1 Decaying Solution. One solution is to require z and y to behave as critically

damped oscillators, i.e.

z = e,' (b + ct) (75)

Then the differential equation of the system is necessarily of the form

S+ ali + 4.z = 0 (76)

Write the characteristic equation and solve it for critical damping:

p2 +6 alp +" a, = 0

p -a, ± -4a.

2

Setting the radical equal to zero establishes critical damping:

a?3 -- 4a. --- 0

1 2
a, -4. = a

a, a,P = P-7•'-

Next we return to Equation (77) and its derivative:

z = et (b+ct)

S= e' (pb +pct + c) (77)

We can evaluate Equations (77) and (79) at t = 0 and solve for b and c in terms of the

initial conditions z. and i.. We find b = z. and c = io - pz.. Thus we can re-write

Equations (77) and (79) as

z (t) = e, (z. + (-p.)t) (78)

*(t) = e,'(k.+p(i.-pZ.)t) (79)
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Similarly for y:

ypt) = e"(y. + (p.-pp.)) (80)

j(t) = P"(j.+p(j.- .) (81)

To find f, and f. which will provide the desired performance, we set Equations (25)

and (26) equal to Equation (78) and solve for f, and ft:

S-2np -3n 2 z-f, = i+a41 +a.z:O

f, = -2np-a 1 *-(a.+n 2) z (82)

j+2nz-f. = j+ajj+a.1f=O

f# = 2ni - ali - a.y (83)

where z, i, V, and j are given by Equations (80-83) respectively. The value a, will be

chosen depending on the desired system performance.
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5.1.2 Polynomial Solution. Another approach is to specify K boundary condi-

tions and define functions x and y as (A - 1)th order polynomials in time. For instance,

let

X = a.+b.t+c't2 +4d't3 4+e,t4 (84)

i = b + 2c.t + 3d,*2  (85)

i = 2c. + 6dt (86)

with boundary conditions

z(O)=z, s(t)=0

z(0)=i. i(tj)=0

S(tj) = 0

If we evaluate Equations (86-88) at the boundary conditions we find

a, =z

-3Uo 6z.
t! t2

=3•0 8Zo

io 3:,•z tI tI3

In a like manner

y = a 1 + b't +c t• + d't3 + e, t4  (87)

I = b, + 2ct + 3dut 2  (88)

= 2c, + 6dyt (89)
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Y(O)=y, y(tj)=o
y(o)=y, y(tj)=o

O(t) -0

-3y. 6y.
t2 t3

= 3pio 8g1.

Y. 3y.

Then f, and fe are given by substituting Equations (86-91) into Equations (25) and

(26).

5.2 Methodology of the Rendezvous ef Docking Study

The methodology of this study differs slightly from chapters 3 and 4 due to the

simplifications we introduced at the beginning of the chapter. The first implication is

B = {0 0 B3 }T = constant. Then

J # B3

L =ic xB = -. ,B 3  (90)

0

Solve Equation (92) for x• and find

B 3

NO = f
B3

K3 = 0
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This simplifies the power expression also. In addition to the lack of x3, B,, and Be,

we can simplify the relative velocity equation to

y,., = (n - w,) ri,

Thus Equation (47) becomes

P. = -_,c (v,.,.Bs) + 4-p~p. (g2 + X02)

As in chapter 3, a = 6, 578 km for the reference orbit, which has a period T = 5,309'.

We choose one revolution as the time duration in which to perform the maneuver, and use

t/ = 5,309' in evaluating the constants of the polynomial solution.

An unlimited combination of initial conditions and time durations can be studied.

The initial conditions we studied are those when the chase vehicle is in a circular orbit. In

that case, *, = 0 for any z, and y.. To find j. we revisit Equation (28):

z(t) - (- + 3.) cosnt + *.sinnt + 4z. + -f/"

If z. is specified, then we find p. by setting the coefficient of the cos nt term equal to zero

and solving for p. in terms of z.:

Y--O+3 = 0
n

. 3zn
2

a, = 3n is used in the decaying solution to ensure the positions, velocities, and

electrodynamic accelerations sufficiently decay within tf. at = n and a, = 2n were also

considered, but neither value produced z (tf) and y (tf ) sufficiently close to zero to allow

a valid comparison between the decaying solution and the polynomial solution. For ex-

ample, the response at t1 of the decaying solution when a, = 2n for initial conditions

(x., y,) = (1,1) km is zQt) = 14 m and y(t!) = -4 m. In contrast, x(t!) = 7pim and
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Table 5. Rendezvous Power Resulth (m/m, = 10)
caejSolution Z") y . 11 peal P. [ P.

I (kmn) (km) (J/kgx104) (W/kg) (W/kg)
1 Decaying 1 0 6.04 234 11.5
2 Polynomial 8.65 38.3 16.5
3 Decaying 1 1 1.63 98.1 3.10
4 Polynomial 4.66 22.1 8.86
5 Decaying 0 1 1.47 14.5 2.80
6 Polynomial .597 2.68 1.14
7 Decaying -1 1 14.2 306 27.1
8 Polynomial 14.7 61.4 28.0.

9 Decaying -1 0 6.9u 142 13.1
10 Polynomial 9.52 40.1 18.1
11 Decaying -1 -. 2.49 52.1 4.74
12 Polynomial 5.52 23.7 10.5
13 Decaying 0 -1 1.47 60.6 2.80
14 Polynomial .603 3.81 1.15
15 Decaying 1 -1 13.4 444 25.5
16 Polynomial 13.9 59.5 26.4

y (t1 ) = -9pm for the polynomial solution at the same initial conditions. If a, = 3n, then

z (t1 ) = 0.9 m and y(t 1 ) = 0.1 m, which we deem sufficiently close to zero to allow a valid

comparison between the two solutions.

5.3 Results

Both solutions were evalua.ted at eight different starting positions on a 1 km x 1 km

square centered on the z - y origin. The results of each case are summarized in Tables 5

and 6.

The decaying solution has the lowest energy and P, for all the trajectories except the

two which start on the z axis. However, in every case the decaying solution has a higher

peak P. than the polynomial solution. If peak power is a concern, then the polynomial

solution appears best, but the tradeoff is sometimes twice times as much total energy and

P,, depending on the initial conditions.
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Table 6. Rendezvous Final Position and Velocity Results
Case (lt) (in) Y _ _ i __I__I

CmS (m) (m/sec) (m/sec)

1 Decaying .9254 -.8357 -.0015 .0013
2 Polynomial 7e-6 -2e-5 -3e-6 7e-6
3 Decaying .9254 .0897 -.0015 .. 0002
4 Polynomial 7e-6 -9e-6 -3e-6 4e-6
5 Decaying 0 .9254 0 -.0015
6 Polynomial 0 7e-6 0 -3e-6
7 Decaying -.9254 1.7612 .0015 -.0028
8 Polynomial -7e-6 23e-6 3e-6 -1le-6
9 Decaying -.9254 .8357 .0015 -.0013
10 Polynomial -7e-6 16e-6 3e-6 -8e-6
11 Decaying -.9254 -.0897 .0015 .0002
12 Polynomial -7e-6 9e-6 3e-6 -4e-6
13 Decaying -.9254 .8357 .0015 -.0013
14 Polynomiai 0 -7e-6 0 3e-6
15 Decaying .9254 -1.7612 -.0015 .0028
16 Polynomial 7e-6 -23e-6 -3e-6 lle-6

Each solution has the desirable result of allowing a soft dock. The velocities and

elecý ..'ynamic propulsion accelerations all go to zero as the chase vehicle approaches the

target in every case.

Figures 37-40 show the trajectory, velocity, acceleration, and power profiles of each

solution for cases 1-4. Note the peak Pa occurs at the beginning of the thrust period for

the decaying solution, and then quickly decays, as we expect. Both solutions cause large

power discontinuities at t.. In each case, the velocities and electrodynamic propulsion

accelerations approach zero as the chase vehicle approaches the target. Figures 37-40 are

also representative of cases 7-12, 15, and 16.

Cases 1-4 and 15-16 require less energy than their counterparts, cases 9-12 and 7-

8. This is to be expected, since cases 7-12 are converting electrical energy into potential

energy, while cases 1-4 and 15- 16 are trading potential energy for electrical energy. In

cases 1-4 and 15-16 we also see parts of the trajectory where the total power is negative,

indicating the ability to regenerate power. There are even regions in the first quadrant

(Xo > 0, Y, > 0) where the total energy is zero, i.e. the entire maneuver can be done
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Table T, Ad_ ezvous P Le Results
Case Solution m/me t peak P. P.

T o__ kg×104) (W/kg) (W/kg)
7 Decaying 6 8.72 156 16.6
8 Polynomial 6 9.00 37.6 17.1
7 Decaying 3 4.57 43.6 8.7
8 Polynomial 3 4.72 20.2 8.98

with no net energy expenditure. This is consistent with what is already well known about

electrodynamic propulsion: power generation creates a drag which lowers altitude (12:126).

However, if a mission designer accepts the constraints on initial conditions which allow the

maneuvers to be done with no net energy, then electrodynamic propulsion has near term

application.

The worst case initial conditions, cases 7 and 8, were chosen for further evaluation

at different conductor mass rations. These results are summarized in Table 7. These

results are consistent with the conclusions in Chapter 3: the xJ3 terms dominate the power

equation, so if larger conductors are used less power is required. This worst case initial

condition is still beyond the 4 W/kg benchmark, even with the 'all conductor' ratio of

m/m, = 3.

Figures 41 and 42 show how either solution can be used to perform a V-BAR ap-

proach, where the chase vehicle approaches the target along.R. f, and fe are controlled to

ensure in-track movement without any radial motion. Both trajectories are essentially the

same, but the polynomial solution uses less energy.

A drawback of each solution is the power discontinuity at t.. This can be solved with

a new fifth order polynomial solution and the additional boundary conditions

i (0) =

j (0) =

Also, even though Equations (25) and (26) are coupled in z and y, neither the

decaying nor polynomial solutions are coupled. If y can be specified as a function of x (or
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vice versa), then the angle of approach can be controlled. Such a coupled solution might

also take advantage of the system's kinetic and potential energy in such a way as to lower

the electrical energy requirement. Considerable effort was expended searching for such a

solution without success.

Additional study should be performed to re-validate these results without the sim-

plifying assumptions used here. Also, the initial conditions were very specific, and are

not likely to be found in actual operations. Various initial conditions, especially a non-

circular initial chase orbit, should be studied to ensure the conclusions still hold. Out of

plane motion was not studied, and Lawrence has already shown undesired out of plane

motion results even when z. = 0, i. = 0, and i. = 0 (8:E-15, E-17). Future work should

re-incorporate this fact.
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VI. Conclusions & Recommendations

In this final chapter we summarize the major results of the thesis work and make

recommendations for further research.

The two important results of the theoretical development were the definition of the

vector _q and the subsequent derivation of the specific power equation. Together they allow

the analysis to proceed without having to specify a detailed vehicle configuration; only

designation of the conductor mass to total vehicle mass ratio and selection of a conductor

metal need be made. The specific power equation dearly shows how these choices affect

the power required. The total energy, found by integrating the power equation, is then

useful in comparing different scenarios. If the conductor mass to total vehicle mass ratio

is considered analogous to a classical propulsion system's propellant mass ratio, then the

two parameters may be used as a basis for comparison between electrodynamic propulsion

and classical propulsion systems, as we did in chapter 4. In the future, design engineers

can use specified values of oc and P. to perform trade-off studies of current, conductor

length, or number of conductor turns to determine the optimum configuration for a specific

application.

Electrodynamic propulsion appears to be a feasible near term alternative to classical

propulsion systems for small orbital plane changes. Plane changes are best done at rela-

tively high inclinations due to the nature of the magnetic field. Constraining semi-major

axis change may expand the plane change rate envelope.

Electrodynamic propulsion may also be used for stationkeeping the argument of

perigee of a true polar Molniya satellite. The Molniya stationkeeping strategy developed

here is very sensitive to the right ascension of the ascending node. A candidate for future

research is to constrain the change in semi-major axis to eliminate this sensitivity.

For both plane change and Molnmya stationkeeping, development of forcing function

algorithms incorporating a priori knowledge of the magnetic field and application of op-

timization techniques to reduce power consumption or otherwise improve performance is

recommended.
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Electrodynamic propulsion is applicable to rendezvous and docking, although the

relatively high power requirements limit near-term implementation to the V-BAR regime.

If spacecraft specific power supplies can improve to approximately 25 W/kg then all the

rendezvous cases studied in Chapter 5 become feasible. The ability to perform a soft

dock has been demonstrated, which is advantageous compared to a two burn rendezvous

and docking maneuver. We recommend these conclusions about rendezvous and docking be

reconfirmed after incorporation of the tilt in the Earth's magnetic field into the geomagnetic

field model and consideration of out of plane motion, as well as investigation of various

other initial conditions. Further work is also warranted in developing solutions to the

forced Clohessy-Wiltshire equations. Since the Clohessy-Wiltshire equations are coupled

in z and y, we recommend investigating a solution which also couples x and y, and predict

it will use less energy than our uncoupled solutions. It will have the additional benefit of

allowing the approach angle to be controlled.

We have several general recommendations for future research. First, the feasibility

of power supplies which can actually deliver the peak specific power and total energy in

the ranges discussed in this thesis should be evaluated. Second, we reiterate Lawrence's

recommendation that future studies be conducted with a more accurate geomagnetic field

model. Third, electromagnetic compatibility is a concern for the integration of electro-

dynamic propulsion into any vehicle, and should be studied. A particular concern is the

effect of the localized magnetic field caused by the current in the closed circuit conductor

on the geomagnetic field, especially if the vehicle is using magnetometers to measure the

magnetic field.

The most feasible near term realization of electrodynamic propulsion may be a com-

bination of chemical and electrodynamic thrusters applied to rendezvous and docking.

The chemical thrusters could be used to reduce the range to a point where electrodynamic

propulsion can take over and perform the terminal docking maneuver within reasonable

power limits. Perhaps someday electrodynamic thrusters can even be incorporated into

manned maneuvering units, allowing astronauts to work in close proximity without concern

for thruster plume impingement on each other.
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Appendix A. File Listings

This appendix contains the MATLAB script and function files used to generate the

data in Chapters 3-5

The script inc .m was used for the inclination change study.

% variable names in square brackets are the names of the variables
% used in the main body of the thesis.
tic
%2----------------------- Get started ------------------------------

i-1; % Counter for matrices at end
nai. 18339*-3; % Mean motion (rad/sec)
alfaouO.; % Inertial longitude of Greenwich

%meridian at beginning of time span
% (rad) [theta-S-..0J

alfadot7T.292462066e-S; % Rotational rate of Earth (rad/sec)
% (omega..o+)

ru6578000; % Initial radius (in)
NagaS. O5elS; % Magnetic moment [script NJ

% (kg/am3-coul-sec)
RAAIIO; % Right ascension of ascending node

2 (cap Omega] (rad)
ainr; % Semi-maJor axis (m)
eOn.; % Eccentricity
V-0.; % Argument of perigee (rad)

% (little Omega]
mono; % Mean anomaly at epoch (rad) (N..o)
rhor2 . Se-S; % Conductor resistivity (ohm-in)

% [rho..RJ
rhocu2700; % Conductor mass density (kg/am3,

% [rho..cJ
massul; % Total vehicle mass (kg) [an]
Mun3986012e14; % Gravitational parameter of the

% Earth (m-2/.-2) Wmu
mmc=10; % Conductor mass ratio (m/m.cJ
idotbar*2.0257*-7;lnpi/2; % idotbar is desired average

% inclination change rate (rad/mec)
% (bar over dot over I]
% I is inclination (rad)
% 1 dog/day

%idotbare-2.0257e-07;I'mpi/4; % 1.45 dog, -1 dog/day
%idotbaru2.0257e-S;Iupi/2; % .1 dog/day, 1.90
%idotbarn-2.0257o-08;I-pi/4; 2 -. 1 dog/day. 1-45
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pl=O; % Equinoctial element [h]
p2=O; % Equinoctial element [k]
MaO; % Mean anomaly (rad)
v=O; % Argument of latitude (rad)[u]

% ------------- Initialize magnetic field rotation matrix

phioupi/2-78.3*pi/180;
laao69*pi/180;

Rmagu[cos(laao)*cos(phio) -sin(lmso)*cos(phio) -sin(phio)
sin(lamo) cos(lamo) 0
cos(lamo)*sin(phio) -sin(laao)*sin(phio) cos(phio)];

% Mote: Ruag rotates from Eazth's cartesian frame to magnetic cartesian
%frame Rmags [Rgb]

S-------------------Here is the main loop-----------------------

for tato:ts:tf % t is the time (sec)

% ts is the time step (see)
% tf is the final time (sec)

pna*(1-e-2); % Semi-latus rectum (a)

%if rem(ilO)==O % This puts Out a message to let you
l[v*180/pi V*180/pi] % know where the program is if you
%end % want it to

r-p/(1+e*cos(v));

alfaualfao+alfadot*t; % Rotates the Earth

S---------Create rot matrix from orbital frame to cart inert---------
rll=co5(RAAN)*cos(v)-sin(RAAN)*coo(I)*sin(v);
rl2--cos(RAAN)*sin(v)-sin(RAAI)*cos(I)*cos(v);
r13=-sin(RAAN)*sin(I);

r2lusin(RAAN)*cos(v)+cos(RAAN)*cos(I)*sin(v);
r22u-sin(RAAN)*sin(v)+cos(RAAN)*cos(I)*cos(v);
r23--sin(I)*cos(RAAN);

r3lusin(v)*sin(I);
r32=sin(I)*cos(v);
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r33ucos(I);

Ro2ci-[r11 r12 r13 % [R'iaJ

r21 r22 r23
r31 r32 r33];

S--------- Rotate Er 0 0) in sperical coord into [x y z] inertial-------

xyzi=Ro2ci*[r 0 0)';

% ------------------ Roate zyzi into zyzE------------------------

Rci2cE=rot(O,alfa-alfao); % Rci2cE rotates from cartesian

% inertial frame to Earth's
% rotating cartesian frame [R1gi)

xyzE=Rci2cE*xyzi;

% ----------- rotate xyzE into magnetic cartesian frae---------------

xyzm=UPag*xyzi;

% ------------------ Compute lat and long in sag frame----------------

phismaatan2(xyzm(3) ,(xy ()1Y2+xyza(2)-2)-.5);
lan=matan2(xyzm(2),zyzm(1));

S------------------- Compute magnetic field components-----------

z=2*Nag*sin(phia)/r'3; % Radial component (kg/coul-sec)
h=-Mag*cos(phim)/r^3; % Transverse component (toward

% north pole) (kg/coul-sec)

% -Compute rot matrix to go from spherical magnetic to cartesian magnetic-

Rsa2caurot(phinlazm); % CRbai

S----------Rotate [z 0 hJ into cartesiam magnetic frame-------------

Bcm=RsP2cm*[z 0 hJ'; % (kg/coul-sec)

S--------- Rotate Bca into Earth's rotating cartesian frame---------

BcEaRmag' *Bca;

82



% ------------ Rotate BcE into cartesian inertial frame

Bci=Rci2cE'*BcE; % (kg/coul-sec)

zyzI=Rci2cE'*zyzE; % Debug code: xyzlxyzi if all
% rotations are correct

S--------------- Rotate Bci into orbital frame -------------------

B=uo2ci'*Bci; % (kg/coul-uec)

rtp=Ro2ci'*xyzI; % Debug code - rtp-[r 0 0) if all
% rotations are correct;

S-------------------- Compute kappa vector ---- - - - - - - - - -

b=B/noru(B);
d=[b(2) -b(1) 0]/sqrt(b(2)-2+b(l)-2); % kappa unit vector [kappa hat]

a3midotbar*2*n*r*cos(v); % Out of plane acceleration

% (u/sec-2) [f.3J

ila=a3/sqrt(B(1)-2+B(2)-2); 2 Scalar il/a (A-u/kg) [kappa]

ILM=ilNud; % IL/u vector [kappa vector]

if uax(abs(ILN))>200 % Sorry, no infinite kappa

ILM=200*ILR/max(abs(ILM));
end

S--------- Power requireuents
vuagE=[-alfadot*xyzE(2) alfadot*xyzE(i) 0)'; % B field velocity [v._B

% in the g frame

vuagi=Rci2cE'*vuagE; 2 v.B in the i frame

vmago=Ro2ci',vuagi-; % v.B in the a frame

vrel=[reeesin(v)*n/(l+*e*co(v)) r*n O]'-vuago; % v.rel

Pxi=-(vrel(2),B(3)-vrel(3)*B(2)); 2 MVi radial
Pyi=-(vrel(3),B(1)-vrel(1)*B(3)); 2 iVi in-track

Pzis-(vrel(1)*B(2)-vrel(2)eB(1)); % iVi out of plane

Pxr=4*rhor*rhoc*mc*ILN(1) 2; 2 i-2R radial
Pyr=4*rhorsrhoc*umcILM(2)-2; 2 i-2R in-track

Pzr=4*rhorsrhoceucelLN(3)-2; % i-2R out of plane

Pvri=Pxi+Pyi+Pzi; 2 total iVi
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PurrePxr+Pyr+Pzr; % total i'2R

sumPu(Pwri.Pvrr); I total (P-*2

% ------------------ Cross product for forces.-----------

FrwILM((2)$B(3)-ILK(3)*8(2); % radial force (kg-m/sec^2)
Fu=ILE(3)s3(1)-ILN(1).3(3); X In-track force (kg-m/sc-2)
F3eILN(1)*5(2)-ILN(2)W51); % out-of-plane force (k~g-1asc'2)

% -- --- --- ---- --- --- ---- Collect output - - - - - - - - - - - - - -

% 1 2-4 5 6 7-9 10 11 12
data(i.:)u~v*lSO/pi zyxi' pbi*1SO/pi lam*1S0/pi S' Tr Fu 33);

X 1 2-4 5-T
datab(i.:)w~lasm*lS0/pi Bc.' Bcl'];,

% 1 2-4 5 6
datam(i, : )=[*180/pi zy.' lmmo*lSO/pi phim*1S0/plJ;

%dtost(i.:)-[v*18O/pi zyzi' xyzI']; % Debug code
Idtest(i.:)=[v*1S0/pi 1 0 0 rtp'J; X Debug code

1 1 2 3 4 6-7 8
dat(l,:)w~v*180/pi Fr Fu 73 ILK iW.)

% 1 2 3 4 5 6 7
ele.(i.:)w~v$180/pi a e I*180/pi RAAN*18O/pi atan2(pIp2)*180/pi N*ISO/piJ;
A3(i * )oa3;

P(i,:)n(Pxi Pyl Pal Par Pyr Par Purl Purr sumP];
% -------------------------- Propogate elements ---------------------

lagrange; % Subroutine Lagrange integrates
% Lagrange's planetary equations

lin*1; % Update matrix index
end
toc

subplot(2,2,1)

% %li(.)P(,)'' This line is a continuation of the
% previous one
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ylabel('Specific power (V/kg)')

subplot(2,2,2)
plot(elem(: ,.1) elem(: Q1))
ylabel('Inclinat ion')

subplot(2,2,3)
plot(elem(:.1).dat(:.2).'y'.elem(:,1),dat(:,3).'r'.elm.(:.1),dat(:,4).'g',
% %l(.)A'' This line in a continuation of the

% previous one.
Zplot(dat(: .1) dat(: .4) ,dat(:.1) ,A3)
ylabel('Acceleration (msec-2)1)

subplot(2.2.4)
plot (*I=(: 1),dat(:.S). elm(:. ).dat(:,G), 'r',elm(:. ),dat(:7), IS')
ylabel( 'IL/')

ausize(P.1); % Number of rows in P
energymC.5*(P(1,4)4P(a,4))*sum(P(2:a-i,4))).ts % Trapezoidal integration
mazPwmax (P)
avgP-energy/(tf-to) % [bar over P-s] (V/kg)
dana-6578000 % Change in a (a)
IOI*180/pi
disp('hit a key')
pause
subplot(2,2,1)

ylabel('IRAANI)

subplot(2,2,2)
plot Celem(:,1) ,debug(: ,4))
ylabel('h)

subplot (2 ,2 3)
plot(elem(:X.) elemC: 2))
ylabel('semi-major axis,)

subplot(2,2,4)
plat(elm(:.1) ,elem(:,3))
ylabel( 'k')



The script raan a was used for fl change study.

% variable names in square brackets are the names of the variables
% used in the main body of the thesis.
tic
% ----------------------- Get started-----------------------------

iai; % Counter for matrices at end
nai. 18339*-3; % Noan motion (rad/sec)
alfaos0.; % Inertial longitude of Greenwich

%meridian at beginning of time span
% (red) (theta-g-O

alfadot-7.292462056e-5; % Rotational rate of Earth (rad/sec)
% (omega..o+J

r=6678000; % Initial radius (an)
MaguS .05el5; % Nagnetic moment [script NJ

% (kg/m3-coul-sec)
RAAN=0; % Right ascension of ascending node

% [cap Omega] (rad)
a-r; % Seal-major axis (an)

Sao.K % ccmntricity
v.0.; % Argument of perigee (rad)

% (little omegaJ
Non0; % Noan anomaly at epoch (rad) tM..o3
rhor=2.8e-S; % Conductor resistivity (ohm-a)

% Crho-.R3
rhoca2700; % Conductor mass density (kg/&m3)

% [rho..c
massai; % Total vehicle mass (kg) .
Nua3986012e14; % Gravitational parameter of the

% Earth (m^2/s-2) Wmu
=Cato; % Conductor mass ratio Wm/..c
RAAldotbara2.02S7e-7;I-pi/2; % RiAldotbar is desired average

% RUIN change rate (rad/sec)
% [bar over dot over Omega)
% I is inclination (rad)
% True polar sun synchronous case

KftAA~dotbar--2.02S7e-07;Iapi/4; % 1-45 dog sun synchronous
KRAANdotbar.2.0257e-8;Iupi/2; % .1 deg/day, 1.90
%RAA~dotbara-2.0257e-08;I-pi/4; % -. 1 dog/day. 1-45
p1.0; % Equinoctial element (hJ
p2=0; % Equinoctial element Wk
1-0; % Mean anomaly (rad)
va0; K Argument of latitude (rad) Cu]

%K--------------Initialize magnetic field rotation matrix---------
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phioupiI2-78 . 3*9i1/S;
1amoG9*pi/ 180;

Iuag-(co. (lamo) *cou (phio) -sin(lao) *cos (phio) -sin(phio)
ain~lamo) coo(lamo) 0
coo (lama) *sin(phio) -sin(lamo)ssin(phio) coo(phio)J;

% Note: Raag rotates fromt Earth's cartesian, frame to magnetic cartesian
%frame RmagmR-gbJ

% ---------- Here is the main loop-------------

for tato:ts:tf % t is the time (sac)
% to is the time step (sac)
% tf is the final time (sac)

pwasl-4-);I Semi-latus rectum (in)

%if rm(i,10)--O % This puts out a meanage to let you
Itvs'180/pi w*180/piJ % know where the program in if you
%end % want it to

rup/(l.e*coo(v));

alfamalfao~alfadot*t; % Rotates the Earth

% ---------- Create rot matrix from orbita frame to cart inert-----
rllucou(RAAN)*co.(v)-sin(RAAN)*cos(I)*siu(v);
rl2u-cos(RAAN)*sin(v)-sin(RAAN)*cou(I)*cos(v);
r13n-sin(RAAN)*sinMI;

r2lusin(RAAN)*cou(v)4cos(RAAN)*cos(I)esin(v);
r22u-sin(RAAN)*sin(v)*cos(RAAN)*cos(I)*cos(v);
r23=-sin(I*cos(RkAA);

r31=sin(v)*sinMI;
r32fsin(I*cos(v);
r3sacos(I);

Ro2cin~rll r12 r13 % ER-iaJ
r2l r22 r23
r31 r32 r333;
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% - Rotate Er 0 O] in sperical coord into [z y z] inertial

xyzi=Ro2ci*[r 0 0]';

% Rotate xyzi into xyzE

Rci2cZurot(O,alfa-alfao); % Rci2cE rotates from cartesian
% inertial frame to Earth's
% rotating cartesian frame ER-gi]

xyzEaRci2cE*xyzi;

S----------rotate xyzE into magnetic cartesian frame---------------

xyzMRmag*xyzi;

S---------------- Compute lat and long in Mag frame--------------

phimuatan2(xyz=(3),(xym(1)*2÷xyn(2)-2) .5);
lamatan2(xyzz(2) .xyzm(1));

S--------------------- Compute amagn tic field component -----------

z=2*Wag*sin(phiz)/r-3; I Radial component (kg/coul-sec)
h=-Nagecos(phim)/rr3; % Transverse component (toward

% north pole) (kg/coul-sec)

% -Compute rot matrix to go from spherical magnetic to cartesian magnetic-

Rsm2cmarot(phim,lamm); I [R-ba]

S---------- Rotate Ez 0 hJ into cartesiam magnetic frame ------------

Bcm=Rsm2cm*Ez 0 h)'; % (kg/coul-sec)

S--------- Rotate Bca into Earth's rotating cartesian fram ----------

BcEaRmag' *Bca;

S------------ Rotate BcE into cartesian inertial frame ---------------

Bci=Rci2cE'*BcE; % (kg/coul-sec)
xyzI=Rci2cE'exyzE; % Debug code: zyzIxyzi if all

% rotations are correct
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% ------------- Rotate Sci into orbital frame ----------

BmRo2ci'*Bci; % (kglcoul-sec)

rtpnRo2ci'*zyzl; % Debug code - rtpu'(r 0 0] if all

% rotations are correct;

% ---------------------- Compute kappa vector ----------------------
bnD/noru(B);
d-[b(2) -b(I) O]/sqrt(b(2)'2+b(I)-2); % kappa unit vector [kappa hat]

a3uRAAldotbar*2*n*asuin(I)euin(v); % Out of plans acceleration

% (a/sec-2) Uf-33

ilz-a3/sqrt(B(1)-2.B(2)-2); % Scalar il/. (A-rn/kg) (kappa]

IL~silmsd; % IL/rn vector [kappa vector]

if uaz(abu(ILNE)>2OO % Sorry, no infinite kappa
ILKu200eILN/maz(abs (ILN));
end

% --------- Power requirements ---------------------------
maag~sE-alfadot*xyzE(2) alfadotozyzE(1) 031; % B field velocity tv..3]

% in the r frame

vamgiufci2cE' *vmagE; % v..3 in the i frame

vuagoafto2ci' *vmagi; % v_9 in the a frame

vrel-Eree*uin(v)*n/(l.euicoo(v)) rsn 03'-vamao; % v..rel

Pxiu-(vrel(2)*B(3)-vrel(3)*B(2)); % M~ radial
Pyiu-(vrel(3)*sB(1)-vrel(1)eB(3)); % iM in-track
Pziu-(vrel(l)*D(2)-vrel(2)*R(1)); % M~ out of plane
Pxru4*rhor~rhoc*umc*ILK(1Y-2; % i'2R radial
Pyr.4*rhor*rhoc*mc*IL(2)-2; % i-2f in-track
Pzrn4*rhor*rhoc*mcCILN(3)-2; % i-2R out of plane
Pwri=Pzi*Pyi+Pzi; % totw ivi
Pvrr-Pxr*Pyr+Pzr; % total i2R

suu.P(PwriePwrr); % total EP-0]

% ---------------------- Cross product for forces---------------------
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Fra M (2)iSD(3)-ILM(3)*I(2); % radial force (kg-a/sec-2)
FuaILN(3)*sB(1)-ILN(1)eD(3); % In-track force (kg-i/sec'2)
F3-ILN(1)*B(2)-ILK(2)e3(1); % out-of-plane force (kg-m/sec-2)

% ----------------------------- Collect output --------------------------

% 1 2-4 5 6 T-9 10 It 12
data(i,:.)=tv*180/pi xyzi' phi*ISO/pi laM*1SO/pi BI Fr Fu 73);

% 1 2-4 5-7
datab(i,:)w~laiso*180/pi Bca' Dci'];

% 1 2-4 5 6
datan~i * )-[v*180/pi zyza' lasin*180/pi phimelSQ/piJ;

%dtest(i,:)-Cv*180/pi zyzi' zyzI']; % Debug code
%dtest(i.:).[v*180/pi 1 0 0 rtp'); % Debug code

% 1 2 3 456-7 8
dat(i.:)=Cv*iSO/pi Fr Fu 73 ILK ilm];

% 1 2 3 4 5 6 7
el~m(i,:)=Cv*180/pi a e I*18O/pi RkAN*180/pi atan2(pl,p2)*180/pi N*l80/piJ;
A3(i,1)=a3;

P(i.:)=EPxi Pyi Pzi Pxr Pyr Pzr Puni Purr sumP];
%K-------------------------- Propogate elements-----------------------

lagrange; % Subroutine Lagrange integrates
% Lagrange's planetary equations

iui.1;% Update matrix index

end
toc

subplotC2,2, 1)

K el.(:,),P(,4),-')% This line is a continuation of the
% previous one

ylabol('Specific power (V/kg)')

subplot(2,2,2)
plot(elea(: .1) elem(:,4))
ylabel( 'Inclination')
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subplot (2 .2,3)

% %lm:1.3'' This line is a continuation of the

% previous one
Iplot(dat(: .1).dat(: .4) .dat(:.1) .A3)
ylabol('Acceleration (msec-2)')

subplot(2,2,4)

jiabel ('IL/u')

mansize(P.1); % Number of rows in P
energyu(.S*(P(1,4)eP(u.4)).sua(P(2:a-1.4)))*ts % Trapezoidal integration
maxPumax(p)
avgP-energy/(tf-to) % [bar over P-s] (V/kg)
dana-657800O % Change in a (an)
I81* 180/pi
disp('hit a key')
pause
subplot(2,2. 1)
plot (elm(:, 1) .ele(: .5))
ylabel('RAAN')

subplot(2,2,2)
plot(elm(: .1) debug(: .4))
ylabel('h')

subplot(2,2,3)
plot (elem(:, .1) .eleu(: .2))
ylabel( 'smi-major axis')

subplot (2 .2.4)
plot(elem(: .1),elem(: .3))
ylabel( 'k')
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The script lagrangeir.a is called by incam and raan.m. It evaluates Lagrange's
planetary equations and integrates the orbital elements used in the plane change studies.

% This file implements Lagrange's planetary equations
% Square brackets denote the amieclatur* used in the thesis writeup

adot-2*eesin(v)/(n*sqrt(l-e02))eFr/mass*2*aesqrt(I-C-2)/(n*r)*Fu/mass;
Idota( (r~co (we,) )/(n~aeaesqrt(1-e-2) ))e73/mass;
RAANdots((r*sin(w~v))/(n*a*aesqrt(1-e-2)*sin(I)))*F3/mass;

doun-2*Fr/Caen'e'ass)-sin(theta)*F3/(tan(I)eaon*mass); % This is [daldt]

2 p1 is Wh
2 Next line is first two terms of the h dot eqtn
pldotruu-cos(theta)*Fr/(n*aemass).(pl*r.(r~a)*sin(theta) )*Fu/(n4'a-2mass);

% Next line is the last term of the h dot eqtn
pldot3n-p2ea'resin(theta)eF3/(nea-24tan(I));

pldotupldotru~pldot3; % This is all three terms

% p2 is [k]
% Next line is the first two terms of the k dot eqtn
p2dotru-sin(theta)*sFrl (neaezmas).( (r+a)*co(theta).p2'er)*Fu/ (n*a-2'aae'm );

% Next line is the third term of the k dot eqtn
p2dot3-pl'srssin(theta)*F3/(nea-2etan(I));

p2dot-p2dotru~p2dot3; % This is all three terms

Xdnu- 1. Sesqrt (Nu/a5) eadot;

% Next lines are the Euler integration of elements
plnpl~pldot*tn;
p2ap2*p2dot*ts;
asaaadot*ts;
ousqrt(p1-2+p2-2);
vadNets.,; % This is [a]
IsI+Idotets;
RAA~aRAAI4RAANdot*ts;

debug(i,:)uCi t rm(v*1SO/pi,360) p1 p2 sqrt(p-2+p2-2)J; % Debug data
2 collection
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The script malniyama was used for the Molniya stationkeeping study:

tic
% Variable names in square brackets are those used in the main body of
% the thesis.
% This is the file used to investigate the following designer orbit:

% inclination: 90 deg
% period: 86160 a ('24 hr)
% rotation of argument of perigee: 0 deg/day

% ---------------------- Get started-----------------------------

irn1; % Counter for matrices at end
n=2s'pi/86160 % Mean motion (rad/sec)
alfaonO.; % Inertial longitude of Greenwich

% meridian at beginning of time span
% (rad) (little omega-.oplus..o]

alfadot=7.292462056*-5; % Rotational rate of Earth (rad/sec)
% (little omega..oplusj

Magma .05.15; % Magnetic moment (kg-m-3/coul-sec)
% (script N3

I-pi/2; % Inclination (rad)
mansuln; % mass (kg) Wa
Mus3.986012e14; % gravitational parameter (n^3/s'2);
sei.82S01; % Eccentricity
v-i .5*pi; % Argument of perigee (omega) (rad)
Mupi; % Mean anomaly (rad)
kes-2.67642e25; % term for Earth's oblateness equal

% to G times mass of the Earth
% asee section 4.1 (units?)

udot=O; % omega change rate (rad/sec)
rhor-2.8e-8; % Conductor resistivity (ohm-m)
rhoc=2700; % Conductor mass density (kg/m'3)
vdotbarn-3.8o-7 % Desired omega change rate

% (rad/eec). This value has to be
% adjusted to obtain the desired
% change in omega. The nominal value
% is wdotbars-5.406e-7 rad/sec

RAA~o-RAAN % RAA~o is intitial RAAI (rad)

% ------------------ Iit mag field rotation matrix---------------------

phio-pi/2-78 .3*pi/ 180;

laaos69*pi/ 180;
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Ruaga [cos(lamo)s'cos(phio) -sin(lamo)scos(phio) -sin(phio)
sin(lamo) cos(lamo) 0
cou(lamo)*sin(phio) -sin(lamo)esin(phio) com(phio)J;

% Note: Imag rotates from Earth's cartesian frame to magnetic cartesian
% frame. Rmag is [R-gbJ

% ------------------- Here is the main loop ------------------------

for tato:ts:tf % t is the time (sac)
% to is the time stop (uSc)
Itf in the final time (86c)

peas(Ie-2); Somi-latus rectum (a)

%if rem(i,1O)sa0 % This puts out a message to let you
l[vilSO/pi v.180/pi) % where the program is if you want
%end % it to

EouN; % Begin algorithm to solve f or E
E-kepler(N.Eoes);
for jui%1O
if abo(E-Eo)>1 .OE-9
Eo-E;
Eakepler(N.E,e);
else end
end % End algorithm to solve f or E

vuacos((e-cou(E))/(eecos(E)-l)); % True anomaly from E

if sinOO cO % Quadrant check
va-v;

end

rup/(1~*eicoo(v)); % r calculation
vnat.(eeuin(v)*sqrt(Hu/p) (i+eecoo(v))ssqrt(Nu/p) 03; % velocity in a frame

alfamalfao~alfadotst; % Rotates the Earth

% ---------- Create rot matrix from orbital frame to cart inert ---------
rllucos(RAAN)*cos(v~w)-sin(RAAN)*cos(I)*sin(v~w);
r123-cos(RAAN)4'sin(w~v)-sin(RAAN)*cos(I)*cou(v~w);

94



r13--sin(RAAN)*sin(I);

r2lusin(RAAI)*cos(vgw)*col(RAAE)*col(I)*sin(v*v);
r22=-sin(RIAN)*sin(vgw)*cos(R&AI)*cos(I)*€co(v*w);
r23*-sin(I)*cos(RAAN);

r31lsin(v+v)*sin(I);
r32-sin(I)*coa(v~w);
r33-cos(I);

Ro2ci=[r11 r12 r13
r21 r22 r23
r31 r32 r33); % [R-iaJ

S.-------- Rotate Er 0 0) in sperical coord into [x y z] inertial-------

zyzi=Ro2ci*[r 0 0]';

S------------------ Rotate zyz i into z E ------------------------

Rci2cE-rot(Oalfa-alfao); % Rci2cE rotates from cartesian
% inertial frame to Earth's rotating
% cartesian frame Et-gi)

xyzE=Rci2cE*xyzi;

S---------------- Compute lat and long in g frame--------------------

phiE-atan2(zyzE(3),(xyzE(I)-2+xyzE(2)^2)-.5); % latitude (rad)
lam=Eatan2(xyzE(2),xyzE(1)); % longitude (rad)

% ------------ rotate xyzE into magnetic cartesian frame-----------------

xyzm=fmag*xyzi;

S------------------ Compute lat and long in Mag frame---------------

phim-atan2(xyzm(3),(xyzm(1)2+xyz(2)'2) .5);
lam-atan2(xyzm(2) ,xyzm(1));

S--------------------- Compute magnetic field components-----------

z=2eNagesin(phim)/(r-3); % Radial component (kg/coul-sec)
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hu-Magcos(phim)/(r-3); % Transverse component (toward
% north pole) (kg/coul-sec)
% See Tascione for details

K- Compute rot matrix to go from spherical magnetic to cartesian magnetic -

Rsm2cawrot(phimlamm); % [R-baJ

S----------- Rotate [z 0 h] into cartesiam magnetic frame-------------

Bcmu-Rsm2c* [z 0 h)'; % (kg/coul-sec)

S---------- Rotate B ac into Earth's rotating cartesian frame----------

BcE=-Rag'*Bcm;

S------------ Rotate BcE into cartesian inertial frame-----------------

Bci-Rci2cE'*BcE; % (kg/coul-sec)
xyzI=Rci2cE'*xyzE; % Debug code: xyzI=xyzi if all

% rotations are correct

% --------------------- Rotate Bci into orbital frame--------------------

B-Ro2ci'*Bci; K (kg/coul-sec)
rtp-Ro2ci'*xyzI; % Debug code - rtp-[r 0 0) if all

% rotations are correct;

%K------------------------- Compute kappa vector----------------------

fr-(ke*(1-3*(sin(wvv)*sin(I))-2))/(r-4); % radial acceleration (m/ec2)
fu-(ke*sin(2*(v+v))*(sin(I)'2))/(r-4); K in-track acceleratoin (m/sec2)
flnke*sin(wvv)*sin(2*I)/(r-4); % out of plane acceleration (m/s2)

sub-wdoto % Calculates the effect of the

% Earth's oblateness

S---------------------- Compute IL/n vector----------------------
ILM-(O 0 0)';

if cos(v)>O.1; % Limit thrusting to this region

alusqrt(1-s-2)/(n*a*e); % Ck-1)

b11l1/(lIe*cos(v)); % Ek.2]
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%Next two lines are [kappa-.theta]
ILN(2)=-wdotbar/(-al~bl'2*sin(v)-2*B(3)/cos(v)-alecos(v)*B(3)-
al*(cos(v)eBC2)*bl*sin(v)eB(1))-2/(cos(v)*D(3)));

ILN(1)abl*tan(v)*ILK(2); % [kappa-.rJ
ILN(3)=-ILN(2)*(cos(v)*B(2)*blesin(v)*B(1))/(cos(v)*B(3)); % [kappa-.3J

ILNckul .O1*ILN; % Check to ensure function has been
if norm(IL~ck)-norm(ILN)<O % minimized
disp('Varning - non-minimu power at')
Ui t 'V*18O/pij
end

if max(abs(ILN)'>500 % Limit magnitude of kappa if
ILN=S00.ILN/max(abs(ILN)); % necessary
end

end

% ---------------------- Cram.. product for forces---------------------

FIUILN(2)*B(3)-ILN(3)*B(2); % radial force Ckg-m/sec-2)
F2aILN(3)sB(1)-ILN(1)*B(3); % In-track force (kg-m/sec-2)
F3=ILR(1)*B(2)-ILN(2)eB(1); % out-of-plane force (kg-m/sec-2)

Fr-Fl~fr; % Combines effects of Earth
FunF2*fu; % oblateness and thrusting
Fl-F3+f 1; % fr, fu, and fl come from
%Fun2*fu; % sub-udoto

% ---------- Power requirements ----------------------------
vmagE=[-alfadot*xyzE(2) alfadot*xyzE( 1) J; % B field velocity [v..BJ

% in the g frame
vmagiufci2cE'*vmagE; % vB in the i frame
vmagoufto2ci '*vmagi; % V..3 in the a frame

vrelavsat'-vmago; % v..rel

% Next two lines are the power due to the induce voltage
Pis-((vrel(2)*D(3)-vrel(3)*B(2))*ILN(1).(vrel(3)*B(l)-vrel(l)*B(3))*ILN(2)
*(vrel~l)*D(2)-vrel(2)*B(1)).ILN(3));

% Next 3 lines are the power due to resistance in the radial, in-track,
% and out of plane conductors respectively
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Pxu-(vrel(2)*D(3)-vrel(3)*D(2) )*ILJE(1).4*rhor'rhocsmcIIJI(1)-2;
Py--(vrel(3)*B(1)-vrel(1)SD(3))iiILN(2).4asrhororboc~mc.ILN(2)-2;
Pz--(vrel(1)sB(2)-vrel(2)*B'(1) )*ILK(3)4*4rhorsrhoc*mc'ILN(3)-2;
suuPu(Px.Py*Pz);

% -------------------------- Collect output --------------------------

% 1 2-4 5 6 7-9 10 11 12 13
data(i,1:13)s~v*180/pi xyzi' phiE*i80/pi la.E*180/pi B' theta*l8O/pi Fr Fu F31;

% 1 2-4 5-7
datab(i,1:7)uClamm*180/pi Bcu' Bci'J;

% 1 2-4 5 6
datam(i.1:6)s~v*180/pi xyzm' lamm*180/pi phimsisO/pi3;
dteut(i,1:7)uEv*180/pi zyzil zyzI'); % Debug code
dtest(i,1:7)n~v*180/pi 1 0 0 rtp'/r); % Debug code

P(i.:)n[Pi Px Py Pz sumP];
2 1 2 3 4 5 67 8
dat(i.1:8)m(v*180/pi t I*180/pi RAAN*180/pi (1.5*pi-v)e180/pi Fr Fu F31;

% 1 2 3 4 5 67 8 91011
angleu(i.1:4)uE t v*180/pi NeISO/pi E*180/piJ.
kep(i,1:8)uE t v*180/pi a 0 1 MAAN w No);
forceu(i,1:11)n~t v*lsO/pi fr fu fl F1 F2 F3 Fr Fu Fl1;
current(i.1:5)=[t velSO/pi ILNI3;
Vdot Ci.1:3)3 Ewdot wdoto vdot~vdoto);
aelo(i,:)=(t a e I*iSO/pi RAAN*180/p13;% w*180/p13;% No*180/pi);
%2-------------------------- Propogate elements.----------------------

lagrange;
iui+1; % Update matrix index

end % End of the integration
toc
Xmuuize(P,1);
energyn(.5e(P(347,5).P(373,5)).suia(P(348:372,5)))Wts % Trapezoidal int.
P100wenergyltf % Power averaged over entire orbit
pbareenergy/3240 % Power average over thrust period

dvu(v-1.5*pi)*180/pi % Change in argument of perigee
d~u(I-pi/2)*180/pi % Change in I
dAAANC(RAAN-RAA~o)*180/pi % Change in MAIN
dam(a-42162862)/1000 % Change in a
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done-. 82501 % Change in e

eles(1 l0-180;

plot(da%(: .1) .dat(: .5))
ylabol(delta argument of perigee')

subplot(2,2,2)
plot(dat(: .1) forces(: .6) ,'y',dat(: .1) forces(:, .7)* r'.dat(: .1) forces(: .8)

ylabe1('Acceleration (./uec-2)')

subplot(2 .2.3)
plot(elm(:,l. 1 current(: .3) .elm(: , ) ,current(: .4) , r' ,.el.(: .1),current(:.

ylabel('IL/m (A-u/kg)')

subplot(2,2 .4)

C: ,4),#g'.da%;(:.1),P(:,5),'b')
ylabel('Specif ic power (V/kg)')

%disp('Hit any key to continue')
%pause
subplot(2,2,1)
plot(elem(:. 1) lelm(: .4))
ylabel( 'Inclination')

subplot(2 .2.2)
plot (elem(:, 1), eleaC: .5))
ylabol('RAANI)

subplot (2 2 ,3)
plot(elem(: .1) eleC: .2))
ylabel('eei-major axis')

subplot(2,2,4)
plot (el~m(:, 1).elem(: .3))
ylabel( 'eccentricity')
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The script lagrange... is called by molniya.m. It evaluates Lagrange's planetary
equations and integrates the orbital elements used in the Molniya, stationkeeping study.

% This file integrates the orbital elements according to Lagrange's
% planetary equations

adot.2*eehin(v)/(n*sqrt(1-e-2) )*Fr/masu*2'saesqrt(1-e^2)/(ner)*Fu/mauu;
edotnsqrt(1-e2)*sui(v)/(nea)*Fr/mws~sqrt(I-e-2)/(neaý2*e)*(a-2.(l-e-2)/r
-r)*eFulmosu;
Idotu((r*cou(v~v))/(n*as*asqrt(1-e-2)))*F3/maee;
RAANdota((reuin(v~v))/(n*a*a*sqrt(I-e-2)*sin(I)))*F3/.aa;
wdotla-(sqrt(1-e-2)/(n*aee))*(cos(v)*Fr/maau); % lot term
vdot3u-r*C1/tan(I) )*sin(w~v)*F3/(n*&aeaeqrt(l-e-2)euaau); % 2nd term
vdot2.(sqrt(1-e'2)/(ni'a*e))*(141/(l+e*cos(v)))*sin(v)eFu/mans; 2 3rd term
vdotovdotl~vdot2+vdot3; % All 3 termts of eqtn 13

d~un-(2*r/a-(1-e-2) *cos(v)/e)*Fr/(aass*nea)
-(1-e-2)*(1.r/(a*(1-e'2)))*sin(v)*Fu/(nsa~eemass); % Eqtn 17

% Euler integration
asaaadot*ts;
ueae edot *ts;

N-dlE*ts+N;
vuv+udot*tu;
IuI.Idot*ts;
RAAI=RAAN*RAANdot*tu;

% Debug data collection
debug(i,:)s~i t v*180/pi idoti wdot2 wdot3 wdot);
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Function kepler., solves Kepler's equation. It is called by moinlya a.

function Eakeplor(M,Eo•,)
EaEo-(Eo-e*sin(Eo)-K)/(1-e*cos(Eo));

% This function is used to iteratively find E froa N and o.
% Eo is a guess of E. Repeat the function until Ea converges to E.

Function rotate .a generates a rotation matrix given two rotation angles. It is called
by inc.a, raan.a, and iolniya.m.

function [R] a rot (phijlaz)
It [cos(laa)*cos(phi) -sin(lma) -cos(laa)*sin(phi)
sin(lm)*cos(phi) cos(lan) -sin(laa)*sin(phi)
sin(phi) 0 cos(phi)];

% This function calculates a rotation matrix based on the two rotation
% angles phi and lm
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Script decays 1.a was used to study the decaying solution to the rendezvous study.

% This is the file used to investigate the decaying solution of the
% rendezvous problem
rhor=2.80-8; % Resistivity (Ohm-.) [rho.-R]
rhocs2700; % Conductor mass density (kg/m-3)

2I [rho.]c
mcalO; % Conductor mass ratio [m/mc]
r-6678000; W Radius of target (a)
nal. 1834e-03; % Nean motion (rad/tac)
alfadot=7.292462056e-5; % Angular velocity of the Earth's

% rotation (rad/eec)
ido=O;ydo=-3sxosn/2; % Calculate initial velocities as a

% function of initial position
tf=.99e2*pi/n % tf is the time period in which the

2 rendezvous is to be performed.
% See the file for the polynomial
% solution for an explanation of the
% .99 value.

B=[O 0 -2.8282e-05J; % B field vector

ao=(a1"2)/4; % The so coefficient
sual/2; % This is [p] in chapter 5
bxoxo; 2 Nore contsants
xmxdoIs*xo;
byuyo;
cysydo*seyo;

jO;
for itO:30:tf % Integrates the equations. The time

% step is 30 sec.
twi;

xuoxp(-set)e(bx+cx't); % I soln
xdaexp(-s*t)*(-s*bx-s*cxe1tcx);

ymexp(-set)e(by+cy*t); % y soln
ydsezp(-s*t)*(-s*by-secye1tcy);

fxu-2*n*yd-al*xd-(ao+3en-2)*x; % radial acceleration
fy=2enezd-aleyd-aoey; % in-track acceleration
X(J1.:)=[x y xd yd t];

u(j+t,:)=[fx fy];
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ILI-tfy/3(3); Z Ckappa-rJ
IL2otz/D(3); I Ckappa..thetaJ
IL3=0; % Ckappa..3J
vyu'(n-alf&4ot)*r; % v-rel
Piin-ILI*vy*$(3); % power due to induced voltage
Pzs4erhorsrhoc~inceIL1l2; % radial i 21 power
Pyo4*rhorsrhocmc*lL2-2; % in-track i-2R power
sumPinPi+Px.Py; % total power

IL(J.1.:)-(ILI 11.2 1L3J;
P(J*1.:)GIPi Pi.Pz Py su.PJ;

dat(J*1.1)int;
jinj*1;

end

subplot(2,2. 1)
plot(X(: .2)/1000,X(: ,1)/1000.''1)
axis([-1.1 1.1 -1.1 1.1J)
xlabel('y (kin)')
ylabel('z (kin)')

subplot(2.2.3)

ylabel('v-x. A v..y (u/sec)')
ax-axis;
auis(Caz(1) 5256 ax(3:4)J);
xlabel('Tine (sac)');

subplot (2 .2,*2)

%aimaxismais(CO 180 ax(1,3) ax(1,,4)J)
ylabol('f..z & f-.y (u/sac),)
xlabel( 'Tiuc (sec)')
ax-axis;
axus(Cax(1) 5256 ax(3:4)]);

subplot(2.2,4)

ylabel('Specific Power (V/kg)')
ax-azii;
axis(Eax(l) 5266 ax(3:4)J);
xlabel('Tin. (sac)');
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-- size(P.t);
energy.(.S(P(1, :).P(mn:)).sum(P(2:n-l,:)))e30 % Trapezoidal integration
Pmaz-uma(P)

Pbaraenergy/tf % Average power

Script poly.a was used to study the polynomial solution to the rendezvous study.

% This is the file used to study the polynomial solution to the rendezvous
% and docking problem

rhor=2.8e-8; % Resistivity (Ohm-&) [rho.-.]
rhoc=2700; % Conductor mass density (kg/nm3)

% [rho.c]
mc-1O; % Conductor mass ratio [a/a.cJ
r=6578000; % Radius of target vehicle (a)
n-l.1834e-03; % Nean motion (rad/sec)
alfadot=7.292462056e-S; % Angular velocity of Earth's

% rotation (rad/sec)
xdo=O;ydow-3*xoen/2; % Initial conditions based on xo

% and yo
tfs.99*2*pi/n K This is the time span you want to

% perform the rendezvous in. 99% of
K the orbital period is used so
% comparison can be made to a 2 burn
% rendezvous, 2like the example in
K Kaplan (pp 114-116). If the exact
K orbital period in used, Kaplan's
% eqtns 3.54 and 3.55 become
K singular.

B=[O 0 -2.8282e-05J; K B field vector. It is constant for
K the assumptions made in Ch 5.

J0O;

axaxo; K Constants for the x soln
bxnxdo;
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cz's-3*zdo/tf-6*xo/tf-2;
dxn3*zdo/tf-2+*6*o/tf-3;
ezu-xdo/tf-3-3*xo/tfCI;

ay-yo; % Constants for the y moln
bymydo;
cyn-3*ydo/tf-6*yo/t1-2;
dya3e'ydo/tf^2*8*yo/tf-3;
eye-ydo/tf-3-3*yo/tf-4;

for i*0:30:tf % Integrates the equations. Note the
% time stop is 30 sec.

tul;

xsax~bz*t~cx*t-24dx*t -3*ezet-4; % x momn
xdubx#2*cxet+3*dx*t-2.4*ex*t-3;
xddu2*cx+Gedx*t*12*exst-2;

yuay4byst~cy*t-2+dy*t-34*y*t-4; % y momn
yduby+2*cy*t+3*dy*t-244**y*t-3;
yddu2*cy+6*dys*t412*ey*t^2;

X(J+1,:)=Ex y xd yd t]; % Collect the position and velocity
% data

fxsxdd-2*n*yd-3*n-2*x; % Compute the acceleration&
fyuydd+2*n*xd;

u(j.1,:)uEfz fy];

ILle-fy/8(3); % rkappa..rJ
IL2uf 1/9(3); K Ekappa..theta]
IL3=0; % Ckappa..3J
vyn(n-alfadot)*r; % v-.rel
Pin-ILlevyeI(3); % power due to induced voltage
Px=4srhorerhoc*mc*ILI2; % radial i-21 power
Py4*rhorerhoc*mc*IL2-2; K in-track i-2R power
simpuPi*Pz*py; K total power

IL(J+1,:)n[ILlI L2 IL3J;

P(J.1,:)SEPi Pi+Px Py sump];

dat(J+1, 1)ut;
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jaj+1;
end

subplot(2.2, 1)
plolt(I(: ,2)/1000.I(: .1)11000.'.1

ilabol('y (kmn)')
ylabel('x (kmn)')

subplot(2.2.3)

ylabel('v-.x a v-y (in/uec)')
aimaxis;
axis((ax(l) 5256 ax(3:4)J);
xlabel( 'Tim. (sec)');

subplot(2,2,2)
plot(dat(: , ) 1:,),':' ,dat(:,* ) ,u(: .2) *.1
%ax-axis;axis((O 180 ux(1,3) ax(1.4)])
ylabe1('t..x ft f-y (u/sec)')
xlabel('Tin. Ciec)')

axiu((az(i) 5256 ax(3:4)J);

subplot(2.2,4)

ylabel('Spocific Power (V/kg)')
ax-axis;
axis(Caz(i) 5256 ax(3:4)3);
zlabel('Time (sec)');

anuize(P,1);
energya(.S*(P(1.:)*P(..:))..um(P(2:u-1,:)))*30 % Trapezoidal integration
Pzuaxuax(P)
Pbar-onergy/tf % Average power
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Appendiz B. Survey of Conducting Metals

Equation (47) was derived in section 2.6.3. The last term includes the product

P,,P, where p, is the resistivity of the conducting material in Ohm-meters and p, is the

conductor mass density in kilograms/meter'. To minimize the last term of Equation (47),

it is desirable to use a conductor with a low PRPC product. To find such a conductor we

compile p. and p, values for common conducting metals (3:1324-1325) and compute P,,p,:

Pi PC PAPc

Metal (Ohm-m xl0-6) (kg/mi x 103) (Ohm.kg/m 2 X 10-5)

Aluminum 2.66 2.7 7.2

Copper 1.68 8.9 15.0

Gold 2.42 19.3 46.7

Silver 1.63 10.5 17.1

Aluminum is the worst conductor in terms of resistivity, but its low mass density makes it

the best overall conductor for electrodynamic propulsion.
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