- 5 398
AD- A dL orie

PROCESS ENGINEERING WITH THE
EVOLUTIONARY SPIRAL PROCESS
MODEL

SPC-93098-CMC

VERSION 01.00.06
JANUARY 1994

4-04212
\\\\\\?\\\\\\\\\\\\‘\\\\\\\\\\\\\\\\\\\\\\\

94 2 07 o5 ¢

PROCESS ENGINEERING WITH THE
EVOLUTIONARY SPIRAL PROCESS

MODEL Accesion for

/.
bno QUMY mersorEpg | brs G O
Unannounced []
Justificater
SPC-93098-CMC eng,; ?\&‘3&9\\3&9

Stibation)

L._.___ .

FRUFEHTO PR -\)(ft‘%

S o
Loatd g Of

Dist Siiecial

VERSION 01.00.06 9\-\\ l

JANUARY 1994

Produced by the
SOFTWARE PRODUCTIVITY CONSORTIUM SERVICES CORPORATION
under contract to the
VIRGINIA CENTER OF EXCELLENCE
FOR SOFTWARE REUSE AND TECHNOLOGY TRANSFER

SPC Building
2214 Rock Hill Road
Herndon, Virginia 22070

Copyright © 1994, Software Productivity Consortium Services Corparation, Herndon, Virginia. Permission to use, copy, modify, and
distribute this material for any purpose and without fee is hereby granted consistent with 48 CFR 227 and 252, and provided that
the above copyright notice appears in all copies and that both this copyright notice and this permission notice appear in supporting
documentation. This material is based in part upon work sponsored by the Advanced Research Projects Agency under Grant
#MDA972-92J-1018. The content does not necessarily reflect the position or the policy of the U. S. Government, and no official
endorsement should be inferred. The name Software Productivity Consortium shall not be used in advertising or publicity pertaining
to this material or otherwise without the prior written permission of Software Productivity Consortium, Inc. SOFTWARE
PRODUCTIVITY CONSORTTUM, INC. AND SOFTWARE PRODUCTIVITY OONSORTIUM SERVICES
CORPORATION MAKE NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THIS
MATERIAL FOR ANY PURPOSE OR ABOUT ANY OTHER MATTER, AND THIS MATERIAL IS PROVIDED
WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.

ADW is a registered trademark of KnowledgeWare, Inc.
Emst&YmmgNaviytorSystcmsSeﬁuisamvieemarkof&nst&YmmgIntemational.hd.
Microsaft Project is a trademark of Microsoft Corporation.

CONTENTS

1. INTRODUCTION .. cccvtvverecncssacansccsnanas

1.2 Purpose and SCOPE .. .vvvuneiiniiitiinrenereieerenncesstencecncsnecsnnnns

1.3 Intended Audiencec.oviuiiuiieiiniiiiiiiiiiiiiiiiiiiireiieaaaeas

1.4 Typographic Conventionscoeviieiriiiiiiiiieiiieieiiinneenronss
2. PROCESS ENGINEERING CONCEPTSAND ISSUESccccteencases

22 Process Life Cyclecouvviiininieiiiiieeniniiieeetoieneeccsosconnncanns
2.3 Process Engineering ISSuescovvvueniiiiiiiiiieiiocanesesascnnnnasns
2.3.1 High-Level Process Definitionscooevevneeiiiiieiiinerennesnannas
2.3.2 Low-Level Process Definitionscccvverieerreneenncenaconnennss
2.3.3 Process Definitions That Mandate aLifeCycleccouvun.nn.

24 Emeréing Process Engineering Conceptscevveiiiinieiincceneescnnns
2.4.1 Process ASSELSvuueveeennonasneesesosonessoeannannsnsescasaanses
2.4.1.1 Standard Process Architecturec.oeeeeeeerencnooncanss

2.4.1.2 Specified Process Steps . .. cvovtvterentieerrannnrsrossoesaanses

2.4.1.3 Product Life-Cycle Model Descriptionscoeevuveenenennnss

2.4.1.4 Standard Process Definitionccceeeveeennnsencnrerananss

2.4.1.5 Project Process ArChitectureccveeeeeenneecerennneanes

2.4.1.6 Project Process Definitioncovvveeenieiinrnenneancannns

xiii

2.4.1.7 Process MeasuresDatabasec.oiiiiiiiiiiiiiiiiiiians 2-10
2.4.2 Process Engineering Process 2-10
2.4.2.1 Architect Standard Processccooiiiiiiiienrennianenaenans 2-11
2.4.2.2 Design Standard Processccooiiiiiiiiiiiiiiiiiiiineenns 2-13
2.4.2.3 Define Standard Processc.ccviuienereienenererenennneeans 2-13
2.4.2.4 Tailor Project ProCessccvvvtnuneenererencereeceeceanencnns 2-14
2.4.2.5 Instantiate Project Processccovviiviiiiiinennnninnnnnoncens 2-15
2.4.2.6 Provide Continuous Improvementcccviiuvienennennen 2-15
2.5 SUMMATY .+ .vtiittiintiineeeeeeaneeeseteeacsaasansosacensesnsansscnnses 2-16

3. EXTENDING THE EVOLUTIONARY SPIRAL PROCESS MODEL TO
PROCESS ENGINEERINGccci00tettteenctcsasscanssssssssconans 31
I B 0 1 o 1P 31
3.2 Evolutionary Spiral Process MOAel OVEIVIEW ueeneenneeneennennneanens 31
3.2.1 Step1: Understand Contextccvvvieeeeeeeenneneneesnnnnconnes 32
322 Step2: Analyze Risksoiiutiiiiiniiiiiinreinnceennncannnncannans 33
323 Step3: Plan DevelOpmentcoeieerennereeeennneeeceeennsnnnens 34
3.24 Step4:DevelopProductc.civiiiiiiiiiieniiurenrconeaancoones 34
325 StepS:Manageand Planoiiiiiiiiiiiiiiiiiiiiiieai e 35

3.3 Process Engineering With the Evolutionary Spiral Process

(0 T 35
34 SUMMAIY «.vitiitiieiitiieiieeateiascesossosssnsansensensencnnennsases 3.7

4. ENGINEERING STANDARD PROCESS ASSETSccceiveieninncnens 4-1

41 OVEIVIEW ... ieiiiiiiiititiiiitnennsntsasetossosnssscncosansnsnnons 4-1
4.2 Engineering a Standard Processoevieeenennrenrenceecencnsansocsns 4-1
4.2.1 Step 1: Understand CONEXtcvvueeeeneenernocnoensansnnacnnns 4-2
422 Step2: Analyze RisKoiviiiiiiiiiiiiiiiiiiienieieenenencncnes 4-4
4.23 Step 3: Plan Asset Developmento.ovieiienienenninneneinennnns 4-5
4.2.4 Step4: Develop Process ASSEtsvuevveeeerenrenrenresenncanenscnens 47

Coateats

4.2.4.1 Process Capability Baselinecoooiiiiiiiae,
4.2.4.2 Standard Process Architecturecoeiiiiiiiiiiiiinann.
4.2.4.3 Specified Process Stepsccvvtiieiiiiiiiiiieiniereiieenenns
4.2.4.4 Product Life-Cycle Modelsccoiiiiieiiiiiiiiiinnnnn.,
424.5 Standard Process Definitioncoiiiiiiiiiiiieiienennn.

4246 ProcessMeasures Databasecovieieenneeennecononcansnanens

S. PROJECT PROCESS ENGINEERING ceseeen
5.0 OVeIVIEW ... iiitiiiiiiiiiiiiiniiseesoeeeessssannonsnosasssscsosasacnons
5.2 Documenting the Project Processinthe First Cyclesccoo0L.

5.2.1 Identify and Evaluate Project Process Driversccovoeeeiiae,
5.2.2 Analyze Project Process Risks and Plan for Risk Aversion Strategies
5.2.3 Planning for the Development of the Project Process Definition
5.2.4 Developing the Project Process Definitionccovvvvviinnaaan.
5.2.5 Baselining the Project Process Definition and Committing to Proceed

5.3 Tailoring and Instantiating the Project Process Definition for a

0,

5.3.1 Determine Cycle Process Drivers and Alternatives
5.3.2 Analyze Cycle Process Risks and Plan for Risk Aversion Strategies
5.3.3 Document the Cycle Processccovieeeeiineneieeecanrreenannnns
5.4 Enacting the Cycle Processc.cceiiieiiieiieinieiieeiesenscnnnennss
5.5 IMproving the Project PrOCESSc.veeuenerneeereenenanacecesassnencans

APPENDIX A. EVOLUTIONARY SPIRAL PROCESS ACTIVITY
SPECIFICATIONSttveeeiienescnessnnsssscscccnnnnas

Al OVeIVIEW .ottt iiiiiieteetnenseenseasosoesacasessssasssasesanasacasenss

A2 Define APProachoiintiiuiinieeittiiiiiietiieressioncannncennans A-S
A3 Develop/Update Estimate of the Situationc.oviiiiinaa... A6
A4 RevieWCONtEXtviiiiiiiiniiiieeeetninnreesnsresesotanassseennnnnes A8
A5 Perform Risk Analysisccoiieeeiiiieiiiiieiineceonnenocennnnens A-10
A6 Review Risk Analysiscciciiiieiniiiiiiiiiiinrennrenssennnnnnnns A13
A7 Plan Risk AVErsionc.civvniiiiiiienniieiieiitiesenseeneesanncananns A-14
A.8 Commit to AVersion Strategycvuevineinierienienroeronsonsenaennranss A-1S
A9 Execute Risk AVErsionccoieiiviiiiniiieiieiiienernrenssenennnanes A-17
A.10 Review AIErNativecoviieineeinineinntiereecsarancsnsenacanans A-18
A.ll PlanandSchedulecoiiiiiiiiiiiiiiiiiii ittt ieiaaeas A-19
Al12 CommittoPlanouiniiiiiiuiiriiiiiiiiiiittiiititneaetaraieaaaas A22
A.13 Developand Verify Productoovvieiiuiiiiieineeenenncenrennannens A-23
A.14 Monitorand Reviewcoiiiiiiriiiiiiiiieiirerienereesnnnnnncnns A25
A.15 Review Technical Productvvviiriieiiiiiiiiiiinnentoncneeneannans A-27
A.16 Product Change Controlc.ooviieiiineireereenreneeenarennsennneens A-28
A7 ReVIEW PrOgIess ouviviniieniinrureesnsisnne tonsesoccnssacenanssnan A-29
A.18 Update Spiral Planning DOCUMENtSoevvinininiiineeeeraacnennannnans A-30
A19 Committo Proceedoovniniuiurneninietireesaseensncasncasanannns A-32

APPENDIX B. PRODUCT DEVELOPMENT ACTIVITY SPECIFICATIONS ... B-1

B.1 Software Systems Engineeringocoeveieiiieiieeenrernecenacnancans B-1
B.1.1 Specify Operational COnceptccevvueeerneenrneencnssaensencnnes B-1
B.1.2 Formulate Potential Approachesccceuiiuineeeeennennnennnn. B-3
B.1.3 Define System Requirementsocotiuiierenenenencncneacennn. B-5
B.1.4 Develop System Architecturecoueeeeiennenenenneeneneeneanns B-8
B.1.5 Design User INterfacecocvvereureeeneenessenesensensonnennns B-13
B.1.6 Analyze System Performanceccviiiiiiieieiencenenncnenn. B-16

B.1.7 Analyze System Dependabilityoieiiennineinnnrenennannonns B-18

B.1.8 Analyze System Reusabilityooiiiiiiiiiiiii,
B.1.9 Analyze System ModifiabilityoiiiiiiiiiiiiiiilL,
B.1.10 Analyze System Functionalitycooiiiiiiiiiiiiiiiiina.,
B.1.11 Recommend Software System Development Strategy
B.1.12 Integrate Software System Componentsc.ouivevineennennne
B.2 Software Engineeringciiiiieiieiiiriiiiiiianiineitansaiensnnnns
B.2.1 Define Soiiware and Interface Requirementsccovuee.
B.2.2 Design Software Architecturecoovviiiiiiiiiiiiiiiieianennn,
B.2.3 Analyze Software Performanceociiiiiiiiiiiiiiiiiiaa.,
B.2.4 Analyze Software Reusabilitycooiiiiiiiiiiiiiiiiiiiiane,
B.2.5 Analyze Software Modifiabilitycoiiiiiiiiiiiiiiiii,
B.2.6 Analyze Software Functionalitycciiiveiiiiiiiineininncnnnn,
B.2.7 Design Databasec.cccviieieneeireniiiiiiretciiinntcctenennns
B.2.8 Design Software COmPONENtSoooevueiinrennroneesessnscanases
B.2.9 Create Software COMPONENtScovueeenneietoroocenessrcssaosacens
B.2.10 Integrate Software COmMpONeNtSovvvverennrerrennerenecnccanconns
B.3 Product Verification and Validationciiiiiiiiiiiiiiiin...
B3.1 Plan Verification and Validationc.ccoeveeuereenennenen.
B.4 System Verification and Validationccoviiiiiiiiiiiiiiiiiinnennns,
B.4.1 Validate System Requirementscovveiiiviininniennennennenns
B.4.2 Define System Integrétion Verificationccviiiiiiiiiiiiniine.,
B.4.3 Verify System Integrationcocovniiiiiiiiiieiiiiiieiieieennenns
B.4.4 Demonstrate System Capabilitiescccviiiiiiiiiiiiinien..
B.5 Software Verification and Validationccccoiiiiiiiiieiiiineann..
B.5.1 Validate Software Requirementsc.coovvieiniiieiieneencnnss
B.5.2 Define Software Component Verificationcoeveiieieiaieennn.
B.5.3 Verify Software Componentc.ccoeeieereeeceeerearosossascnnens

B.5.4 Define Software Integration Verificationoevvina... B-60

B.5.5 Verify Software Integrationccoiieiiiiiiiiiiiiiiiiiiiiiinann. B-62

B.6 Operation and Maintenancecovetenttiienierinrentenncenenecennens B-63
B.6.1 Plan System Installationccoiieiiiiniiiiiniieiiiiinieiennens B-63

B.6.2 InStall SYStemvviiiiiiiiinreiaeeniieeinrieeiarncineiecnriacsens B-65

B.6.3 Provide Operational SUpportc.ccoveeieiiieeenneeinneinnaroaenns B-66

B.6.4 Identify New Operational Capabilitiescooiviiiiia., B-68
APPENDIX C. ARTIFACT DESCRIPTIONS teessceccvevsssasscscnans C-1
LIST OF ABBREVIATIONS AND ACRONYMScciiinreerninnncrcnennns Abb-1
GLOSSARY . .iiiiieeeeeneseessoeeassssosesasssssssssosssenssnsssssosss Glo-1
REFERENCEScitiiiieteeeereerececescscscccssessssoccssscsnscnnns Ref-1
BIBLIOGRAPHYcccoiiinininnnnnenes cesssasnes sasssssssesuensacnnnane Bib-1
INDEX......... Ceeeetectsasessecsesssatssassessccsnnctrorssanssssnnnne Ind-1

FIGURES

Figure P-1. Structure for Integrated Application of Consortium Technologies xi
Figure 2-1. A Typical Process Life Cycleccovnuiiiiiiiiiiiiiiiiiiiininennn. 2-2
Figure 2-2. Contents of the Process AssetLibrarycooiiiiiiiiiiiiiiian, 27
Figure 2-3. Product Life-Cycle Modelcciiiiiiiiiiiiiiiiiiiiiiiinenenennns 29
Figure 2-4. Project Process Architectureccceeviiiieeenenrerereceocernneees 2-10
Figure 2-5. A Modified View of the Process Life Cycleccovviiiiiiiinne, 2-12

Figure 3-1. The Conceptual Evolutionary Spiral Process Model: A Management Process . 33

Figure 3-2. Process Engineering With the Evolutionary Spiral Process Model 36
Figure 4-1. Standard Process Engineering Processcooevviiiiiiiiiiecinnnn 4-3
Figure 4-2. Synthesis Process Model........ooiiiiiiiiiiiiiiiiiiiiiiiiiiiiinnnnee 4-15
Figure 5-1. Project Process Engineeringccoviiiiiiiiiiiiiiiiiiiiinenienne, 5-1
Figure A-1. Entry-Task-Validation-eXit Notationcoiiviiiiiiiiiiiinnennns A-2

ix

TABLES

Table P-1. Consortium Guidebooks and Related Practicescvvenirevnerennnenn xii

Table A-1. Evolutionary Spiral Process Activitiesccviiiiiiiinnenneennn. A-1

PREFACE

The technology described in this guidebook is part of a broad approach to software productivity
improvement. This preface provides an overview of that approach and identifies the series of guide-
books that support it. These guidebooks were developed by the Software Productivity Consortium un-
der contract to the Virginia Center of Excellence for Software Reuse and Technology Transfer
(VCOE). For a complete listing of VCOE guidebooks and products, call the Software Productivity
Consortium’s Technology Transfer Clearinghouse at (703) 742-7211.

Each technology has been packaged so it can be used without reference to the other technologies.
However, it is also possible to combine these technologies into an integrated approach for product
development. Figure P-1 shows how the guidebooks for these technologies relate to the practices of
software development organizations.

— Objectives, _, Improvement Efforts | Implementation
Status Plans
Development Efforts F
Organizational ‘
Process
Development
= Organizational Project
Application
Assets Development
Product-Line-Based
Product and Process
Development
Customer and Market Customers and End
Drivers and Trends System Contracts

Figure P-1. Structure for Integrated Application of Consortium Technologies

These practices are composed of:

* Improvement Efforts (IE). Application of technology to improve software development efforts.
These efforts require managed approaches to assessment of objectives and current
capabilities, planning for the improvement, implementation of the plan, and measurement of
success.

* Development Efforts. Development of products that meet the needs of customers and markets
or products that make the organization more competitive in meeting expected future needs.

— Organizational Process Development (OPD). Development of standardized
organizational process assets (e.g., process and method descriptions, process
enactment tools) tailored for a particular organization.

— Product-Line-Based Product and Process Development (PLD). Development of
integrated product and process assets (e.g., core products and processes for adapting
them for particular customer needs) appropriate for a particular product line.

— Project Application Development (PAD). The tailoring and application of organizational
assets for a particular product development effort.

Table P-1 describes how existing products can be integrated to address your organizational practice.

Table P-1. Consortium Guidebooks and Related Practices

Guidebook Part Number Relationship to Software Practice

Consortium Requirements SPC-92060-CMC | Used for defining and analyzing requirements

Engineering Guidebook in PAD. Adaptable for use in PLD.

Managing Process SPC-93105-CMC | Supports IE by providing a process and

Improvement: A Guidebook supporting guidance for initiating and

for Implementing Change maintaining an organizational process
improvement program.

Process Definition and SPC-92041-CMC | Provides methods for defining and

Modeling Guidebook documenting processes so they can be
analyzed, modified, and enacted. Supports IE
and OPD.

Process Engineering With the |SPC-93098-CMC |Used to iteratively plan, manage, and control

Evolutionary Spiral Process PAD and PLD. Used to construct

Model organization-specific processes in PLD and
tailor them in PAD.

Reuse Adoption Guidebook |SPC-92051-CMC |Supports IE by providing specific process
. improvement activities for incorporating reuse

practices.
Reuse-Driven Software SPC-92019-CMC | Provides development approaches for PLD
Processes Guidebook (domain engineering) and PAD (application

engineering) of reusable software assets.
Software Measurement SPC-91060-CMC | Supports IE by providing methods for
Guidebook quantitative assessment of project status.
Using New Technologies: A | SPC-92046-CMC | Supports IE by providing a process that
Technology Transfer addresses how to get an organization to use
Guidebook new technologies.

ACKNOWLEDGMENTS

The primary authors for this guidebook were Kirsten Blakemore, Donna Garfield, and Jim Marple,
and contributing authors were Robert Hofkin, Ph.D.; Tim Powell; Sue Rose; and Patricia Remacle.
However, many people have aided in the creation of the ESP technology since its inception in 1991.

The first two versions of the Evolutionary Spiral Process (ESP) model technology were
created by John Blyskal; Ted Davis; Mary Eward; Robert Hofkin, Ph.D.; Tim Powell; and
Patricia Remacle.

The first two versions of the ESP model technology were formally validated by Guy Cox, Ted
Davis, Fred Hills, and Roger Williams.

David Nettles has continually provided overall direction and guidance.

In addition, this guidebook uses and makes reference to several existing Consortium technologies.

Synthesis technology was created by Grady Campbell, Jim O’Connor, Neil Burkhard, Jeff
Facemire, and Rich McCabe.

Software measurement guidance was authored by Robert Cruickshank, John Gaffney, and
Richard Werling.

Formal process definition and modeling technology was created by Richard Bechtold and
Robert Lai.

Software engineering technology transfer guidance was authored by John Christian, Ph.D.;
Mary Eward; Sam Redwine; and Louis Tornatzky, Ph.D.

The review and comments of Richard Bechtold, Jim Blake, Tim Powell, Sam Redwine, and Roger
Williams greatly aided in the development of this guidebook.

The coordination, editing, and processing of this document was performed by the Environment and
Support Services Division.

4nis page intentionally left blank.

1. INTRODUCTION

1.1 OVERVIEW

Imagine a standard, well-defined, and rigorously optimized process for constructing buildings. The
activities in the construction process all have standard definitions, are always sequenced in the same
way, and never vary in the time and resources needed to perform them. Type and quantity of material,
as well as the number and skill mix of architects, engineers, and contractors, are known precisely.
Standard tools and equipment are always used. Site descriptions, floor plans, blueprints, and other
design and production documents never vary to avoid changes to the standard process.

This construction process tends to produce square, concrete structures with the same dimensions, the
same floor plan, and the same landscaping—well-built, reasonably priced, and quickly constructed,
but of questionable value to customers who have unique requirements or constraints.

Differences in underlying culture, natural settings, and human-imposed expectations, decisions, and
limitations are some of the reasons why construction processes may vary in slight to significant ways
(Snyder and Catanese 1979). Such motivating factors, or process drivers, also drive software
development. For example, following a standard, unvarying process for developing software may
quickly produce error-free and low-cost software, but the resulting software product(s) may not satisfy
differences in organizational and client cultures; human-imposed objectives, alternatives, and
constraints; and preexisting knowledge or assets.

The industry is beginning to recognize the importance of standard and defined development processes
to producing consistently high-quality software within budget and on schedule. However, standard
processes must be engineered to accommodate unique project characteristics. This guidebook is a first
step toward introducing a framework for engineering processes that combines the advantages of
process standardization with the flexibility to address unique process drivers.

1.2 PURPOSE AND SCOPE

This guidebook describes how process engineering helps to produce the right development process
for an organization and/or project and shows how the Evolutionary Spiral Process (ESP) model can
be extended to support process engineering steps. A development process is the set of steps, or
activities, for developing a software product and its supporting products. Process engineering refers
to the specific actions that attempt to generate a quality software development process, given
organizational and/or project-unique process drivers.

The guidebook offers expanded, though not yet complete, process engineering guidance at both the
organizational and project levels. Information in this guidebook is at a first level of maturity; that is,
it synthesizes the results of initial research and theory and will be matured in future versions as the

11

1. Introduction

material is taught and used, lessons are learned, and the concepts evolved. In addition, these initial
concepts will be further elaborated as confidence in the foundation material increases.

This version of the guidebook covers the following topics:

Section 1 describes the guidebook in terms of its purpose, scope, intended audience, and
typographic conventions.

Section 2describes basic process engineering concepts and issues, including process assets and
process life-cycle steps.

Section 3 provides an overview of the ESP model and shows how the model can be extended
to process engineering.

Section 4 provides a discussion on engineering standard process assets.
Section S provides a discussion on process engineering at the project level.
Appendix A presents the ESP model activity specifications.

Appendix B provides some generic product development activity specifications that can be
used when engineering standard process assets or project-specific process definitions.

Appendix C contains a list of product development artifact descriptions.

The List of Abbreviations and Acronyms contains abbreviations and acronyms used in this
guidebook and their definitions.

The Glossary contains a list of terms used in this guidebook and their definitions.
The References section contains sources of information used in this guidebook.

The Bibliography contains additional sources of information.

Because the industry has not yet set standards for concepts and definitions, it is recommended that
the sections of this guidebook be read in order. Otherwise, you may be confused by concepts
presented, defined, or used in a way that is different from other sources.

13 INTENDED AUDIENCE

This guidebook is intended for use by the following audiences:

A software engineering process group (SEPG) member, or other process improvement
specialist, interested in defining an organizational process definition and tailoring it for use
on a specific project.

A project manager interested in using the ESP model to define a software development
process that best meets the needs and requirements of the project.

1. Introduction

1.4 TYPOGRAPHIC CONVENTIONS
This guidebook uses the following typographic conventions:

Seriffont....................... General presentation of information.

Serif font, initial capitalization Names of processes and activities in the model.

Boldfaced seriffont Section headings and emphasis.

Italicized seriffont Publication titles.

Boldfaced italicized seriffont Run-in headings in bulleted lists and low-level titles in the
process sections of guidebooks.

In this guidebook, figures that depict a process use the following symbolism:

I T Activity or step.

.................... X produces product or work product.

.................... X uses product or work product.
......................... Work flow reiterates work product development.

13

1. Introduction

This page intentionally left blank.

14

2. PROCESS ENGINEERING CONCEPTS AND
ISSUES

The systems built today are just too complex for the mind of man to foresee all the ramifications purely
by the exercise of the analytical imagination.

Report of the Defense Science Board Task Force on
Military Software

2.1 OVERVIEW

Many process groups today are faced with the difficult problem of defining the product development
process for a large, complex, and highly variable organization, as well as for the multiple and diverse
projects within that organization. Finding the right solution requires structure and discipline, includ-
ing careful analysis of the problem, designing an architectural framework within which the problem
can be decomposed, and decomposing the problem into smaller, more manageable pieces.

For example, imagine trying to build a large, complex software system without first designing a
software architecture: interface problems are prevalent, requirements are implemented inconsistent-
ly or not at all, and design constraints are violated. Like software engineering, process engineering
should also represent complexinteractions among process steps through a high-level process architec-
ture that can be subsequently refined and elaborated. Process engineering should follow a structured
approach that elaborates the process through different forms of representation and level of detail
until an enactable or performable level is reached.

This section introduces process engineering in terms of a typical process life-cycle model, discusses
some difficulties the industry is discovering as it attempts to engineer and enact process definitions,
and presents some emerging process engineering concepts that begin to address these issues.

2.2 PROCESS LIFE CYCLE

Process is a partially ordered set of steps intended to accomplish specified objectives; process
engineering refers to the construction of that process. This guidebook constrains the definition of
process engineering to refer to product development objectives only. Process engineering constructs
the best possible process for developing a system or software product(s).

Figure 2-1 shows a typical process life-cycle model. This process life-cycle model provides an initial
process engineering framework. Unlike product life cycles, such as the traditional waterfall, the life
cycle of a process should continuously improve and evolve, at least until the industry experiences a -
radical paradigm shift in the way it develops software and software-intensive system products. Each
of the process life-cycle phases is discussed briefly below.

21

2. Process Engineering Concepts and Issues

|

Architecture ¢

Design [«

Y

K

Definition [€—

Tailoring ¢

N

Instantiation j¢——P

Y

Figure 2-1. A Typical Process Life Cyde

® Architecture. This phase involves defining organizational context, process standards, and the
major process steps that will be modeled within the organization and how those steps interact.

e Design. This phase involves defining one or more product life-cycle models that the process
will support and how the life cycle model(s) integrate with the conceptual framework defined
in the architecture stage.

e Definition. This phase involves decomposing and specifying the internal structure of each of
the process steps in the process architecture.

e Tailoring. This phase involves selecting the product life cycle that will be used on a specific
project and tailoring the process step specifications to accomplish each product life-cycle

stage.

¢ Instantiation. This phase creates an enactable or performable process for a specific project by
binding the process definition to resources.

¢ Evolution. This is a continuous phase that corrects known problems or evolves the process to
meet new needs.

In the past few years, several SEPGs have followed the traditional process life cycle shown in Figure
2-1 or a similar model. The result has generally been a single, comprehensive organizational process
definition detailed to the enactable level that reflects the various policies and procedures used
throughout the organization. As discussed in the Section 2.3, this linear approach to process
engineering and the resulting comprehensive process definition have resulted in significant issues.

2.3 PROCESS ENGINEERING ISSUES

In the last several years, the industry started to approach development of software and
software-intensive systems no longer as a black art but as an engineering discipline that should be used
in a consistent and repeatable manner. The industry is developing process definitions to document
management, development, and support steps and procedures for developing a system or software

22

2. Process Engineering Concepts and Issues

product. All the projects across the organization are meant to use the process definitions. To actually
enact the development process, a project needs a well-defined and comprehensive set of information,
including:

¢ The set of activities necessary to develop software and its supporting products

e How the activities relate to each other

e A description of each activity

e When to start and stop each activity

e What inputs each activity needs

* What each activity accomplishes or produces

e Activity cost, schedule, and staffing estimates

* What personnel, methods, practices, and tools will be used to perform each activity

As stated by Feiler and Humphrey (1992), process definitions will become valued and used only to the
extent that they make high-quality software easier and more economical to produce. To achieve this,
process definitions must be both useful to the practitioners and reasonably economical to produce.
Experience to date, however, demonstrates that the development of a comprehensive process
definition can be very expensive and time consuming.

In many cases, a process group has taken several calendar years and thousands of labor hours to
produce organizational process definitions that development projects are just beginning to use. Often,
these descriptions simply do not correspond to the processes actually performed during software de-
velopment or maintenance (Curtis, Kellner, and Over 1992). As process engineers analyze the results
of projects using organizational standard process definitions for the first time, the disconnect between
the process definition and how a project actually performs becomes apparent. Some of the issues that
contribute to this disconnect include the following:

» Ifthe organizational process definition is developed at too high a level of detail, it mav fail to
provide sufficient guidance to the project.

¢ Ifanorganizational process definition is defined at too low a level of detail, it may be difficult
to adapt to accommodate project-specific objectives and constraints.

» Ifanorganizational process definitionis closely tied to a specific life-cycle model, it may break
down when a project attempts to use a life-cycle variant or an alternate life cycle.

Sections 2.3.1 through 2.3.3 discuss each problem further.

2.3.1 HiGH-LEVEL PROCESS DEFINITIONS

Process definitions that you represent too abstractly can result when you model an organizational
process using large-grained activities or provide an incomplete set of information. If you break down
a process definition into large-grained activities, the activity descriptions do not provide enough

23

2. Process Engineering Concepts and Issues

detail. The activities may decompose into subactivities with no explicit information concerning the
sequencing or dependencies between the subactivities. Also, the dependency of a particular
subactivity on a particular input of the parent activity is not defined. An example is a parent activity
containing a list of various roles, but how each role contributes to the completion of the subactivities
is not specified. Enactment of these high-level activities will result in ad hoc practices under the guise
of a common organizational process definition (Krasner et al. 1992).

Traditionally, the organizational process definition models a functional process perspective, that is,
what activities need to be done and how they are sequenced. However, you must integrate many forms
of information to adequately describe the software process. Information that agents normally need
to enact the process also includes:

e What is going to be done?

e Who is going to do it?

e When and where will it be done?

e How will it be done?

¢ Who depends on it being done?

¢ How does someone measure progress?
¢ How should someone document results?
¢ How should someone verify results?

Normally, traditional activity-based process definitions do not adequately address all of these
questions. For instance, the process roles do not explicitly map to organizational functions or the
format, verification criteria, and relationship between artifacts do not have explicit definitions.

2.3.2 Low-LEVEL PROCESS DEFINITIONS

Rather than having a single monolithic process that all projects must use, organizations will likely find
that different projects will have differing needs (Feiler and Humphrey 1992). Unfortunately, it is not
unusual for an organization to spend a significant amount of internal resources and calendar time to
develop more than a thousand pages of process definition at the lowest levels of detail. Although these
low-level definitions are more enactable and, thus, more easily automated, they are difficult to tailor
to projects with differing objectives and constraints.

There seems to be a trend whereby an organization assesses its process maturity using the Software
Process Assessment method (Paulk et al. 1993) or another technique and immediately launches into
a concentrated effort to develop an elaborate process definition that is seen as the ideal way to conduct
business, instead of reflecting what is currently done in the organization. The result is often a large,
tightly integrated, and detailed set of documentation that is difficult to absorb at the project level or
to adapt to address project-specific objectives and constraints.

Because a process definition may be for an organization, a class of projects, a specific project team,
or an individual professional, it is difficult to gauge what the appropriate level of elaboration might

24

2. Process Enginecring Concepts and Issues

be. Fully elaborated process definitions are complete or fit for enactment. Completeness, however,
depends on context because a definition thatis complete for one process agent may not be for another.
For example, to a systems engineer, there may be no need to decompose the process step Develop
Software System any further, yet the software engineer obviously needs to refine this process step to
a much lower level of detail.

2.3.3 PrROCESS DEFINITIONS THAT MANDATE A LIFE CYCLE

A product life cycle defines the key states that a product passes through as it matures over its useful
life. Most development process models to date have been so tied to a specific life-cycle model that it
is very difficult to distinguish the process from the life cycle. As stated in Curtis, Kellner, and Over
(1992), the industry has traditionally considered these life-cycle representations as process models.
However, visibility into the life cycle is important but does not identify all of the process steps needed
toreach the life-cycle states and is, therefore, an incomplete process model at best. Additionally, many
of today’s life-cycle models do not account for the issue of perspective and simply depict the highest
level of elaboration in their representation.

Software process definitions that are built on top of conventional life-cycle models are generally
grounded in the assumption that successfu! software is developed in a lock-step procession of specifi-
cation, design, code, and test. A flexible development process allows for the selection of different in-
termediate products, milestones, and activities for different projects. Process definitions that are built
upon life-cycle models usually focus on product development and fail to show the many elemental pro-
cess building blocks necessary for managing and coordinating a project (Curtis, Kellner, and Over
1992).

Instead of building the process framework around a specific life cycle, the process definition should
be adaptable to support multiple development paradigms, such as prototyping, operational specifica-
tion, and transformational implementation, where the life cycle of the product may not be readily ap-
parent at the beginning of the project but may evolve as the project progresses. This approach to a
flexible development process allows project managers to decide what constitutes progress in each
unique project situation (Agresti 1986). You should incorporate guidance into the process definition
on how to generate an appropriate life cycle for the product being produced and select the process
steps that will best reach each of the life-cycle states.

2.4 EMERGING PROCESS ENGINEERING CONCEPTS

To a large extent, the issues that Section 2.3 describes are symptoms of the difficulties you currently
encounter when attempting to tailor a standard process definition for a specific project. Part of the
problem is that there are two different perspectives of the term “tailor” that process groups generally
do not consider when chartered with process engineering activities.

For example, consider what tailoring means in the context of buying a suit. A customer can go to a
department store and select a suit from the rack that is approximately the desired color, style, and size.
The suit is then slightly tailored to more closely fit specific measurements, and is generally completed
within the week.

2-5

2. Process Engineering Concepls and Issues

The other option is to go to a tailor, who has everything needed to construct a suit according to
customer specifications, including material, threads, sewing equipment, etc. The suit will very likely
be more expensive than the one purchased in the department store and will generally take longer to
complete.

Obviously, it is quicker and more cost effective to go to the department store and buy a suit. However,
this observation is true because department stores do not stock only navy blue suits in size 42 long that
are tailored to fit every customer. Rather, suits in several colors, sizes, and styles are available so that
a customer can choose something approximately close to his needs that can then be quickly tailored
to a more perfect fit.

Many organizations have expended significant time and resources developing the navy blue, size 42
long (process definition) and are currently struggling to tailor it to every project regardless of unique
needs. Perhaps a better solution is for an organization to consider one or a combination of the
following strategies:

¢ Develop whatever is needed for constructing a project-level process based on unique
specifications. After you construct and enact a project process, evaluate, categorize, and “hang
it on the rack” to build up a selection of key process definitions that you can slightly tailor and
reuse.

¢ Develop a selection of standard process definitions based on business areas, which you can
define at a low level of detail because of visibility into the product line within each business
area. You can select an existing standard process definition that approximately addresses
project-unique process drivers, and slightly tailor it.

To implement either of these strategies, it is helpful to:

¢ Consider the development of reusable process assets or anything that is useful in the
engineering and enactment of processes that you can reuse in some manner.

* Consider different levels of piocess drivers or key characteristics that place requirements on
the process.

Section 2.4.1 discusses the process assets concept and describes an approach for defining and
elaborating process assets through different levels of detail based on unique process drivers.

2.4.1 PROCESS ASSETS

The concept of developing a repository of reusable process assets to help leverage the use of defined
processes into widespread practice was an area that the Software Technology for Adaptable Reliable
Systems (STARS) and the Software Engineering Institute (SEI) recently examined. The motivation
for the work was to provide a starting baseline for software organizations that lack a formal, defined
process (Kasunic et al. 1992). Another advantage of the process asset concept is that it begins to move
the industry away from its tendency to define a single, fully elaborated, voluminous, and inflexible pro-
cess definition and into an environment where you develop and maintain reusable assets at an
organizational level and then select, tailor, and integrate them based on project needs.

Process reuse is analogous to software reuse. The process reuse concept is that you need not always
define processes from scratch and that national, organizational, or local libraries may make available

2-6

2. Process Engincering Concepts and Issues

previous instances of process assets. Process assets can be public or proprietary and can be in many
forms, such as libraries, domain-specific development environments, project management tools, etc.
Process assets can be considered as anything that is useful in the engineering and enactment of pro-
cesses that you can reuse in some manner and can be documentation that resides permanently on a
shelfina library or is partially or completely automated. You should collect and store reusable process
assets in some format, for example, a managed and controlled repository or a Process Asset Library
(PAL).

As Figure 2-2 shows, there are several types of process assets. A standard process definition
documents the architecture of a complete development process and the specified process steps that
support that architecture. You can also document descriptions of product life-cycle models as part of
the standard process definition or can develop and maintain them as a separate asset. The project pro-
cess definition results when you select a product life-cycle description and use it as the basis for a proj-
ect process architecture, which you then populate with specified process steps. You collect data that
results when the project performs to the project process definition in the process measures database.

B -

Standard
Process Standard Process Architecture
Definition ' Process
Measures
Product
Life-Cycle Project
Model Pr
Descriptions Definition(s)

Source: Adapted from Paulk et al. (1993) and Kasunic et al. (1992)

Figure 2-2. Contents of the Process Asset Library

Sections 2.4.1.1 through 2.4.1.7 briefly discuss the types of reusable process assets that Figure 2-2
shows.

2.4.1.1 Standard Process Architecture

The process architecture will facilitate process definition, construction, evolution, and reuse by
identifying and defining standard process steps at a summary level. The process architecture identifies
what partially ordered key process steps compose the overall process. The process architecture
represents the process definition at the highest level of elaboration and has the following
characteristics:

2-7

2. Process Engineering Concepts and Issues

Partially ordered sequence of process steps

Key process steps that you define in terms of their functions, primary inputs, and major
outputs

Naming conventions and standards
Standard process templates or formats
Interface specifications

Composition and tailoring rules

A process architecture does not decompose the key process steps in any great detail. You generally
represent it graphically, such as through a data flow diagram, and support it by natural language text
that defines the high-level scope, objectives, and function of each step.

2.4.1.2 Specified Process Steps

You use process steps to populate the process architecture. A process step is an activity or a primitive
action that accomplishes a specific objective, such as to inspect a software requirements document.
The difference between an activity and a primitive action is that an activity contains other steps, and
a primitive action represents the lowest level of decomposition and is not further decomposed.

You generally specify a process step in terms of its supporting activities, methods, data elements, and
work products:

* Activities. An activity is a step of a process that analyzes inputs and/or produces outputs to

accomplish objectives that are derivative of the objectives of its containing process step. It de-
scribes what must be done without specifying how it should be done. Each activity can be as-
signed to an agent or an organizational position that has the responsibility and authority to
control and complete the activity within the planned schedule and budget. An activity
comprises other activities or unelaborated actions.

You can specify an activity informally or formally and can sequence it within the framework
of its containing process step and, in some cases, within the overall process architecture. When
specified and sequenced, an activity is enactable when you determine, define, and allocate the
methods, practices, tools, and resources (dollars, time, equipment, personnel, etc.) to support
the activity.

Methods. Methods or specific guidance and criteria that prescribe a systematic, repeatable
technique further support activities. Tools can support many methods. For example, several
scheduling methods, such as Gantt and Program Evaluation and Review Technique (PERT)
support the activity of developing a project schedule. A variety of automated tools, such as
Microsoft Project, support both of these methods.

Data Elements and Work Products. A data element is a piece or collection of information that
youuse as an input or output of an activity. Work products, such as a product development plan
or a detailed design document physically represent activity inputs and outputs; that is, a work

2-8

2. Process Engineering Concepis and Issues

product is any configuration-managed embodiment of one or more data elements. The output
work product or part of the work product of one activity often serves as an input to one or more
subsequent activities. Note that ability is the outcome of an activity in some cases; for example,
knowledge or skill is generally the resuit of a training activity.

Work products are frequently subject to specific templates, such as the DOD-STD-2167A
Data Item Descriptions. A degree of activity sequencing is implied when using data elements
and/or work products as input to another activity. If the detailed design document is a neces-
sary input to a coding activity, then you shall perform the activity that produces the detailed
design document sometime before the coding activity, although not necessarily immediately
before.

Sources that offer software development process steps and/or artifact specifications include
DOD-STD-2167A, IEEE STD 1074, and ISO-9000. More comprehensive and specific guidance may
be available in the industry. For example, comprehensive information system methodologies have
been commercially available for several years. Some of these methodologies, such as the Navigator
Systems Series® , are available in hypertext format with automated features that tailor the
methodology based on specified drivers.

2.4.1.3 Product Life-Cycle Model Descriptions

As shown in Figure 2-3, the product life-cycle perspective defines the primary states that a product
reaches as it matures over its useful life. A given product life cycle will generally start when the product
is conceived and end when the product is no longer available for use. For example, the life cycle of an
aircraft encompasses the states it passes through from the time it was simply a statement of need until
it is stripped for spare parts and retired from use.

Figure 2-3. Product Life-Cycle Model

The life cycle simply brings the primary life-cycle states into view to allow measurement of progress
in terms of how well a project is developing the product relative to the completion of each state. The
life cycle does not offer any visibility to the life-cycle stages.

2.4.1.4 Standard Process Definition

The organizational standard process definition documents the architecture of a complete
development process that includes the process steps common across the organization. You should in-
clude guidelines and criteria for tailoring the process architecture and specified steps in this docu-
ment. Additionally, you can include candidate life-cycle models in the standard process definition and
map them to the process steps that will best achieve each of the life-cycle states.

The level of detail to which a standard process definition is documented varies from organization to
organization. Process step scope; the cost, schedule, and staffing to enact a process step; and the

29

2. Process Engineering Concepts and Issues

specific personnel, methods, practices, and tools used to perform each step are process drivers that
generally vary from project to project. As a result, it is generally not effective to document a single
standard process definition to an enactable level of detail.

The internal process guidebook appears to be the most common mechanism to date for documenting
the standard process definition. Many organizations are developing an internal guidebook that often
describes process in terms of policies and procedures. These internal guidebooks generally use a com-
bination of graphical and textual notations and serve as the foundation for project process definitions.

2.4.1.5 Project Process Architecture

The project process architecture describes the product life cycle you will use for a specific project. The
project process architecture provides further visibility into the development process by identifying a
set of partially ordered process steps within each of the life-cycle stages. Figure 2-4 shows the key
process steps taken to reach each of the product life-cycle states.

Start |

Hl Process Step
Figure 2-4. Project Process Architecture
Visibility into the process steps offers incrementa’ insights into product development and surfaces
data that helps to predict progress toward the next state.

2.4.1.6 Project Process Definition

A project process definition results when you select, tailor, and integrate a product life-cycle model,
project process architecture, and supporting process steps into a coherent whole based on project-spe-
cific characteristics. In the project process definition, you tailor each of the process steps from the pro-
cess step specifications that the standard process definition documents. If there is no existing
specification for an identified step, then you specify and include it in the project process definition.

2.4.1.7 Process Measures Database

The process measures database collects data that you generate as a result of enacting a project process
and producing work products, as well as historical technical and management data regarding the use
of process assets. Examples of process and work product data include estimates of software size, ef-
fort, and cost; actual data on software size, effort, and cost; productivity data; peer review coverage
and efficiency; and the number and severity of defects found in the software code (Paulk et al. 1993).

2.4.2 PrROCESS ENGINEERING PROCESS

In the past few years, SEPGs have followed the traditional process life cycle shown in Figure 2-1 to
produce a single, comprehensive organizational process definition detailed to the enactable level that

2-10

2. Process Engineering Concepts and Issues

reflects the various policies and procedures that the organization uses. Assuming that the organization
contains multiple business areas or projects, a risk in taking this “all or nothing” approach is to pro-
duce a voluminous process definition that is unusable because it does not reflect business area-specific
operational environments and other process drivers. You cannot easily adapt this comprehensive
process based on the drivers of an individual project within a business area.

To mitigate this risk, the process engineer can develop the process definition as a set of process assets
that reflect different levels of process elaboration and develop the definition based on process drivers.
Figure 2-5 shows how to use the traditional process life-cycie phases to produce and continually im-
prove standard process assets and how to use these assets engineer a process for an individual project.
Figure 2-5 also illustrates the impact of process drivers that place requirements on each level of
elaboration.

Atthe organizational level, process engineering starts by identifying existing process assets, which may
include activity specifications, method descriptions, and other process information, material, and/or
definitions, and by using these assets as the basis for creating an organizational process architecture.
You may need to create from scratch parts of the process architecture that may be unique to the
organization or where no material exists or is appropriate.

You may divide an organization into business areas or may characterize a coherent market by
customers possessing similar needs. If this is the case, you can further detail one or more standard
process definitions based on the unique drivers of the appropriate business areas.

The project process architecture addresses product-specific characteristics, such as the life-cycle
model that a specific project uses, and is based on the standard process architecture that you devel-
oped for a specific business area or for the organization if business areas do not apply. The steps that
the project process architecture identifies fully elaborate into the project process definition, which
elaborates into an enactable process for the project.

Sections 2.4.2.1 through 2.4.2.6 discuss each of the process life-cycle phases in terms of the key process
asset that results from the phases and the process drivers that place requirements on asset
development.

2.4.2.1 Architect Standard Process

This phase involves defining organizational context, organizational process steps, and process
standards. The process engineer analyzes and documents how to enact organizational procedures cur-
rently and resolves conflicting interpretations of these procedures to obtain a consistent view of how
to perform standard operations. A process architecture synthesizes this information at an organiza-
tional level of elaboration, and depicts the major process steps within the organization and how those
steps interact.

Standard process architectures will most likely vary from one organization to the next, based on
unique process drivers. Process drivers that may place requirements on the identification and
definition of process steps at an organizational level include:

Investments (such as hardware, software environments, training, etc.)
Organizational policies, procedures, practices, and standards

Government rules and regulations (such as Federal Acquisition Regulations)
Performance goals

2-11

2. Process Engineering Concepis and Issues

o zational .
Process Drivers Architects
Standard Process
Architecture
r[
Process Drivers _f' g

ENGINEER STANDARD
PROCESS ASSETS

[EXRE RN N RN YN NN FE NSNS Y RY YL LN NN RN YN YN NN Y N XN

Drivers Tilors

L}

1]

]

[}

]

]

[]

.

L]

L}

[]

[}

Project Process Definition ‘

:

]

L}

[}

]

. Project Team '
‘

[]

. [}
ENGINEER A Project Process .
PROJECT PROCESS .
[}

[]

Figure 2-5. A Modified View of the Process Life Cycle

If an organization does not have further divided business areas, the process engineer should develop
a single, standard process that includes the information that Sections 2.4.2.2 and 2.4.2.3 discuss.

212

2. Process Engincering Concepis and Issues

2.4.2.2 Design Standard Process

This phase involves defining one or more product life-cycle models that the process will support and
how the life-cycle models integrate with the conceptual framework that the architecture stage defines.
By identifying business areas and their product lines, the process engineer can identify and describe
the appropriate life-cycle models for key products in the product line and can begin to elaborate the
life-cycle models with the partially ordered steps that will help achieve each of the key product’s
life-cycle states.

To describe product life-cycle models, the process engineer should first determine what constitutes
an organization. An organization can be an entire company, a division, or a functional area within the
division. One company may have several divisions, each with sufficiently different missions, custom-
ers, products, and cultures to warrant creating several business area-specific standard process defini-
tions. Another company may determine that one standard process definition is sufficient because only
one type of product is produced.

For example, the organization may produce products from several different domains or a coherent
market characterized by customers possessing similar needs. If the organization operates in several
different markets or it is a large entity, it will generally subdivide in a manner that makes the best busi-
ness sense to that organization. However, in cases where the organizational boundaries do not reflect
these different product domains, the process engineer should classify the typical products that are pro-
duced into one or more domains. If the resulting business areas are closely related, the process engi-
neer may not consider the variability in the enactable processes within each area to be wide enough
to warrant the development of separate standard process definitions. Instead, the different methods
used to enact the standard process may accommodate subtle differences in the business operations.

Business area process drivers that may place requirements on product lines and the supporting
life-cycle models include:

* Technology and business strategies
e Market trends

¢ Organizational infrastructure and culture

2.4.2.3 Define Standard Process

This phase involves decomposing and specifying the internal structure of each of the process steps
identified in the standard process architecture based on business area process drivers. The standard
process definition is the repository for the organization’s standard process and specifies the key steps
that the process architecture identifies into an operational, integrated, partially ordered series.

However, if an organization consists of business areas that have specific operational environments
that are significantly different, the process engineers develop multiple standard process definitions
based on each business area’s unique process drivers, such as:

e Methods particular to the business area

* Risks specific to the business area

2-13

2. Process Engineering Concepts and Issues

e Industry standards for the business area

e Existing product assets for the business area, such as development environments, recusable
software, etc.

The process engineer should be able to define standard process definitions for specific business arcas
atalower level of granularity than at the organizational level because of visibility into the product line,
as Section 2.4.2.2 discusses.

2.4.2.4 Tailor Project Process

In this phase, the process engineer supports a project to tailor the project’s process based on available
standard process assets. First, a project selects the life-cycle model to use as the basis for the project
process architecture. The project process architecture is a high-level description of a project’s process
to support the selected life-cycle model and guides the key product’s development phase. It identifies
the process steps that are performed, their connections to each other, and how they map to the product
life-cycle phases. The process engineer assists a project to develop the project process architecture
based on specific product drivers, such as:

¢ Product-specific requirements

* Product-specific development standards

¢ Troduct-specific methods

* Product-specific risks, such as performance or integration problems

They then elaborate the project process architecture into the project process definition by selecting
process step specifications from the standard process definition and tailoring them to the project situa-
tion. Specifically, they develop the project process definition by selecting and tailoring the process step
specifications that will meet the objectives of each product life-cycle stage, identifying the work prod-
ucts that will produce each step, and selecting the methods that each step or a set of steps uses. They
tailor the project process definition based on project-specific drivers, such as:

e Selected product life cycle

* Project objectives, such as winning a follow-on contract or producing zero-defect software
* Project constraints, such as customer requirements or environment

* Project risks or potential problem areas, such as limited access to users

The process engineer and a project can define the project process definition either before the project
team performs it or in parts, as long as they define each part before performance. In either case, the
result should be a project process definition that represents the road map that the project team will
follow to reach each life-cycle state.

This phase can be relatively straightforward if an organization subdivides into business areas and if
each business area has defined its product line and the life-cycle models that best support each key

2-14

2. Process Engincering Concepts and Issues

product in the product line. If this is the case, there may be several standard process definitions “on
the rack” for a project to choose from and tailor to the project-specific drivers.

2.4.2.5 Instantiate Project Process

In this phase, the project manager instantiates the project process definition by using it as a template
for the project schedule and by using the process step specifications as templates for specific project
tasks, assigns specific agents to the each task, and estimates the time and effort neceded to complete
the tasks. Specifically, the project manager instantiates the project process definition by allocating or
binding the steps documented in the project process definition with resources to produce an enactable
process for the project team to follow. The project manager makes these allocations depending on
such drivers as:

o Staff availability and years of experience
¢ Contract milestones dates
¢ Contract budgets

The result of instantiating the project process definition is a process ready for enactment. The process
should document or provide a reference to everything that is needed to enact the process, including
the resources necessary, the relationships of these resources to process steps, the products produced
by these steps, and any constraints on enactment or resources. Resources include human process
agents, computer resources, time, and budgets. Relationships refer to the estimation or assignment
of resources to process steps to meet project objectives (Feiler and Humphrey 1992).

Aproject does not need toinstantiate the project process definition completely at one time; as Section
2.4.2.4 discusses, it is often better to define and instantiate it in increments based on lessons learned
and an increasing knowledge about project and product process drivers.

To put the instantiated process into practice, the project manager performs resource leveling to
validate proper resource allocation to each task and initiates, monitors, and controls the execution of
each task according to the project schedule. An enactable process consists of a process definition, re-
quired process inputs, assigned enactment agents and resources, an initial enactment state, an initia-
tion agent, and continuation and termination capabilities. An enacting process may be in a suspended
state if an assigned process agent is not available or other process constraints are not satisfied (Feiler
and Humphrey 1992). The project team members enact the project process by following the schedule
and performing each of their assigned tasks.

2.4.2.6 Provide Continuous Improvement

Process improvement stems from using and evaluating the baselined process at all levels of
claboration, from architecture to enactable process and from evaluating and monitoring the product
being produced as a result of enacting the project process. Process evaluation techniques can include:

2-15

¢ Internal process assessments
e Ongoing measurements and metrics
¢ Post mortem evaluation

An internal process assessment assists an organization to determine and characterize its internal
process maturity. The purpose of a process assessment is twofold. First, a process assessment provides
an organization with a characterization of current process maturity and guidance on the key activities
necessary for evolving to higher levels of process maturity. Second, a customer can use a measure of
organizational process maturity as a way to assess the software development capability of potential
contractors or vendors.

Measurements that a project manager might collect as an ongoing part of evaluating and monitoring
product development include traditional cost, schedule, and size measures. In addition, a project
could identify and classify errors discovered and solved or the type and severity of risks identified and
mitigated when performing each activity of the process. The process engineer can also use cost, sched-
ule, size, error, and risk measurements to build process metrics, such as an activity’s average percent-
age of cost and time spent or the identification of the activities that typically discover or introduce
errors and risks.

A post mortem evaluation of a project’s process model and enactment might also identify potential
reusable process assets, such as process(es), methods, tools, and measurements, as well as the rules
for reusing these process assets. Process evaluation can include classifying and analyzing the different
development process data by business areas to leverage similar process metrics of cost, time, errors,
and risks.

2.5 SUMMARY

Many software organizations have expended a significant amount of time and resources to produce
voluminous process descriptions. Often, these descriptions do not correspond to the processes actual-
ly performed during software development or maintenance. Some key problems may cause the discon-
nect between how a project actually performs to produce its required product and the organization’s
standard process model, including:

e Organizational process models developed at too high a level of detail
e Organizational process models defined at too low a level of detail
e Organizational process models that mandate inappropriate life-cycle model(s)

To a large extent, these key problems are symptoms of the difficulties currently encountered when
attempting to tailor a standard process definition for a specific project. To resolve tailoring problems,
it may help to consider the process model in terms of reusable assets, including:

* Standard process architecture
e Specified process steps
* Product life-cycle models

2-16

2. Process Engineering Concepts and lssucs

¢ Standard process definition
¢ Project process architecture
¢ Project process definition

* Process measures database

You can gain additional insight by understanding how to develop and elaborate process assets based
on different levels of drivers, such as organizational, business area, product, and project. Section 3
shows how you can extend the ESP model to incorporate the steps for evolving a process through the
different levels of elaboration and producing the supporting process assets.

2-17

2. Process Engineering Concepts and Issues

This page intentionally left blank.

2-18

3. EXTENDING THE EVOLUTIONARY SPIRAL
PROCESS MODEL TO PROCESS ENGINEERING

The spiral cycle paradigm . . . can be extended to apply not only to the software product but also to the
software process.

Barry Boehm and Frank Belz, Experiences With the
Spiral Model as a Process Model Generator

3.1 OVERVIEW

The ESP model is a framework for integrating both the management and development steps necessary
for successfully producing a product. You can use the ESP model with any life cycle that describes the
evolving maturity of a product. Because of this flexibility, the ESP model incorporates the steps for
developing a process. Sections 3.2 and 3.3 present an overview of the concepts and principles of the
ESP model and show how you can use the model to generate a process engineering model based on
the issues and concepts that Section 2 discusses.

3.2 EVOLUTIONARY SPIRAL PROCESS MODEL OVERVIEW

In product development, the desired objective is often to mature the product by a specified amount
or to reach the next planned life-cycle state. You can use the ESP model to:

¢ Identify and/or adapt an estimated life-cycle model based on product and project objectives
and constraints.

* Define a process model specific to your product and project situation by incorporating a
life-cycle model into the conceptual ESP model.

* Expand the development process model to plan the process that the project will use to meet
each of the life-cycle states or other major project milestones.

The concept of formally engineering a project-specific process model is relatively new to the industry;
to assist the project manager with life-cycle decisions and process choices, many companies are
investing in organizational process groups.

In several development environments, however, the product life-cycle and supporting process may be
constrained ata certain level by the customer or by organizational policies and procedures. In this type
of environment, the project manager can use the ESP model to ensure that such constraints are real
and not perceived and to plan for a life cycle and supporting process in a manner that complies with
actual constraints while taking advantage of any flexibilities that may exist. The project manager

31

3. Extending the Evolutionary Spiral Process Model to Process Engincering

should look for support from the organizational process group, if one exists, to perform this product
planning activity.

After an estimated life cycle is established, a supporting process model can be developed by
elaborating on the conceptual ESP model with the estimated life cycle. One of the key process man-
agement roles is to ensure that the product reaches the next defined life-cycle state by establishing and
meeting objectives, goals, and success criteria. The project manager should plan the process for devel-
oping the product to the next level of life-cycle maturity and should manage to that process. The
elaborated ESP model helps the manager perform this function by providing the framework for:

e Validating the next planned life-cycle state

* Identifying risks to and alternatives for reaching the next state

* Developing the plans and supporting process to reach the next state

* Monitoring the execution of the process

® Measuring progress against the plans

e Updating the plans and supporting process based on actual data and lessons learned

Another important management role is embedded in the Theory W (Boehm and Ross 1989) approach
to project management: make everyone a winner. The theory postulates that one of the primary re-
sponsibilities of the manager is to make winners of everyone who is a stakeholder in the product and/or
the process used to develop that product. The ESP model addresses issues in a way that makes every-
one a winner by helping the project manager identify key stakeholders and by ensuring that the
stakeholders remain involved in the appropriate level of project decision making.

The conceptual ESP model, shown in Figure 3-1, is described by five main steps and several specific
supporting activities that focus on the management aspect of a complete development process. The
ESP model is meant to be repeated using the knowledge gained and lessons learned from the previous
cycle(s). The activities explicitly contained in the model are generic and can be used in conjunction
with any life-cycle model. In addition, you can follow the ESP model activities to determine a life-cycle
alternative that will adequately address your objectives and constraints, incorporate the life cycle into
the model and project plans, and subsequently evolve the life cycle and supporting project plans as
product development proceeds and objectives and constraints change.

You traverse all five steps of the ESP model one cycle at a time. A cycle is a complete traversal of all
five steps that, when completed, matures the product by the amount defined in cycle-specific objec-
tives and success criteria. A spiral is one or more cycles that, when combined, accomplish a specific
objective, such as complete a project, product, work product, or other major milestone. A spiral may
represent the complete life cycle or may only include the activities necessary to meet one or more of
the life-cycle states.

Sections 3.2.1 through 3.2.5 offer a brief overview of each of the steps of the conceptual ESP model.
Appendix A contains detailed activity specifications for each activity of the conceptual model.

3.2.1 STEP 1:UNDERSTAND CONTEXT

In Step 1 of the ESP model, understanding the context of the overall spiral as well as the current cycle
establishes key ground rules for the product and the process used todevelop that product. An Estimate

32

3. Extending the Evolutionary Spiral Process Model to Process Engineering

1
1. Under:.and Context Context 2. Analyze Risks
Perform
Develop/Update Risk Analysis
Estimate of the Review
Situation Risk w
PanRisk [Commito |~
Define Approach: Aversion Risk Aversion
— Stakeholders Strategy
~ Objectives
-~ Alternatives Execu!
— Constraints Mm':nm‘k
-—J Commit 3. Pian
Review k t
Alternative Developmen

Review
5. Manage and Plan Technical

Product 4. Develop Product
T

Figure 3-1. The Conceptual Evolutionary Spiral Process Model: A Management Process

of the Situation (EoS) is produced that documents stakeholders, objectives, alternatives, constraints,
internal and external factors, and other information. The EoS is reviewed and updated each cycle. The
cycle review at the end of Step 1 authenticates and establishes consensus on the general information
that the EoS contains. The specific activities of Step 1 are:

» Define Approach. Understand the spiral and its supporting cycles in terms of stakeholders,
objectives, alternatives, constraints, and other factors.

* Develop/Update Estimate of the Situation. To document the spiral and cycle context, create the
EoS during the first cycles of a spiral and update it during subsequent cycles.

* Review Context. Ensure that all stakeholders review and approve of the appropriate parts of
the EoS.

3.2.2 STEP 2: ANALYZE RISKS

During Step 2, you perform risk analysis to help identify, address, and eliminate risk items before they
become threats to stakeholder win conditions, successful software operation, or overall spiral success
(Boehm 1989). Risks are the potential unpredictable outcomes of alternatives and other factors. Risk

analysis is a proactive management approach that focuses on what can go wrong and then attempts
to keep it from occurring.

33

—

3. Extending the Evolutionary Spiral Process Model to Process Engineering

The specific activities of Step 2 are:
® Perform Risk Analysis. 1dentify, analyze, and evaluate risks.

® Review Risk Analysis. Team-review the risk identification, analysis, and evaluation activity
results.

* Plan Risk Aversion. Select and plan for the most appropriate risk aversion strategy.

* Commit to Risk Aversion Strategy. Stakeholders commit to the selected risk aversion plan.

3.2.3 STEP 3: PLAN DEVELOPMENT

During Step 3 of the ESP model, you select one or more of the alternatives determined in the second
step, but only after its risks have been averted to the extent possible. You plan and schedule the de-
tailed development and development support activities from the selected development alternative(s).

The specific a~tivities of Step 3 are:

* Execute Risk Aversion. Perform to risk aversion plan and select one or more development
alternatives.

* Review Alternative. Review the selected development alternative(s).

* Plan and Schedule. Identify, organize, schedule, and assign resources to technical activities
after any risks associated with development alternatives for the cycle have been averted.

® Commit to Plan. Review and commit to the development plan for the current cycle
development activities.

3.2.4 STEP 4: DEVELOP PRODUCT

In Step 4 of the ESP model, you perform, monitor, and review the development and development
support activities. The results of performing the activities should directly support the development
goals and success criteria documented in the development plan.

The specific activities of Step 4 are:

* Develop and Verify Product. Perform the development activities to produce artifacts or advance
product maturity, and verify that the artifacts or advanced product maturity meet require-
ments, development goals, and development success criteria. Generally, your long-range
spiral plan is the specific product developed during the first cycle. A spiral planis usually aset
of planning documents, such as a risk management plan, product development plan, and
project process definition.

® Monitor and Review. Monitor and review the technical development activities as they are
performed.

® Review Technical Product. Review the product or part of the product developed to ensure that
cycle objectives, development goals, and development success criteria were met.

3. Extending the Evolutionary Spiral Process Model to Process Engineering

3.2.5 STEP 5: MANAGE AND PLAN

During Step 5, you take stock of progress based on the outcome and lessons learned during the cycle,
compare actual results against the cycle objectives, reevaluate and update spiral planning documents,
and decide what to do next. The planning and management activities validate the work you performed
in the cycle and adjust the project strategy based on the information that is newly available. The mea-
surable development goals and success criteria defined in Step 3 and monitored during Step 4 are criti-
cal to this set of activities. They are used to judge whether the cycle is complete or needs to be iterated,
or whether an alternative should be modified or abandoned.

The specific activities of Step S are:

* Product Change Control Place the product or part of the product produced as a result of
executing Step 4 development activities under product change control.

e Review Progress. Evaluate development plan actuals versus estimates, success criteria, and
lessons learned. Update process drivers, including spiral objectives, success criteria,
alternatives, constraint risks, estimates, and other information.

e Update Spiral Plan. Update all planning documents, as necessary, to record actual progress,
reflect lessons learned, update estimates based on actual data, and update process drivers.

o Commit to Proceed. Review updates to the spiral plan and commit to proceed with the next
cycle.

The five key steps and supporting activities of the ESP model are repeated using the knowledge gained
and lessons learned from previous cycle(s) until the overall spiral objectives are successfully met or
the spiral is suspended.

3.3 PROCESS ENGINEERING WITH THE EVOLUTIONARY SPIRAL PROCESS
MODEL '

Engineering the organizational-standard and project-specific processes requires continuous and
systematic management of the many factors influencing the establishment and institutionalization of
the process, such as people, technology, and change. The primary goals of process engineering with
the ESP model are to:

* Develop and continually evolve standard, reusable process assets at the organizational level.
» Tailor the process according to project needs.
» Establish an effective interaction mechanism between the process group and the projects.

You can adapt the ESP model to represent the overall process engineering capability. Figure 3-2shows
the ESP-based process engineering model from both the organizational and project perspectives. As
stated by Paulk et al. (1993), at the organizational level, you need to describe, manage, control, and
improve the standard process in a formal way. At the project level, the emphasis is on the fit and
usability of the project’s defined process and the value it adds to the project.

35

3. Extending the Evolutionary Spiral Process Model to Process Engineering

Figure 3-Z shows how you should first attempt to understand your organizational context based on
your current information level as the tactical plan from the Process Improvement efforts described
in Managing Process Improvement: A Guidebook for Implementing Change (Software Productivity
Consortium 1993a) documents. This document presents an agreed upon understanding of the current

Engineer Standard Process Assets

‘Technology Transfer Spiral
(Software Productivity
Consortium 1993d)

1. Understand Context l, 2. Analyze Risks and
Review Plan Aversion
Context
Perform Risk
Analysis
Extimase of e prichy
imate of the i
Situation * <
. Commit to
Process Improvement Spiral ivhﬂ Risk | Aversion Plan
(Software Productivity ersion
Consortium 1993a) Define Approach:
- Stakeholders Risk
— Objectives AE““.“
- Alternatives version
Commitment to — Constraints . 3. Plan Asset
=1 Further Process xlcvrewmmm DeveI:pm:;t
Engincering Effort ve
Plan and
Update Tactical Plan Schedule
Commit to
Develop/Update Asset
Review Progress Standard Process | Development
Asscts Plan
T
Asset Change Control
Validate and
Verify Assets
5. Planand Manage Review Develop Process Assets
Assets
T
Process
Asset [©
Library Engineer Project 3 Process
_/

4

Figure 3-2. Process Engineering With the Evolutionary Spiral Process Model

3. Extending the Evolutionary Spiral Process Model to Process Engineering

process situation and defines improvement goals, alternatives, and priorities that you will need to
progress to the next step.

You then analyze long-range goals and alternatives for achieving them for threats to success. This
analysis will define areas of uncertainty or risks that may keep you from reaching your process im-
provement goals and help you to determine and plan risk aversion strategies that will help to minimize
the impact of potential risks. Based on the understanding gained from executing your risk aversion
strategy, you can justify the development of specific process assets and plan the next step in the
evolution of the organizational process.

After you have reliable information on the process assets to be developed for this stage of evolution,
you can implement them. This entails the more traditional engineering activities of design, implemen-
tation, and documentation. Verification and validation will be dependent on the correctness criteria
for the isets.

You place approved process assets under change control and incorporate theminto the PAL. They are
now ready for use at the project level with the support of the technology transfer activity that Using
New Technologies: A Technology Transfer Guidebook (Software Productivity Consortium 1993d) de-
scribes. This guidebook covers all the activities necessary to successfully transfer technology, including
transition planning, training, and change control. Projects transfer and use the assets to tailor, instanti-
ate, and enact specific process definitions based on unique process drivers. The project will return pro-
cess usage data to the process database. Based on organization-wide process experience, you readjust
your tactical plan and make a commitment to continue the process engineering effort.

3.4 SUMMARY

You can use the ESP model to improve an organization’s or project’s development process. Major
features include a strong emphasis on risk management and the ability to respond quickly to problems
or deviations from the development plan. These features, when used properly, can increase the pro-
ductivity of the project team, improve the quality of its software products, and also enable the project
to deliver on time and within budget more consistently.

You can use the ESP model, adapted from the original spiral model (Boehm 1986,1988), with any
current development strategy or variation. Because of this flexibility, you can use the ESP model to
produce many different types of products, including a standard process definition and other assets.
Section 4 describes in more detail how an organizational process group can use an adapted ESP model
to engineer standard process assets.

37

3. Extending the Evolutionary Spiral Process Model to Process Engincering

This page intentionally left blank.

4. ENGINEERING STANDARD PROCESS ASSETS

The as-documented, as-trained, and as-practiced process . . . is measured, maintained, and supported
by the organization.

Mark D. Kasunic, et al.
Summary Report for the Process Definition Advisory Group

4.1 OVERVIEW

Standard processes are those that a process engineer develops at an organizational level for use across
projects. However, it is often difficult to develop standard processes that the project level can easily
absorb or that a project can effectively tailor to address project-specific characteristics. This problem
is characteristic of attempting to tailor the “navy blue, size 42 long” suit to fit every customer, from
a basketball player to a jockey.

On the other hand, process development can be expensive. Because of the cost involved, there is
considerable motivation for process commonality and sharing. This motivation is enhanced when
different projects in the same organization tend to perform common activities.

4.2 ENGINEERING A STANDARD PROCESS

One of the ways to address tailoring issues is for the process engineer to engineer standard processes
in terms of reusable assets. A project can use these reusable assets to construct the best possible devel-
opment process based on unique objectives, constraints, risks, and other drivers. The process engineer
evaluates, categorizes, and adds to the PAL process assets that the project constructed and enacted
to build up a managed and controlled inventory of key “suits on the rack.”

Process assets can take many forms and can be anything that is both useful and reusable in the
engineering and enactment of processes on a project. Key standard process assets that the process
engineer develops at the organizational level are:

® Standard Process Architecture. The process architecture identifies and defines standard process
steps at a summary level and rules governing relationships and composition.

® Specified Process Steps. Process steps populate the process architecture and are generally in
terms of its supporting activities, methods, data elements, and work products.

® Product Life-Cycle Models. Product life-cycle models define the primary states that a product
reaches as it matures over its useful life. A given product life cycle will generally start at the
product’s conception and end when the product is no longer available for use.

4-1

4. Engineering Standard Process Assets

o Standard Process Definition. The standard process definition documents the architecture of a
complete development process containing the process steps that are common across the orga-
nization. Additionally, the process engineer can include candidate life-cycle models in the
standard process definition and map them to the process steps that will best achieve each of
the life-cycle states.

* Process Measures Database. The process measures database is a repository for data collected
as a result of enacting a project process and producing work products.

An organization often subdivides into business areas or produces different types of products. If this
is the case, the process engineer can tailor and map the standard process architecture and specified
process steps to product-line-specific life-cycle models to produce a standard process definition that
is specific to each business area.

You can use the ESP model described briefly in Section 3.2 with any current development strategy or
variation. Because of this flexibility, you can use the ESP model to produce many different types of
products, including standard process assets. Figure 4-1 shows how the process engineer can adapt the
ESP model slightly to help describe, manage, control, and improve standard process assets. Sections
4.2.1 through 4.2.5 elaborate each of the five major steps of the standard process engineering spiral,
as Figure 4-1 shows, by describing the type of activities the process engineer performs for each step.

4.2.1 STEP 1: UNDERSTAND CONTEXT

R ’-
NS

/
=

In this step, the process engineer should attempt to understand the overall
context for the entire standard process engineering spiral, as well as the
context for the current cycle, given the current level of information and
knowledge.

The process engineer should define the organizational process engineering spiral and its supporting
cycles in terms of stakeholders, objectives, alternatives, and constraints. A primary input into this ac-
tivity is the tactical plan for the SEPG, a document that the process improvement spiral produces and
that Managing Process Improvem:ant: A Guidebook for Implementing Change (Software Productivity
Consortium 1993a) elaborates on. The tactical plan that the process improvement spiral produces is
equivalent to the organizational process engineering spiral plan, that is, the long-range plan that
guides the objectives and the activities to meet those objectives for developing the organization’s stan-
dard process. The process engineer updates the tactical plan during eachcycle toreflect the near-term
or specific cycle objectives and the activities to meet those objectives.

Specifically, the process engineer defines the approach for the organizational process engineering
spiral by:

¢ Identifying and involving key persons having a stake in the process definition effort, including
selected project managers and practitioners. Note that the stakeholders may be different for
each cycle of the spiral.

4-2

4. Enginceriag Standard Prootss Assets

Figure 4-1. Standard Process Engineering Process

Determining the expectations and objectives. Generally, the primary objective of Cycle 1 of
the spiral is to establish and baseline the organization’s “as-is” processes or existing process
capability. During subsequent cycles, the process engineer updates these objectives to reflect
the “to-be” process objectives, that is, objectives for moving the process toward a new process
state one cycle at a time.

Determining or verifying the alternative(s) to guide the overall effort, such as the SEI
Capability Maturity Model (CMM). This typically occurs in Cycle 1. During subsequent
cycles, the process engineer updates the alternative to reflect lessons learned.

Identify alternatives specific to the objectives of the current cycle. For example, if the objective
of the cycle is to begin to develop project management process assets, the process engineer
should identify what assets to consider developing during the current cycle, what reuse alterna-
tives may exist, the possible levels of abstraction to which the assets can be decomposed and
defined to the enactable level, and process notation alternatives.

43

4. Engineering Standard Process Assels

e Documenting any constraints the process engineer has while pursuing both the spiral and cycle
objectives.

The process engineer should document the information learned during the Define Approach activity
using a method such as the EoS. The process engineer completes an EoS during Cycle 1 of a spiral
and updates it during subsequent cycles. The EoS can be a standalone document or can be
incorporated into the tactical plan. At a minimum, the EoS should identify, analyze, and document
the scope of the organizational process engineering spiral and its process drivers.

Process drivers are key characteristics that directly affect the development of the standard process.
The process engineer can identify process drivers from sources such as the process engineer tactical
plan; reports resulting from the organizational process assessment; client and business area policies,
procedures, and standards; and interviews with key project personnel at all levels.

After collecting sufficient information on the organization’s current process maturity and intended
vision at the overall spiral and current cycle levels, the process engineer should ensure that all
stakeholders understand and have the same interpretation of the situation, especially the objectives
and alternatives for meeting those objectives. Stakeholders should review the EoS document, as well
as reexamine the tactical plan. This activity should set stakeholder expectations and establish buy-in
and commitment.

4.2.2 STEP 2: ANALYZE RISk

This step analyzes the threats from moving from the current process maturity
state, or the “as-is” process, to the new process state, or the “to-be” process,
documented in the form of process assets.

The process engineer should first analyze the proposed changes to the people, process, and technology
that the tactical plan and the EoS documents to:

¢ Identify the factors that threaten success to the objectives to both overall process improvement
and current cycle process asset development.

* Analyze risk areas for the likelihood of occurrence and impact should they occur.

After the process engineer has identified and analyzed how the process will fail, the next activity is to
determine the most appropriate strategies for reducing the likelihood or impact of failure. The output
of these activities is the draft risk management plan (RMP). Like the EoS, the RMP can be a standa-
lone document or can be incorporated into the tactical plan. The process engineer drafts the RMP in
Cycle 1 and updates it during subsequent cycles.

The process engineer should review the draft RMP before taking any action. Because risk is subjective
and often things are overlooked or given too much importance, it is important that all stakeholders
reach consensus on the analysis and understand the risk situation before continuing. The process engi-
neer revises the RMP to reflect the group’s understanding. Review comments may identify the need
to repeat some or all of the previous risk activities.

4. Engineering Standard Process Assets

When the process engineer understands the risks to the organizational standard process objectives as
well as possible given the current level of knowledge and information, determine how to expend re-
sources to avert risks and reduce the chances of failure while making some substantial improvement
to the organization’s process maturity. The process engineer should consider risk reduction and asset
generation objectives and strategies in an integrated fashion to trade off the cost of acquiring more
certainty on the process definition approach with the need to transfer process capability to end users
in a timely manner.

The process engineer may wish to plan for separate risk aversion efforts when the approach to
reducing the risk will require an iterative approach. These efforts are risk-reduction subspirals. The
process engineer should treat them as subprojects, chartered to accomplish a specific risk reduction
objective and empowered sufficiently to reach the objective without impact from the main-stream
development. Interfacing constraints will also pass as key inputs to the risk-reduction subspiral to
ensure that the results integrate with any asset development that may be occurring in parallel within
the main spiral.

Ideally, the entire SEPG should evaluate and agree to the risk aversion strategies to be followed. The
process engineer should:

* Document the selected risk aversion strategies in the draft RMP

* Estimate, evaluate, and include cost and schedule for each risk aversion strategy in the draft
RMP

* Make sure that aversion strategies are planned so that their results are available in time to plan
for the asset development activities that depend on them

After completing the risk aversion plan for the current cycle, the process engineer should reach
consensus with the appropriate stakeholders on what is to be done and how it is to be performed.
Specifically, those responsible for executing the plan should support it.

4.2.3 STEP 3: PLAN ASSET DEVELOPMENT

In Step 3, the process engineer plans and schedules the asset development
activities to be performed in Step 4. The planned activities should be driven
from the process asset development alternatives agreed to for the cycle.

The process engineer executes risk aversion activity after planning and approving it in Step 2. The
outputs and products of the risk aversion activity furnish information to guide the asset generation
activities. Examples of risk aversion activities may consist of prototyping efforts for process defini-
tions, examining the use of procedure to direct organizational process interfaces, or determining and
documenting best practices from many projects.

During Cycle 1, the process engineer should execute risk aversion strategies that justify the
alternative(s) selected to guide the overall process improvement effort, such as the SEI CMM. During
subsequent cycles, the alternative should be updated to reflect lessons learned.

The process engineer also should execute risk aversion strategies t verify the alternatives specific to
the objectives of the current cycle and should attempt to avert the risk of defining process at an

4. Enginecering Standard Process Asscts

i~appropriate level by analyzing which process steps can standardize at each level of abstraction. This
involves deciding at what level of abstraction certain process steps can be decomposed and defined
to the enactable level. For instance, if Verify Documentation is an activity that a project will enact
using the same inspection process independent of the business area, then this activity decomposes
down to the enactable level. But a project may perform the Design Software System activity using
different development paradigms in different business areas; therefore, this activity will remain a
black box at the organizational level and will be further elaborated in the business area standard
process definitions.

As Section 4.2.2 discusses, complicated or longer term risk aversion activities may spin off into their
own spirals and be managed independently from the main-line development that Step 3 discusses. The
results of the risk aversion activities will generally justify a particular process asset development alter-
native, including what assets the process engineer will generate during the current cycle and to what
level of definition abstraction.

The process engineer should review and present the results of the risk aversion activities to the
appropriate stakeholders to reaffirm the overall alternative for guiding the process improvement ef-
fort and to decide on the specific process asset development alternative for the current cycle. After
gaining commitment from the stakeholders, the process engineer can place the RMP under
configuration control and begin to develop detailed plans for developing process assets.

The process engineer uses the information generated by the risk aversion activities to plan and
schedule the asset development that can be achieved during the current cycle. By using the results of
the risk aversion activities, the process engineer should be able to document asset development plans
that have a high probability of producing the desired products within the allowed cost and schedule.

The main output of the plan and schedule activity is a development plan that plans for the process
assets to be developed in the current cycle. Specifically, the plan should:

» Establish process asset development goals and associated success criteria that support the
current cycle objectives.

* Estimate the scope of the assets that the process engineer will develop in the current cycle.
¢ Estimate asset development cost and schedule, and allocate resources.

* Identify the activities or methods the process engineer will perform in the current cycle, such
as reuse adoption activities for establishing the reusable process database as described in
Software Productivity Consortium (1993b) or the Integrated Computer-Aided Manufacturing
Definition (IDEF) method (SofTech 1981) for representing process steps.

¢ Define/redefine activities, methods, and resulting artifacts if necessary.
* Sequence the activities if the selected method does not sequence them.

* Select and allocate supporting tools, such as ADW, an automated tool supporting the IDEF
method (SofTech 1981).

» Ifappropriate, define work packages or the lowest work breakdown structure (WBS) level for
the key asset development activities that the current cycle defines.

4-6

4. Engincering Standard Process Assels

The process engineer should document the detailed asset development plan for the current cycle as
an evolution of the tactical plan.

The appropriate stakeholders should have the opportunity to review and comment on the resuits of
the process asset development planning and scheduling activities. The process engineer may submit
the draft development plan to the appropriate stakeholders for review and update the development
plan in response to comments.

4.2.4 STEP 4: DEVELOP PROCESS ASSETS

This step is concerned with developing process assets that a project can
employ, including tailoring guidance and training as necessary to support
institutionalization on individual projects.

During this step, the process engineer performs to the asset development plan developed and
committed toin Step 3 to produce process assets or to advance asset maturity. Specifically, the process
engineer should perform the following activities as part of this step:

Develop/Update Standard Process Assets. During this step, the process engineer produces the
process asset(s) or part of the process asset(s) necessary to meet the cycle objectives and the
development goals and success criteria that previous steps established.

Moritor and Review. Continually monitoring asset development helps to maintain control over
associated costs, schedules, and risks. There are a variety of standard project management
methods and tools to use during this activity. Traditional scheduling tools help track progress
and determine how actual costs and schedules compare to estimates. A risk referent measures
acceptable risk for individual and overall risks. As the process engineer performs asset devel-
opment activities, the risks associated with the activities are monitored and tracked against
that referent.

Reviews facilitate SEPG interchange that can affect the direction of the assets that the process
engineer developed during the current cycle. Periodic reviews demonstrate to the SEPG and
other stakeholders that the asset development activities are proceeding according to plan and
that the resulting artifacts are meeting the cycle objectives and process asset development
goals. Reviews are also a way to obtain a commitment from stakeholders to proceed with the
asset development activities for the cycle as documented in the tactical plan. At these reviews,
the SEPG candecide toreallocate resources, replan schedules, or reassess risks for the current
cycle development activities.

Validate and Verify Assets. During this step, the process engineer validates the process asset(s)
or part of the process asset(s) against cycle objectives, development goals, and success criteria.
When sufficiently documented, the process engineer should verify process assets for correct-
ness and usability. The process engineer may wish to use walkthroughs, inspections, or simula-
tions as possible verification methods. For critical components, the process engineer may need

4. Engineering Standard Process Assets

to execute pilot projects, perhaps as subspirals. The process engineer may have to iterate the
asset generation and training with the information learned from the validation and
verification activities.

* Review Assets. The SEPG and other stakeholders should participate in a final technical review
of the process assets and agree that the assets satisfy the requirements they were intended to
serve. This review is a final opportunity for the stakeholders to ensure that they met cycle ob-
jectives, as well as process asset development goals and supporting success criteria. Ideally,
this review should be a formality because the ongoing monitor and review activity should have
identified and corrected most problems.

Generally, the first process asset that the process engineer develops is a detailed baseline of the
existing process capability. This activity usually occurs in Cycle 1 and involves evaluating the existing
process improvement infrastructure and capability to establish a common understanding and baseline
of the current organizational process.

After baselining the existing capability, the process engineer conducts activities in subsequent cycles
to improve process in a planned and controlled manner. The process engineer evaluates and docu-
ments alternatives to ensure that assets are at the appropriate level of abstraction, in time to support
increasing process maturity needs, and useful to individual projects within the organization.

Sections 4.2.4.1 through 4.2.4.6 discuss the process capability baseline that Cycle 1 establishes, as well
as the organizational process assets that subsequent cycles develop.

4.2.4.1 Process Capability Baseline

After an organizational process maturity assessment, process engineers often attempt to define the
ideal way to conduct business instead of first analyzing what is currently done in the organization and
why. This phenomenon often occurs because organizations feel that documenting current, ad hoc
practices is a waste of time and resources. After an assessment, management and practitioner often
assume that what is wrong with current processes is well known and that payoff from improvement
efforts will result only when they define and institutionalize the right processes. The entire organiza-
tion is eager to define the “right” processes and realize process improvement benefits as soon as
possible.

However, to improve process in a timely and controlled manner, the first asset that the process
engineer produces should be a baseline of existing process capability. Analyzing existing processes is
an essential first step for introducing effective change by identifying high-impact process improvement
areas, leveraging from effective and familiar practices, and determining incremental improvements
that are easier to introduce and absorb into the organization. Building new processes on top of a cur-
rent process baseline, rather than installing an entirely new process, isimportant to keep the organiza-
tion from becoming disoriented during the improvement program (Curtis, Kellner, and Over 1992).

Analyzing and documenting how organizational procedures are enacted currently and resolving
conflicting interpretations of these procedures helps to establish a consistent view of how an organiza-
tion performs standard operations. The process engineer can further define and propagate where the
current practices are effective and can examine current practices that are not as effective to establish
an understanding of process requirements. Another important view into the organization to gain at
this time is the existing process structure, that is, the different business areas and their relationships
to each other and to the organization.

4-8

4. Engineering Standard Process Assets

The process engineer need not document the process capability baseline to an enactable level of
detail; rather, it should document the existing key steps that compose the current process and should
specify these high-level process steps in terms of brief description and entrance and exit criteria. The
architecture will help to identify where there are gaps and redundancies in current practices, and the
specifications will show where activity inputs and outputs are not being used effectively, are repetitive,
or are simply unnecessary.

As part of establishing the process capability baseline, the process engineer should note existing
process steps that are generally effective or could become effective with some adjustment. The process
engineer can update these existing assets in subsequent cycles and define them to an enactable level
of detail.

4.2.4.2 Standard Process Architecture

Another asset developed at the organizational level is the standard process architecture. The
architecture represents the process at the highest level of abstraction; it identifies what key steps com-
pose the overall process and a partial ordering of those steps. Specifically, the process engineer
defines the standard process architecture by:

¢ Identifying and analyzing organizational process drivers, including an understanding of the
different business areas within the organization if applicable

¢ Developing a common process vocabulary and process asset development standards
¢ Determining the key process steps that are géncrally applicable across all business areas

* Describing the key process steps at a high level in terms of their functions, primary inputs, and
major outputs

e Achieving consensus on the standard process architecture by all stakeholders
¢ Baselining the process architecture and including it as part of the PAL

e Training all process engineers and other stakeholders within the organization on the
organizational process architecture

* Monitoring the use of and continually improving the standard process architecture

The process engineer generally represents a process architecture graphically, such as through a data
flowdiagram, and supports it by natural language text that defines the high-level scope, objectives, and
function of each step.

4.2.43 Specified Process Steps

The process engineer further decomposes, specifies, and documents each of the key process steps of
the architecture into relatively self-sufficient entities by providing textual detail, including selection,
tailoring, instantiation, and training guidance. There may be more than one specification that can ap-
ply to a certain step or series of steps in the process architecture, especially if the organization com-
prises multiple business areas. For example, certain testing process steps may contain numerous

4-9

4. Engincering Standard Process Assets

activities for a business area that develops air traffic control software that are not applicable or
necessary for a business urea that develops financial information systems and vice versa.

Generally, fully specified process steps are a combination of graphical representations and formal
textual descriptions. The process engineer specifies each process step by:

e Developing standard process step composition and interface rules, including specification
templates or formats

e Decomposing each process step into supporting activities and unelaborated actions

¢ Formally specifying each included process step by verifying and elaborating the high-level
descriptions developed with the process architecture and defining appropriate entrance, exit
criteria, and verification criteria

e Identifying and specifying the work products that are produced as a result of performing the
step

e Identifying any measures that should be taken when performing the step

* Describing candidate methods, practices, and tools that can be used to perform each step
¢ Describing the skills an enactor should possess to successfully perform the step

* Providing cost and schedule estimating heuristics for each specified step

¢ Developing tailoring and instantiation guidance for each specified step

e Achieving consensus on each specified process step by all stakeholders

* Baselining each specified process step and including it as part of the PAL

e Monitoring the use oi and continually improving the specified process steps

The process engineer can use notations to specify process steps in a consistent way. In general,
notations provide the format of a process step description, including inputs, outputs, and start and
completion criteria. A notation can be an informal description of an activity using natural language
and standard formats, or it can be a formal specification language. Informal notations are sufficient
for practitioners’ process manuals; formal notations lend themselves to process automation or the use
of a machine to automate all or part of the software development process.

When developing an internal process guidebook, an organization can use the Process Definition and
Modeling Guidebook (Software Productivity Consortium 1992a). This guidebook discusses several
common notations and provides a tailorable approach for process definition and modeling. Specifical-
ly, the guidebook provides a flexible set of templates and techniques for capturing and representing
process in terms of the relationships and constraints between and within activities, artifacts, and sup-
porting resources. The techniques that the guidebook documents attempt to represent the process in
terms of an optimal combination of text and graphics.

Not all of the information in the paragraphs above needs to be specified at one time. For example, the
process engineer could document cost and schedule heuristics after using the process steps and

4-10

4. Engincering Standard Process Assets

collecting data. Additionally, it may not be effective to fully specify process steps at the organizational
level if there is significant variability in the way projects perform the steps within the business areas.
At a minimum, the process step specifications should include a description, inputs, outputs, entrance
criteria, and exit criteria.

Appendix B to this guidebook provides a useful “starter set” of software development process step
specifications to adopt verbatim or adapt to reflect the business area’s existing infrastructure, culture,
language, policies, procedures, standards, and other process drivers.

4.2.4.4 Product Life-Cycle Models

An organization often divides into multiple business area, especially when producing products for a
variety of contractual and/or commercial customers and users. Because these products have unique
features and characteristics, a single product life cycle may not be appropriate for all situations.
Therefore, the organization may identify more than one product life cycle that the projects can use.

The process engineer defines different product life-cycle models by:

¢ Reviewing the existing process structure or different business areas and their relationships to
each other and to the organization

e Determining the product line or collection of existing and potential products for each business
area

¢ Defining life-cycle models for key products in each product line

* Achieving consensus on the product life-cycle models by appropriate stakeholders within each
business area

e Baselining the product life-cycle models and including them as part of the PAL
* Monitoring the use of and continually improving the life-cycle models

The process engineer typically can obtain these product life cycles from sofiware engineering and
literature and modify them for the organization or business area (Paulk <i al. 1993).

4.2.4.5 Standard Process Definition

The standard process definition is a view into the process that results when the process engineer
integrates the standard process architecture, process steps, and product life-cycle models into a
coherent whole. Depending on the organization, it may be effective to develop multiple standard pro-
cess definitions that support different business areas or to show how the standard process can support
different product life cycles.

Specifically, the process engineer develops the standard process definition(s) by:
¢ Identifying and analyzing business area process drivers

¢ Tailoring the organizational process architecture to be more supportive of specific product
life-cycle models

4-11

4. Engincering Standard Process Assets

¢ Populating the tailored process architecture with key process steps to achieve each of the
life-cycle states

e Specifying or tailoring the key process steps based on business area process drivers

¢ Developing general guidance on how to tailor the standard process definition(s) for each
project

e Achieving consensus on the standard process definition(s) by appropriate stakeholders within
the business area

e Baselining the standard process definition and including it as part of the PAL

¢ Monitoring and continually improving the standard process definition

» Training process engineers and project managers on the standard process definition(s) and
how to tailor them for each project within the business area

After the process engineer claborates the standard process definition(s) to a standard process
definition level of abstraction, they are ready for any of the projects within the business area to use.

4.2.4.6 Process Measures Database

The process measures database is a repository for data collected as a result of enacting a project
process and producing work products. Specifically, the process engineer establishes the process
measures database by:

¢ Determining the type of repository to be developed for process measures, that is, automated,
manual, or a combination of the two

¢ Establishing the repository and the rules and standards for populating it

¢ Collecting measures at the project level, such as estimated and actual size, effort, and cost
data; peer review coverage and efficiency; and number and severity of product defects found

The process engineer can use cost, schedule, size, error, and risk measurements collected at the
project level to build process metrics, such as an activity’s average percentage of cost and time spent
or the identification of the activities that typically discover or introduce errors and risks. The process
engineer should define key metrics to be developed based on the collected measures to monitor pro-
cess use, provide process step cost and duration-estimating heuristics, and identify process
improvement areas.

4.2.5 STEP 5: PLANNING AND MANAGEMENT

The planning and management step controls the process assets and updates
the overall tactical plan for the organizational process engineering spiral.

After the process engineer meets development goals and success criteria and after the SEPG and
other stakeholders approve the resulting artifacts that Step 4 produced, they place organizational

412

4. Engincering Standard Process Assels

process assets under change control. This is necessary because assets will likely evolve over time, and
the process engineer must be able to trace project use to one of many versions. After assets are placed
under change control, they are added to the PAL and made available for the entire organization.

At the appropriate time, the process engineer coordinates the transition of the process assets with
every project that will use them. The process engineer works with the project manager and other team
members to develop specialized tailorings of the process assets.

The process engineer may need to provide additional process support to the projects if they are having
difficulties using the process assets. This support is essential to successful technology transfer. When
projects have process difficulties, the process engineer should make available the appropriate assis-
tance. For more information on how to transfer process assets and other types of technology, refer
to Using New Technologies: A Technology Transfer Guidebook (Software Productivity Consortium
1993d).

The process engineer captures and uses information on project use of the organizational standard
process, including specialized tailorings, lessons learned, and measurements, to assess root causes of
process defects and to determine improvement alternatives.

At the end of each cycle of the organizational process engineering spiral, the process engineer updates
the tactical plan, as necessary, to reflect lessons learned, estimates based on actual data, and updated
process drivers. The tactical plan becomes a living document and serves as the repository of spiral pro-
cess history and change. At this time, plan for the first three steps of the upcoming cycles. Plan the next
cycle planning and risk aversion activities to estimate the situation, analyze and avert risks, and plan
asset development.

Atthe completion of each cycle or stage of process capability evolution, the process engineer and other
appropriate stakeholders should renew their commitment to continue with the process engineering
efforts. The stage may take a long time to complete, new stakeholders may join the team, others may
leave or be replaced; therefore, the process engineer should reinsure sponsorship and buy-in to the
next cycle of process engineering activity.

4.3 OPTIMIZING ORGANIZATIONAL PROCESS ASSETS

Engineering a process that meets a project’s needs is a critical part of producing high-quality software
within budget and on schedule; it can also be time consuming and costly. Level 3 of the CMM requires
guidelines and criteria for tailoring the organization’s standard process for use on projects. The pro-
cess engineer should develop guidance on why, when, and how to tailor the standard process definition
for use at the project level and maintain this guidance as a process asset. However, even with guidance,
identifying project process drivers and then manually tailoring and instantiating the project process
can be a resource- and time-intensive task. In addition, tailoring guidance and the resulting proce-
dures often require that the purpose and rationale for any tailoring of the existing standard process
definition be documented, justified, and approved.

Asorganizations reach the highest levels of process maturity, it may be possible to optimize traditional
process engineering activities by developing enhanced tailoring and instantiation guidance based on
business areas and product lines. The process engineer can develop specific tailoring and instantiation
guidance based on fundamental project process drivers as a solution for minimizing the time and re-
sources that projects must spend to define their project-unique process adequately. By providing

4-13

4. Engineering Standard Process Assets

tailoring guidance based on inputs such as the estimated project size, cost, schedule, risks, and
available resources, the process engineer can help a project define its process by providing answers
to predefined questions, such as:

e What is the right set of process activities and the appropriate process model for the project?
¢ How should the activity specifications be tailored?

e What should the artifacts be?

e How should resources be allocated to activities?

e What methods, tools, and techniques should be used, and how should their use be customized?

Asthe project learns more about its process drivers in subsequent cycles, further guidance is necessary
to assist with process evolution activities. The project may require guidance on how to evolve the proj-
ect process definition given the current level of understanding and knowledge about the process driv-
ers, such as actual product measurements, including cycle costs, schedules, risks, resources, and assets.

Providing tailoring and instantiation guidance based on specific variations and priorities of process
drivers would appear to be a monumental task. First, the standard process definition and supporting
environment should encompass all basiclife-cycle, management, and support activities. Second, much
knowledge and experience should accumulate as a result of using the standard process definition to
determine the best response(s) to each process driver. Third, it is likely to take significant time and
effort to define standard process drivers and to derive appropriate conditions, criteria, and solutions
to instantiate mechanically the standard process definition to produce a project-specific definition.

The STARS and SEI are currently examining these difficulties. Specifically, the STARS/SEI team has
proposed to define and document process assets or the components for constructing project-specific
processes. The initial definition and documentation effort will include the collection, cataloging, anal-
ysis, partitioning, distillation, and synthesis of software processes by that industry, the government,
and academicorganiza i« ns have submitted. The resulting process assets, including adaptation, tailor-
ing, installation, and evolution guidance, will be piloted and tested (Over 1991, 45-60). The SEI has
released an initial release of these process assets (Software Engineering Institute 1992).

Figure 4-2 shows the Synthesis process model, which you could also use to address the problem of
process creation, tailoring, and instantiation. The Software Productivity Consortium (1993c) devel-
oped the Synthesis process model to support better use of expertise and knowledge about a set of simi-
lar problems and associated solutions within a specific business area or group of projects supporting
a similar product line or serving a similar customer base. Synthesis defines and integrates two
processes: Domain Engineering and Application Engineering.

The Synthesis process model extends the concept of defining the process model to the business area
level of abstraction by providing extended domain engineering guidance. Where a business arearefers
to a coherent market that potential customers possessing similar needs characterize, a domain is the
complete product family and associated production process supporting a product line. Domains can
cut across the industry to the extent that different companies in the industry have similar business ob-
jectives, produce similar products, or serve a similar customer base. For example, each of several large
companies may have domains that build similar aecrospace systems or subsystems, such as aircraft
avionics, missile controls, or helicopter flight simulators.

4-14

4. Enginecring Standard Process Assets

i
i

E
g:

(Customer and
Process Needs)

Application Software
Work Products

Figure 4-2. Synthesis Process Model

By developing domain process definitions, you can identify the specific process drivers, such as the
objectives, alternatives, constraints, and risks, often associated with that particular domain. You can
use domain experience and knowledge to determine the candidate solutions available to address those
drivers and determine the criteria for tailoring the domain process definition based on predefined pro-
cess drivers. You can predetermine well-defined variations of activities, methods, practices, tools, and
resources to be the optimum strategy for specific process drivers or combination(s) of process drivers.

As a result of working through a set of predetermined questions about process drivers, you can tailor
the domain process definition and can appropriately select and allocate methods, practices, tools, and
resources to produce an enactable process for a specific application project within the domain. Be-
cause application processes will generally vary from the domain process in well-defined ways, it may
be possible to automate the activity of tailoring and instantiating the domain process definition to pro-
duce a process that is application specific. In addition, no tailoring justification would be necessary
unless an application tailored the domain process differently from the predetermined and approved
variations.

4.4 SUMMARY

You can adapt the ESP model to represent process engineering from both the organizational and
project perspectives. At the organizational level, the process engineer develops reusable assets based
on the tactical plan produced by the process improvement spiral that Software Productivity Consor-
tium (1993a) describes. The process engineer proposes and documents asset alternatives and identi-
fies risks to the alternatives. Risk aversion activities justify the asset development that can be achieved
during the current cycle, and the information that the aversion activities generates is used to plan and
schedule the asset development to be accomplished in the current cycle.

Process assets can take many forms and can be anything that is both useful and reusable in the
engineering and enactment of processes on a project. Organizational assets include a baseline of the

4-15

4. Engineering Standard Prooess Assets

existing process capability, standard process architecture, specified process steps, business area
analyses, life-cycle model descriptions, and a standard process definition. The process engineer vali-
dates and verifies these assets, often through the mechanism of a pilot project. When the appropriate
stakeholders complete and approve them, organizational assets come under change control and be-
come part of the process database for use at the project level. The process engineer facilitates asset
transfer to the projects, monitors usage, and updates assets based on lessons learned, defects found,
and other cost, schedule, quality, and productivity data.

As organizations begin to optimize their organizational process assets, they can begin to develop and
automate mechanical tailoring and instantiation guidance based on the specific variations and
priorities of process drivers.

This section described the process engineering model, adapted from the conceptual ESP model, by
specifically focusing on the model at the organizational level of abstraction. Section 5 continues to
elaborate on process engineering with the ESP model by focusing on the project level of abstraction.

4-16

5. PROJECT PROCESS ENGINEERING

Rather than having a single monolithic process that all projects must use, (organizations) will find that
different projects will have differing needs.

| Peter H. Feiler and Watts S. Humphrey,
| Sofiware Process Development and Enactment: Concepts and Definitions

5.1 OVERVIEW

Anintegral feature of the ESP model is the ability to engineer the best possible process for addressing
project needs. When following the ESP model, a project team engineers its process dynamically by
continuously documenting and/or tailoring, instantiating, enacting, and improving its project process
definition in an evolutionary fashion, as Figure 5-1 shows. Although dynamic, the ESP model
specifically provides for orderly and controlled evolution of a baselined project process.

Process
Asset
Library
2 Risk
. 1. Define Approach Analyze
“Rchnology Transfer Spi
sSoftwue Pl'odllt:tivilypml
jum 1993d)
3. Plan
Development

5. Manage and Plan 4. Develop Product

Figure 5-1. Project Process Engineering

Project process engineering emphasizes the identification and continuous evaluation of key project
and cycle characteristics with the potential for driving the process in some significant way. In Cycle
1, the process engineer supports the project manager to document a project’s process definition either

51

5. Project Process Engineering

by defining an overall process from scratch or by tailoring the assets in the organizational PAL to the
level of detail appropriate to the current understanding about the project and its unique process driv-
ers. In subsequent cycles, a project tailors and instantiates its project-level process definition by defin-
ing it to an enactable level of detail based on cycle process drivers, enacts or performs the cycle
process, and evolves the process definition for the remainder of the project based on information
gained, lessons learned, progress to date, and early strategies and mitigation decisions.

A project can follow the ESP model to engineer its software development process regardless of the
level of organizational process maturity, as the CMM measures it. Although doing so is time and re-
source intensive, a project can develop its project process definition without having process assets,
such as a standard process definition, to use as a foundation. Organizations can abstract and use the
project-specific process model, activity specifications, and method descriptions engineered as a result
of following the ESP model at an ad hoc or repeatable process maturity level as input to developing
a standard process definition.

Experience shows that developing comprehensive standard process definitions can be expensive and
time consuming, and it may be more desirable to develop general-purpose process definitions,
together with techniques for reusing, tailoring, and enhancing them (Feiler and Humphrey 1992, 4).
Projects that are a part of an organization at the defined level of the CMM or above are likely to spend
less time and effort engineering their processes because of the availability of a standard process
definition or multiple process definitions based on business area. The standard process definition
results when the process engineer and the project manager integrate the following process assets into
a coherent whole:

¢ A standard process architecture

¢ Specified process steps that tools, methods, techniques, and technology transfer mechanisms
support

» Specific product life-cycle models

Other process assets that are available to projects that are part of an organization at a higher level of
process maturity include a process measures database that is the repository for process and project
measures as well as historical technical and management data regarding the use of process assets and
an advanced and/or automated organizational software engineering environment. A project at a
higher level of process maturity will generally tailor the available standard process definition(s) and
other supporting process assets and the historical data into a project process definition that satisfies
unique process drivers.

This section focuses on how project process engineering is an integral part of the conceptual ESP
model. The ESP model encompasses process engineering actions at the project level by:

* Documenting and baselining a project process definition in the first cycle

* Tailoring and instantiating the process definition for a cycle based on cycle process drivers
* Enacting the instantiated process to produce a product

* Improving a project process definition as a project progresses and the process is enacted

Sections 5.2 through 5.5 discuss each of these topics in more detail.

52

5. Project Process Engineering

5.2 DOCUMENTING THE PROJECT PROCESS IN THE FIRST CYCLES

The high-level project process definition is one of the spiral planning
documents that the first cycles of the project spiral produce.

A project attempts to identify and evaluate those key process drivers that have the potential to affect
the entire project, including the product life-cycle perspective that is important to the current project.
The project then documents the process at a level of detail that reflects the current understanding
about the project and its identified process drivers. A project documents a project process definition
as a result of defining the overall process from scratch or of tailoring an existing organizational
standard process definition, depending on the process maturity level of the organization.

In the first cycles, a project, which includes appropriate project stakeholders and support from a
process engineer, follows the five process steps of the ESP model to:

¢ Identify and evaluate project-level process drivers.
¢ Analyze risks and plan for risk aversion strategies.
¢ Plan the development of the project process definition after averting the identified risks.

* Document the project process by defining it from scratch or by tailoring the standard process
definition and other assets in a manner that addresses the project process drivers.

e Continue to plan and manage the project process definition by placing it under configuration
control and committing to proceed with the project.

Section 3 briefly describes the five steps of the conceptual ESP model. Sections 5.2.1 through 5.2.5
describe how the first cycles of the project’s spiral extend the basic ESP model steps to document the
project process definition.

5.2.1 IDENTIFY AND EVALUATE PROJECT PROCESS DRIVERS

Process drivers can be the source of process definition or tailoring requirements that a project process
must meet. Process drivers tell a project what the key considerations are when attempting to define
or tailor the standard process definition to a software development process that will best meet the
project’s needs. In Step 1 of the first cycles, a project organizes and documents the identified process
drivers through the mechkanism of the EoS. Specifically, the project documents preiect-level
objectives, success crite _ .iternatives, constraints, risks, and other considerations.

One of the most important pieces of information that the EoS documents will be the life-cycle
alternative(s) selected for the product that the project is responsible for producing. The project
process drivers, which the EoS also documents, can be the source for determining product life-cycle
alternatives by helping to identify the key considerations when attempting to define or tailor a
life-cycle model that will best meet the project’s needs.

53

5. Project Process Engineering

For example, if the EoS document shows that the project has specific milestones and firm
requirements that the contract imposed and that the contract deliverables follow a linear schedule,
then a project may select a waterfall model as a life-cycle alternative. If the contract has a number of
loosely defined requirements and expects significant user involvement, then a project may select an
evolutionary development life-cycle model may be selected as an alternative. In other environments,
the life-cycle alternative(s) might be some combination of life-cycle models.

The waterfall and evolutionary models are examples of perhaps the most well-known software
life-cycle models currently used on projects throughout the industry; however, there are several
life-cycle models, variants, and combinations that a project can tailor based on its unique needs. For
example, the project may only be responsible for the development of a design concept, such as a Con-
ceptual Design Phase contract, and may not need to determine the life cycle for the entire product but
only for the part of the life cycle for the current contractual commitment.

The EoS documents candidate life-cycle alternatives, which should describe:
¢ The key states or milestones associated with each life-cycle alternative
* Potential methods, tools, and/or techniques for reaching each life-cycle state
* High-level resource allocations for each of the life-cycle stages

An organization may have life-cycle descriptions available as assets in the process database. These
life-cycle descriptions may be of the more well-known life-cycle models or may be specifically tuned
to the key products in a business area product line.

5.2.2 ANALYZE PROJECT PROCESS RISKS AND PLAN FOR RISK AVERSION STRATEGIES

During Step 2 of the first cycles, a project identifies additional project and/or cycle process drivers in
the form of risks. Some of these risks will be apparent from the information that the EoS documents;
the project can identify other risks as a result of using a risk taxonomy or by analyzing historical data
and experience. Risks that have a high overall risk level, based on high probability and cost of
occurrence, tend to be the process drivers that place the most significant requirements on the process.

A project can expand the basic Step 2 activities of the conceptual spiral to evaluate risk aversion
strategies for all identified process drivers instead of just those that are risks and can commit to a
specific process alternative as a result. Strategies for addressing project process drivers may include:

* Defining or tailoring the life-cycle alternative in a way that meets project-specific process
drivers

* Defining or tailoring individual process steps by organizing or reorganizing activity sequences
and relationships within each step

* Determining high-level resource and/or responsibility allocations
* Identifying potential methods, tools, and/or techniques

A project evaluates how well each strategy addresses the relevant process driver, how the strategy
might affect other process drivers, and the costs associated with each strategy.

5-4

5. Project Process Engineering

A project should also carefully consider the technology transfer impact when evaluating risk aversion
strategies that involve new technology to the project, such as a new method, tool, or technique. A
project should evaluate and commit to the technology transfer the activities and supporting resources
needed to introduce the new technology into the project. By not incorporating orderly and defined
technology transfer activities as an integral part of the project process definition, a project runs the
risk of unsuccessfully addressing the process driver because the project team neither understands nor
effectively uses the selected method, tool, or technique alternative.

A project can use Using New Technologies: A Technology Transfer Guidebook (Software Productivity
Consortium 1993d) when identifying and evaluating strategies that involve new technology. The
guidebook provides detailed guidance onidentifying and selecting new technologies, as well as defines
the process activities necessary to transfer the technology for maximum use and benefit.

5.2.3 PLANNING FOR THE DEVELOPMENT OF THE PROJECT PROCESS DEFINITION

In Step 3, a project plans for the development of the project process definition after averting the
identified risks according to the risk aversion plan committed to at the end of Step 2. The result of risk
aversion activity should justify specific process definition alternatives, such as the product life-cycle
alternative.

Note that the project process definition is only one of a series of related spiral planning documents
that are planned for development in the first cycles. The other planning documents generally planned
for development in the first cycles of the project spiral include:

® Product Development Plan. The format of this document may vary depending on the contract
requirements and may include the contents of the other planning documents. The contract will
determine the amount of detail in this plan. The plan generally includes resource (time,
money, personnel, equipment, etc.) estimates, a WBS describing how costs will be collected,
and how financial and technical progress will be measured on the project.

® Other Required Plans. These plans include other documents that the contract or project
requires, including testing plans, configuration management plans, and hardware/software
acquisition plans.

Steps 1and 2 have already developed two other important spiral planning documents, the project EoS
and the RMP.

5.2.4 DEVELOPING THE PROJECT PROCESS DEFINITION

In Step 4, a project can start to document process at a project level. The resulting project process
definition should first identify and define the product life-cycle perspective that is important to the
current project and should include estimates of the appropriate life-cycle states that will represent the
key development milestones. A project can use a preliminary listing of alternative activities and meth-
ods to achieve the estimated life-cycle states. The listing should include any corporate-required activi-
ties and methods as well as any project-specific tailoring necessary for these activities and methods.

You develop a project process definition from the ground up or by tailoring an existing organizational
standard process definition to meet the requirements that the project-level process drivers and corre-
sponding strategies impose. Project process drivers and resulting strategies drive the documentation

5-5

5. Project Process Engincering

of a project process definition regardless of organizational process maturity level. A project at a low
process maturity level organization, which must document its process from scratch, can view process
drivers and resulting strategies as process definition requirements. A project at a higher process matu-
rity level organization can view process drivers and strategies as requirements for tailoring a standard
process definition to a project-specific one.

Specifically, a project produces the project process definition by:
e Identifying and analyzing product and project process drivers
e Defining product-specific requirements
e Selecting the product life-cycle model appropriate to the project

* Tailoring the product life-cycle model that the project will use to guide the key product’s
development phases

¢ Tailoring the appropriate process step specifications from the standard process definition
documents to produce the project process definition

* Achieving consensus on the project process definition by all stakeholders

* Baselining the project process definition and including it as part of the spiral planning
documents

e Training project staff on the project process definition
* Monitoring and continually improving the project process definition

At the end of Step 4, the project process definition should describe the estimated product life cycle,
define the supporting process to the level of detail appropriate to the current understanding of the
remainder of the spiral, have the commitment of the project stakeholders, and be ready for placement
under change control. During subsequent cycles, a project instantiates or creates an enactable process
of the process definition for the current cycle based on process drivers you identified for the cycle.

Note that projects that do not have a PAL to use as the foundation for developing the project process
definition can use the process product development activity specifications in Appendix B. A project
can use the appendix as a source for selecting, tailoring, and integrating process steps to produce the
project process definition.

5.2.5 BASELINING THE PROJECT PROCESS DEFINITION AND COMMITTING TO PROCEED

During Steo 5, a project places the project process definition under configuration control, along with
other planning documents that the first cycles of the project spiral developed. The project updates all
planning documents, as necessary, to reflect lessons learned, estimates based on actual data, and
updated process drivers. A project should plan the first three steps of the upcoming cycles when updat-
ing the planning documents; that is, plan the next cycle planning and risk aversion activities to estimate
the situation, analyze and avert risks, and plan development. Brief the appropriate project stakehold-
ers on the results of documenting the project’s process definition and commit to pursuing subsequent
cycles.

56

S. Project Process Enginecring

5.3 TAILORING AND INSTANTIATING THE PROJECT PROCESS DEFINITION FOR A
CYCLE

The first three steps of each cycle tailor and instantiate the project process
definition by assigning schedule and resources to produce an enactable
process for the project team to follow.

In dynamic process instantiation, a project may interleaf the process development, the instantiation
of individual steps of that process, and the enactment of these steps. The dynamic case permits a proj-
ect to start enactment of processes before their definition is complete (Feiler and Humphrey 1992).
The ESP model supports dynamic instantiation by tailoring and instantiating the project process defi-
nition one cycle at a time. The project identifies and tailors the development activities for producing
the appropriate product or part of the product in the current cycle and then instantiates those activities
to an enactable level of detail. In the context of the ESP model, a project refers to the artifact that
results from tailoring and instantiating the project process definition in each cycle as the cycle plan
rather than the process plan.

Specifically, the project tailors and instantiates the project-level process definition , roduced during
the first three steps of the current cycle by:

* Determining and evaluating cycle-level process drivers that will place requirements on
process alternatives for the cycle

.* Analyzing process risks and planning for risk aversion strategies

* Documenting the current cycle process by tailoring it based on the selected alternative and
then instantiating it to an enactable level of detail

Sections 5.3.1 through 5.3.3 further describe these process tailoring and instantiation activities, which
map to the conceptual ESP model activities.

5.3.1 DETERMINE CYCLE PROCESS DRIVERS AND ALTERNATIVES

Cycle process drivers can be the source of tailoring and instantiation requirements that project process
must meet. Current cycle process drivers are usually a decomposition of the project process drivers
that specifically affect the current cycle or come from the previous cycles. During Step 1 of the current
cycle, a project uses the plans, metrics, and status reports that the previous cycles produced or updated
to identify cycle process drivers. As a result, a project updates the EoS that the first cycle produced
with the current cycle objectives, success criteria, alternatives, constraints, risks, and other
considerations.

One of the main sources of cycle drivers is the project process definition that the first cycles of the
spiral developed. Remember that the project process definition defines the product life-cycle perspec-
tive that is important to the project and includes estimates of the appropriate life-cycle states that will
represent key development milestones. The project process definition also includes a listing of
alternative activities and methods that a project may use to achieve the estimated life-cycle states.

57

5. Project Process Engineering

During Step 1 of the current cycle, a project should identify what the key development objectives will
be for the cycle, that is, the product life-cycle state that the project wishes to reach as a result of the
current cycle. A project should also reevaluate the listing of alternative process steps and supporting
activity specifications, methods, and tools to use to achieve the desired life-cycle state, such as a specif-
ic design method or the decision to prototype the user interface before producing a detailed design
document.

A project should identify and further define appropriate cycle process alternatives in terms of:
e Thesetof appropriate development, planning, and support process steps to follow in that cycle
* Any tailoring to do to those steps
¢ How to perform each step, including the use of methods, practices, and tools
¢ What each step will accomplish or produce
e Who will perform the step
¢ How much time and effort the project thinks the step will take

A project tends to have the most flexibility for addressing key process drivers in the first cycles. The
decisions and commitments a project makes and the actions it takes as the project progresses create
a legacy that may place restrictions on process alternatives in later cycles. The greater the legacy, the
less process flexibility a project may have. In some cases, however, the best strategy may be to wait
untillater in the process before evaluating and committing to a specific process alternative. For exam-
ple, a project may identify one or more potential design methods but may not want to commit to a
specific method until the impact of requirements is more clearly understood.

5.3.2 ANALYZE CYCLE PROCESS RISKS AND PLAN FOR RISK AVERSION STRATEGIES

During Step 2, a project follows the standard ESP activities to:
* Identify risks to the process alternatives.
* Analyze strategies for averting those risks, such as tailoring the process steps in a specific way.
¢ Commit to a specific risk aversion plan.

Theresults of executing the risk aversion plan should justify a specific process alternative for the cycle.
The project team and other stakeholders should agree that the selected process alternative represents
the best solution for meeting cycle objectives and success criteria, averting cycle risks, and addressing
other cycle process drivers.

§.3.3 DocuMENT THE CYCLE PROCESS

During the Plan and Schedule activity in Step 3, a project documents the cycle process to an enactable
level of detail by producing a cycle plan. The cycle plan should describe the process alternatives
selected to address the cycle process drivers and should be consistent with the framework that the

5-8

S. Project Process Engineering

project-level process definition provided. If a project cannot produce a cycle plan that is generally
consistent with the project-level process definition, then the project should consider the inconsistency
as arisk, evaluate any potential impact on subsequent cycles, and commit to evolving the project-level
process definition as appropriate.

A project tailors and instantiates the process for the current cycle when:

o The project team and other stakeholders identify and approve cycle process drivers, including
cycle objectives and success criteria.

e A project addresses the cycle process drivers by:

Selecting process alternatives from the listing documented at a high level in the project
process definition

Defining and/or tailor previous alternatives as appropriate to mitigate any identified
risks

Gaining commitment from all stakeholders

e A project documents the cycle plan which details the:

Size, cost, schedule, and errors estimated for the product or part of the product to be
developed during the cycle

Size, cost, schedule, and error data collection mechanisms
Risk monitoring mechanisms

Selected methods, practices, tools, and other process alternatives for supporting the
cycle

Cycle activities required to meet cycle process drivers and alternatives and how the
activities relate to each other

Specified process steps that describe how to perform the cycle activities and that you
define or tailor as required to meet cycle objectives and success criteria, accommodate
cycle alternatives, satisfy cycle constraints, and avert cycle risks

Allocation of resources and responsibilities to support all cycle activities

Work packages for the key cycle activities

» The project stakeholders have approved the cycle plan and work assignments.

e A project places the cycle plan under change control and distributes it to all stakeholders.

e The project manager opens cycle work packages and authorizes charges to them.

A simple tool that a project can use to represent an instantiated process graphically is a PERT chart,
which canrepresent the process in terms of the set of cycle activities and supporting activity sequence,

59

5. Project Process Engineering

estimated durations, start and end dates, and resources. Some PERT chart tools capture information,
such as fields to capture the WBS code and cost data; free text fields for brief descriptions of activities,
artifacts, and/or supporting methods; and historical data and metrics.

5.4 ENACTING THE CYCLE PROCESS

Step 4 of the cycle enacts the process definition to produce the product
necessary to meet cycle objectives.

A project enacts the cycle process by following the Step 4 activities to:
¢ Perform to the cycle plan to develop and verify the product or part of the product.
e Monitor and review the cycle activities as a project performs them.
¢ Analyze the results for technical merit.
e Verify results against cycle objectives and success criteria.

In Cycle 1, the product that enacting the process produces is generally the set of project planning
documents. In subsequent cycles, the enacted process should produce the product or part of the
product necessary to meet the cycle objectives and success criteria.

At a minimum, a project should collect the following basic project data as an integral part of enacting
the cycle process:

* Actual total labor effort for each planned and scheduled cycle activity

* Actual number and type of product components (for example, modules, documentation)
produced

* Actual size of each product component

* Actual number, severity, and source of errors found during verification activities

* Actual risk increase or reduction of each high-priority risk and of the overall project risk
¢ Product change data

* Lessons learned

A project can use the enacted cycle process together with lessons learned and the data collected by
monitoring and reviewing the cycle activities are used to review and subsequently colve the process
for the remainder of the project. A project can use the Software Measurement Guidebook (Software
Productivity Consortium 1992b) for specific guidance on defining, estimating, and collecting size, cost,
schedule, and error data.

5-10

S. Project Process Engincering

5.5 IMPROVING THE PROJECT PROCESS

Step 5 of the cycle includes analyzing actual data and lessons learned to correct
and evolve the project process definition.

Feiler and Humphrey (1992, 5) state that, as projects evolve and members of project teams gain
experience with the process, there will be many ideas for improvement; therefore, it is important to
establish mechanisms to obtain continual user feedback to guide process repair and evolution. The
ESP model provides for these mechanisms in Step 5 by specifically including process activities
intended to help a project review the process to date and to plan and manage process evolution. Itis
important for a project to control process review and evolution carefully because the results of these
activities often place instantiation requirements on subsequent cycles or may even require rework of
previous activities.

A process can perform process review and subsequent evolution within the current cycle if evolving
the process affects the current cycle only. As a project enacts the current cycle process in Step 4, it may
discover the need to reallocate resources, replan schedules, or reassess risks to meet cycle objectives
and success criteria. If the impact of addressing the new needs affects only the current cycle activities,
then a project can quickly review the process drivers, evolve the cycle process accordingly, and
baseline the evolved cycle process.

After meeting cycle objectives and success criteria and baselining the product or part of the product
produced during the current cycle, the project reviews progress to date, including:

e The basic project data collected when enacting the cycle process

e How well the enacted process accomplished cycle objectives and success criteria
* How closely the project followed the process as instantiated for the cycle

» Identified process strengths, weaknesses, and defects

¢ Newly discovered or better understood objectives, alternatives, constraints, risks, or other
process drivers

As a result of the review, a project can evolve its project process definition to correct defects or
weaknesses or to meet new process drivers by:

¢ Updating the EoS to document new or better understood process drivers

e Updating engineering and project procedures to reflect lessons learned, updated process
drivers, or changes in development alternatives

e Updating the project process model and schedule, staff, and budget estimates as necessary to
reflect changes based on actual cycle data

511

5. Project Process Engineering

Getting approval of the evolved version of the project process definition from stakeholders

Baselining the evolved version of the project process definition

When enacted, a review of the process to date may place significant evolution requirements on the
project’s process for the remainder of the project. For example, a project may:

Uncover or clarify process drivers that affect subsequent cycles, such as actual labor hours
remaining to support the project.

Uncover a process driver that requires rework of already enacted activities, such as a failed
quality metric, a misunderstood requirement, or a fatal design flaw.

Evolve the project process definition in a way that affects the remainder of the project, such
as updating a policy or procedure.

After a project has successfully met all the project-level objectives and success criteria, it can take
advantage of the Step 5 process activities to review the final project process definition and enactment
data as a whole to identify trends, statistics, and improvements to use as input to the next project or
to evolve organizational process assets.

5.6 SUMMARY

Using the ESP model results in evolutionary process engineering at the project level by:

Defining a Project’s Process in the First Cycle. A project identifies and analyzes its project-level
process drivers to define the project-level process definition or to tailor the organizational
standard process definition as required to address the drivers. A project physically documents
the project-level process definition in Cycle 1 through a subset of the spiral plan documents.
A project defines the project-level process definition to the level of detail appropriate to the
current understanding of the known process drivers and the remainder of the spiral activities.
After the stakeholders approve it, it comes under change control.

Tailoring and Instantiating the Project Process for a Cycle. A project tailors and instantiates the
process definition for the current cycle as required to address cycle process drivers. Cycle
process drivers include cycle objectives, success criteria, constraints, process step alternatives,
and risks. Cycle process drivers also incorporate the legacy from previous cycles. A cycle plan
documents all the information required to enact the cycle process. If the cycle plan is not gen-
erally consistent with the project-level process definition, then the project should consider the
inconsistency as a risk, evaluate any potential impact on subsequent cycles, and commit to
evolving the project-level process definition as appropriate. When the stakeholders define and
approve the cycle process, it comes under change control.

Enacting the Cycle Process. A project enacts the cycle process in Step 5 of the current cycle by
performing to the cycle plan, monitoring and reviewing the cycle activities as they occur, ana-
lyzing the results for technical merit, and verifying results against cycle objectives and success
criteria.

Evolving the Project Process. A project reviews previous cycle data and evolves the process
definition for the remainder of the spiral based on information gained, lessons learned,

5-12

5. Project Process Engincering

progress to date, and early strategies and mitigation decisions. Process review and evolution
often place instantiation requirements on subsequent cycles. In some cases, a project can
quickly evolve and instantiate the process definition for the current cycle if the impact of the
evolution only affects that cycle. In all cases, the stakeholders approve the evolved cycle or
project process definition and place it under change control.

After a project has successfully met all of the project-level objectives and success criteria, it can take
advantage of the Step 5 process activities to review the final project process definition and enactment
data as a whole to identify trends, statistics, and improvements to use as input to the next project or
to evolve organizational process assets.

5-13

5. Project Process Eagincering

This page intentionally left blank.

5-14

APPENDIX A. EVOLUTIONARY SPIRAL PROCESS
ACTIVITY SPECIFICATIONS

A.1 OVERVIEW

This section defines the key activities essential to generating a process using the ESP model. Table A-1
gives a complete list of the ESP activities specified in this section.

Table A-1. Evolutionary Spiral Process Activities

Step Activity Name

1. Understand Context Define Approach
' Develop/Update Estimate of the Situation
Review Context

2. Analyze Risks Perform Risk Analysis
Review Risk Analysis

Plan Risk Aversion

Commit to Aversion Strategy

3. Plan Development Execute Risk Aversion
Review Alternative
Plan and Schedule
Commit to Plan

4. Develop Product Develop and Verify Product
Monitor and Review
Review Technical Product

5. Manage and Plan : Product Change Control

Review Progress

Update Spiral Planning Documents
Commit to Proceed

The format for the activity definitions uses an enhanced set of entry-task-validation-eXit (ETVX)
attributes. Figure A-1 depicts an activity based on the ETVX paradigm (Radice and Phillips 1988).
The entry and exit criteria restrict products from entering or leaving the activity unless they are at a
prescribed state of completeness. The task(s) performs the real work of the activity. Validation
evaluates the work product to determine whether it satisfies customer needs.

A-l

Appeadix A. Evolutionary Spiral Process Activity Specifications

Figure A-1. Entry-Task-Validation-eXit Notation

Anactivity can be performed as soon as all its entrance criteria are met. These entrance criteria should

include a check of the state of its inputs. The typical operation of an activity defined using this notation
is to transform input products into the next level of completeness by performing a task. A task is
repeated as necessary until it is satisfactorily completed and the exit criteria are met.

The following format is used for the activity definitions in this appendix.

Performers

Inputs

This section maps the activity to the ESP model by identifying the step where
the activity begins.

This section gives a brief description of the activity and describes the tasks to
be performed.

This section identifies who will execute the activity. Performers include project
stakeholders, technical leads, project managers, risk analysts, contract
managers, engineers, quality managers, users, customers, configuration
managers, and corporate managers.

This sectionidentifies what artifacts will be used during the performance of the
activity. It is not necessary for all the inputs to exist to begin the activity. It is
possible for only a subset of inputs to exist during the first iteration of the
activity; as more inputs become available, subsequent passes are made
through the activity.

Supporting documents and spiral planning documents are inputs to many of
the activities described in this appendix. These inputs do not refer to a single
artifact, but rather to a set of documents. Specifically, supporting documents
include the following:

* Contract
* Statement of work (SOW)

* Documents describing the customer:

A2

A fix A, Evolut; Spiral P Activity Specificats

Outputs

Entrance Criteria

Exit Criteria

— Target environment

- Policies, procedures, standards, and regulations
— Requirements

Internal infrastructure data, including:

— Internal culture and investments

— Organizational process definition, if available
— Historical engineering data, if available

— Current software engineering environment and support

The spiral planning documents are a set of related project planning documents
that include the following:

Project EoS

RMP

Cycle plan

Product development plan
Project process definition

Other required plans, such as a configuration management plan, testing
plan, or acquisition plan

This section identifies what artifacts will be generated as a direct result of
performing the activity.

This section identifies prerequisites that the input artifacts must satisfy to
begin the activity.

This section states what conditions the output artifacts must meet before the
activity is considered complete. It is assumed that each activity satisfies the
following exit criteria:

Each artifact generated by the activity has been baselined, verified, and
approved.

Each artifact generated by the activity conforms to the organizational
policies, standards, and procedures.

Each artifact generated by the activity has collected process, risk, and
quality assurance information.

A3

Appendix A. Evolutionary Spiral Process Activity Specifications

Measurables

This section describes the measurables to be collected during the execution of
the activity. The measurables are used to monitor activity progress, to aid in
estimating the effort required to complete the activity, and to improve the
process.

Note that every activity measures total activity labor effort:
e Actual calendar start and end dates
* Team members who performed the activity

¢ Total labor hours expended on the activity

Appeandix A. Evolutionary Spiral Process Activity Specifications

A.2 DEFINE APPROACH

Performers

Outputs
Entrance Criteria

Measurables

This activity begins in Step 1, Understand Context.

The approach definition establishes the ground rules for measuring progress
at the spiral and cycle levels. Identify, collect, and analyze input artifacts to
define process drivers. If desirable, interview the stakeholders for additional
insights and information. Define the following process drivers with enough
precision to establish objective measures for determining whether the spiral
or cycle is meeting expectations or whether the expectations are infeasible:

s Stakeholders. Who has a vested interest in the success of the spiral or cycle.

* Objectives. What is to be accomplished during the spiral or cycle.

¢ Alternatives. Different ways to meet the objectives.

* Constraints. Limitations on alternatives.

Technical lead, project manager, risk analyst, and contract manager

* Supporting documents (see Section A.1)

* Spiral planning documents (see Section A.1)

The output of this activity is the documented approach definition.

* Asigned contract or authorization to proceed exists.

* Resources are allocated to enact the first cycle activities.

* All stakeholders have approved updated spiral planning documents.

* Management gives authorization to proceed in current cycle.

* Spiral-level and cycle-level process drivers are defined in terms of
objectives, alternatives, constraints, risks, and other considerations to the

level of detail appropriate to the current level of understanding.

¢ The legacy inherited from previous cycles has been analyzed, and
appropriate changes have been made to the approach definition.

The measurement to be taken for this activity is the total activity labor effort
(see Section A.1).

A5

Appendix A. Evolutionary Spiral Process Activity Specifications

A.J3 DEVELOP/UPDATE ESTIMATE OF THE SITUATION

Performers
Inputs

Outputs

This activity begins in Step 1, Understand Context.

An EoS is performed during the first cycles of a spiral and updated during
subsequent cycles. At a minimum, the EoS should identify, analyze, and
document the scope of the spiral, the spiral’s process drivers in the form of
objectives, alternatives, product and process assumptions, and the assets
available for meeting the spiral objectives (Charette 1989).

The following process drivers should be specifically ideatified, analyzed, and
documented in the EoS:

¢ Mission and history

* All identified stakeholders and stakeholder expectations
» Spiral objectives

¢ Current cycle objectives

* Inherited decisions and assumptions

* Characteristics of known requirements and operations

¢ Known constraints

* Factors that may affect successful completion of the spiral and current
cycle

* Comparison of possible courses of action

Process drivers can be identified from several sources, such as the contract and
SOW; insights about and from the client; historical project plans and budgets;
client and business area policies, procedures, and standards; and interviews
with key stakeholders at all levels.

Technical lead, project manager, and risk analyst
¢ Approach definition

* Supporting documents (see Section A.1)

* Spiral planning documents (see Section A.1)

The output of this activity is the draft EoS.

Appendix A. Evolutionary Spiral Process Activity Specifications

Entrance Criteria

Measurables

The entrance criterion for this activity is that the spiral or cycle process drivers
have been identified and analyzed.

The exit criterion for this activity is that an EoS has been updated to the level
of detail appropriate to the current level of understanding about the spiral or
cycle process drivers.

The measurement to be taken for this activity is the total activity labor effort
(see Section A.1).

A7

Appendix A. Evolutionary Spiral Process Activity Specifications

A.4 REVIEW CONTEXT

Performers

Inputs

Outputs

Entrance Criteria

This activity begins in Step 1, Understand Context.

To proceed to Step 2, first obtain firm agreement on what to pursue for this
stage of development. Consensus should be reached on the objectives,
constraints, and alternatives documented in the EoS for the spiral or current
cycle. Specifically, this activity should ensure that:

» Allstakeholders are identified and their expectations clearly documented.

» Objectives are clearly documented and represent reasonable winning
conditions for all stakeholders.

» Current cycle-level objectives are derived from or are refinements of the
spiral-level objectives.

¢ Proposed alternatives adequately address objectives and constraints.
* All the stakeholders agree to pursue the spiral and current cycle.

Make sure that all key stakeholders review and approve the EoS. Although the
EoS does not need to circulate widely outside of the immediate team, make
sure that the senior manager reviews, corrects, and signs off on the EoS to
ensure that the documented objectives are clear and correct (Charette 1989).

The EoS may be modified as a result of reaching agreement. Document all
changes with the change rationale in the meeting minutes and distribute the
minutes to all attendees.

All project stakeholders, such as technical lead, engineer, contract manager,
quality manager, user, project manager, risk analyst, and customer

s Adraft EoS

* Supporting documents (see Section A.1)

* Spiral planning documents (see Section A.1)
e Meeting minutes

¢ The approved EoS

* The spiral EoS document is drafted or updated to address the current
cycle.

A8

Appendix A. Evolutionary Spiral Process Activity Specifications

» Allindividuals with aninterest in the success of the spiral activities or their
representatives are participating.

Exit Criteria The exit criterion for this activity is consensus to proceed.
Measurables » The activity labor effort (see Section A.1)

e The number and type of changes to the EoS

A9

Appendix A. Evolutionary Spiral Process Activity Specifications

A.S PERFORM RISK ANALYSIS

This activity begins in Step 2, Analyze Risks.

The Perform Risk Analysis activity is initiated by comprehensively identifying
potential spiral or current cycle risk items. Examine the objectives with respect
to alternatives, constraints, organizational and project assets, and other
process drivers, and identify what can go wrong. Examine these unsatisfactory
outcomes and the effect on both the current cycle and spiral success criteria;
that is, if a significant risk is identified for the current cycle, trace it back to the
spiral-level objectives and success criteria to determine whether the risk may
affect the spiral as well as the cycle. To help identify typical spiral risks, use risk
taxonomies such as in Boehm and Ross (1989, 117), U.S. Air Force (1988), and
Charette (1990, 216—59).

You analyze risks once they are identified by categorizing them and
determining risk likelihood and consequence. Estimate the chance of
potential loss (or gain) and the consequence (or benefit) of the risk situations
previously identified. Analyze the risk situations independently of one
another. Show any uncertainties in the estimates.

Charette (1989, 120—24) and the U.S. Air Force (1988) describe several
approaches for developing measurement scales. When risks are quantified,
compare, rank, and communicate them to appropriate stakeholders. Deter-
mine the high-priority risks by identifying those with the highest calculated
overall risk factor degrees based on the probability and cost of occurrence. It
may be helpful to use a visual representation of risks as a communication and
documentation tool. One risk visualization method, the iso-risk contour, is
explained in Charette (1989).

After completion of the risk analysis, a risk evaluation is performed to identify
risk aversion st-ategies and examine the impact of the risk aversion strategy
on each high-priority risk item. Any risk aversion strategy identified should
reduce the cost or probability of risk occurrence to an acceptable level. An
option is to establish a risk referent, a measure against which to determine the
amount of risk acceptable for each individual and overall spiral risk. Try to
define a strategy that can reduce the risk to an acceptable level. In one case,
this may require a very active approach,; in another, it may mean accepting the
risk. Define the strategy activities to reduce the cost of occurrence of a risk and
the probability of occurrence of a risk.

It is possible for risk aversion strategies to introduce new risks that will detract
from the anticipated benefits or negatively affect other risks; therefore,
address the impact of a risk aversion strategy on other risks and process
drivers.

A-10

Appendix A. Evolutionary Spiral Process Activity Specifications

Performers
Inputs

Outputs

Entrance Criteria

Exit Criteria

In general, consider the following when defining risk aversion strategies:

Is the strategy feasible?
Does the strategy reduce risk to an acceptable level?
Will the strategy negatively affect another risk?

What is the potential impact of new risks, if any, introduced by the
strategy?

Does the strategy support cycle or spiral objectives and success criteria?

Are the tactics and means for implementing the strategy consistent with
cycle or spiral constraints?

Is the strategy cost-effective?

Use Using New Technologies: A Technology Transfer Guidebook (Software
Productivity Consortium 1993d) when identifying and evaluating strategies
that involve new technology. This guidebook provides detailed guidance on
identifying and selecting new technologies and defines the process activities
necessary to insert the technology for maximum use and benefit.

Document the resuits of this activity in the draft RMP. The plan is enhanced
and matured as you conduct the remainder of the Step 2 activities.

Risk analyst, technical lead, and project manager

Supporting documents (see Section A.1)

Spiral planning documents (see Section A.1)

The output of this activity is a draft RMP that documents:

A list of identified spiral and current cycle risk items

An estimate of the probability and cost of occurrence for each of the risk
items

A ranking of risk items

Risk aversion strategies for each risk item ranked as high priority
Stakeholders have reviewed and approved the EoS document.
Stakeholders have reached consensus to proceed with the current cycle.

The project has analyzed the project and current cycle objectives with
respect to the alternatives and constraints and has identified the risk items
(what can go wrong).

A-11

Appendix A. Evolutionary Spiral Process Activity Specifications

Measurables

The project has considered the impact of the identified risk items on the
project and current cycle success criteria.

The project has estimated the likelihood of occurrence (probability of
successful or unsuccessful outcome) for each risk item.

The project has estimated the potential damage for each risk item (gain or
cost associated with the outcome).

The project has calculated an overall degree of risk.
The project has stated explicitly any uncertainty in the estimates.

Alternative strategies for averting the high-priority risks have been
elaborated, ranked, and analyzed.

The interaction among the individual risks has been evaluated, and
additional risks or risk aggravation has been introduced as a result of each
strategy being identified.

The risk aversion strategies for each high-priority risk have been
documented in the draft RMP, including any backup data or analysis
necessary to support the findings.

The amount of risk that is acceptable for each individual and overall spiral
risk has been identified.

The total activity labor effort (see Section A.1)
The total number of spiral-level risk items
The total number of current cycle risk items

The total number of high-priority risk items

A-12

Appendix A. Evolutionary Spiral Process Activity Specifications

A.6 REVIEW RISK ANALYSIS

Performers
Inputs

Outputs

Measurables

This activity begins in Step 2, Analyze Risks.

The Review Risk Analysis activity is an opportunity for the team to review and
comment on the results of the risk identification, analysis, and evaluation
activities. Submit the draft risk management plan to the rest of the team for
review. A team meeting is a useful mechanism for discussing team comments
and changes. The team should reach consensus on the identified risks,
corresponding probability and cost of occurrence, high-priority risk items,
possible aversion strategies, and potential impact of aversion strategies.

If the draft RMP is modified, document all changes with the change rationale
in the meeting minutes and distribute the minutes to all attendees.

Project manager, risk analyst, technical lead, and engineer
The input to this activity is the draft RMP.

e Meeting minutes

e Approval of the draft RMP

¢ Alist of all cycle and spiral risk items that may be identified has been
produced, given the current level of spiral and cycle understanding.

e The probability and cost of occurrence for each risk item have been
estimated.

e The highest priority risks, based on overall risk factors, have been
determined.

¢ Risk aversion strategies for each high-priority risk item have been
identified, and the impact of the strategy on other risks and process drivers
has been analyzed.

* The team members have received the draft RMP for review.

* The team members reached consensus regarding any changes to the draft
RMP.

* Allagreements or changes to the draft RMP have been documented in the
meeting minutes, and the minutes have been distributed to all attendees.

* The total activity labor effort (see Section A.1)
* The number of changes to the RMP

A13

Appendix A. Evolutionary Spiral Process Activity Specifications

A.7 PLAN RISK AVERSION

Performers
Inputs

Outpm
Entrance Criteria

Measurables

This activity begins in Step 2, Analyze Risks.

Estimate and evaluate the high-level cost and schedule for each risk item and
determine the best strategy for each. Try to planrisk aversion strategies so that
their results are available in time to plan for the development activities that
depend on them. Ideally, the team is involved in this activity to help evaluate
and recommend the best risk aversion strategies.

It is possible to manage and plan the risk reduction strategy through a new risk
reduction cycle or subspiral. Make certain that the cycle or subspiral is planned
so that any development that depends on the results is not started until after
integration is complete.

Document the results of this activity in the draft RMP. The plan is enhanced
and matured as you conduct the remainder of the Step 2 activities.

Project manager, risk analyst, technical lead, and engineer
* The approved draft RMP, including:
— Alist of identified spiral and current cycle risks
- The probability of occurrence for each risk item
— The cost of occurrence for each risk item
— Arranking of risk items
— The risk aversion strategies for each high-priority risk item
* Supporting documents (see Section A.1)
» Spiral planning documents (see Section A.1)

The output of this activity is the draft RMP updated with the plans for the risk
aversion strategies.

The entrance criteria for this activity are team review and consensus on the
draft RMP to date.

* The cost and schedule associated with each risk aversion strategy have
been estimated.

* Arecommended strategy for each risk item has been selected.

* Recommendations to change the EoS by elaborating the alternatives,
suggesting changes to the constraints, or defining new objectives have been
made.

The measurement to be taken for this activity is the total activity labor effort
(see Section A.1).

Al4

A.8 COMMIT TO AVERSION STRATEGY

Peyformers

Inputs

This activity begins in Step 2, Analyze Risks.

The Commit to Aversion Strategy activity is a mechanism for formally briefing
all stakeholders on the contents of the RMP. As a result of the briefing, the
consensus and commitment to the risk aversion strategies recommended for
each high-priority risk item should be reached. If consensus is not reached and
commitment not secured or if the risk aversion strategy committed tois not the
one recommended, then the risk activities may need to be repeated, as
appropriate.

Consensus on any updates to the objectives, success criteria, constraints, and
alternatives documented for the spiral or current cycle in ihe EoS must also
be reached.

If modifications are made to the draft RMP or the EoS, document all changes
with the change rationale in the meeting minutes and distribute the minutes
to all attendees.

All project stakeholders, such as technical lead, engineer, contract manager,
quality manager, user, project manager, risk analyst, and customer

* An updated draft RMP, including:
— Alist of identified spiral and current cycle risks
— The probability of occurrence for each risk item
— The cost of occurrence for each risk item
— Aranking of each risk item
— The risk aversion strategies for each high-priority risk item
— The cost and schedule for each risk aversion strategy
— The recommended strategies
* Supporting documents (see Section A.1)
* Spiral planning documents (see Section A.1)
® The approved RMP

* Meeting minutes

A-15

Appendix A. Evolutionary Spiral Process Activity Specifications

Entrance Criteria

Exit Criteria

Measurables

The best candidate aversion strategy for each identified risk has been
recommended.

Recommendations to change the EoS by elaborating the alternatives,
suggesting changes to the constraints, or defining new objectives have been
made.

All individuals with an interest in the success of the spiral or their
representatives have received the draft RMP for review.

Stakeholders have reached consensus on a risk aversion strategy for each
high-priority risk item.

Stakeholders have approved the RMP.

Stakeholders have approved any changes to the EoS.
The total activity labor effort (see Section A.1)

The number of changes to the RMP

The number of changes to the EoS

A-16

Appendix A. Evolutionary Spiral Process Activity Specifications

A9 EXECUTE RISK AVERSION

Performers
Inputs

Outputs

Entrance Criteria

Measurables

This activity begins in Step 3, Plan Development.

The Execute Risk Aversion activity performs tasks supporting the risk
aversion strategy. These may include prototyping, simulation, surveys,
comparative evaluations, evolutionary development, and other appropriate
techniques. Complicated or long-term risk aversion activities may be spun off
into their own spirals to be managed independently from mainline
development. The results of the risk aversion activities should justify a
particular development alternative, such as a specific method, strategy, or
approach. Assess how this development alternative affects the process for the
cycle and for the remainder of the spiral. After a development alternative is
selected, you should plan and schedule technical activities in detail. Document
all relevant information by updating the RMP.

Project manager, risk analyst, technical lead, and engineer
The input to this activity is the approved RMP.

The output of this activity is the development alternative for averting each
high-priority risk item documented in an updated version of the RMP.

The entrance criteria for this activity is that consensus on a risk aversion
strategy for each high-priority risk item has been reached.

* The tasks supporting the risk aversion strategy have been performed.

e A development alternative has been determined and justified as a result
of performing the risk aversion strategy.

* The effect of the development strategy on the cycle and spiral process has
been assessed.

¢ The RMP has been updated, as appropriate.

The measurement to be taken for this activity is the total activity labor effort
(see Section A.1).

A-17

Appendix A. Evolutionary Spiral Process Activity Specifications

A.10 REVIEW ALTERNATIVE

Inputs

Outputs

Entrance Criteria

Exit Criteria

Measurables

This activity begins in Step 3, Plan Development.

In the Review Alternative activity, the results of the Execute Risk Aversion
activity are presented to appropriate stakeholders and their commitment is
solicited to the development alternative or approach selected as a result of
performing the risk aversion strategy. If the development alternative selected
as a result of the risk aversion activities is not committed to by senior
management, then the risk activities may need to be repeated, as appropriate.

All project stakeholders, such as technical lead, engineer, contract manager,
quality manager, user, project manager, risk analyst, and customer

An updated RMP

Supporting documents (see Section A.1)
Spiral planning documents (see Section A.1)
Meeting minutes

The approved RMP

A development alternative has been determined and justified as a result
of performing each risk aversion strategy.

All individuals with an interest in the success of the spiral or their
representatives are participating.

Consensus has been reached on the development alternative or approach
selected as a result of performing the risk aversion strategy.

The updates to the RMP have been approved.
The total activity labor effort (see Section A.1)

The number of changes to the RMP

A-18

A.11 PLAN AND SCHEDULE

This activity begins in Step 3, Plan Development.

The main output of the Plan and Schedule activity is a detailed and enactable
draft cycle plan. The project’s process definition document of the spiral
planning documents is instantiated to address cycle objectives, success criteria,
constraints, development alternatives, and risks and to incorporate the legacy
inherited from previous cycles.

In the Plan and Schedule activity, technical activities are identified and
defined, and methods, practices, or tools to be used to complete each task are
specified. Include in the activities sufficient interfacing events (such as
interface control working groups, management reviews, in-process reviews) to
coordinate this cycle’s activities with other cycles as well as to satisfy customer
control and monitoring needs. Also include ongoing support activities such as
configuration control, quality assurance, and documentation.

Although basic management functions of planning, monitoring, and
controlling are performed continuously, you should identify, organize, and
allocate resources for specific cycle development and development support
activities after the cycle risks have been averted. The main output of the Plan
and Schedule activity is a cycle plan that plans the development of the product
or part of the product that will be produced in the current cycle as well as the
development process that will be used.

Your cycle plan can be documented as part of your spiral planning documents,
or it can be a standalone document. The plan should:

¢ Establish development goals and associated development success criteria
that support the current cycle objectives

* Estimate size and scope for the development to be accomplished in the
current cycle, including:

-~ The numberv and type of product components (e.g., modules,
documentation) to be produced as a result of enacting the cycle plan

— The size of each product component

— The number, severity, and source of errors likely to be found during
verification activities

* Identify the activities or methods to be performed in the current cycle

* Define/redefine activities, methods, and supporting artifacts, if necessary

A-19

Appendix A_ Evolutionary Spiral Process Activity Specifications

Performers
Inputs

Outputs
Entrance Criteria

Sequence the activities if not sequenced by the selected method

Estimate development cost and schedule for each cycle activity and
allocate resources

Select and allocate supporting tools

Define work packages, or the lowest WBS level, for the key activities
defined for the current cycle

In addition, remember to:

Include ongoing support activities in the cycle plan, such as configuration
management, quality assurance, and documentation.

Address any customer requirements.

Comply with customer policies, procedures, standards, and regulations if
necessary.

Comply with the organizational process definition, if available and
appropriate.

Use any available historical planning and engineering data for estimating
purposes.

Take advantage of in-house methods, tools, training, and support.

Project manager, technical lead, risk analyst, and engineer

The approved RMP
Supporting documents (see Section A.1)

Spiral planning documents (see Section A.1)

The output of this activity is the draft cycle plan instantiated to an enactable
level of detail.

Commitment to the development alternative has been secured.

Spiral status and engineering data from previous cycles has been collected
and analyzed, and the spiral planning documents have been updated
accordingly.

Cycle activities have been identified and documented in the cycle plan.

— The cycle activities are consistent with the objectives of the cycle and
satisfy the cycle success criteria as defined in the current version of the
EoS.

A-20

Appendix A. Evolutionary Spiral Process Activity Specifications

Measurables

— Thecycle activities are consistent with the development alternative as
documented in the current version of the RMP.

— The cycle activities are consistent with the organizational process
definition, if any or if appropriate.

s Cycle activities have been defined or tailored from the organizational
process definition, if any, as required to meet the cycle objectives and
success criteria, accommodate cycle alternatives, satisfy cycle constraints,
and avert cycle risks.

» The dependencies between activities and the dependencies of the tasks
within each activity have been documented.

e Costs have been estimated, and work packages or the lowest WBS level has
been opened for the key cycle activities.

» Durations have been estimated for each activity.
* Resources have been allocated to each activity.

¢ Intermediate milestones and performance measurements have been
defined fer each cycle activity.

e The monitoring and review activities have been scheduled to accumulate
data for and analyze the status of cycle activities.

e Sufficient interfacing events have been scheduled, such as interface
control working groups, management reviews, in-process reviews, to
coordinate this cycle’s activities with other cycles.

The measurement to be taken for this activity is the total activity labor effort
(see Section A.1).

A21

Appeadix A. Evolutionary Spiral Process Activity Specifications

A.12 COMMIT TO PLAN

Performers

Inputs
Outputs

Entrance Criteria

Exit Criteria

Measurables

This activity begins in Step 3, Plan Development.

The Commit to Plan activity is an opportunity for stakeholders to review and
comment on the results of the cycle planning and scheduling activities.
Consensus that the activities of the cycle plan are appropriate to meeting cycle
objectives is reached. The cycle plan may be updated according to
stakeholders’ comments.

When commitment to the detailed cycle plan is secured, a formal briefing to
senior management on the direction the current cycle development activities
will take can occur. This briefing may be a natural extension of any existing,
periodic internal management reviews or may need to be scheduled
separately. As a result of committing to the cycle plan, work packages are
opened and assigned and the detailed cycle process, as documented in the
cycle plan, is considered enactable.

Key stakeholders, such as the project manager, risk analyst, technical lead, and
engineer and customer

The input to this activity is the draft cycle plan.
* Meeting minutes
* The approved cycle plan

The entrance criterion for this activity is a draft cycle plan instantiated to an
enactable level of detail.

* Consensus is reached regarding any changes to the draft cycle plan.

* Allagreementsor changesin the meeting minutes are documented and the
minutes distributed to all attendees.

* Consensus is reached to proceed with the cycle by enacting the cycle plan.
* Work packages are opened.
* The total activity labor effort (see Section A.1)

* The number of changes to the cycle plan

A2

Appendix A. Evolutionary Spiral Process Activity Specifications

A.13 DEVELOP AND VERIFY PRODUCT

Performers

Inputs

Outputs

Entrance Criteria

Exit Criteria

This activity begins in Step 4, Develop Product.

The product or part of the product necessary is deveioped per the cycle
objectives, results are inspected for technical merit, and results are verified
against cycle objectives and success criteria. Specific product development
activities detailed in the cycle plan are enacted. That is, mainline or traditional
software development activities are enacted as scheduled for the current cycle,
such as requirements, design, code, integration, and test.

Verification is performed as an integral part of the fourth step development
activities. Verification ensures that the artifacts or advanced product maturity
produced by the development activities meet specified technical product and
quality assurance requirements, cycle objectives, and success criteria.
Verification techniques may be informal walkthroughs or reviews or formal
inspections.

User, project manager, risk analyst, technical lead, engineer, and customer
¢ The approved cycle plan

¢ Product baselines produced in previous cycles, if applicable

¢ Product and cycle measurements and status

¢ Product or part of the product necessary to meet cycle objectives and
satisfy cycle success criteria

* The enacted cycle plan

The entrance criterion for this activity is an approved cycle plan instantiated
to an enactable level of detail for the cycle.

* The cycle process has been enacted as defined in the cycle plan.

* The product or part of the product necessary to meet cycle objectivés and
satisfy cycle success criteria has been built.

e Product components have been verified to satisfy all allocated
requirements.

* Product components are verified as correct and consistent with the design,
if applicable.

* Product components have been verified as maintainable and
understandable.

A23

Appendix A. Evolutionary Spiral Prooess Activity Specifications

Measurables

* Product components have been verified to comply with project standards.

* Actual total labor effort for each planned and scheduled cycle activity (see
Section A.1)

* Actual number and type of product components (e.g., modules,
documentation) produced

* Actual size of each product component

e Actual number, severity, and source of errors found during verification
activities

* Product change or revision data, if any
* Actual risk increase or decrease of each high-priority risk
* Overall spiral risk

Refer to the Software Measurement Guidebook (Software Productivity
Consortium 1992b) for more specific guidance on defining and collecting size,
cost, schedule, and error measurements.

A24

Appeadix A. Evolutionary Spiral Process Activity Specificatioas

A.14 MONITOR AND REVIEW

This activity begins in Step 4, Develop Product.

The Monitor and Review activity maintains management control over the
development process. This activity is performed in parallel with the Develop
and Verify Product activity and periodically captures and analyzes the status
of the cycle to provide management with insight into the cost, schedule, and
technical performance status of the cycle.

This activity takes the raw activity progress status and analyzes it to produce
management metrics that support decision making regarding corrective
action. Collect and analyze the work package status in each cost account and
summarize the status to the highest schedule level. For each parameter
selected for monitoring, update the actual and projected performance, analyze
the trends, and note unfavorable trends or values. The following should be
reviewed and analyzed based on the data and measurements collected during
the Develop and Verify Product activity:

* Product component size status

* Product component error data

¢ Product component change data
* Cycle schedule status

¢ Cycle cost status

¢ Cycle risk status

¢ Cycle quality assurance status

» Cycle organizational status

Refer to the Software Measurement Guidebook (Software Productivity
Consortium 1992b) for specific size, cost, schedule, and error measurement
and analysis methods.

Periodic cycle reviews are conducted as a part of this activity. These reviews
serve two purposes. First, they demonstrate to the team and other stakehold-
ers that the current cycle and overall spiral are under control. Second, they
provide a mechanism to obtain a commitment to proceed with the cycle plan.
At these reviews, decisions can be made to reallocate resources, replan
schedules, or reassessrisks for the current cycle activities. All such changes are
reflected in an updated cycle plan/evolved cycle process.

A25

Appeadix A. Evolutionary Spiral Process Activity Specifications

Performers
Inputs

Outputs

Entrance Criteria

Exit Criteria

Measurables

Project manager, risk analyst, technical lead, and engineer
¢ Product component and cycle measurements and status
* The approved cycle plan

* Cycle status reports

* The updated cycle plan

The entrance criterion for this activity is that the cycle process is being enacted
as defined in the cycle plan.

* Product component and cycle data has been collected and reviewed.
* Status reports have been produced and distributed.

The measurement to be taken for this activity is the total activity labor effort
(see Section A.1).

A26

Appeadix A. Evolutionary Spiral Process Activity Specifications

A.15 REVIEW TECHNICAL PRODUCT

Inputs

Outputs

Entrance Criteria

This activity begins in Step 4, Develop Product.

The technical product review is a stakeholder review of the product or part of
the product developed to ensure that cycle objectives and success criteria were
met. This review is an opportunity for stakeholder review; however, the
ongoing Monitor and Review activity should have identified and resolved any
factor that might have had a negative impact on meeting cycle objectives or
success criteria.

Key stakeholders, such as project manager, technical lead, engineer, and
customer

The inputs to this activity are:

* The product or part of the product produced as a result of enacting the
cycle plan

* The enacted cycle plan

* Spiral planning documents (see Section A.1)

* A product or part of the product that meets cycle objectives, success
criteria, and quality assurance requirements and is approved for
placement under configuration control.

* A configuration identification has been received.

The entrance criterion for this activity is that the cycle process as defined in

the cycle plan has been enacted and has produced a product or part of the
product.

* The product or part of the product has been reviewed to ensure that cycle
objectives and success criteria were met.

¢ The results of verification activities have been reviewed to ensure the
technical quality of the product or part of the product produced.

* Unique configuration identification has been assigned to the product or
part of the product approved for placement under configuration control.

The measurement to be taken for this activity is the total activity labor effort
(see Section A.1).

A27

appendix A. Evolutionary Spiral P Activity Specificati

A.16 PRODUCT CHANGE CONTROL

Performers

Outputs

Entrance Criteria

Measurables

This activity begins in Step 5, Manage and Plan.

After cycle objectives and success criteria are met and the product developed
in Step 4 is approved by the team during the technical product review, the
product or part of the product produced during the cycle is baselined. Track
the implementation of changes to controlled software products to ensure that
the configuration of the product is evident at all times. Establish each baseline
and track all subsequent changes in the configuration status. Maintain the
history of changes to each configuration item throughout the software life
cycle for status accounting. Store all items under control in a secure,
limited-access software development library.

Configuration manager

¢ The product or part of the product that meets cycle objectives, success
criteria, and quality assurance requirements and has been approved for
placement under product change control

¢ Configuration identification
o Spiral planning documents (see Section A..)
The output of this activity is a product baseline.

e Aconfiguration management planis included as one of the spiral planning
documents.

* Aproduct or part of the product has been developed as a result of enacting
the cycle process and needs to place it under configuration control.

* A configuration identification has been received.

The exit criterion for this activity is that baseline for the product or part of the
product baseline has been established .

The measurement to be taken for this activity is the total activity labor effort
(see Section A.1).

A28

A.17 REVIEW PROGRESS

Performers

Inputs

Entrance Criteria

Measurables

This activity begins in Step 5, Manage and Plan.

In the keview Progress activity, actual measures are evaluated against those
estimated in the cycle plan, success criteria are examined to ensure that they
were met, and lessons learned are identified. Analyze how the final cycle status
may affect the process for the rest of the spiral. Specifically, review cycle data
and verify the actual measurements described in the measurables section.

Technical lead, engineer, contract manager, quality manager, project
manager, and risk analyst

Product baselines

Actual product component and cycle measurements and data
Cycle status reports

Supporting documents (see Section A.1)

Spiral planning documents (see Section A.1)

Cycle and spiral metrics

Updated spiral process drivers

The cycle process as defined in the cycle plan has been enacted.
A baselined product exists.

Final cycle status has been reviewed.

Actual-versus-estimate metrics for both cycle and spiral have been
produced.

Lessons learned from the cycle have been compiled.

Changes to spiral process drivers have been identified based on the
enacted cycle process and resulting cycle product, data, and status.

Number and type of product components

Component size

Activity, cycle, and overall spiral schedule

Activity, cycle, and overall spiral labor hours and dollars
Component and product errors _

The total activity labor effort (see Section A.1)

A-29

This activity begins in Step 5, Manage and Plan.

In the Update Spiral Planning Documents activity, the remainder of the spiral
process as defined in the spiral planning documents is evolved to reflect
enacted cycle process and metrics. Analyze the lessons learned, spiral and
cycle status reports and metrics, and updated process drivers. Update the
spiral process with the following information:

¢ Updated engineering and management procedures

¢ High-level schedule for remainder of the spiral

¢ Cost in dollars and labor hours for the remainder of the spiral

e Number of key spiral risks remaining

* Riskincrease or decrease of each high-priority risk and overall spiral risk
¢ Errors identified, solved, and remaining

¢ Organizational status

® Lessons learned

Although much of this inforination may have been gathered and analyzed in
previous activities, this activity gives the opportunity to examine thoroughly
the impact of each part of the enacted cycle process on the rest of the product
development process. For example, compose and analyze the answers to
questions, such as:

* How do the lessons learned affect the spiral schedule?

* How do the updated engineering and management procedures affect the
increase or reduction of each high-priority risk?

e Should the labor hour estimates for the remainder of the spiral be updated
as a result of the lessons learned?

Update the spiral planning documents to the level of detail appropriate to the
currentlevel of understanding of the spiral and its process drivers. That is, plan
the next cycle activities to estimate the situation, analyze and avert risks, and
plan development.

Refer to the Software Measurement Guidebook (Software Productivity
Consortium 1992b) for specific size, cost, schedule, and error measurement
and analysis methods.

A-30

Performers

Inputs

Outputs
Entrance Criteria

Exit Criteria

Measurables

Project manager, risk analyst, technical lead, corporate manager, contract
manager, and quality manager

e Updated spiral metrics and process drivers

* Supporting documents (see Section A.1)

» Spiral planning documents (see Section A.1)

The output of this activity is the updated spiral planning documents.
e All other activities in the current cycle have been completed.

* The enacted cycle plan has been included as one of the spiral planning
documents and captures the following information:

— Cycle metrics
— Cycle status reports
— Cycle lessons learned

The exit criterion for this activity is that the spiral planning documents for the
spiral have been updated.

The measurement to be taken for this activity is the total activity labor effort
(see Section A.1).

A3l

Appeadix A. Evolutionary Spiral Process Activity Specifications

A.19 COMMIT TO PROCEED

Performers
Inputs
Outputs

Entrance Criteria

Exit Criteria

Measurables

This activity begins in Step 5, Manage and Plan.

The commit concept, which comes into play at the end of Step 5, is one of the
most important in using the spiral model. It is similar in purpose to a bascline.
All stakeholders should be briefed on the results of the current cycle and on
any changes in plans and should agree with the decisions made regarding what
to do next. Stakeholders include project management at all levels as well as the
team. The review may also include customer representatives. The purpose of
the review is to determine whether spiral-level objectives, alternatives, and
constraints are still feasible and on track, agree on the objectives and success
criteria for the next cycle, and commit resources to that cycle.

The spiral planning documents may be modified as the stakeholders reach
agreement. Document all changes with the change rationale in the meeting
minutes and distribute the minutes to all attendees.

All project stakeholders, such as the technical lead, engineer, contract
manager, quality manager, user, project manager, risk analyst, and customer

The input to this activity is the updated spiral planning documents.
e Meeting minutes
* Approved spiral planning documents

* The spiral planning documents are drafted for the spiral or updated
following an enacted cycle.

« Al individuals with an interest in the success of the spiral or their
representatives are participating.

* Consensus to proceed has been reached as a result of reviewing the spiral
_ planning documents.

* Consensusonthe objectives and success criteria for the next cycle hasbeen
reached.

e All agreements or changes to the spiral planning documents have been
documented in the meeting minutes and the minutes have been distributed
to all attendees.

* The activity labor effort (see Section A.1)

* The number and type of changes to the spiral planning documents

A32

APPENDIX B. PRODUCT DEVELOPMENT
ACTIVITY SPECIFICATIONS

This appendix identifies and specifies a set of typical product development activities. The
specifications do not state how to perform the activities; they are designed to be tailored based upon
key organizational, business area, and/or project characteristics. Some characteristics to consider
include organizational policies and procedures, acquisition strategy, project size and complexity,
system requirements, and development methods. Tailoring may include the deletion of nonapplicable
activities, modification of activities to include additional or more stringent requirements, multiple
instances of the same activity as needed, or addition of other activities.

No temporal order is imposed on the activities. If sufficient inputs are available and the entrance
criteria are satisfied, an activity can begin. A partial ordering among the activities is implied, however,
in that the output of one activity may be required as the input to another activity. The performance
of an activity is complete when all of its required tasks are performed in accordance with the exit
criteria. This may require several iterations of the activity.

B.1 SOFTWARE SYSTEMS ENGINEERING

The Software Systems Engineering activity class includes all the activities
related to a system’s specification, design, and integration.

B.1.1 Specify Operational Concept

Overview In the Specify Operational Concept activity, you define the system missionand
concept of operations. Your primary goals are to:

¢ Define a system mission that clarifies the true reason for the system and
ensures that the right system will be built.

* Define an operational concept for the system that meets mission
requirements and external user and system operations needs.

The operational concept provides the initial top-level description of the
system. It assesses the end-to-end system scope and the feasibility of
proceeding with the development effort. This includes identification of
potential risks and potential high-cost areas.

Within this activity, you:

¢ Identify the initial description of system capability and elicit ideas on
alternative system concepts by analyzing the input that initially identified
the desired operational capabilities.

B-1

Appendix B. Product Development Activity Specifications

Performers
Inputs

Outputs

Entrance Criteria

Measurables

Identify critical technological limitations, costs drivers, and risks that may
affect system development.

Assess the technical, organizational, political, legal, and economic
feasibility of both development and operations.

User, systems engineer, project manager, customer

Customer/user requests
Market data

Technical support requests
Operational capabilities
Company ideas
Operational concept

System capability

The entrance criterion for this activity is that you have received information
from one or more of the following input sources, indicating desired
operational capabilities for a new or existing system:

Market data

Customer/user requests

Internal ideas

Requests from operation and maintenance activities

You have baselined an operational concept that is feasible, consistent, and
complete with respect to the input source(s).

You have defined an initial description of system capability describing
what the system will do.

The measurement to be taken for this activity is the total labor effort for this
activity.

B-2

Appendix B. Product Development Activity Specifications

B.1.2 Formulate Potential Approaches

Overview
Performers
Inputs

Outputs
Entrance Criteria

In the Formulate Potential Approaches activity, you need to formulate a set
of potential approaches based on input from the development environment,
project risks, the target environment, a system capability, and the operational
concept. You may include such different approaches as buying the system,
developing a new system, or modifying an existing system.

Within this activity, you:

e Analyze the system capability to understand the system and identify those
capability areas that are directly affected by different development
approaches.

e Develop an understanding of the technology that may be needed to
develop the system, including the use of commercial or third-party tools.

* Explore and analyze several different approaches for technical,
organizational, political, legal, and economic feasibility.

* Analyze critical and high-risk technical and operational concepts.

For each approach, you need to include a description of the constraints,
benefits, and risks. From the list of potential approaches, you identify any
recommended approach(es) with the associated justification. You should
discard only those approaches that do not work and document all other
approaches in the recommended approaches artifact. The Recommend
Software System Development Strategy and the Plan Development activities
will use this artifact with other project information to determine the specific
approach to take.

Systems engineer, project manager, risk analyst

* Operational concept

¢ Target environment

e RMP

* System capability

The output from this activity is the recommended approach.
* You have received a baselined operational concept.

* You have received a defined system capability.

* You have identified the target environment.

* Arisk assessment is available that identifies known project risks.

B-3

Appendix B. Product Development Activity Specifications

Exit Criteria The exit criterion for this activity is that you have selected and baselined a
recommended approach along with an associated justification.
Measurables ¢ The total labor effort for this activity

* The number of approaches generated in relation to the size of the system

B4

Appendix B. Product Development Activity Specifications

B.1.3 Define System Requirements

Overview

In the Define System Requirements activity, you collect, integrate, specify,
relate, and organize the customer’s needs and objectives to provide the
foundation for system design and implementation. As your input, you use:

e The operational concept or approved product change data
¢ An assessment of the current, known project risks
¢ The requirements analysis results

e Asoftware system development strategy that identifies any constraints or.
the requirements due to how the system is going to be developed

* Any constraints defined in the cycle development plan
Within this activity, you:

* Collect system requirements information, including mission-driven
milestones, from the customer and users.

* Organize the requirements into categories to aid in checking completeness
and in determining the accuracy of the requirements.

* Quantify the requirements into measurable entities whenever possible.

* Analyze system requirements for completerness, consistency, testability,
validity, verifiability, and feasibility.

You use the known project risks to help identify those requirements that are
highrisk, for example, requirements that are less stable, require the use of new
technology, or require unavailable resources. You then take appropriate risk
mitigation strategies, such as addressing the high-risk requirements first
and/or isolating them from other requirements. Another approach to reduce
risk is to request an analysis of the system requirements for specific problem
areas in the hope of better understanding any problems. You request that
analysis activities be performed to clarify the risk in high-risk requirements.

You develop a verifiability checklist for each requirement that you can use to
verify each requirement. You also develop a requirements flow diagram that
you use to verify the data structure or functional behavior of each artifact in
the system and to ensure that it satisfies its supporting requirement.

Youmay define only part of the system requirements with a single pass through
this activity. If this is the case, then you must reenter this activity to complete
the requirements.

B-5

Appendix B. Product Development Activity Specifications

Outputs

Entrance Criteria

Systems engineer, project manager, user, customer

Operational concept

Cycle plan

RMP

System analysis results
Software system development strategy
System capability
Recommended approach
Product change data
System requirements
Analysis requests
Verifiability checklists
Requirements flow diagram

There is a need to define or modify the system requirements based on one
or more of the following inputs:

— Abaselined operational concept

— Approved product change data that defines changes to the system
requirements

— Results of system requirements analysis activities

— Results of identifying the software system development strategy
You have received a defined system capability.

You have received a baselined recommended approach.

A risk assessment is available describing known project risks.

You have received a baselined cycle development plan.

You have baselined the system requirements that you defined and/or
modified during an iteration through this activity and ensured that they
satisfy the following criteria:

— They satisfy customer needs.
— They comply with system constraints.

— They are consistent with each other.

B-6

Appendix B. Product Development Activity Specifications

— They are verifiable.
~ They are feasible.
— They are understandable.

You have baselined the verifiability checklists and the requirements flow
diagram.

You have documented any requests to analyze the system requirements for
specific characteristics.

The number of requirements

The number of requirements added, deleted, or modified during an
iteration through this activity

The total labor effort for this activity in comparison to the size of the
system

B-7

Appendix B. Product Development Activity Specifications

B.1.4 Develop System Architecture

Overview

In the Develop System Architecture activity, you identify a system-level
architecture, including hardware and software components, that satisfies both
initial and future requirements within budget and schedule constraints. Within
this activity, you:

» Transform the operational concept and the system requirements or an
Engineering Change Proposal (ECP) into a system architecture based on
the recommended approach.

e Derive the specific configuration of hardware, software, and firmware to
perform required functions at the necessary level of performance and
dependability.

* Analyze the technical suitability and cost of the architecture.

You need to make modifications to the recommended approach, verifiability
checklists, or requirements flow diagram based on the results of developing
the system architecture and to rebaseline the artifact. You also need to
document changes to the software requirements based on the results of
developing the system architecture.

To mitigate risks associated with the system architecture, you can develop and
analyze multiple system architectures before you select a preferred
architecture for development. You should base your analysis of the candidate
architectures on both technical and cost considerations. Technical
considerations include:

e The ability to handle expected workloads
* The ability to handle expected operational scenarios

e Both the environment in which you will develop the system and the
environment in which you will deliver it

» The ability to support the software system development strategy
e Commonality and reuse

e People as components of the system, describing their behavior and .eeded
system functionality

e System reliability, maintainability, and availability
o System safety

* Human factors

» The user interface design

» System security

B-8

Appendix B. Product Development Activity Specifications

This guidebook details the activities for the analysis of several key architecture
considerations. Cost considerations include software cost drivers, such as size
and reuse, and hardware cost drivers, such as system capacity, system
reliability and availability, hardware maintenance, and environmental
considerations. The cycle development plan provides the constraints and
methods that you need to follow when performing the activity. You may
possibly develop the system user interface design concurrently with this
activity.

You should use the risk assessment to help identify those architecture
components that have the highest risk, for example, components that require
new technology or have a high complexity level. You should then take the
appropriate risk mitigation strategies, such as addressing these components
first to minimize impact on the life cycle. You request to have an analysis of
specific characteristics performed on high-risk components to help
understand any problems.

You should address several system considerations when deriving the tcp
architectural level to offset larger problems or risks that may occur later.
These system considerations include:

* Allocation of Functionality. Due to budget or resource constraints, you may
need to limit the initial functionality of the system to fall within a subset
of the users’ requirements. You may add additional functionality at a later
date.

* System Automation. Varying degrees of system automation are available,
and you must determine them based on the needs of the system and the
desires of the users.

* Stable Versus Volatile Requirements. You must handle volatile requirements
differently from stable requirements within the system architecture. You
must directly accommodate the volatile requirements in the system
architecture.

* Modular System Design. Modular designs ease planned evolution,
implementation, and enhancement. You may use an “open backbone”
architecture to address the end-to-end system requirements while
permitting the addition of future functionality. However, you need to
make tradeoffs concerning the number and size of the architecture
components. Small components are easier toimplement and maintain, but
a large number of components complicates maintenance and logistics
issues.

* Built-In System Fault Detection, Isolation, and Recovery. Systems with
stringent maintainability and availability requirements require this fea-
ture. In addition, you might have to support a built-in system backup.
These features might require special hardware, software, or firmware
requirements.

B-9

Appendix B. Product Development Activity Specifications

Performers
Inputs

Expandability and Flexibility. You should determine where you anticipate
growth and change and see whether you can accommodate them within the
architecture. You should define these determinations as system
requirements. -

Commonality. You should analyze the architecture for the potential use of
common system elements. The multiple use of these elements across
architectural components can simplify design and implementation.

Within this activity, you perform the major tasks of decomposing the system
requirements into lower level requirements and allocating the requirements
to the architectural components to ensure that you address each system
requirement. Both of these major tasks are described in more detail below.

Decompose System Requirements. Based on the analysis of the system
requirements, you further decompose the system requirements into lower
level requirements so that you can implement them in a single hardware
configuration item (HWCI) or computer software configuration item
(CSCI). You should structure the requirements to determine their
interdependency and relative priority.

Allocate Requirements to Hardware, Software, and Interface Components. You
allocate the system requirements to the architectural components to en-
sure that you have adequately addressed each requirement. Some rules
that you can follow in allocating the requirements are:

- Youshould group together those requirements that are tightly coupled
to minimize communications.

— For large systems, you should first allocate only those requirements
that affect the architecture, such as requirements that have a heavy
workload, storage, or user interface requirements.

— You should investigate each requirement and develop alternative
allocations to system architectural components for implementation,
for example, to software, firmware, or a special purpose processor.

— You should realize that some functions, such as screen editing or
network controls, may be able to migrate between architectural
components.

— Youshould ensure that the system user interface design is allocated to
the appropriate architectural components.

Systems engineer, software engineer

Recommended approach

Cycle plan

B-10

Appendix B. Product Developmeat Activity Specifications

Outputs

Entrance Criteria

System requirements

RMP

System analysis results

Software system development strategy
Software engineering environment
Target environment

Verifiability checklists
Requirements flow diagram
Product change data |

System user interface design
Recommended approach

System architecture

Analysis requests

Verifiability checklists
Requirements flow diagram
Product change data

There is a need to develop or modify the system architecture based on on2
or more of the following inputs:

— Baselined system requirements

— Approved product change data defining changes to the system
architecture

— Results of system architecture analysis activities
— Results of identifying a software system development strategy
You have received a baselined operational concept.

You have received a baselined recommended approach for developing the
system.

You have identified both the software engineering environment and the
target environment.

B-11

Appeadix B. Product Development Activity Specifications

Measurables

You have received a baselined cycle development plan.
You have received a risk assessment documenting all known project risks.

You have reccived baselined verifiability checklists and a baselined
requirements flow diagram.

Any part of the system user interface design that has been completed is a
variable.

You have baselined the system architecture defined/modified during an
iteration through this activity and ensured that it meets the following
criteria:

— Itis traceable to the system requirements.

— It is consistent with the system requirements.
— Itaddresses each system requirement.

— Itis compliant with project standards.

— Itis feasible.

- It is maintainable.

You have decomposed the system requirements to a level where they can
be addressed by a single hardware, software, or interface module.

You have baselined any changes to the recommended approach.

You have documented any requests for analysis of specific architecture
features.

You have documented any recommendations to change the software
requirements in the product change data.

You have made and baselined any changes to the verifiability checklists or
requirements flow diagram.

The total labor hours allocated to this activity in relation to the size of the
system architecture

The number of architectural components and number of interfaces

The number of architectural components and number of interfaces added,
deleted, or modified during an iteration through this activity

B-12

Appendix B. Product Development Activity Specifications

B.1.5 Design User Interface

Overview

You design the user interface primarily by assessing different user interfaces
for how they address several important characteristics. You need to take into
consideration the human factors requirements that you defined with the
customer and the user, any part of the system architecture that you have
developed, and the target environment under which the system will operate.
The cycle development plan describes constraints and methods under which
to perform the activity; for example, the cycle development plan describes
standards to follow when designing the interface. In addition, you need to take
into consideration any specific requests from the system requirements or
system architecture development teams to analyze specific usability features
and incorporate the results of the analysis into the user interface design. You
may develop the user interface concurrently with the system architecture.

You should find a design that has acceptable user interface characteristics and
demonstrate that design to the customer and user to receive agreement that
the interface meets the customer’s requirements. Based on the results of the
design, you should make and document recommendations to modify the
sy.tem requirements and/or the system architecture.

Usability is the measure of how well people will be able and motivated to use
the system practically (Gilb 1988). Therefore, in designing the user interface,
you should address:

o User Characteristics. The interface should be consistent in terms of what
knowledge level the user must have to use the system practically, or it
should make clear any deviations from the norm.

¢ Ease of Use. The interface should encourage a low level of user learning
time; minimize the need for training, manuals, and consulting; and
maintain a high level of user satisfaction.

* User Control. The interface should allow the user to take control while
assisting him in performing his functions. The interface should avoid
automatic actions or actions requiring heavy computation that require no
user interaction or choice. The goal of this characteristic is to increase user
productivity.

* Invalid Input Handling. The interface should provide the user with a high
probability of entering correct data. It should provide prompt and easy
detection and recovery of invalid input.

* Reliability and Robustness. The interface should have a minimum number

of possible malfunctions and should handle system malfunctions by
protecting the user.

* Consistency. The interface should have a consistent “look and feel” across
displays, interactions, user input, and system feedback.

B-13

Appendix B. Product Development Activity Specifications

Performers

Inputs

Outputs

Entrance Criteria

* Transparency. The interface should allow the user to perform the tasks
without being aware of the lower level system mechanics.

» Efficiency. The interface should minimize user effort so that performing a
function with the system is easier than performing a function without the
system.

* Adaptability. The interface should adapt to the different types of users; that
is, it should accommodate one user wishing to work through a menu inter-
face and another user wishing to work through a command line interface.

» Expandability. The interface should be flexible enough to accept
modifications to existing components as well as the addition of new
components.

You should make the user interface design that is selected for and
demonstrated to the customer available to the software engineers for
implementation support. You will allocate the user interface design to the
system architecture components in the Develop System Architecture activity.

Systems engineer, user

* Human factors requirement
e Cycle plan

¢ System architecture

e Target environment

* Analysis requests

¢ Product change data

e System user interface design
* Product change data

There is a need to design or modify the user interface based on one or more
of the following inputs:

* You have received baselined human factors requirements.

* You have approved product change data that defines changes to the user
interface design.

* You have identified the target environment.
* You have received an initial system architecture.

* You have received a baselined cycle development plan.

Appendix B. Product Development Activity Specifications

Exit Criteria * The user interface is acceptable to the customer.

* You have documented any changes to the system requirements or the
system architecture to support a better user interface in the product
change data.

Measurables The measurement to be taken for this activity is the total labor effort in
reiation to the size of the user interface component of the system.

B-15

Appendix B. Product Development Activity Specifications

B.1.6 Analyze System Performance

Overview

Performers

Inputs

Outputs

Entrance Criteria

In the Analyze System Performance activity, you analyze the system
architecture to ensure conformance to system performance requirements or
to satisfy a request for analysis against specific performance features. The
performance analysis takes into consideration the target environment in which
the system will operate and any constraints and methods identified in the cycle
development plan.

Standard performance features that you should analyze include:

* Capacity analysis or the system’s ability to ensure sufficient memory,
communication throughput, speed, and response time performance while
allowing for growth and reserves

* Workload or the major system drivers on resource components such as
computer throughput, memory, and input/output bandwidth

¢ Workflow or the workload of the subsystem architecture determined by
the transactions and transaction rates against the capacity levels

You record the results of your analysis :long with recommendations on how
the system or software engineer sl.ould develop the system or how the system
requirements or system architecture should be modified to maximize
performance.

Systems engineer, risk analyst

* Analysis requests

* System architecture

* Performance requirement

e Target environment

* RMP

* Cycle plan

* System performance analysis results
* Product change data

There is a need to analyze the performance of the system architecture based
on one or more of the following inputs:

* You have received the baselined performance requirements.

* Youhavereceived arequest to analyze the system for specific performance
features.

B-16

Appendix B. Product Development Activity Specifications

Exit Criterin

Measurables

You have received a risk assessment identifying system performance as a
high risk.

You have received a system architecture defined to a level detailed enough
to allow for analysis of performance characteristics.

You have identified the target environment.
You have received a baselined cycle development plan.

You have documented and completed the results of the system
performance analysis and proposed them to the customer and user for
acceptance.

You have documented any changes to the system architecture or system
requirements that will improve performance in the product change data.

The estimated versus actual performance of certain system configurations

The number and severity of changes that this activity generates to the
system requirements and/or system architecture

B-17

Appendix B. Product Development Activity Specifications

B.1.7 Analyze System Dependability

Overview You need to analyze the system architecture for conformance to system
dependability requirements or to satisfy a request for analysis of specific
dependability features. The analysis should take into consideration both the
target environment under which the system will operate and the constraints
and methods identified in the cycle development plan.

System dependability requirements that you may analyze include:

Reliability. These issues include inherent failure distributions and failure
rates for the hardware and the number of errors detected and their rate of
detection for the software.

Maintainability. These issues include the average amount of time required
to repair a failed entity and to restore normal operation.

Availability. These issues include the fraction of total system operating time
during which the intended function of the system is being fulfilled.

Security. These issues include whether someone can infiltrate the system
by bypassing the security m<asures and facilities designed to prevent such
actions.

Survivability. These issues include the system’s ability to perform and
support critical functions without failures within a specified time period
when a portion of the system is inoperable.

Safety. This is a measure of the time to catastrophic failure from a
referenced initial instant.

You should compare the results of the analysis of these dependability issues
to the dependability requirement, and should document any recommended
changes to the system requirements or system architecture to address any
deviations from the requirements.

Performers Systems engineer, risk analyst

Inputs o

Analysis requests
Dependability requirement
System architecture

Cycle plan

Target environment

RMP

B-18

Appendix B. Product Development Activity Specifications

Outputs

Entrance Criteria

Exit Criteria

Measurables

System dependability analysis results
Product change data

There is a need to analyze the system architecture for dependability based on
one or more of the following inputs:

You have received the baselined system dependability requirements.

You have received a request to analyze the system architecture for specific
dependability features.

The risk assessment identifies system dependability as a high risk.

You have received a system architecture defined to a level detailed enough
to allow for analysis of dependability characteristics.

You have identified the target environment.
You have received a baselined cycle development plan.

You have documented and completed the results of the system
dependability analysis and proposed them to the customer and user for
acceptance.

You have documented any changes to the system architecture or system
requirements that will improve system dependability in the product
change data.

The relative dependability of certain system configurations

The estimated versus actual dependability of certain system
configurations

B-19

Appendix B. Product Development Activity Specifications

B.1.8 Analyze System Reusability

Overview

Performers

Inputs

Outputs

You assess the system architecture and/or the system requirements for the
feasibility of incorporating reusable components by using the following steps:

¢ Identify opportunities for reuse.

o Identify a reusable part that is a close or perfect match to some subset of
the system.

e Evaluate that part to determine any modifications that you need to make
to either the part, the system requirements, or the system architecture.

e Determine whether it will be more beneficial to include the part and make
any necessary modifications or whether it will be more beneficial to not use
the part and develop the system subset within the project.

This analysis takes into consideration the software engineering environment
under which the system is being developed, the constraints and methods
provided by the cycle development plan, and any reuse library filled with
reusable components already established by the organization. You also
analyze the architecture and the requirements to determine if any component
of either artifact engineers can reuse in later systems or if slight modifications
to the architecture or the requirements can make it more reusable.

You record the results of this analysis, identifying what reusable component(s)
you recommend to be included in the system and describing how the software
and systems engineers should develop the system to accommodate the
component. You may also include recommendations for increased
commonality within system architecture and/or system requirements to
increase reusability across systems in the analysis results.

Systems engineer, risk analyst

e System architecture

¢ Analysis requests

e Cycle development plan

e System requirements

* Reuse library

¢ Reusability requirement

* System reusability analysis results

¢ Product change data

|
|
\
B-20

Appendix B. Product Development Activity Specifications

Entrance Criteria

Exit Criteria

Measurables

There is a need to analyze the system requirements and/or system architecture
for reusability characteristics based on one or more of the following inputs:

You have received baselined reusability requirements.

You have received a request to identify reusable components that the
software engineers can use to develop the system.

You have received a request to analyze the system architecture or system
requirements to identify which parts of the architecture or requirements
the systems engineer can use as a reusable component.

You have received the system architecture defined to a level detailed
enough to analyze for reusability.

You have received system requirements defined to a level detailed enough
to analyze for reusability.

You have baselined the cycle development plan.
A reuse library is available.

You have documented and completed the results of the system reusability
analysis.

You have documented any changes to the system architecture and/or
system requirements that improve the reusability of the system in the
product change data.

You have identified and qualified all reusable components that the
software and systems engineers will use to build the system.

The percent of the system requirements or system architecture that
reusable components can partially or completely satisfy

The number of new system requirements or architectural components
versus the number of reused system requirements or architectural
components

The number of reused system requirements or architectural components
that the systems engineer had to modify and the number that they did not
have to modify

B-21

Appendix B. Product Development Activity Specifications

B.1.9 Analyze System Modifiability

Overview

Performers

Inputs

Outputs

In the Analyze System Modifiability activity, you analyze the system
architecture for its ability to be modified. Your analysis needs to take into
consideration any constraints provided in the cycle development plan.

Maodifiability is the measure of the system’s ability to be improved, extended,
and ported during its life cycle. Because you can change any system in almost
any way given enough time, resources, and money, modifiability is a measure
of a system’s ability to change in an efficient manner.

Modifications to the system may be due to a change in users or market
segment, purpose, environment (i.., single versus multiuser, hardware versus
software configuration), or user workload. Specific characteristics within a
system architecture that would support such modifications include:

* Improvability. This is a measure of the efficiency of making major
adaptions, changes, and improvements to the system. It differs from main-
tainability in that a fault is not currently present in the system; rather, you
are improving a working system.

o Extendability. This is a measure of the ease of adding new factors to an
existing system.

* Portability. This is a measure of the ease of moving a system from one
environment to another (Gilb 1988).

You also measure a system’s modifiability to ensure conformance to any
system requirements requiring changes to the system after deployment; for
example, you may have to port a system to another target environment after
deployment or you may have to make technology upgrades to a long-lived
system. You should record your findings of this analysis along with
recommendations of how the software and systems engineers should develop
the system or how the system architecture and/or system requirements the
systems engineer should change to accommodate later system modifications.

Systems engineer, risk analyst

¢ Cycle plan

* System architecture

* Analysis requests

¢ System requirements

* System modifiability analysis results

* Product change data

B-22

Appendix B. Product Developmeat Activity Specifications

Entrance Criteria

Measurables

You have received the baselined system requirements.
You have received the baselined cycle development plan.

You have received a system architecture defined to a level detailed enough
to allow for analysis of modifiability characteristics.

You have received a request to analyze the system architecture for certain
modifiability features.

You have documented and completed the results of the system
modifiability analysis.

You have documented the analysis results and your recommended changes
to the system architecture or the system requirements to improve
modifiability of the system into the product change data document.

The total labor effort for this activity.

The total labor effort spent on fixing system problems enhancing the
system after delivery, and porting the system to another platform in
relation to the size of the system

B-23

Appendix B. Product Development Activity Specifications

B.1.10 Analyze System Functionality

Overview

Performers
Inputs

Entrance Criteria

In the Analyze System Functionality activity, you analyze the system
architecture for specific functionality characteristics. Input to this activity
includes the system requirements, the software engineering environment
under which the software engineers will develop the system, and the
constraints and methods provided in the cycle development plan.

The functionality characteristics you analyze should support the operational,
test, support, distribution, marketing, and production requirements of the
system. Specifically, functionality characteristics include how the architecture
supports and addresses:

* The goals and requirements of the system
* The scope of planned system automation
* The quality of the decomposition of the architecture

* The range of applicability (e.g., does the architecture support multiusers
and single users, does the architecture support different workloads, and
does the architecture support different user hardware and software
environments)

* Any standards or government regulations

Functionality characteristics also include how the system compares with any
competition, a complexity analysis among the hardware and software
components and their interfaces, and support for evolution

You should document any recommended changes to the system architecture
or the system requirements to improve the system’s functionality. You should
also document the analysis results

Systems engineer, risk analyst

¢ System requirements

¢ Cycle plan

¢ System architecture

* Analysis requests

* Software engineering environment
* System functionality analysis results
* Product change data

* You have received a system architecture defined to a level detailed enough
to allow for analysis of functionality characteristics.

B-24

Appendix B. Product Development Activity Specifications

Measurables

e There is a request to analyze the system architecture for functionality
features.

* You have received the baselined system requirements.
* You have identified the software engineering environment.
* You have received the baselined cycle development plan.

* You have documented and completed the results of the system
functionality analysis, and they are acceptable to the customer.

* You have documented any changes to the software requirements or the
system architecture that will improve the functionality of the system in the
product change document.

The measurement to be taken for this activity is the total labor effort for this
activity.

B-25

Appendix B. Product Development Activity Specifications

B.1.11 Recommend Software System Development Strategy

Overview

Performers

Inputs

Outputs

In the Recommend Software System Development Strategy activity, you
define a strategy that provides the most appropriate approach to developing,
integrating, and delivering the hardware and software systems. A major part
of the strategy is a decision to use either a monolithic or an evolutionary
development process. Decisions that you may make include putting off
high-risk development areas to later deliveries or, if these areas represent a
high expected value, including them as part of the initial development cycles.

Input to this activity comes from the system requirements, system
architecture, the project’s schedule (to allow you to understand delivery
requirements), the cycle development plan (to allow you to understand any
activity constraints or techniques that you need to follow), available resources,
and the approach(es) selected for development. You perform this activity
concurrently with the definition of the system requirements, system
architecture, and project schedules because how the software and systems
engineers are going to develop them has a direct impact on the cost of system
development and how the software and systems engineers can develop the
software system.

In this activi‘y, you develop a strategy for developing and delivering a series
of system builds to deliver increasing functionality to the customer during the
development period. This reduces potential problems to manageable levels
that the project, customer, and user can address with clear corrective actions
by providing a checkpoint for project management and the customer to assess
the technical, schedule, and cost status of a system development effort. The
incremental implementation strategy should include a series of delivered
system builds, each a combination of fully or partially completed configuration
items and each adding increasing functionality to a proven baseline. The last
build should encompass the entire system.

In this activity, you also develop a strategy for developing the system
documentation that is consistent with the software system development plan.

Technical lead, systems engineer, project manager, documentation manager
* Recommended approach

¢ System requirements

s Cycle plan

* Project master schedule

e System architecture

¢ Available resources

* Software system development strategy

¢ System build definition

B-26

Appendix B. Product Development Activity Specifications

Entrance Criteria

Exit Criteria

Measurables

You have received system requirements defined to a level detailed enough
to start identifying a software system development strategy.

You have received a system architecture defined to a level detailed enough
to start identifying a software system development strategy.

You have received the project master schedule defined to a level detailed
enough to start identifying a software system development strategy
specifically identifying contract-specified deliverable dates.

You have received a baselined cycle development plan.
You have received a baselined recommended approach.

You have identified the project resources, including environment,
facilities, and personnel.

You have developed a software system development strategy that includes
the rationale for selecting the process model and the rationale for anincre-
mental implementation schedule if you chose an incremental build or an
evolutionary development-based process model.

You have baselined a documentation development strategy that is feasible
and consistent with the software system development strategy.

You have baselined the system build definition.
The total labor effort

The number of system builds scheduled versus the size of the system
(number of architectural components)

B-27

Appendix B. Product Development Activity Specifications

B.1.12 Integrate Software System Components

Overview

Performers

Inputs

Outputs

Entrance Criteria

Exit Criteria

Measurables

In the Integrate Software System Components activity, youintegrate all CSCls
and HWCls into a single system build according to the system build definition
and the system architecture. This includes ensuring that the interfaces across
the CSCIs and HWClIs are complete and that you have loaded each CSCI onto
the appropriate HWCI. The cycle development plan provides any constraints
and describes the method by which you should perform this activity.

Systems engineer, configuration manager

¢ Cycle plan

* HWCI

* System architecture

e CSCI

¢ System build definition

The output from this activity is the system.

* You have received a baselined system architecture.

* You have received a baselined system build definition.

* You have received all of the developed and verified CSCIs and HWClIs
needed for this build.

* You have received a baselined cycle development plan.

The exit criterion for this activity is that you have integrated all needed CSCIs
and HWCls into a single system build.

The measurement to be taken for this activity is the total labor effort.

B-28

Appendix B. Product Development Activity Specifications

B.2 SOFTWARE ENGINEERING

The Software Engineering activity class includes all activities related to
software requirements definition, design, implementation, and integration.

B.2.1 Define Software and Interface Requirements

Overview

In the Define Software and Interface Requirements activity, you analyze the
system requirements to generate derived requirements that further clarify the
allocated requirements and result in a complete set of CSCI engineering
requirements, including the following:

Functionality and capability specifications, including performance,
quality, and physical characteristics and environmental conditions under
which the software will perform

Safety specifications, including those related to methods of operation and
maintenance, environmental influences, and personnel injury

Security specifications, including those related to compromising sensitive
information or materials

Human-engineering and man-machine specifications, including those
related to manual operations, human-equipment interactions, constraints
on personnel, areas needing concentrated human attention that are
sensitive to human errors, and training

Hardware processing resource and reserve specifications for processors,
memory devices, and data channels

Database requirements

Installation and acceptance requirements of the delivered software at the
operation and maintenance site(s)

User operation and execution requirements
User maintenance requirements
Quality-oriented requirements

Qualification requirements necessary to show that the software
component complies with the established requirements

Interface requirements that specify the protocols, priority, and
concurrency of the software components

You use the risk assessment to identify incomplete, missing, or volatile
requirements and to request that analysis activities, such as simulations,
modeling, and prototyping, be performed to further clarify those

B-29

Appendix B. Product Development Activity Specifications

Performers

Inputs

Outputs

Entrance Criteria

Exit Criteria

requirements. You also specify a set of product evaluation criteria that the
software engineers will use during software system verification to ensure that
the system meets all the software requirements.

You should iterate through this activity to progressively refine the software
requirements. You negotiate changes to the system requirements if necessary
and beneficial. You assess the impact of any proposed changes to the software
requirements and implement any approved changes.

Customer, user, software engineer, systems engineer

System requirements

Cycle plan

RMP

Software analysis data

Software engineering environment
Product change data

Software requirements

Analysis requests

Product change data

There is a need to define or modify the software requirements based on
one or more of the following inputs:

— Abaselined set of system requirements
— An approved change to the software requirements

A risk assessment is available that identifies ambiguous, volatile, or
conflicting system requirements.

You have received the baselined cycle development plan.

The software engineering environment is available to perform
requirements analysis.

The software requirements defined or modified during this iteration of the
activity meet the following criteria:

— They satisfy the customer’s needs.

— They are traceable to the system requirements.

Appeadix B. Product Development Activity Specifications

— They comply with system and software constraints.
— They are consistent with each other.

— They are verifiable.

— They are feasible.

— They are understandable.

* You have issued requests to analyze any ambiguous, incomplete, or
conflicting requirements.

* You have issued any proposed changes to the system requirements.

Measurables ¢ The number of software and interface requirements that you derived,
modified, or deleted during this iteration of the activity

e The number of changes that you proposed to the system requirements

* The number of labor hours required to define the software and interface
requirements

B-31

Appendix B. Product Development Activity Specifications

B.2.2 Design Software Architecture

Overview The goal of the Design Software Architecture activity is to derive a software
system configuration that performs the required functions at the necessary
level of performance and reliability. The results of the design effort should be
a software architecture representing an implementable, maintainable, and
reusable product that meets all technical, cost, and schedule considerations.
This activity consists of the following tasks:

* You transform the CSCI software requirements and the system
architecture into a software architecture that describes the top-level struc-
ture, identifies major components, and indicates the hierarchy of control
for each CSCI.

* You apply the CSCI requirements to the computer software components
(CSCs) and further refine them to facilitate detailed design.

¢ You partition software requirements into derived requirements, or you
generate new requirements to describe the component’s purpose. You de-
fine the relationships, events, state behavior, and information domains of
each CSC.

* When possible, you reuse software components and architectures from
comparable systems.

* You use application standards, such as operating system interfaces,
computer-human interfaces, and networking interfaces where
appropriate.

* You should address the following considerations when deriving the
software architecture:

— Allocation of Functionality. Due to budget or resource constraints, you
may need to limit the initial functionality of the software system to fall
within a subset of the software requirements.

— Volatile Requirements. You may wish to allocate unstable requirements
to isolated architectural components.

— Modular Design. Modular designs are more flexible and ease planned
evolution, implementation, and enhancement.

— Commonality. You should analyze the architecture for common
software components. The multiple use of these components
simplifies implementation and maintenance.

The risk assessment identifies potential high-risk areas in the design. If
needed, you should perform analysis activities to obtain the additional
engineering information needed to understand those portions of the design.

B-32

Appeadix B. Product Developmeat Activity Specifications

Performers
Inputs

Outputs

Entrance Criteria

You develop and document a top-level design for the inter- and intra-CSCI
interfaces. You define the message formats, calling parameters, and priorities
of each interface.

You establish software build definitions that define the incremental
development of functional subsets of the software.

Software engineer

System architecture
Software requirements
Cycle plan

Software analysis data

RMP

Database description
Software engineering environment
Reuse library

Product change data
Software system architecture
Analysis requests

Software build definition
Product change data

There is a need to develop or modify the software architecture based on
one or more of the following inputs:

— Abaselined set of software requirements

— Abaselined system architecture

A baselined database description
— An approved change to the software architecture
You have received the baselined cycle development plan.

Arisk assessment is available that identifies high-risk areas in the software
system architecture.

The software engineering environment is available to develop the software
architecture.

B-33

Appendix B. Product Development Activity Specifications

Exit Criteria

Measurables

The software architectural design that you created or modified during this
iteration of the activity meets the following criteria:

— It is traceable to the software requirements.

— It is consistent with the software requirements.
— It is compliant with project standards.

— Itis feasible.

-~ It is maintainable.

You have specified the functionality to be included for each of the software
builds leading to an integrated CSCI.

You have issued requests to analyze any high-risk areas of the design.

You have issued any proposed changes to the database description or
software requirements.

The number of component designs you added, modified, or deleted during
this iteration through the activity

The number of changes you proposed to the software requirements or the
database description

The number of labor hours required to define the software system
architecture

B-34

Appendix B. Product Development Activity Specifications

B.2.3 Analyze Software Performance

Overview

Performers

Inputs

Outputs

Entrance Criteria

In the Analyze Software Performance activity, you determine whether the
software timing and sizing requirements are consistent and complete. You
analyze the software system architecture to ensure that the architecture
satisfies these critical requirements during system operation. You should
analyze standard performance features, such as the amount of overhead the
operating system uses to schedule each program, expansion factors for source
code, effective communication transfer rates, and database throughput
through simulation, modeling, or other appropriate means. Concentrate on
software that is particularly critical to system performance, such as interrupt
handlers, network protocols, etc.

You document the results of the analysis and any proposed changes to the
software system architecture and the software requirements that will improve
the performance of the software.

Software engineer, risk analyst

* Software requirements

¢ Software system architecture

¢ System performance analysis results

e RMP

¢ Cycle plan

* Database description

* Analysis requests

¢ Software performance analysis results
* Product change data

* There is a need to analyze the performance of the software system
architecture based on one or more of the following inputs:

- The risk assessment identifies software performance as a high risk.

~ You have received a request to analyze the software for specific
performance features.

— The system performance analysis results indicate a problem with the
software performance.

* You have received a baselined version of the software requirements.

* The database description is detailed enough to allow for the analysis of
performance characteristics.

B-35

Appeadix B. Product Development Activity Specifications

* You have received the baselined cycle development plan.

Exit Criteria * You have documented and completed the results of the software
performance analysis.

¢ You have proposed any changes to the software system architecture or to
the software requirements that will improve performance to the
Configuration Change Board (CCB).

Measurables * The actual performance of certain software configurations compared to
the performance estimates

¢ The number of changes you proposed to the software system architecture
and/or the software requirements

* The total labor hours required to analyze software performance

B-36

Appendix B. Product Development Activity Specifications

B.2.4 Analyze Software Reusability

Overview

Performers

Outputs

Entrance Criteria

In the Analyze Software Reusability activity, you identify reusable
components that the software engineer can use during software system
development to satisfy part of the software requirements. You evaluate any
modifications that need to be done to the component or the software
architecture so that the software engineer can integrate it into the system. You
then qualify the reusable component to verify that it is of high quality and
satisfies all functional and nonfunctional requirements allocated to it.

You identify any commercial off-the-shelf (COTS) software that the software
engineer can use during software system development to satisfy part of the
software requirements. You submit resource requests to project managers so
that they can purchase the COTS software. You also analyze the software
requirements and the software system architecture to identify any parts of the
software system as good candidates for reuse in later software development
efforts. You propose any modifications to the architecture or requirements
that make the architecture more reusable.

Software engineer, risk analyst

¢ System reusability analysis results

¢ Software requirements

¢ Software system architecture

¢ Cycle plan

* Analysis requests

* Reuse library

* Software reusability analysis results
¢ Product change data

* Resource request

There is a need to analyze software reusability based on one or more of the
following inputs: -

* You have received a request to identify reusable components that the
software engineers can use during the software system development.

* You have received a request to analyze the software requirements and the
software architecture to identify those parts of the software system that
future projects can reuse.

* You have identified a specific reusable component that may be userul to
your project.

B-37

Appeadix B. Product Development Activity Specifications

Exit Criteria

Measurables

You have received the baselined cycle development plan.

You have documented and completed the results of the software
reusability analysis.

You have identified and qualified reusable components that the software
engineers will use during software system development.

You have proposed any changes to the software system architecture and/or
software requirements that will improve the reusability of the software to
the CCB.

You have submitted requests for COTS software to project management.

The percentage of software requirements that the reusable components
satisfy

The number of changes that you proposed to the software system
architecture and/or the software requirements

The number of iabor hours needed to complete reusability analysis

B-38

Appendix B. Product Development Activity Specifications

B.2.5 Analyze Software Modifiability

Overview

Performers

Inputs

Outputs

Entrance Criteria

In the Analyze Software Modifiability activity, you analyze the software
system architecture to identify any changes that may make it easier to modify,
improve, extend, maintain, or port the system. You should try to isolate those
parts of the architecture that depend on the operating system, database
management system, or target environment. If you are delivering a subset of
the proposed functionality to the customer, you should ensure that you have
provided proper “hooks” in the architecture so that you can expand it to
accommodate the full system functionality. You should enforce the use of
modular structured programming techniques.

You document the results of the analysis and propose any changes to the
software requirements and/or software system architecture that will improve
the modifiability of the system.

Software engineer, risk analyst

* Software system architecture

¢ System modifiability analysis results

s Cycle plan

* Target environment

* Database management system

* Database description

* Analysis requests

* Software modifiability analysis results
¢ Product change data

* You have received a request to analyze the software system architecture
to ensure that you can easily modify, improve, extend, maintain, and port
it.

* The database description is detailed enough to analyze the software
system modifiability.

* You have identified the target environment.
* You have identified the database management system.
* You have received the baselined cycle development plan.

* You have documented and completed the results of the software
modifiability analysis.

B-39

Appendix B. Product Development Activity Specifications

Measurables

You have proposed any changes to the software system architecture that
will improve the modifiability of the software system to the CCB.

The number of changes that you proposed to the software system
architecture

The number of labor hours needed to complete the modifiability analysis

B-40

Appendix B. Product Development Activity Specifications

B.2.6 Analyze Software Functionality

Overview

Performers

Inputs

Outputs

Entrance Criteria

Exit Criteria

In the Analyze Software Functionality activity, you analyze any incomplete,
inconsistent, or ambiguous software requirements that define the
functionality of the software system. If limited resources prevent you from
developing the complete system functionality, work with the customer and the
user to derive a subset of the functionality requirements that satisfy the project
mission.

Software engineer, risk analyst, customer, user
e System functionality analysis results

¢ Cycle plan

* RMP

¢ Software requirements

» Software system architecture

* Analysis requests

» Software functionality analysis results

* Product change data

» There is a need to analyze the feasibility of satisfying all or part of the
software functional requirements based on one or more of the following
inputs:

— The risk assessment has identified some functional software
requirements as a high risk.

— You have received a request to analyze the functional software
requirements.

— The system functionality analysis results indicate a problem with the
software functionality.

¢ You have received a baselined version of the software requirements.
* You have received the baselined cycle development plan.

* You have documented and completed the results of the software
functionality analysis.

* You have proposed any changes to the software requirements that will
improve the functionality of the system to the customer and user for
acceptance.

B-41

Appendix B. Product Develog .nent Activity Specifications

Measurables * The number of the changes that you proposed to the software
requirements

¢ The number of labor hours needed to complete the functionality analysis

B-42

Appendix B. Product Development Activity Specifications

B.2.7 Design Database

Overview

Performers

Inputs

Outpuss

In the Design Database activity, you develop the database design description,
which establishes the data models, schemas, and physical structure of the
database. Because the database design has a major impact on the software
design, complete the database design during the software requirements phase
or early in the software design phase to minimize cost and schedule impact.

This activity consists of the following tasks:

You perform local and global information flow modeling. During this task,
you define the following:

— Data flows throughout the system
— Information models for each CSCI and for the entire system
~ Data classification, requirements, and sources

You develop the conceptual and external schemas. During this task, you
define the following:

— Data structures for system-wide and CSCl-oriented views of the
system

— The user views of the database to support their own application
idiosyncrasies

— A logical database schema that resolves the differences between the
different views

You design the physical database. You take the conceptual schema and
map it to the specific hardware and software environment. You describe
the data entities, attributes, relationships, and constraints. You should
analyze the physical database design to ensure that you have satisfied all
relevant, nonfunctional requirements.

Software engineer

Software requirements

Cycle plan

System requirements
Database management system

Product change data

The output frova this activity is the database description.

B-43

Appendix B. Product Developmeni Activity Specifications

Entrance Criteria

Exit Criteria

Measurables

There is a need todevelop or modify the database descriptionbased onone
or more of the following inputs:

~ A baselined set of system requirements

— Software requirements that help specify the database description
— An ECP that affects the database description

You have received the baselined cycle development plan.

You have identified the database management system.

The exit criterion for this activity is that the database description meets the
following criteria:

It is internally consistent to reduce the chances of contradictory results
from the information system.

It is complete to ensure that the database can satisfy known information
requirements and enforce known constraints.

It is robust to allow adaptation to foreseeable changes in the information
requirements.

It is efficient to ensure that the database management system updates,
stcres, and retrieves the data to be readily accessible to users.

The number of schema changes you made during this iteration through the
activity

The number, severity, and source of ECPs that affect the database
description

The number of labor hours needed to complete the database design

B-44

Appendix B. Product Development Activity Specifications

B.2.8 Design Software Components

Overview

Performers

Inputs

Outputs

Entrance Criteria

In the Design Software Components activity, you refine the software system
architecture until you have identified the lowest level components and their
interfaces. For each component, you specify the data structure, algorithm, and
control information to a level that allows direct translation to a programming
language. For each component interface, you specify the parameter formats,
exception conditions, and limit values. You define and finalize all global data
structures.

You file software problem reports when you find any problems or
inconsistencies in the software component design.

Software engineer

Software requirements

Software system architecture
Database description

Cycle plan

Software engineering environment
Reuse library

Software problem report

Computer software unit (CSU) design
CSU interface design

Software problem report

There is a need to develop or modify the detailed design of a software
component based on one or more of the following inputs:

— A baselined set of software requirements

— A baselined software system architecture

—~ A baselined database description

— Assolution to a software problem report

You have received the baselined cycle development plan.

The software engineering environment is available to design the software
components.

B-45

Appendix B. Product Development Activity Specifications

Measurables

You have identified all reusable components.
The detailed design for each component meets the following criteria:
— Itis traceable to the software requirements.

— It is consistent with the software architecture.

It is feasible.

~ It is maintainable.

— It complies with project standards.

You have filed all software problem reports.

The number of CSU designs that you created, modified, or deleted during
this iteration through the activity

The number of software problem reports that you generated against each
CSU design

The number of labor hours needed to complete each CSU design

B-46

Appendix B. Product Development Activity Specifications I

B.2.9 Create Software Components

Overview In the Create Software Components activity, you develop and document the
source code for each CSU in accordance with the detailed design. Source code
that you are reusing but that requires major changes should be subject to the
same standards as new units. You develop and document any database utilities
that you require. You file software problem reports against any problems you
found during the verification of this activity.

Performers Software engineer
Inputs e Cycle plan
e CSU design

¢ CSU interface design
» Software engineering environment
* Reuse library
¢ Software problem report
Outputs e CSU
* Software problem report

Entrance Criteria * There is a need to develop or modify the source code for a software
component based on one or more of the following:

~ The CSU interface design and CSU design for that component
— Assolution to a software problem report
* You have received the baselined cycle development plan.

* The software engineering environment is available for implementing the
software components.

* You have identified all reusable components.
Exit Criteria * The CSU:
— Satisfies all allocated requirements
— Is correct, both semantically and syntactically
— Is consistent with the CSU design

— Is maintainable

B-47

Appendix B. Product Development Activity Specifications

-~ Is understandable
-~ Complies with project standards
* You have filed all software problem reports

Measurables * The number, severity, and source of software problem reports that you
filed against the CSU

* The ratio of the actual CSU size to the estimated CSU size
* The number of labor hours required to code each CSU

* The ratio of the number of CSUs coded to the total number of CSUs
initially identified in the detailed design

B-48

Appendix B. Product Development Activity Specifications

B.2.10 Integrate Software Components

Overview

Performers

Inputs

Outputs

Entrance Criteria

Exit Criteria
Measurables

In «ne Integrate Software Components activity, you integrate the CSUs into
CSCs and CSClIs according to the software build definitions. You should use
the “build a little, test a little” approach and be concerned with the
construction of an ever-increasing string of functionality through a
progressive, incremental process of adding CSUs to the growing core of
software.

Software engineer
* Cycle plan
« CSU

¢ Database management system

e Software build definition

e CSC
* CSC
s CSCI

* There is a need to integrate CSUs into CSCs and CSCIs based on the
software build definitions.

* You have received the baselined cycle development plan.
* You have identified the database management system.
The exit criterion for this activity is that you have built all CSCIs.

There are no measurements to be taken for this activity.

B-49

Appendix B. Product Development Activity Specifications

B.3 PRODUCT VERIFICATION AND VALIDATION

The Product Verification and Validation activity class includes all activities
related to the verification and validation of the system and software
requirements.

B.3.1 Plan Verification and Validation

Overview

Inputs

Outputs

Ent Criteri

Measurables

In the Plan Verification and Validation activity, you plan the product
verification and validation activities. This includes using the project master
schedule, product size estimate, and available resources to develop a
verification and validation plan and make resource requests. It also includes
using the documentation requirements to establish verification
documentation for the Product Verification and Validation activities.

Verification engineer, project manager

Project master schedule
Auvailable resources
Documentation requirement
Product size estimate

Project master schedule
Resource request

Verification and validation plan
Verification documentation

You have a product size estimate with sufficient detail to allow estimating
the resources required for Product Verification and Validation activities.

You have received the project master schedule.
You have developed the verification and validation plan.

You have identified the resources needed for Product Verification and
Validation activities and made appropriate resource requests.

You have incorporated Product Verification and Validation activities into
the project master schedule.

You have established the verification documentation.
The actual cost of the product verification and validation activities

The actual duration of the product verification and validation activities

B-50

Appeadix B. Product Development Activity Specifications

B.4 SYSTEM VERIFICATION AND VALIDATION

The System Verification and Validation activity class includes those activities
that are concerned with the verification and validation of the system
requirements.

B.4.1 Validate System Requirements

Overview

Performers
Inputs
Outputs

Entrance Criteria

Measurables

In the Validate System Requirements activity, you validate with the customer
and user that the system requirements are complete and correct. You and the
customer evaluate the system requirements to make certain they meet his
needs. If they do not, you negotiate a mutually acceptable change and
document this with a system requirements change.

Project manager, systems engineer, customer, user
The inputs to this activity are the system requirements.
¢ System requirements validation results

¢ Product change data

* You have a set of system requirements in a proper format, and with
sufficient detail, to be validated.

* The customer has agreed to meet and validate the current system
requirements.

* You have validated the system requirements with the customer.
* You have generated system requirements changes as necessary.

The measurement to be taken for this activity is the number of system
requirement changes, their impact (e.g., major or minor), and their cost.

B-51

Appendix B. Product Development Activity Specifications

B.4.2 Define System Integration Verification

Overview

Performers

Inputs

Outputs

Entrance Criteria

In the Define System Integration Verification activity, you plan the
verification of the system to ensure that it meets all specified system
requirements. This includes using the requirements flow diagram and
verifiability checklists to define and generate system integration verification
cases that map to all system requirements and documenting both the system
integration verification cases and expected system integration verification
results in the verification documentation. It also includes updating the
verification and validation plan and the project master schedule with any new
information regarding the Verify System Integration activity.

Verification engineer, systems engineer

Project master schedule

System requirements

Verifiability checklists

Verification documentation

Verification and validation plan

Requirements flow diagram

Project master schedule

Verification documentation

Verification and validation plan

You have received a baselined version of the system requirements.

You have filled out the requirements flow diagram from the system
requirements sufficiently to define the system integration verification
cases.

You have filled out the verifiability checklists from the system
requirements sufficiently to determine the expected system integration
verification results.

You have received a baselined version of the verification and validation
plan.

You have received the project master scheduie.

You have documented both the system integration verification cases and
expected system integration verification results in the verification
documentation.

B-52

Appendix B. Product Developmeat Activity Specifications

You have updated the verification and validation plan as necessary.
You have updated the project master schedule as necessary.
The actual cost to perform this activity

The actual duration of this activity

B-53

Appendix B. Product Development Activity Specifications

B.4.3 Verify System Integration

Overview

Performers

Inputs

Outputs

Entrance Criteria

Exit Criteria

Measurables

In the Verify System Integration activity, you actually verify the entire
integrated system. You execute all system integration verification cases, which
generate actual system integration verification results. You record both the
actual system integration verification results and any deviations between
actual system integration verification results and expected system integration
verification results in the verification log. You also generate an software
problem report for each recorded deviation.

Verification engineer

System

Verification documentation

Verification and vaiidation plan

Software problem report

Verification log

The integrated system is ready for verification.

You have received all system integration verification cases and expected
system integration verification results.

You have executed all system integration verification cases.

You have recorded the actual system integration verification results in the
verification log.

You have recorded any deviations between actual system integration
verification results and expected system integration verification results in
the verification log.

You have generated a software problem report for each recorded
deviation.

The actual cost of this activity
The actual duration of this activity

The number of software problem reports you generated and their severity
(e.g., fatal, serious, or mild)

B-54

Appendix B. Product Development Activity Specifications

B.4.4 Demonstrate System Capabilities

Overview

Performers

Inputs

Outputs

Entrance Criteria

Exit Criteria

Measurables

In the Demonstrate System Capabilities activity, you demonstrate the system
to the customer to show that it meets all system qualification requirements.
Often, the customer actually exercises the system to determine that the system
qualification requirements have been fulfilled.

Project manager, customer, user

e System qualification requirement

¢ Verification and validation plan

s System

The outputs from this activity are the system demonstration results.
* The system is ready for demonstration.

e The verification and validation plan is complete for this activity.
* You have identified the system qualification requirements.

The exit criterion for this activity is that the customer is satisfied that the
system meets all system qualification requirements.

The measurement to be taken for this activity is the percentage of system
qualification requirements satisfied during the activity.

B-55

Appendix B. Product Development Activity Specifications

B.5 SOFTWARE VERIFICATION AND VALIDATION

The Software Verification and Validation activity class includes activities
concerned with the verification and validation of the software requirements.

B.5.1 Validate Software Requirements

Overview

Performers
Inputs
Outputs

Entrance Criteria

Exit Criteria

Measurables

In the Validate Software Requirements activity, you validate with the
customer and user that the software requirements are complete and correct.
You and the customer evaluate the software requirements to make certain
they meet his needs. If they do not, you negotiate a mutually acceptable change
and document this with a software requirement change.

Software engineer, customer, project manager, user

The inputs to this activity are the software requirements.

Product change data
Software requirements validation results

You have a set of software requirements in a proper format and with
sufficient detail to be validated.

The customer has agreed to meet and validate the current software
requirements.

You have validated the software requirements with the customer.

You have generated software requirements changes as necessary.

The measurement to be taken for this activity is the number of software
requirements changes you generated and their impact (e.g., major or minor).

B-56

Appendix B. Product Development Activity Specificatioas

B.5.2 Define Software Component Verification

Overview

Performers

Inputs

Outputs

Entrance Criteria

Exit Criteria

In the Define Software Component Verification activity, you plan the
verification of a CSU to ensure that it meets all specified software
requirements. This includes using the functionality flow chart and verifiability
checklists to define and generate software component verification cases, which
map to all specified software requirements and documenting both the software
component verification cases and expected software component verification
results in the verification documentation. It also includes updating the
verification and validation plan and the project master schedule with any new
information regarding the Verify Software Component activity.

Verification engineer, software engineer

Software requirements

Verifiability checklists

Verification documentation

Verification and validation plan

Project master schedule

Requirements flow diagram

Project master schedule

Verification documentation

Verification and validation plan

You have received a baselined version of the software requirements.

You have filled out the requirements flow diagram from the software
requirements sufficiently to define software component verification cases.

You have filled out the verifiability checklists from the software
requirements sufficiently to determine expected software component
verification results.

You have received a baselined version of the verification and validation
plan.

You have received the project master schedule.
You have documented both the software component verification cases and

expected software component verification results in the verification
documentation.

B-57

Appendix B. Product Development Activity Specifications

Measurables

You have updated the verification and validation plan as necessary.
You have updated the project master schedule as necessary.
The actual cost to perform this activity

The actual duration of this activity

B-58

Appendix B. Product Development Activity Specifications

B.5.3 Verify Software Component

Overview

Performers

Inputs

Outputs

Entrance Criteria

Exit Criteria

Measurables

In the Verify Software Component activity, you actually verify the CSU. You
execute all software component verification cases, which generate actual
software component verification results. You record both the actual software
component verification results and any deviations between actual software
component verification results and expected software component verification
results in the verification log. You also generate a software problem report for
each recorded deviation.

Verification engineer

Verification documentation

Csu

Verification and validation plan
Software problem report
Verification log

The CSU is ready for verification.

You have received all software component verification cases and expected
software component verification results.

The exit criteria for this activity are:

You have executed all software component verification cases.

You have recorded the actual software component verification results in
the verification log.

You have recorded any deviations between actual software component
verification results and expected software component verification results
in the verification log.

You have generated a software problem report for each recorded
deviation.

The actual cost of performing this activity
The actual duration of this activity

The number of software problem reports you generated and their severity
(e.g., fatal, serious, or mild)

B-59

Appendix B. Product Development Activity Specifications

B.5.4 Define Software Integration Verification

Overview

Performers

Inputs

Outputs

Entrance Criteria

Exit Criteria

In the Define Software Integration Verification activity, you plan the
verification of a CSC or CSCI to ensure that it meets the software
requirements. This includes using the requirements flow diagram and
verifiability checklists to define and generate software integration verification
cases that map to all specified software requirements and documenting both
the software integration verification cases and expected software integration
verification results in the verification documentation. It also includes updating
the verification and validation plan and the project master schedule with any
new information regarding the Verify Software Integration activity.

Verification engineer, systems engineer, software engineer

Project master schedule

Software requirements

Verifiability checklists

Verification documentation

Verification and validation plan

Requirements flow diagram

Project master schedule

Verification documentation

Verification and validation plan

You have received a baselined version of the software requirements.

You have filled out the requirements flow diagram from the software
system architecture and software requirements sufficiently to define the
software integration verification case..

You have filled out the verifiability checklists from the software system
architecture and software requirements sufficiently to define the software
integration verification cases.

You have received a baseline version of the verification and validation
plan.

You have received the project master schedule.

You have documented both the software integration verification cases and
expected software integration verification results in the verification
documentation.

B-60

Appeadix B. Product Development Activity Specifications

Measurables

You have updated the verification and validation plan.
You have updated the project master schedule.
The cost of this activity

The duration of this activity

B-61

Appendix B. Product Development Activity Specifications

B.5.5 Verify Software Integration

Overview

Performers

Inputs

Outputs

Entrance Criteria

Exit Criteria

Measurables

In the Verify Software Integration activity, you actually verify the CSC or
CSCI. You execute all software integration verification cases that generate
actual software integration verification resuits. You record both the actual
software integration verification results and any deviations between actual
software integration verification results and expected software integration
verification results in the verification log. You also generate a software
problem report for each recorded deviation.

Verification engineer

Verification documentation

Csc

CSCI

Software problem report

Verification log

The CSC or CSCl is ready for verification.

You have received all software integration verification cases and expected
software integration verification results.

You have executed all software integration verification cases.

You have recorded the actual software integration verification results in
the verification log.

You have recorded any deviations between actual software integration
verification results and expected software integration verification results
in the verification log.

You have generated a software problem report for each recorded
deviation.

The actual cost to perform this activity
The actual duration of this activity

The number of software problem reports you generated and their severity
(e.g., fatal, serious, or mild)

B-62

Appendix B. Product Development Activity Specifications

B.6 OPERATION AND MAINTENANCE

The Operation and Maintenance activity class includes all those activities
related to system installation and operational support.

B.6.1 Plan System Installation

Overview

Performers

Inputs

In the Plan System Installation activity, you analyze the system architecture,
the system build definitions, and the client’s need for continuity and level of
service to derive a plan on how best to install the system in the target
environment. The installation plan should address the following:

The schedule for all activities

The configuration items to be delivered to the site

The number and qualifications of installation personnel
The equipment installation procedures

The hardware, software, tools, documentation, and office space required
for installation

The target facility requirements
The anticipated effects on client and operations personnel

The special requirements governing the movement of equipment at the
site

If the developed system is to replace an existing system, develop a transition
plan to minimize the disruption in ongoing operations. The transition plan
should identify:

Needed support services, such as reference documents, technical
assistance, and follow-on training

Staffing requirements for the operation and maintenance organization
The system release process

Data migration from the old system to the new system

Problem identification and resolution procedures

Final cutover procedures

Systems engineer, technical support engineer

Target environment

B-63

Appeadix B. Product Developmeat Activity Specifications

e Cycle plan
¢ System requirements

e System architecture

Outputs » Installation plan
e Transition plan
Entrance Criteria ¢ You have reccived the baselined system architecture.
* You have received the baselined system requirements.
¢ You have identified the target environment.
* You have received the baselined cycle development plan.
Exit Criteria * The project manager and the customer approve the system installation
plan.
¢ The project manager and the customer approve the transition plan. ‘
Measurables The measurement to be taken for this activity is the number of labor hours
required to write and review the installation plan.
B-6¢

Appendix B. Product Development Activity Specifications

B.6.2 Install System
Overview

Performers
Inputs

Ouwtputs
Entrance Criteria

Exit Criteria

Measurables

In the Install System activity, you ensure that you have prepared the
operational sites for system installation. This includes ensuring that all
cabling, cooling, test, and security equipment is available at the facilities.

You distribute the software, hardware, and documentation to the operational
sites and install the system in the target environment according to the
procedures in the system instaliation plan. You ensure the integrity and quality
of the installed system through a series of installation tests and audits. You
demonstrate that the system performs as expected in the target environment
so that the customer can officially accept the system.

Technical support engineer

* Target environment

¢ Cycle plan

* Operating documentation

¢ System

e Installation plan

The output from this activity is customer acceptance.

* You have received the baselined system installation plan.

* You have received the baselined cycle development plan.

¢ The system increment to be installed is ready to be delivered.

* All associated documentation is complete and ready to be delivered.
The exit criterion for this activity is that the customer has accepted the system.

The measurement to be taken for this activity is the number of labor hours
required to complete system installation.

B-65

Appenadix B. Product Development Activity Specifications

B.6.3 Provide Operational Support

Overview

Performers

Inputs

Outputs

Entrance Criteria

Exit Criteria

In the Provide Operational Support activity, you provide technical assistance
in response to customer requests. You issue a software problem report for any
anomalies that you detect during system operation so that you can resolve
them.

You perform regular maintenance to the system to ensure that it performs
efficiently. This includes tuning the system to ensure that it performs
optimally, upgrading hardware or software components when needed, and
installing enhancements to system capabilities.

If the system is replacing an existing system, you may provide technical
consulting to smooth out the transition process.

Technical support engineer

* Transition plan

¢ Technical support requests

e System

¢ Maintenance requests

e Support environment

¢ Operating documentation

The output from this activity is the product change data.

* Youhavedistributed the operating documentation to the operational sites.
* You have installed the system at the operational sites.

¢ Thereisaneed toprovide technical assistance and consulting based onone
of the following:

— You have received a technical support request.
— You have received a maintenance request.

— The transition plan specifies that technical consulting will be provided
to the customer.

* You have satisfied the technical support request.
* You have successfully performed system maintenance.

* You have reported any system anomalies.

B-66

Appeadix B. Product Development Activity Specifications

Measurables

¢ The number of software problem reports you generated

* The number of labor hours required to service the system

B-67

Appendix B. Product Levelopment Activity Specifications

B.6.4 Identify New Operational Capabilities

Overview

Performers

Inputs

Outputs

Entrance Criteria

Exit Criteria

Measurables

In the Identify New Operational Capabilities activity, to solve an operational
problem or satisfy any customer requests or user requests, you analyze the
current operational system and decide to add a new operational capability,
enhance an existing operational capability, or define the operational
capabilities for a replacement system. You base your choice of action on the
cost, benefits, and risk to your customer.

Technical support engineer, systems engineer, customer, user
s System

¢ Product change data

* Customer/user feedback

The outputs from this activity are the operational capabilities.

There is a need to evaluate the current operational system and decide whether
you should enhance it based on one of the following:

* There is customer or user request for new operational capabilities.

* An operational problem report has identified an operational capability
that needs to be enhanced.

The exit criterion for this activity is that you have defined any new or enhanced
operational capabilities.

There are no measurements to be taken for this activity.

B-68

APPENDIX C. ARTIFACT DESCRIPTIONS

This appendix provides descriptions of artifacts that the activities specified in Appendix B use or
generate as inputs or outputs. Each artifact description includes a description and a list of activities
for which it is used as an input or output. An activity may not directly reference each artifact as an input
or output; instead, it may reference a higher level artifact, with the reference to its subartifacts as-
sumed. In cases where artifacts are composed of other artifacts, references are provided to the lower
level artifacts. Thus, the artifacts form a tree; you may traverse the tree by starting at the root. The
artifacts are provided in alphabetical order.

Activities and artifacts in boldface type are not specifically listed in Appendix B but are activities
defined and supported by the conceptual ESP model.

ANALYSIS REQUESTS

Description Analysis requests include requests for specific aspects or features that need to
be analyzed.
Generated by * Define Software and Interface Requirements

* Define System Requirements
¢ Design Software Architecture
¢ Develop System Architecture

Used as Input to

Analyze Software Functionality
* Analyze Software Modifiability
] Anélyze Software Performance
* Analyze Software Reusability

* Analyze System Dependability

¢ Analyze System Functionality

* Analyze System Modifiability

* Analyze System Performance

C1

Appeadix C. Artifact Descriptions

e Analyze System Reusability
e Design User Interface

AVAILABLE RESOURCES

Description Available resources contain the resources within the organization. The project
must request the use of a resource. Resources include staffing, equipment,
facilities, or computer equipment. This artifact is a subartifact of Spiral Plan
Documents.

Generated by The Develop/Update Estimate of the Situation activity generates this artifact.
Used as Input to e Plan Verification and Validation

* Recommend Software System Development Strategy

¢ Commit to Plan

* Plan and Schedule

* Perform Risk Analysis

* Develop/Update Estimate of the Situation

¢ Define Approach

¢ Review Context

* Review Risk Analysis

* Plan Risk Aversion

¢ Commit to Risk Aversion Strategy

¢ Execute Risk Aversion

* Review Alternative

* Review Technical Product

* Review Progress

e Update Spiral Plan

¢ Commit to Proceed

COMPANY IDEAS

Description Company ideas contain those ideas for a new or modified system that sources
internal to the company or organization but external to the project generate.
This artifact is a subartifact of Supporting Document.

C2

Appendix C. Artifact Descriptions

Generated by The Define Approach activity generates this artifact.
Used as Input to The Specify Operational Concept activity uses this artifact as input.
CSC
Description A CSC s a distinct part of a CSCI. You may further decompose CSCs into
other CSCs and CSUs.
Generated by The Integrate Software Components activity generates this artifact.
Used as Input to ¢ Integrate Software Components
e Verify Software Integration
CSClI
Description CSCI, s a configuration item for computer software.
Generated by The Integrate Software Components activity generates this artifact.
Used as Input to * Integrate Software System Components
¢ Product Change Control
e Verify Software Integration
CSU
Description A CSU is an element specified in the design of a CSC that is separately
testable.
Generated by The Create Software Components activity generates this artifact.
Used as Input to * Integrate Software Components
* Verify Software Component
CSU DESIGN
Description A CSU design is a description of the component, internal algorithms, external
relationships, and data structures required for developing the CSU.
Generated by The Design Software Components activity generates this artifact.
Used as Input to The Create Software Components activity uses this artifact as input.
CSU INTERFACE DESIGN
Description A CSU interface design is a description of the interface and input/output

formats for the CSU.

C3

Appendix C. Artifact Descriptions

Generated by The Design Software Components activity generates this artifact.
Used as Input to The Create Software Components activity uses this artifact as input.
CUSTOMER ACCEPTANCE
Description Customer acceptance is a formal acceptance of the system by the customer
after you install the system at the operational site and the customer agrees that
the system performs as expected.
Generated by The Install System activity generates this artifact.
Used as Input to The Commit to Proceed activity uses this artifact as input.
CUSTOMER/USER FEEDBACK
Description Customer/user feedback represents requests for new or modified capabilities
of a system. At this point, you have not formalized the request into a contract
or statement of work.
Generated by The Commit to Proceed activity generates this artifact.
Used as Input to The Identify New Operational Capabilities activity uses this artifact as input.
CUSTOMER/USER REQUESTS
Description Formalized feedback documented as a modification to or an initial request
documented in the contract or statement of work.
Generated by An external source generates this artifact.
Used as Input to The Specify Operational Concept activity uses this artifact as input.
CYCLE PLAN
Description A cycle plan is a controlling document that defines and schedules the activities
for a project cycle. It determines the tasks to be performed for each activity,
the dependency relationship between activities and tasks, and the resources
allocated to the activity. '
Generated by * Plan and Schedule
* Commit to Plan
Used as Input to * Plan and Schedule

e Commit to Plan

* Analyze Software Functionality

Appendix C. Artifact Deacriptions

Analyze Software Modifiability
Analyze Software Performance
Analyze Software Reusability
Analyze System Dependability
Analyze System Functionality
Analyze System Modifiability
Analyze System Performance
Analyze System Reusability

Create Software Components

Define Software and Interface Requirements

Define System Requirements
Design Database

Design Software Architecture
Design Software Components
Design User Interface
Develop System Architecture

Install System

Integrate Software Components

Integrate Software System Components

Plan System Installation

Recommend Software System Development Strategy

A database description is a description of the entities, relationships, and

DATABASE DESCRIPTION
Description

attributes that make up the system database.
Generated by The Design Database activity generates this artifact.
UsedasInputto » Analyze Software Modifiability

Cs

Appendix C. Artifact Descriptions

* Analyze Software Performance
e Design Software Architecture

e Design Software Components

DATABASE MANAGEMENT SYSTEM

Description A database management system controls data structures containing
interrelated data stored to optimize accessibility, control redundancy, and
offer multiple views of the data to multiple application programs.

Generated by An external source generates this artifact.
Used as Input to * Analyze Software Modifiability
* Design Database

* Integrate Software Components

DEPENDABILITY REQUIREMENT

Description Dependability requirements determine the system requirements for such
reliability characteristics as mean time between failure.

Generated by The Define System Requirements activity generates this artifact.
Used as Input to ¢ Analyze System Dependability

* Define Software and Interface Requirements

¢ Define Sy:tem Integration Verification

* Design Database

¢ Develop System Architecture

* Plan System Installation

. Recomrhend Software System Development Strategy

¢ Validate System Requirements

HWCI

Description An HWCI is a configuration item for computer hardware.

Generated by An external source generates this activity.

Used as Input to | The Integrate Software System Components activity uses this artifact asinput.

Appendix C. Artifact Descriptions

HUMAN FACTORS REQUIREMENT

Description A human factors requirement specifies the CSCI requirements for interacting
with humans.
Generated by The Define Software and Interface Requirements activity generates this
artifact.
Used As Input To ¢ Analyze Software Functionality
* Analyze Software Performance
* Analyze Software Reusability
e Define Software Component Verification
¢ Define Software Integration Verification
¢ Design Database
* Design Software Architecture
* Design Software Components
* Design User Interface
¢ Validate Software Requirements
INSTALLATION PLAN
Description An installation plan details the process by which you integrate the system into
its target environment and test it to ensure that it performs as expected.
Generated by The Plan System Iristallation activity generates this artifact.
Used as Input to The Install System activity uses this artifact as input.
MAINTENANCE REQUESTS
Description Maintenance requests are requests from the customer or user to correct
system anomalies, to accommodate changes to the target environment, or to
tune the system performance. This artifact is a subartifact of Updated Process
Drivers.
Generated by The Review Progress activity generates this artifact.
Used as Input to The Provide Operational Support activity uses this artifact as input.
MARKET DATA
Description Market data is data from a survey or report on ideas for a new or modified

system that comes from competitive analysis, new technology, and/or achange

C7

Appendix C. Artifact Descriptions

in standards or government regulations. This data might include an analysis
of the current market situation, specifically identifying opportunities; threats;
market capabilities; underlying assumptions; actual market conditions,
including dissatisfactions and needs and the market composition; and legal,
economic, and societal factors. This artifact is a subartifact of Supporting
Documents.

Generated by The Define Approach activity generates this artifact.

Used as Input to The Specify Operational Concept activity uses this artifact as input.

OPERATIONAL CAPABILITIES

Description Operational capabilities define the abilities or characteristics of the system in
the target environment.

Generated by The Identify New Operational Capabilities activity generates this artifact.

Used as Input to The Specify Operational Concept activity uses this artifact as input.

OPERATIONAL CONCEPT

Description The operational concept is a high-level description of the system concept. It
includes a description of the system mission, roles, boundaries, external
interfaces, and assumptions; a description of the target system environment;
adescription of the system capabilities; a description of the system operations,
including modes, contingencies, scenarios, and schedules; and the system
development environment.

Generated by The Specify Operational Concept activity generates this artifact.

Used as Input to ¢ Define System Requirements

* Formulate Potential Approaches

PERFORMANCE REQUIREMENT

Description

Generated by

Used as Input to

A performance requirement identifies the timing and sizing requirements of
the system based on the operational concept and the hardware environment
of the development and target systems.

The Define System Requirements activity generates this artifact.
* Analyze System Performance

* Define Software and Interface Requirements

* Define System Integration Verification

* Design Database

Appeadix C. Artifact Descriptions

Develop System Architecture
Plan System Installation
Recommend Software System Development Strategy

Validate System Requirements

PRODUCT CHANGE DATA

Description Product change data includes ECPs, engineering change notices, engineering
release orders, and any other information that you may associate with a change
to the requirements or design. This artifact is a subartifact of Product and
Cycle Measurements and Status.

Generated by .

Used as Input .0 o

Analyze Software Functionality

Analyze Software Modifiability

Analyze Software Performance

Analyze Software Reusability

Analyze System Dependability

Analyze System Functionality

Analyze System Modifiability

Analyze System Performance

Analyze System Reusability

Define Software and Interface Requirements
Design Software Architecture

Design User Interface

Develop System Architecture

Develop and Verify Product

Provide Operational Support

Define Software and Interface Requirements
Define System Requirements

Design Database

c9

Appendix C. Artifact Descriptions

Design Software Architecture
Design User Interface
Develop System Architecture

Identify New Operational Capabilities

¢ Monitor and Review
PROJECT MASTER SCHEDULE
Description A project master schedule is the highest level project schedule showing the

project-level milestones and the major activities you are to conduct. This
artifact is a subartifact of Cycle Plan

Generated by .

Used as Input to

Define Software Component Verification
Define Software Integration Verification
Define System Integration Verification
Plan and Schedule

Plan Verification and Validation

Plan and Schedule

Define Software Component Verification
Define Software Integration Verification
Define System Integration Verification
Commit to Plan

Plan Verification and Validation

Recommend Software System Development Strategy

RECOMMENDED APPROACH

Description A recommended approach identifies the approach from the list of potential
approaches that the project should adopt. You should include a justification
for the reason you recommended this approach.

Generated by .

Develop System Architecture

Formulate Potential Approaches

C10

Appendix C. Artifact Descriptions

Used as Input to

¢ Define System Requirements
¢ Develop System Architecture

¢ Recommend Software System Development Strategy

REQUIREMENTS FLOW DIAGRAM

Description The requirements flow diagram indicates the input points for verifying the
data structure or functional behavior of the artifacts in the system and for
ensuring that they satisfy their supporting requirement(s).

Generated by ¢ Define System Requirements
¢ Develop System Architecture

Used as Input to ¢ Define Software Component Verification
* Define Software Integration Verification
* Define System Integration Verification
¢ Develop System Architecture

RESOURCE REQUEST

Description A resource request contains a request by the project for resources. You need
resource requests for personnel, hardware, facility, or computer equipment
resources. This artifact is a subartifact of Cycle Plan.

Generated by ¢ Plan and Schedule
* Analyze Software Reusability
¢ Plan Verification and Validation

Used as Input to The Commit to Plan activity uses this artifact as input.

REUSABILITY REQUIREMENT

Description The reusability requirement includes system requirements identifying a need
to reuse existing life-cycle components in the development of the system or a
need to generate reusable components out of the final developed system.

Generated by The Define System Requirements activity generates this artifact.

Used as Input to * Analyze System Reusability

* Define Software and Interface Requirements

C11

Appendix C. Artifacs Descriptions

* Define System Integration Verification

¢ Design Database

e Develop System Architecture

¢ Plan System Installation

* Recommend Software System Development Strategy

¢ Validate System Requirements

REUSE LIBRARY

Description A reuse library is a controlled collection of reusable components that may be
of value to multiple projects. Reusable components include software, design
documentation, and requirements documentation.

Generated by An external source generates this artifact.

Used as Input to * Analyze Software Reusability
* Analyze System Reusability
¢ Create Software Components
¢ Design Software Architecture

* Design Software Components

RMP
Description An RMP formally documents the analysis regarding the risks on the project.
You update this artifact each time you perform a risk analysis. Also included
in this assessment is information on opportunities.
Generated by ¢ Perform Risk Analysis
* Review Risk Analysis
* Plan Risk Aversion
¢ Commit to Risk Aversion Strategy
* Execute Risk Aversion
¢ Review Alternative
Used as Input to o Plan and Schedule

c12

Appeadix C. Artifact Descriptions

Perform Risk Analysis

Review Risk Analysis

Plan Risk Aversion

Commiit to Risk Aversion Strategy
Execute Risk Aversion

Review Alternative

Analyze Software Functionality
Analyze Software Performance
Analyze System Dependability
Analyze System Performance
Define Software and Interface Requirements
Define System Requirements
Design Software Architecture
Develop System Architecture

Formulate Potential Approaches

SOFTWARE ANALYSIS DATA

Description Software analysis data contains the results of all the information gathering or
risk mitigation activities that you performed during software development.

Subartifacts .

Software functionality analysis results
Software modifiability analysis results
Software performance analysis results

Software reusability analysis results

SOFTWARE BUILD DEFINITION
Description A software build definition is a description of the CSUs and CSCs, as well as

their interfaces, needed to develop the CSC and CSCI builds to be used for
software system component integration.

C13

Appendix C. Artifact Descriptions

Generated by

Used as Input to

The Design Software Architecture activity generates this artifact.

The Integrate Software Components activity uses this artifact as input.

SOFTWARE ENGINEERING ENVIRONMENT

Description

Generated by

Used as Input to

Description

Generated by

Used as Input to

Description

A software engineering environment is a set of automated tools, firmware
devices, and hardware necessary to perform the software engineering effort.
The automated tools may include but are not limited to compilers, assemblers,
linkers, loaders, operating systems, debuggers, simulators, emulators, test
tools, documentation tools, and database management system(s). The
software engineering environment also supports systems engineering
activities, firmware programming activities, and software programming
activities.

An external activity generates this artifact.

¢ Analyze System Functionality

¢ Create Software Components

¢ Define Software and Interface Requirements
¢ Design Software Architecture

¢ Design Software Components

Develop System Architecture

SOFTWARE FUNCTIONALITY ANALYSIS RESULTS

Software functionality analysis results contain the results of the arn lysis that
examined the feasibility of developing the functions specified by the software
functionai requirements.

The Analyze Software Functionality activity generates this artifact.

* Define Software and Interface Requirements

* Design Software Architecture

SOFTWARE MODIFIABILITY ANALYSIS RESULTS

Software modifiability analysis results contain the recommendations to
enhance or change the software architecture so that you improve the ease with
which you can modify the software to correct faults, improve performance, or
add new features or capabilities.

C14

Appeadix C. Artifact Descriptions

Generated by The Analyze Software Modifiability activity generates this artifact.
Used as Input to e Define Software and Interface Requirements

* Design Software Architecture

SOFTWARE PERFORMANCE ANALYSIS RESULTS

Description Software performance analysis results contain the results of the analysis that
examined the speed, accuracy, and memory usage requirements for the
software.

Generated by The Analyze Software Performance activity generates this artifact.

Used as Input to ¢ Define Software and Interface Requirements

* Design Software Architecture

SOFTWARE PROBLEM REPORT

Description A software problem report is a document that you use to report software
problems, document the analysis of the problem, and subsequently propose a
solution to the problem. This artifact is a subartifact of Product and Cycle
Measurements and Status.

Generated by Create Software Components
* Design Software Components
* Verify Software Component

* Verify Software Integration

* Verify System Integration

Used as Input to Create Software Components

* Design Software Components

* Monitor and Review

SOFTWARE REQUIREMENTS

Description Software requirements contain those entities that define software
requirements entities.

Generated by The Define Software and Interface Requirements activity generates this
artifact.

C15

Appeadix C. Artifact Descriptions

Used as Input to

Analyze Software Functionality

¢ Analyze Software Performance

¢ Analyze Software Reusability

¢ Define Software Component Verification
e Define Software Integration Verification
¢ Design Database

* Design Software Architecture

* Design Software Components

* Validate Software Requirements

SOFTWARE REQUIREMENTS VALIDATION RESULTS

Description

Generated by

Used as Input to

Software requirements validation results document the validity of the software
requirements.

The Validate Software Requirements activity generates this artifact.

An external source uses this artifact as input.

SOFTWARE REUSABILITY ANALYSIS RESULTS

Description

Generated by
Used as Input to

Software reusability analysis results contain the results of the analysis that
examine the reusable components that you should use to develop the software
system and recommendations on how you need to change the software
architecture to accommodate the component. Analysis results also include any
requirements to which the software system must conform so that certain new
components will be reusable in future software systems.

The Analyze Software Reusability activity generates this artifact.
* Define Software and Interface Requirements

* Design Software Architecture

SOFTWARE SYSTEM ARCHITECTURE

Description

A software system architecture describes all of the software components that
satisfy the system requirements.

C16

Appendix C. Artifact Descriptions

Generated by
Used as Input to

The Design Software Architecture activity generates this artifact.
¢ Analyze Software Functionality

¢ Analyze Software Modifiability

* Analyze Software Performance

* Analyze Software Reusability

* Design Software Components

* Develop Configuration Identification

SOFTWARE SYSTEM DEVELOPMENT STRATEGY

Description A software system development strategy describes the strategy by which you
build the system, for example, the selected process model, make versus buy
decisions, and the strategy by which you will deliver the system to the customer,
such as through incremental system builds. This artifact is a subartifact of
Approved Risk Management Plan.

Generated by The Recommend Software System Development Strategy activity generates
this artifact.

Used as Input to ¢ Define System Requirements
¢ Develop System Architecture
¢ Plan and Schedule

SUPPORT ENVIRONMENT

Description You use a support environment to maintain the system.

Generated by An external source generates this artifact.

Used as Input to The Provide Operational Support activity uses this artifact as input.

SYSTEM

Description A system is a group of units that form a whole and operate in unison.

Generated by The Integrate Software System Components activity generates this artifact.

Used as Input to The following activities use this artifact as input:

* Demonstrate System Capabilities

* Identify New Operational Capabilities

C17

Appendix C. Artifact Descriptions

* Install System
¢ Provide Operational Support

* Verify System Integration

SYSTEM ANALYSIS RESULTS

Description

Subartifacts

System analysis results contain the results of all the information gathering or
risk mitigation activities that you perform during system development.

¢ Requirements flow diagram

¢ System dependability analysis results
¢ System functionality analysis results
¢ System modifiability analysis results
* System performance analysis results
s System reusability analysis results

* System user interface design

SYSTEM ARCHITECTURE

Description
Subartifacts

Generated by

Used as Input to

A system architecture includes all system and software design components.
* Hardware/firmware architecture

¢ Hardware/software interfaces

¢ System user interface design

The Develop System Architecture activity generates this artifact.
* Analyze System Dependability

* Analyze System Functionality

¢ Analyze System Modifiability

* Analyze System Performance

* Analyze System Reusability

* Design Software Architecture

* Design User Interface

C18

Appeadix C. Artifact Descriptioas

e Integrate Software System Components
* Plan System Installation

e Recommend Software System Development Strategy
SYSTEM BUILD DEFINITION

Description A system build definition is a description of the CSCIs and HWClISs, as well as

their interfaces, needed to develop a system build to use for system verification
and final delivery to the customer.

Generated by The Recommend Software System Development Strategy activity generates
this artifact.
Used as Input to The Integrate Software System Components activity uses this artifact asinput.
SYSTEM CAPABILITY
Description A system capability is an ability or functionality of the system. A system
capability describes what the system is supposed to do, not how it is supposed
to do it.
Generated by The Specify Operational Concept activity generates this artifact.
Used as Input to e Formulate Potential Approaches

* Define System Requirements

SYSTEM DEMONSTRATION RESULTS

Description System demonstration results document the results of the system validation.
Generated by The Demonstrate System Capabilities activity generates this artifact.
Used as Input to An external source activity uses this artifact.

SYSTEM DEPENDABILITY ANALYSIS RESULTS

Description System dependability analysis results contain information on the reliability,
maintainability, and availability of the system.

Generated by " The Analyze System Dependability activity generates this artifact.

Used as Input to * Define System Requirements

¢ Develop System Architecture
SYSTEM FUNCTIONALITY ANALYSIS RESULTS

Description System functionality analysis results contain the analysis data from analyzing
the system architecture for such functionality characteristics as range of
applicability, scope of automation, and conformance to standards.

C19

Appendiz C. Artifact Descript

Generated by The Analyze System Functionality activity generates this artifact.
Used as Input to * Define System Requirements

¢ Develop System Architecture

SYSTEM MODIFIABILITY ANALYSIS RESULTS

Description System modifiability analysis results contain information on the measures of
the system’s ability to be improved, extended, or ported during the system’s
lifetime.

Generated by The Analyze System Modifiability activity generates this artifact.

Used as Input to * Anayze Software Modifiability
¢ Define System Requirements

¢ Develop System Architecture

SYSTEM PERFORMANCE ANALYSIS RESULTS

Description System performance analysis results provide information on the performance
of individual system components and the performance of the system as a
whole.

Generated by The Analyze System Performance activity generates this artifact.

Used as Input to ¢ Analyze Software Performance
¢ Define System Requirements

¢ Develop System Architecture

SYSTEM QUALIFICATION REQUIREMENT

Description A system qualification requirement specifies how you will validate the system
: and verify the system development process.

Generated by The Define System Requirements activity generates this artifact.

Used as Input to The Demonstrate System Capabilities activity uses this artifact as input.

SYSTEM REQUIREMENTS

Description System requirements contain artifacts that define system requirements. -

Generated by The Define System Requirements activity generates this artifact.

C-20

Appeadix C. Artifact Descriptions

Used as Input to

Analyze System Functionality

¢ Analyze System Modifiability

* Analyze System Reusability

¢ Define Software and Interface Requirements

¢ Define System Integration Verification

¢ Design Database

* Develop System Architecture

¢ Plan System Installation

¢ Recommend Software System Development Strategy

» Validate System Requirements

SYSTEM REQUIREMENTS VALIDATION RESULTS

Description

Generated by
Used as Input to

System requirements validation results document the validity of the system
requirements.

The Validate System Requirements activity generates this artifact.

An external source uses this artifact as input.

SYSTEM REUSABILITY ANALYSIS RESULTS

Description

Generated by
Used as Input to

System reusability data contains information on what reusable components
you should incorporate into the system during implementation and any
recommendations for how the system should accommodate the component.
Also included are how you could use and possibly modify all or part of the
system architecture or the system requirements as reusable components on
other systems.

The Analyze System Reusability activity generates this artifact.
* Analyze Software Reusability
¢ Define System Requirements

* Develop System Architecture

SYSTEM USER INTERFACE DESIGN

Description

A system user interface design contains those design approaches developed by
the systems engineers to demonstrate possible approaches to developing the
user interface.

c2

Used as Input to .

Design User Interface

Develop System Architecture

Analyze System Dependability

Analyze System Functionality

Analyze System Modifiability

Analyze System Performance

Analyze System Reusability

Design Software Architecture

Design User Interface

Develop System Architecture

Integrate Software System Components
Plan System Installation

Recommend Software System Development Strategy

TARGET ENVIRONMENT

Used as Input to

Description A target environment is the environment in which a system must operate. This
artifact is a subartifact of Supporting Documents.

Generated by An external source generates this artifact.

Analyze Software Modifiability
Analyze System Dependability
Analyze System Performance
Design User Interface

Develop System Architecture
Formulate Potential Approaches
Install System

Plan System Installation

TECHNICAL SUPPORT REQUESTS

Description Technical support requests are requests from the customer or user to provide
help in interpreting system output, provide support in performing complex
system operations, or enhance current system features.

c2

Appendix C. Artifact Descriptions

Generated by An external source generates this artifact.
Used as Input to * Provide Operational Support
* Specify Operational Concept
TRANSITION PLAN
Description A transition plan details the process by which you will replace an existing

system by a new system. The plan describes the process for system installation,
training, and operation so that there is minimal disruption in the customer’s
day-to-day activities. This artifact is a subartifact of Spirai Plan

Generated by The Plan System Installation activity generates this artifact.

Used as Input to .

Define Approach

Develop/Update Estimate of the Situation
Review Context

Perform Risk Analysis

Plan Risk Aversion

Commit to Risk Aversion Strategy
Review Alternative

Plan and Schedule

Commit to Plan

Develop and Verify Product
Monitor and Review

Review Technical Product

Review Progress

Update Spiral Plan

Commit to Proceed

Provide Operational Support

VERIFIABILITY CHECKLISTS

Description Verifiability checklists trace verification cases to requirements and document
the criteria used for verifying the requirements. You create one checklist for
each requirement.

c3

Appendix C. Artifact Descriptions

Generated by ¢ Define System Requirements
* Develop System Architecture

Used as Input to * Define Software Component Verification
* Define Software Integration Verification
¢ Define System Integration Verification

e Develop System Architecture

VERIFICATION AND VALIDATION PLAN

Description A verification and validation plan outlines the resources, procedures, and
approach that you will use to verify and validate system artifacts.

Generated by

Define Software Component Verification
¢ Define Software Integration Verification
e Define System Integration Verification
¢ Plan Verification and Validation

Used as Input to * Define Software Component Verification
¢ Define Software Integration Verification
¢ Define System Integration Verification
* Demonstrate System Capabilities
* Verify Software Component

* Verify System Integration

VERIFICATION DOCUMENTATION

Description Verification documentation contains information used during verification
activities and includes verification cases, expected verification case results,
and the verification log.

Generated by ¢ Define Software Component Verification

¢ Define Software Integration Verification
* Define System Integration Verification

e Plan Verification and Validation

Cu

Appeadix C. Artifact Deacriptions

Used as Input to

Define Software Component Verification
* Define Software Integration Verification
* Define System Integration Verification

* Verify Software Component

» Verify Software Integration

¢ Verify System Integration

VERIFICATION LOG

Description

Generated by

Used as Input to

A verification log documents the output produced by verifying artifacts and
includes actual verification case resuits and deviations.

Verify Software Component

* Verify Software Integration

o Verify System Integration

* Define Software Component Verification
» Define Software Integration Verification
¢ Define System Integration Verification

e Verify Software Component

¢ Verify Software Integration

» Verify System Integration

C25

Appendix C. Artifact Descriptions

This page intentionally left blank.

C-26

CCB
cMM
COTS
CSsC
CSCI
CSuU
ECP
EoS
ESpP

HWCI
IDEF

OPD
PAD
PAL

PERT -

PLD

SE1
SEPG
SOwW

LIST OF ABBREVIATIONS AND ACRONYMS

Configuration Control Board

Capability Maturity Model

commercial off-the-shelf

computer software component

computer software configuration items
computer software unit

Engineering Change Proposal

Estimate of the Situation

Evolutionary Spiral Process
Entry-Task-Validation-eXit

hardware configuration item

Integrated Computer-Aided Manufacturing Definition
Improvement Efforts

Organizational Process Development
Project Application Development

Process Asset Library

Program Evaluation and Review Technique
Product-Line-Based Product and Process Development
risk management plan

Software Engineering Institute

Software Engineering Process Group

statement of work

Abb-1

List of Abbreviations and Acronyms

STARS
VCOE

Software Technology for Adaptable Reliable Systems

Virginia Center of Excellence for Software Reuse and Technology
Transfer

work breakdown structure

Abb-2

Abstraction

Activity

Alternative

Business area

Capability Maturity Model (CMM)

Change control

Commercial off-the-shelf (COTS)

Commit

Configuration management

Context

Contract manager

GLOSSARY

A description of a collection of things that applies
equally well to any one of them.

A step of a process for producing or evaluating data
elements to satisfy objectives supporting that
process. An activity comprises other steps.

One possible way to satisfy an objective.

A coherent market characterized by potential
customers possessing similar needs.

A model developed by the Software Engineering
Institute used to assess organizational software
process maturity.

The managed evaluation, coordination, approval or
disapproval, and implementation of changes to work
products.

A ready-made product that is generally available for
sale.

To bind or obligate (oneself, one’s project, or one’s
organization) to the consequences of a decision.

The process of identifying and defining the
configuration items in a system, controlling the
release and change of these items throughout the
system life cycle, recording and reporting the status
of configuration items and change requests, and
verifying the completeness and correctness of
configuration items.

The scope in which an analysis or commitment is
made. The context establishes which influences are
internal (stakeholders) and external to the decisior.

A person who manages the project costs and

schedules for the company.

Glo-1

Glossary

Constraint

Corporate manager

Customer

Cycle

Data element

Decision

Domain

Engineer

Entrance criteria

Event driven

Evolutionary life cycle

Exit criteria

Family

A limitation on decisions.

The person with overall profit-or-loss responsibility
for the corporate division that is running the project.

The person or organization that specifies the
requirements and accepts and authorizes payment
for a product.

A complete traversal of the activities specified in the
ESP model, which denotes that the product has
advanced by a specified amount toward its next
milestone.

(1) A piece or collection of information that is used
as an input or output of an activity. (2) A collection
of information fundamental to a system.

A choice among allowable alternatives.

A product family and an associated production
process supporting a product line.

A person who performs technical activities for a
project.

Conditions that must be met before an activity canbe
started.

Indicating that progress is measured by successfully
reaching successive milestones in the product life
cycle and not just by cost and schedule
considerations.

A development approach in which functional
versions of a product are built, delivered, and used.
The definition of a later version is influenced by
experience from use of the previous version.

Conditions that must be met before an activity canbe
considered successfully completed.

A set of things that have enough in common that it
pays to consider their common characteristics before
noting specific properties of instances.

A specific, time-related, measurable target.

Glo-2

Glossary

Instantiation

Life cycle

Method

Methodology

Metrics

Milestone

Model

Objective

Organization

Plan

Problem

Process

Process assets

Creating a thing from a representation of an
abstraction denotirig a set of such things.

A sequence of distinct states of an entity, beginning
with its initial conception and ending when it is no
longer available for use.

Guidance and criteria that prescribe a systematic,
repeatable technique for performing an activity.

An integrated body of principles, practices, and
methods that prescribe the proper performance of a
process.

The process and product measurements and
experiences collected during a project.

One in the sequence of recognized product life-cycle
states. Milestones are used for planning and tracking
progress. The milestone has been reached when the
product is shown to be in the desired state.

A representation of a thing from which analysis
provides approximate answers to designated
questions about the thing itself.

The intended or desired result of a course of action.

A unit within a company or other entity (e.g.,
government agency or branch of service) within
which projects are managed.

A designation of tasks and resource allocations for
accomplishing a specified objective.

A situation that, if not corrected, will lead to
undesirable results. The purpose of risk
management is to anticipate problems and deal with
their root causes.

A partially ordered set of steps intended to
accomplish specified objectives.

A subset of a process definition or model that depicts
some combination of roles, resources, activities,
constraints, or other process elements in a manner
that supports the construction of complete,
integrated representations of processes and
activities.

Glo-3

Glossary

Process driver

Process engineering

Product

Product line

Program

Project

Project manager

Quality manager

Resource

Risk

Risk analyst

Spiral
Stakeholder

State (of a product)

A characteristic that has a significant influence on
the definition or instantiation of a process.

The construction of a process appropriate to
accomplish the objectives of an organization or
project.

The aggregation of all work products resulting from
a process or activity.

A collection of existing and potential products that
address a designated business area.

(1) An aggregation of software components that
operates as a unit when integrated with hardware. (2)
A directed, funded effort to acquire, develop, or
maintain a product.

An undertaking requiring concerted effort that is
focused on developing or maintaining a specific
product. Typically, a project has its own funding, cost
accounting, and delivery schedule.

A program, project, or staff member responsible for
the management of a project. Also, a person directly
responsible for the definition, cost, and schedule of
a product.

A person who is responsible for validating or
verifying the correctness or adequacy of a product or
process.

Something or someone that can be used to perform
a work assignment.

A potential for incurring undesirable results.

A person who is trained in risk analysis and risk
aversion.

One or more cycles combined to achieve a milestone.

Anindividual with a vested interest in a project or its
outcome, such as a team member, client, or manager.

(1) The condition of the product at a given instant as
described by a set of characteristic variables. (2) The
values assumed at a given instant by the variables that
define the characteristics of the product.

Glo-4

Step

Success criteria

System

Task

Taxonomy

User

Validation

Verification

Waterfall life cycle

Work product

Either an activity or an unelaborated action.

The minimum acceptable work that must be
accomplished in a cycle for the project to make
progress.

A collection of hardware, software, and people that
operate together to accomplish a mission.

A work assignment (i.c., subject to management
accountability) to accomplish a specified objective.

A system of classification.

The person or organization that will use the system
for its intended purpose when it is deployed in its
environment.

The evaluation of a work product to determine
whether it satisfies customer needs.

The evaluation of a work product to determine
whether it meets its specification.

A development approach in which the product is
built by successively refining from abstract to
concrete. All components of the product are
simultaneously developed to a similar level of detail.

Any configuration-managed artifact that is the
embodiment of some data element.

Glo-5

Glossary

This page intentionally left blank.

Glo-6

Agresti, William
1986

Boehm, Barry W.
1986

1988

1989

Boehm, Barry W,
and Rony Ross
1989

Charette, Robert N.
1989

1990

Curtis, Bill, Marc 1. Kellner,
and Jim Over
1992

Feiler, Peter H. and
Watts S. Humphrey
1992

Gilb, Tom
1988

Kasunic, M.D., J.W. Armitage.

PG. Arnold, L.P. Gates, M.I.
Kellner, W. Moseley, K.Y.

Nieng, J.W. Orer, R.W. Phillips,

and J.R. Pixton
1992

REFERENCES

“Conventional Software Life-Cycle Model: Its Evolution and
Assumptions.” IEEE Tutorial: New PFaradigms for Software
Development. Los Angeles, California: IEEE Computer Society
Press.

A Spiral Model of Software Development and Enhancement.
ACM Software Engineering Notes 11:22-42.

A Spiral Model of Software Development and Enhancement.
IEEE Computer 21:61-72.

Tiorial: Software Risk Management. Washington, D.C.: IEEE
Computer Society Press.

“Theory W Software Project Management: Principles and
Examples.” In Tutorial: Software Risk Management. Washington,
D.C.: IEEE Computer Society Press.

Software Engineering Risk Analvsis and Management. New York,
New York: Intertext Publications, McGraw-Hill.

Applications Strategies for Risk Analysis. New York, New York:
Intertext Publications, McGraw-Hill.

Process Modeling. Communications of the ACM 35, 9:75-90.

Software Process Development and Enactment: Concepts and
Definitions, CMU/SEI-92-TR-4, Draft. Pittsburgh, Pennsylvania:
Carnegie Mellon University, Software Engineering Institute.

Principles of Software Engineering Management. Wokingham,
England: Addison-Wesley.

Summary Report for the Process Definition Advisory Group,
Special Report, SEI-92-SR-16. Pittsburgh, Pennsylvania:
Carnegie Mellon University, Software Engineering Institute.

Ref-1

Krasner, Herb, Jim Terrel,
Adam Linehan, Paul Arnold,
and William H. Ett

1992

Over, James W.
1991

Paulk, M.C,, Bill Curts, Mary
Beth Chrissis,and Charles V.
Weber

1993

Radice, Ronald A., and
Richard W. Phillips
1988

Snyder, James C., and
Anthony J. Catanese
1979

SofTech, Inc.
1981

Software Engineering Institute
1992

Software Productivity
Consortium

1992a

1992b

1993a

1993b

1993¢

Lessons Learned From a Software Process Modeling System.
Communications of the ACM 35, 9:91-100.

“STARS 91 Process Asset Library.” In Proceedings, STARS "91.
December 34, 1991.

Key Practices of the Capability Maturity Model, version 1.1,
CMU/SEI-93-TR-25. Pittsburgh, Pennsylvania: Carnegie
Mellon University, Software Engineering Institute.

Software Engineering: An Industrial Approach. Vol. 1. Englewood
Cliffs, New Jersey: Prentice-Hall.

Introduction to Architecture. New York, New York: McGraw-Hill.

IDEF Users Manual-Function Modeling (IDEF0). Distributed by
IDEF Users Group, Kettering, Ohio.

STARS/SEI Process Asset Library (PAL), version 2.0. Pittsburgh,
Pennsylvania: Carnegic Mellon University, Software
Engineering Institute.

Process Definition and Modeling Guidebook, SPC-92041-CMC,
version 01.00.02. Herndon, Virginia: Software Productivity
Consortium.

Software Measurement Guidebook, SPC-91060-CMC. Herndon,
Virginia: Software Productivity Consortium.

Managing Process Improvement: A Guidebook for Implementing
Change, SPC-93105-CMC, version 01.00.06. Herndon, Virginia:
Software Productivity Consortium.

Reuse Adoption Guidebook, SPC-92051-CMC, version 02.00.05.
Herndon, Virginia: Software Productivity Consortium.

Reuse-Driven Software Processes Guidebook, SPC-92019-CMC,
version 02.00.03. Herndon, Virginia: Software Productivity
Consortium.

References

19934

U.S. Air Force
1988

Using New Technologies: A Technology Transfer Guidebook,
SPC-92046-CMC, version 02.00.08. Herndon, Virginia:
Software Productivity Consortium.

Acquisition Management: Software Risk Abatement,
AFSC/AFLCP 800-45. Washington, D.C.: Andrews Air Force
Base. Air Force Systems Command and Air Force Logistics
Command.

This page intentionally left blank.

BIBLIOGRAPHY

General

Andriole, StephenJ. Storyboard Prototyping: A New Approach to User Reguirements Analysis.
Wellesley, Massachusetts: QED Information Sciences, Inc., 1989.

. Rapid Applications Prototyping: Storyboarding for User Requirements Analysis. Wellesley,
Massachusetts: QED Information Sciences, Inc., 1991.

Ashley, David B. “Project Risk Identification Using Inference Subjective Expert Assessment and
Historical Data.” In The State of the Art in Project Risk Management, Proceedings of the INTERNET
International Expert Seminar in Connection With the PMI/INTERNET Joint Symposium, Atlanta,
October 12-13, 1989. Zurich, Switzerland: International Project Management Association, 9-25, 1990.

Balzer, R.T., and C. Green Cheatham. Software Technology in the 1990s: Using a New Paradigm. IEEE
Computer (1983):39-45.

Basili, Victor R. Use of Ada for FAA’s Advanced Automation System (AAS), MTR-8TW77. The MITRE
Corporation, 1987.

Basili, Victor R., B. Boehm, J. Clapp, D. Gaumer, M. Holden, A. Salwen, and J. Summers. Use of Ada for
FAA’s Advanced Automation System (AAS). McLean, Virginia: The MITRE Corporation.
MTR-87TW77. 1987.

Basili, V.R,, and D.M. Weiss. A Methodology for Collecting Valid Software Engineering Data. [EEE
Transactions on Software Engineering SE-10, 6, 1984.

Beizer, Boris. Software System Testing and Quality Assurance. New York, New York: Van Nostrand
Reinhold Company, 1984.

. Software Testing Techniques. New York, New York: Van Nostrand Reinhold Company, 1990.
Bochm, Barry W. Software Engineering Economics. Englewood Cliffs, New Jersey: Prentice-Hall, 1981.

Boehm, Barry, and Frank Belz. Applying Process Programming to the Spiral Model. In Proceedings
of the 4th Intemational Process Workshop, May 1983

———. Experiences With the Spiral Model as a Process Model Generator. In Proceedings of the 4th
International Software Process Workshop, May 1988.

Boyd, Harper W, Jr., Ralph Westfall, and Stanley F. Stasch. Marketing Research: Text and Cases, 7th
ed. Boston, Massachusetts: Irwin, 1989.

Bib-1

Bibliography

Bruce, P, and S. Pederson. The Software Development Project: Planning and Management. New York,
New York: John Wiley & Sons, 1982.

Carr, MarvinJ., Suresh L. Konda, Ira Monarch, F. Carol Ulrich, and Clay F. Walker. Taxonomy-Based
Risk Identification, CMU/SEI-93-TR-06. Pittsburgh, Pennsylvania: Carnegic Mellon University,
Software Engineering Institute, June, 1993.

Charette, Robert N. Risk Management Seminar. Herndon, Virginia: Software Productivity
Consortium, 1991.

Cohen, William A. High-Tech Management. New York, New York: American Management
Association, 1986.

Conte, S.D., H.E. Dunsmore, and V.Y. Shen. Software Engineering Metrics and Models. Menlo Park,
California: Benjamin/Cummings, 1986.

Cruickshank, R.D. A Course in System and Software Cost Engineering. Manassas, Virginia: IBM
Federal Systems Division, 1988.

Cruickshank, R.D., and M. Lesser. “An Approach to Estimating and Controlling Software
Development Costs.” The Economics of Data Processing. New York, New York: Wiley, 1982.

Curtis, Bill, Marc 1. Kellner, and Jim Over. Process Modeling, Communications of the ACM,
35, 9:75-90, September 1992.

Curtis, B,, H. Krasner, Vincent Shen, and Neil Iscoe. On Building Software Process Models Under
the Lamppost, Proceedings of the 9th International Conference on Software Engineering, 1EEE,
Computer Society Washington, D.C., 96—103, 1987.

Defense Systems Management College. Systems Engineering Management Guide. Washington, D.C.:
U.S. Government Printing Office, 1990.

Department of Defense. Transition From Development to Production, DOD 4245.7. Washington, D.C.:
Department of Defense, 1982.

—————. Military Standard: Defense System Software Development, DOD-STD-2167A. Washington,
D.C.: Department of Defense, 1988.

———. Defense Acquisition Management Policies and Procedures, Department of Defense Instruction
5000.2. Washington, D.C.: Department of Defense, 1991.

Fagan, M.E. “Design and Code Inspections to Reduce Errors in Program Development.” Tutorial
Software Quality Assurance: A Practical Approach. Edited by T.S. Chow. Silver Spring, Maryland: IEEE
Computer Society Press. 297-325, 1984.

Farrell, Paul V,, Stuart E. Heinritz, and Clifton L. Smith. Purchasing: Principles and Applications. 7th
ed. Englewood Cliffs, New Jersey: Prentice-Hall, 1986.

Fournier, Roger. Practicai Guide to Structured System Development and Maintenance. Englewood
Cliffs, New Jersey: Yourdon Press, 1991.

Bib-2

Bibliography

Gaffney, J.E., Jr. “Approaches to Estimating and Controlling Software Costs.” 1983 Intemational
Conference of the Computer Measurement Group, CMG XIV. Washington, D.C., 1983.

. Estimation of Software Code Size Based on Quantitative Aspects of Function (With
Application of Expert System Technology). Journal of Parametrics 4, 3:23, 1984.

Gaffney, J.E., Jr., and R. Werling. Estimating Software Size From Counts of Externals, A Generalization
of Function Points, SPC-91094-N. Herndon, Virginia: Software Productivity Consortium, and ISPA*91,
New Orleans, Louisiana, 1991.

Gildersleeve, Thomas Robert. Successful Data Processing System Analysis. Englewood Cliffs, New
Jersey: Prentice-Hall, 1978.

Hazel, M.D., L.L. Krumm, WP. Needham, and R.C. Slate. BCAG Avionics Computer Software
Technical Standard (D6-35071-1, Revision D). Seattle, Washington: Boeing Commercial Airplane
Group, 1990.

Heirs, Ben J. The Professional Decision-Thinker. New York, New York: Dodd, Mead & Company.
(Originally published, Great Britain: Sidgwick & Jackson, 1987.)

Helmer, O. Social Technology. New York, New York: Basic Books, 1966.

Hollocker, C.P. Software Reviews and Audits Handbook. New York, New York: John Wiley & Sons,
1990.

Humphrey, W.S. et al. 4 Method for Assessing the Software Engineering Capability of Contractors,
CMU/SEI-87-TR-23, ADA 187230. Pittsburgh, Pennsylvania: Software Engineering Institute, 1987.

Humphrey, Watts S. Characterizing the Software Process: A Maturity Framework, CMU/SEI-87-TR-11,
ESD-TR-87-112. Pittsburgh, Pennsylvania: Carnegie Mellon University, Software Engineering
Institute, 1987.

- Managing the Software Process. Reading, Massachusetts: Addison-Wesley, 1989.

IEEE. IEEE Software Engineering Standards Collection, Spring Edition. New York, New York: IEEE,
Inc.,, 1991.

IEEE Computer Society. IEEE Standard for Developing Software Life Cycle Processes, IEEE STD 1074.
New York, New York: IEEE Computer Society, 1992.

IEEE Computer Society. Standard for Developing Software Life Cycle Processes, Working Draft
P1074/D6, New York, New York: Institute of Electrical and Electronics Engineers, Inc., January 1,
1989.

IEEE Computer Society. Standard for Developing Sofitware Life Cycle Processes (Preliminary
P1074/D6) Technical Committee on Software Engineering of the IEEE Computer Society, 1991.

Ince, David. Software Engineering. London: Van Nostrand Reinhold (International) Co. Ltd., 1989.

International Standards Organization. Information Technolbgy Software Life-Cycle Process, ISO/IEC
(JTC1)-SC7, Working Draft (3). International Standards Organization, January 29, 1991.

Bib-3

]

Bibliography

Kellner, Marc L. Software Process Modeling: Value and Experience. SEI Technical Review (1989):23-54.
King, David. Current Practices in Software Development. New York, New York: Yourdon Press, 1984.

Kloppenborg, Tim, and Samuel J. Mantel, Jr. Tradeoffs on Projects: They May Not Be What You
Think. Project Management Journal 1:13-20, 1990.

Koontz, Harold, Cyril O’'Donnell, and Heinz Weihrich. Management. 8th ed. New York, New York:
McGraw-Hill, 1984.

Lazzaro, V., ed. Systems and Procedures: A Handbook for Business and Industry. 2nd ed. Englewood
Cliffs, New Jersey: Prentice-Hall, 1968.

Merkhofer, Miley W. Quantifying Judgmental Uncertainty: Methodology, Experiences, and Insights.
IEEE Transactions on Man, Systems, and Cybemnetics SMC-117, 5, 1987.

Miser, Hugh J., and Edward S. Quade. Handbook of Systems Analysis: Overview of Uses, Procedures,
Applications, and Practice. New York, New York: North-Holland, 1985.

. Handbook of Systems Analysis: Craft Issues and Procedural Choices. New York, New York:
North-Holland, 1988.

Moder, Joseph J., Cecil R. Phillips, and Edward W, Davis. Project Management With CPM, PERT, and
Precedence Diagramming. New York, New York: Van Nostrand Reinhold, 1983.

Odiorne, George S. MBO II: A System of Managerial Leadership for the 80s. Belmont, California:
Fearson Pitman Publishers, 1979.

Olson, Timothy G., Watts S. Humphrey, and David H. Kitson. Conducting SEI-Assisted Software
Process Assessments, CMU/SEI-89-TR-7 (also published as ESO-TR-89-09). Pittsburgh, Pennsylvania:
Carnegie Mellon University, Software Engi:ieering Institute, 1989.

Ould, Martyn. Strategies for Software Engineering: Management of Risk and Quality. Chichester,
England: John Wiley & Sons, 1990.

Putnam, L. A General Empirical Solution to the Macro Software Sizing and Estimating Problem.
IEEE Transactions on Software Engineering 4, 4:345-361, 1978.

Putnam, L.H., and A. Fitzsimmons. Estimating Software Costs. Datamation, September 1979,
189-198, October 1979, 171-178, and November 1979, 137-140, 1979.

RADC/COEE. Software Top Level Design Document for the Software Life Cycle Support Environment
(SLCSE). Griffith Air Force Base, New York: Rome Air Development Center, 1991.

Royce, Winston W. “Managing the Development of Large Software Systems.” In Proceedings, IEEE
WESCON, 1970.

Saaty, Thomas Lorie. The Analytic Hierarchy Process. New York, New York: McGraw-Hill
International, 1980.

. The Analytic Hierarchic Process. Pittsburgh, Pennsylvania: RWS Publications, 1990.

Bib-4

Bibliography

Schultz, H.P. Software Management Metrics, ESD-TR-88-001/M88-1. Bedford, Massachusetts: MITRE
Corporation, 1988.

SEAS System Development Software Development: SSDM, Computer Sciences Corporation, July
1989.

Shuster, H. David. Teaming for Quality Improvement: A Process for Innovation and Consensus.
Englewood Cliffs, New Jersey: Prentice-Hall, 1990.

Software Engineering Handbook: General Electric Company. New York, New York: McGraw-Hill, 1986.

Tausworthe, Robert C. The Work Breakdown Structure in Software Project Management. The Journal
of Systems and Software (1980):181-86.

Thomsett, Michael C. The Little Black Book of Business Statistics. New York, New York: AMACOM,
1990.

Thomsett, Rob. Third Wave Project Management. Yourdon Press Computing Series. Englewood Cliffs,
New Jersey: Prentice-Hall, 1993.

TRW. Process Model for High Performance Trusted Systems in Ada, Phase I Technical Report. August
1989.

U.S. Air Force. Configuration Management Practices for Systems, Equipment, Munitions, and Computer
Software, DOD-STD-483A. Washington, D.C.: U.S. Department of the Air Force, 1985.

U.S. Air Force Systems Command. Software Management Indicators. AFSCP 800-43. Washington,
D.C.: U.S. Air Force Systems Command, 1986.

Ward, Paul, and Lloyd Williams. The CASE Real-Time Method: An Object-Oriented Approach to
Systems Engineering. New York, New York: Dorset House, 1991.

Weber, Charles V., Mark C. Paulk, Cynthia J. Wise, James V. Withey. Key Practices for the Capability
Maturity Model, CMU/SEI-91-TR-25 (also published as ESD-TR-91-25). Edited by Mary Beth
Chrissis, Suzanne D. Couturiaux, and Ginny Redish. Pittsburgh, Pennsylvania: Carnegie Mellon
University, Software Engineering Institute, 1991.

Weiss, D.M. Evaluating Software Development by Analysis of Change Data, TR-1120. College Park,
Maryland: University of Maryland Computer Science Center, 1981.

Wild, Chris, Kurt Maly, and Lianfang Liu. Decision-Based Software Development. Software
Maintenance: Research and Practice 3:17-43, 1991.

‘Wolff, Gerald J. The Management of Risk in System Development: “Project SP” and the “New Spiral
Model.” Software Engineering Journal (1989).

Wood, Bill. A Guide to the Assessment of Software Development Methods, CMU/SEI-88-TR-8 (also
published as ESD-TR-88-009). Pittsburgh, Pennsylvania: Software Engineering Institute, 1988.

Zells, Lois. Managing Software Projects. Wellesley, Massachusetts: QED Information Sciences, Inc.,
1990.

Bib-§

Bibliography

Zikmund, William G. Business Research Methods. Chicago, Illinois: The Dryden Press, 1988.
Checklists

Abbreviations for Use on Drawings, Specifications Standards, and in Technical Documents,
MIL-STD-12D, May 29, 1981.

Asaka, Dennis. Review of Inspection Checklists. 1991.

Birrell, N.D., and M. A. Ould. 4 Practical Handbook for Software Development. Cambridge, England:
Cambridge University Press.

Department of Defense. Military Handbook, Mission-Critical Computer Resources Software Support,
MIL-HDBK-347, May 22, 1990.

Fairley, Richard. Software Project Management Course. Software Engineering Management
Association, 15-16, 15-18, 15-19.

. Software Project Risk Management. Software Engineering Management Association, 1991.

Itabhi Corporation. Successful Enterprise Review List (in Table G-13, Early Evaluation of Project
Items), 1991.

Industrial Security Manual for Safeguarding Classified Information, Department of Defense.
POD-5220.22-M. January 1991.

Itabhi Corporation. General Project Review Questions (in Table G-14, Ongoing Project Review
Questions), 1991.

Longbow Apache Software Development Procedures. Longbow Apache Software Development
Procedures. Vol. 15, Inspection Procedure. March 19, 1990.

Marciniak, John J., and Donald J. Reifer. Software Acquisition Management: Managing the Acquisition
of Custom Software Systems. New York, New York: John Wiley & Sons, 1990.

Merriam-Webster Inc. Webster’s Third New International Dictionary. Springfield, Massachusetts:
Merriam-Webster Inc., 1981.

National Aeronautics and Space Administration. Manager’s Handbook for Software Development,
SEL-84-101, Revision 1. National Aeronautics and Space Administration, November 1990.

Ould, Martyn A. Strategies for Software Engineering: The Management of Risk and Quality. New York,
New York: John Wiley & Sons, 1990.

Software Development Plan. DI-MCCR-80030A. February 29, 1988.

Software Product Assurance, IT1 Test Plan Checklist. JPL, April 11, 1988. (Received from Dr.
Richard E. Fairley, Software Engineering Management Association.)

Software Test and Evaluation Manual, DoD Software Test and Evaluation Manual, Volume I,
Guidelines for the Treatment of Software in Test and Evaluation Master Plans. Office of the Director
Defense Test and Evaluation, May 1985.

Bib-6

Bibliography

Software Test Plan. DI-MCCR-80014A. February 29, 1988.
Specification Practices, MIL-STD-490A, June 4, 1985.

Spencer, Richard H. Planning Implementation and Control in Product Test and Assurance. Englewood
Cliffs, New Jersey: Prentice-Hall, 29-30, 60-61, 147-50.

U.S. Government Printing Office. Style Manual. Washington, D.C.: U.S. Government Printing Office,
1984.

Validation Laboratory, Review of Inspection Checklists. Herndon, Virginia: Software Productivity
Consortium, 1991.

Inspections Method Related

Bisant, D.B., and J.R. Lyle. A Two-Person Inspection Method to Improve Programming Productivity.
IEEE Transactions of Software Engineering 15, 10 (October 1989):1294-1304.

Brothers, L., V. Sembugamoorthy, and M. Muller. “ICICLE: Groupware for Code Inspection.” In
CSCW 90 Proceedings October 1990.

Bush, M. “Formal Inspections—Do They Really Help.” In NSIA Sixth Annual Joint Conference on
Software Quality and Productivity. Viewgraphs. April 1990.

Dunn, R. Software Defect Removal. New York, New York: McGraw-Hill, 1984.

Dyer, M. “Verification Based Inspections.” Sofiware Verification Workshop Notebook. Herndon,
Virginia: Software Productivity Consortium, August 1990.

Fagan, M.E. Advances in Software Inspections. IEEE Transactions on Software Engineering, SE-12, 7
(1986):744-51.

Freedman, D.P,, and G.M. Weinberg. Handbook of Walkthroughs, Inspections, and Technical Reviews:
Evaluating Programs, Projects, and Products. Boston, Massachusetts: Little, Brown Company, 1982.

Martin, J., and W.T. Tsai. N-Fold Inspection: A Requirements Analysis Technique. Communications
of the ACM, 33, 2 (February 1990).

Mays, R.G. Applications of Defect Prevention in Software Development. IEEE Journal on Selected
Areas in Communication 8, 2 (February 1990):164-68.

Mays, R.G,, et al. Experiences With Defect Prevention. IBM Systems Journal 29, 1 (1990):4-32.

Parnas, D.L., and D.M. Weiss. “Active Design Reviews: Principles and Practices.” IEEE Proceedings
of the 8th International Conference on Sofiware Engineering. London, England: Institute of Electrical
and Electronics Engineers, August 1985, 132-36.

Tripp, L.L., WE Struck, and B.K. Pflug. “The Application of Multiple Team Inspections on a
Safety-Critical Software Standard.” Submitted for conference publication, February 1991.

Yourdon, E. Structured Walkthroughs. 4th ed. Englewood Cliffs, New Jersey: Prentice-Hall, 1989.

Bib-7

Bibliography

This page intentionally left blank.

Activities, 2-8
artifacts, C-1
specifications, A-1, B-1
Alternatives, A-5
Approach, A-5

Constraints, A-5
Context, A-1

Development planning, 4-5, A-1
commitment, A-22
planning, A-19
scheduling, A-19

Estimate of the situation, A-6
developing, A-6
updating, A-6

Evolutionary spiral process model, 3-1
and process engineering, 3-5
conceptual spiral, 3-3

Life-cycle models, 4-11

Methods, 2-8

Objectives, A-5

Process assets, 2-6, 4-13
engineering, 4-1

Process definition, 2-5, 2-9, 4-11
high-level, 2-3, 3-2,3-3
low-level, 2-4
project, 2-10, 5-3

INDEX

Process engineering, 5-1
concepts, 2-1, 2-5
issues, 2-2
process, 2-10

Product change control, A-28

Product development, A-1

"activities, B-1
monitoring, 4-7, A-25
reviewing, 4-7, A-25
verification, 4-7, A-23

Project process, 5-3
enacting, 5-10
improving, 5-11
instantiating, 5-7
tailoring, 5-7

Reviews
of alternatives, A-18
of context, A-8
of development process, A-25
of progress, A-29
of risk analysis, A-13
of technical product, 4-8, A-27
Risk analysis, 44, A-1, A-10
Risk aversion
commitment, A-15
execution, 4-5, A-17
planning, 4-4, A-14

Software Engineering Institute CMM, 4-3
Spiral planning, commitment, A-32
Spiral planning documents, A-3
updating, A-30
Stakeholders, A-S

Tactical plan, 4-2
updating, 4-2, 4-12

This page intentionally left blank.

