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ABSTRACT

This dissertation is an investigation of inclusive connectivity which is a localization
of connectivity defined for each vertex and each edge of a graph. The inclusive edge
(vertex, mixed) connectivity of a vertex v is the minimum number of edges (vertices,
graph elements) whose removal yields a subgraph in which v is a cutvertex. All
possible combinations of these three parameters with regard to edge addition
stability, in which the value of the parameter will remain unchanged after the addition
of any edge, is studied along with other various properties including a relationship
between the stability of inclusive connectivity and global connectivity. A similar study
in the stability for inclusive connectivity for edge deletion is conducted. Final topics
include neutral edges, where a neutral edge is one whose removal does not change the
respective inclusive connectivity value of any vertex, and inclusive connectivity stable
graphs, where the sum of the respective inclusive connectivity values for all vertices

remains the same no matter what edge is deleted.
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CHAPTER 1
PREVIEW

This dissertation deals with the three inclusive connectivity parameters and how
these parameters change in relation to various graph operations and with respect to
different graph elements. Inclusive connectivity is a type of "local connectivity”
parameter defined for each vertex and edge of a graph.

The introduction of inclusive connectivity by Lipman and Ringeisen in 1979
resulted from an application to alliance graphs. Given a set of countries with specified
alliances between pairs of countries, inclusive connectivity answered the question
"How close can a particular country come to severing the alliance connections
between two groups of countries?" Intuitively, the "stress" on a vertex is raised or
lowered according to its inclusive connectivity being lowered or raised, respectively
[22].

Similar applications include communication networks, supply and delivery
systems, and transportation networks where one may like to know how much stress
or vulnerability is placed on a center (node) after the destruction or creation of a
specified link (edge).

Inclusive connectivity can be conceptualized as the required inclusion of a given
vertex or edge in a minimum separating set which requires that vertex or edge for
disconnection. While this dissertation deals with many varied topics concerning
inclusive connectivity, it provides the first in-depth investigation of the effects on
inclusive connectivity during edge addition (creation). The topics are organized into
chapters of a homogeneous nature which we will now briefly describe.

Chapter 2 includes all necessary definitions and explanations of notation used in

this document. Several examples are presented to acquaint the reader with the




fundamental ideas of inclusive connectivity as well as several well known graph
theory results. A complete literature review is presented detailing the history and
development of inclusive connectivity. Extensions of several of these fundamental
results are established for all the parameters. The last topic is an analysis of
inclusive connectivity for edges, as suggested by Boland in [2].

A detailed study of the changes in inclusive connectivity after edge addition is
contained in Chapter 3. The largest section of this dissertation begins with many
examples of the possible relationships among the inclusive connectivity parameters
for vertex stability under edge addition. Each of these examples demonstrates that an
infinite class of such graphs exist. Numerous results are presented describing graphs
when inclusive connectivity stability is known. This section also uses inclusive
connectivity to answer an open problem proposed in [2] regarding a relationship
between two of the parameters. Finally, an important result shows a relationship
between the stability of inclusive connectivity and the stability of the global
connectivities, under edge addition.

Chapter 4 presents an alternative from [18] on the stability of inclusive
connectivity under edge deletion. This alternative allows, for two parameters, a
definition of inclusive connectivity stability under edge deletion for a single vertex as
opposed to a global definition. Many extensions of previous work by Ringeisen,
Lipman, and Rice for a single parameter are presented, leading to a characterization
concerning stability in the remaining two parameters.

Chapter 5 has three main topics. The first two sections deal with an inclusive
connectivity neutral edge. A neutral edge is an edge whose removal does not alter the
inclusive connectivity value for any vertex in the graph. Infinite classes of graphs
illustrate combinations of every possible type of neutrality for an edge. Next, we
present a surprising result on the change in the total number of neutral edges in a

graph after the deletion of a neutral edge. Finally, several examples of different types




of stable graphs are illustrated. These graphs are referred to as stable because the
sum of the inclusive connectivity values for all vertices remains unchanged after the
deletion of an arbitrary edge.

Chapter 6 presents several conjectures on open problems and ideas for future
research involving inclusive connectivity. Included are several extensions of an
extremely useful theorem from [2] which could prove helpful in the resolution of these

conjectures.




CHAPTER 2
PRELIMINARIES

Introduction

This chapter contains a review of the notation and definitions used in this study of
inclusive connectivity parameters. These parameters are defined for both vertices and
edges, and can be regarded as measures of how close a vertex or edge is to being a
cutvertex or bridge respectively. Several examples are included to help the reader
visualize the concepts. Any definitions or notation not specified here can be found in
[71.

Also included are several well known graph theory results, which are fundamental
for several parts of this study, and are included without proof. (For such, see [7].)

Inclusive connectivity was introduced first as cohesion by Lipman and Ringeisen
[14]. We review all subsequent research resulting from this introduction and several
extensions of the results obtained in [22] for the cohesion parameter, li(v). Previous
results for cohesion, for the most part, can be extended to include all the inclusive
connectivity parameters.

We conclude this chapter by examining inclusive connectivity for edges and how

1 't can be related to inclusive connectivity for vertices.

Unless otherwise noted, all definitions and notation are consistent with [7].
Throughout this document a graph G will be a finite, nonempty set V(G) of elements
called vertices and a (possibly empty) set E(G) of unordered pairs of distinct vertices
of V(G) called edges. Vertices are represented by single lower case letters, possibly

subscripted, such as u, w, or v,. Edges will be denoted by either the letter e




appropriately subscripted or superscripted, or by listing the two vertices which are its
endpoints. For example, ¢ = uw means that ¢ is an edge between the vertices u and
w. All graphs considered in this study are assumed to be graphs without self-loops
(uu ¢ E(G)) or multiple edges (the edge uw does not appear twice in E(G)). Ife =
uw € E(G) then u and w are adjacent vertices while ¢ is incident with u and w.

The degree of a vertex v € V(G), denoted by degG(v) or deg(v) if G is clear from
the context, is the number of edges of G incident with v. The trivial graph consists of
one isolated vertex where an isolated vertex is a vertex of degree zero. In our study
all vertices v € V(G) have degree of at least one. A vertex of degree one is called an
endvertex and its corresponding edge is a pendant edge. The minimum degree of a
vertex in G is denoted by 8(G) while a graph G is regular (of degree r) if for each
vertex v € V(G), deg(v) =T, for integer r 2 0. A graph (or subgraph) is complete if
every two of its vertices are adjacent.

If S, is a set of vertices of G we use G - S for the graph obtained from G by
deleting all vertices of S with their incident edges. If S, is a set of edges of G, then G
- §,, is the graph on the same vertex set as G with edge set E(G) - S,. For an edge ¢
¢ E(G) whose incident vertices are u and w, we use G + ¢ or G + uw to denote the
graph whose vertex set is V(G) and whose edge set is E(G) L {e}. If Sm is a set of
graph clements of G, then G - S is the graph obtained from G by deleting all the
edges of S | and by deleting all the vertices of S_ with their incident edges. Ng(v) is
the neighborhood of v, the set of all vertices adjacent to v. A graph H is a subgraph of
G if VH) ¢ V(G) and E(H) ¢ E(G). If S is a set of vertices of G, then < S >G
represents the subgraph induced by S in G, that is, the vertex set S and edge set
consisting of the edges of G incident with two vertices in S.

Now we inciude a few of the definitions that relate some basic terms to the
connectivity of a graph. If u, ve V(G) (not necessarily distinct) then a u-v walk is a

sequence of vertices of G, beginning with u and ending with v, such that there exists




an edge between each pair of consecutive vertices in the sequence. A u-v path is a u-
v walk in which no vertex is repeated. The number of edges in a walk or path is called
its length. A u-v walk in which no vertex is repeated except the first and last (u = v)
is called a cycle. A vertex u is said to be connected to a vertex v in a graph G if there
exists a u-v path in G. A graph G is connecred if every distinct pair of vertices of G
are connected.

A component of a graph is a maximal (with respect to edges) connected subgraph.
A cutvertex of G is a vertex whose deletion either increases the number of
components or increases the number of isolates in G. Note that this definition permits
either end of a K,-component to be a cutvertex which is a slight variation of the
definition of a cutvertex in standard use. This variation is essential in allowing a
meaningful definition for one of the inclusive connectivity parameters. Like a
cutvertex, an edge whose removal increases the number of components of the graph is
called a bridge.

The (vertex) connectivity ¥(G) of G is the minimum number of vertices whose
removal (along with associated edges) results in a disconnected or trivial graph while
the edge connectivity A(G) is the minimum number of edges whose removal yields a
disconnected or trivial graph. A connected graph G has x(G) 2 1 and A(G) 2 1, while
a graph G has a cutvertex if and only if x(G) = 1 and a graph has a bridge if and only if
A(G) = 1. Given any n 2 1, if x(G) 2 n the graph G is sai:! to be n-connected while if
A(G) 2 n it is n-edge connected.

The graph shown in Figure 2.1 demonstrates the concepts of cutvertex and bridge
where x(G) = 1, with vertex u as a cutvertex and A(G) = 1, with edge e as a bridge.
The subgraph induced by the vertices labeled v, w, x, and y in Figure 2.1 is shown in
Figure 2.2.




v y

Figure 2.1 A graph with x(G) = 1 and A(G) = 1.

v y

Figure 2.2 An induced subgraph of the graph in Figure 2.1.

For v € V(G), the inclusive edge connectivity of v, ki(v, G), (formerly called
cohesion in [14, 18, 22]), is the minimum number of edges whose removal yields a
subgraph in which v is a cutvertex. Similarly, for v € V(G), the inclusive vertex
connectivity of v, (v, G), is the minimum number of vertices whose removal yields a
subgraph in which v is a cutvertex and for v € V(Q), the inclusive mixed connectivity
of v, ui(v, G), is the minimum number of graph elements (vertices and edges) whose
removal yields a subgraph in which v is a cutvertex.

For e € E(G), the inclusive connectivity parameters for edges Ki(e, G), x;(e, G),
H;(e, G) are defined similarly where "cutvertex" is replaced by "bridge" in the

preceding definitions.




Thus ve V(G) is a cutvertex in G if and only if li(v, G)=x(v,G) =p,(v,G) =0
and ¢ € E(G) is a bridge in G if and only if li(e, G) =x;(c. G) = ;(,G) =0.

When the underlying graph is apparent, reference to that graph may be suppressed,
for instance we may use li(v) instead of Ai(v. G) when no confusion arises. Inclusive
connectivity is also referred to as i-connectivity.

If S is a smallest set of edges (respectively vertices, graph elements) whose
removal from G makes v a cutvertex, then we call S a A,-set (respectively x;-set, |-
set) for vin G. If S is a A,-set (respectively x;-set, p.-set) for vin G and G - v - S has
a neighbor of v as an isolated vertex then we say that S is a neighborhood A,-set
(respectively x;-set, p;-set) for v in G. In a complete graph, every Z.i, x; and p.-set is
respectively a neighborhood A, x;, and p;-set.

The graph in Figure 2.3 illustrates these parameters. Here A,(v, G) = 2, x,(v, G) =
3, and (v, G) = 2. There are several W;-sets for v, {bc, uw}, {b, uw}, or {c, uw}, for
example, but there is only one li-set for v, {bc, uw}. Note that the only x;-sets for v in
this graph involve neighborhood «x;-sets; namely {a, b, w} for neighbor u of v and
{u, ¢, d} for w, the other neighbor of v. Both possible k;-sets reduce v to part of a K,
component in G - S, where S = {a, b, w} or {u, c, d}. The reader can verify that a
vertex v will have only neighborhood x;-sets whenever < N;(v) > is complete. It
should be noted that the existence of only neighborhood «;-sets for v does not imply
< Ng(v) > is complete. For example every vertex in the graph G = C,, the cycle of four
vertices, has only one k;-set, which happens to be a neighborhood «x;-set, but no

neighborhood of any vertex is complete.




Figure 2.3 A graph illustrating the inclusive connectivity parameters.

Using neighborhood sets for possible ;‘i’ X;, and ,-sets, we can quickly obtain an
upper bound for all three i-connectivity parameters.
Theorem 2.1: Given any graph G and any v € V(G),

max {li(v, G), x;(v, G), u,(v, G) } < min { degs(w) : w € Ng(v) }- 1L

There are alternative definitions for the inclusive connectivity parameters that are
extremely useful in applications. Using minimum separating sets for the subgraph
induced by the neighborhood of a vertex v in G - v, will be a frequently used method of
examining inclusive connectivity parameters. This method was first established in the
next result by Lipman and Ringeisen from [14].
Theorem 2.2: For any graph G and v € V(G), if degg(v) 2 2 then X,(v) is the size of
the smallest set of edges whose removal from G - v separates vertices of N(v) into
different components.

In the same manner Boland [2] established the following for the x, and |,
parameters.
Theorem 2.3: Given any graph G and v € V(G), if deg;(v) 2 2 then x;(v) is the size
of the smallest set of vertices whose removal from G - v either separates two vertices

from N(v) into different components or isolates a neighbor of v.
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Theorem 2.4: Given any graph G and v € V(G), if deg(v) 2 2 then ,(v) is the size
of the smallest set of graph elements whose removal from G - v separates vertices of
N(v) into different components.

Theorem 2.3 concerning the x; parameter is slightly different from Theorems 2.2
and 2.4 since adjacent vertices can never be separated into different components by
removing vertices. For the other parameters, it is always possible to separate two
neighbors of v (adjacent or non-adjacent) into different components.

The only situation left unresolved from the previous theorems is the one where v is
a vertex of degree one and thus there is no pair of neighbors to separate. In this case
we are limited to taking a neighborhood set of the only neighbor, obtaining A.(v, G) =
Ki(v, Q) = By (v, G) = degG_v(u) where u is adjacent to v.

The graph in Figure 2.4 illustrates that the neighborhood of v being complete is not

necessary for v to be part of a K, component in G - S, for any x;-set S_..

v

Figure 2.4 A graph illustrating the separation of neighbors of v.
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There is only one x;-set for v, namely {x, y}, while v is part of a K, component in G
- X -y, even though < N;(v) > is not complete. A p.-set for v in G is {yz, x} which

separates the neighbors y and z in G - v - yz - x, and the only li-set for vin G is

{yz, xz}, which separates the neighbors x and y from zin G - v -yz - xz.

A block of a graph is a maximal induced subgraph which contains no cutvertex (in
the usual sense of a cutvertex). Rice first observed [18] that blocks of a graph play an
important role in determining the inclusive connectivity parameters. The following
results were expanded to include all three parameters in [3].

Theorem 2.5: Given any graph G and v € V(G), the elements of any li, X;, Or {.-set
for v are contained in a single block of G.
Theorem 2.6: Given any graph G and ¢ € E(G), the elements of any A, x;, or H;-set
for e are contained in a single block of G.

In particular these results allow us to only examine components for i-connectivity
parameters, hence we assume throughout this dissertation that G is a connected
graph.

All the elements of i-connectivity sets of vertex v € V(G) in the graph in Figure
2.5 are contained in the block consisting of {v, a, b, c, d}. Specifically, the li-set
consists of {cd}, the x;-set consists of {c}, and a p.-set consists of either {cd} or

{c}.

X ¢ d
b

e

y a v

Figure 2.5 A graph illustrating Theorem 2.5.
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The operation of subdividing an edge e = xy consists of replacing the edge e with a
pair of edges xz and zy where z ¢ V(G). If the edge e in Figure 2.5 is subdivided,
then we get the graph in Figure 2.6. The operation of subdividing an edge is important
in the study of inclusive connectivity for edges which will be discussed later in this

chapter.

y a \

Figure 2.6 A graph of Figure 2.5 with edge e subdivided.

One of our primary concerns will be changes in i-connectivity values upon the
addition or deletion of an edge to G; thus we define a vertex v € V(G) as A,.-stable
under edge addition if ki(v, G) = li(v, G + e) for every edge ¢ ¢ E(G). Similarly a
vertex v € V(G) is K (”i) stable under edge addition if Ki(v, G) = k(v,G +e) (THQA
G) = u,(v, G + ¢)) for every edge e ¢ E(G). In the graph in Figure 2.3, if ¢ = vf then
Xi(v, G+e)= lci(v, G+e)= ui(v, G +¢) = 1. Hence vertex v is not stable under
edge addition. Every complete graph will be trivially stable under edge addition for all
three parameters. Chapter 3 provides more examples of graphs exhibiting various
types of stability under edge addition.

For edge deletion we define a vertex v € V(G) is said to be /'li-stable under edge
deletion if li(v, G) = ki(v, G - e) for every edge e € E(G). A vertex v e V(G) is said
to be K- (u‘.) stable under edge deletion if K;(v, G) = (v, G-e) (v, G) = H(v, G -
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¢)) for every edge e € E(G). This area of study is thoroughly investigated in Chapter
4,

Finally, we define what we term neutral edges of a graph (with respect to i-
connectivity). An edge ¢ € E(G) is said to be li-neutral if li(v, G) = li(v, G - e) for
all ve V(G). That is, upon the deletion of edge e, the li value for every vertex
remains the same. This definition is identical to the "stable edge" definition in [19].
The reason for the terminology change is to insure no confusion between an edge
whose deletion does not affect the i-connectivity values for any vertex of a graph and
an edge whose own i-connectivity values do not change under some graph operation.
In a similar manner we say an edge e € E(G) is called K;- (pi) neutral if xi(v, Q) =
K, (v, G-e) (ui(v, G) = ui(v, G - e)) for all ve V(G). In the graph in Figure 2.7 we
note that edge e is }‘i' K;,» and Ji.-neutral since li(v, G) = Xi(v, G-e)=xi(v,G) =
K((v,G-¢)= Hi(v, G) = H(v, G -e¢) =1 for every ve V(G). Research into inclusive

connectivity neutral edges is presented in Chapter 5.

Figure 2.7 A Xi. K;, and j;-neutral edge.

Well Known Graph Theory Results

A well known result relating a graph's edge connectivity and vertex connectivity is

credited to Whitney [25].
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Theorem 2.7 (Whitney): For any graph G, x(G) < A(G) < 8(G).

The graph in Figure 2.8 demonstrates that Whitney's Theorem can occur as a strict
inequality with x(G) = 2, A(G) = 3, and (G) = 4.

An interesting difference we between the i-connectivity parameters and their
global counterparts is that there exist three different i-connectivity parameters, as
opposed to two global parameters. This is because it is known that the mixed

connectivity of a graph is the same as its vertex connectivity.

Figure 2.8 A graph illustrating Whitney's Theorem.

Another significant difference between these two sets of parameters is evident by
examining Figure 2.3 again. Here, we have Ki(v) > li(v), which is in stark contrast to
Whitney's Theorem for the global parameters. Boland [2] conducted a thorough study
of these relationships and showed that every possible relationship between the three
i-connectivity parameters is attainable subject to W.(v) < x,(v), A(V).

Two other important results that we shall use extensively in our work are
Menger's Theorem and the edge analog of Menger's Theorem. Both of these theorems
provide us with a convenient aid in computing our parameters and establishing results,
when combined with the method of "separating neighbors" previously discussed.

A set S of edges (or vertices) of a graph G is said to separate vertices u and v if

the removal of the elements of S produces a disconnected graph in which u and v lie in
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different components. Such a set S is called a separating set or cutset for u and v.
Two u-v paths are internally disjoint if they have no vertices in common, other than u
or v, while edge disjoint u-v paths have no edges in common. It is obvious that
internally disjoint paths are also edge disjoint. Throughout this dissertation the term
"n internally (edge) disjoint paths" means a set of n paths so that any two are
internally (edge) disjoint. If n = 1, the set is vacuously internally (edge) disjoint.
Theorem 2.8 ( Menger): Let u and w be nonadjacent vertices in a graph G. Then
the minimum number of vertices that separate u and w is equal to the maximum
number of internally disjoint u-w paths.

Theorem 2.9 (Menger): If u and w are distinct vertices of a graph G, then the
maximum number of edge disjoint u-w paths in G equals the minimum number of edges
that separate u and w.

The "separating neighbors" conceptualization of i-connectivity suggests that
Menger's Theorem be used in computing the parameters. For instance, the smallest
set of vertices whose removal from G - v separates vertices from N(v) into different
components is the same as the maximum number of internally disjoint paths in G - v,
among pairs of vertices from N(v). Algorithms for computing the i-connectivity
parameters for vertices have been implemented in [12]. The i-connectivity values for

all graphs given in this text were verified using that software.

Li Revi

Investigation into the structure and connectivity of graphs has always been
fundamental in graph theory. Expanding upon Whitney's result [25], Chartrand and
Harary [6] proved that, given integers a, b, and c, a £ b < c, there exists a graph G
with x(G) = a, A(G) = b, and 8(G) = c¢. Chartrand [5] further characterized when
A(G) = 8(G), while Lesniak [13] continued work in this area.
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Since a mixed connectivity and vertex connectivity parameter will always have the
same value in the global sense, there had been little focus on mixed disconnecting
sets until Yau in 1962 [26] considered cutsets in graphs including but not limited to
(minimal) cutsets consisting of both vertices and edges.

In another approach, Beineke and Harary [1] defined the connectivity function of a
graph that was based on the idea of a connectivity pair. A connectivity pair is an
ordered pair of non-negative integers, (i, j), such that there is a set of i vertices and j
edges whose removal disconnects the graph, and there is no set of i - 1 vertices and j
edges or i vertices and j - 1 edges which also disconnects the graph upon removal.
The connectivity function generated some interest, but there has been very little
research on the properties of connectivity pairs.

In a related approach, Chartrand and Pippert [8] first defined "locally connected”.
A graph G is said to be locally connected if <N(v)> is connected for every v € V(G).
The edge analog is similarily defined. These were the first localizations of
connectivity, and were extensively studied in [11, 15, 16, 23, 24]. However, vertices
from outside the neighborhood of a vertex can significantly impact how well a graph is
connected in the local area around that vertex. This provides some motivation for the
i-connectivity parameters because contributions from vertices outside the
neighborhood are inherently accounted for.

The first inclusive connectivity parameter introduced was cohesion (our A,
parameter) by Lipman and Ringeisen [14] in 1979 and was further expanded in [2-4].
These i-connectivity parameters are local measures of graph vulnerability. In fact,
they were shown in [3] to be natural localizations of graph connectivity and edge
connectivity.

Ringeisen and Lipman [22] continued their work in inclusive connectivity in 1983
by considering the effects of edge addition on cohesion and introduced the concept of

vertex stability under edge addition. At the same time Reid [17] extended and
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independently verified some of the results of [14] and [22] by examining when the
cohesion of a vertex v is less than the edge connectivity of G - v.

In a sequence of papers, Rice and Ringeisen [19-21] explored the areas of stable
edges and stable graphs. As stated previously, Rice's stable edges are identical to
our definition of neutral edges. A graph G is defined to be stable if, upon the deletion
of any edge of G, the sum of all the li values of the vertices remained the same. This
definition of a graph being stable involves the sum of all li values instead of an
individual A’i value remaining the same, since the removal of any edge in a A,-set for
vertex v will cause the Z.i value for v to decrease. Surprisingly, several infinite classes
of stable graphs were found.

Following Rice, Boland and Ringeisen [2-4] extended the cohesion results to
include vertex and mixed inclusive connectivity. These papers were the first to use
the inclusive connectivity terminology. Boland's study included the inclusive
connectivity values for certain composite graphs as well as the first look into super i-
connected graphs. A graph is super A (super x) if every edge (vertex) disconnecting
set of size A (x) isolates a vertex.

In 1990, Lee [12] implemented the first software package to compute all three i-
connectivity parameters for a graph. This package has been used extensively to verify
the results of this dissertation.

Inclusive connectivity was studied for extremal properties by Lai and Lai [10] who
investigated the maximum and minimum number of edges a graph contained, when one
fixed the minimum inclusive edge connectivity of a vertex in the graph, and the number
of vertices in the graph.

Most recently, Cribb, Boland, and Ringeisen [9] extensively examined conditions

for stability under edge addition, for all three inclusive connectivity parameters.
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E . { Previous Resul
Most of the comnerstone theorems regarding the effect of edge addition on inclusive
edge connectivity values were established by Ringeisen and Lipman in [22].
Arguably the most important theorem in this area of study is Theorem 2.10. It
precisely states the conditions under which the A, value for a vertex can increase or
decrease after edge addition.
Theorem 2.10: Let u, v, and w be distinct vertices of graph G and edge ¢ = uw where
uw ¢ E(G). Then
(8 A(v,G) SA(v,G+e)<A(v,G)+1 and
(b) A(G -u) <A, G +e) A (u G)
Simply put, if an edge e is added to a graph G and is incident to v € V(G), then the
Ki value for v can only remain the same or decrease. This is because Ng(v) ©
Ng.e(V), which implies any A;-set for v in G will still separate the same pair of
neighbors in G + e - v with possible decrease in the "i value due to the new neighbor.
On the other hand if e is not incident to v, then the li value for v can only remain the
same or increase by exactly one. In this case if S is a li-set for v in G, then S can
possibly remain a A,-set for v in G + e or at worst the removal of S U (¢} from G +¢ -
v will separate the same pair of neighbors.
Boland {2] extended this result to include mixed inclusive connectivity in Theorem
2.11.
Theorem 2.11: Let u, v, and w be distinct vertices of graph G and edge e = uw where
uw ¢ E(G). Then
(@ v, Q) sp(v,G+e)< (v, G +1 and
() x(G - uv) < p,(u, G+e)s ui(u, G).
We can also extend these results to include the x;-parameter, but here we will
begin to realize some of the differences in this parameter. Possibly our first such

discovery was during the discussion of Whitney's Theorem in relation to inclusive
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connectivity. Intuitively we can think of a vertex as "behaving normally" if its i-
connectivity responds in a manner paralleling Whitney's Theorem (i.c. x,(v) < li(v)).
But as discussed previously, this is not true in every case since we have seen in the
graph in Figure 2.8 a case where x,(v) > li(v). In the previous two theorems, we can
see that when the A, and y, increase, they can increase by at most one. As Theorem
2.12 states, this is not true for x;.
Theorem 2.12: Let u, v, and w be distinct vertices of graph G and edge ¢ = uw where
uw € E(G). Then

(@ x(v,G) sx(v.G+e¢) and

b) x(G-u) < K;(u, G+e)s K;(u, G).
Proof: Let S, be a x;-set for vin G + ¢. Then v is a cutvertex in (G +¢) - S_. Butv
would remain a cutvertex in G - S, since NG(v) = NG +e(v) implies the same pair of
neighbors of v would be separatedin G - v - S, Sox,(v\G) SIS I=x,(v,G +e).

To establish (b), notice that since (G + ¢) - u = G - u, any x;-set for u in G will
separate the same pair of neighbors in G + e - u since Ng() NG +e(0): Sox(u, G+
e) S x;(u, G).

Finally, if S is a x;-set for u in G + ¢, then S, is a disconnecting set of vertices for
G - u, since by definition (G + ¢ - u) - Su =(G-u)- Sll is either disconnected or the
trivial graph. Thus k(G - u) Sx(v,G +e¢). O

An cxample of when x; increases by more than one is illustrated in the graph in
Figure 2.9. There x;(v, G) = 5 with the separation of neighbors u and w of v, but after
the addition of edge e = uw, x;(v, G + ¢) = 8 with the separation of neighbors x and y.
The reason that the x, parameter increases in this manner is that it becomes
impossible to separate the adjacent neighbors u and w in G + e by deleting vertices

alone.
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Figure 2.9 The increase in the x; parameter.

We can easily show that the increase in x; can be arbitrarily large. If an increase
of n, n 2 1, is desired, then we simply change the two columns of 10 vertices of degree
two to two columns of 7 + n vertices of degree two and the one column of 5 vertices of
degree two to a column of 2 + n vertices of degree two.

Ringeisen and Lipman also discovered a characterization of exactly when the edge
i-connectivity of a vertex (li(v)) increases, and this was followed by a similar partial
result by Boland for mixed i-connectivity.

Theorem 2.13: Let u, v, and w be distinct vertices of G with uw ¢ E(G) and A,(v,G)
>0. Then A,(v, G + uw) > A,(v, G) if and only if uw is a bridge in (G + uw) - v - S, for
every S, which is a A,-set for v in G.

Theorem 2.14: Let u, v, and w be distinct vertices of G with uw ¢ E(G). If H(v,G +
uw) > p.(v, G) then uw is a bridge in (G + uw) -v-§_ forevery S, whichisap.-
set for vin G.

A similar partial result for vertex i-connectivity is now presented.

Theorem 2.15: Let u, v, and w be distinct vertices of G with uw ¢ E(G). If xi(v, G+
uw) > "i("' G) then uw is a bridge in (G + uw) - v - Sv for every S, which is a K;-set

forvinG.
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Proof: Suppose x;(v, G + uw) > (v, G) and let S be any x;-set (possibly empty)
for vin G. Now by definition v is a cutvertex in G - S, butitis notin G + uw - §_ since
(v, G+uw)>x(v,G) =18 | SoG-v-S§ isdisconnected with a greater number
ofcomponentsthanG-i-uw-v-Svandsincc(G+uw)~v-(Svu {uw])=G-v-Sv.
then uw is a bridge in (G +uw) -v-S . O

It should be noted that it was not possible to establish a likewise characterization
for the x; and u; parameters. The graph in Figure 2.10 demonstrates that the
contrapositives of Theorems 2.14 and 2.15 are not valid by displaying a vertex v with
(v, G) = p,(v, G) = 1 which has as its only K, Or .- set the vertex y.

Upon examination it can be seen that lci(v, G+uw) = ui(v, G + uw) = 1 where the
K; and p;-sets still consist of just the vertex y. But uw is a bridge in (G + uw) -v - §
for every S which is a x; or p.-set for v in G.

Even though the previous extensions of the Ringeisen and Lipman results [22] for
Ai were not identical for x; and K; the following propositions show that some results

for x, and ., are completely analogous under the operation of edge addition.

Figure 2.10 A counterexample to the converses of Theorems 2.14 and 2.15.




Ringeisen and Lipman's work provided some examples of graphs that were A,-
stable under edge addition, i.c. every vertex in the graph was A -stable under edge
addition. The first result toward this goal is Proposition 2.16.

Proposition 2.16: If ve V(G) is adjacent to at least three distinct vertices each of
which has degree at most A(G - v) + 1, then v is A.-stable under edge addition.

An analogous result for x; and J, is now presented.

Proposition 2.17: If ve V(G) is adjacent to at least three distinct vertices each of
which has degree at most (G - v) + 1, then v is x; and ji,;-stable under edge addition.
Proof: This proof will establish x;-stability under edge addition since the argument
for p.-stability is identical.

Let u € Nj(v) where u is one of the three distinct vertices that has degree at most
k(G - v) + 1 and deg(u) is the degree of u in G. Then by Theorem 2.1, xi(v, G) s
deg(u) - 1. Since it is given that deg(u) < k(G - v) + 1 we have x,(v, G) S x(G - v).
And since xi(v, G) 2 x(G - v) is always true, then we have equality.

If G is a complete graph, then v is x;-stable under edge addition by definition.
Assume G is not complete and let x and y be nonadjacent vertices of G. Since x((G +
xy) - V) 2 x(G - v) and x;(v, G + xy) 2 k(G + xy - v), we have x;(v, G + xy) 2 x(G -
v). By the hypothesis, there is a w € N;(v) where w is not x or y and the degree of w
in G + xy is at most k(G - v) + 1. Arguing as before, x;(v, G + xy) < x(G - v).
Combining results produces x;(v, G + xy) = (G - v) = x;(v, G) which implies x;-
stability under edge addition. Q

Two corollaries follow that provide the desired examples for all the parameters.
The proofs follow that used for A, in [22] and have been omitted.

Corollary 2.18: If G is regular of degreer,r23,and ve V(G) withA(G-v)=r-1
(k(G - v) =r- 1), then v is A.- (x; and 1) stable under edge addition.
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Corollary 2.19: The following graphs are A, k;, and y.-stable under edge addition.
(a) The Petersen Graph
(b) The complete bipartite graphs K(n, n), n 2 3.
Even though the major thrust of this work is not on graphs which are i-connectivity
stable under edge addition, it is interesting to note that there do exist several

nontrivial infinite classes of such graphs.

Inclusive C ivity for Ed

We present a preliminary investigation of i-connectivity for edges. Most previous
work regarding i-connectivity dealt primarily with vertices. We now examine the
relationships between the i-connectivity parameters defined for edges showing that
the previously established results for vertices are useful in establishing parallel
results for edges. For any ¢ = uw € E(G) let G* be the graph G with edge ¢
subdivided. We label the vertex introduced upon subdivision as v. Proposition 2.23
presents the basic idea in this investigation.
Proposition 2.20: An edge e is a bridge in G if and only if v is a cutvertex in G*.
Proof: Let ¢ be a bridge in G with endpoints u and w. Then G - e consists of exactly
two components with u and w being in different components. Then, in G*, v is
adjacent to both u and w implying G* is connected with v being on every u-w path of
G*. Thus v is a cutvertex in G*. The converse argument is similar. O

Figure 2.11 depicts this fundamental idea of viewing any bridge as a cutvertex of
degree two in a slightly modified graph.




If you have in G: Then in G*:
Component #1 Component #2 Component #1 Component #2
o - 0
e (bridge) v
(cutvertex)

Figure 2.11 Inclusive connectivity for edges.

Corollary 2.21: Given a graph G and v € V(G'), if v has degree two and its
neighbors u and w are not adjacent in G', then A,(v, G') = A,(e, G) where e = uw and
G=G'-v+uw.
Proof: The reverse of the subdivide operation produces G'- v+ uw =G. Thus G' - v
=G-e. LetS,'beanyA-setforvinG. ThenG'-v-S_'=G-e-S, which implies e
is a bridge in G - S, Therefore li(v, G)2 li(e, G). Assume there exists a ki-set S,
for ¢ in G such thatlSeI<ISe'I. ThenG'-v-Se=G-e-Se which implies v is a
cutvertex in G' -S_ and we have | S, 124,(v, G) > A;(e, G) =1 S_ |, a contradiction.
Therefore Xi(v, G)= Ki(e, G). Q

Two additional corollaries which follow show that identical results hold for the
remaining two i-connectivity parameters. The proofs are identical to those of Corollary
2.21 and have been omitted.
Corollary 2.22: Given a graph G and v € V(G'), if v has degree two and its
neighbors u and w are not adjacent in G, then x;(v, G) = x;(¢, G) where ¢ = uw and

G=G'-v+uw.
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Corollary 2.23: Given a graph G and v € V(G'), if v has degree two and its
neighbors u and w are not adjacent in G', then (v, G') = 1.(e, G) where ¢ = uw and
G=G'-v+uw,

Proposition 2.20 and Corollaries 2.21-2.23 indicate that many results on inclusive
connectivity for vertices in [2] hold for edges, considering the subdivide operation.

Next is a characterization of when an edge is in a minimum disconnecting set for
a graph in terms of its inclusive edge connectivity from [2].

Proposition 2.24: Given a graph G, and e € E(G),

A,(e) =A(G) - 1 if and only if e is in a minimum edge disconnecting set of G.
Proof: Let A,(¢) =A(G) - 1 and let S_ be any A;-set fore in G. SolS_1=24,(e) and
l.i(e) +1=A(G). SinceG-e- Se is disconnected (by the definition of S o and | Se U
{e} I=1S,1+1=2A(G), then ¢ is in a minimum edge disconnecting set of G.

Let ¢ be in a minimum edge disconnecting set, S, of G. Then A(G) =1S,1and G
- (S, -€) =G +e - S, is connected by the minimality of S_. SoA,(e) SIS, 1-1=A(G)
- 1. But we also know A(G) = min {li(c) :e€ E@G) ) +1. SoAG) < li(e) + 1 for all
e € E(G) which implies A(G) - 1 =A,(c). U

The following result shows that the realizable relationships between the i-
connectivity parameters defined for an edge are much more limited than those for a
vertex described in [4].

Theorem 2.25: For any graph G and any edge e = uw € E(G),

Hy(e) = x;(e) S A;(e) S min { deg(u), deg(w) } - 1.
Proof: From the definitions of the inclusive connectivity parameters, we have p;(e) s
x;(e) for any e € E(G). Suppose there exists an edge e € E(G) where y;(e) < x;(e).
Let Sy be a x;-set for e in G and S, be a ;-set for e in G. If there are no edges in Sy,
then | Sy, | <1 Sy | contradicts the minimality of Sy. So there must be at least one
edge in Sp,. Construct a set of vertices Sy* by including all the vertices in Sy, and for

each edge in Sy, select one of its incident vertices that is not incident with e to be in
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Sy*. Then ¢ will be a bridge in G - Sy* where S, * consists entirely of vertices and
ISy* 1S1Sm | Thus x;(e) SI1Sy* 1S18y | <18y I =x(e) a contradiction. Therefore
Ri(e) = x;(e).

Let e = uw € E(G) and let S¢ be a Aj-set for ¢ in G. Then e is a bridge in G - S,
and G - e - S, consists of exactly two components. For each edge in S, we select
exactly one of its incident vertices that is not u or w, to form a set of vertices S, *.
Now e will be a bridge in G - Sy* where G - ¢ - Sy* consists of at least two
components. Thus x;(c) < li(e).

The last inequality is clear. O

Thus, when considering the relationships between the inclusive connectivity
parameters for edges, there are only two possible combinations as opposed to the six
for vertices shown in [4].

Notice that Theorem 2.25 indicates that the i-connectivity parameters, when
defined for an edge, behave in a manner analogous to the global connectivity
parameters, i.c., Theorem 2.25 is much like Whitney's Theorem. The equality K;(e,G)
= x;(¢, G) is mirrored by the previous statement that the minimum number of graph
elements whose removal will disconnect G is equal to the vertex connectivity of G.

Graphs illustrating the two possible relationships between the three inclusive
connectivity parameters for edges are shown in Figures 2.12 and 2.13. For the graph
in Figure 2.12, A,(¢) =j + 2 and x;(¢) = j + 1 for j < n < m where j, m, and n are

positive integers. However, for the graph in Figure 2.13 li(c) =K, =j+l,j<n




degw)=n+1 degw)=m+1
J<n<m

Figure 2.12 Hie) = x;(e) < li(e).

deg(u)=n+1 deg(w)=n+1

j<n

Figure 2.13 p.(e) = K;(e) = li(e).
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Both of the above figures represent an infinite class of graphs, but the reader can
verify that with minor adjustments the difference between the li and x; parameters
can be arbitrarily large.

When considering graph operations such as edge addition for edge i-connectivity,
again, the behavior of the edges is much more simplified than its vertex counterpart.
We can see from the next theorem that the only possible outcomes are that the
parameters remain the same or increase by one.

Theorem 2.26: For any graph G let e € E(G). Then for any edge e' ¢ E(G),
(a) ki(e, G) < li(e, G+e)<sA(e,G) + 1
(b) lci(e. G) s Ki(e, G+e)< lci(e, G)+1
© pe. G sple,G+e)sp(e, G + 1.

Proof: Lete € E(G) and e' ¢ E(G).

For (a), first let S_ be any A;-set for ¢ in G. Then A, G+e)sIS, L fe) 1=
| Se f+1= Ai(e, G) + 1 since G - Se =(G +e)- (S, U (e')).

Now let S_* be any A-setforeinG+e'. Ife'e S *thenG+e'-S *=G-(S*-
¢') which implies Xi(e, G) SIS *1-1= li(e, G+e)-lorife,G) < A, G+e). If
e'¢ S, *then G +¢' - S.* - e consists of exactly two components of which e' is
contained in one of these components. Thus the endpoints of e are in different
components in G - S e"‘ - ¢ which implies e is a bridge in G - Se*. Therefore, li(e, G) <
I8 * 1= li(e, G +e".

For (b), let ¢’ have endpoints u and w where, without loss of generality, u is not
an endpoint of e, and let S be any «;-setforeinG. Ifue S thenG +¢'-§ =G-§,
and Ki(e,G+c')$xi(e,G). Ifue Sv then lci(e,G+e')$lSVu (u} =185, 1+1=
x;(e, G) + 1 since u will be contained in one of the components of G - S_ - e and the

endpoints of e will remain in different components of G + ¢’ - (SV U {u})-e.
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Let S * be any x;-set for ¢ in G + ¢'. By definition, the endpoints of ¢ are in
different components of G + ¢’ - S_* - e which will remain the case in G - S,* -e. This
implies e is a bridge in G - S_* so K€ G)sIS*I=x(G +e¢).

For (c), the proof is similar to (b). Q




CHAPTER 3

STABILITY OF INCLUSIVE CONNECTIVITY
UNDER EDGE ADDITION

Introduction

This chapter will begin by investigating the various possible relationships among
the inclusive connectivity parameters concerning vertex stability under edge addition.
Examples for each possible relationship will include an infinite class of such graphs.

Further, we are interested in any implications or dependencies that may exist
when a vertex is known to have some type of i-connectivity stability. An interesting
result relating x; and j.-stability under edge addition will be presented. This chapter
will also answer a question about the x; parameter initially started in [2] regarding
the situation when A,(v) < K, (V).

Finally, we explore a surprising relationship between the stability of inclusive
connectivity and the stability of the global connectivities under edge addition.
Throughout this chapter "stable" (or "stability") will mean "stable (stability) under

edge addition".

Relationshins Achievable under Edge Additi

As stated in the previous chapter, Menger's Theorem and its edge analog provide us
with a convenient way of viewing i-connectivity using the separation of the neighbors of
a vertex. We will now present the first of these essential theorems.

For any v € V(G), let u and w be neighbors of v. Let p (u,w) denote the maximum
number of edge disjoint paths between u and w in G - v and p (u,w) be defined as the
maximum number of internally disjoint u-w paths in G - v, i.e., paths with no vertices or

edges in common.
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Lipman and Ringeisen [14] proved the first such result for A, where deg(v) 22, ve

V(G).
Theorem 3.1: For any graph G with v e V(G),
k.l(v) =min { p(aw):u, we N©v) ).

Boland [2] expanded this result to include p; by using the same principle, except
with internally disjoint paths.

Theorem 3.2: For any graph G with v € V(G) having degree greater than one,
H;(v) = min {p,(uw):u, we N(v) ).

Again, the impossibility of separating adjacent neighbors by just removing vertices
results in a slightly different interpretation for x; [2].

Theorem 3.3: For any graph G with v € V(G) having degree greater than one and
<N(v)> not complete,
xi(v) = min { p,(u,w) : u, w € N(v), uw ¢ E(G) }.

Even though the previous three theorems all are restricted to vertices of degree two
or greater, this is actually no obstacle since a vertex v, of degree one has J\.i(v) = x;(v)
= ui(v) = deg(u) - 1 where u is the lone neighbor of v. And if N(v) is complete, an i-
connectivity set will consist of the other neighbors of a minimum degree vertex
adjacent to v.

In fact, while regarding stability under edge addition (where the inclusive
connectivity for a vertex remains the same upon the addition of any edge), the case of
degree one vertices will be completely analyzed later in this chapter.

Now we explore whether every possible combination of stabilities among the three
i-connectivities is realizable. We currently have one unresolved case; specifically the
case where a vertex v is {1, and li-stable but not x;-stable. We will call this Case X.
We will prove later that it is impossible to have x-stability without p.-stability, which

we will call Case Y. Hence, we prove Theorem 3.4, which omits these cases.
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Let G, and G, be two graphs with disjoint vertex sets. The join G of the two
graphs G, and G,, denoted as G = G, + G,, has V(G) = V(G,) L V(G,) and E(G) =
B(Gl) ) E(Gz) Ufuvlue V(Gl) andve V(Gz) }.

Theorem 3.4: Each of the five relationships of stability among the inclusive
connectivity parameters, not related to X or Y, has an infinite class of graphs satisfying
it.

Proof:

Case (1): A vertex that is ki, X;, and p.-stable.

Any vertex from a complete graph is trivially stable for all three parameters. But
following the work in [22] we arrive at Corollary 2.19. This provides us with an infinite
class of graphs that not only contain a vertex that is stable for all three parameters, but
is such that every vertex of the graph is stable for every i-connectivity parameter.
Thus no matter what vertex we choose in the graph in Figure 3.1, we have stability for

all three parameters.

Figure 3.1 The Petersen Graph.
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Case (2): A vertex that is not A;, x;, or ji.-stable.

If v is a cutvertex in G and e ¢ E(G) is an edge so that v is not a cutvertex in G +
e then v is not A, x;, or pi.-stable. But for the more sophisticated example in Figure
3.2, we see that ki(v, G) = x,(v, G) = u(v,G) = 1 and Xi(v, G+e)=x,(v,G +e)=
H;(v, G + ¢€) = 2 where ¢ = xy. For an infinite class, this generalizes to an arbitrary

cycle.

\4

Figure 3.2 A vertex that is not A;, K;, or j1.-stable.

Case (3): A vertex that is A.-stable, but not x;, or j1.-stable.

For the graph in Figure 3.3, v is adjacent to every other vertex. By Theorems
2.10-2.12, none of the inclusive connectivity parameters for v can decrease under edge
addition. It can be verified that ki(v, G) = 3 while Ki(v, G)= ui(v, G) = 2. The value
of A;(v, G) can be obtained in many ways but most notably by taking a neighborhood
A,-set for v from any one of the three lightly shaded vertices. Since any edge added
will be incident with at most two lightly shaded vertices, then one of the three

neighborhood A,-sets for v in G will remain a valid neighborhood A;-set for vin G + e
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for any edge ¢ ¢ E(G). Thus v is li-stable. We see that the addition of an edge
between any of the nonadjacent lightly shaded vertices will cause the x; and y; values
for v to increase to three. Therefore v is A;-stable, but not x;, or j,-stable.

One may notice that v is not the only vertex in the graph in Figure 3.3 that fits this
case. The neighborhood of vertex u is complete, so A,(u, G) = x;(u, G) = y,(u, G) = 4.
Again, adding an edge between any of the nonadjacent lightly shaded vertices will
give x,(u, G +¢) = ,(u, G +¢) =3 and A,(u, G +¢) = 4. The stability of A, follows
from the existence of at least four edge disjoint paths in G - u between any pair of
neighbors of u after any edge addition, with several pairs of neighbors providing
exactly four such paths. This will prevent Ki from decreasing. An increase in B\.i will

not occur, in a manner similar to vertex v.

v

Figure 3.3 A vertex that is A;-stable, but not x; or p.-stable.

To construct an infinite class of graphs for this case, build graph G , n 2 4 as

follows. Let G = ( K, UK, ) +v, where + denotes the join operation. Label the
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vertices of one copy of K u,, u,, ..., u, and the other w,, w,, ..., w_. Define V@G)) =
V(G) and E(G)) =EG) v { yyw, } U (uw,; ,,i=2, 3, .., n-1 }. Notice that the
graphs G, generalize the graph of Figure 3.3 and yield to a similar analysis.

Case (4): A vertex that is x;, and p;-stable, but not A.-stable.

If we take the join of a K, (naming the vertices w and v) with two additional copies
of K, and two isolates (named u and x) we get the graph G in Figure 3.4. All three
parameters for v have the value one. The only x;-set for v has the single member w.
In G - v - w there are more than two components implying that for any ¢ € E(G), we
will have a disconnected graph in (G +¢) - v - w. Since (G + ¢) - w is connected, then
;(v, G +¢) S 1. Noting that v cannot be a cutvertex in G + ¢, we have x;(v, G +¢) =
H;(v,G +e) =1. Thusv is ;- and pu,-stable. But if we add the edge ux then the
inclusive edge connectivity of v increases to two and we conclude that v is not A;-
stable.

For an infinite class of such graphs, we take the join of a K, (w and v) with two
additional K 's, n 2 2, and K| - ¢, where ¢ is an arbitrary edge, and the resultant graph
behaves properly.

v

Figure 3.4 A vertex that is x; and p.-stable, but not A.-stable.
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Case (5): A vertex that is ju-stable, but not A, or x;-stable.
Note that in the graph in Figure 3.5 .G - v is constructed as (K; - xy) + (K5 - uw) - M
where M is a certain matching between the two joined components. Since degg_,(u) =
degg_ (W) = 3, we have py(v, G) S 3, x;(v, G) £ 3, and A,(v, G) < 3. By counting the
maximum number of internally disjoint paths in G - v between the vertices of N;(v), it
can be shown that p.(v, G) = x,(v, G) = 3, which also implies A,(v, G) = 3 since A,(v,
G) 2 u,(v, G) and deg;_,(v) = deg; (W) =3. Any edge ¢ # uw added 10 G - v will
give (v, G + ) = K;(v, G + ¢) = 3 since either vertex u or w will have degree 3 in G
+e¢-v. Ife=uwthen Ng_ (v) is now complete which implies x,(v, G +¢) =4. In
addition, there are four edge disjoint paths between any pair of neighbors of v in G +

uw - v 50 A,(v, G + uw) = 4. Thus v is not A, or x;-stable.

v

}K, -xy

} K, -uw

Figure 3.5 A vertex that is ji.-stable, but not A, or x;-stable.

But 1,(v, G + uw) < 3 since {ub, a, w} is a p-set for v, and combining this with

Theorem 2.11 provides p,(v, G + uw) = 3. To notice that the yt; value does not
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decrease in G + ¢ when ¢ is incident with v, we see that there are at least three
internally disjoint paths from each of the vertices a, x, and y to each of the members of
Ng(v). Therefore p.(v, G +¢) = 3 for every ¢ € E(G) and v is ui-stable under edge
addition.

Next we refer to the graph in Figure 3.6 to prove that there exists an infinite class
of such graphs. Note that G - v in Figure 3.6 is constructed similarily to the graph in
Figure 3.5 as ((Kn - xn_lxn) + (Kn - X, +1xzu)) - M where the matching M = { X, Xppn»
XoXon-1» X3%20.22 " > XXoniia1 " " Xn.1%n42> Xp¥pe1 } and nis an integer, n 2 3.

The degrees of Xp 41 and X2 inG-vareeach(n-2)+ (n-1)=2n - 3 while the
degrees of Xne2, * + »Xop. inG-varceach(n-1)+(-1)=2n-2 Soby
neighborhood sets, xi(v,G) <2n-3, ui(v. G)<2n-3, and i\.i(v,G) S2n-3. To
establish equality, we need to find at least 2n - 3 internally disjoint paths between

every pair of vertices of NG(v) inG-v.

} Kn .xn-l xn

X X
n n+l 2n

v

Figure 3.6 An infinite class for Case (5).
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utxiandijeapairofneighborsofvin(i-vwheren+ 1Si<j<2n. Now we
establish the required number of internally disjoint XX, paths.
Case (5a): Leti#=n+1,j#2n.

By inspection x, is adjacent to all the vertices x__;, -, X; ;, X * * Xo, Which are all

i+
adjacent to X Thus we have n - 2 internally disjoint X;X; paths of length two and one
more path of length one internally disjoint from the others.

Also, since n + 1 < i < 2n, x; is adjacent to all the vertices X, - - -, Xy ., Xp . 0,

-+ x_. A total of n - 2 of these vertices are adjacent to X for an additional n - 2

"
internally disjoint X;X; paths of length two. The vertex not adjacent to X; is Xon-j+1,
which means the path XXn-j+1%2n-i+1%j provides a total of 2n - 2 internally disjoint XX;
paths.

Case (5b): Leti=n+1,j=2n.

Now x; is adjacent to x * *y Xpp.1 Which are all adjacent to x,_ for a total of n - 2

n+2’
internally disjoint X;X; paths. But x; is also adjacent to x,, X,, - - -, X _; which are all
adjacent to X; eXcept X,. But XX XpX; provides another path for a grand total of (n - 2)
+ (n - 2) + 1 =2n - 3 internally disjoint XX paths.

Case (5¢): Leti=n + 1 orj = 2n (but not both).
Without loss of generality, suppose i =n + 1 and j # 2n. Then x, is adjacent to X042,
***, Xy Which are all adjacent to X; (except X; itself) for a total of n - 2 internally
disjoint XX, paths. But x, is also adjacent to x,, X,, - - -, X, which are all adjacent to
X; EXCEpt Vertex Xy, . ;. However vertex Xon-j+1 is adjacent to x, which is adjacent
to X; for a path of length three. Thus we have atotalof (n-2) + (n-2)+1=2n-3
internally disjoint XX paths.

Therefore, through the previous three cases, we have shown p.(v, G) 2 2n - 3,

k,(v,G) 2 2n - 3, and ki(v, G) 2 2n - 3 which implies equality for all three parameters.
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We must now complete our investigation by analyzing the change in the inclusive
connectivity values for v after the addition of an arbitrary edge. We begin our
investigation with the following claim:

Claim: The addition of any edge ¢ except Xne1%2n Will keep p(v, G +€) =x(v, G +e¢)
=A{(v,G+¢)=2n-3. Butwhene = Xpe1%2p: then R(v, G +€) =2n - 3 and x,(v, G +
c)=l.i(v,G+c)=2n-2.

The succeeding three cases substantiate this claim.

Case (5d): Add the edge e = XX where e # x_ ,x, and x,, X;* V10 the graph in
Figure 3.6.

Since e is not incident with v we know the inclusive connectivity parameters for v
remain the same or increase.

Since ¢ # x_ _;x, then one of x__, or x, will have degree 2n - 3in G - v. Hence,
H;(v, G +e), x;(v, G +¢), and A.(v, G + ¢) remain 2n - 3.

Case (5e): Add the edge e = x__x,_ to the graph in Figure 3.6.

NG, (V) is complete and the degree of each neighbor is 2n - 2, which implies K(v,G +
e)=A,(v,G+¢e)=2n-2. But B (v, G +e) =2n-3,since S = (X, 1Xp 0. X[ Xp, 07 1,
Xn.2* Xn43» Xpago " Xgp ] I8 3 pyset.

For clarity, G - S is displayed in Figure 3.7.

Case (5f): Add the edge e = x,v where 1 <i < n to the graph in Figure 3.6.

By Theorems 2.10, 2.11, and 2.12, we know the inclusive connectivity parameters for v
remain the same or decrease. Let x; € NG(v).

Leti=1. Son +1<j<2nand x, is adjacent to x **y Xoo 1 Andif j # 2n then

n+l’
we have n - 1 internally disjoint X1 paths of length at most 2, using the vertices Xne1o
"t Xyn 1 Alsox, is adjacent to Xy, * * *, X, Which provides n - 2 internally disjoint X\ X;
paths of length at most 2 for a total of 2n - 3 paths. If j = 2n, then we have n - 2
internally disjoint x,x,_ paths of length at most 2 using vertices Xp420 "2 Xgp g andn -

1 internally disjoint x,x, paths of length at most 2 using vertices X, * - 4 X for a total




of 2n - 3. Thus if i = 1, then there exists at least 2n - 3 internally disjoint paths
between the new neighbor x, and all the members of N (v), implying all the i-
connectivity parameters remain the same.

Nowlet2<isn-2. Then X; is not adjacent to Xpn-is] € NG(v). If X, is adjacent
to X; then there are n - 1 internally disjoint X;X; paths using the vertices x, .- -, Xy, o,
Xop.i+2> " * > Xone Ome of these paths may be of length three if j = n + 1 or 2n as follows.
If j =n + 1, for example, then the path x.,x, x, . +1%j suffices. Then the vertices x,, - - -,
X;.1» Xi410 * * » X, Provide n - 2 internally disjoint XX; paths of length at most 2 for a
total of 2n - 3 paths. If x, is not adjacent X;s then we have n - 1 internally disjoint X;X;
paths of length at most 2 utilizing the vertices x__,,- - -, Xip Xja1r " Xope Now the

Vel'tlces Xl, DY xi_1, xi+l, N

*+ X, provide n - 1 internally disjoint XX, paths of length at
most 2 for a total of 2n -2 paths. So for 2 £ i S n - 2, there exists at least 2n - 3
internally disjoint paths between x, and X;e

Consideri =n - 1 or i =n. Without loss of generality leti =n - 1. Then we have n

- 1 internally disjoint Xp.1%; paths of length at most 3 using x * *s X, Where at

n+1’
most one path is of length three. Now x_ , is adjacent to x,, x,,- - -, X, 5 which
provides n - 3 internally disjoint Xn-1%j paths using the vertices x;, x,, - - -, Xon-j
Xon-j+2 """ ¥n2 for a total of 2n - 4 paths. Finally we have the path Xp-1%2n-j+1%0%j for
a total of 2n - 3 internally disjoint X;X; paths wherei=n-1and n+ 1 <j <2n. For the
case i = n the situation is similar.

Therefore, there exists at least 2n - 3 internally disjoint paths between each x; &

Ng(v) and X; € Ng(v) which implies the inclusive connectivity parameters do not

decrease but remain the same and the claim is established.
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n+l n+2

v

Figure 3.7 G - Sm for Case (5e).

Thus v € V(G) in Figure 3.6 is p;-stable, but not x; or A,-stable and Case (5) is

now complete. O

Imnlications of i-C {vity Stability under Edge Addit

In this section we investigate implications that arise when considering the
stability of inclusive connectivity for a given vertex. The relationships we consider are
concerned with the following three major topics: global connectivity parameters,
inclusive connectivity parameters, and stability under edge addition.

For example, it is known that x(G) > x(G - v) if and only if v is in some minimum
vertex separating set for G. First we present a result from [3].

Theorem 3.5: For any v € V(QG), if x(G) > x(G - v) then x(G - v) = KV =x,(v) =
x(G) - 1.
An example illustrating this theorem is presented in Figure 3.8. Here, x(G) = 2

and x(G - v) = 1 and by Theorem 3.5, ui(v) = Ki(v) =1.
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Figure 3.8 A graph illustrating Theorem 3.5.

The next corollary follows immediately.

Corollary 3.6: If ve V(G) is in some minimum vertex separating set for G, then
K;(v) = p(v).

The converse of Corollary 3.6 is not true as we can see from the graph in Figure
3.5 where xi(v) =p(v) = 3. But x(G) = 3 = x(G - v), and hence, v is in no minimum
vertex separating set for G.

The next two theorems describe when inclusive connectivities of a vertex can
decrease.

Theorem 3.7: [22] Let G be a graph containing a vertex v such that A.(v, G) > A(G -
v). Then there is a w € V(G), w & Nj(v), so that Ki(v, G+vw)=AG - V).

Similar to Theorem 3.7 is the next theorem.

Theorem 3.8: [2] Let G be a graph containing a vertex v such that ui(v, G) > x(G -
v). Then there is a w € V(G), w & N(v), so that j,(v, G + vw) = k(G - v) = x,(v, G
+ vw).

These ideas can also be expanded to include x;, which we now do.

Theorem 3.9: Let G be a graph containing a vertex v such that x,(v, G) > k(G - v).
Then there is a w € V(G), w & NG(v), so that K(v, G +vw) =x(G - v).
Proof: Let S be a minimum vertex separating set of G - v. Since (v, G) > x(G - v),

S does not separate two vertices from Ng(v) into different components upon its
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removal from G - v. Thus all of N;(v) resides in one component of G - v - S. Choose
w to be a vertex from a component of G - v - S that does not contain the members of
NG(v). Then v becomes a cutvertex in G + vw - S which means K, (v, G+vw)<ISIi=
x(G - v). Since x(G-v) < kv, G + vw) by Theorem 2.12(b), we have x,(v, G +vw)
=x(G-v). Q

Theorems 3.10-3.12 show that i-connectivity parameters produce global results for
vertices that are stable.

Theorem 3.10: Suppose v € V(G) is A;-stable. Then xi(v, G) = li(v, G+e)=AG -
v) for all e ¢ E(G).

Proof: Suppose v € V(G) is A-stable. Suppose that A,(v, G) > A(G - v). Then by
Theorem 3.7 there is a vertex w, w € Ng(v) so that Ai(v, G +vw) = A(G - v). But
li(v, G+vw)= Xi(v, G), a contradiction. Hence, Xi(v, G) SA(G - v). But A,(v,G) <
A(G - v) is impossible since any Xi-set can be removed to disconnect G - v or leave it
as the trivial graph. Therefore, the result follows. QO

The proofs for Theorems 3.11 and 3.12 are similarly straightforward and have been
omitted.

Theorem 3.11: Suppose v € V(G) is x;-stable under edge addition. Then x;(v, G) =
Ki(v, G +¢e)=x(G-v)foralle ¢ E(G).
Theorem 3.12: Suppose v € V(G) is p,-stable under edge addition. Then v, G) =
Hy(v, G+e)=x(G-v)foralle ¢ E(G).

We have shown that an alternative procedure for obtaining inclusive connectivity
values is to count the paths between neighbors of v. In the cases of increases in the
A, and . values for a vertex v when an edge ¢ € E(G) is added to a graph G, there is
only one situation to consider. There must be respectively a new edge disjoint or
internally disjoint path in G + e between a pair of neighbors previously separated in G

- v - § where S is a A.-set or j1,-set respectively.




In the case of Kx;, an increase could result from either the creation of a new path or
by the edge joining a pair of neighbors previously separated now being adjacent in G +
e. In any case, an increase in any i-connectivity parameter when an edge is added to a
graph does not imply that either of its endpoints is a neighbor of the vertex. As can be
seen in the graph in Figure 3.9, .(v, G) = x;(v, G) =A,(v, G) = 1 and u.(v, G + uw) =
K(v, G +uw) = li(v, G+uw)=2,butu,we NG(v).

Also, an increase in x; after the addition of edge e = uw implies that neither u nor
w is in any x;-set for v. Otherwise, the addition of the edge would have no effect on

the x; value, i.e., K (v, G+uw) = (v, G), sinceG-v-§ =(G+e)-v-S§,.

\4

Figure 3.9 An increase in i-connectivity.

After initial work involving achievable relationships between i-connectivity
parameters was accomplished in [4], Boland [2] asked whether one could find

conditions under which the x; would "behave normally" (i.e., have ¥;(v) < A,(v),
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paralleling Whitney's Theorem). It is interesting that the question can now be
answered by using certain stability requirements. First we prove a lemma.

Lemma 3.13: If ve V(G) and deg(v) =1 V(G) | - 1, then p,(v) = x(G - v) = x,(v) <
A(v) =A(G - V).

Proof: Letve V(G) and deg(v) =1 V(G) |- 1. If deg(v) =1,then G = K,, and thus
we have x,(v) = ki(v) =W(v) =0 =x(G - v) = A(G - v) if deg(v) = 0 or 1. Suppose
then that deg(v) 2 2. Since deg(v) = | V(G) | - 1, then NG(v) = V(G - v) which
implies li(v) = A(G - v) and Ki(v) =xk(G-v)= ui(v). Since by definition p.i(v) <
Xi(v), the result follows. Q

Lemma 3.13 implies that a vertex "behaves normally" if it is adjacent to every

other vertex in the graph. We extend this to obtain a result when x;-stability is
known.
Theorem 3.14: If ve V(G) is x;-stable under edge addition, then x,(v, G) < li(v, G).
Proof: Suppose x;(v, G) > A,i(v, G)andlet S_bea Q\.i-set for vin G. We can assume
deg(v) 2 2 since if deg(v) = 0 then kv, G) = Xi(v, G) = 0 and if deg(v) = 1 then x(v,
G) = li(v, G) = deg(u) - 1 where u € N(v). Since deg(v) 22, G - v - S, has exactly
two components and these components both contain vertices from N(v). Letu, w €
N(v) be in different components of G - v - §, say C, and C, respectively.

Case 1: Edgeuw e S,.

Add an edge e to G which is incident with v. Note that by the contrapositive of
Lemma 3.13 such an edge exists. Since e is incident with v, (G +¢) - v - Se has u and
w in separate components just as G - v - S, did. Let S be a set of vertices which are
endpoints of edges in S, so that each edge has exactly one endpoint in S . Then in
G+e)-v- Sv* u and w are neighbors of v which are in different components. Thus
xi(v, G+e)<s| Sv* 1< Se l= li(v, G) < Ki(v, G) which implies v is not Ki-stable

under edge addition.




Case 2: Edgeuwe S,.

Claim: There exists a vertex in C, not adjacent to w, or a vertex in C, not adjacent
to u. Assume to the contrary that w is adjacent to every vertex of C, and u is adjacent
to every vertex of C2. Then Xi(v, G)z21 V(EC) I+ V(C2) 1-1=1V(G)I1-2. ThusG
- (V(Cpu V(C,) - u) isolates w and vin a K, component. Therefore, x,(v, G) <
| V(Cl) I +1 V(C2) I-1< li(v, G), a contradiction which establishes the claim.

So assume there exists a vertex x in C, not adjacent to u. If x is not a neighbor of
v in G, then we let e = vx. If x is a neighbor of v in G, then we let ¢ be an edge (whose
existence is assured by Lemma 3.13) from v to some other vertex of G not in the
neighborhood of v. The same construction of S_* used in Case 1 can be used to
separate the neighbors x and u of v in G + ¢. Then again (G +¢) - v - S,* separates
neighbors u and x of v in G + e whereby xi(v, G+e)<li SV* 1< Se I= li(v, G)< xi(v,
G), which implies v is not x;-stable. QO

Even though we now know that a vertex that is x;-stable does "behave normally”,
it can be easily demonstrated, that the converse is not true. In the graph in Figure
3.10, x(v, G) = 1 and A,i(v, G) = 2. But after the addition of edge ¢ = uw we have
K,(v,G+e)=4and A.i(v, G +e¢’ =3, and thus v is not x;-stable.

We next explore a vertex possessing a unique li, K;, or j;-set and being
respectively A, K;, or ji;-stable. First we consider A,. In the case of K, every vertex
has a unique A;-set, since for v € V(K;), A,(v) = 1, and every vertex is trivially A,-
stable under edge addition since we are dealing with a complete graph. Of course, we

also have |, and x;-stability similarly.
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v

Figure 3.10 A vertex that "behaves normally” but is not x;-stable.

On the other hand, if v € V(G) where deg(v) = 1, then v has a unique li-sct (the
neighborhood A.-set from its lone neighbor) and it is possible for v to be A,-stable
under edge addition. The graph in Figure 3.11 displays a vertex v of degree one that is
A;-stable under edge addition. In this figure, A,(v, G) = 4 and A,(v, G + ¢) = 4 for any
e € E(G). Note that G - v is complete. We will prove later that this is a necessary
condition for A.-stability under edge addition, for vertices of this degree.

One final special case is when a vertex is a cutvertex and will remain a cutvertex
no matter what edge is added to the graph. As we see in the graph in Figure 3.12,
A(v,G)=0= li(v, G +e) for any ¢ ¢ E(G), and since its unique li-set is the null set,

it also meets this criteria.




v

Figure 3.11 A vertex of degree one that is A -stable.

Figure 3.12 A cutvertex that is A.-stable.

Except for these three special cases, the next theorem shows that for v € V(G), if
v has a unique A-set, then it cannot be A,-stable.
Theorem 3.15: Let G #K; and v e V(G), deg(v) 2 2. If v has a nonempty unique A,-
set, then v is not A,-stable.
Proof: Let G # K, and v e V(G), deg(v) 2 2, have a nonempty unique A;-set, S,
Since deg(v) 2 2, then G - v - S, separates two neighbors u and w of v into exactly

two components, C; and C,, containing u and w respectively.
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Case 1: In G there exists a vertex v, € V(C,) and v, € V(C,) such that v,v, &
V(G). Then add edge ¢ = v,v,. Then li(v, G+e)= li(v, G)+1,since (G+¢)-v-
S is connected and S, was a unique A;-set. Therefore, v is not A;-stable under edge
addition.

Case 2: In G every vertex in C, is adjacent to every vertex in C,. Then li(v, G) =
| V(C}) 1 * 1 V(C,) | where * denotes standard multiplication. Since G is not K;,
either | V(Cl) I>lorl V(Cz) I > 1. Without loss of generality assume there exists a
vertex x # u in V(C,). Then deg(u) S!V(C))1-1+1V(C,)) | + 1 counting edges to
all vertices in V(C,), to all remaining | V(C,) | - 1 vertices of V(C,) and the edge to
vertex v. Thus, A,(v, G) Sdeg(u) - 1 SIV(C)) I- 1+1V(C) 1 +1-1SIV(C)I*
1 V(Cz) I = li(v. G) since | V(Cl) 22,1 V(Cz) | 2 1 are positive integers. This
implies that there exists an alternate A,-set, namely the neighborhood A,-set from
vertex u, a contradiction. Q

To show that a similar proposition for the remaining two i-connectivity parameters
is not true, we direct the reader to the counterexample provided in Figure 3.13.

The graph in this figure is constructed as G = (K3 U K3 U K;) + K, where +
denotes the join operation and K, has the vertices v and w. The vertex v has a unique
K- and p.-set whose only element is the vertex w. But any possible edge addition
must join a K, vertex to a vertex in another K;. By Theorems 2.11 and 2.12, we know
the values of x; and y, for v cannot decrease, so p(v, G + e)=x;(v,G+e)=1,
because { w } will remain a x;- and ji.-set in G + ¢ for any ¢ ¢ E(G). Thus it is

possible to have a unique x; or p;-set and be x; or ji.-stable under edge addition.
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Figure 3.13 A vertex with a unique x, and y.-set.

Dependencies of Inclusive C ivity under Edee Additi

The definition of stable inclusive connectivity simply states that the parameter
does not change in value after any edge addition. No assumption whatsoever is
implied about the sets of graph elements that produce these i-connectivity values.
However, we can guarantee, for the addition of any edge e, the existence of a set of
graph elements which is an i-connectivity set for v in both G and G +e.

Theorem 3.16: If ve V(G) is A,-stable, then for any ¢ ¢ E(G) there exists a set of
edges of G thatisa A-setfor vinGand G +e.
Proof: Letv e V(G) be A,-stable and ¢ ¢ E(G).

Case 1: Edge e is incident with v. Take any A.-set for vin G and call it S,. Since

(G+e-v)=G-v,wehavc(G+e-v)-Se=G-v-Se. This implies that the removal

of Se from (G + ¢ - v) will also separate the same two vertices from NG(v) into
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different components. Since v is A;-stable under edge addition, then S is a A,-set for
vinG +e.

Case 2: Edge e is not incident with v. Let S_* be a A;-set for vin G + e. Then (G
+¢€) - v- §_* has vertices of Ng.(") in different components. Since ¢ is not adjacent
to v, then NG +e(v) = NG(v) and Se’" will also separate the same two vertices from
Ng,¢(V) into different components in G - v - S_*. Since v is A,-stable, S_* is a A -set
forvinGaswellasG+e. Q

The result for x; is now presented.

Theorem 3.17: If ve V(GQ)is xi-stable, then for any e ¢ E(G) there exists a set of
vertices of G that is a x;-set for vin Gand G +e.
Proof: Letv e V(G) be x;-stable and e ¢ E(G).

Case 1: Edge e is incident with v. Take any x;-set for vin Gand callitS,. SoG -
v - §, cither separates two vertices from N (v) into different components or isolates a
neighbor of v. Since (G+e-v)=G-v,wehave(G+e-v)—Sv=G-v-Sv. This
implies that the removal of Sv from (G + ¢ - v) will also separate the same two
vertices from N(v) into different components or isolate the same neighbor of v. Since
v is k;-stable, then S_is a x;-set for vin G +e.

Case 2: Edge ¢ is not incident with v. Take any x;-set for v in G + ¢ and call it
S, *. Then (G +e) - v - S * either separates two vertices from N(v) into different
components or isolates a neighbor of v. Since e is not incident with v, then NG +¢(v) =
NG(v) and S_* will also separate the same two vertices from NG +weV) into different
components or isolate the same neighbor of v. Since v is x;-stable, S_* is a k;-set for
vinGaswellasG+e. Q

The proof for . is similar an®  ce omitted.

Theorem 3.18: If ve V(G)is ui-stable, then for any e ¢ E(G) there exists a set of

graph elements of G that is a p-set for vin G and G +e.
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We now turn our attention in beginning an investigation of edge addition and
stability for ;. The x; parameter will provide us with some of the most surprising
results among the inclusive connectivity parameters. This work began in [4] and so
we will now present the most fundamental theorems utilized in this work. The next
theorem, Boland's "One Edge Theorem", is arguably one of the most important for the
study of the relationships between the i-connectivity parameters.

Theorem 3.19: For any v € V(G), if p.i(v) < x;(Vv) then there exists a .-set for v
containing exactly one edge and that edge is between neighbors of v.

Note that this theorem makes no restriction on the values of the i-connectivities.
It is quite surprising that even if the difference between the values of the two
parameters are arbitrarily large, you are still guaranteed of the existence of a y.-set
with exactly one edge!

Another useful result from [2] is Theorem 3.20.

Theorem 3.20: If p.(v) < x;(v) and S_ is any p.-set for vin G then G - S - v has
exactly two components which contain vertices of N(v).

When dealing with A.(v), you are always certain to have exactly two components
inG - v - S, for any A.-set, S, for vin G. You have no such guarantees when dealing
with x; or i, since the deletion of a vertex from a graph can result in an arbitrarily
large increase in the number of components. Theorem 3.20 is quite useful since it does
provide, under certain conditions, these same guarantees in terms of the number of
components containing neighbors of v.

In regards to Theorem 3.20, it is possible for a graph G to have more than two
components in G - S - v. In the graph in Figure 3.14, p(v) =2 with S = { uw, x }
being a H;-set and lci(v) = 3 from a neighborhood K;-set from eitheruorw. ButG-v -
{ uw, x } consists of three components where only two components contain vertices of

NG(v) as guaranteed by this theorem.
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v

Figure 3.14 A graph illustrating Theorem 3.20.

We should note that the condition p.(v) < x;(v) does not imply that N(v) is
complete. For example, in the graph in Figure 3.15, we have p.(v) = 3 with the
separation of neighbors y and z in G - v. And x;(v) = 4 with the separation of
neighbors x and z in G - v, but N(v) is not complete.

We can establish that if ui(v) < x;(v) then there exists an edge ¢ whose addition
to G will cause x; to decrease to at most j;, which leads to an interesting relation to

x;-stability. This situation is proven in Theorem 3.21.




v

Figure 3.15 N(v) is not complete and ui(v) < x;(v).

Theorem 3.21: If v e V(G) satisfies (v, G) < x;(v, G) then v is not x,-stable under
edge addition.
Proof: Letv e V(G) be such that w(v, G) < (v, G). By Theorem 3.19 there exists
a p,-set, S, for vin G with S,, containing exactly one edge e = w,w, with w, and w,
neighbors of v. Further, by Theorem 3.20, G - S - v has exactly two components, C,
and C2, which contain vertices of N(v), and so assume w, € V(Cl) and w, € V(Cz).
We may also assume, without loss of generality, that there is a vertex x € V(C,)
which is distinct from w. (Ifl V(Cl) 1= V(Cz) | =1, then Sm is a neighborhood Ky
set implying that p.(v, G) = x,(v, G).)

If x € N(v) then S - ¢ + w, is a set of vertices whose removal from G makes v a
cutvertex implying x;(v,G) SIS -e+ w,; =18 1=p.(v, G), a contradiction. Then

it must be the case that x ¢ N(v).
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Now consider the graph G + vx. The removal from G + vx of the set S - e + w,
makes v a cutvertex. This gives x,(v, G+ vx) SIS -e+w, =18 I=p(v,G)<
x;(v, G) so that v is not x;-stable in G. Q
Corollary 3.22: If ve V(Q) is K;-stable under edge addition in G then H(v, G) =
x;(v, G).

The construction technique used in the proof of Theorem 3.21 is illustrated in the
graph in Figure 3.16. Here x,(v, G) = 4 while (v, G) = 2 with one of the two p.-sets
containing exactly one edge being S, = { w,w,, y }. If we add the edge vx to G, then
we can remove edge w,w, from S and replace it with the vertex w, thereby
constructing a k;-set S * = { w;, y } for vin G + e which implies that the X; value has

decreased by two from G to G + e.

Figure 3.16 A graph illustrating Theorem 3.21.

This x;-stability result quickly leads us to the most important dependency of this

chapter.
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Theorem 3.23: If ve V(G) is x;-stable under edge addition in G then v is H;-stable
under edge addition in G.

Proof: We establish the contrapositive, i.e., that if v e V(G) is not K,;-stable under
edge addition then v is not k;-stable under edge addition. Toward that end, suppose
that v e V(G) is not ui-stablc under edge addition. Let e ¢ E(G) with (v, G) #
ui(v, G +e)

Case 1: Suppose K;(v, G) = x,(v, G).

(@ Iplv, G) < Hi(v, G + e) then K(v,G+e)2p,(v,G +e)> Hi(v, G) =
x;(v, G) implying that v is not x;-stable under edge addition.

(b) Suppose TROA G) > THAA G+e) If Ki(V, G) = x,(v, G + ¢) then we are done.
Assume then that lci(v, G) = l(i(v, G+e)> THQA G +e). By Theorem 3.19, we let Sm
be a u.-set for v in G + e such that S_ contains exactly one edge and that edge has as
its er.Jpoints neighbors of v. Since (v, G) > K;(v, G + ¢), Theorem 2.11 implies that
e must be adjacent to v. By Theorem 3.20, (G + e) - S, - v has exactly two
components which contain neighbors of v. Let w, be a neighbor of v in component C,
and w, be a neighbor of v in component Cyof (G+e)-S_ -v. Let w,w, be the edge
in §_ . The proof proceeds in three subcases.

a If W, is the only vertex in Cl. Then H(v, G+e)= K;(v, G +e). To verify
this, notice that S - w,w, + w, is a set of vertices whose removal from G + ¢ makes
v a cutvertex. Hence x(v, G+e)sl Sm - W W, + W, =1 Sm I=p(v, G +e). But
(v, G +¢) 2 Y;(v, G + e) by definition, resulting in equality, a contradiction.

(ii) If there exists another vertex y in C1 andy e NG +e(v). Then v is a cutvertex
with the removal of Sm - W W, + W, from G + e so xi(v, G+e)= ui(v, G+e)a
contradiction as above.

(iii) If there exists another vertex y in C/andye Ng.c(V). Then consider the

graph G + vy. Since S - w,w, + w, is a set of vertices which makes v a cutvertex
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upon removal from G + vy, x,(v, G+ vy) SIS -w w, + w I =18_1=p.(v,G + vy)
< ui(v, G)= Ki(v, G), showing that v is not xi-stable under edge addition in G.

Case 2: Suppose W.(v, G) < x;(v, G). Then by Theorem 3.21, v is not x;-stable
under edge additionin G. Q

The reader is reminded that this is the result to which we alluded during the
discussion of Theorem 3.4, regarding the relationships achievable for the stability of i-
connectivity under edge addition. That is, it allowed us to reduce the number of
possible combinations of stability among the parameters from eight to six. That
theorem proved that |.-stability did not imply x;-stability. We will now investigate
conditions under which this implication does hold true.

We begin with a complete analysis for vertices of degree one. So. let ve V(G) be
such a vertex. In the graph in Figure 3.17 the neighborhood set around vertex u gives
us li(v, G) = x;(v, G) = (v, G) = 2, and for e = vy or vz we have li(v, G +e) =x(v,
G+e)= Hi(v, G + e) = 2. Thus v is stable for all three i-connectivity parameters

under edge addition.

\4

Figure 3.17 A degree one vertex that is A, k;, and ,-stable.
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On the opposite end of the spectrum, we can have a vertex of degree one that is
none of li, K;, or ji,-stable. Vertex v in the graph in Figure 3.18 has ki(v, G) =
x;(v, G) = p,(v, G) = 1. But after adding the edge ¢ = uz, li(v, G+e)=x,(v,G +¢)
=1, G +e)=2.

v

Figure 3.18 A degree one vertex that is not A,, x;, or i.-stable.

The next theorem will prove that these represent the only possible combinations of
stability among the i-connectivity parameters for vertices of degree one.
Theorem 3.24: If ve V(G) has degree one, then v is A, ;, and p,-stable or v is
none of A, x;, or p.-stable, depending on whether G - v is complete or not complete,
respectively.
Proof: Let v e V(G) such that v has degree one. Assume that G - v is not complete
and that the only neighbor of v is vertex u. If degg  (u) # 1 Vt5 - v) | - 1, then by
adding an edge to G which is adjacent to u, we force each of A,(v, G), x,(v, G), and
H;(v, G) to increase by 1. So unless deg;_(u) =1 V(G- v)!- 1, vis not li-, K;-, Or
p.i-stablc under edge addition. If degG_v(u) =1V(G-v)l-1,then li(v, G = Ki(v, G)
= p.i(v, G) =1 V(G - v) | - 1, which is the maximum for each parameter. In this case, if

there exist two nonadjacent vertices in G - v, say x and y, neither one being u, then
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the maximum number of internally disjoint paths between x and u in G - v is
I V(G - v) | - 2, since degg_,(x) s | V(G - v) | - 2. This implies that li(v, G + vx),
Ki(v, G + vx), and ui(v, G + vx) will all decrease from | V(G - v) | - 1, and thus v is
not A, ;, or y-stable.

Now assume that G - v = Kn for some n 2 1. In this case li(v, G) = xi(v, G) =
ui(v, G) = dch_v(u) =1 V(G-v)!-1=n-1. The only edges possible to add are
incident with v. But, because G - v is a complete graph, the A,, k;, and y, values will
remain n - 1, implying that v is A, x;, and j.-stable. Q

The desired result is now immediate.

Corollary 3.25: Ifve V(G)is W;-stable under edge addition and degG(v) =1,thenv
is also k;-stable and A -stable.

If we next examine Corollary 3.22 more carefully, we can easily show that its
converse is not valid. In fact, the three following circumstances can occur:

(1) ®;(v, G) = x;(v, G) with v both x;-stable and p,-stable under edge addition
(any complete graph).

(2) u,(v, G) = x;(v, G) with v y,-stable, but not x;-stable under edge addition
(see Figure 3.5).

3) ui(v, G) = Ki(v, G) and v is neither p.i-stablc nor x;-stable under edge
addition (see Figure 3.16).

Therefore, where the . and x; values for a vertex are the same, every possible
case of stability between these two parameters can occur since Theorem 3.23
eliminates a possible fourth case.

But combining Theorem 3.14 and Corollary 3.22 we can narrow the number of
possible relationships among the inclusive connectivity parameters to two.
Proposition 3.26: If ve V(G) is lci-stable under edge addition, then (v, G) = x,(v,
G) < li(v, G).
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Both of these situations occur as evidenced in a complete graph where K(v. G) =
(v, G) = A,(v, G) and in the graph of Figure 3.4 where y.(v, G) = x;(v, G) <
A(v, G).

After the analysis of degree one vertices, it is tempting to suspect that whenever a
vertex v of degree two is A, K, or p,-stabie, then G - v must be a complete graph.
That is, one might believe he could add an edge between the two components after the
separation of the two neighbors of v, to "destroy” a &, x;, or lL.-set. If we examine the
graph in Figure 3.19, we will see that this is not true. For this graph, an exhaustive
analysis shows that A,(v) = x;(v) = p;(v) = 4 = degg;_,(u) = deg;_ (W). Since degy_
(W) = deg;_ (W) = 4 there will be no increase in any of the parameters upon edge
addition. However, every nonneighbor of v has exactly four internally (edge) disjoint
paths to each neighbor of v, implying that adding an edge incident with v will create no

change. Hence, v is A, x;, and J1;-stable, while G - v is not complete.

v

Figure 3.19 A vertex that is A,, x;, and |L.-stable where G - v is not complete.
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With some effort we further improve the previous condition for when H;-stability
implies x;-stability. But first we must prove a lemma.

Lemma 3.27: If v e V(G) is p,-siable and every p,-set for v in G separates the same
pair of neighbors of v, then B,(v. G) = x,(v, G).

Proof: Letv e V(G) be ,-stable and suppose every p.-set for v in G separates the
same pair of neighbors, u and w. Since every J.-set separates u and w, and v is p.-
stable, uw is in E(G) and is also in any H;-set for v in G.

Suppose that K;(v, G) < x;(v, G). Then no u;-set for v in G is a neighborhood M,
set for v at u or w. By Theorem 3.2, there exist exactly p,(v, G) internally disjoint u-w
paths in G - v. Let S be any such set. Augment each path by using intermediate
adjacencies, i.e., if x;X,x5 - - - x_ is a path where x, = u, X, = W, and x; is adjacent to X,
wherei=1,---,n-2,j=3,:---,n,i<j- l,thenadjustthepathtobecomexlxz---
XiXjt o Xy Repeat this procedure until there are no such intermediate adjacencies.
Thus, each path is "chordless".

Then there is at least one neighbor for each of u and w in G - v which is not on any
path in S (otherwise v has a neighborhood p.-set at u or w). Call these neighbors x
and y respectively. Notice that x and y are distinct since otherwise u-x-w is a u-w
path not in S and internally disjoint from all paths in S, contradicting the fact that Ki(v,
G) is the maximum number of such u-w paths. Similarly, note that xy ¢ E(G). Then
in G + xy, there are .(v, G) + 1 internally disjoint u-w paths implying that v is not -
stable under edge addition. Then it must be the case that K. G =x(v.G). Q

Lemma 3.27 can be applied to the graph in Figure 3.20. Here p,(v, G) = 2 and by
inspection we see that v is p,-stable under edge addition since p,(v, G +e) = 2 for
any e ¢ E(G). And since there is only one pair of neighbors of v, we are guaranteed

by this lemma that x,(v, G) = 2, which we can verify by inspection.




v

Figure 3.20 A graph illustrating Lemma 3.27.

Theorem 3.28: If ve V(G) is p;-stable and every p.-set for v in G separates the
same pair of neighbors of v, then v is xi-stable.
Proof: Letve V(G) be H;-stable and suppose every p.-set for v in G separates the
same pair of neighbors of v, u and w. Then by Lemma 3.27, B,(v. G) = x,(v, G). Since
vis ui-stable, then uw € E(G).

Case 1: Suppose dch(u) = degG(w) =k.

Claim: degG_v(u) = degG_v(w) = ui(v, Q) = xi(v, G) =k

Assume for the sake of contradiction that k # H,(v, G) = K;(v, G). Then the
number of internally disjoint u-w paths in G - v is strictly less than k. Let S be any set
of p.(v, G) internally disjoint u-w paths each of which is "chordless” as discussed in
Lemma 3.27. Then for each of u and w in G - v there is at least one neighbor which is
not on any path in S. The technique used in Lemma 3.27 provides us with a new u-w
path in G + ¢ internally disjoint from the others for some ¢ ¢ E(G), which contradicts
the fact that v is jL.-stable under edge addition, proving the claim.

Since uw € E(G), the degree of at least one of u or w remains the same when any

edge ¢ is added to G. It then follows that x;(v, G +¢) < x,(v, G). Combining this
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with x,(v, G +€) 2 1;(v, G + ¢) and p,(v, G + ¢) = (v, G) gives x,(v,G + ¢) =
x,(v, G) for alle ¢ E(G).

Case 2: With degG(u) dch(w) we assume without loss of generality degG(u)
> degg(w). Let P be any set of p,(v, G) internally disjoint u-w paths, each of which is
chordless. Since p (v, G) < degG(u). there exists at least one neighbor x of u which is
not on any path of P. Then xw ¢ E(G) since ui(v, G) represents the maximum
number of internally disjoint u-w paths. Thus, in G + xw, there are p.(v, G) + 1
internally disjoint u-w paths, contradicting the fact that v is j.-stable under edge
addition. Q

We now achieve an extension of Corollary 3.25 to the case of a degree two vertex.
Corollary 3.29: If ve V(G) is y,-stable and degg(v) = 2, then v is x;-stable.

We note that any further extension of Corollaries 3.25 and 3.29 is not possible
since Figure 3.5 provides us with an example of a vertex of degree three that is p.-
stable but not x;-stable.

In contrast to Theorem 3.28, if every x;-set for v in G separates the same pair of
neighbors, then v is guaranteed not to have x;-stability. This insures that all vertices
of degree two where u, w € N(v), uw # E(G), are not x;-stable.

Proposition 3.30: Given v € V(G), if every K;-set for v in G separates the same pair
of neighbors, then v is not ;-stable.

Proof: Suppose every x;-set for v in G separates u and w into different components,
where u, w € N5(v). Since u and w are separated by a x; set then uw € E(G). Thus
(v, G + uw) > x,(v, G) produces the desired result. Q

The fact that a graph has a vertex v that has inclusive connectivity stability
provides various details about the structure of the underlying graph G - v.

For example, if v € V(G) is ui-stable and deg(v) 2 2, then there must exist at

least p.(v, G) internally disjoint paths in G - v between every pair of vertices x and y,
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where x € N(v), y € N(v). This is true because if otherwise, then we have p.(v, G +
vx) < l.(v, G) by Theorem 3.2.

Using the same reasoning we see that if v € V(G) is A -stable and deg(v) 2 2,
then every vertex x € Nj;(v) must have at least li(v, G) edge disjoint paths to every
neighborof vinG - v.

We extend these ideas to include any pair of vertices in the graph, even if both
vertices are not neighbors of the vertex v by using the concept of n-connectedness. A
graph G is said to be n-connected, n 2 1, if x(G) 2 n. A graph G is n-edge-connected,
n21,if A(G) 2 n.

Theorem 3.31: If ve V(G) is y,-stable, then G - v is p.(v, G)-connected.

Proof: Letv e V(G) be u,-stable. Then by Theorem 3.12 we have p (v, G) = p,(v,
G +¢)=x(G - v) foralle € E(G). So by the definition of n-connected, G - v is p(v,
G)-connected. O

We now state Whitney's characterization of n-connected graphs [25].

Theorem 3.32: A nontrivial graph G is n-connected if and only if for each pair u, w of
distinct vertices there are at least n internally disjoint u-w paths in G.

A corollary to Theorem 3.31 now follows by a direct application of Whitney's
characterization of n-connected graphs, giving the desired extension.

Corollary 3.33: If ve V(G) is u;-stable, then there exists at least (v, G) internally
disjoint paths between any pair of vertices of G - v.

A similar argument exists for the remaining two i-connectivity parameters with the

A, parameter using edge disjoint paths.

Theorem 3.34: If ve V(G) is x;-stable, then G - v is (v, G)-connected.

Corollary 3.35: If ve V(G) is x;-stable, there exists at least x,(v, G) internally
disjoint paths between any pair of vertices of G - v.

Theorem 3.36: If ve V(G) is A;-stable, then G - v is A,(v, G)-edge-connected.
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Corollary 3.37: If ve V(G) is A,-stable, there exists at least A,(v, G) edge-disjoint
paths between any pair of vertices of G - v.

Thus the stability of the inclusive connectivity parameters and their values for a
specified vertex v provide information about connectivity in the graph G - v. For
example one can examine a specific graph G and consider whether it is possible to add
a vertex to G in such a way that the vertex has a type of inclusive connectivity
stability. Thus revealing important connectivity information about the structure of G.

A counterexample is provided in Figure 3.21 to the converses of Theorems 3.31,
3.34, and 3.36. In this figure A.(v, G) = x;(v, G) = p,(v, G) = 2 with x(G - v) = A(G -
v) = 2. Also, G - v is 2-connected (Ki(v. G)-, x;(v, G)-, and },(v, G)-connected). But
vertex v is not Ai-, X;-, or |.,-stable since if we add edge uw, we obtain x;(v, G) = 4,

since N, (V) is complete, and li(v, G) = p(v,G) = 3.

v

Figure 3.21 A counterexample to the converses of Theorems 3.31, 3.34, and 3.36.

i i ili iv nn
P 1 the Stability of the Global P
After discussing the relationship between the stability of a given vertex v and the

structure of the underlying graph G - v, we establish a surprising relation involving the




global connectivity parameters. We can show that inclusive connectivity stability
implies the underlying G - v graph is also stable for the respective global parameter
under edge addition!
Theorem 3.38: If ve V(G) is A.-stable, then A(G - v) =A(G - v + ¢) forany ¢ € E(G
- V).
Proof: Letve V(G) be li-stablc. By Theorem 3.10 we know li(v. G)= li(v, G+e)
=A(G - v) for any ¢ ¢ E(G). Note that if e is adjacent to v in G + e, then the result
holds since G + ¢ - v=G - v. By viewing G + ¢ as our graph, we have li(v, G+e)2
A((G + ¢) - v). Combining this with A((G + ¢) - v) 2 A(G - v), we get li(v, G+e¢)=
A(G + e - v) = MG - v) which produces the desired result. O
By Theorem 3.38 we know that if v € V(G) is A.-stable under edge addition, then
the global edge-connectivity for G - v is necessarily stable under edge addition also.
For the graph in Figure 3.22, it can be verified that v € V(G) is A;-stable under
edge addition. So we know that the global edge connectivity of G - v, pictured in the
graph of Figure 3.23, will not change when any edge is added.

\{

Figure 3.22 Relation of stability of i-connectivity and global parameters.
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Figure 3.23 Edge connectivity remains unchanged upon edge addition.

We expand this notion of global stability to the other parameters as well. The
proof of Theorem 3.39 is similar to Theorem 3.38 and is omitted.

Theorem 3.39: If ve V(G) is ui-stable under edge addition, then x(G - v) =x(G - v
+ ¢) for any e ¢ E(G).

And finally, we have the result for x; which is a direct result of Theorem 3.23 and
Theorem 3.39.

Theorem 3.40: If ve V(G) is Ki-stable under edge addition, then x(G - v) = x(G - v
+ ¢) for any e ¢ E(G).

These theorems instantly provide the power of identifying large classes of graphs
whose edge and/or vertex stability does not change under edge addition. For
example, for G = K(n,n-1), n 2 3, A(G) = A(G + ¢) and x(G) = x(G + e¢) for any e &
E(G). To see this, note that every vertex of K(n,n) is ).i-, and j.-stable under edge
addition by Corollary 2.19.

Therefore, it is possible to obtain classes of graphs which are "maximal"” with
respect to edges and connectivity. This new type of graph can prove to be extremely
interesting.

We now alternatively show that if a graph's edge or vertex connectivity does not
change under edge addition, then it is a subgraph of a graph that contains a vertex that

is A;- stable or k; and p.-stable under edge addition respectively.
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Proposition 3.41: If G is such that A(G + ¢) = A(G) for any e ¢ E(G), then G + K,
has v e V(K,), A;-stable, where + denotes the join operation.

Proof: Let G be a graph such that A(G + ¢) = A(G) for any ¢ ¢ E(G). Define G* =G
+ K, where + is the join operation and V(K)) = { v ).

Let U be any edge disconnecting set for G. Then G - U has exactly two
components. But G* - U = (G + v) - U is connected since v is adjacent to every
vertex. So v is a cutvertex in G* - U. Therefore li(v, G*) <1UIl=A(G). Since l.i(u,
G*) 2 A(G* - u) for all u € V(G*), then Ki(v, G*) 2 A(G), which implies li(v, G¥) =
U I =A(G).

Now add any edge to G to get G + ¢ and take any edge disconnecting set for G + ¢
and call it U*, Then |IU* I =1Ulsince A(G+¢e)=A(G)foralle ¢ E(G)and vis a
cutvertex in G* + ¢ - U*, Therefore ki(v, G*+e)<IU*I=1UL ButiUI1=A(G) =
li(v, G*), so l.i(v, G*+e) < A.i(v, G*). But we know that e is not adjacent to v since
v is not in V(G), so A,(v, G*) S (v, G* + ¢) for all ¢ ¢ E(G), implying equality.
Therefore li(v, G* = li(v, G* + ¢) for all ¢ ¢ E(G*) implying v is li-stable for edge
addition in G*. Q

For the graph in Figure 3.24, A(G) = A(G + ¢) = 2 for any ¢ ¢ E(G). Then by
Proposition 3.41, v e V(K,) is A;-stable in G + K.

Figure 3.24 A graph where A(G + ¢) = A(G).
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The similar result for global vertex connectivity is now presented, and the proof
follows the logic of the proof of Proposition 3.41 and is omitted.
Proposition 3.42: If G is such that x(G + ¢) = x(G) for any ¢ ¢ E(G), then G + K,
has v € V(K,), x;-stable, where + denotes the join operation.

A corollary to Proposition 3.42 provides the result for M,
Corollary 3.43: If G is such that x(G + ¢) = x(G) for any ¢ € E(G), then G + K, has
ve V(K)) p;-stable where + denotes the join operation.
Proof: By Proposition 3.42, v is x;-stable and thus by Theorem 3.23, v is H;-stable.
Q




CHAPTER 4

STABILITY OF INCLUSIVE CONNECTIVITY
UNDER EDGE DELETION

Introduction

It is natural to now explore inclusive connectivity stability under edge deletion.
We examine previous results concerning ).i-stability under edge deletion for possible
similar extensions to x; and W,. Ringeisen and Rice [20] studied this subject in
relation to the results for li (22].

Several different implications lead to interesting stability results under edge
deletion. Throughout this chapter "stable” (or "stability") will mean "stable
(stability) under edge deletion”, i.e., that the relevant i-connectivity parameter does

not change under edge deletion.

E . f Previous Resul

A result similar to Theorem 2.10 concerning the behavior of A‘i after edge deletion
was established by Rice [18].

Theorem 4.1: [18] Let v, u, and w be distinct vertices of G with deg(u) > 1 and
deg(w) > 1. Lete =uw € E(G). Then

(@) A(v,G)-1<SA(v,G-€e)SA(v, G)

(b) MG -u) < li(u, G) < li(u, G -e).

This theorem implies that the change in the li value after edge destruction is
opposite of that under edge addition. Simply stated, if an edge e is deleted from a
graph G and is not incident to v € V(G), then the ;‘i value for v can only remain the
same or decrease by exactly one. Because if e is contained in some li-set, S, for vin

G, then Se -e will be a ki-sct for vin G - e. On the other hand if e is incident to v, then
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the Xi value for v can only remain the same or increase. In this case NG-C(V) C NG(v),
which implies it is possible that a set of neighbors that used to get separated no
longer are neighbors and hence some other pair must be separated causing li to
increase.

In the case where deg(u) = deg(w) = 1, the graph is K, and li(u, G) = ).i(w, G) =
0, with A,(u, G - €) =A,(w, G - €) = 0. If deg(u) = 1 and deg(w) > 1, thene = uw is a
pendant edge. The graph G has A,(u, G) = deg(w) - 1 and A (W, G) =0, but A.(u, G -
e) =0and li(w, G - e) can have any value. Upon further examination, it is clear that
these special cases also hold analogously for , and x;.

The behavior of A, after edge deletion is extended to p, in Theorem 4.2.

Theorem 4.2: Let v, u, and w be distinct vertices of G with deg(u) > 1 and deg(w) >
1. Lete =uw € E(G). Then

@ K. G) - 1S (v, G- ) Sp(v, G)

(b) x(G-u)s ui(u, G) < ui(u, G -e)
Proof: LetS bea W;-set for v in G. Since e is not incident with v, then Ng(v) =
Ng..(v). This implies that a pair of neighbors of v separated in G - v - S, will still be
separated in (G -e) - v - Sm. Thus u.i(v, G-e)sli Sm | = Hi(v. G).

Now let Sm* be a H;-set for vin G - e. Note thate ¢ Sm*. Then Sm* Ulelisa
set of graph elements that will separate some pair of neighbors of v in G as S,,* did in
G - ¢. This implies p.(v, G) <! Sp*l+1=p(v,G-e)+1lorp(v,G)-1< B, G-
e) and (a) is proven.

For (b) note that G - ¢ - u = G - u when e is incident with u so x(G - e - u) = x(G -
u) and also NG_e(u) C NG(u). Let Sm"‘ bea H,-set for u in G - e. Then two neighbors
of u are separated in (G - e) - Sm* - u. Now two of the vertices of NG(u) inG - Sm* -
u are separated, but since there are more vertices in Nj;(u) then in N _(u), then S_*
may not be minimum. Hence p,(u, G) <IS_*1=p.(u, G-e). We have K@, G) 2
K(G - u), thus x(G - u) £ H;(u, G) < K, (u, G-e). Q
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The behavior of x; under edge deletion is analogous to the behavior of x; under
edge addition and now follows.

Theorem 4.3: Let v, u, and w be distinct vertices of G with deg(u) > 1 and deg(w) >
1. Lete =uw € E(G). Then

(a) Ki(v, G-¢)< xi(v, G)

) x(G-u< x;(u, G) s x;(u, G -e).
Proof: Let S be a x;-set for v in G. Since e is not incident with v, then N(v) =
NG (V). This implies that a pair of neighbors of v separated or the neighbor isolated
inG-v-S, will still be separated or isolated in (G -e) - v - SV. Thus xi(v, G-e)<
IS, {=x,(v. G). and (a) is proven.

To establish (b) note that G - ¢ - u = G - u since ¢ is incident with u so x(G - ¢ - u)
= k(G - u) and also Ng..w < NG(u). Let S * be a x;-set for u in G - e. Then two
neighbors are separated or one neighbor of u is isolated in (G - €) - (S *) - u. Now
S, * will still separate or isolate the same neighbors of Ny _ (u) upon removal from G -
u, but since there are more elements in Ni;(u), then S * may not be minimum. Hence
x;(u, G) sl Sv’“ I =x;(u, G - ¢). Since we have xi(u, G)2x(G-u)=x(G-¢-u), we

have x(G - v) € x;(u, G) S X;(u, G - ¢). Q

As in edge addition, we notice in Theorems 4.1 and 4.2 that when li and y,

decrease, they can decrease by at most one. Yet Theorem 4.3 implies that this is not
\ the case for x; and this situation of a decreas: of more than one is illustrated in the
\ graph of Figure 4.1.

In that figure, li(\, G) = u;(v, G) = 1 and x;(v, G) = 6. But li(v, G -e) = v, G-
e) =x;(v, G - €) = 0. It is clear from this example that it is possible for x; to decrease
an arbitrary amount, even to its minimum v