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ABSTRACT

This dissertation is an investigation of inclusive connectivity which is a localization

of connectivity defined for each vertex and each edge of a graph. The inclusive edge

(vertex, mixed) connectivity of a vertex v is the minimum number of edges (vertices,

graph elements) whose removal yields a subgraph in which v is a cutvertex. All

possible combinations of these three parameters with regard to edge addition

stability, in which the value of the parameter will remain unchanged after the addition

of any edge, is studied along with other various properties including a relationship

between the stability of inclusive connectivity and global connectivity. A similar study

in the stability for inclusive connectivity for edge deletion is conducted. Final topics

include neutral edges, where a neutral edge is one whose removal does not change the

respective inclusive connectivity value of any vertex, and inclusive connectivity stable

graphs, where the sum of the respective inclusive connectivity values for all vertices

remains the same no matter what edge is deleted.
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CHAPTER I

PREVIEW

This dissertation deals with the three inclusive connectivity parameters and how

these parameters change in relation to various graph operations and with respect to

different graph elements. Inclusive connectivity is a type of "local connectivity"

parameter defined for each vertex and edge of a graph.

The introduction of inclusive connectivity by Lipman and Ringeisen in 1979

resulted from an application to alliance graphs. Given a set of countries with specified

alliances between pairs of countries, inclusive connectivity answered the question

"How close can a particular country come to severing the alliance connections

between two groups of countries?" Intuitively, the "stress" on a vertex is raised or

lowered according to its inclusive connectivity being lowered or raised, respectively

[22].

Similar applications include communication networks, supply and delivery

systems, and transportation networks where one may like to know how much stress

or vulnerability is placed on a center (node) after the destruction or creation of a

specified link (edge).

Inclusive connectivity can be conceptualized as the required inclusion of a given

vertex or edge in a minimum separating set which requires that vertex or edge for

disconnection. While this dissertation deals with many varied topics conceming

inclusive connectivity, it provides the first in-depth investigation of the effects on

inclusive connectivity during edge addition (creation). The topics are organized into

chapters of a homogeneous nature which we will now briefly describe.

Chapter 2 includes all necessary definitions and explanations of notation used in

this document. Several examples are presented to acquaint the reader with the
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fundamental ideas of inclusive connectivity as well as several well known graph

theory results. A complete literature review is presented detailing the history and

development of inclusive connectivity. Extensions of several of these fundamental

results are established for all the parameters. The last topic is an analysis of

inclusive connectivity for edges, as suggested by Boland in [2].

A detailed study of the changes in inclusive connectivity after edge addition is

contained in Chapter 3. The largest section of this dissertation begins with many

examples of the possible relationships among the inclusive connectivity parameters

for vertex stability under edge addition. Each of these examples demonstrates that an

infinite class of such graphs exist. Numerous results are presented describing graphs

when inclusive connectivity stability is known. This section also uses inclusive

connectivity to answer an open problem proposed in [2] regarding a relationship

between two of the parameters. Finally, an important result shows a relationship

between the stability of inclusive connectivity and the stability of the global

connectivities, under edge addition.

Chapter 4 presents an alternative from [18] on the stability of inclusive

connectivity under edge deletion. This alternative allows, for two parameters, a

definition of inclusive connectivity stability under edge deletion for a single vertex as

opposed to a global definition. Many extensions of previous work by Ringeisen,

Lipman, and Rice for a single parameter are presented, leading to a characterization

concerning stability in the remaining two parameters.

Chapter 5 has three main topics. The first two sections deal with an inclusive

connectivity neutral edge. A neutral edge is an edge whose removal does not alter the

inclusive connectivity value for any vertex in the graph. Infinite classes of graphs

illustrate combinations of every possible type of neutrality for an edge. Next, we

present a surprising result on the change in the total number of neutral edges in a

graph after the deletion of a neutral edge. Finally, several examples of different types
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of stable graphs are illustrated. These graphs are referred to as stable because the

sum of the inclusive connectivity values for all vertices remains unchanged after the

deletion of an arbitrary edge.

Chapter 6 presents several conjectures on open problems and ideas for future

research involving inclusive connectivity. Included are several extensions of an

extremely useful theorem from [2] which could prove helpful in the resolution of these

conjectures.



CHAPTER 2

PRELIMINARIES

This chapter contains a review of the notation and definitions used in this study of

inclusive connectivity parameters. These parameters are defined for both vertices and

edges, and can be regarded as measures of how close a vertex or edge is to being a

cutvertex or bridge respectively. Several examples are included to help the reader

visualize the concepts. Any definitions or notation not specified here can be found in

[7].

Also included are several well known graph theory results, which are fundamental

for several parts of this study, and are included without proof. (For such, see [7].)

Inclusive connectivity was introduced first as cohesion by Lipman and Ringeisen

[14]. We review all subsequent research resulting from this introduction and several

extensions of the results obtained in [22] for the cohesion parameter, Xi(v). Previous

results for cohesion, for the most part, can be extended to include all the inclusive

connectivity parameters.

We conclude this chapter by examining inclusive connectivity for edges and how

i -t can be related to inclusive connectivity for vertices.

Definitions and Notation

Unless otherwise noted, all definitions and notation are consistent with [7].

Throughout this document a graph G will be a finite, nonempty set V(G) of elements

called vertices and a (possibly empty) set E(G) of unordered pairs of distinct vertices

of V(G) called edges. Vertices are represented by single lower case letters, possibly

subscripted, such as u, w, or v2. Edges will be denoted by either the letter e



5

appropriately subscripted or superscripted, or by listing the two vertices which are its

endpoints. For example, e = uw means that e is an edge between the vertices u and

w. All graphs considered in this study are assumed to be graphs without self-loops

(uu * E(G)) or multiple edges (the edge uw does not appear twice in E(G)). If e =

uw e E(G) then u and w are adjacent vertices while e is incident with u and w.

The degree of a vertex v e V(G), denoted by deg,(v) or deg(v) if G is clear from

the context, is the number of edges of G incident with v. The trivial graph consists of

one isolated vertex where an isolated vertex is a vertex of degree zero. In our study

all vertices v E V(G) have degree of at least one. A vertex of degree one is called an

endvertex and its corresponding edge is a pendant edge. The minimum degree of a

vertex in G is denoted by 8(G) while a graph G is regular (of degree r) if for each

vertex v e V(G), deg(v) = r, for integer r > 0. A graph (or subgraph) is complete if

every two of its vertices are adjacent.

If SV is a set of vertices of G we use G - SV for the graph obtained from G by

deleting all vertices of SV with their incident edges. If Se is a set of edges of G, then G

- Se is the graph on the same vertex set as G with edge set E(G) - S.. For an edge e

E E(G) whose incident vertices are u and w, we use G + e or G + uw to denote the

graph whose vertex set is V(G) and whose edge set is E(G) u {e). If Sm is a set of

graph elements of G, then G - Sm is the graph obtained from G by deleting all the

edges of Sm and by deleting all the vertices of Sm with their incident edges. NG(v) is

the neighborhood of v, the set of all vertices adjacent to v. A graph H is a subgraph of

G if V(H) r V(G) and E(H) Q E(G). If S is a set of vertices of G, then < S >G

represents the subgraph induced by S in G, that is, the vertex set S and edge set

consisting of the edges of G incident with two vertices in S.

Now we include a few of the definitions that relate some basic terms to the

connectivity of a graph. If u, v e V(G) (not necessarily distinct) then a u-v walk is a

sequence of vertices of G, beginning with u and ending with v, such that there exists
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an edge between each pair of consecutive vertices in the sequence. A u-v path is a u-

v walk in which no vertex is repeated. The number of edges in a walk or path is called

its length. A u-v walk in which no vertex is repeated except the first and last (u = v)

is called a cycle. A vertex u is said to be connected to a vertex v in a graph G if there

exists a u-v path in G. A graph G is connected if every distinct pair of vertices of G

are connected.

A component of a graph is a maximal (with respect to edges) connected subgraph.

A cutvertex of G is a vertex whose deletion either increases the number of

components or increases the number of isolates in G. Note that this definition permits

either end of a K2-component to be a cutvertex which is a slight variation of the

definition of a cutvertex in standard use. This variation is essential in allowing a

meaningful definition for one of the inclusive connectivity parameters. Like a

cutvertex, an edge whose removal increases the number of components of the graph is

called a bridge.

The (vertex) connectivity ic(G) of G is the minimum number of vertices whose

removal (along with associated edges) results in a disconnected or trivial graph while

the edge connectivity .(G) is the minimum number of edges whose removal yields a

disconnected or trivial graph. A connected graph G has Kt(G) > 1 and X(G) > 1, while

a graph G has a cutvertex if and only if ic(G) = 1 and a graph has a bridge if and only if

X(G) = 1. Given any n > 1, if ic(G) > n the graph G is saA I to be n-connected while if

X(G) > n it is n-edge connected.

The graph shown in Figure 2.1 demonstrates the concepts of cutvertex and bridge

where iK(G) = 1, with vertex u as a cutvertex and X(G) = 1, with edge e as a bridge.

The subgraph induced by the vertices labeled v, w, x, and y in Figure 2.1 is shown in

Figure 2.2.
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e W X
A Ik

V Y

Figure 2.1 A graph with 1C(G) 1 and X(G)= 1.

w X

v Y
Vy

Figure 2.2 An induced subgraph of the graph in Figure 2.1.

For v e V(G), the inclusive edge connectivity of v, Xi(v, G), (formerly called

cohesion in [14, 18, 22]), is the minimum number of edges whose removal yields a

subgraph in which v is a cutvertex. Similarly, for v e V(G), the inclusive vertex

connectivity of v, jic(v, G), is the minimum number of vertices whose removal yields a

subgraph in which v is a cutvertex and for v e V(G), the inclusive mixed connectivity

of v, pi(v, G), is the minimum number of graph elements (vertices and edges) whose

removal yields a subgraph in which v is a cutvertex.

For e e E(G), the inclusive connectivity parameters for edges )Xi(e, G), xi(e, G),

I.±(e, G) are defined similarly where "cutvertex" is replaced by "bridge" in the

preceding definitions.
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Thus vE V(G) is a cutvertex in G if and only if X.(v, G) = Ki(v, G) = gi(v, G) = 0

and e e E(G) is a bridge in G if and only if .i(e, G) = xi(e, G) = pi(e, G) = 0.

When the underlying graph is apparent, reference to that graph may be suppressed,

for instance we may use Ai(v) instead of ;.i(v, G) when no confusion arises. Inclusive

connectivity is also referred to as i-connectivity.

If S is a smallest set of edges (respectively vertices, graph elements) whose

removal from G makes v a cutvertex, then we call S a Xi-set (respectively ici-set, gLi-

set) for v in G. If S is a .i-set (respectively ic'-set, gi-set) for v in G and G - v - S has

a neighbor of v as an isolated vertex then we say that S is a neighborhood Xi-set

(respectively 1ic-set, pi-set) for v in G. In a complete graph, every X', ic1 and gi-set is

respectively a neighborhood Xi, '1i, and gi-set.

The graph in Figure 2.3 illustrates these parameters. Here Xi(v, G) = 2, ici(v, G) =

3, and gi(v, G) = 2. There are several j i-sets for v, (bc, uw), (b, uw), or (c, uw), for

example, but there is only one ,i-set for v, (bc, uw). Note that the only Ki-sets for v in

this graph involve neighborhood xi-sets; namely (a, b, w) for neighbor u of v and

(u, c, d) for w, the other neighbor of v. Both possible ici-sets reduce v to part of a K2

component in G - Sv, where Sv = (a, b, w) or (u, c, d). The reader can verify that a

vertex v will have only neighborhood xi-sets whenever < NG(v) > is complete. It

should be noted that the existence of only neighborhood ici-sets for v does not imply

< NG(v) > is complete. For example every vertex in the graph G = C4 , the cycle of four

vertices, has only one ci-set, which happens to be a neighborhood Kic-set, but no

neighborhood of any vertex is complete.
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b C

a<d

V

Figure 2.3 A graph illustrating the inclusive connectivity parameters.

Using neighborhood sets for possible Xi, x1 , and Jgi-sets, we can quickly obtain an

upper bound for all three i-connectivity parameters.

Theorem 2.1: Given any graph G and any v e V(G),

max ([•i(v, 0), 1ic(v, G), gi(v, 0)) } min ( deg0 (w) : w e NG(v) } - 1.

There are alternative definitions for the inclusive connectivity parameters that are

extremely useful in applications. Using minimum separating sets for the subgraph

induced by the neighborhood of a vertex v in G - v, will be a frequently used method of

examining inclusive connectivity parameters. This method was first established in the

next result by Lipman and Ringeisen from [14].

Theorem 2.2: For any graph 0 and v e V(G), if degG(v) Z 2 then Xi(v) is the size of

the smallest set of edges whose removal from 0 - v separates vertices of N(v) into

different components.

In the same manner Boland [2] established the following for the ii and gi

parameters.

Theorem 2.3: Given any graph G and v e V(G), if deg 0 (v) a 2 then Ki(v) is the size

of the smallest set of vertices whose removal from G - v either separates two vertices

from N(v) into different components or isolates a neighbor of v.
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Theorem 2.4: Given any graph G and v E V(G), if deg(v) > 2 then pi(v) is the size

of the smallest set of graph elements whose removal from G - v separates vertices of

N(v) into different components.

Theorem 2.3 concerning the ici parameter is slightly different from Theorems 2.2

and 2.4 since adjacent vertices can never be separated into different components by

removing vertices. For the other parameters, it is always possible to separate two

neighbors of v (adjacent or non-adjacent) into different components.

The only situation left unresolved from the previous theorems is the one where v is

a vertex of degree one and thus there is no pair of neighbors to separate. In this case

we are limited to taking a neighborhood set of the only neighbor, obtaining Xi(v, G) =

1ci(v, G) = jJi(v, G) = degG,,(u) where u is adjacent to v.

The graph in Figure 2.4 illustrates that the neighborhood of v being complete is not

necessary for v to be part of a K2 component in G - Sv, for any ici-set Sv.

a

b

V

Figure 2.4 A graph illustrating the separation of neighbors of v.
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There is only one Ki-set for v, namely I x, y), while v is part of a K2 component in G

- x - y, even though < NG(v) > is not complete. A g±i-set for v in G is (yz, x) which

separates the neighbors y and z in G - v - yz - x, and the only Xi-set for v in G is

(yz, xz), which separates the neighbors x and y from z in G - v -yz - xz.

A block of a graph is a maximal induced subgraph which contains no cutvertex (in

the usual sense of a cutvertex). Rice first observed [18] that blocks of a graph play an

important role in determining the inclusive connectivity parameters. The following

results were expanded to include all three parameters in [3].

Theorem 2.5: Given any graph G and v e V(G), the elements of any X,, Ki, or gi-set

for v are contained in a single block of G.

Theorem 2.6: Given any graph G and e e E(G), the elements of any Xi 'i', or gi-set

for e are contained in a single block of G.

In particular these results allow us to only examine components for i-connectivity

parameters, hence we assume throughout this dissertation that G is a connected

graph.

All the elements of i-connectivity sets of vertex v e V(G) in the graph in Figure

2.5 are contained in the block consisting of (v, a, b, c, d). Specifically, the X i-set

consists of {cd), the 1ic-set consists of (c), and a gLi-set consists of either (cd} or

(c).

x C d

e

Y a To V

Figure 2.5 A graph illustrating Theorem 2.5.
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The operation of subdividing an edge e = xy consists of replacing the edge e with a

pair of edges xz and zy where z * V(G). If the edge e in Figure 2.5 is subdivided,

then we get the graph in Figure 2.6. The operation of subdividing an edge is important

in the study of inclusive connectivity for edges which will be discussed later in this

chapter.

x c d

z<b

Y a V

Figure 2.6 A graph of Figure 2.5 with edge e subdivided.

One of our primary concerns will be changes in i-connectivity values upon the

addition or deletion of an edge to G; thus we define a vertex v e V(G) as A2-stable

under edge addition if Xi(v, G) = Xi(v, G + e) for every edge e * E(G). Similarly a

vertex v e V(G) is •.- (p.) stable under edge addition if 1c1(v, G) = 1ci(v, G + e) (p.i(v,

G) = gi(v, G + e)) for every edge e e E(G). In the graph in Figure 2.3, if e = vf then

Xi(v, G + e) = vCi(v, G + e) = ,.i(v, G + e) = 1. Hence vertex v is not stable under

edge addition. Every complete graph will be trivially stable under edge addition for all

three parameters. Chapter 3 provides more examples of graphs exhibiting various

types of stability under edge addition.

For edge deletion we define a vertex v r V(G) is said to be Ai-stable under edge

deletion if Xi(v, G) = Xi(v, G - e) for every edge e e E(G). A vertex v e V(G) is said

to be ri- (pi) stable under edge deletion if icl(v, G) = ici(v, G - e) (.Li(v, G) = gi(v, G -
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e)) for every edge e e E(G). This area of study is thoroughly investigated in Chapter

4.

Finally, we define what we term neutral edges of a graph (with respect to i-

connectivity). An edge e r E(G) is said to be A-i-neutral if Xi(v, G) = Xi(v, G - e) for

all v e V(G). That is, upon the deletion of edge e, the Xi value for every vertex

remains the same. This definition is identical to the "stable edge" definition in [19].

The reason for the terminology change is to insure no confusion between an edge

whose deletion does not affect the i-connectivity values for any vertex of a graph and

an edge whose own i-connectivity values do not change under some graph operation.

In a similar manner we say an edge e e E(G) is called i"- (.Li) neutral if Ki(v, G) =

1ci(v, G - e) (pi(v, G) = gi(v, G - e)) for all v e V(G). In the graph in Figure 2.7 we

note that edge e is Xi, ici, and gi-neutral since Xi(v, G) = Xi(v, G - e) = Ic(v, G) =

xci(v, G - e) = gi(v, G) = gi(v, G - e) = 1 for every v r V(G). Research into inclusive

connectivity neutral edges is presented in Chapter 5.

Z\_ e __,
Figure 2.7 A Xi, ici, and gi-neutral edge.

Well Known Graph Theory Results

A well known result relating a graph's edge connectivity and vertex connectivity is

credited to Whitney [25].
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Theorem 2.7 (Whitney): For any graph G, ic(G) < X(G) < 8(G).

The graph in Figure 2.8 demonstrates that Whitney's Theorem can occur as a strict

inequality with K(G) = 2, X(G) = 3, and 8(G) = 4.

An interesting difference we between the i-connectivity parameters and their

global counterparts is that there exist three different i-connectivity parameters, as

opposed to two global parameters. This is because it is known that the mixed

connectivity of a graph is the same as its vertex connectivity.

Figure 2.8 A graph illustrating Whitney's Theorem.

Another significant difference between these two sets of parameters is evident by

examining Figure 2.3 again. Here, we have ici(v) > Xi(v), which is in stark contrast to

Whitney's Theorem for the global parameters. Boland [2] conducted a thorough study

of these relationships and showed that every possible relationship between the three

i-connectivity parameters is attainable subject to gi(v) < Kci(v), X•(v).

Two other important results that we shall use extensively in our work are

Menger's Theorem and the edge analog of Menger's Theorem. Both of these theorems

provide us with a convenient aid in computing our parameters and establishing results,

when combined with the method of "separating neighbors" previously discussed.

A set S of edges (or vertices) of a graph G is said to separate vertices u and v if

the removal of the elements of S produces a disconnected graph in which u and v lie in



15

different components. Such a set S is called a separating set or cutset for u and v.

Two u-v paths are internally disjoint if they have no vertices in common, other than u

or v, while edge disjoint u-v paths have no edges in common. It is obvious that

internally disjoint paths are also edge disjoint. Throughout this dissertation the term

"n internally (edge) disjoint paths" means a set of n paths so that any two are

internally (edge) disjoint. If n = 1, the set is vacuously internally (edge) disjoint.

Theorem 2.8 ( Menger): Let u and w be nonadjacent vertices in a graph G. Then

the minimum number of vertices that separate u and w is equal to the maximum

number of internally disjoint u-w paths.

Theorem 2.9 (Menger): If u and w are distinct vertices of a graph G, then the

maximum number of edge disjoint u-w paths in G equals the minimum number of edges

that separate u and w.

The "separating neighbors" conceptualization of i-connectivity suggests that

Menger's Theorem be used in computing the parameters. For instance, the smallest

set of vertices whose removal from G - v separates vertices from N(v) into different

components is the same as the maximum number of internally disjoint paths in G - v,

among pairs of vertices from N(v). Algorithms for computing the i-connectivity

parameters for vertices have been implemented in [12]. The i-connectivity values for

all graphs given in this text were verified using that software.

Literature Review

Investigation into the structure and connectivity of graphs has always been

fundamental in graph theory. Expanding upon Whitney's result [25], Chartrand and

Harary [6] proved that, given integers a, b, and c, a < b < c, there exists a graph G

with ic(G) = a, X(G) = b, and 8(G) = c. Chartrand [5] further characterized when

X(G) = 8(G), while Lesniak [13] continued work in this area.
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Since a mixed connectivity and vertex connectivity parameter will always have the

same value in the global sense, there had been little focus on mixed disconnecting

sets until Yau in 1962 [26] considered cutsets in graphs including but not limited to

(minimal) cutsets consisting of both vertices and edges.

In another approach, Beineke and Harary [1] defined the connectivity function of a

graph that was based on the idea of a connectivity pair. A connectivity pair is an

ordered pair of non-negative integers, (i, j), such that there is a set of i vertices and j

edges whose removal disconnects the graph, and there is no set of i - 1 vertices and j

edges or i vertices and j - 1 edges which also disconnects the graph upon removal.

The connectivity function generated some interest, but there has been very little

research on the properties of connectivity pairs.

In a related approach, Chartrand and Pippert [8] first defined "locally connected".

A graph G is said to be locally connected if <N(v)> is connected for every v e V(G).

The edge analog is similarily defined. These were the first localizations of

connectivity, and were extensively studied in [11, 15, 16, 23, 24]. However, vertices

from outside the neighborhood of a vertex can significantly impact how well a graph is

connected in the local area around that vertex. This provides some motivation for the

i-connectivity parameters because contributions from vertices outside the

neighborhood are inherently accounted for.

The first inclusive connectivity parameter introduced was cohesion (our Xi

parameter) by Lipman and Ringeisen [14] in 1979 and was further expanded in [2-4].

These i-connectivity parameters are local measures of graph vulnerability. In fact,

they were shown in [3] to be natural localizations of graph connectivity and edge

connectivity.

Ringeisen and Lipman [22] continued their work in inclusive connectivity in 1983

by considering the effects of edge addition on cohesion and introduced the concept of

vertex stability under edge addition. At the same time Reid [17] extended and
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independently verified some of the results of [14] and [22] by examining when the

cohesion of a vertex v is less than the edge connectivity of G - v.

In a sequence of papers, Rice and Ringeisen [19-21] explored the areas of stable

edges and stable graphs. As stated previously, Rice's stable edges are identical to

our definition of neutral edges. A graph G is defined to be stable if, upon the deletion

of any edge of G, the sum of all the X, values of the vertices remained the same. This

definition of a graph being stable involves the sum of all Xi values instead of an

individual Xi value remaining the same, since the removal of any edge in a .i-set for

vertex v will cause the Xi value for v to decrease. Surprisingly, several infinite classes

of stable graphs were found.

Following Rice, Boland and Ringeisen [2-4] extended the cohesion results to

include vertex and mixed inclusive connectivity. These papers were the first to use

the inclusive connectivity terminology. Boland's study included the inclusive

connectivity values for certain composite graphs as well as the first look into super i-

connected graphs. A graph is super X (super ic) if every edge (vertex) disconnecting

set of size XL (K) isolates a vertex.

In 1990, Lee [12] implemented the first software package to compute all three i-

connectivity parameters for a graph. This package has been used extensively to verify

the results of this dissertation.

Inclusive connectivity was studied for extremal properties by Lai and Lai [101 who

investigated the maximum and minimum number of edges a graph contained, when one

fixed the minimum inclusive edge connectivity of a vertex in the graph, and the number

of vertices in the graph.

Most recently, Cribb, Boland, and Ringeisen [9] extensively examined conditions

for stability under edge addition, for all three inclusive connectivity parameters.
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Extensions of Previous Results

Most of the cornerstone theorems regarding the effect of edge addition on inclusive

edge connectivity values were established by Ringeisen and Lipman in [221.

Arguably the most important theorem in this area of study is Theorem 2.10. It

precisely states the conditions under which the ki value for a vertex can increase or

decrease after edge addition.

Theorem 2.10: Let u, v, and w be distinct vertices of graph G and edge e = uw where

uw * E(G). Then

(a) )Li(v, G) < ),i(v, G + e) < Xi(v, G) + I and

(b) X(G - u) :9 Xi(u, G + e) < Xj(u, G).

Simply put, if an edge e is added to a graph G and is incident to v E V(G), then the

Xj value for v can only remain the same or decrease. This is because N0 (v) C

NG+e(V), which implies any Xi-set for v in G will still separate the same pair of

neighbors in G + e - v with possible decrease in the Xi value due to the new neighbor.

On the other hand if e is not incident to v, then the X, value for v can only remain the

same or increase by exactly one. In this case if S is a Xi-set for v in G, then S can

possibly remain a Xi-set for v in G + e or at worst the removal of S u (e) from G + e -

v will separate the same pair of neighbors.

Boland [2] extended this result to include mixed inclusive connectivity in Theorem

2.11.

Theorem 2.11: Let u, v, and w be distinct vertices of graph G and edge e = uw where

uw e E(G). Then

(a) ti(v, G) < gi(v, G + e) < gi(v, G) + 1 and

(b) ic(G - u) : Jti(u, G + e) < jti(u, G).

We can also extend these results to include the Kii-parameter, but here we will

begin to realize some of the differences in this parameter. Possibly our first such

discovery was during the discussion of Whitney's Theorem in relation to inclusive
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connectivity. Intuitively we can think of a vertex as "behaving normally" if its i-

connectivity responds in a manner paralleling Whitney's Theorem (i.e. 1ic(v) : .i(v)).

But as discussed previously, this is not true in every case since we have seen in the

graph in Figure 2.8 a case where ici(v)> Xi(v). In the previous two theorems, we can

see that when the Xi and gi increase, they can increase by at most one. As Theorem

2.12 states, this is not true for Ki.

Theorem 2.12: Let u, v, and w be distinct vertices of graph G and edge e = uw where

uw E E(G). Then

(a) Ki(v, G) : 1ic(v, G + e) and

(b) ic(G - u) 5 ni(u, G + e) : 1ic(u, G).

Proof: Let Sv be a Ki-set for v in G + e. Then v is a cutvertex in (G + e) - Sv. But v

would remain a cutvertex in G - Sv since N,(v) = N,+,(v) implies the same pair of

neighbors of v would be separated in G - v - Sv. So Ki(vG) I Sv I = ic(v, G + e).

To establish (b), notice that since (G + e) - u = G - u, any 1ic-set for u in G will

separate the same pair of neighbors in G + e - u since N,(u) c N,+,(u). So lic(u, G +

e): i Ki(u, G).

Finally, if Su is a Ki-set for u in G + e, then Su is a disconnecting set of vertices for

G - u, since by definition (G + e - u) - Su = (G - u) - Su is either disconnected or the

trivial graph. Thus ic(G - u) < Ki(v, G + e). U

An example of when Ki increases by more than one is illustrated in the graph in

Figure 2.9. There Kic(v, G) = 5 with the separation of neighbors u and w of v, but after

the addition of edge e = uw, Ki(v, G + e) = 8 with the separation of neighbors x and y.

The reason that the Ki parameter increases in this manner is that it becomes

impossible to separate the adjacent neighbors u and w in G + e by deleting vertices

alone.
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SJKs- uw - xy

V

Figure 2.9 The increase in the ici parameter.

We can easily show that the increase in 1ic can be arbitrarily large. If an increase

of n, n > 1, is desired, then we simply change the two columns of 10 vertices of degree

two to two columns of 7 + n vertices of degree two and the one column of 5 vertices of

degree two to a column of 2 + n vertices of degree two.

Ringeisen and Lipman also discovered a characterization of exactly when the edge

i-connectivity of a vertex (.i(v)) increases, and this was followed by a similar partial

result by Boland for mixed i-connectivity.

Theorem 2.13: Let u, v, and w be distinct vertices of G with uw 9 E(G) and Xi(v,G)

> 0. Then Xi(v, G + uw) > .i(v, G) if and only if uw is a bridge in (G + uw) - v - S. for

every S. which is a .i-set for v in G.

Theorem 2.14: Let u, v, and w be distinct vertices of G with uw * E(G). If gi(v, G +

uw) > g.i(v, G) then uw is a bridge in (G + uw) - v - Sm for every Sm which is a gi-

set for v in G.

A similar partial result for vertex i-connectivity is now presented.

Theorem 2.15: Let u, v, and w be distinct vertices of G with uw e E(G). If 1ic(v, G +

uw) > Ci(v, 0) then uw is a bridge in (G + uw) - v - Sv for every Sv which is a Ki-set

forvin G.
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Proof: Suppose 1ic(v, G + uw) > ici(v, G) and let Sv be any si-set (possibly empty)

for v in G. Now by definition v is a cutvertex in G - Sv but it is not in G + uw - Sv since

Ki(v, G + uw) > iel(v, G) = I Sv I. So G - v - Sv is disconnected with a greater number

of components than G + uw - v - Sv and since (G + uw) - v - (Sv u {uw}) = G - v - Sv.

then uw is a bridge in (G + uw) - v - 0v" U

It should be noted that it was not possible to establish a likewise characterization

for the ii and gi parameters. The graph in Figure 2.10 demonstrates that the

contrapositives of Theorems 2.14 and 2.15 are not valid by displaying a vertex v with

1ic(v, G) = JLi(v, G) = I which has as its only Ki or gi" set the vertex y.

Upon examination it can be seen that 1ic(v, G + uw) = gi(v, G + uw) = I where the

xi and gi-sets still consist of just the vertex y. But uw is a bridge in (G + uw) - v - S

for every S which is a Ki or gi-set for v in G.

Even though the previous extensions of the Ringeisen and Lipman results [22] for

Xi were not identical for ici and gi' the following propositions show that some results

for Ki and gi are completely analogous under the operation of edge addition.

V

Figure 2.10 A counterexample to the converses of Theorems 2.14 and 2.15.
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Ringeisen and Lipman's work provided some examples of graphs that were Ai"

stable under edge addition, i.e. every vertex in the graph was ki-stable under edge

addition. The first result toward this goal is Proposition 2.16.

Proposition 2.16: If v e V(G) is adjacent to at least three distinct vertices each of

which has degree at most X(G - v) + 1, then v is .i-stable under edge addition.

An analogous result for Ki and pi is now presented.

Proposition 2.17: If v e V(G) is adjacent to at least three distinct vertices each of

which has degree at most i(G - v) + 1, then v is Ki and .i-stable under edge addition.

Proof: This proof will establish Ki-stability under edge addition since the argument

for gi-stability is identical.

Let u e NG(v) where u is one of the three distinct vertices that has degree at most

ic(G - v) + I and deg(u) is the degree of u in G. Then by Theorem 2.1, K~i(v, G) <

deg(u) - 1. Since it is given that deg(u) < ic(G - v) + I we have Ki(v, G) <: K(G - v).

And since ici(v, G) Žý K(G - v) is always true, then we have equality.

If G is a complete graph, then v is Ki-stable under edge addition by definition.

Assume G is not complete and let x and y be nonadjacent vertices of G. Since K((G +

xy) - v) > ic(G - v) and Ki(v, G + xy) > i(G + xy - v), we have Ki(v, G + xy) 2 K(G -

v). By the hypothesis, there is a w e NG(v) where w is not x or y and the degree of w

in G + xy is at most K(G - v) + 1. Arguing as before, ici(v, G + xy) < ic(G - v).

Combining results produces Ki(v, G + xy) = ic(G - v) = K~i(v, G) which implies xi-

stability under edge addition. U

Two corollaries follow that provide the desired examples for all the parameters.

The proofs follow that used for Xi in [22] and have been omitted.

Corollary 2.18: If G is regular of degree r, r > 3, and v e V(G) with X(G - v) = r - I

(ic(G - v) = r - 1), then v is Xi- (xi and gi) stable under edge addition.
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Corollary 2.19: The following graphs are Xi, wic and gi-stable under edge addition.

(a) The Petersen Graph

(b) The complete bipartite graphs K(n, n), n > 3.

Even though the major thrust of this work is not on graphs which are i-connectivity

stable under edge addition, it is interesting to note that there do exist several

nontrivial infinite classes of such graphs.

Inclusive Connectivity for Edges

We present a preliminary investigation of i-connectivity for edges. Most previous

work regarding i-connectivity dealt primarily with vertices. We now examine the

relationships between the i-connectivity parameters defined for edges showing that

the previously established results for vertices are useful in establishing parallel

results for edges. For any e = uw e E(G) let G* be the graph G with edge e

subdivided. We label the vertex introduced upon subdivision as v. Proposition 2.23

presents the basic idea in this investigation.

Proposition 2.20: An edge e is a bridge in G if and only if v is a cutvertex in G*.

Proof: Let e be a bridge in 0 with endpoints u and w. Then G - e consists of exactly

two components with u and w being in different components. Then, in G*, v is

adjacent to both u and w implying G* is connected with v being on every u-w path of

G*. Thus v is a cutvertex in G*. The converse argument is similar. U

Figure 2.11 depicts this fundamental idea of viewing any bridge as a cutvertex of

degree two in a slightly modified graph.



24

If you have in G: Then in G*:

Component #1 Component #2 Component #1 Component #2

e(bridge)

(cutvertex)

Figure 2.11 Inclusive connectivity for edges.

Corollary 2.21: Given a graph G' and v e V(G'), if v has degree two and its

neighbors u and w are not adjacent in G', then Xi(v, G') - Xi(e, G) where e = uw and

G= G'- v + uw.

Proof: The reverse of the subdivide operation produces G' - v + uw =G. Thus G' - v

=G-e. LetSe' be any X-sctfor v in G'. Then G'-v-Se'=G-e-Se' which implies e

is a bridge in G - Se. Therefore .i(v, G') > X.i(e, G). Assume there exists a Xi-set S.

for e in G such thatISe I < I Se' I. Then G' - v - Se = G -c - Se which implies v is a

cutvertex in G' -S. and we have I Se I > Xi(v, G') > Xi(e, G) = I So i, a contradiction.

Therefore i(v, G') = Xi(e, G). U

Two additional corollaries which follow show that identical results hold for the

remaining two i-connectivity parameters. The proofs are identical to those of Corollary

2.21 and have been omitted.

Corollary 2.22: Given a graph G' and v r V(G'), if v has degree two and its

neighbors u and w are not adjacent in G', then Ki(v, G') - 1ic(e, G) where e = uw and

G = G' - v + uw.
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Corollary 2.23: Given a graph G' and v e V(G'), if v has degree two and its

neighbors u and w are not adjacent in G', then pi(v, G') - .i(e, G) where e = uw and

G = '- v + uw.

Proposition 2.20 and Corollaries 2.21-2.23 indicate that many results on inclusive

connectivity for vertices in [2] hold for edges, considering the subdivide operation.

Next is a characterization of when an edge is in a minimum disconnecting set for

a graph in terms of its inclusive edge connectivity from [2].

Proposition 2.24: Given a graph G, and e e E(G),

i(e) -= X(G) - 1 if and only if e is in a minimum edge disconnecting set of G.

Proof: Let Xi(e) = X(G) - 1 and let S, be any Xi-set for e in G. So I Se I = Xi(e) and

,i(e) + 1 = X(G). Since G - e - Se is disconnected (by the definition of Se), and I Se u

(e) I = I So I + 1 = ,(G), then e is in a minimum edge disconnecting set of G.

Let e be in a minimum edge disconnecting set, S., of G. Then X(G) = I Se I and G

- (Se - e) = G + e -S. is connected by the minimality of S,. So Xi(e) Y 1 Se I - I = l (G)

- 1. But we also know X(G) = rin {,i(e) : ee E(G) ) + 1. So X(G) < Xi(e) + 1 for all

e e E(G) which implies X(G) - 1 = Xi(e). U

The following result shows that the realizable relationships between the i-

connectivity parameters defined for an edge are much more limited than those for a

vertex described in [4].

Theorem 2.25: For any graph G and any edge e = uw e E(G),

ti(e) = Ki(e) < Xi(e) < vain m deg(u), deg(w) } - 1.

Proof: From the definitions of the inclusive connectivity parameters, we have ,ti(e) <

1ci(e) for any e e E(G). Suppose there exists an edge e e E(G) where ti(e) < ci(e).

Let Sv be a vi-set for e in G and Sm be a gi-set for e in G. If there are no edges in Sm,

then I Sm I < I Sv I contradicts the minimality of Sv. So there must be at least one

edge in Sm. Construct a set of vertices Sv* by including all the vertices in Sm, and for

each edge in Sm, select one of its incident vertices that is not incident with e to be in
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Sv*. Then e will be a bridge in G - Sv* where Sv* consists entirely of vertices and

I Sv* 1: 1 Sm I 1 . Thus rci(e)• I Sv* I1: 1 Sm I < I Sv I = ci(e) a contradiction. Therefore

gi(e) = ici(e).

Let e = uw e E(G) and let Se be a ,i-set for e in G. Then e is a bridge in G - Se

and G - e - Se consists of exactly two components. For each edge in Se. we select

exactly one of its incident vertices that is not u or w, to form a set of vertices Sv*.

Now e will be a bridge in G - Sv* where G - e - Sv* consists of at least two

components. Thus 1ic(e) < ,i(e).

The last inequality is clear. U

Thus, when considering the relationships between the inclusive connectivity

parameters for edges, there are only two possible combinations as opposed to the six

for vertices shown in [4].

Notice that Theorem 2.25 indicates that the i-connectivity parameters, when

defined for an edge, behave in a manner analogous to the global connectivity

parameters, i.e., Theorem 2.25 is much like Whitney's Theorem. The equality pi(eG)

= Ki(e, G) is mirrored by the previous statement that the minimum number of graph

elements whose removal will disconnect G is equal to the vertex connectivity of G.

Graphs illustrating the two possible relationships between the three inclusive

connectivity parameters for edges are shown in Figures 2.12 and 2.13. For the graph

in Figure 2.12, Xi(e) = j + 2 and ici(e) = j + 1 for j < n < m where j, m, and n are

positive integers. However, for the graph in Figure 2.13 Xj(e) = Ki(e) = j+l, j < n.
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jj ~

deg(u) =n+ I deg(w)mn+ 1

Figure 2.13 =ie ici(e) <=i~)
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Both of the above figures represent an infinite class of graphs, but the reader can
verify that with minor adjustments the difference between the Xi and Ki. parameters

can be arbitrarily large.

When considering graph operations such as edge addition for edge i-connectivity,

again, the behavior of the edges is much more simplified than its vertex counterpart.

We can see from the next theorem that the only possible outcomes are that the

parameters remain the same or increase by one.

Theorem 2.26: For any graph G let e r E(G). Then for any edge e' e E(G),

(a) ki(e, G) < ki(e, G + e) < Xi(e, G) + 1

(b) Ki(e, G) < Kic(e, G + e') < Ki(e, G) + 1

(c) Ii(e, G) : 5ti(e, G + e') < p.i(e, G) + 1.

Proof: Let e e E(G) and e' c E(G).

For (a), first let Se be any )i-set for e in G. Then Xi(e, G + e') < I Se U fe') I=

I Se ' + 1 = X•(e, G) + 1 since G - Se = (G + e') - (Se u (e')).

Now let Se* be any•Xi-set for e in G + e'. If e' • Se* then G + e' - Se* = G - (Se*-

e') which implies Xi(e, G) Se* I - 1 = X(e, G + e') - 1 or Xi(e, G) < Xi(e, G + e'). If

e' i Se* then G + e' - Se* - e consists of exactly two components of which e' is

contained in one of these components. Thus the endpoints of e are in different

components in G - Se* - e which implies e is a bridge in G - Se*. Therefore, ki(e, G) 5

I e* I = Xi(e, G + e').

For (b), let e' have endpoints u and w where, without loss of generality, u is not

an endpoint of e, and let Sv be any Ki1 -set for e in G. If u e Sv then G + e'- Sv = G - Sv

and ici(e, G + e') : iK(e, G). If u g Sv then iK(e,G+e') lSvu (u) I=ISvl + -=

KCi(e, G) + 1 since u will be contained in one of the components of G - Sv - e and the

endpoints of e will remain in different components of G + e' - (Sv u {u)) - e.
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Let Sv* be any iy-Set for e in G + e'. By definition, the endpoints of e are in

different components of G + e' - Sv* - • which will remain the case in G - Sv* - e. This

implies e is a bridge in G - Sv* so ici(e. G) < Sv* 1= i(e, G + e).

For (c), the proof is similar to (b). C)



CHAPTER 3

STABILITY OF INCLUSIVE CONNECTIVITY

UNDER EDGE ADDITION

This chapter will begin by investigating the various possible relationships among

the inclusive connectivity parameters concerning vertex stability under edge addition.

Examples for each possible relationship will include an infinite class of such graphs.

Further, we are interested in any implications or dependencies that may exist

when a vertex is known to have some type of i-connectivity stability. An interesting

result relating ici and gi-stability under edge addition will be presented. This chapter

will also answer a question about the ici parameter initially started in [2] regarding

the situation when Xi(v) < •iv.

Finally, we explore a surprising relationship between the stability of inclusive

connectivity and the stability of the global connectivities under edge addition.

Throughout this chapter "stable" (or "stability") will mean "stable (stability) under

edge addition".

Relationships Achievable under Edge Addition

As stated in the previous chapter, Menger's Theorem and its edge analog provide us

with a convenient way of viewing i-connectivity using the separation of the neighbors of

a vertex. We will now present the first of these essential theorems.

For any v E V(G), let u and w be neighbors of v. Let pe(UW) denote the maximum

number of edge disjoint paths between u and w in G - v and p(u,w) be defined as the

maximum number of internally disjoint u-w paths in G - v, i.e., paths with no vertices or

edges in common.
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Lipman and Ringeisen [14] proved the first such result for ki where deg(v) 2, v e

V(G).

Theorem 3.1: For any graph G with v e V(G),

XM = min ( p(u~w) : u, w E N(v) }.

Boland [2] expanded this result to include gi by using the same principle, except

with internally disjoint paths.

Theorem 3.2: For any graph G with v e V(G) having degree greater than one,

gi(v) = min ( p,(uw) : u, w e N(v) ).

Again, the impossibility of separating adjacent neighbors by just removing vertices

results in a slightly differe't interpretation for ic1 [2].

Theorem 3.3: For any graph G with v e V(G) having degree greater than one and

<N(v)> not complete,

ici(v) = min ( pv(u,w) : u, w e N(v), uw 9 E(G)).

Even though the previous three theorems all are restricted to vertices of degree two

or greater, this is actually no obstacle since a vertex v, of degree one has Xi(v) = lci(v)

- ti(v) = deg(u) - 1 where u is the lone neighbor of v. And if N(v) is complete, an i-

connectivity set will consist of the other neighbors of a minimum degree vertex

adjacent to v.

In fact, while regarding stability under edge addition (where the inclusive

connectivity for a vertex remains the same upon the addition of any edge), the case of

degree one vertices will be completely analyzed later in this chapter.

Now we explore whether every possible combination of stabilities among the three

i-connectivities is realizable. We currently have one unresolved case; specifically the

case where a vertex v is ,i and k.i-stable but not ici-stable. We will call this Case X.

We will prove later that it is impossible to have ic-stability without g.i-stability, which

we will call Case Y. Hence, we prove Theorem 3.4, which omits these cases.
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Let G1 and G2 be two graphs with disjoint vertex sets. The join G of the two

graphs G1 and 02, denoted as G = G0I + G2, has V(G) = V(G1 ) u V(G 2 ) and E(G) =

E(GI) u E(G2 ) U (uv 1 u 6 V(GI) and v . V(G 2) ).

Theorem 3.4: Each of the five relationships of stability among the inclusive

connectivity parameters, not related to X or Y, has an infinite class of graphs satisfying

it.

Proof:

Case (1): A vertex that is Xi' Ki, and gi-stable.

Any vertex from a complete graph is trivially stable for all three parameters. But

following the work in [221 we arrive at Corollary 2.19. This provides us with an infinite

class of graphs that not only contain a vertex that is stable for all three parameters, but

is such that every vertex of the graph is stable for every i-connectivity parameter.

Thus no matter what vertex we choose in the graph in Figure 3.1, we have stability for

all three parameters.

Figure 3.1 The Petersen Graph.
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Case (2): A vertex that is not Xi ici, or ir-stable.

If v is a cutvertex in G and e * E(G) is an edge so that v is not a cutvertex in G +

e then v is not Xi. gi" or gi-stable. But for the more sophisticated example in Figure

3.2, we see that Xi(v, G) = ic(v, G) = gii(v, G) = 1 and ;,i(v, G + e) = xi(v, G + e) =

0i(v, G + e) = 2 where e = xy. For an infinite class, this generalizes to an arbitrary

cycle.

x • y

V

Figure 3.2 A vertex that is not Xi, Ki. or •ti-stable.

Case (3): A vertex that is Xi-stable, but not i', or pi-stable.

For the graph in Figure 3.3, v is adjacent to every other vertex. By Theorems

2.10-2.12, none of the inclusive connectivity parameters for v can decrease under edge

addition. It can be verified that ),i(v, G) = 3 while 1ic(v, G) = gi(v, G) = 2. The value

of ;.i(v, G) can be obtained in many ways but most notably by taking a neighborhood

X•-set for v from any one of the three lightly shaded vertices. Since any edge added

will be incident with at most two lightly shaded vertices, then one of the three

neighborhood ).i-sets for v in G will remain a valid neighborhood Xi-set for v in G + e
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for any edge e e E(G). Thus v is ),-stable. We see that the addition of an edge

between any of the nonadjacent lightly shaded vertices will cause the ici and gi values

for v to increase to three. Therefore v is ki-stable, but not 1ic, or g.i-stable.

One may notice that v is not the only vertex in the graph in Figure 3.3 that fits this

case. The neighborhood of vertex u is complete, so X.i(u, G) - xi(u, G) = gi(u, G) = 4.

Again, adding an edge between any of the nonadjacent lightly shaded vertices will

give ici(u, G + e) = gLi(u, G + e) = 3 and Xi(u, G + e) = 4. The stability of Xi follows

from the existence of at least four edge disjoint paths in G - u between any pair of

neighbors of u after any edge addition, with several pairs of neighbors providing

exactly four such paths. This will prevent Xi from decreasing. An increase in Xi will

not occur, in a manner similar to vertex v.

V

Figure 3.3 A vertex that is Xi-stable, but not xi or gi-stable.

To construct an infinite class of graphs for this case, build graph Gn, n > 4 as

follows. Let G - (Kn u Kn ) + v, where + denotes the join operation. Label the
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vertices of one copy of K. u1, u2 , .... un and the other w1, w2 ... , wn. Define V(Gn) =

V(G) and E(Gn) = E(G) u ( u1w1 ) v ( uiwi. 1, i=2, 3, ..., n-i ). Notice that the

graphs G. generalize the graph of Figure 3.3 and yield to a similar analysis.

Case (4): A vertex that is ici, and pti-stable, but not Xi-stable.

If we take the join of a K2 (naming the vertices w and v) with two additional copies

of K2 and two isolates (named u and x) we get the graph G in Figure 3.4. All three

parameters for v have the value one. The only 1ic-set for v has the single member w.

In G - v - w there are more than two components implying that for any e * E(G), we

will have a disconnected graph in (G + e) - v - w. Since (G + e) - w is connected, then

ci(v, G + e) < 1. Noting that v cannot be a cutvertex in G + e, we have ici(v, G + e) =

gi(v, G + e) = 1. Thus v is Ki- and gi-stable. But if we add the edge ux then the

inclusive edge connectivity of v increases to two and we conclude that v is not Xi-

stable.

For an infinite class of such graphs, we take the join of a K2 (w and v) with two

additional Kn's, n > 2, and Kn - e, where e is an arbitrary edge, and the resultant graph

behaves properly.

¥U

V

Figure 3.4 A vertex that is K and giL-stable, but not Xi-stable.
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Case (5): A vertex that is h±i-stable, but not ki or ic'-stable.

Note that in the graph in Figure 3.5 ,G - v is constructed as (K3 - xy) + (K3 - uw) - M

where M is a certain matching between the two joined components. Since degc v(u) =

degl.v(w) = 3, we have li(v, G) < 3, xi(v, G) 5 3, and )i(v, G) 5 3. By counting the

maximum number of internally disjoint paths in G - v between the vertices of NG(v), it

can be shown that li(v, G) = xi(v, G) = 3, which also implies .i(v, G) = 3 since ).i(v,
G)>(v, G)anddegv(u) = degG.v(w) = 3. Any edge e *uw added toG-vwill

give lti(v, G + e) = 1ic(v, G + e) = 3 since either vertex u or w will have degree 3 in G

+ e - v. If e = uw then N,+,(v) is now complete which implies xc1(v, G + e) =4. In

addition, there are four edge disjoint paths between any pair of neighbors of v in 0 +

uw - v so ; 1i(v, G + uw) = 4. Thus v is not Xi or ici-stable.

} K 3 -xy

w K3 "uw

V

Figure 3.5 A vertex that is gi-stable, but not Xi or ici-stable.

But gti(v, G + uw) < 3 since (ub, a, w) is a pLi-set for v, and combining this with

Theorem 2.11 provides g±i(v, G + uw) = 3. To notice that the gi value does not
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decrease in G + e when e is incident with v, we see that there are at least three

internally disjoint paths from each of the vertices a, x, and y to each of the members of

NG(v). Therefore AiP(v, G + e) = 3 for every e * E(G) and v is pi-stable under edge

addition.

Next we refer to the graph in Figure 3.6 to prove that there exists an infinite class

of such graphs. Note that G - v in Figure 3.6 is constructed similarily to the graph in

Figure 3.5 as ((Kn - xn.lxn) + (Kn - xn+lx2n)) - M where the matching M = ( x1x2n,

x2x2n-1 , x3x2n_2,• **, *xix2.i+l, * •, xn lxnx2, Xnxn+ 1 ) and n is an integer, n > 3.

The degrees of xn+1 and x2n in G - v are each (n - 2) + (n -1) =2n - 3 while the

degrees of xn+2, ... ,X 2,4 inG- v are each (n- 1) + (n- 1) =2n- 2. So by

neighborhood sets, ici(vG) < 2n - 3, gti(v, G) < 2n - 3, and ).i(v,G) ! 2n - 3. To

establish equality, we need to find at least 2n - 3 internally disjoint paths between

every pair of vertices of NG(v) in G - v.

K -X
n n-I n

x + n+2 A 2n-I X h2n n1X2

2n

V

Figure 3.6 An infinite class for Case (5).
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Let x, and x, be a pair of neighbors of v in G - v where n + 1 s i < j < 2n. Now we

establish the required number of internally disjoint xixj paths.

Case (5a): Let i * n + 1, j * 2n.

By inspection xi is adjacent to all the vertices xn+, ., xi 1, xi+ , x2n which are all

adjacent to xj. Thus we have n - 2 internally disjoint xixj paths of length two and one

more path of length one internally disjoint from the others.

Also, since n + 1 < i < 2n, xi is adjacent to all the vertices x, , X2ni x2n.i+2,

., xn. A total of n - 2 of these vertices are adjacent to x. for an additional n - 2

internally disjoint xixj paths of length two. The vertex not adjacent to xj is X2n-j+l"

which means the path xjx2n-j+lx2n.i+lXj provides a total of 2n - 2 internally disjoint xixj

paths.

Case (5b): Let i = n + 1, j = 2n.

Now xi is adjacent to xn+2, ..., x2n.1 which are all adjacent to x2n for a total of n - 2

internally disjoint xixj paths. But xi is also adjacent to x1, x2,. •., X,.1 which are all

adjacent to xj except x1. But xixlxnxj provides another path for a grand total of (n - 2)

+ (n - 2) + 1 = 2n - 3 internally disjoint xixj paths.

Case (5c): Let i = n + 1 or j = 2n (but not both).

Without loss of generality, suppose i = n + 1 and j * 2n. Then xi is adjacent to Xn+2,

. .. , X2 n.t which are all adjacent to x, (except x, itself) for a total of n - 2 internally

disjoint xixj paths. But xi is also adjacent to x1, x2 ,. •., xni which are all adjacent to

xj except vertex X2n-j+l. However vertex x2n-j+l is adjacent to x2n which is adjacent

to xj for a path of length three. Thus we have a total of (n - 2) + (n - 2) + I = 2n - 3

internally disjoint xixj paths.

Therefore, through the previous three cases, we have shown gi(v, G) > 2n - 3,

ici(v, G) > 2n - 3, and Xi(v, G) > 2n - 3 which implies equality for all three parameters.
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We must now complete our investigation by analyzing the change in the inclusive

connectivity values for v after the addition of an arbitrary edge. We begin our

investigation with the following claim:

Claim: The addition of any edge e except xn+1 x2n will keep gi(v, G + e) = ici(v, G + e)

= ki(v, G + e) = 2n - 3. But when e = xn+lx2n, then gi(v, G + e) = 2n - 3 and .ci(v, G +

e) = ki(v, G + e) = 2n - 2.

The succeeding three cases substantiate this claim.

Case (5d): Add the edge e = xixj where e * Xn+lX2n and xi, xj * v to the graph in

Figure 3.6.

Since e is not incident with v we know the inclusive connectivity parameters for v

remain the same or increase.

Sincee *x ,+1 X2n then one of xn+ 1 or x2n will have degree 2n - 3 in G - v. Hence,

gi(v, G + e), 1ci(v, G + e), and ki(v, G + e) remain 2n - 3.

Case (5e): Add the edge e = xn+lx2n to the graph in Figure 3.6.

NG+e(v) is complete and the degree of each neighbor is 2n - 2, which implies ici(v, G +

e) = i(v, G + e) =2n - 2. But gi(v, G + e) = 2 n - 3, since Sm = (xn+lxn+2 , xi, x2,.•.,

xn. 2 , xn+3, xn+4, , x2 n ) is a pi-set.

For clarity, G - Sm is displayed in Figure 3.7.

Case (5f): Add the edge e = xiv where 1 < i < n to the graph in Figure 3.6.

By Theorems 2.10, 2.11, and 2.12, we know the inclusive connectivity parameters for v

remain the same or decrease. Let xj E NG(v).

Let i = 1. So n + 1:5j5 •2n and xI is adjacent to xn+1 •.,x2n 1. And ifj* 2n then

we have n - 1 internally disjoint xlxj paths of length at most 2, using the vertices Xn+1,

' '-, x2n-r- Also x is adjacent to x2,. -, x. which provides n - 2 internally disjoint x1Xj
paths of length at most 2 for a total of 2n - 3 paths. If j = 2n, then we have n - 2

internally disjoint x1x2n paths of length at most 2 using vertices xn+2,* x2n- and n -

1 internally disjoint xlx2n paths of length at most 2 using vertices x2 ,- -, xn for a total
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of 2n - 3. Thus if i - 1, then there exists at least 2n - 3 internally disjoint paths

between the new neighbor x, and all the members of NG(v), implying all the i-

connectivity parameters remain the same.

Now let 2:< i:5 n - 2. Then xi is not adjacent to x2n-i+l e NG(v). If xi is adjacent

to x, then there are n - 1 internally disjoint xixj paths using the vertices Xn+1, * * *, x2n-i,

x 2n-i+21, . x2n, One of these paths may be of length three if j = n + I or 2n as follows.

If j n + 1, for example, then the path Xix2nX2n-i+lxj suffices. Then the vertices x ,

xi.1, xi+ •1, ., x, provide n - 2 internally disjoint xixj paths of length at most 2 for a

total of 2n - 3 paths. If xi is not adjacent x,, then we have n - 1 internally disjoint xixj

paths of length at most 2 utilizing the vertices xn+1 • •*. x* . , x-V • •-, x2n. Now the

vertices xIt •., x 11, x i+1,' * *, xn provide n - 1 internally disjoint xixj paths of length at

most 2 for a total of 2n -2 paths. So for 2 5 i < n - 2, there exists at least 2n - 3

internally disjoint paths between xi and xj.

Consider i = n - 1 or i = n. Without loss of generality let i = n - 1. Then we have n

- I internally disjoint x nlX, paths of length at most 3 using Xn+ 1,* ., x2n where at

most one path is of length three. Now xn.1 is adjacent to x 1, X2,. *., Xn. 2 which

provides n - 3 internally disjoint xn-ixj paths using the vertices xI, x2 ,. **. X2n*j,

X2n-j+2*, * ' " xn.2 for a total of 2n - 4 paths. Finally we have the path xni x2n-j+ix xj for

a total of 2n - 3 internally disjoint xixj paths where i = n - 1 and n + 1 < j < 2n. For the

case i = n the situation is similar.

Therefore, there exists at least 2n - 3 internally disjoint paths between each x i

NG(v) and xj e NG(v) which implies the inclusive connectivity parameters do not

decrease but remain the same and the claim is established.
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X xn

x

V

Figure 3.7 G - Sm for Case (5e).

Thus v e V(G) in Figure 3.6 is ti-stable, but not xi or Xi-stable and Case (5) is

now complete. I1

Implications of i-Connectivity Stability under Edge Addition

In this section we investigate implications that arise when considering the

stability of inclusive connectivity for a given vertex. The relationships we consider are

concerned with the following three major topics: global connectivity parameters,

inclusive connectivity parameters, and stability under edge addition.

For example, it is known that Kc(G) > ic(G - v) if and only if v is in some minimum

vertex separating set for G. First we present a result from [3].

Theorem 3.5: For any v e V(G), if ic(G) > ic(G - v) then Kc(G - v) = j±i(v) = cii(v) =

x(G)- 1.

An example illustrating this theorem is presented in Figure 3.8. Here, Ko(G) = 2

and ic(G - v) = 1 and by Theorem 3.5, gi(v) = ici(v) = 1.
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Figure 3.8 A graph illustrating Theorem 3.5.

The next corollary follows immediately.

Corollary 3.6: If v e V(G) is in some minimum vertex separating set for G, then

Ki(v) = Ai(v).

The converse of Corollary 3.6 is not true as we can see from the graph in Figure

3.5 where xý(v) = gi(v) = 3. But ic(G) = 3 = ic(G - v), and hence, v is in no minimum

vertex separating set for G.

The next two theorems describe when inclusive connectivities of a vertex can

decrease.

Theorem 3.7: [22] Let G be a graph containing a vertex v such that Xi(v, G) > .(G -

v). Then there is a w e V(G), w E NG(v), so that Xi(v, G + vw) = X(G - v).

Similar to Theorem 3.7 is the next theorem.

Theorem 3.8: [2] Let G be a graph containing a vertex v such that gi(v, G) > K(G -

v). Then there is a w e V(G), w i NG(v), so that jti(v, G + vw) = ic(G - v) = 1ic(v, G

+ vw).

These ideas can also be expanded to include ii' which we now do.

Theorem 3.9: Let G be a graph containing a vertex v such that KCi(v, G) > Kc(G - v).

Then there is a w e V(G), w 4 NG(v), so that K~i(v, G + vw) = K((G - v).

Proof: Let S be a minimum vertex separating set of G - v. Since 1ic(v, G) > ic(G - v),

S does not separate two vertices from NG(v) into different components upon its
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removal from G - v. Thus all of No(v) resides in one component of G - v - S. Choose

w to be a vertex from a component of G - v - S that does not contain the members of

NG (v). Then v becomes a cutvertex in G + vw - S which means ici(v, G + vw) _ I S I =

ic(G - v). Since c(G - v) < Kic(v, G + vw) by Theorem 2.12(b), we have ci(v, G + vw)

=K(G - v). UI

Theorems 3.10-3.12 show that i-connectivity parameters produce global results for

vertices that are stable.

Theorem 3.10: Suppose v e V(G) is Xi-stable. Then Xi(v, G) = Xi(v, G + e) = X(G -

v) for all e e E(G).

Proof: Suppose v r V(G) is Xi-stable. Suppose that Xi(v, G) > X(G - v). Then by

Theorem 3.7 there is a vertex w, w v NG(v) so that Xi(v, G + vw) = X(G - v). But

)Li(v, G + vw) = Xi(v, G), a contradiction. Hence, Xi(v, G) < X(G - v). But Xi(v, G) <

X(G - v) is impossible since any Xi-set can be removed to disconnect G - v or leave it

as the trivial graph. Therefore, the result follows. U

The proofs for Theorems 3.11 and 3.12 are similarly straightforward and have been

omitted.

Theorem 3.11: Suppose v e V(G) is xi-stable under edge addition. Then ici(v, G) =

1ic(v, G + e) = ic(G - v) for all e 9 E(G).

Theorem 3.12: Suppose v e V(G) is gti-stable under edge addition. Then gi~yv, G) =

0i(v, G + e) = ic(G - v) for all e i E(G).

We have shown that an alternative procedure for obtaining inclusive connectivity

values is to count the paths between neighbors of v. In the cases of increases in the

Xi and gi values for a vertex v when an edge e 9 E(G) is added to a graph G, there is

only one situation to consider. There must be respectively a new edge disjoint or

internally disjoint path in G + e between a pair of neighbors previously separated in G

- v - S where S is a Xi-set or pi-set respectively.
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In the case of ici, an increase could result from either the creation of a new path or

by the edge joining a pair of neighbors previously separated now being adjacent in G +

e. In any case, an increase in any i-connectivity parameter when an edge is added to a

graph does not imply that either of its endpoints is a neighbor of the vertex. As can be

seen in the graph in Figure 3.9, gi(v, G) = xi(v, G) = Xi(v, G) = 1 and ti(v, G + uw)

1ci(v, G + uw) = Xi(v, G + uw) = 2, but u, w E NG(v).

Also, an increase in ici after the addition of edge e = uw implies that neither u nor

w is in any ici-set for v. Otherwise, the addition of the edge would have no effect on

the ici value, i.e., ici(v, G + uw) = ici(v, G), since G - v - Sv = (G + e) - v - Sv.

U W

V

Figure 3.9 An increase in i-connectivity.

After initial work involving achievable relationships between i-connectivity

parameters was accomplished in [4], Boland [21 asked whether one could find

conditions under which the K1i would "behave normally" (i.e., have Kic(v) <_ Xi(v),
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paralleling Whitney's Theorem). It is interesting that the question can now be

answered by using certain stability requirements. First we prove a lemma.

Lemma 3.13: If v e V(G) and deg(v) = I V(G) I - 1, then gi(v) = xc(G - v) = Jci(v) <

.i(v) = X(G - v).

Proof: Let v e V(G) and deg(v) = I V(G) I - 1. If deg(v) = 1, then G = K2 , and thus

we have ici(v) = X•(v) = lti(v) = 0 = ic(G - v) = X(G - v) if deg(v) = 0 or 1. Suppose

then that deg(v) > 2. Since deg(v) = I V(G) I - 1, then NG(v) = V(G - v) which

implies ),i(v) = ,(G - v) and 1ic(v) = K(G - v) = pti(v). Since by definition iti(v) <

,i(v), the result follows. U

Lemma 3.13 implies that a vertex "behaves normally" if it is adjacent to every

other vertex in the graph. We extend this to obtain a result when Ki-stability is

known.

Theorem 3.14: If v e V(G) is lic-stable under edge addition, then Ki(v, G) <5 Xi(v, G).

Proof: Suppose Ki(v, G) > Xi(v, G) and let S. be a Xi-set for v in G. We can assume

deg(v) Z 2 since if deg(v) = 0 then ici(v, G) = Xi(v, G) = 0 and if deg(v) = 1 then 1ic(v,

G) = Xi(v, G) = deg(u) - I where u e N(v). Since deg(v) ? 2, G - v - S. has exactly

two components and these components both contain vertices from N(v). Let u, w e

N(v) be in different components of G - v - Se, say C1 and C2 respectively.

Case 1: Edge uw e Se.

Add an edge e to G which is incident with v. Note that by the contrapositive of

Lemma 3.13 such an edge exists. Since e is incident with v, (G + e) - v - Se has u and

w in separate components just as G - v - Se did. Let Sv be a set of vertices which are

endpoints of edges in Se so that each edge has exactly one endpoint in Sv. Then in

(G + e) - v - Sv* u and w are neighbors of v which are in different components. Thus

0i(v, G + e) 1 Sv* I < ' Se I = Xi(v, G) < 1ic(v, G) which implies v is not Ki-stable

under edge addition.
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Case 2: Edge uw e Se.

Claim: There exists a vertex in C1 not adjacent to w, or a vertex in C2 not adjacent

to u. Assume to the contrary that w is adjacent to every vertex of C1 and u is adjacent

to every vertex of C2. Then ki(v, G) 2!I V(CI) I + I V(C 2) I - 1 = I V(G) I - 2. Thus G

- (V(C1) U V(C 2 ) - u) isolates w and v in a K2 component. Therefore, ic(v, G) :

I V(C 1) I + I V(C2 ) I - 1 < Xi(v, G), a contradiction which establishes the claim.

So assume there exists a vertex x in C2 not adjacent to u. If x is not a neighbor of

v in G, then we let e = vx. If x is a neighbor of v in G, then we let e be an edge (whose

existence is assured by Lemma 3.13) from v to some other vertex of G not in the

neighborhood of v. The same construction of Sv* used in Case 1 can be used to

separate the neighbors x and u of v in G + e. Then again (G + e) - v - SV* separates

neighbors u and x of v in G + • whereby icl(V, G + e):5 I Sv* 5 < Se 1 = ki(v, G) < tel(V,

G), which implies v is not icl-stable. U

Even though we now know that a vertex that is ics-stable does "behave normally",

it can be easily demonstrated, that the converse is not true. In the graph in Figure

3.10, ici(v, G) = 1 and ki(v, G) = 2. But after the addition of edge e = uw we have

ici(v, G + e) = 4 and ki(v, G + e' 3, and thus v is not ici-stable.

We next explore a vertex possessing a unique Xi, IKi, or gi-set and being

respectively ki, Ki', or gi-stable. First we consider Xi. In the case of K3, every vertex

has a unique ki-set, since for v e V(K3 ), Xi(v) = 1, and every vertex is trivially Xi-

stable under edge addition since we are dealing with a complete graph. Of course, we

also have gi and i1c-stability similarly.
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Figure 3.10 A vertex that "behaves normally" but is not ici-stable.

On the other hand, if v e V(G) where deg(v) = 1, then v has a unique Xi-set (the

neighborhood Xi-set from its lone neighbor) and it is possible for v to be Xi-stable

under edge addition. The graph in Figure 3.11 displays a vertex v of degree one that is

Xi-stable under edge addition. In this figure, 2.i(v, G) = 4 and Xj(v, G + e) = 4 for any

e * E(G). Note that G - v is complete. We will prove later that this is a necessary

condition for Xi-stability under edge addition, for vertices of this degree.

One final special case is when a vertex is a cutvertex and will remain a cutvertex

no matter what edge is added to the graph. As we see in the graph in Figure 3.12,

Xi(v, G) = 0 = .i(v, G + e) for any e e E(G), and since its unique Xi-set is the null set,

it also meets this criteria.
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V

Figure 3.11 A vertex of degree one that is k.i-stable.

Figure 3.12 A cutvertex that is k.i-stable.

Except for these three special cases, the next theorem shows that for v r V(G), if

v has a unique Xi-set, then it cannot be X,-stable.

Theorem 3.15: Let G * K3 and v e V(G), deg(v) 2 2. If v has a nonempty unique Xi-

set, then v is not X.i-stable.

Proof: Let G * K3, and v e V(G), deg(v) > 2, have a nonempty unique Xi-set, Se.

Since deg(v) > 2, then G - v - S. separates two neighbors u and w of v into exactly

two components, C1 and C2, containing u and w respectively.
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Case 1: In G there exists a vertex vI E V(C,) and v2 E V(C 2 ) such that VlV 2 4

V(G). Then add edge e =- vv 2. Then .i(v, G + e) = Xi(v, G) + 1, since (G + e) - v -

S is connected and SC was a unique .i-set. Therefore, v is not .i-stable under edge

addition.

Case 2: In G every vertex in C1 is adjacent to every vertex in C2. Then L(v1 G) )

I V(C 1) I * I V(C2 ) I where * denotes standard multiplication. Since G is not K3,

either I V(CI) I > 1 or I V(C 2 ) I > 1. Without loss of generality assume there exists a

vertex x * u in V(C,). Then deg(u) < 1 V(C 1) I- I + I V(C 2) I + I counting edges to

all vertices in V(C 2), to all remaining I V(CI) I - I vertices of V(CI) and the edge to

Ivertex v. Thus, )Li(v, G) !5 deg(u) - 1 <9 1 V(CI) I - I + I V(C.2) I + I - 1 <5 1 V(CI) I *

I V(C2 ) I = Xi(v, G) since I V(CI) I Z 2, 1 V(C2 ) 1 2 1 are positive integers. This

implies that there exists an alternate ,i-set, namely the neighborhood Xi-set from

vertex u, a contradiction. U

To show that a similar proposition for the remaining two i-connectivity parameters

is not true, we direct the reader to the counterexample provided in Figure 3.13.

The graph in this figure is constructed as G = (K 3 u K 3 u K13 ) + K2 where +

denotes the join operation and K2 has the vertices v and w. The vertex v has a unique

Ci- and Ii-set whose only element is the vertex w. But any possible edge addition

must join a K3 vertex to a vertex in another K3. By Theorems 2.11 and 2.12, we know

the values of ii and gi for v cannot decrease, so /i(v, G + e) = xi(v, G + e) = 1,

because { w ) will remain a ici- and ti-set in G + e for any e e E(G). Thus it is

possible to have a unique Ki or gi-set and be 1i or I±i-stable under edge addition.
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Figure 3.13 A vertex with a unique ic and i'-set.

Dependencies of Inclusive Connectivity under Edde Addition

The definition of stable inclusive connectivity simply states that the parameter

does not change in value after any edge addition. No assumption whatsoever is

implied about the sets of graph elements that produce these i-connectivity values.

However, we can guarantee, for the addition of any edge e, the existence of a set of

graph elements which is an i-connectivity set for v in both G and G + e.

Theorem 3.16: If v E V(G) is ki-stable, then for any e * E(G) there exists a set of

edges of G that is a ki-set for v in G and G + e.

Proof: Let v e V(G) be X,-stable and e * E(G).

Case 1: Edge e is incident with v. Take any Xi-set for v in G and call it S.. Since

(G + e - v) = G - v, we have (G + e - v) - Se = G - v - Se. This implies that the removal

of S. from (G + e - v) will also separate the same two vertices from NG (v) into
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different components. Since v is Xi-stable under edge addition, then Sc is a Xi-set for

vinG+e.

Case 2: Edge e is not incident with v. Lt Se* be a .i-set for v in G + e. Then (G

+ C) - v - Sc* has vertices of NGe(v) in different components. Since e is not adjacent

to v, then NG+c(v) = NG(v) and S,* will also separate the same two vertices from

NG+e(v) into different components in G - v - Se*. Since v is X.i-stable, Se* is a Xi-set

forvinGaswellasG+e. U)

The result for Ki is now presented.

Theorem 3.17: If v e V(G) is Ki-stable, then for any e * E(G) there exists a set of

vertices of G that is a iCi-set for v in G and G + e.

Proof: Let v e V(G) be Ki-stable and e 9 E(G).

Case 1: Edge e is incident with v. Take any ici-set for v in G and call it Sv. So G -

v - SV either separates two vertices from N0 (v) into different components or isolates a

neighborof v. Since (G+e - v) =G - v, wehave(G +e- v)-Sv =G-v- S$. This

implies that the removal of Sv from (G + e - v) will also separate the same two

vertices from NG(v) into different components or isolate the same neighbor of v. Since

v is ic-stable, then Sv is a ic-set for v in G + e.

Case 2: Edge e is not incident with v. Take any Ki-set for v in G + e and call it

SV*. Then (G + e) - v - Sv* either separates two vertices from NG(v) into different

components or isolates a neighbor of v. Since e is not incident with v, then N,+e(v) =

NG(v) and Sv* will also separate the same two vertices from N 0 •(v) into different

components or isolate the same neighbor of v. Since v is ic-stable, SV* is a ic-set for

vinGaswellasG+e. U

The proof for gi is similar an( ce omitted.

Theorem 3.18: If v e V(G) is h±i-stable, then for any e 9 E(G) there exists a set of

graph elements of G that is a pi-set for v in G and G + e.
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We now turn our attention in beginning an investigation of edge addition and

stability for i" The Ki parameter will provide us with some of the most surprising

results among the inclusive connectivity parameters. This work began in [4] and so

we will now present the most fundamental theorems utilized in this work. The next

theorem, Boland's "One Edge Theorem", is arguably one of the most important for the

study of the relationships between the i-connectivity parameters.

Theorem 3.19: For any v e V(G), if IJi(v) < ici(v) then there exists a ti-set for v

containing exactly one edge and that edge is between neighbors of v.

Note that this theorem makes no restriction on the values of the i-connectivities.

It is quite surprising that even if the difference between the values of the two

parameters are arbitrarily large, you are still guaranteed of the existence of a ALi-set

with exactly one edge!

Another useful result from [2] is Theorem 3.20.

Theorem 3.20: If iti(v) < ici(v) and Sm is any g.i-set for v in G then G - Sm - v has

exactly two components which contain vertices of N(v).

When dealing with Xi(v), you are always certain to have exactly two components

in G - v - S. for any Xi-set, S., for v in G. You have no such guarantees when dealing

with ici or gi since the deletion of a vertex from a graph can result in an arbitrarily

large increase in the number of components. Theorem 3.20 is quite useful since it does

provide, under certain conditions, these same guarantees in terms of the number of

components containing neighbors of v.

In regards to Theorem 3.20, it is possible for a graph G to have more than two

components in G - Sm - v. In the graph in Figure 3.14, ti(v) = 2 with Sm = ( uw, x )

being a ti-set and ici(v) = 3 from a neighborhood ic-set from either u or w. But G - v -

( uw, x ) consists of three components where only two components contain vertices of

NG(v) as guaranteed by this theorem.
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Figure 3.14 A graph illustrating Theorem 3.20.

We should note that the condition I.i(v) < ici(v) does not imply that N(v) is

complete. For example, in the graph in Figure 3.15, we have I±i(v) = 3 with the

separation of neighbors y and z in G - v. And ici(v) = 4 with the separation of

neighbors x and z in G - v, but N(v) is not complete.

We can establish that if ILi(v) < ici(v) then there exists an edge e whose addition

to G will cause ici to decrease to at most ti, which leads to an interesting relation to

ic-stability. This situation is proven in Theorem 3.21.
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Figure 3.15 N(v) is not complete and IL1(v) < 1C1(v).

Theorem 3.21: If v E V(G) satisfies j��(v, G) � 1c�(v, 0) then v is not ic�-stable under

edge addition.

Proof: Let v e V(G) be such that j±�(v, 0) <K(v, G). By Theorem 3.19 there exists

a IL�-set. S�. for v in 0 with Sm containing exactly one edge e = w1w2 with w1 and

neighbors of v. Further, by Theorem 3.20, 0 - Sm - v has exactly two components. C1

and C2, which contain vertices of N(v), and so assume w1 e V(C1) and w2 E V(C2).

We may also assume, without loss of generality, that there is a vertex x e V(C1)

which is distinct from w1. (If I V(C1) I = I V(C2) I = 1, then is a neighborhood p�-

set implying that �t�(v, G) = 1c1(v, 0).)

IfxeN(v)thenSm -e+ w1 is a set of vertices whose removal from 0 makes v a

cutvertex implying 1C�(v. 0) • I Sm - e + w1 I = I 5m = I�L�(v, 0), a contradiction. Then

it must be the case that x � N(v).
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Now consider the graph G + vx. The removal from G + vx of the set Sm - e + w1

makes v a cutvertex. This gives Kj(v, G + vx) : 1 Sm - e + w , I Sm [=i(v, G) <

K1 (v, G) so that v is not ici-stable in G. 0

Corollary 3.22: If v e V(G) is Ki-stable under edge addition in G then I.i(v, G) G

1Ci(v, G).

The construction technique used in the proof of Theorem 3.21 is illustrated in the

graph in Figure 3.16. Here ici(v, G) = 4 while gi(v, G) = 2 with one of the two )±i-sets

containing exactly one edge being Sm = [ Wlw 2, y ). If we add the edge vx to G, then

we can remove edge wW 2 from SM and replace it with the vertex w, thereby

constructing a ici-set Sv* = ( wI, y ) for v in G + e which implies that the Ki. value has

decreased by two from G to G + e.

x y

V

Figure 3.16 A graph illustrating Theorem 3.21.

This Ki-stability result quickly leads us to the most important dependency of this

chapter.
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Theorem 3.23: If v e V(G) is ici-stable under edge addition in G then v is gi-stable

under edge addition in G.

Proof: We establish the contrapositive, i.e., that if v e V(G) is not I±i-stable under

edge addition then v is not ici-stable under edge addition. Toward that end, suppose

that v e V(G) is not gi-stable under edge addition. Let e f E(G) with gi(v, G)

I.i(v, G + e).

Case 1: Suppose gi(v, G) = ici(v, G).

(a) If gi(v, G) < p.i(v, G + e) then Ki(v, G + e) > jJi(v, G + e) > p.i(v, G) =

Ki(v, G) implying that v is not K1i-stable under edge addition.

(b) Suppose gi(v, G) > i±i(v, G + e). If ici(v, G) * Ki(v, G + e) then we are done.

Assume then that Ki(v, G) = 1ci(v, G + e) > jgi(v, G + e). By Theorem 3.19, we let Sm

be a gi-set for v in G + e such that Sm contains exactly one edge and that edge has as

its er.Jpoints neighbors of v. Since gi(v, G) > gi(v, G + e), Theorem 2.11 implies that

e must be adjacent to v. By Theorem 3.20, (G + e) - Sm - v has exactly two

components which contain neighbors of v. Let w1 be a neighbor of v in component C1

and w2 be a neighbor of v in component C2 of (G + e) - Sm - v. Let w~w2 be the edge

in Sm. The proof proceeds in three subcases.

(i) If w, is the only vertex in C1. Then iJ.(v, G + e) = Ki(v, G + e). To verify

this, notice that Sm - w1w2 + w2 is a set of vertices whose removal from G + e makes

v a cutvertex. Hence Kci(v, G + e):5 I Sm -wlw 2 +w 2 ISm I = g;(v, G + e). But

ici(v, G + e) > gi(v, G + e) by definition, resulting in equality, a contradiction.

(ii) If there exists another vertex y in C1 and y e NG+e(v). Then v is a cutvertex

with the removal of Sm - w 1w 2 + w 1 fror G + e so iK(v, G + e) = ji(v, G + e), a

contradiction as above.

(iii) If there exists another vertex y in C1 and y 9 NG+e(v). Then consider the

graph G + vy. Since Sm - w1 w2 + wI is a set of vertices which makes v a cutvertex
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upon removal from G + vy, xi(v, G + vy): iSm - W2 + W, I Sm -i(V, G + vy)

< gi(v, G) = ici(v, G), showing that v is not ici-stable under edge addition in G.

Case 2: Suppose Jti(v, G) < ici(v, G). Then by Theorem 3.21, v is not ici-stable

under edge addition in G. [3

The reader is reminded that this is the result to which we alluded during the

discussion of Theorem 3.4, regarding the relationships achievable for the stability of i-

connectivity under edge addition. That is, it allowed us to reduce the number of

possible combinations of stability among the parameters from eight to six. That

theorem proved that ,i-stability did not imply Ki-stability. We will now investigate

conditions under which this implication does hold true.

We begin with a complete analysis for vertices of degree one. So. let v r V(G) be

such a vertex. In the graph in Figure 3.17 the neighborhood set around vertex u gives

us X•(v, G) = 1ic(v, G) = gii(v, G) = 2, and for e = vy or vz we have Xi(v, G + e) = Xj(v,

G + e) = giJ(v, G + e) = 2. Thus v is stable for all three i-connectivity parameters

under edge addition.

y z
rib, alb

U

V

Figure 3.17 A degree one vertex that is )Li' K1, and ui~-stable.
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On the opposite end of the spectrum, we can have a vertex of degree one that is

none of Xi, Ii, or pi-stable. Vertex v in the graph in Figure 3.18 has Xi(v, G) =

l:i(v, G) = gi(v, G) = 1. But after adding the edge e = uz, .i(v, G + e) = Ki1(v, G + e)

=i(v, G + e) = 2.

y z

U

V

Figure 3.18 A degree one vertex that is not XP Ki, or Viti-stable.

The next theorem will prove that these represent the only possible combinations of

stability among the i-connectivity parameters for vertices of degree one.

Theorem 3.24: If v e V(G) has degree one, then v is Xis 'Ki, and ILi-stable or v is

none of Xi' ,ci, or )±i-stable, depending on whether G - v is complete or not complete,

respectively.

Proof: Let v e V(G) such that v has degree one. Assume that G - v is not complete

and that the only neighbor of v is vertex u. If degG_v(u) : I VfG - v) I - 1, then by

adding an edge to G which is adjacent to u, we force each of ki(v, G), 1ic(v, G), and

g±i(v, G) to increase by 1. So unless degG-v(u) = I V(G - v) I - 1, v is not Xi-, ici-, or

jti-stable under edge addition. If degG-v(u) = I V(G - v) I - 1, then )Li(v, G) = xKi(v, G)

= }ti(v, G) = I V(G - v) I - 1, which is the maximum for each parameter. In this case, if

there exist two nonadjacent vertices in G - v, say x and y, neither one being u, then
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the maximum number of internally disjoint paths between x and u in G - v is

I V(G - v) I - 2, since dego v(x) < I V(G - v) I - 2. This implies that ki(v, G + vx),

lci(v, G + vx), and ti(v, G + vx) will all decrease from I V(G - v) I - 1, and thus v is

not Xi, gi' or gi-stable.

Now assume that G - v = Kn for some n 1 1. In this case Xi(v, G) = Ki1(v, G) =

gi(v, G) = degG-v(u) = I V(G - v) I - 1 = n - 1. The only edges possible to add are

incident with v. But, because G - v is a complete graph, the X, xi, and gi values will

remain n - 1, implying that v is Xi, Ki' and gi-stable. U

The desired result is now immediate.

Corollary 3.25: If v e V(G) is ui-stable under edge addition and deg0 (v) = 1, then v

is also Ki-stable and Xi-stable.

If we next examine Corollary 3.22 more carefully, we can easily show that its

converse is not valid. In fact, the three following circumstances can occur:

(1) gi(v, G) = 1ic(v, G) with v both Ksi-stable and h.g-stable under edge addition

(any complete graph).

(2) gi(v, G) = ic(v, G) with v gi-stable, but not Ki-stable under edge addition

(see Figure 3.5).

(3) gi(v, G) = Ki(v, G) and v is neither g.i-stable nor Ki-stable under edge

addition (see Figure 3.16).

Therefore, where the gi and IKi values for a vertex are the same, every possible

case of stability between these two parameters can occur since Theorem 3.23

eliminates a possible fourth case.

But combining Theorem 3.14 and Corollary 3.22 we can narrow the number of

possible relationships among the inclusive connectivity parameters to two.

Proposition 3.26: If v e V(G) is Ki-stable under edge addition, then gi(v, G) = ici(v,

G)5 X •i(v, G).
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Both of these situations occur as evidenced in a complete graph where aJi(v, G) =

lci(v, G) = .i(v, G) and in the graph of Figure 3.4 where gi(v, G) = ic1(v, G) <

.i(v, G).

After the analysis of degree one vertices, it is tempting to suspect that whenever a

vertex v of degree two is Xi, 1ci, or gi-stable, then G - v must be a complete graph.

That is, one might believe he could add an edge between the two components after the

separation of the two neighbors of v, to "destroy" a a.i' K1i or gi-set. If we examine the

graph in Figure 3.19, we will see that this is not true. For this graph, an exhaustive

analysis shows that ,i(v) = ici(v) = gi(v) = 4 = deg,.v(u) - degG~v(w). Since degG-

v(u) = dego~v(w) = 4 there will be no increase in any of the parameters upon edge

addition. However, every nonneighbor of v has exactly four internally (edge) disjoint

paths to each neighbor of v, implying that adding an edge incident with v will create no

change. Hence, v is Xi' i', and gi-stable, while G - v is not complete.

V

Figure 3.19 A vertex that is Xi, Ki' and gi-stable where G - v is not complete.
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With some effort we further improve the previous condition for when gi-stability

implies Ki-stability. But first we must prove a lemma.

Lemma 3.27: If v e V(G) is I.i-stable and every i-set for v in G separates the same

pair of neighbors of v, then pi(v, G) = 1ic(v, G).

Proof: Let v e V(G) be gi-stable and suppose every J.i-set for v in G separates the

same pair of neighbors, u and w. Since every I±i-set separates u and w, and v is gi"

stable, uw is in E(G) and is also in any pti-set for v in G.

Suppose that gi(v, G) < 1ic(v, G). Then no gi-set for v in G is a neighborhood gi-

set for v at u or w. By Theorem 3.2, there exist exactly gi(v, G) internally disjoint u-w

paths in G - v. Let S be any such set. Augment each path by using intermediate

adjacencies, i.e., if xx 2 x3 ... x. is a path where x, = u, xn = w, and xi is adjacent to x,

where i= 1, • • , n-2,j=3,. •.,n,i <j - 1, then adjustthepath tobecomexlx 2 • ' *

xixj.. ••x.. Repeat this procedure until there are no such intermediate adjacencies.

Thus, each path is "chordless".

Then there is at least one neighbor for each of u and w in G - v which is not on any

path in S (otherwise v has a neighborhood gi-set at u or w). Call these neighbors x

and y respectively. Notice that x and y are distinct since otherwise u-x-w is a u-w

path not in S and internally disjoint from all paths in S, contradicting the fact that gi(v,

G) is the maximum number of such u-w paths. Similarly, note that xy E E(G). Then

in G + xy, there are Jti(v, G) + 1 internally disjoint u-w paths implying that v is not gi-

stable under edge addition. Then it must be the case that ti(v, G) = ci(v, G). U)

Lemma 3.27 can be applied to the graph in Figure 3.20. Here j±i(v, G) = 2 and by

inspection we see that v is g±i-stable under edge addition since gi(v, G + e) = 2 for

any e e E(G). And since there is only one pair of neighbors of v, we are guaranteed

by this lemma that 1ic(v, G) = 2, which we can verify by inspection.
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Figure 3.20 A graph illustrating Lemma 3.27.

Theorem 3.28: If v e V(G) is pi-stable and every gi-set for v in G separates the

same pair of neighbors of v, then v is vi-stable.

Proof: Let v e V(G) be pi-stable and suppose every ti-set for v in G separates the

same pair of neighbors of v, u and w. Then by Lemma 3.27, piL(v, G) = ici(v, G). Since

v is jti-stable, then uw e E(G).

Case 1: Suppose degk(u) = degk(w) = k.

Claim: degG.v(u) = degG.v(w) = &ti(v, G) = ici(v, G) = k.

Assume for the sake of contradiction that k * I±i(v, G) = ici(v, G). Then the

number of internally disjoint u-w paths in G - v is strictly less than k. Let S be any set

of pi(v, G) internally disjoint u-w paths each of which is "chordless" as discussed in

Lemma 3.27. Then for each of u and w in G - v there is at least one neighbor which is

not on any path in S. The technique used in Lemma 3.27 provides us with a new u-w

path in G + e internally disjoint from the others for some e E E(G), which contradicts

the fact that v is gti-stable under edge addition, proving the claim.

Since uw e E(G), the degree of at least one of u or w remains the same when any

edge e is added to G. It then follows that 1ci(v, G + e) < xci(v, G). Combining this
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with ,ci(v, G + e) Z Iii(v, G + e) and g.i(v, G + e) = p.i(v, G) gives K1 (v, G + e) =

Ki(v, G) for all e * E(G).

Case 2: With deg0 (u) ,, deg,(w) we assume without loss of generality deg (u)

> deg0 (w). Let P be any set of ILi(v, G) internally disjoint u-w paths, each of which is

chordless. Since gti(v, G) < degC(u), there exists at least one neighbor x of u which is

not on any path of P. Then xw 9 E(G) since pi(v. G) represents the maximum

number of internally disjoint u-w paths. Thus, in G + xw, there are gi(v. G) + I

internally disjoint u-w paths, contradicting the fact that v is Iti-stable under edge

addition. )

We now achieve an extension of Corollary 3.25 to the case of a degree two vertex.

Corollary 3.29: If v e V(G) is g±i-stable and deg 0 (v) = 2, then v is ic1-stable.

We note that any further extension of Corollaries 3.25 and 3.29 is not possible

since Figure 3.5 provides us with an example of a vertex of degree three that is

stable but not icl-stable.

In contrast to Theorem 3.28, if every 1ic-set for v in G separates the same pair of

neighbors, then v is guaranteed not to have ict-stability. This insures that all vertices

of degree two where u, w e N(v), uw * E(G), are not ic1-stable.

Proposition 3.30: Given v E V(G), if every ici-set for v in G separates the same pair

of neighbors, then v is not ic-stable.

Proof: Suppose every 1ic-set for v in G separates u and w into different components,

where u, w e NG(v). Since u and w are separated by a ici set then uw o E(G). Thus

Klc(v, G + uw) > ici(v, G) produces the desired result. U)

The fact that a graph has a vertex v that has inclusive connectivity stability

provides various details about the structure of the underlying graph G - v.

For example, if v e V(G) is IJi-stable and deg(v) > 2, then there must exist at

least I4t(v, G) internally disjoint paths in G - v between every pair of vertices x and y,
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where x E N(v), y E N(v). This is true because if otherwise, then we have lti(v, G +

vx) < JJi(v, G) by Theorem 3.2.

Using the same reasoning we see that if v a V(G) is ),i-stable and deg(v) k 2,

then every vertex x 9 N0 (v) must have at least Xi(v, G) edge disjoint paths to every

neighbor of v in G - v.

We extend these ideas to include any pair of vertices in the graph, even if both

vertices are not neighbors of the vertex v by using the concept of n-connectedness. A

graph G is said to be n-connected, n > 1, if K(G) Ž n. A graph G is n-edge-connected,

n >: 1, if X.(G) 2! n.

Theorem 3.31: If v e V(G) is Iti-stable, then G - v is ILi(v, G)-connected.

Proof: Let v e V(G) be p&i-stable. Then by Theorem 3.12 we have ti(v, G) = Jti(v,

G + e) = c(G - v) for all e * E(G). So by the definition of n-connected, G - v is ti(v,

G)-connected. Ul

We now state Whitney's characterization of n-connected graphs [251.

Theorem 3.32: A nontrivial graph G is n-connected if and only if for each pair u, w of

distinct vertices there are at least n internally disjoint u-w paths in G.

A corollary to Theorem 3.31 now follows by a direct application of Whitney's

characterization of n-connected graphs, giving the desired extension.

Corollary 3.33: If v e V(G) is Ii-stable, then there exists at least gti(v, G) internally

disjoint paths between any pair of vertices of G - v.

A similar argument exists for the remaining two i-connectivity parameters with the

Xi parameter using edge disjoint paths.

Theorem 3.34: If v e V(G) is ici-stable, then G - v is Ki(v, G)-connected.

Corollary 3.35: If v e V(G) is Ki-stable, there exists at least 1ic(v, G) internally

disjoint paths between any pair of vertices of G - v.

Theorem 3.36: If v E V(G) is Xi-stable, then G - v is Xi(v, G)-edge-connected.
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Corollary 3.37: If v e V(G) is ki-stable, there exists at least ,i(v, G) edge-disjoint

paths between any pair of vertices of G - v.

Thus the stability of the inclusive connectivity parameters and their values for a

specified vertex v provide information about connectivity in the graph G - v. For

example one can examine a specific graph G and consider whether it is possible to add

a vertex to G in such a way that the vertex has a type of inclusive connectivity

stability. Thus revealing important connectivity information about the structure of G.

A counterexample is provided in Figure 3.21 to the converses of Theorems 3.31,

3.34, and 3.36. In this figure ,0) = K1(v, G) = ;Lv(v, G) = 2 with x(G - v) = VG -

v) = 2. Also, G - v is 2-connected (Xi(v. G)-, ici(v, G)-, and gi(v, G)-connected). But

vertex v is not i"-, Ii- or gi-stable since if we add edge uw, we obtain Ki(v, G) = 4,

since NG+UW(v) is complete, and ;.i(v, 0) = ILi(v. G) = 3.

uW 

w

V

Figure 3.21 A counterexample to the converses of Theorems 3.31, 3.34, and 3.36.

The Relationship between the Stability of the Inclusive Connectivity

Parameters and the Stability of the Global Parameters

After discussing the relationship between the stability of a given vertex v and the

structure of the underlying graph G - v, we establish a surprising relation involving the
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global connectivity parameters. We can show that inclusive connectivity stability

implies the underlying G - v graph is also stable for the respective global parameter

under edge addition!

Theorem 3.38: If v e V(G) is .i-stable, then X(G - v) = X(G - v + e) for any e 9 E(G

- V).

Proof: Let v e V(G) be k.-stable. By Theorem 3.10 we know Xi(v, G) = Xi(v, G + e)

= ).(G - v) for any e E(G). Note that if e is adjacent to v in G + e, then the result

holds since G + e - v =G - v. By viewing G + e as our graph, we have) .i(v, G + e) 2

X.((G + e) - v). Combining this with X((G + e) - v) > X.(G - v), we get Xi(v, G + e) =

X(G + e - v) = X(G - v) which produces the desired result. [

By Theorem 3.38 we know that if v e V(G) is ),i-stable under edge addition, then

the global edge-connectivity for G - v is necessarily stable under edge addition also.

For the graph in Figure 3.22, it can be verified that v e V(G) is .i-stable under

edge addition. So we know that the global edge connectivity of G - v, pictured in the

graph of Figure 3.23, will not change when any edge is added.

V

Figure 3.22 Relation of stability of i-connectivity and global parameters.
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Figure 3.23 Edge connectivity remains unchanged upon edge addition.

We expand this notion of global stability to the other parameters as well. The

proof of Theorem 3.39 is similar to Theorem 3.38 and is omitted.

Theorem 3.39: If v e V(G) is 1i-stable under edge addition, then ic(G - v) = ic(G - v

+ e) for any e e E(G).

And finally, we have the result for ici which is a direct result of Theorem 3.23 and

Theorem 3.39.

Theorem 3.40: If v e V(G) is ict-stable under edge addition, then 1c(G - v) = IC(G - v

+ e) for any e * E(G).

These theorems instantly provide the power of identifying large classes of graphs

whose edge and/or vertex stability does not change under edge addition. For

example, for G = K(n,n-1), n > 3, X(G) -- •(G + e) and ic(G) = ic(G + e) for any e e

E(G). To see this, note that every vertex of K(n,n) is Xi-, and 3Ji-stable under edge

addition by Corollary 2.19.

Therefore, it is possible to obtain classes of graphs which are "maximal" with

respect to edges and connectivity. This new type of graph can prove to be extremely

interesting.

We now alternatively show that if a graph's edge or vertex connectivity does not

change under edge addition, then it is a subgraph of a graph that contains a vertex that

is ki- stable or icK and M.i-stable under edge addition respectively.
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Proposition 3.41: If G is such that X(G + e) = X.(G) for any e * E(G), then G + K1

has v e V(KI), Xi-stable, where + denotes the join operation.

Proof: Let G be a graph such that ,(G + e) = X(G) for any e * E(G). Define G* = G

+ K1 where + is the join operation and V(K1 ) = I v ).

Let U be any edge disconnecting set for G. Then G - U has exactly two

components. But G* - U = (G + v) - U is connected since v is adjacent to every

vertex. So v is a cutvertex in G* - U. Therefore Xi(v, G*) < 1 U I = X(G). Since ).i(u,

G*) Ž )L(G* - u ) for all u e V(G*), then Xi(v, G*) 2t X(G), which implies X.i(v, G*) =

I U I =X(G).

Now add any edge to G to get G + e and take any edge disconnecting set for G + e

and call it U*. Then I U* I = I U I since .(G + e) = .(G) for all e * E(G) and v is a

cutvertex in G* + e - U*. Therefore Xi(v, G* + e):< I U* I = I U I. But I U I = X(G) =

)Li(v, G*), so 5 i(v, G* + e) < X.i(v, G*). But we know that e is not adjacent to v since

v is not in V(G), so )Li(v, G*) :5 Xi(v, G* + e) for all e E E(G), implying equality.

Therefore ;.i(v, G*) = Xi(v, G* + e) for all e e E(G*) implying v is Xi-stable for edge

addition in G*. U

For the graph in Figure 3.24, X(G) = X(G + e) = 2 for any e 0 E(G). Then by

Proposition 3.41, v e V(K1 ) is X.i-stable in G + K1.

Figure 3.24 A graph where X(G + e) = X(G).
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The similar result for global vertex connectivity is now presented, and the proof

follows the logic of the proof of Proposition 3.41 and is omitted.

Proposition 3.42: If G is such that K(G + e) = ic(G) for any e e E(G), then G + K1

has v e V(KI), xi-stable, where + denotes the join operation.

A corollary to Proposition 3.42 provides the result for V,.

Corollary 3.43: If G is such that K(G + e) = ic(G) for any e * E(G), then G + K1 has

v e V(KI) pi-stable where + denotes the join operation.

Proof: By Proposition 3.42, v is Ki-stable and thus by Theorem 3.23, v is Vi-stable.



CHAPTER 4

STABILITY OF INCLUSIVE CONNECTIVITY

UNDER EDGE DELETION

It is natural to now explore inclusive connectivity stability under edge deletion.

We examine previous results concerning Xi-stability under edge deletion for possible

similar extensions to Kci and j±i. Ringeisen and Rice [20] studied this subject in

relation to the results for Xi [221.

Several different implications lead to interesting stability results under edge

deletion. Throughout this chapter "stable" (or "stability") will mean "stable

(stability) under edge deletion", i.e., that the relevant i-connectivity parameter does

not change under edge deletion.

Extensions of Previous Results
A result similar to Theorem 2.10 concerning the behavior of Xi after edge deletion

was established by Rice [181.

Theorem 4.1: [18] Let v, u, and w be distinct vertices of G with deg(u) > I and

deg(w) > 1. Let e = uw e E(G). Then

(a) X•(v, G) - 1 <5 Xi(v, G - e) <5 Xi(v, G)

(b) X(G - u) 5 .i(u, G) 5 Xi(u, G - e).

This theorem implies that the change in the Xi value after edge destruction is

opposite of that under edge addition. Simply stated, if an edge e is deleted from a

graph G and is not incident to v e V(G), then the Xi value for v can only remain the

same or decrease by exactly one. Because if e is contained in some Xi-set, Se' for v in

G, then Se - e will be a ki-set for v in G - e. On the other hand if e is incident to v, then
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the ki value for v can only remain the same or increase. In this case NGe(v) c NG(v),

which implies it is possible that a set of neighbors that used to get separated no

longer are neighbors and hence some other pair must be separated causing Ai to

increase.

In the case where deg(u) = deg(w) = 1, the graph is K2 and Xj(u, G) = .i(w, G) =

0, with X•(u, G - e) = Xi(w, G - e) = 0. If deg(u) = 1 and deg(w) > 1, then e = uw is a

pendant edge. The graph G has Xj(u, G) = deg(w) - 1 and Xi(w, G) = 0, but Xj(u, G -

e) = 0 and Xi(w, G - e) can have any value. Upon further examination, it is clear that

these special cases also hold analogously for gi and Kci.

The behavior of Xi after edge deletion is extended to gi in Theorem 4.2.

Theorem 4.2: Let v, u, and w be distinct vertices of G with deg(u) > 1 and deg(w) >

1. Let e = uw e E(G). Then

(a) p i(v, G) - 1 !5 pi(v, G - e) < pi(v, G)

(b) x(G - u) < igi(u, G) < I±i(u, 0 - e).

Proof: Let Sm be a gy-set for v in G. Since e is not incident with v, then NG(v) =

NGCe(v). This implies that a pair of neighbors of v separated in G - v - Sm will still be

separated in (G - e) - v - Sm. Thus gi(v, G - e)5 <S I = hi(v. G).

Now let Sm* be a i.ti-set for v in G - e. Note that e E Sm*. Then Sm* u ( e ) is a

set of graph elements that will separate some pair of neighbors of v in G as Smi* did in

G - e. This implies gi(v, G) < ' Sm* I + 1 = ii(v, G - e) + 1 or .i(v, G) - 1 < gi(v, G -

e) and (a) is proven.

For (b) note that G - e - u = G - u when e is incident with u so K:(G - e - u) = ic(G -

u) and also NG-e(u) c NG(u). Let Sm* be a gi-set for u in G - e. Then two neighbors

of u are separated in (G - e) - Sm* - u. Now two of the vertices of NG(u) in G - Sm* -

u are separated, but since there are more vertices in NG(u) then in NG-e(u), then Sim*

may not be minimum. Hence gi(u, G) < I Sm* I = g•(u, G - e). We have I±i(u, G) >

K:(G - u), thus Kc(G - u) < g.i(u, G) ! I±i(u, G - e). Q
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The behavior of ici under edge deletion is analogous to the behavior of Ki. under

edge addition and now follows.

Theorem 4.3: Let v, u, and w be distinct vertices of G with deg(u) > I and deg(w) >

1. Let e = uw e E(G). Then

(a) Ki(v, G - e) < Ki(v, G)

(b) ic(G - u) < ici(u, G) ! K,(u, G - e).

Proof: Let Sv be a xi-set for v in G. Since e is not incident with v, then NG(v) =

N,-e(v). This implies that a pair of neighbors of v separated or the neighbor isolated

in G - v - Sv will still be separated or isolated in (G - e) - v - Sv. Thus Ki(v, G - e) 5

I SY I = Ki(v. G). and (a) is proven.

To establish (b) note that G - e - u = G - u since e is incident with u so K(G - e - u)

= K(G - u) and also NGCe(u) c N0 (u). Let Sv* be a ci-set for u in G - e. Then two

neighbors are separated or one neighbor of u is isolated in (G - e) - ( Sv* ) - u. Now

Sv* will still separate or isolate the same neighbors of N0 .O(u) upon removal from G -

u, but since there are more elements in NG(u), then Sv* may not be minimum. Hence

Ici(u, G)5 ' Sv* I = Kii(u, G - e). Since we have ,ic(u, G) a Ki(G - u) = •(G - e - u), we

have K(G - u) ý5 ii(u, G) < 1i(u, G - e). U

As in edge addition, we notice in Theorems 4.1 and 4.2 that when ki and gi

decrease, they can decrease by at most one. Yet Theorem 4.3 implies that this is not

the case for ici and this situation of a decreasc- of more than one is illustrated in the

graph of Figure 4. 1.

In that figure, 0.i(-, G) = ti(v, G) = l and lic(v, G) = 6. But Xi(v, G - e) = pti(v, G -

e) = KC(v, G - e) = 0. It is clear from this example that it is possible for Ki to decrease

an arbitrary amount, even to its minimum value of 0, with the deletion of one edge. It

is not a requirement that < N(v) > be complete for this situation to occur. Figure 2.9

illustrates a case of Ki(v, G') = 8 and xe(v, G' - e) = 5 where G' = G + e.
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V

Figure 4.1 The decrease in ii after edge deletion.

An alternative viewpoint from that of Theorem 4.1 (a) is that if an edge e is in a Xi-

set for a vertex, then in G - e the Xi value will decrease by one; otherwise the Xi value

will remain the same. Rice formalized these conditions under which the Xi value

decreased.

Theorem 4.4: [18] Let v, u, and w be distinct vertices of G with e = uw e E(G).

Then X•.(v, G - e) < Xi(v, G) if and only if e is in some X.i-set Se for v in G.

Since Theorem 4.1 restricts the degree of the vertices of the deleted edge e, we

consider those special cases for Theorem 4.4. This theorem will be vacously true for a

cutvertex. For an endvertex, then we consider the case where deg(v) = 1, x 6 NG(v),

and e = uw. Here, if x is not u or w then ).i(v, G) = .i(v, G - e) = deg,(x) - 1. But if e

is incident with x then w )Xi(v, G) - 1 = .i(v, G - e) = degG(x) - 2.

We can show a similar situation for gi also exists.

Theorem 4.5: Let v, u, and w be distinct vertices of G with e = uw e E(G). Then

gi(v, G - e) < gi(v, G) if and only if e is in some gi-set Sm for v in 0.
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Proof: Let v e V(G). First, let e be in some gi-set Sm for v in G. Since G - Sm =

(G - e) - (Sm - e), then v is a cutvertex in (G - e) - (Sm - e). Thus pi(v, G - e) 5

1 Sm I - I = gti(v, G) - 1. Therefore, lti(v, G - e) < ui(v, G).

Now let pi(v, G - e) < gi(v, G). This implies gi(v, G - e) = pi(v, G) - 1. Let Sim*

be a li-set for v in G - e. But v is a cutvertex of (G - e) - Sm and (G - e) - Sm = G -

(Sm v I e )). ThusvisacutvertexofG-(Smu (e )). SoISmI+I=i(vG-e)+

1 = gi(v, G) and Sm is a Li-set for v in G. 0

Note that there is no restriction above in the degree of the vertex v since the case

of an endvertex in Theorem 4.5 is identical to that in Theorem 4.4.

An analogous result for 1Ki is not possible since an edge cannot be contained in a

Kli-set. It is natural to explore possibilities that may produce a characterization of

when the xi value will decrease after edge deletion.

The mere presence of an edge e incident to a pair of neighbors of v being separated

in G - e does not provide implications as to the behavior of Kci.

In the graph of Figure 4.2 we have 1c1(v, G) = 2 and ici(v, G - e) = 1, and e is not

incident to either of the neighbors of v that get separated in G - e - Sv, for a iel-set Sv.

On the other hand, in the graph of Figure 4.3, edge e is incident to the two neighbors u

and w of v being separated in G - e - Sv where Sv - x, y ), but ici(v, G) = ic(v, G - e)

=2.

It now follows that the existence of an edge between neighbors of v is neither

necessary nor sufficient to cause x1 to change upon removal.
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v

Figure 4.2 Edge e is not incident to the neighbors of v being separated.

e
U w y

V

Figure 4.3 Edge e is incident to the neighbors of v being separated.
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A more interesting possibility is the relationship between the decrease in xi value

for a vertex v after the deletion of an edge e which is incident to a vertex that is in

some 1ic-set for v. An edge e which is incident to a vertex of every ici-Set is displayed

in the graph of Figure 4.4. Here, the only ics-set for v in G is ( x ) and the tci value

does not decrease since icl(v, G) = 1 = )Ci(v, G - e).

V

Figure 4.4 Edge e is incident to a vertex in every ici-set for v
and ici(v, G - e) = ici(v, G).

We can establish a partial relationship under a qualifying condition.

Theorem 4.6: For v e V(G) and e e E(G), if ici(v, G - e) < xi(v, G) and the

endpoints of e are not the only pair of neighbors separated in G - e - Sv by every Ks-set

SV for v in G - e, then e is incident to a vertex that is in some xi-set for v in G.

Proof: Let ici(v, G - e) < ici(v, G) and let Sv be a 1ic-set for v in G - e that separates

u, w r NG-e(v) in (G - e) - Sv - v where e * uw. Then SV* = Sv u ( x ), where x is an

endpoint of e that is not u or w, will separate u and w in G - SV* - v. So KCi(v, G) <

Xi(v, G - e) + 1 and since xi(v, G - e) < ici(v, G) implies xi(v, G) > K~i(v, G - e) + I,
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we have 1c(v, G) = lic(v, G - e) + 1. Therefore Sv* is a Ki-set and e is incident with a
vertex that is in some Ki-set for v in G. U

The qualifying condition in Theorem 4.6 eliminates the case where the deletion of

an edge from G results in a pair of neighbors previously adjacent in G providing the

sole determination (and decrease) of the Ki value in G - e. The graph in Figure 4.5

illustrates that this condition is required for the result in the previous theorem. In this

figure, an edge e is removed from G and the Ki value for v drops, where there is only

one pair of neighbors being separated; namely the endpoints of e, and neither endpoint

of e is in any 1ic-set for v in G.

First we establish that ici(v, G - e) < 1ic(v, G). All the i-connectivity values here

were confirmed by using the algorithm from [12]. A xci-set for v in G consists of the

six unlabeled vertices incident to vertex x (or y) while a ici-set for v in G - e consists

of the three lightly shaded vertices and the vertices x and y. Thus the Ki value for v

decreases upon the removal of e from G.

To prove that u or w is not in any ici-set we argue the following: Examine G - u (or

G - w) for the number of internally disjoint paths between the neighbors of v, which in

effect is putting u (or w) in a ici-set. In G - u (or G - w) there exists six internally

disjoint x-y paths, u-x (w-x) paths, and u-y (w-y) paths. Therefore, u or w cannot be

in any Ks-set for v in G.

A characterization of when the Ki value decreases for a vertex is possible if we

consider vertex deletion. This condition is given in Theorem 4.7.

Theorem 4.7: For v, u e V(G), 1ic(v, G - u) < icl(v, G) if and only if u is in some Ki-

set for v in G.

Proof: Let Ke(v, G - u) < ici(v, G) which implies ici(v, G - u) < ici(v, G) - 1. Let Sv*

be a Ki-set for v in G - u. If (G - u) - Sv* - v separates neighbors x and y of v, then for

G, G - (Sv* u { u )) - v will also separate the neighbors x and y, since G - u - Sv* =
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G-( u ]). But ISV* U (u) I=C(vG-u)+ 1 which meansSv*,,u (u Jisa

Ki-set for v in G. Thus, u is in some n -set for v in G. If (G - u) - Sv - v isolates a

neighbor of v, then Sv* V ( u ) will do likewise.

Let u E V(G) be in some ic.-set Sv for v in G. Then G - v - Sv either separates

neighbors x and y of v or isolates neighbor z of v. In either case, Sv - u will still

separate neighbors x and y of v or isolate neighbor z of v in G - u since (G - u) - v - (Sv

- u) = G - v - Sv. Therefore ii(v, G - u):51 Sv - u I = ici(v, G) - I which implies Xýi(v, G

- u) < 1C1(v, G). U)

A characterization of when the deletion of an edge can increase the Xi value of a

vertex is presented next. For a proof, see [18].

Theorem 4.8: Let G be a connected graph and let e = uv with Xi(v, G) * 0, X•(u, G)

0, and deg(v) ! 3. For v e V(G), Xj(v, G - e) > X1(v, G) if and only if e = uv is a

bridge in G - S. for every Xi-set Se for v in G.

The previous result does not hold for those special cases excluded in the

hypothesis of the theorem [18]. For instance, the Xi value for a cutvertex increases if

and only if after removal of the edge e it is no longer a cutvertex. If e is a pendant

edge, then the ki value of the endvertex decreases from some positive Xi value to

zero. And for deg(v) = deg(u) = 2 in C., then edge e = uv e E(C.) is a bridge in G -

S. for every ki-set for u and v, but the ki value for neither increases when e is deleted.

A variation of Theorem 4.8 for ici is given in Theorem 4.9.

Theorem 4.9: Let G be a connected graph and let e = uv with ici(v, G) * 0, 1ci(u, G) *

0, and deg(v) > 3. For v E V(G), if ici(v, G - e) > xi(v, G) then e = uv is a bridge in G

- SV for every Kcl-set Sv for v in G.

Proof: Let G be a connected graph where e = uv and xi(v, G) * 0, ici(u, G) * 0, and

deg(v) > 3. Suppose xi(v, G - e) > ici(v, G) and e is not a bridge in G - Sv for some

K,-set S. of v in G.
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First assume that G - v - Sv isolates a neighbor of v. Then that neighbor can only

be u since Ki(v, G - e) > 1ic(v, G). But this makes e a bridge in G - Sv, a contradiction.

So assume G - v - Sv has at least two components, each of which contains at least

one neighbor of v. Note that u , SV, because if u e SV then G - v - SV = (G - e) - v - SV

and SV will separate the same neighbors in G - v - Sv as in (G - e) - v - Sv which

implies ici(v, G - e) S ici(v, G), a contradiction.

Since u Sv, then u is in one of the components of G - v - Sv Let C1 and C2 be

two components of G - v - Sv where u E C1 and x e C2 , x G N0(v). There must exist a

vertex z E NG(v) where z * u so that z e C1. Otherwise uv is a bridge in G - Sv.

Since (G - e) - v - Sv = G - v - Sv, G - e is divided into the same components in (G - e)

- v - Sv with z G C1, x e C2, and z, x e NG4,(v). Therefore Sv separates the neighbors

of v in G - e - v into different components which implies xi(v, G - e) < ici(v, G), a

contradiction. Thus e is a bridge in G - S. for every ici-set Sv of v in G. UJ

In contrast to Theorem 4.8, the converse of Theorem 4.9 is not true. Vertex v in

the example shown in Figure 4.6 has only one Kel-set, namely Sv ={x}.

1

r 

4U

Figure 4.6 Edge eis abridge in G -Sfor every ici-set 5,, for vin G.
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Here, in G - Sv the edge e is clearly a bridge while in G - e we have lci(v, G - e) =

1. Therefore, it is possible for an edge e to be a bridge in G - Sv for every xi-set Sv for

v in G and Ki(v, G - e) = ici(v, G).

Except for the situation of isolating a neighbor of v, the proof of Theorem 4.10 for gi

is similar to Theorem 4.9 and is omitted.

Theorem 4.10: Let G be a connected graph and let e = uv with gi(v, G) * 0, gi(u, G)

* 0, and deg(v) > 3. For v E V(G), if gi(v, G - e) > gi(v, G) then e = uv is a bridge in

G - SM for every gi-set Sm for v in G.

Again the converse of the previous theorem does not hold. In the graph of Figure

4.7, li(v, G) - I with only one li-set, Sm= x ). Here, e is a bridge in G - S. for

every Igi-set Sm, but gi(v, G - e) = 1.

X

e 

U

V

Figure 4.7 A counterexample to the converse of Theorem 4.10.

Implications of i-Connectivity Stability under Edge Deletion

Before investigating i-connectivity stability under edge deletion, we first make

some elementary observations. If an edge is contained in a Xi-set for a vertex v, then
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the edge is not incident to v. Thus, a vertex v with Xi(v) > 0 cannot be k.i-stable

under edge deletion since the removal of any edge from a X.-set for v will decrease the

Xi value by one. Therefore, we concentrate on such stability properties for gi and Ki

only.

Likewise, a vertex v with gi(v,G) > 0 cannot be gi-stable under edge deletion if

any gi-set for v contains an edge. If every gi-set for v has only vertices, then it is

possible for v to be Iti-stable, as illustrated in the graph of Figure 4.8.

y

V

Figure 4.8 A vertex that is gi and ici-stable under edge deletion.

For the graph in this figure, ic,(v, G) = gLi(v, G) = I with the two possible K~i and

IJi-sets being ( x ) and ( y ). There are two edge disjoint paths between every pair

of neighbors of v in G - v. This implies that deleting an edge will leave at least one

path between every pair of neighbors of v in G - v. Thus K1i(v, G - e) = gi(v, G - e) = 1

for every e e E(G) which implies v is K~i and gi-stable.
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With one initial condition we obtain a characterization of a gi-stable vertex. In

order to make the statement of the next theorem easier, we define a "dominant"

neighbor for a vertex v. Let x be a neighbor of v so that, given any gi-set for v, S,

there is no other neighbor of v in the component of G - Sv - v containing x. Then x is

called "dominant".

Theorem 4.11: Let v e V(G) be such that v has no dominant neighbor. Then v is ti-

stable if and only if no pti-set for v in G contains an edge.

Proof: Let v e V(G) be such that v has no neighbor which gets separated from all

the other neighbors of v in G - Sm - v for every gi-set Sm for v in G.

Suppose v has a ti-set Sm containing an edge e. Then gi(v, G - e) < Sm I - 1

since v is a cutvertex in (G - e) - (Sm -e)=G-Sm. Thus gi(vG-e)<ISm I =i(v,

G) and v is not pti-stable.

Suppose no Iti-set for v in G contains an edge. Note that deg(v) * 1, otherwise v

would have a hti-set consisting entirely of edges. By way of contradiction, let e be an

edge of G such that gi(v, G) * g±i(v, G - e).

Case 1: Suppose e is not incident with v. Since ,i(v, G) * gti(v, G - e), Theorem

4.2 implies that p.i(v, G - e) = J.i(v, G) - 1. Let Sm* be a iti-set for v in G - e and let u

and w be neighbors of v in G - e which are in different components of (G - e) - Sm* - v

(such vertices exist by the hypothesis of the theorem). Since (G - e) - Sm* = G -

(Sm* U ( e )) and v is a cutvertex in (G - e) - Sm*, then (Smi* u ( e }) is a gi-set for

v in G, contradicting the supposition that no gi-set for v in G contains an edge and

thus this case does not occur.

Case 2: Suppose e is incident to v. Since g.i(v, G) # gi(v, G - e), Theorem 4.2

implies that g.i(v, G - e) > g.i(v, G). Let e = zv. Then by the hypothesis of the

theorem, there exist vertices u and w distinct from z where u and w are neighbors of v

which are separated in G - Sm - v, for some gi-set Sm for v in G. Thus there are a

maximum of g.i(v, G) internally disjoint paths between u and w in G - v. But there are
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also a maximum of }i(v, G) internally disjoint paths between u and w in (G - e) - v.

This implies that jti(v, G - e) < i(v, G) (with equality since e is incident with v), a

contradiction.

Thus, there does not exist an edge e such that gi(v, G) * gi(v, G) which implies v

is IJi-stable. [)

The graph in Figure 4.9 demonstrates that the initial condition of the preceding

theorem is necessary.

e

V

Figure 4.9 A graph illustrating the initial condition in Theorem 4.11.

In this graph, gi(v, G) = 2 with the separation of neighbors x and y, or x and z with

each gi-set consisting of two vertices. Note that the vertex x is dominant. In G - e

there exist a maximum of three internally disjoint paths between y and z which implies

gi(v, G - e) = 3 and v is not gti-stable in G.
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When a vertex is pti-stable, we formalize the relationship between the 1ci and Ai

values for that vertex.

Corollary 4.12: If v r V(G) is li-stable, then ici(v) = gi(v) and further, every I.i-set

for v in G is a il-set for v in G and vice versa.

Proof: If v e V(G) is pi-stable, then no Igi-set for v in G contains an edge and so any

I±t-set is a 1cl-set. This further implies that gi(v) = xci(v), making every ici-set a Ai-set

for v in G. Ui

The contrapositive of the previous corollary is extended to include ic1 -stability.

Theorem 4.13: If gi(v) < ici(v) for v e V(G), then v is neither xi-stable nor Ai"

stable.

Proof: Let v e V(G) where p.i(v) < ici(v). By Theorem 3.19, there exists a I.i-set

Sm for v in G such that Sm contains exactly one edge, e = uw, with u and w neighbors

of v. So there are a maximum of I Sm I internally disjoint uw paths in G. But there are

a maximum of I Sm I - 1 internally disjoint uw paths in G e (u and w remain neighbors

in G - e but are no longer adjacent). Hence v is not ILi-stable.

Note that deg,(v) * 1 since if deg(v) = 1, then pi(v) = xci(v), a contradiction. Also

< N0 e(v) > is clearly not complete, so by Theorem 3.3, we have ici(v, G - e) <

I Sm - e I = j±i(v, G) - 1 < ji(v, G) < ici(v, G). Therefore, v is not 1ic-stable. U

In the example in Figure 4.9, there were no edges in any gi-set Sm for v in G.

Note also that the maximum number of edge disjoint paths is more than the maximum

number of internally disjoint paths between any pair of neighbors of v that are

separated in G - Sm - v. This relationship is explored in Theorem 4.16, after a result

by Boland [2] and a corresponding corollary are presented.

Theorem 4.14: For any v e V(G), j±i(v) < ki(v) if and only if every 1±i-set for v

contains a vertex.

An immediate result from Theorem 4.14 is Corollary 4.15.

Corollary 4.15: If there is no edge in any gi-set for v in (3 then jJi(v) < X•(v).
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Theorem 4.16: Suppose G is a graph with v a vertex of G which has no edges in any

gi-set for v and gi(v) > 0. Let Sm be a particular hi-set which separates two

neighbors of v, u and w, in G - Sm - v. Then the maximum number of edge disjoint u-w

paths in G is greater than the maximum number of internally disjoint u-w paths in G.

Proof: Let v e V(G) where there is no edge in any gi-set for v in G. Let Sm be an

arbitrary 3±i-set for v in G where the two neighbors of v separated in G - Sm - v are u

and w. By Corollary 4.15, the maximum number of internally disjoint u-w paths, gi(v),

is strictly less than the maximum number of edge disjoint u-w paths, Xi(v). U]

The converse of the previous theorem is not true as evidenced by the

counterexample in Figure 4.10. In G - v there exist a maximum of three edge disjoint

u-w paths and a maximum of two internally disjoint u-w paths. But ( x, uw ) is a

set which, of course, contains an edge.

e

v

U w

V

Figure 4.10 A counterexample to the converse of Theorem 4.16.
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The idea of the "donwinant" neighbor involved in Theorem 4.11 is vital when

investigating the ,±i-stability of a vertex. In fact, the mere presence of a "dominant"

neighbor will prevent Ii-stability.

Theorem 4.17: If there is a dominant neighbor of v e V(G), then v is not Iti-stable in

G.

Proof: Let u be a dominant neighbor of v and let e = uv. Then gi must change when e

is removed, since u is no longer a neighbor. Thus, v is not iJ.i-stable in G. U

The converse of Theorem 4.17 is easily disproved using the counterexample in

Figure 4.11. Here, vertex v is not I.i-stable since gi(v, G) = 2 and gi(v, G - e) = 1.

But there are disjoint pairs of neighbors separated by ti-sets. For example, w and y

are separated in G - Sm - v where Sm =u, x, and u and x are separated in G - Sm*

- v where Sm* = ( w, y }.

e

U 4

V

Figure 4.11 A counterexample to the converse of Theorem 4.17.
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We now examine the primary difference between a 1ic-set and a ILi-set; that is,

the case where a 1ic-set isolates a vertex in a K 2 component.

Theorem 4.18: For v e V(G), if any ic1-set for v in G isolates v in a K2 component,

then v is not ici-stable.

Proof: Let Sv be a 1ci-set for v in G that isolates v in a K2 component with vertex u.

Since G - Sv - v has a neighbor of v as an isolated vertex, then Sv is a neighborhood

lCi-set. Thus if e = uw where w * v, then in G - e the removal of the set of vertices

( Sv - w ) will make v a cutvertex since v and u will be isolated in a K2 component in

(G - e) - (Sv - w). Therefore ic(v, G - e)0 I S - w I = ic(v, G) - 1 < ici(v, G) implying

v is not cii-stable. U

The previous argument can be immediately extended to include neighborhood i-

connectivity sets for gi as well. The logic is identical and hence the proof has been

omitted.

Theorem 4.19: For v e V(G), if there exists a neighborhood 1ic-set (j±i-set) for v in

G, then v is not 1xi- (gi) stable.

We now arrive at the most important result of this chapter, the relationship

between ic-stability and ;i-stability under edge deletion, presented in Theorem 4.21.

First we present a lemma.

Lemma 4.20: If v e V(G) is gi-stable, then for e e E(G), there exists a set of

elements that is a gLi-set for v in G and G - e.

Proof: Let v E V(G) be gi-stable and e e E(G).

Case 1: Let e be incident with v. Let Sm* be any gi-set for v in G - e. So I Sm* I

=,gi(v, G - e) = gi(v G). Since (G - e) - v = G - v then Si* separates the same

neighbors of v in G - Si* - v and has the necessary cardinality, so Sm* is a gi-set for

vinG.

Case 2: Suppose e is not incident with v and let Sm be any gi-set for v in G.

Since No(v) = NGoe(v), the same neighbors of v will be separated in G - Sm - v as in
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(G - e) - Sm - v. Since v is p.i-stable, ISm I = j±(v, G) = i~(v, G - e) which implies Sm

is a gi-set for vin G -e. U

Theorem 4.21: Vertex v e V(G) is K1-stable under edge deletion if and only if v is

gi-stable under edge deletion.

Proof: Let v e V(G) be giL-stable. Then by Corollary 4.12. ici(v, G) = gi±(v, G) and

every pi-set for vin Gis aici-set for vin G. Let ebe an arbitrary edge from E(G).

From Lemma 4.20, there exists a giL-set Sm for v in G and G - e. Note that S

consists entirely of vertices.

Thus we have a set of vertices in G - e whose removal makes v a cutvertex. So

ici(v, G - e) -5 Sm I = pL1(v, G - e) which implies iKiv, G - e) = gLi(v, G - e) = j±i(v, 0)

Iic(v, G). Since e was arbitrary, v is ici-stable.

Now let v e V(G) where v is not piL-stable. We will show v is not ici-stable.

Then there exists an edge e r= E(G) where giL(v, G) * jti(v, 0 - e). Note that if

deg,(v) = 1, v is not ici-stable and we are done, so let deg0,(v) Z: 2.

Case 1: Suppose I±i(v, 0) < N.(v, 0). Then by Theorem 4.13, v is not lic-stable.

Case 2: Suppose giL(v, 0) = ici(v, G).

Case 2a: Suppose giL(v, 0 - e) > ;i~(v, 0). Then 1c1(v, 0 - e) L> j±(v, 0 - e

;Li(v, 0) = ici(v, G) which implies v is not ici-stable.

Case 2b: Suppose gi±(v, 0 - e) < it(v, G). If the i value for v changes from G

to0G- ewe aredone,so assume ;±1 (v, G- e) <1ic(v,0G) = i(v, G -e). So by Theorem

3.19, there exists a ~t~-set Sm * for v in G - e with exactly one edge and that edge is

between neighbors of v. By Theorem 3.20, (G - e) - Sm * - v has exactly two

components, C, and C2, which contain vertices of NGC,(v), so assume u e V(C,) and

w e V(C2) with e' = uw e Sm*.

So there are I5 S*1I= g±i(v, G - e) internally disjoint u-w paths in (0 - e) - v.

Since the givalue decreased, the edge e is not incident with v. Then in 0 - v, there

can be at most IM* I+ I internally disjoint uw paths. Since e' = uw is itself one of
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the uw paths, then in G - e' - v we can have at most I Sin* I internally disjoint uw

paths.

Since u and w are not adjacent in G - e', then by Theorem 3.3, ici(v, G - e') <

1 Sn* I since deg(v) o 1 and < NG0 C,(v) > is not complete. So Ki(v, G - e') 5 ' Sm* ' =

gi(v, G - e) < xi(v, G - e) = ii(v, G). Thus there exists an edge in G (namely e' =

uw) whose removal causes the Ki value for v to decrease which implies v is not ii-

stable. U

The reason that giL-stability implies xi-stability for edge deletion and not edge

addition is that g.i-stability for edge deletion implies every gi-set consists entirely of

vertices. In edge addition, a yi-set can include an edge, particularly the edge between

the two separated neighbors which prevents them from being separated by a yi-set.



CHAPTER 5

NEUTRAL EDGES AND STABLE GRAPHS

FOR INCLUSIVE CONNECTIVITY

We begin our study of neutral edges in this chapter. Recall from the definition of

neutral edge in Chapter 2, the removal of a neutral edge does not change the

respective i-connectivity value of any vertex.

We first explore the various possible combinations of inclusive connectivity

neutrality for an edge. Examples for each possible combination will be provided.

Next we examine what changes with respect to another edge can occur in a graph

upon the deletion of a neutral edge. A surprising result is included on how the total

number of Xi-neutral edges in a graph can change upon the deletion of a )Xi-neutral

edge.

Finally, we investigate stable graphs, with respect to the "sum-stable" definition

from [20] for various combinations of inclusive connectivity. The possibility that a

graph may have every edge 1ic-neutral is explored, with an extremely interesting

result.

Combinations of Inclusive Connectivity Neutrality

As stated previously, the term "Xi-neutral" for an edge is identical to "stable edge"

found in [19]. The first result concerning Xi-neutrality was established by Rice [18]

and is presented next.

Theorem 5.1: If an edge e e E(G) is in a ,i-set for some vertex v e V(G), then e is

not X•-neutral.
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Simply put, if an edge e is in a X.i-set for v in G, then you can delete that edge and
the Xi value for v in G - e is one less then the value in G. This idea is extended to gi

in the next theorem.

Theorem 5.2: If an edge e e E(G) is in a gi-set for some vertex v e V(G), then e is

not ji-neutral.

Proof: If e e E(G) is in some gi-set Sm for v in G, then .i(v, G) = I Sm I. So gi(v, G

- e) = I Sm I - I since G - Sm - v = (G - e) - (Sm - e) - v. Therefore, e is not pi-neutral

since gi(v, G - e) < IJi(v, G). U

Since there are no edges in a 1ic-set, a similar result for ii is not possible. In fact,

an edge incident to a vertex that is in some 1ic-set for v in G may or may not possess

1ic-neutrality. In the graph of Figure 2.7, edge e is incident to a vertex that is in a V.-

set for the four vertices of degree two, but e is ici-neutral. And in Figure 4.2, again e is

incident to a vertex in a ni-set for v, except ici(v, G) = 2 while Ki(v, G - e) = I implying

e is not ici-neutral.

Surprisingly, if an edge is Xi-neutral, then that edge may still be present in a

minimum edge disconnecting set. This situation is illustrated in the graph of Figure

5.1.

Figure 5.1 A Xi-neutral edge that is in a minimum edge disconnecting set.
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Here, the edge e is ki-neutral since ki(v, G) = X,(v, G - e) = I for all vertices

except the endpoints of e which are cutvertices in G and G - e. But e is clearly in a

minimum edge disconnecting set for G since X(G) = 1.

But an edge e being Xi-neutral does imply, for every v r V(G), the existence of a

set of X•(v) edge disjoint paths in G - v between a set of neighbors of v where e is not

on any of these paths. This idea is formalized in Theorem 5.3.

Theorem 5.3: If e e E(G) is Xi-neutral then for all v e V(G), where deg(v) > 1, there

exists a set of Xi(v) edge disjoint paths between a set of neighbors of v, where e is

not on any of these paths.

Proof: Let e e E(G) be 2.i-neutral. Let v be an arbitrary vertex of G and to insure

there exists a pair of neighbors of v, let deg(v) > 2. Given a pair of neighbors of v

separated by a maximum of Xi(v) edge disjoint paths in G - v, suppose e is on one

path. Further, suppose u and w are a pair of neighbors of v separated in this manner.

Then we construct a i.i-set S. for v as follows:

(a) Place edge e in Se.

(b) Since there are X.i(v) - 1 edge disjoint u-w paths in G - v - e, take any set of

,i(v) -1 edges that will separate u and w in G - v - e, and place these edges in Se*

Thus u, w e N(v) will be separated in G- Se - vwhereee Se. Sinceeis

contained in a Xi-set, then by Theorem 5.1 e is not Xi-neutral, a contradiction.

Therefore, there must exist at least one set of Xi(v) edge disjoint u-w paths that does

not include e. U)

The graph in Figure 5.2 provides a counterexample to the converse of Theorem

5.3. Here, Xi(v, G) = 1 and there exists a u-w path in G - v that does not include e.

But e is not Xi-neutral since Xi(u, G) = 1 but .i(u, G - e) = 0.
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U W

V

Figure 5.2 A counterexample to the converse of Theorem 5.3.

Now we explore whether every possible combination of neutrality among the three

i-connectivities is realizable. For example, the edge e in the graph of Figure 5.1 is Xi"

neutral, ci-neutral, and t-neutral. Hence, we prove Theorem 5.4.

Theorem 5.4: Each of the eight combinations of neutrality for an edge among the

inclusive connectivity parameters has an infinite class of graphs satisfying it.

Proof:

Case (1): An edge that is not X.i-neutral, ici-neutral, or pi-neutral.

Any edge that is on one of the paths from every maximum set of internally (edge)

disjoint paths between separated neighbors associated with a ici and ii- (X•) set for a

vertex will not be ici and ii- (X•-) neutral. The graph of Figure 5.3 gives an infinite

class of such graphs with n > 2, where ,i(v, G) = 1ic(v, G) = gLi(v, G) = 2, but Xi(v, G -

e) = ii(v, G - e) = gi(v, G - e) = 1.
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n

Se

V

Figure 5.3 An edge that is not ki, xi, or ILi-neutral.

Case (2): An edge that is Xi-neutral, 1ic-neutral, and I±i-neutral.

An edge e that is ki-neutral, 1ic-neutral, and JLi-neutral is displayed in the graph of

Figure 5.4. For n >- 2, this infinite class of graphs has Xi(v, G) = ici(v, G) = gi(v, G) =

1 for every v e V(G). And in G - e we have•Xi(v, G - e) = Ki(v, G - e) = pi(v, G - e) =

1 to establish neutrality for all three i-connectivity parameters, again for any vertex.

n

Figure 5.4 An edge that is %i' ic', and gi-neutral.
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Case (3): An edge that is Xi-neutral and ici-neutral but not Iti-neutral.

In Figure 5.5, ).i(w, G) = Xi(w, G - e) = ici(w, G) = ici(w, G - e) for all w e V(G),

where each value is either 1, 3 or 5 depending upon which vertex w is chosen. Now

J.i(w, G) = gi(w, G - e) for all w r V(G) except for w = v or u. In these cases, gi(v,

G) = gi(u, G) = 3, but gi(v, G - e) = 4 and gi(u, G - e) = 2. The reason that the gi

value for v changes is that the other endpoint of e is involved in the unique pair of

neighbors of v that produce the gi value. The I.Li value for u changes since e cuts one

of the internally disjoint paths between its neighbors. Thus edge e is ki-neutral and

Ki-neutral but not gti-neutral.

1U

V

Figure 5.5 An edge that is Xi and xlc-neutral, but not gi-neutral.

An infinite class of graphs with such an edge is shown in Figure 5.6 for n > 1.

Again, the only vertices whose ,i-value changes are vertex v and the group of n
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vertices of degree two. These values are Li(v, G) = n + 2 and gi(v, G - e) = n + 3,

while gi(u, G) = n + 2, and gii(u, G - e) = n + 1.

v

Figur 5.6 An infinite class of graphs for Case (3).

Case (4): An edge that is •.i-neutral, but not •ic or l±i-neutral"

The •ivalue for every vertex in the graph in Figure 5.7 remains the same between

G and G0- e, while the •ic and •ivalues in 0 and 0 - e remain the same for every

vertex except v. For this one exception, K~i(v, 0) = •Li(v, G) = 2, but 1Ci(v, G - e) =

0iv - e) = 1. There are a maximum of two internally disjoint u-w paths in G, but a

Kiand jji-set for v in 0 - e is { z)}. There are a maximum of three edge disjoint u-w

paths in 0 and 0 - e, which preserves X.i-neutrality for v. Thus e is X.i-neutral, but not

•ior Jti'neutral"
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The edge xy can be subdivided indefinitely to provide an infinite class of graphs

having this type of edge e, since all i-connectivity values for x and y in G and G - e

equal one.

yv

V

Figure 5.7 An edge that is ),i-neutral, but not K1 or gi-neutral.

Case (5): An edge that is we-neutral, but not Xi or giyneutral.

In this case, the i-connectivity values for every vertex except v in the graph of

Figure 5.8 remain the same for G and G - e. For v, ci(v, G) = Ki(v, G - e) = 4, but the

Xi and gi values decrease from 4 to 3 and 3 to 2, respectively, after the removal of e.

A X•-set for v in G - e is ( xy, yz, uw ) separating neighbors y and z. A lL-set for v in

G - e is ( z, xy ) separating neighbors x and y.

As in case (4), to obtain an infinite class of such graphs with an edge e of this type

the edge ab can be subdivided indefinitely, since all i-connectivity values for a and b in

G and G - e equal one.



99

Ua

40b

V

Figure 5.8 An edge that is 1ci-neutral, but not Xi or ILi-neutral.

Case (6): An edge that is 1ic and gi-neutral, but not Xi-neutral.

The i-connectivity values for all vertices except x and v in the graph of Figure 5.9

are equal to one in G and G - e. The i-connectivity values for x are all equal to two in

G and G -c while 1ic(v, G) = gi(v, G) =fici(v, G - e) = pi(v, G - e) -- , but ;Li(v, G) = 2

and ;i(v, G - e) = 1.

e
y

z X

V

Figure 5.9 An edge that is ici and gi±-neutral, but not Xi-neutral.
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Indefinitely subdividing the edge yz produces an infinite class of graphs with an

edge that is ii and pi-neutral, but not ki-neutral.

Case (7): An edge that is gi-neutral, but not vi or X•-neutral.

All vertices in the graph of Figure 5.10 except v, a, and b have i-connectivity

values in G and G - e equal to one. Vertices a and b have i-connectivity values in G

and G - e equal to two. Vertex v provides the required changes as ILi(v, G) = u±i(v, G

- e) = 2, ici(v, G) = ).i(v, G) = 3, and i(v, G - e) = ;.i(v, G - e) = 2. With the removal

of e, the cardinality of the neighborhood Kci and ki-sets for v decreases by one.

Again, we can repeatedly subdivide the edge xy to obtain an infinite class of

graphs with this type of edge.

a

q y
b 

Y

V

Figure 5. 10 An edge that is pi-neutral, but not Xi or xN-neutral.

Case (8): An edge that is gi and Xi-neutral, but not Kis-neutral.

Since the neighborhood of v in the graph of Figure 5.11 is complete, 1ic(v, G) = 4.

But ii(v, G - e) = 3 with a Kic-set being J b, u, w ). Note that the Xi values for v in G

and G - e are four while the pi values for v in G and G - e are three. For the remaining
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vertices, all i-connectivity values are equal to one except for vertices x and y which

have values equal to four.

The edge to indefinitely subdivide in this case to achieve an infinite class is edge

ab.

Y

a 40b

V

Figure 5.11 An edge that is IJJi and ki-neutral, but not 1i-neutral.

This case completes the proof. U

It should be noted that an important part of the examples of Theorem 5.4 is the

existence of a vertex of degree two. The advantage of using vertices of degree two is

that any vertex adjacent to a degree two vertex will have i-connectivity values equal

to one (assuming no cutvertices are in the graph). Since many of the vertices in these

examples are of degree two (often utilized in pairs), many of the i-connectivity values

are one, simplifying the verification process. The remaining problem is to insure that
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those vertices whose i-connectivity values are not equal to one will not be affected

with the removal of the specified edge, except for the desired changes.

Deletion of a Neutral Edae

Upon the deletion of a neutral edge, it is interesting to note any changes that

may occur in the graph. In particular, it is natural to observe what happens to a

neutral edge after the deletion of another neutral edge.

It is possible that the deletion of a neutral edge from a graph will have no effect

upon the neutrality of another neutral edge. For the graph in Figure 5.12, all vertices

have i-connectivity values equal to one for all three parameters for G, G - el, G - •2,

and G - e-e 2 . Thus e, and e 2 remain Xi KCi, and tL-neutral in G - e2 and G - el,

respectively. Therefore we have an example of a ).,- (Ni., gi) neutral edge that remains

Xi" (xi, p±i) neutral upon the deletion of another i- (ici, Ad) neutral edge.

e i el

e 2

Figure 5.12 An edge whose neutrality is preserved upon removal of a neutral edge.
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But it is also possible for an edge to lose its neutrality with the deletion of

another neutral edge. In the graph of Figure 5.13, ,i(v, G) = fii(v, G) = ;Li(v, G) = I

for all v e V(G). All inclusive connectivity values remain one in G - el and G - e2

establishing the Xi, jic, and Li-neutrality of e, and e2. But in G - el - e2 , vertices u, v,

x, and y become cutvertices implying el is not Xi, ii, or gi-neutral in G - e2 and e2 is

not Xi, ici, or gi-neutral in G - el. Thus we have two examples of a Xi- (Ki1, pi) neutral

edge that do not remain Xi- (Ki, gi) neutral upon the deletion of another Xi- (ci, gi)

neutral edge.

e

U Af

e 2

V

Figure 5.13 An edge whose neutrality is not preserved.

The most interesting case in the deletion of a reutral edge is the possibility of a

non-neutral edge becoming neutral. That an edge that is not neutral can become

neutral with the deletion of an edge that does not affect the i-connectivity value of any
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vertex in the graph is certainly not intuitive. With the assumption that this case is

indeed possible, we prove the following theorem concerning the location of those

edges in question.

Theorem 5.5: If el is ,i-neutral and e2 is not .i-neutral in G but e2 is ,i-neutral in G

- el, then there exists a vertex v 4 V(G) such that Xi(v, G) - Xi(v, G - el - £2) * Xi(v,

G - e2) and exactly one of e, and e2 is incident with v.

Proof: If e is Xi-neutral in 0 and e2 is Xi-neutral in 0 - el, then Xi(v, 0) = ),i(v, G -

eI) = X•(v, G - el - e2 ) for every v e V(G). In addition, if e2 is not Xi-neutral in G,

then ,i(v, G) * ,i(v, G - e2) * ,i(v, G - el - e2). So by Theorem 4.1, we have two

possible cases:

(1) ;,i(v, G) - ;i(v, G - e2) + 1 = i(v, G - • - e)

(2) .i(v, G) = .i(v, G - C2) - I Xi(v, G - el - C2)

In (1) e2 must not be incident with v, while e, must be incident with v. The

opposite occurs in (2) where e1 must not be incident with v while £2 is and the

conclusion follows. I)

Upon further consideration Theorem 5.5 gives the two cases when an edge that

is not Xi-neutral becomes ,i-neutral after the deletion of a Xi-neutral edge: the Xi

value for a vertex can increase by one and then decrease by one, or vice versa.

Through the direct application of Theorem 4.1, Theorem 5.5 also specifies the location

of the two edges in question, i.e., the edge being deleted or the edge whose neutrality

changes will be incident with that vertex while the other will not.

The existence of such a neutrality change is proven in the graph of Figure 5.14.

For every c e V(G) where c * v, Xi(c, G) = ,i(c, G - el) = ,i(c, G - e2) = ,i(c, G - e, -

C2) = 1. But Xi(v, G) = Xi(v, G - el) = Xi(v, G - el - e2) = 4 and Xi(v, G - e2) = 5.

There exist a maximum of four edge disjoint xy and xz paths in G - v where one ,i-set

is the neighborhood Xi-set from vertex x. But there exist a maximum of five edge

disjoint yz paths in G - v, which implies the Xi value for v must increase by one upon
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the removal of e2 The removal of eI from G - e2 will cut one of the edge disjoint yz

paths in G - e2 , thus decreasing the Xi value for v to its original value in G. This

implies that e2 is not ,-neutral in G.

If the order of the deletion of the two edges is reversed, then we can establish

the Xi-neutrality of e2 in G -e,. Combining the fact that x remains a neighbor of v in G

- e, and that there are still a maximum of four edge disjoint xy paths in G - el - v with

Theorem 4.1, we have ,i(v, G - el) = 4. Now the removal of e2 from G - e, must keep

the Xi value for v constant since we already have Xi(v, G - el - e2 ) = 4. Thus, e2

becomes ,i-neutral in G - e,, providing the "nonintuitive" example we soughtl

Note that Theorem 5.5 is clearly demonstrated in the graph of Figure 5.14, with

the required proximity of eI and e2 to the vertex v.

a gob

V

Figure 5.14 An edge becomes Xi-neutral after the removal of another Xi-neutral edge.
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Now that it has been established that a non-neutral edge can become neutral

with the removal of another neutral edge, it is a natural consequence to turn our

attention to what changes may occur in the total number of neutral edges in a graph

during edge deletions. To verify the examples, the computer software from [12] was

again used.

We begin this investigation with the previous figure. Here, there are a total of

nine .i-neutral edges: ab, uw, vy, vz, yz, yu, ya, zw, and zb. After the removal of el,

the only other edge to become ).i-neutral is e2. But there are four edges that lose their

Xi-neutrality: ya, zb, uw, and yz. The deletion of edge uw or yz from G - el causes the

ki value for v to decrease by one since there would now only be three edge disjoint yz

paths. The deletion of edge ya or zb from G - el leaves a or b as an endvertex making

its only neighbor a cutvertex. Thus, there are only five Xi-neutral edges in G - e, a

decrease of four such edges from G.

However, we cannot assume that the total number of Xi-neutral edges in a graph

will not strictly increase with the deletion of a ki-neutral edge. This surprising result

can be observed in Figure 5.15. This figure also demonstrates the case wh,-re the Xi

value initially decreases by one after the deletion of the edge e2 which is not Xi"

neutral, which implies that the location of e, and e2 in relation to v must be reversed

from Figure 5.14.

In the graph of Figure 5.15 the Xi values for every vertex except v are equal to

one in G, G - e, G - e2 , and G -el -e 2. But .i(v, G) = Xi(v, G - e,) = Xi(v, G - el -

e2) = 5 and Xi(v, G - e2 ) = 4. Note that there are five edge disjoint paths between

every pair of neighbors of v in G - v. In G - eI the Xi value for v must be computed

from the number of edge disjoint x-y paths, upon which e2 has no bearing. Thus, e2 is

,i-neutral in G - e1 . But there are only four edge disjoint yz paths in G - e2 which

implies e2 is not Xi-neutral in G.
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Using the fact there are five edge disjoint paths between every pair of neighbors

of v in G - v, we can locate the three Xi-neutral edges in G: vx, vy, and vz. In G - e,

only the edge vx loses its .i-neutrality, since Xi(y, G - el - vx) = 8. But seven edges

become Xi-neutral: yz, yu, ya, zw, zb, uw, and ab. The endpoints of each of these

edges acquire their Xi value of one from an adjacent vertex of degree two. Also, the

removal of one of these edges will not change the number of remaining edge disjoint xy

paths. Thus the removal of any one of these edges will not change the Xi value of any

vertex. Therefore, the number of X.i-neutral edges increases from 3 in G to 8 in G - el!

eab

V

Figure 5.15 The total number of ,i-neutral edges increase after the deletion of e1 .

After observing the change in the number of ,i-neutral edges in the previous

figure, we see from the graph in Figure 5.16 that the increase in the number of Xi-

neutral edges can be arbitrarily large. Each similar duplication of the section
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containing vertices a, b, u, and w with an additional pair of edge disjoint xy paths will

increase the number of ),i-neutral edges in G - e1 by six.

e 2

U

el

S- --* 0t

V

Figure 5.16 The increase in the number of Xi-neutral edges can be arbitrarily large.
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Stable Graphs for Inclusive Connectivity

We define the Xi value of a graph G, A.,G), to be the sum of all the ki values of

the vertices of G. Likewise, we define ir(G) (j*/G)) to be the sum of all the Ki (Ai)

values of the vertices of G.

Clearly, a ki, Ki, or gi-neutral edge does not change ki(G), ci(G), or gi(G)

respectively. Any edge e that has the property that X1(G) = Xj(G - e) (Ki(G) = ici(G -

e), gi(G) = gi(G - e)) is called Ai- (Ky OiL) s-stable which is an abbreviation for sum-

stable. And finally, a graph G is called A,- (i, .1u) stable if ;Li(G) = ).i(G - e) (Ki(G) =

ci(G - e), gi(G) = pi(G - e)) for every e e E(G). Simply put, a graph is ki, Ki, or gi-

stable if the sum of the respective Xi' •i, or gi values remains the same no matter

what edge is deleted. This definition of stability for a graph is natural when one

notices that the a i-connectivity of the vertices of the graph remain the same

when any edge is deleted.

We begin this section with an investigation into a special case of neutral edges

for inclusive connectivity which will provide us with the fiust example of a type of

stable graph.

Since every nontrivial graph (except K2 ) contains at least two vertices that are

not cutvertices [7], at least two vertices have nonempty Xi-sets. This implies that in

any nontrivial graph except K2 there exists an edge that is not i.i-neutral since the

deletion of any edge in a Xi-set for a vertex will decrease the ).i value for that vertex

by one. Similarly, if any hi-set for any vertex in a graph contains an edge, then there

exists an edge that is not gi-neutral.

We now investigate the possibility that every edge in a graph is xci-neutral.

Also, if every J.i-set for every vertex in a graph is also a 1ic-set, it is possible for every

edge in the graph to be 1i-neutral. For the existence of this possibility, we refer to the

graph in Figure 5.17 and Table 5.1. Due to symmetry, every possible change in the i-

connectivity values is represented by the edge deletions in this table.
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V f

Sk g

d n

Figure 5.17 Every edge is xi-neutral and gi-neutral.

Table 5.1 The changes in i-connectivity values from the graph in Figure 5.17.

G G - vj G - vk G -jk G - vb G - vc G - vd
Vertex ,i ki gi ,,i Xi pi ,i Xi Iti jci ki gi xi Xi gi Iii A i Iii X ti

v 343 34 3 34 3 33 3 34 3 34 3 343
b 343 33 3 33 3 33 3 34 3 3 3 333
c 343 33 3 33 3 34 3 33 3 34 3333
d 343 33 3 33 3 34 3 33 3 33 3 343
f 343 33 3 33 3 33 3 34 3 34 3 343
g 343 33 3 33 3 33 3 334 3 34 3 343
h 343 34 3 34 3 34 3 34 3 34 3 343
i 343 34 3 3 4 3 34 3 34 3 34 3 343
j 343 34 3 33 3 34 3 33 3 33 3333
k 343 33 3 34 3 34 3 33 3 33 3333
m 343 34 3 34 3 34 3 34 3 33 3333
n 343 34 3 34 3 34 3 34 3 33 3333
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For any vertex u e V(G), there are no fewer than three internally disjoint paths

between a pair of its nonadjacent neighbors in G - u and G - u - e, for every e e E(G).

So iel(u, G) - gLi(u, G) = ici(u, G - e) - I±i(u, G - e) - 3 for every vertex u e V(G) and

edge e e E(G). For example, a ici-set Sv for v in G is ( b, m, n ) or ( b, f, g ) where

the vertices d, k • NG(v) are separated in G - S, - v. Therefore, every edge in this

figure is ic1 -neutral as well as gi-neutral!

Since the existence of this type of ic1 -neutrality is established, the following

theorem is immediate.

Theorem 5.6: Every edge of a graph G is ici-neutral if and only if every vertex in G is

ici-stable under edge deletion.

Proof: Every edge of G is 1ic-neutral if and only if ici(v. G) = 1c1(v, G - e) for all e e

E(G) and for any vertex v e V(G) if and only if every vertex in G is icl-stable under

edge deletion. U)

A similar result for gi is presented.

Theorem 5.7: Every edge of a graph G is u±i-neutral if and only if every vertex in G is

J.i-stable under edge deletion.

It is interesting to point out that the graph in Figure 5.17 is the first known

example of a graph that does not have a neighborhood ici or Iti-set for any vertex. This

idea is formalized in the next theorem.

Theorem 5.8: If every edge in a graph G is ici- (ti) neutral, then G has no

neighborhood ici- (gti) sets for any vertex.

Proof: If G has a neighborhood ici- (Iti) set for some vertex v e V(G), then select for

deletion any edge whose endpoints are that neighbor of v and some vertex in the ci-

(pi) set. (If the M.i-set does not contain any vertices, any edge in the p.i-set will

suffice.) This will cause the respective i-connectivity value for v to decrease by one,

implying that selected edge is not Kci- (gi) neutral. [U
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Note that the regular graph in Figure 5.17 has B(G) = 5 which is strictly greater

than the ic or gi value for any vertex, which must be true as a consequence of

Theorem 5.8. Another result of this theorem is that a graph whose every edge is ii or

gi-neutral cannot contain any vertices of degree one, since they rely exclusively on a

neighborhood set. This idea can be extended to vertices of degree two as Corollary

5.10 below shows.

Theorem 5.9: If v e V(G) has degree one or two, then v is not ri or I•i-stable under

edge deletion.

Proof: Let v e V(G) have degree one. Since every 1ic and I~i-set for v is a

neighborhood 1ic, gi-set, then v is not ii or gi-stable under edge deletion.

Let degG(v) = 2 where u, w e NG(v), u * w. If there exists a neighborhood ic"-

set for v in G, then v is not ici-stable under edge deletion. So assume there does not

exist any neighborhood 1ic-sets for v in G. Then 1ic(v, G) < min( degG.v(u),

degG.,(w)). So ici(v, G - vu) = degG0 v(w) > Ki(v, G) implying v is not eil-stable under

edge deletion in G. The argument for j.i is identical. U

The proof of the corollary is immediate and omitted.

Corollary 5.10: If every edge of G is 1ic or g±i-neutral' then 8(G) > 3.

The special case of neutrality displayed in the graph of Figure 5.17 provides us

with the first example of the different types of stable graphs. Theorems 5.6 and 5.7

imply that this graph is Ki-stable and p.i-stable since no 1ic and gi values for any

vertex change with the deletion of any edge.

In this graph, Xi(d, G) = 4 for every vertex d e V(G). However, the )-i values for

several vertices in this figure decrease with the deletion of a particular edge. For

example %i(x, G - vb) = 3 with a ki-set for x in G - vb consisting of the neighborhood

set from the vertex b. No Xi values increase with the deletion of the edge vb, so the

sum of all Xi values decreases, implying G is not Xi-stable. In fact, X.i(G) = 48 > 42 =
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.i(G - vb). Thus, the graph of Figure 5.17 is the first example of a xi-stable and gi-

stable but not Xi-stable graph.

This example can be expanded to an infinite class of graphs as in Figure 5.18.

V U

x b w

Y

C z

Figure 5.18 An infinite class of ici- and tLi-stable but not Xi-stable graphs.

The vertices added to the graph of Figure 5.17 to form Figure 5.18 do not create

any larger sets of internally disjoint or edge disjoint paths between neighbors of any

vertex, and they will have i-connectivity values the same as vertex b. Any previous

paths that transit the intermediate vertices (like vertex b) on the upper tier will be

preserved but with a greater length. Thus the graph in Figure 5.18 shares i-

connectivity stability with the one in Figure 5.17.

Ringeisen and Rice [21] were the first to investigate Xi-stable graphs. One of

their first Xi-stable graphs is shown in Figure 5.19. The label K6 - E means a K6 from

which a one-factor, E, has been removed. All Xi values in G are equal to two so Xi(G)

= 36. Removal of the edge uv results in the Xi values of only three vertices changing
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as shown in the graph of Figure 5.20; removal of the edge vw results in the Xi values

of six vertices changing as shown in the graph of Figure 5.21. These are the only

types of edge deletions which cause a change in Xi values, and X,(O) = X,(G - uv) =

ji(G - vw) = 36 implying X.i-stability. Upon further investigation of the graphs in

Figures 5.19 - 5.21, the same changes occur for both Xi and Ai values, meaning Figure

5.19 gives an example of a Xi, i1, and Vi-stable graph.

Figure 5.19 A Xi, Ki and I.Li-stable graph.

K6.rE 5 T K6c E

Figure 5.20 The change in X'i values in G - uv.



115

Figure 5.21 The change in Xi values in G - vw.

To obtain an infinite class of Xi, Kic and gi-stable graphs, the reader is referred to

Rice's work [18] establishing the existence and construction. of Xi-stable graphs.

Another example of a Xi-stable graph found by Rice that is also vi and pi-stable

is illustrated in the graph of Figure 5.22. The subgraph of this figure consisting of a

"K4 with one edge doubly subdivided" is an extremely useful form in obtaining various

types of stable graphs which will be present in the examples concluding this section.

Figure 5.22 Another Xi,' ci, and gi-stable graph.

For a complete graph Kn, n > 3, all i-connectivity values are equal to their

maximum value of n - 2 which can be attained by the use of neighborhood i-

connectivity sets. But with the deletion of any edge of K., any vertex adjacent to the
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endpoints of that edge will have all i-connectivity values decrease by one. Thus, KV is

not Xi, Ii, or gi-stable. Another graph of this type is given in Figure 5.23. Here,

X.(G) = 4 while Xi(G - e) = 2, for any edge e.

AP 0

Figure 5.23 A graph that is not Ii, i', or pi-stable.

Using a construction technique based on Rice's use of the "K4 with one edge

doubly subdivided", we are able to obtain three types of stable graphs. This technique

involves the attachment of copies of this subgraph to an internal graph G in a manner

that will achieve the desired stability. For simplicity in this section, we will call this

graph G the "internal G graph" due to its location in the figures, and the "K4 with one

edge doubly subdivided" subgraph the "subdivided K4 ". For example, in Figure 5.24,

the internal graph G is the graph K4 which has pairs of its vertices attached to one

copy of the subdivided K4 producing the graph in Figure 5.25.
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1(4 with one edge Internal G graph K4 with one edge

Figure 5.24 The consirction technique of the "K4 with one edge subdivided".

d v a k

h b q 0 q

Figure 5.25 A graph that is Ziand ti±-stable but not ici-stable.

A summary of the changes in the i-connectivity value after edge deletion is

presented in Table 5.2. The i-connectivity values for every vertex in this graph is

equal to one. These values remain one with the removal of any edge from the 1(4
subgraph. The removal of any edge from either subdivided K4 changes the i-

connectivity values in a manner similar to the graph in Figure 5.22 so that the overall

sum of the ki values remains unchanged. The critical edges that produce the desired

stability properties are the connecting edges between these subgraphs. For instance,
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the removal of edge vd forces the vertex v to obtain its i-connectivity values from the

basic structure of the internal G graph.

Note that the neighborhood of v in G - vd is complete, so ici(v, G - vd) = 3. But

)Li(v, G - vd) = tLi(v, G - vd) = 2 with a .i-set being ( bc, ab ) and a Vt-set is( bc, a ).

Vertices b and h become cutvertices in G - vd while the i-connectivity values for

vertex d increase to two. Thus, vertices b, h, and d account for a overall decrease of

one for the i-connectivity sum of the graph. In order to preserve stability, there must

be an increase of exactly one from the vertex v which is the only other vertex to have a

change in its i-connectivity values. Therefore, this graph is ki and Iti-stable but not Kci-

stable.

Table 5.2 The changes in i-connectivity values from the graph in Figure 5.25.

G - va, G- vc, G- gh,
G G-vb G-dg G-dh G-vd G-fi G-ij

Vertex wi ji jLi x, X" gi i i ii KXi X Ai

v 111 11 1 1 1 11 1 32 2 11 1 111
a 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11
b I1 I I I I 11II 1 11 1 0 0 0 1 1 1 11 1
c I1 11 I 11 I 11 I 11 11 I111
d 1 11 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 11 1
f I1I1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 00 0

g 111 111 111 11 1 11 1 00 0 000
h 111 11 1 11 1 111 1 0 0 11 1 1121
i I111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 22 2
j I1 I 11III 1 1 1 1 1 1 1 11 1 0 0 0 22 2
k I1 I 1 III11 1 11 1 11 1 1 1 1 1 1 1 11
m 1 1 1 11 1 11 1 1
n 1 1 1 11 1 11 1 1
0
p 1 1 1 11 1 11 1 1
q 111 111 111 111 111 111 111
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This construction technique will also produce a xi and gi-stable but not Xi-stable

graph similar to that in Figure 5.17. The i-connectivity values for every vertex in the

graph of Figure 5.26 are equal to one. But removal of edge vg or fq causes ki(G) to

change.

Let us denote the graph in Figure 5.26 as G. The changes in the i-connectivity

values for G are displayed in Table 5.3. S in this table includes the following: any one

of (0, va, vc, vf, ab, ac, ad, bd, bf, cd, and cf}. In (G - vg) - v there are a maximum of

three edge disjoint ca, cf, and fa paths so Xi(v, G - vg) = 3. But vertices a and h

become cutvertices while the i-connectivities for vertex g increase to two. So Xi(G) =

24 * 25 = Xi(G - vg). Thus, this graph is not Xi-stable while the sums of the li and gi

values remain unchanged at 24 with the deletion of any edge.

m

k

g ih

V a
n c /_L• \ b t

W7 X

uq f Au z

Figure 5.26 A graph that is xi- and gi-stable but not Xi-stable.
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Table 5.3 The changes in i-connectivity values from the graph in Figure 5.26.

G-S G - vg G - ah G - bt G-cn G - du G - fq
Vertex Vi Xi gi .Ci Xi gi nL Xi Ai ICi Xi i i ICXA i *i i KX i 'i X4i

v 111 23 2 00 0 11 1 11 1 11 1 111
a 111 00 0 22 2 11 1 11 1 111 1 11
b 111 111 11 1 22 2 11 1 00 0 111
c 111 111 11 1 1 1 22 2 11 1 000
d 111 11 1 11 1 00 0 11 1 22 2 111
f 111 111 111 11 1 00 0 11 1 232
g 111 22 2 00 0 11 1 11 1 11 1 111
h 111 00 0 22 2 11 1 11 1 11 1 111

n 111 11 111 111 112221110001

q 111 11 1 11 1 11 1 0001 11 1 222

k 111 111 11 1 2 1 0 111
In 1 11 11 1 1 1 1 1 1 1 1 11

n 111 111 11 10 2 2 11 1 0100

q 11 11 1 1 1 0O0 0 1 1 1 22 2

t 1 1 1 1 111 2 2 2 1 1 1 0 0 0 11 1
u 1 1 1 1 11 1 0 0 0 1 1 1 2 2 2 11 1

With this construction technique, it is clear that initially all i-connectivity values

are equal to one. After the removal of a edge between the internal G graph and a

subdivided K4 subgraph, the vertex incident with this edge in the internal G graph is

now forced into the internal G graph for its i-connectivity value and must have a value

equal to two to preserve stability. This is due to two vertices becoming cutvertices

and the value for one vertex increasing to two. Thus, the structure of the internal G

graph holds the key to what stabilities are achieved. Also, the pairing of the vertices

of the internal G graph to the other subgraphs can play a key role in not having an
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increase in the maximum number of edge disjoint or internally disjoint paths due to an

additional path through the subdivided K4 subgraph.

The last example presented in this chapter is a graph that is Xi-stable but not ici

or jti-stable. The internal G graph used in this example is shown in Figure 5.27. The

i-connectivity values for every vertex in this graph are equal to two except for the i

and gi values for vertices a and b which are equal to one. A ici and .ti-set for b is ( a

and vice versa.

h

a

Figure 5.27 An internal G graph that produces the desired stability.

The graph H, constructed from G, with the desired i-connectivity stability is

illustrated in Figure 5.28. Table 5.4 includes the changes in i-connectivity from edge

deletion. S in this table includes the following: any one of ( 0, ad, af, ag, bf, bg, bh, cf,

ch, di, and gi.
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Figure 5.28 A graph that is ).i-stable but not xi or gi-stable.

Note that the edges ac, bi, ag, and fh in the graph of Figure 5.27 were eliminated

in Figure 5.28 since these edges were essentially replaced by the subdivided K4

subgraphs. The deletion of edge ax or bcc results in ici(a, G - ax) = ti(a, G - ax) = I

or Ki(b, G - (bcc)) = tti(b, G - (bcc)) = 1. A ici and Ii-set for a in G - ax is ( b ) while

a xi and ,i-set for b in G - (bcc) is f a ). Thus, with the known i-connectivity changes
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that occur as a result of the construction technique, G is not .i or i stable. Due to

the structure of the internal graph and the pairing of its vertices with elimination of

unneeded edges, ki-stabiity is achieved.

Table 5.4 The changes in i-connectivity values from the graph in Figure 5.28.

G-S G-an G-bq G-cj G-dw G-fcc G-gx G-hdd G-it
Vertex Jici ki 9 i1i i 9 i iXi 9 iCi X i 9 'iXi A i Ki9 i X i ij i i9

a 11 112 111 100 0 11 111 111 111 111 1
c 1110001112221111111111111110
c 111 1 10111222111111 011111111
d 1111111111111122211100011111
f IIIIIII1111 1 112 22 11 1I0 0 0 1 1 1

g 11111111111 100011122211111 1
h 111111111111111000111222111

i 111111000 111111111111111222
j 11 I 00011122211111111111111 1
k I 11111111111111111111111111
m 111111111111111111111111111

n 11 00011 1000111111111111111
0 111111111111111111111111111
p 111111111111111111111111111
q 111111222111111111111111000
r 111111111111111111111111111
5 111111111111111111111111111
t 111111000111111111111111222
u 11111111111111111111111 11111
V 11111111111111111111111l111 l1
w 111111111111222111000111111
x 111111111111000111222111111
y 111111111111111111111111111
z 111111111111111111111111111
aa 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

~ 111111111111111222111000111
d 111111111111111000111222111
ff 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
gg 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ii11111111111111111111 111 1111



CHAPTER 6

CONCLUSION

Introuctin
This chapter begins with the presentation of some extensions of a powerful

theorem from [2]. These extensions could prove beneficial to resolving the one

remaining case concerning interrelationships from Chapter 3.

We conclude with some conjectures on open problems and ideas for future

research involing inclusive connectivity.

Extensions of Boland's One Edge Theorem

The first section of this chapter deals with extensions of Theorem 3.19, Boland's

"One Edge Theorem". These results stem from our unsuccessful efforts to prove that

a vertex that is ki and I±i-stable, must not be ici-stable under edge addition. It

appears that Theorem 3.19 will play a critical role in this proof and a better

understanding of the conditions surrounding it is thus warranted.

First, we deal with the location of the neighbors of a vertex v e V(G) that are

not elements of the separated pair.

Theorem 6.1: If Sm is a g.i-set (as described in Theorem 3.19) that contains exactly

one edge and that edge has as its endpoints the neighbors u and w of v e V(G), then

any other neighbors of v in G must be contained in S.-

Proof: Let v e V(G) where I.ti(v) < ici(v). Let Sm be a yi-set for v detailed in

Theorem 3.19 which contains exactly one edge where that edge is between u, w e

N(v). Assume for the sake of obtaining a contradiction that there exists a vertex x e

N(v) where x * u, w and x e Sm. Then Sm contains exactly one edge, namely uw,

whose endpoints are neighbors of v, and by Theorem 3.20, there are exactly two
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components of G - SM - v which contain vertices of N(v), say C1 and C2. Without loss

of generality let u, x e V(C,) and w e V(C 2).

Since S. contains only one edge uw, and since x and w are in components C1

and C2 respectively, then xw i E(G). Thus S. - uw + (u ) would be a set of vertices

of cardinality gi(v) that separates neighbors x and w of v. Combining this with the

result u±i(v) <5 Ki(v), makes S. - uw + ( u ) a ici-set, contradicting g±i(v) < ici(v). U

An interesting corollary now follows.

Corollary 6.2: For any v e V(G), if gti(v) < ici(v), then there exists a set of gi(v)

internally disjoint paths between two neighbors of v, so that every other neighbor of v

is on one of the paths and no such path contains more than one neighbor of v.

Proof: Let u and w be neighbors of v separated by ILt(v) internally disjoint paths.

From Theorem 6.1, we know every neighbor of v besides u and w is in the Ai-set U.

By Menger's Theorem, we know there must be gi(v) internally disjoint u-w paths and

thus any x e N(v) where x * u, w must be on one of the paths. Moreover if one path

contains two neighbors besides u and w then one of them does not have to be in U, a

contradiction. U

QMn Problm

The previously mentioned unresolved case of a vertex that is Xi and Jti-stable

but not 1ic-stable under edge addition has led to Conjecture 6.3, implying this case fails

to exist.

Conjecture 6.3: If v e V(G) is Xi and Ix-stable under edge addition, then v is xi-

stable under edge addition.

This case leads us to propose two other related conjectures.

Conjecture 6.4: If v E V(G) is jti-stable under edge addition, then I±t(v) = 1ci(v).

Conjecture 6.5: If v e V(G) is Xi-stable under edge addition, then Xi(v) > ici(v).
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Conjecture 6.5 would provide another situation similar to Theorem 3.14 implying

that a vertex would "behave normally" under Xi-stability.

The discovery of the relationship between the stability of inclusive connectivity

and the stability of the global connectivities under edge addition was presented in

Chapter 3. The establishment of this interesting relationship could provide an

alternate door for the study of the global connectivity parameters and deserves much

further study.

Continued study into inclusive connectivity stable graphs could provide examples

of all possible combinations of stability. Expansion of the examples to infinite classes

similar to Rice's work could provide insight into the possible structure of these graphs.

Finally, the relationship between i-connectivity stable graphs and neutral edges

has not been addressed. In particular, is there a relationship between the number of

neutral edges in a specific structure and stability?

Clearly, the opportunities of further research into inclusive connectivity seem to

be promising and bright.
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