
AD-A275 342 DTIC"i I||l|llllU S ELECTE '
FEB 4 1994IC

North American Jumelage "Type Systems"
Grant Number N00014-93-1-0102

Final Report

Andre Scedrov

October 20, 1993

4E3mh hI "052
9403968

Best
Available

Copy

NTIS CRAMI
DTIC TAB 0

Unannoun cd

Vn0aio qblr lB cra StJustifica3tloe

Distribotion I

AVdiiability CodeS

1 Productivity measures Avd1i dndlorDisM Specia

Principal Investigator's lame: Andre Scedrov

PI Institution: University of Pennsylvania

PI Phone Number: (215) 898-5983, -8178 I
PI E-mail Address: andre6cis.upenn.edu
Grant or Contract Title: North American Jumelage "Type Systems"
Grant or Contract Number: N00014-93-1-0102
Reporting Period: 15 Oct 92 - 14 Oct 93

Refereed papers submitted but not yet published: 0

Refereed papers published: 0

Unrefereed reports and articles: 0

Books or parts thereof submitted but uot yet published: 1

Books or parts thereof published: 0

Patents filed but not yet granted: 0

Patents granted: 0

Invited presentations: 0

Contributed presentations: 0

Honors received (fellowships, technical society
appointments, conference committee role, editorship.
etc.): 0

Prizes or awards received (Nobel, Japan, Turing, etc.): 0

Promotions obtained: 0

Graduate students supported >- 1/4 of full time: 0

2

Post-docs supported >= 1/4 of full time: 0

Minorities supported (include Blacks, Hispanics.
American Indians and other native Americans such
as Aleuts, Pacific Islanders, etc., Asians, and
Indians): 0

2 Detailed summary of technical progress

Principal Investigator's lame: Andre Scedrov
PI Institution: University of Pennsylvania
PI Phone Number: (215) 898-5983, -8178
PI E-mail Address: andrefcis.upenn.edu
Grant or Contract Title: North American Jumelage "Type Systems"
Grant or Contract lumber: N00014-93-1-0102
Reporting Period: 15 Oct 92 - 14 Oct 93

North American Jumelage is a working group on "Type Systems", which
meets once a year, usually in the fall. The meetings are conducted in an
informal setting, in a focused "working group" atmosphere. The schedule
involves a combination of a few invited one hour talks, with ample time for
informal discussions and presentations of work-in-progress, similarly to the
IFIP-style working groups. The focus of the working group is primarily on
the theoretical aspects of type systems stemming from typed lambda calculi,
but we also cover wider topics ranging from mathematical semantics to the
software design issues concerning typed programming languages. Previous
meetings were held at Stanford in 1990, hosted by John Mitchell, and at
AT&T Bell Labs in 1991, hosted by Dave MacQueen. The North Ameri-
can working group was originally inspired by European Jumelage in Typed
Lambda Calculus, led by Jean-Yves Girard and including researchers from
a number of E.C. countries.

The general coordinator of the working group is Andre Scedrov (Penn).
Albert Meyer (MIT), Rick Statman (CMU), John Mitchell (Stanford), and
Anil Nerode (Cornell) are "regional university representatives". Philip Scott
(Ottawa) is the representative for the participation of Canadian universities.
The group also has "industrial affiliates": Luca Cardelli (DEC SRC) and
David MacQueen (AT&T Bell Labs).

The 1992 meeting, which was partially supported by the ONR grant
N00014-93-1-0102, was hosted by Anil Nerode at the Mathematical Sciences
Institute, Cornell University, Ithaca, New York, on October 15-17, 1992.
The meeting included 50 participants. The program, list of participants, and
the abstracts of most the talks are included in this report. There were no
published proceedings. During the 1992 North American Jumelage meeting
it was decided that because of the intensity of research in the area of Linear
Logic, a one-time special follow-up workshop on that topic would be held at

4

the same site in June 1993.
Consequently, a Linear Logic Workshop was held June 14-18, 1993 at the

Mathematical Sciences Institute, Cornell University, Ithaca, New York. The
workshop, also partially supported by the ONR grant N00014-93-1-0102,
was attended by about 70 participants from the U.S., Canada, Europe, and
Japan. The program committee was chaired by Andre Scedrov (Penn) and
included S. Abramsky (Imperial, London), J.-Y. Girard (CNRS Marseille),
D. Miller (Penn), and J. Mitchell (Stanford). The program and the list of
participants are included below. Proceedings of the workshop, edited by
J.-Y. Girard, will be published as a hardcover book.

5

NORTH AMERICAN JUMELAGE '92

1992 North American Jumelage meeting was hosted by Anil Nerode
at the Mathematical Sciences Institute, Cornell University, Ithaca,
New York, on Thursday-Saturday, October 15-17.

MEETING SITE: Mathematical Sciences Institute (MSI)
Room 214, 2nd Floor
409 College Avenue, Ithaca, New York 14850

PROGRAM

Wednesday, October 14, 1992

Informal get together 7-9 p.m. at MSI. Light refreshments served.

Thursday, October 15, 1992

9:00 - 9:10 Welcome

9:10 -10:10 Invited Lecture
B. Bloom (Cornell)

10:10 -10:30 Break

10:30 - 1:00 Session on Proof Theory
Chair: J. Gallier (Penn)

1:00 - 2:30 Lunch

2:30 - 3:40 Session on Formalizing Algebra in Type Theory I
Chair: R. Constable (Cornell)

3:40 - 4:10 Break

4:10 - 5:20 Session on Formalizing Algebra in Type Theory II
Chair: R. Constable (Cornell)

7:00 - 9:00 Reception at MSI. Hot and cold appetizers served.

Friday, October 16, 1992

9:00 -10:00 Invited Lecture
J. Mitchell (Stanford)

10:00 -10:30 Break

10:30 - 1:00 Session on Progralmming Language Design
Chairs: C. Gunter (Penn) and R. Harper (Carnegie Mellon)

1:00 - 2:30 Lunch

2:30 - 3:30 Invited Lecture
D. Leivant (Indiana)

3:30 - 4:00 Break

4:00 - 6:00 Student and postdoc presentations

Saturday, October 17, 1992

9:30 -10:30 Invited Lecture
J.-L. Krivine (Paris 7)

10:30 -11:00 Break

11:00 -12:00 Invited Lecture
M. Felleisen (Rice)

12:00 - 1:30 Lunch

1:30 - 2:50 Session on Full Abstraction I
Chair: A.R. Meyer (MIT)

2:50 - 3:20 Break

3:20 - 5:00 Session on Full Abstraction II
Chair: A.R. Meyer (MIT)

5:00 MEETING ENDS

PARTICIPANTS

Guy Blelloch Guy.BlellochBBLELLOCH.PC.CS.CMU.EDU
Bard Bloom bard~cs.cornell.edu
Val Breazu-Tannen valsaul.cis.upenn.edu
Stephen Brookes Stephen.BrookesOBROOKES.PC.CS.CMU.EDU
Paul Broome broome0brl.mil
Kim Bruce kim~cs.williams.edu
Jawahar Chirimar chirimar~saul.cis.upenn.edu
Edmund Clarke emcecs.cmu.edu
Robert Constable rcQcs.cornell.edu
Stavros Cosmadakis stavros~watson.ibm.com
Pierre Cregut cregutgresearch.att.com
Matthias Felleisen matthiasgcs.rice.edu
Amy Felty feltygresearch.att.com
Stacy Finkelstein stacy~saul.cis.upenn.edu
Peter Freyd pjfQcis.upenn.edu
Jean Gallier jean@saul.cis.upenn.edu
Philippa Gardner pag~saul.cis.upenn.edu
Carl Gunter guntergsaul.cis.upenn.edu
Elsa Gunter elsa~research.att.com
Robert Harper Robert_HarperOGOTTLOB.TIP.CS.CMU.EDU
Brian Howard bhoward~saul.cis.upenn.edu
Doug Howe howegcs.cornell.edu
Paul Jackson jacksongcs.cornell.edu
Radhakrishnan Jagadeesan rj2Gdoc.imperial.ac.uk
Lalita Jategaonkar lalita~theory.lcs.mit.edu
Dexter Kozen kozen~cs.cornell.edu
Jean-Louis Krivine krivine~logique.jussieu.fr
Daniel Leivant leivantgmoose.cs.indiana.edu
Arthur Lent aflentftheory.lcs.mit.edu
Patrick Lincoln lincolnQtheory.stanford.edu
James Lipton lipton~saul.cis.upenn.edu
Dave MacQueen dbmEresearch. att. corn
Albert R. Meyer meyer~theory. lcs .mit. edu
John Mitchell jcm~cs.stanford.edu
Philip Mulry philfcs.colgate.edu

Anil Nerode anil@math.cornell.edu
Peter O'Hearn ohearn~top.cis.syr.edu
Mitsuhiro Okada okada~cs.concordia.ca, okada@lri.lri.FR
Frank Oles OLES%YKTVMV.bitnet@CUNYVM.CUNY.EDU
Prakash Panangaden prakashgtrichur.cs.mcgill.ca
Richard Platek platek@math.cornell.edu
Michael RathJen rathjen@function.mps.ohio-state.edu
Jon Riecke riecke~research.att.com
Andre Scedrov andre~cis.upenn.edu
Philip J. Scott scpsg~acadvml.uottawa.ca
Roberto Segala segala~theory.lcs.mit.edu
Ramesh Subrahmanyam rameshgsaul.cis.upenn.edu
Robert Tennent rdtgdcs.ed.ac.uk
Ramesh Viswanathan vramesh0theory.stanford.edu
Stanley Wainer wainer+Oandrew.cmu.edu

ABSTRACTS OF TALKS

Towards a Metatheory of Structural Operational Semantics

Bard Bloom

The methods of classical denotational semantics provide a number of
valuable tools to designers of sequential Algol-like programming
languages. In particular, Algol-like languages can be described by
recursive domain equations and semantic clauses. It is rather
difficult to solve such equations from first principles (Dana Scott
got a Turing award for solving the first one). Fortunately for
language designers, the metatheory of denotational semantics shows
that every set of recursive domain equations has a solution. Indeed,
the metatheory is so powerful that programming language designers can
use the theory naively and be guaranteed that no foundational problems
will arise.

However, the theory that has been so successful for Algol-like
languages is less appropriate for concurrency. The approach to
language definition that seems most effective so far is structural
operational semantics (SOS). To date, most uses of SOS for language
definitions have been ad-hoc. We sketch the outlines of a metatheory
of SOSses as used to define concurrent languages, and in particular
the discipline of process algebras.

The first concern is whether or not a set of SOS rules define an
operational semantics at all. As there are negative rules -- viz.,
rules which state that one process can act if another cannot -- it is
not clear that there are any sound transition relations. Nonetheless,
for the class of GSOS rules [BIM88], we show that there always is a
unique and satisfactory operational semantics. Thus language
designers can use GSOS rules naively and be guaranteed that their
language makes basic sense.

Indeed, a good deal more holds. Two of the three main schools of
process algebras are based on the notion of bisimulation; we show that
any GSOS language respects bisimulation (technically, bisimulation
semantics are compositional), and the very successful proof methods
using bisimulation apply to them.

Furthermore, it is often possible to give a more accurate semantics.
That is, bisimulation is an extremely fine semantics; it makes many
distinctions between processes. Coarser semantics, when they are
adequate, allow more powerful reasoning principles: e.g., there are
compiler optimizations allowed by, say, failures semantics which

violate bisimulation semantics. These optimizations can be applied
only if failures semantics are adequate. We present a collection of
theorems showing when most of the common coarser semantics are
adequate. That is, a language designer may simply look at the rules
for the language and tell that, say, the ready trace model is adequate
and no coarser model is likely to be.

Finally, we give methods building logics for verifying programs. From
a GSOS specification, we show how to derive a complete equational
axiom system with one infinitary axiom (viz. an induction principle).
The axioms our algorithm produces are comparable to those devised by
researchers, and in a few cases actually superior.

On the Proof Theory of Kruskal's Theorem

Michael RATHJEN

Kruskal's theorem (for short, KT) asserts that the finite trees are
well--quasi ordered under embeddability. This theorem is the main tool
for showing that certain sets of rewrite rules are terminating.

The usual proof of KT utilizes an impredicative Π^1_1
comprehension. Friedman showed that KT is not provable in predicative systems
in that he devised an order homomorphism from the set of finite trees onto
a system of ordinal notations for the ordinal \GanmaO. Friedman's
construction can be carried out for stronger notation systems. In this talk
I will present the strongest ordinal notation system for which this can
be done. This leads to a calibration of the proof--theoretic strength of KT,
thereby giving, in some sense, the most constructive proof of KT. \\
This is joint work with A. Weiermann.

Abstract : "Ordinal Complexity of Recursive Definitions"
Stan Wainer (Visiting CMU from Leeds UK).

The methods of Proof Theory and Subrecursive Hierarchies are used to
measure and compare the complexities of various kinds of recursive
definition (and their modes of evaluation), according to the sizes of
their termination orderings. This is an old-established theme in
Mathematical Logic (in fact a theorem of Tait 1961 reappears here in a
generalized form), but newer results have emerged only recently.
The objective is to compute the ordinal trade-off \alpha to \beta to
\gamma such that arbitrarily nested (call by value) recursive
definitions over wellorderings \alpha can be
(1) transformed into while-programs (tail recursions) over wellorderings \beta,
and (2) evaluated by rewriting over termination orderings \gamma.
Each such trade-off corresponds clearly to a form of Cut-Elimination and
we have
(1) \beta = exp(\alpha) corresponding to Gentzen Cut-Reduction, and
(2) \gamma = countable collapse of \alpha +, corresponding to 'complete cut-
elimination' a la Girard.

A Typed Pattern Calculus

Val Breazu-Tannen, University of Pennsylvania

ABSTRACT

Programming with pattern-matching function definitions is a very
attractive feature that accounts for much of the popularity of
functional languages such as Hope, ML, Miranda, and Haskell. It is a

pity therefore that our current understanding of such programs is
largely operational, and that no more of their structure than that
explained by first-order rewrite systems has been analyzed. This
situation would be changed if we could understand pattern constructs
as well as we now understand Algol-like and functional programming
constructs. A crucial role in understanding these latter constructs
has been played by the lambda calculus and its various type
disciplines. We present a corresponding ''calculus'' that models
programs with pattern-matching.

To see how this pattern calculus comes about, recall the
propositions-as-types/programs-as-proofs analogy, an extremely
fruitful idea that originated with Curry and Howard. They have shown
that there exists an ''isomorphism'' between the terms of typed lambda
calculus and the natural deduction proofs of intuitionistic logic. The
constructor terms of functional programming correspond to those proofs
built using the introduction rule of natural deduction. Now, patterns
may look like constructor terms, but operationally they are dual to
them. There is one formulation of logical proof systems in which this
duality is made clear, and this is Gentzen's sequent proof system.
Our calculus arises as a computational interpretation of these proofs.
the sequent system has right rules, which are the same as the introduction
rules of natural deduction, left rules, which we use to build
patterns, and the cut rule, which is interpreted as a {\em let)
construct and where computations originate . The left contraction and
left weakening rules correspond to the layered and wildcard patterns
in ML or Haskell. In this calculus however, as oposed to practical
languages, we can build patterns of arbitrary depth.

While passing some basic sanity tests such as decidability of
typechecking, uniqueness of types, subject reduction, and termination
of recursion-free programs, this formalism has a lot of aspects to be
discovered, such as interpretations in ccc's, general reduction
systems, and extensions dealing with a new class of ''deep primitive
recursive'' algorithms that the usual typed lambda calculi do not
directly express.

Joint work with Delia Kesner and Laurence Puel, INRIA and Paris XI.

Strong normalization for the theory of constructions:

a Kripke-like interpretation

Jean Gallier

Abstract: A new proof of strong normalization for the theory
of constructions (under β-conversion) is presented.
Previous proofs are either incorrect (including Coquand's proof
of normalization given in his thesis) or use infinite contexts,
except for the proof given by Geuvers and Nederhof (1991).
In this last proof, strong normalization in
the theory of constructions is reduced to strong normalization
in Girard's system $F_{\omega)$, via a fairly long and complex
argument.
The proof sketched here (in joint work with Coquand) is more direct,
does not use infinite contexts, and uses
"a kind of {\it Kripke interpretation\/) which suggests
"a possible relationship to the Mitchell-Moggi Kripke models
of the simply-typed lambda calculus.

Carl Gunter:

We describe the abstract syntax and the operational semantics of a
higher-order functional programming langauge. The language, which we
call (\it RAVL} for (\it R)ecords (\it A}nd (\it V}ariants {\it
Lianguage, has a polymorphic type system that supports flexible
progranming with records and variants. We prove that the type system
for RAVL insures the absence of certain runtime type errors (such as
selecting a field from a record where that field is missing). Our
analysis includes a case study, using RAVL, of the nature of such
proofs for languages with an operational semantics given using proof
rules in the form sometimes known as 'natural' semantics.

David MacQueen:

Title: Higher-order functors in Standard ML

Abstract:

The Standard ML module system is application of type theory to the
problem of structuring large programs and providing more flexible and
powerful abstraction mechanisms for programming. Until now, the
module system has been first-order*, in the sense that one could
abstract over simple modules (called *structures" in Standard ML) to
form parametric modules called *functors", but one could not abstract
over functors to form higher-order functors.

In practice this higher-order abstraction is a natural and useful
extension of the current Standard ML module system. We have developed
a semantics for higher-order functors as an extension of the natural
semantics formulation used in the Definition of Standard ML, and we
have implemented higher-order functors in the Standard ML of New
Jersey compiler. Both the semantics and implementation involve
fundamentally new ideas and mechanisms to deal with the problem of
propagation of sharing or identity information. Key issues are
the contravariant behavior of functor signature matching and the
dual elaboration of functor applications involving formal functor
parameters, once at the point of functor definition and again at
the point of functor application. A sketch of the definition of
functor application is presented.

This is joint work with Pierre Cregut and Mads Tofte.

Blelloch:

Nesl: A Nested Data-Parallel Language

Guy E. Blelloch
Carnegie Mellon University

In this talk I will describe NESL, a strongly-typed, data-parallel
language. NESL is intended to be used as a portable interface for
programming a variety of parallel and vector supercomputers, and was
designed to be particularly useful for problems with irregular and
dynamic data-structures. NESL currently runs on the CM-2 and the Cray
Y-MP. It generates fully parallel code and, for many algorithms, the
current implementation achieves performance close to optimized
machine-specific code. The language is based on a small set of

extensions to a first-order functional language. This talk will
describe the data-parallel extensions and show several examples of

* code. It will also discuss how the parallel complexity in the
Parallel Random Access Machine model can be derived from the code.

Classical logic and storage operators

Jean-Louis Krivine

An extension of second order lambda-calculus is considered, in which
the underlying logic is no longer intuitionistic logic as in system F,
but classical logic.
The pure lambda-calculus is then extended with a new constant C. The
rule of head reduction of C is a particular case of a rule given
by M. Felleisen for control operators.
It is then proved, by using the notion of *storage operator", that
computation of data types is correctly handled in this frame.

SPCF: Its Model, Calculus, and Computational Power

Matthias Felleisen

This is joint work with Ramarao Kanneganti and Robert Cartwright.
SPCF, a sequential extension of Plotkin's PCF, is an idealized
sequential programming language that permits prograrmmers and programs
to observe the evaluation order of procedures. In this paper, we
construct a fully abstract model of SPCF using a new mathematical
framework suitable for defining fully abstract models of sequential
functional languages. Then, we develop an extended typed \lcal\ to
specify the operational semantics of SPCF and show that the calculus
is complete for the constant-free sub-language. Finally, we prove
that SPCF is {\it computationally complete), that is, it can express
all computable (recursively enumerable) elements in its fully abstract
model.

The paper that started this research direction is a POPL'92 paper
"Observable Sequentiality and Full Abstraction" by Robert Cartwright
and Matthias Felleisen. One of the major challenges in denotational
semantics is the construction of fully abstract models for {\it sequential)
programming languages. For the past fifteen years, research on this
problem has focused on developing models for PCF, an idealized functional
programming language based on the typed lambda calculus. Unlike most
practical languages, PCF has no facilities for (\it observing\/) and
(\it exploiting\/} the evaluation order of arguments in procedures.
Since we believe that such facilities are crucial for understanding
the nature of sequential computation, this paper focuses on a
sequential extension of PCF (called SPCF) that includes two classes of
control operators: error generators and escape handlers. These new
control operators enable us to construct a fully abstract model for
SPCF that interprets higher types as sets of {\it error-sensitive) functions
instead of (\it continuous) functions. The error-sensitive functions form a

Scott domain that is isomorphic to a domain of decision trees. We
believe that the same construction will yield fully abstract models
for functional languages with different control operators for
observing the order of evaluation.

Rice University programning language papers are available from
titan.cs.rice.edu via anonymous ftp in public/languages. The file
REAEM lists what is available.

Fully Abstract Semantics for Parallel Programs
Stephen BROOKES

Carnegie Mellon University
School of Computer Science

ABSTRACT

This talk focuses on the behavior of programs in a standard
shared variable imperative parallel programming language. The
classical semantics, due to Hennessy and Plotkin, uses a
recursively defined domain of ''resumptions'' and fails to
validate certain natural program equivalences. Moreover, the
resumptions semantics cannot give a proper account of the
behavior of program under fairness or finite-delay assumptions. I
introduce a new semantics with several attractive features: it
has an intuitively clean and simple structure, is fully abstract
with respect to partial correctness behavior, it can be adapted
to cope with deadlock and with total correctness, and it models
fair execution adequately. The semantics can also be varied to
allow for different levels of atomicity. Each of the semantics is
fully abstract with respect to the relevant notion of program
behavior: two phrases have the same meaning if and only if they
are interchangeable in all program contexts without affecting the
behavior of the overall program. As a consequence, these semantic
models support compositional (or modular) reasoning about partial
and total correctness and about deadlock-freedom of parallel
programs, with or without fairness assumptions.

On completeness for typed lambda calculus with bottom

Stavros COSMADAKIS
IBM T.J. Watson Research Center

Full abstraction results can be viewed as a tool to develop
reasoning principles for observational equivalence of program
phrases; instead of reasoning about observational equivalence,
one reasons about equality in a semantic model. Thus, since
beta-eta is complete for the full continuous model, it is
complete for proving observational equivalence of pure terms in
PCF with parallel conditional.

I will present some ongoing research towards developing a
complete proof system for typed lambda terms with a constant
denoting bottom. I will also mention some related questions about
sequential PCF.

Testing Equivalence for Petri Nets and CCS with Action Refinement
and Self-Synchronization

Lalita JATEGAONKAR
MIT Laboratory for Computer Science

We introduce a unary "self-synchronization* operation on concurrent

processes analogous to the binary operations of
parallel-composition-with-synchronization found in CCS, TCSP and Process
Algebra. The idea is that the self-synchronization on actions a, b and c
of process P is a new process Q which acts like P, except that whenever P
has a pair of concurrent transitions with labels a and b, then Q has an
additional transition, labelled c, leading to the same state reachable by
firing the a and b transitions.

Self-synchronization can enable sequential observers to detect a degree of
concurrency: the self-synchronization on a-b-c of (aib) has "c" as a
visible trace, while the self-synchronization of (ab + ba) still fails on
c. Standard trace and failure semantics equate aib and ab+ba, and so are
not compositional for self-synchronization. We show that a simple
modification replacing actions by "steps", namely multisets of concurrent
actions, yields semantics which are compositional for self-synchronization
and all the usual CCS/TCSP operators. The resulting "step-trace" and
"step-failure" semantics are in fact fully abstract for Testing
Equivalence with respect to self-synchronization.

The same idea of replacing actions by steps carries over to a more fully
concurrent pomset-failure semantics we developed previously. The new
version of pomset-STEP-failures is fully abstract for Testing Equivalence
with respect to the operations of action-refinement and
self-synchronization on a safe Petri Net model of processes.

As an application of self-synchronization, we show how action-refinement
in which communication occurs between refining processes can be expressed
using self-synchronization and ordinary, noncommunicating refinement.
Hennessy has suggested that such action-refinement-with-communication may
be more useful than the noncommunicating version. Our results show that
pomset-step-failure semantics is fully abstract for a simpler and mor'i
general action-refinement-with-communication operation than that
considered by Hennessy.

This is joint work with Albert Meyer.

Relational Parametricity and Local Variables
P.W. O'HEARN and R.D. Tennent

J. C. Reynolds has argued that Strachey's intuitive
concept of ''parametric"' (i.e., uniform) polymorphism
is closely linked to {\em representation independence\/),
and used logical relations to formalize this principle in
languages with type variables and user-defined types.
Here, we use relational parametricity to address long-standing
problems with the semantics of local-variable declarations,
by showing that interactions between local and non-local entities
obey certain relational criteria. The talk will begin with an overview
of problematic aspects of local-variable semantics,
then proceed to an explanation of how parametricity is relevant,
and conclude by mentioning still unresolved problems.

The Logic of Block Structure
Arthur Lent

Massachusetts Institute of Technology
Laboratory for Computer Science

In the early 1980s Reynolds defined Specification Logic, a partial
correctness logic for an ALGOL-like language (characterized by having
block-structured local variables and higher order procedures). As a
classical theory, Specifi;ation Logic turned out to be inconsistent.
Nevertheless, Tennent, using a form of possible-world semantics originally
tailored to ALGOL-like languages by Reynolds and Oles, developed a
semantic interpretation of Specification Logic which demonstrated its

consistency as an intuitionistic theory.

Consistency is of course a minimal condition on a logic: there remains the
question of soundness. Related to soundness, and of independent
significance, is the question whether these possible-world semantics are
adequate--in a technical sense--for the standard operational semantics of
an ALGOL-like language. For example, it was unknown whether a divergent
term could have the same meaning as a convergent term in these models.

This talk will present a set of sufficient conditions for adequacy of
possible-world models of ALGOL-like languages. The fact that a fragment
of a model of Specification Logic is adequate has certain ramifications
for the truth of formulas of Specification Logic. We will explore these
ramifications and give an operational interpretation to a fragment of
Specification Logic.

Full Abstraction as a Guide in Designing Language Features
Jon G. RIECKE

AT&T Bell Laboratories

The theoretical notion of full abstraction has (yet unfulfilled)
potential as a tool in code verification, but it has also
unexpected uses in the design of programming languages. Here we
use full abstraction as a guide in designing an extension of
call-by-value PCF+callcc with control delimiters. We first
describe cps conversion for call-by-value PCF; show how the
conversion does not preserve observational congruence, i.e., is
not fully abstract; and show how it may be changed into a fully
abstract translation using definable retractions. The retractions
in the cps world lead to a notion of typed control delimiters,
denoted by #, in the untranslated world. The control delimiters
have one interesting property:

Theorem: If M and N are closed PCF terms and M and N are
observationally congruent in call-by-value PCF WITHOUT callcc,
then #M and #N are observationally congruent in call-by-value
PCF+callcc.

We give a small example showing why this theorem DOES NOT hold
without #. In words, the theorem shows that # declares portions
of a program to be "continuation-free", and forces those portions
to pass continuations in tightly-controlled ways. We conclude
with a discussion of the philosophical implications of having # in
call-by-value PCF+callcc.

LINEAR LOGIC WORKSHOP

Mathematical Sciences Institute

Cornell University

Ithaca, New York

June 14 - 18, 1993

Partially supported by the U.S. Office of Naval Research and by the
U.S. Army Research Office.

Program Committee: S. Abramsky, J.-Y. Girard, D. Miller, J. Mitchell, and
A. Scedrov (Chair)

PROGRAM

All talks will be held in the Myron Taylor Hall Conference Room in the
Cornell Law School. Registration fee is $30 ($15 for students).

Monday, June 14

8:15-9:00 Light Breakfast

9:00-9:05 Welcome

9:05-10:05 Opening Address.
J. Lambek, McGill University:
Bilinear logic in algebra and linguistics

10:05-10:35 Break

10:35-11:35 Y. Lafont, CNRS Discrete Mathematics Laboratory, Marseille:
Proof nets and interaction nets

11:40-12:10 T. Ehrhard, University Paris 7:
Hypercoherences: a denotational model of linear logic

12:10-2:00 Lunch Break

2:00-3:00 V. Pratt, Stanford University:
Chu spaces as classless objects: A mathematical alternative
to logic

3:05-3:35 R. Blute, McGill University:
Modelling linear logic with vector spaces

3:35-4:00 Break

4:00-4:30 M. Barr, McGill University:
Non-symmetric *-autonomous categories

4:35-5:05 M. Abrusci, University of Rome:
Developments of noncornnutative linear logic:
exchange connectives, phase semantics,
semantics of proofs, proof nets

5:15-7:00 Informal gathering at MSI, 409 College Avenue, 2nd Floor.
Drinks and light appetizers will be served.

Tuesday, June 15

8:15-9:00 Light Breakfast

9:00-10:00 A. Blass, University of Michigan:

Game semantics

10:00-10:30 Break

10:30-11:30 V. Danos, University Paris 7:
Geometry of interaction: An introduction

11:35-12:05 L. Regnier, CNRS Discrete Mathematics Laboratory, Marseille:
A local and asynchronous reduction of lambda-terms
stemming from the geometry of interaction

12:05-2:00 Lunch Break

2:00-2:30 R. Jagadeesan, Imperial College:
Game Semantics for Exponentials

2:35-3:05 F. Lamarche, Imperial College:
A linear logic for computer science

3:05-3:30 Break

3:30-4:00 G. Bellin, Oxford University:
Proof-nets without boxes and graphs with orientations

4:05-4:25 H. Schellinx, Univ. of Amsterdam and Univ. Paris 7:
Classical natural deduction and linear logic

6:00-9:00 Dinner reception at the Johnson Art Museum on the
Cornell Campus

Wednesday, Jjne 16

8:15-9:00 Light Breakfast

9:00-10:00 P. Lincoln, SRI International:
Decision problems in linear logic

10:00-10:30 Break

10:30-11:00 M. Kanovich, Russian Humanitarian State University:
The expressive power of initial fragments of linear logic

11:05-11:35 H. Jervell, Oslo University:
Simulating computations by linear proofs

11:40-12:10 P.J. Scott, University of Ottawa:
Bounded linear logic

12:10-2:00 Lunch Break

2:00-2:30 I. Mackie, Imperial College:
Linear logic and implementations of the lambda calculus

2:35-3:05 S. Martini, University of Pisa:
A promotion rule for ILL based on two level sequents

3:10-3:40 S. Gay, Imperial College:

Confluent CCS and interaction nets

3:40-4:00 Break

4:00-6:00 Demonstration Session

Thursday, June 17

8:15-9:00 Light Breakfast

9:00-10:00 J.-M. Andreoli / R. Pareschi, ECRC Munich:

Coordination computing with linear logic

10:00-10:30 Break

10:30-11:00 V. Saraswat, Xerox PARC:
Higher-order linear concurrent constraint programming

11:05-11:35 N. Kobayashi, University of Tokyo:
Logical, testing, and observation equivalence for processes
in a linear logic programming

11:40-12:10 D. Miller, University of Pennsylvania:
Some process formalisms as multiple conclusion
logic programming

12:10-2:00 Lunch Break

2:00-2:30 M. Abadi, DEC SRC:
Linear logic without boxes I

2:35-3:05 G. Gonthier, INRIA Rocquencourt:
Linear logic without boxes II

5:00-8:00 Picnic dinner at Beebe Lake on the Cornell Campus

Friday, June 18

8:15-9:00 Light Breakfast

9:00-10:00 M. Moortgat, Utrecht University:

The fine-structure of linguistic resources

10:00-10:30 Break

10:30-11:00 J. Hudelmaier / P. Schroeder-Heister, University of Tuebingen:
Classical Lambek logic

11:05-11:35 J. Vauzeilles, University Paris 13:
Planification and taxonomic networks
a first attempt at a formalisation in linear logic

11:40-12:10 C. Gunter, University of Pennsylvania:
Reference counting as a computational interpretation of
linear logic

12:10-2:00 Lunch Break

2:00-3:00 A. Joyal, University of Quebec at Montreal:
Games, strategies, and completion of categories

3:05-3:35 S. Abramsky, Imperial College:
Interaction categories

3:35-4:00 Break

4:00-5:00 Closing Address.
J.-Y. Girard, CNRS Discrete Mathematics Laboratory, Marseille:
On the geometry of interaction of additives

Linear Logic Workshop

Mathematical Sciences Institute

Cornell University

June 14-18, 1993

List of Participants

Martin Abadi
Address: DEC SRC

130 Lytton Ave.
Palo Alto, CA 94301
U.S.A.

Email: ma@src.dec.com

Samson Abramsky
Address: Department of Computing

Imperial College
180 Queen's Gate
London SW7 2BZ
UK

Email: sagdoc.imperial.ac.uk

V. Michele Abrusci
Address: Logica Matematica

Dip. di Studi Filosofici ed Epistemologici
Universita di Roma "La Sapienza*
Via Nomentana 118
00161 Roma
Italy

Email: ABRUSCIOsci.uniromal.it

Gerard Allwein
Address: Center of Innovative Computing Applications

Office of University Computing
Poplars Building 819
Indiana University
700 E 7th Street
Bloomington, IN 47405
U.S.A.

Email: gtall@ogre.cica.indiana.edu

Jean-Marc Andreoli
Address: ECRC

Arabellastrasse 17
D-8000 Munich 81
Germany

Email: Jean-Marc.Andreoli~ecrc.de

Sergei Artemov
Address: Steklov Mathematical Institute

V.vilova str. 42
Moscow 117966
Russia

Email: sergeisartemov.mian.su

Michael Barr
Address: Department of Mathematics

Burnside Hall
McGill University
805 Sherbrooke Street West
Montreal, QC
Canada H3A 2K6

Email: barrftriples.math.mcgill.ca

Gianluigi Bellin
Address: Wolfson College

Oxford, OX2 6UD
UK

Email: bellin~ox.ac.uk

George Beshers
Address: Hibbit, Karlsson & Sorensen, Inc.

1080 Main St.
Pawtucket, RI 02860
U.S.A.

Email: beshers~wotan.hks.com

Andreas Blass
Address: Department of Mathematics

University of Michigan
Ann Arbor, Michigan 48109
U.S.A.

Email: ablassGumich.edu

Richard Blute
Address: Department of Mathematics

University of Ottawa
585 King Edward
Ottawa, Ontario
Canada KIN 6N5

Email: blute~triples.math.mcgill.ca

Alessandra Carbone
Address: Department of Mathematics

CUNY Graduate Center
New York, NY 10036
U.S.A.

Email: ale6cunyvmsl.gc.cuny.edu

Jawahar Chirimar

Address: Department of Computer and Information Science
University of Pennsylvania
200 South 33rd Street
Philadelphia, PA 19104-6389
U.S.A.

Email: chirimar~saul.cis.upenn.edu

Vincent Danos
Address: U.F.R. de Mathematiques

Universite Paris VII
Tour 45-55, 5eme Etage
2, Place Jussieu
75251 Paris Cedex 05
France

Email: danosglogique.jussieu.fr

Valeria de Paiva
Address: Computing Laboratory

University of Cambridge
New Museum Site
Pembroke Street
Cambridge CB2 3QG
UK

Email: valeria.paivagcl.cam.ac.uk

Katherine Eastaughffe, Oxford Univ.
Address: Computing Laboratory

Oxford University
11 Keble Road
Oxford OXl 3QD
UK

Email: kaegprg.oxford.ac.uk

Thomas Ehrhard
Address: LITP

Couloir 55-56, ler etage
Universite Paris VII
2 Place JUSSIEU
75251 PARIS CEDEX 05
France

Email: ehrhardgdmi.ens.fr

Berndt Farwer
Address: Universitaet Hamburg

FB Informatik
Vogt-Koelln-Str. 30
D-2000 Hamburg 54
Germany

Email: farwerginformatik.uni-hamburg.de

Stacy Finkelstein
Address: Department of Mathematics

University of Pennsylvania
209 South 33rd Street

Philadelphia, PA 19104-6395
U.S.A.

Email: stacy~saul.cis.upenn.edu

Marcelo Fiore
Address: LFCS

Department of Computer Science
The King's Building
University of Edinburgh
Mayfield Road
Edinburgh EH9 3JZ
UK

Email: mf~dcs.ed.ac.uk

Peter Freyd
Address: Department of Mathematics

University of Pennsylvania
209 South 33rd Street
Philadelphia, PA 19104-6395
U.S.A.

Email: pjf~saul.cis.upenn.edu

Simon Gay
Address: Department of Computing

Imperial College
180 Queen's Gate
London SW7 2BZ
UK

Email: sjg3gdoc.ic.ac.uk

Vijay Gehlot
Address: Dept of Computer and Info Science

103 Smith Hall
University of Delaware
Newark, DE 19716-2586
U.S.A.

Email: gehlot~udel.edu

Konstantinos Georgatos
Address: Department of Mathematics

CUNY Graduate Center
New York, NY 10036
U.S.A.

Email: geo@cunyvmsl.gc.cuny.edu

Sylvia Ghilezan
Address: Department of Mathematics

Burnside Hall
McGill University
805 Sherbrooke Street West
Montreal, QC
Canada H3A 2K6

Email: ghilezan~math.mcgill.ca

Jean-Yves Girard
Address: Laboratoire de Mathematiques Discretes UPR 9016

163 route de Luminy case 930
13288 Marseille cedex 09
France

Email: girard~lmd.univ-mrs.fr
Jean-Yves.Girard~inria.fr

Sergei S. Goncharov
Address: Institute of Mathematics

universitetski prosp. 4
Novosibirsk 90
630090 Russia

Email: gonchargcnit.nsk.su

Georges Gonthier
Address: INRIA Rocquencourt

Domaine de Voluceau, B.P. 105
78153 Le Chesnay Cedex
France

Email: gonthier@margaux.inria.fr

Carl Gunter
Address: Department of Computer and Information Science

University of Pennsylvania
200 South 33rd Street
Philadelphia, PA 19104-6389
U.S.A.

Email: guntergsaul.cis.upenn.edu

Joshua Hodas
Address: Department of Computer and Information Science

University of Pennsylvania
200 South 33rd Street
Philadelphia, PA 19104-6389
U.S.A.

Email: hodas~saul.cis.upenn.edu

Radhakrishnan Jagadeesan
Address: Department of Computing

Imperial College
180 Queen's Gate
London SW7 2BZ
UK

Email: rj26doc.imperial.ac.uk

Herman Jervell
Address: Lingvistikk og filosofi

Boks 1102 - Universitetet
Oslo
Norway

Email: herman.jervellgilf.uio.no

Jean-Baptiste Joinet
Address: Equips de Logique

Tour 45-55
UFR de Mathematiques
2, place Jussieu - case 7012
75251 Paris Cedex 05
France

Email: joinet@logique.jussieu.fr

Andre Joyal
Address: Departement de Mathematiques et d'Informatique

Universite du Quebec a Montreal
Case Postale 8888 Succ *A"
Montreal, QC
Canada H3C 3P8

Email: joyal@math.uqam.ca

Max Kanovich
Address: Russian State Humanitarian University

Miusskaya pl. 6
Moscow 125267
Russia

Email: sergeisartemov.mian.su

Bruce Kapron
Address: Department of Computer Science

EOW 346
University of Victoria
Victoria, BC
Canada V8W 3P6

Email: bmkaprongcsr.UVic.CA

Naoki Kobayashi
Address: Department of Information Science

Faculty of Science
University of Tokyo
7-3-1 Hongo, Bunkyo-ku
Tokyo 113
Japan

Email: koba~is.s.u-tokyo.ac.jp

Yves Lafont
Address: Laboratoire de Mathematiques Discretes UPR 9016

1C3 route de Luminy case 930
13288 Marseille cedex 09
France

Email: lafont~lmd.univ-mrs.fr
lafontedmi.ens.fr

Francois Lamarche
Address: Department of Computing

Imperial College
180 Queen's Gate
London SW7 2BZ
UK

Email: gflgdoc.ic.ac.uk

Jim Lambek
Address: Department of Mathematics

Burnside Hall
McGill University
805 Sherbrooke Street West
Montreal, QC
Canada H3A 2K6

Email: lambekgtriples.math.mcgill.ca

Patrick Lincoln
Address: Computer Science Laboratory

SRI International
333 Ravenswood Ave.
Menlo Park, California 94025-3493
U.S.A.

Email: lincoln@csl.sri.com

James Lipton
Address: Department of Mathematics

Wesleyan University
Middletown, CT 06459-0128
U.S.A.

Email: lipton@crab.cs.wesleyan.edu

Ian Mackie
Address: Department of Computing

Imperial College
180 Queen's Gate
London SW7 2BZ
UK

Email: imQdoc.imperial.ac.uk

Simone Martini
Address: Dipartimento di Informatica

Universita di Pisa
Corso Italia, 40
56125 Pisa PI
Italy

Email: martinigdi.unipi.it

Nax Mendler
Address: Department of Mathematics

University of Ottawa
585 King Edward
Ottawa, Ontario
Canada KlN 6N5

Email: nmendler~csi.uottawa.ca

Dale Miller
Address: Department of Computer and Information Science

University of Pennsylvania
200 South 33rd Street
Philadelphia, PA 19104-6389
U.S.A.

Email: dale~saul.cis.upenn.edu

John Mitchell
Address: Department of Computer Science

Stanford University
Stanford, California 94305
U.S.A.

Email: jcm~cs.stanford.edu

Michael Moortgat
Address: Research Institute for Language and Speech (OTS)

Utrecht University
Trans 10
3512 JK Utrecht
The Netherlands

Email: Michael.Moortgat~let.rau.nl

Lawrence Moss
Address: Department of Mathematics

Rawles Hall 323
Indiana University
Bloomington, IN 47405
U.S.A.

Email: lsmQcs.indiana.edu

Philip Mulry
Address: Department of Computer Science

Colgate University
Hamilton, N.Y. 13346
U.S.A.

Email: philcs.colgate.edu

Koji Nakatogawa
Address: Faculty of Letters

Hokkaido University
North 10, West 7, Kita-ku
Sapporo
Japan, 060

Email: kojigcsli.stanford.edu
koji~huph.hokudai.ac.jp
nakatoggtansei.cc.u-tokyo.ac.jp

Anil Nerode

Address: Department of Mathematics
White Hall
Cornell University
Ithaca, New York 14853
U.S.A.

Email: anil~math.cornell.edu

Mitsu Okada
Address: Department of Computer Science

Concordia University
1455 de Maisonneuve West
Montreal, QC
Canada H3G 1M8

Email: okada6cs.concordia.ca

Remo Pareschi
Address: ECRC

Arabellastrasse 17
D-8000 Munich 81
Germany

Email: Remo.Pareschigecrc.de

Marco Pedicini
Address: Universita di Roma

Italy
Email: marcognextiac.iac.rm.cnr.it

Vaughan Pratt
Address: Department of Computer Science

Stanford University
Stanford, California 94305
U.S.A.

Email: prattOcs.stanford.edu

Uday Reddy
Address: Department of Computer Science

University of Illinois at Urbana-Champaign
1304 West Springfield Avenue
Urbana, Illinois 61801
U.S.A.

Email: reddy~cs.uiuc.edu

Laurent Regnier
Address: Laboratoire de Mathematiques Discretes UPR 9016

163 route de Luminy case 930
13288 Marseille cedex 09
France

Email: regnier6lmd.univ-mrs.fr
regnierglogique.jussieu.fr

Kimmo Rosenthal
Adress: Department of Mathematics

Union College
Schenectady, New York 12308
U.S.A.

Email: rosenthk@gar.union.edu

Vijay Saraswat
Address: Xerox PARC

3333 Coyote Hill Road
Palo Alto, Ca 94304
U.S.A.

Email: saraswatgparc.xerox.com

Andre Scedrov
Address: Department of Mathematics

University of Pennsylvania
209 South 33rd Street
Philadelphia, PA 19104-6395
U.S.A.

Email: andre~saul.cis.upenn.edu

Harold Schellinx
Address: Department of Mathematics and Computer Science

University of Amsterdam
Plantage Muidergracht 24
1018 TV Amsterdam
The Netherlands

Email: harold~fwi.uva.nl

Peter Schroeder-Heister
Address: Universitaet Tuebingen

Wilhelm-Schickard-Institut fuer Informatik
Sand 13
7400 Tuebingen
Germany

Email: schroeder-heistergmailserv.zdv.uni-tuebingen.de

Philip J. Scott
Address: Department of Mathematics

University of Ottawa
585 King Edward
Ottawa, Ontario
Canada KIN 6N5

Email: scpsg@acadvml.uottawa.ca

Robert A.G. Seely
Address: Department of Mathematics

Burnside Hall
McGill University
805 Sherbrooke Street West
Montreal, QC
Canada H3A 2K6

Email: ragsotriples.math.mcgill.ca

p

N.A. Taitslin
Address: Tver State University

33 Zhelyabova Str.
Tver 170013
Russia

Email: mat~tvegu.tver.su

Jacqueline Vauzeilles
Address: LIPN-Institut Galilee

Universite Paris-Nord
Avenue Jean-Baptiste Clement
93430 Villetaneuse
France

Email: jvGlipn.univ-parisl3.fr

I -

