_p275 336 o @
ADZ Sl

[|
DTIC

ELECTE

FEBO71934 3

s A ¢
USING RDD-100 WITH CoRE

SPC-93099-CMC

VERSION 01.00.03
JANUARY 1994

This document has been appxoved
for public release and salei it
distribution is uniimited

- Vg 94~04
WIRERERT

94 2 04 122

Best
Available

Copy

REPORT DOCUMENTATION PAGE Form Approved

OMSB No. 0704—0188

! ; N SVrage it per response, Inciud | " g oat
Mmmmwmwmmmumwumwuwmumwmdu

collection of inlormation, including suggestions fer reducing this burden 10 Washingion voss, Directorste for ink Operstions and Ropom.!:is.bﬁmn
Dlvhm Sulle 1 MMVAM “bhdeMNWPWWFM!OM1u) Washington, DC 20503
1. AGENCY USE ONLY (Leave blank) 2.REPORT DATE 3 REPORT TYPE AND DATES COVERED
19 January 1994 Technical Report - Final
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Using RDD-100 with CoRE

e. auTHoR(s) R. Kirk, H. Osborne
Produced by Software Productivity Consortium under contract

to Virginia Center of Excellence G MDA972-92-J-1018
7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES) 8. PERFORMING ORGANZATION
Virginia Center of Excellence REPORT NUMBER
35104‘;““1‘“& Road SPC-93099-CMC,
oc 0 Version 01.00.01
Hermdon, VA 22070
9. SPONSORING / MONITORING AGENGY NAME(S) AND ADDRESS(ES) 70. SPONSORING / MONITORING
ARPA/SISTO AGENCY REPORT NUMBER
Suite 400

801 N. Randolph Street
Arlington, VA 22203

1. SUPPLEMENTARY NOTES
N/A
[22 DISTRIBUTION / AVALABILITY STATEMENT 125, DISTRIBUTION CODE

This document has been appsoved
for public release and sale; ite
distribution is uniimited.

No Restrictions 1

(13, ABSTRACT (Maximum 200 words)

This technical report describes how to develop a specification of software requirements using the Software Productivity Consortium's
CoRE software requirements method from a system requirements and design specification developed using Ascent Logic Corporation’s
RDD-100. Specifically, this report describes the transition from system design to softiware requirements analysis when: a) RDD-100 has
been used to create system requirements and design specifications, or: b) the software requirements analysis activity is to be performed
according to the CoRE method.

RDD-100 is the implementation of the Requirements Driven Design (RDD) system design and engineering method, wherein the
system design is driven by the customer's expectations of system behavior. CoRE is the Software Productivity Consortium's software
requirements engineering method, created to support the development of precise, testable specifications that are demonstrably complete
and consistent.

An RDD-100 system model contains all of the information needed to begin building a CoRE software requirements specification.
This paper describes a process and guidelines for building a CoRE software requirements specification from an RDD-100 system model.
The process consists of the following high-level activities: a) identify sources of the necessary CoRE information in the RDD-100 model;
b) map that information to an initial CoRE specification; ¢) complete the CoRE specification.

The Consortium's experience in the use of CoRE with RDD-100 is based on the development of a CoRE specification of software

requirements for the HAS Buoy problem from an RDD-100 model of system requirements and design. The guidance provided in this
documents our experiences and lessons learned from this case study.

14.SUBJECT TERMS 15. NUMBER OF PAGES
Requirements, CASE tool, specification, CORE, RDD-100, system 70
desi gn 16. PRICE CODE
17, SECORITY CLASSIFICATION] 18. SECURITY CLASSIFICATION | 10. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT |
OF REPORT OF THIS PAGE OF ABSTRACT UL
Unclassified Unclassified Unclassifiec
NSN 7540-01-280-3500 Standard Form 298 (Rev. 2-89)

Prescribed by ANS| Std. 239-18

USING RDD-100 WITH CoRE

SPC-93099-CMC
Accesion for
NTIS Cong
DTIC ;es o,
Unanng. g °,
Justific e =
VERSION 01.00.03 [BetteT
B T e e
By
JANUARY 1994 Dist.ibuttion] B
Auilsbinty Coome]
Haywood S. Osborne Dist , Sputial
Produced by the
SOFTWARE PRODUCTIVITY CONSORTTUM SERVICES CORPORATION 3
under contract to the CTED
VIRGINIA CENTER OF EXCELLENCE xe?®
FOR SOFTWARE REUSE AND TECHNOLOGY TRANSFER Qongt“
c
SPC Building e
2214 Rock Hill Road

Herndon, Virginia 22070

Copyright © 1994, Software Productivity Consortium Services Corporation, Herndon, Virginia. Permission to use, copy, modify, and
distribute this material for any purpose and without fee is hereby granted consistent with 48 CFR 227 and 252, and provided that
the above copyright notice appears in all copies and that both this copyright notice and this permission notice appear in supporting
documentation. This material is based in part upon work sponsored by the Advanced Research Projects Agency under Grant
#MDA972.92-J-1018. The content does not necessarily reflect the position or the policy of the U. S. Government, and no official
endorsement should be inferred. The name Software Productivity Consortium shall not be used in advertising or publicity pertaining
to this material or otheswise without the prior written permission of Software Productivity Consortium, Inc. SOFTWARE
PRODUCTIVITY CONSORTIUM, INC. AND SOFITWARE PRODUCTIVITY CONSORIIUM SERVICES
CORPORATION MAKE NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THIS
MATERIAL FOR ANY PURPOSE OR ABOUT ANY OTHER MATTER, AND THIS MATERIAL IS PROVIDED
WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.

ADARISOkamieemrkoftthmmnProduthyCommiumUmitedPamaship.
Teamwork is a trademark of Cadre Technologies, Inc.
RDD-100 and RDD are registered trademarks of Ascent Logic Corporation.

ACKNOWLEDGMENTScoieiecsecescscecscessesnccsssnscsssssasas ceees Ix
EXECUTIVE SUMMARY....... Seeecsesaseseasasseresnsseasacsssssanas veees xi
1. INTRODUCTION....... teseseesensssassssssssescncsnsane Ceeessescsesane 1
1.1 Purpose Of ThiS REPOTtocinieiniiiireiiiiiiiieiiieiiiiiieintiesanenns 1

1.2 BacK@IOUNAovvinininninueneeniansneenoensoosneoncosssassessonansnsonss 2

1.3 QuestionstoBe Answeredciviiiiiiiiiiiiiiiiiiitiiiiiiitiiiitienanes 2

14 Intended Audiencecovveiieiiiiiietiiiiiiiiietiiiitetatrtttittonanonns 3

1.5 Organization Of ThiS REPOItvvviirinnrriinnereieeeetiiacesssreaanscsnnens 3

1.6 Typographic Conventionsc.ceeveeeiurineenneceseonsconecnnssnacsnnes 4
2. OVERVIEWccc0eeeenees csesesasssecscecsassccssssne crcescssncess . 5
21 RDD-100 .« niineeneenieteneenneanassueosscsncsuscsncesssssssssscsssssannss 5
2.1.1 RDD-100Method .. .coiviinrniiiiiiiiiieeiisecneenscescsececssacesnns 7

212 RDD-IOO Model ..ovviininiiniiiiiiiiiinnnnnnns 7

2.1.3 RDD-100 Release 4 et 9

22 CORE . utitiieieineieetenaeieeiesscsnssssssessosenssnssassossssossonnsos 9
2.2.1 CoRE Process OvVeIviewcceceu.s Peeeereseiiititerasannaans 11

22.2 CoREBehavioral Modelcoiuiieineiniinrieiensensesoncansansnons | 12

2.2.2.1 Environmental Variablesccoiiiiiiiiiiiiiiiiiiiiiennas 13

2.2.2.2 Input and Output Variablesccciiniiiiiinerinerenneaseneronss 13

2.2.2.3 Four-Variable Relationscocvevineieiinrinrnnconcscancncnns 14

223 CORE CIASS MOGE] y.euivneseernrunasarnesasnenesnesasnenns . 14

2.3 Comparing RDD-100and COREccvutiueuernceneeneenroncancnncannnes 15

3. AN APPROACH FOR DERIVING A CoRE MODEL FROM AN RDD-100

MODEL .. .iviititteetieteeseeesscsasocsocsosancssssssssscssssscnsvnnes 17
3.1 Buildingthe RDD-100Modelcoviniiiiiiiiiiiiiiiiiiitiiiniianennses 17
3.1.1 RDD-100 System Requirements Analysisccceiiiivinniennn. 17
3.1.2 RDD-100 System Functional Analysiscoiiiiiiiiiiiiieniannns 18
3.1.3 RDD-100 System DeSignoovieeieiiieninerieronenansessonesneanenns 19
3.1.4 Tactics That SUPPOrt COREovvurttiiiinneereronsnesciossensscanans 20

3.2 Identifying CoRE Inputs in the RDD-100Modelc.cevviiiinnnnn.... 20
3.2.1 Mission Statementc.ciiuneeinnitineiieinetaanccnostoancroannns 21
322 SystemModel ... i i it e e e e 21
3.2.3 System Requirements Specificationccoiiiiiiiiiiiiiiieiieans, 21
3.2.4 System Component Interface Specificationsc.ccovvviiineinennn.. 22
3.25 Reqhirements Information Relating to System Performance 22

3.3 Mapping the RDD-100 Model to an Initial CoRE Specification 22
3.3.1 CoRE Information Modelcoviuiiiniiiiinaiennascsenrcsnncanans 23
3.3.2 Candidate Environmental Variablesoooeiiiiiiiiiiiiinannes 23
333 LikelyChangesListcoiuiieeeineineeiuenieciecosnsonccnnssnasans 23
3.3.4 Environmental Constraints Specification (NAT)cooevevnevnreennenn 23

3.4 Completing the CORE Specificationcoviieiiiiiiieirnrnncroncenenaass 24
3.4.1 Context Diagramooovevreereenecesncesncnnnnseeeannnes e 24
3.4.1.1 System Transformation .. LR TR TR REE 24

3.4.1.2 Terminatorsc.viueinrenionennseeensonnsoncancnsonsoscnonnaass 24

3.4.1.3 Monitored and Controlled Variablescoevviiivnnnnnn.. 24

3.4.2 Input and Output Variable Definitionsc.ciiviiniieiiiiiienaness 25
3.43 Timing and Accuracy CONSIIaiNtSo.ovevvreneenernernarnessonnsecnasns 25

4. EXTENDING THE RDD-100 SCHEMA TO SUPPORTCoREccc00eene 27
5. GENERATING A CoRE REPORT FROMRDD-100c0c0teeeenceccness 29

Contents

5.1 The RDD-100 System Engineering Notebookcccoiiiiiiiiiiieninn.. 29
5.1.1 System Top-Level Descriptionovvvitiiiiiiiiiiiininenrerenanneeannnn 29
5.1.2 System-Level (“Originating”) Requirementsccociviineann.. 29
5.13 Design Constraintsccvvviiiiiiniietiiieiinetiiiiteareonenaaaaacnns 29
5.1.4 Issues & DeECiSioNscviieiiiiiiiiiiiiiiiiiiiiiiiiietiii i, 29
5.1.5 Hierarchical Function Listoooeiniiiiiniiiiiiiiiiiiiiiiiieeannss 30
5.1.6 System Functional Behavior Descriptioncoovvieiiiiiini..n 30
5.1.7 Performance Indicesoovviiiiiiiiiiiiiiiiiiiiiiiiiii e 30
5.1.8 Item Dictionary ... voviiniiiiiiiiietiiiiei ittt 30
5.1.9 COMPONENLS .+ .vvviuurenreennoeeseasncesassaseenssossonssosscnaoanssas 30
5.1.10 Interfaces Between COMPONENtSc.veeveeveeeseeeennnocncennnnceaons 30
5.1.11 System “Operational” Parametersccoeeieuevnerearsoreaacnnacens 30

5.2 ACORE-SpecifiC REPOIt o ovvuuieiiiinetiiiierersoreasecsssscsonssonasansas 3

6. USING THE RDD-100 BRIDGE TO TEAMWORKccc0c0iveeciessacccces 33

6.1 The RDD-100 Bridge to Teamworkccvuvereecetensocescs teeenranens 33

6.2 Using Teamwork With COREctiiiuiiriennennereneannencecnsansennnans 34

6.3 Using the RDD-100 Bridge to Teamwork for COREc.cccvvviieiinannnnennn 35

APPENDIX: HAS BUOY CASE STUDYc.ccvieevenreccrcescnnscnsacnasss 37

App.1 HAS Buoy Problem Statementcoiveiineecierenrnneeeenranennnnss 37
App.1.1 INtroductioncviiuiiiiniiieeienrenernncenotennenecnssonsenacnns 37

© APP.L2 HATAWATE .unrteneeeeee e enannneeeeeeesnneeeesesnnneeesennnn 37
App.1.3 Software REQUITEMENtSc.o.vineeneerneeeenenarrecneencannnens 37
App.1.4 Software Timing Requirementsc.coueeverirennnrererecsonasnss 38
AppP.1.5 Priorities .. ooveiiitiiiiiiiiiiiieiieiiiairttiiiacrnrereiaaaasnns 38
App.1.6 HAS Buoy Stabilities and Variabilitiescoceeiviiieirninnnnn. 38

App.2 HASBuoy RDD-100Modelcoveriiniitiiiiiinninnrenreneeneenennns 40
App.2.1 System Top-Level Descriptionooiiiiiiiiiiiiiiiiiiiin.. 41
App.2.2 System-Level (“Originating™) Requirementsccovviiiniinnn.. 44
App.2.3 Design Constraintscoiieeiineiniineiineenseeneenaccnneennnas 48
App.2.4 Issues & DeCiSioNSovitiireiitiiiiiiiiiiiiiii ittt 48
App.2.5 Performance Indicesciiiiiiiiiiiiiiiiiiiiii it 51
App.2.6 Item Dictionaryoovuiieiniiiriieiiiiiiiieieenerieiiiincencones 52
App.2.7 COMPONENS ... vevutitininenniianenenreeeiessenenassenceseesncnsnns 57
App.2.8 Interfaces Between Componentscooviviiiiiiiiiineiiiniennnnns 61
App.2.9 System “Operational” Parameterscccevieeeiinnniinnceannns 63

App.3 HASBuoy COREModelciviniiieniiiiiiiiiiiiienieniieineanecennes 63
App.3.1 Mapping From RDD-100t0 COREoiiviiiirererensccnanncscannns 63
App.3.2 Teamwork-Filtered Version of HASBUOYccovvvineniiinnnencnnnns 65

App.3.2.1 Teamwork ProcessIndexcoovviiiiiiiiiiiiiiiiniiiiiiiaee, 65
App.3.2.2 Teamwork Data Dictionaryccoievueeeeeecsasnnccannscannas 66
App.3.3 The Remaining CoORE Work Productsccoevviniiiniinnnann.. 69
App.33.1 CoRE Infor;nation Model ..eeeii e 69
App.3.3.2 Environmental Variable Definitions eeeereiieanrseesnaane 70
App.3.3.3 Dependency Graphcoeiiiiienineeeerencennnnecanaseanss 71
App.3.3.4 Relations . ..cvvvitiiiiiiiiiiiiiiiiereeateossossscanaesnannsos n
APDP.3.3.5 ToIMS ..o viiiiiiiii it iiititittiiateretststtentoesanssinanns 74
App.3.3.6 Timing and Accuracy CONStraintseceeeecerorocencveones 74
App.3.4 Input and Output Variable Definitionsccoeveneennreanroneannns 75
APP3.5 MOAE ClasSes .. oovvvviieennenaesseocsacsoensenseesosssnsansosaonses 76

LIST OF ABBREVIATIONS AND ACRONYMS ...cuvuteeesscscscncesncosnacss 17

FIGURES

Figure 1. System Development Activitiescooiiiiiiiiiiiiiiiiiiiiiiiiinn, 2
Figure 2. The Proposed Processc.cciiieieeeeinenntoeearininnenenacansnnenens 6
Figure 3. The RDD-100 System Requirements Model, 8
Figure 4. The RDD-100 System Design Modelcooiiiiiiiiiiiiiiaiiin, 10
Figure 5. The CORE PIOCESSvvuvineinnniiinecnosareneanenesoransnnsacensansness 12
Figure 6. The CoRE Software Requirements Behavioral Model 13
Figure 7. The CoRE Four-Variable Model et ettesate it 14
Figure 8. HAS BuoyBehaviorModelovniiiiiieiiiiiiiiiiiiiiiinniieinienan 42
Figure 9. HAS Buoy Behavior Model Including Abstract Object Editor 43
Figure 10. HAS Buoy Component Hierarchyccooiieiiiiiiiiiiiiiieiiaieannes 58
Figure 11. HAS Buoy Context Diagramccevereieenneenecieeaneanronconenons 66
Figure 12. CoRE Information Modeloiiiiniiiiineiiiiiiiiiiiiniieannioass 70
Figure 13. Dependency Graph e 72
Figure 14. Example of a Lower Level Data Flow DiagramforaClass 72
Figure 15. Example of anINRelationcccieiinneiiiiiiiiiiiiiiiiiiiiiiinaan, 73
Figure 16. Example of anREQRelationccccviiiiiieeiiiiae, Geernrecens 73
Figure 17. Example of an OUT Relationcoiiiieeiiiniiiiiiiiiiinanioeaens 73
Figure 18. HASBuoyMode Classccoviviinenennerecinieenneeniosacecncnsesns 76

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

TABLES

CoRE Inputsinthe RDD-100Modelcviniiiiiiiiiiiiinnernennnannns. 21
CoRE Products inthe RDD-100Modelccoviviniiiiiiiiiiininnenennn. 22
Extended Schema for COREciiivtiiiiniiiiirieeiiiieiineeenncenanns 27
RDD-100 Elements Mappingto Teamworkcooiiiiiiiiiiiiiiiiinen.., 33
Teamwork’s Support for COREElementsccoiiiiiiiiiiiiiinineennns. 34
Sample Generated Data Dictionary Entrycooviiniiiiiiiiiieiinennnss 36
Mapping From RDD-100to CoRE e eecerectecttaeccncanaans 63
Mapping From RDD-100 to Initial CORE Productsc.cevivivinnne. 64
Mapping From RDD-100 to Additional CORE Productsc.ccoveinann.. 65

ACKNOWLEDGMENTS

The Consortium wishes to recognize those who contributed to the effort that resulted in this report:

Internal reviewers Mike Cochran, Steve Wartik, and Roger Williams

External reviewers Larry Flesher (Boeing), Joel O’Rourke (Ascent Logic Corporation), Mark
Pampe (Boeing), and Chuck von Flotow (Martin Marietta)

Howard Lykins and Doug Smith, who contributed to the CoRE solution for the HAS Buoy
problem

Project manager Stuart Faulk

Technical editor Mary Mallenee, administrative word processor Deborah Tipeni, and
proofreader Tina Medina

This page intentionally left blank.

EXECUTIVE SUMMARY

This technical report describes how to develop a specification of software requirements using the
Software Productivity Consortium Requirements Engineering (CoRE) software requirements
method from a system requirements and design specification developed using Ascent Logic
Corporation’s RDD-100. Specifically, this report describes the transition from system design to
software requirements analysis when:

¢ RDD-100 has been used to create system requirements and design specifications.

* The software requirements analysis activity is to be performed according to the CoRE
method.

RDD-100 is the implementation of the Requirements Driven Design (RDD) system design and
engineering method (Ascent Logic Corporation 1992a), wherein the system design is driven by the
customer’s expectations of system behavior. CORE is the Software Productivity Consortium’s
software requirements engineering method (Software Productivity Consortium 1993) created to
support the development of precise, testable specifications that are demonstrably complete and
consistent.

An RDD-100 system model contains all of the information needed to begin building a CoRE software
requirements specification. This report describes a process and guidelines for building a CoRE
software requirements specification from an RDD-100 system model. The process consists of the
following high-level activities:

¢ Identifying sources of the necessary CoRE information in the RDD-100 model
¢ Mapping that information to an initial CoRE specification
¢ Completing the CoRE specification

The Consortium’s experience in the use of CoRE with RDD-100 is based on the development of a
CoRE specification of software requirements for the Host-at-Sea (HAS) Buoy problem from an
RDD-100 model of system requirements and design. The guidance provided in this report documents
the Consortium’s experiences and lessons learned from this case study.

This page intentionally left blank.

1. INTRODUCTION

The RDD-100 tool was developed to support a systems engineering process wherein the system design
isdriven by the customer’s expectations of system behavior. The Consortium Requirements Engineer-
ing (CoRE) method is a software requirements engineering method supporting the development of
precise, testable specifications that are demonstrably complete and consistent. The Requirements
Driven Design (RDD) systems engineering methodology supported by RDD-100 is generally
unrelated to the CoRE method, meaning that any direct support from RDD-100 for CoRE is coinci-
dental. Therefore, the best approach to using RDD-100 and CoRE together is to determine how to
transition from system specification using RDD-100 to software requirements analysis using CoRE.

1.1 PURPOSE OF THIS REPORT

The purpose of this report is to describe how best to develop a CoRE software requirements
specification from an RDD system design model developed using RDD-100. That is, given an
RDD-100 model of system requirements and design, this report describes how one can most
effectively develop a specification of software requirements using the CoRE method. Cadre’s
teamwork can be used to build a CoRE software requirements specification and is assumed to be the
tool of choice for the CoRE practitioner.

An RDD-100 system model contains all of the information needed to begin building a CoRE software
requirements specification. This report describes a process and guidelines for building a CoRE
software requirements specification from an RDD-100 system model. The process consists of the
following activities:

e Use Ascent Logic’s Extender to extend the RDD-100 database schema so that it recognizes
CoRE elements (optional).

e Given an RDD-100 model of system requirements and design from systems engineering,
identify those parts of the model that systems engineers need for CORE (making use of the
extended RDD-100 database schema if possible).

¢ Generate a report from the RDD-100 model to facilitate mapping to CoRE elements
(optionai).

* Filter the RDD-100 model into teamwork using Ascent Logic’s teamwork bridge (optional).

¢ Create an initial CoRE specification from the RDD-100 model (usmg the generated
teamwork mode] and/or CoRE report to facilitate if possible).

¢ Complete the CoRE specification and begin software design.

1. Introduction

Both the CoRE method and RDD-100 tool are continually evolving to include new features and
capabilities. This report is based on the Consortium Requirements Engineering Guidebook, version
01.00.09 (Software Productivity Consortium 1993) and RDD-100, release 3.0.2 (Ascent Logic
Corporation 1992a). Subsequent versions of this report will encompass additional features of
enhanced versions of CoORE and RDD-100. Release 4.0 of RDD-100 was delivered during the
production of this report.

1.2 BACKGROUND

Figure 1 presents a simplistic, high-level view of the activities performed in developing a system. First,
the system requirements are analyzed, and then a system design is created by allocating requirements
to hardware and software components. Then, hardware and software development occurs in parallel.
This reportis only concerned with software development. Software development consists of three acti-
vities: requirements analysis, design, and implementation. This report describes the transition from
system design to software requirements analysis when both of the following are true:

e RDD-100 has been used to create system requirements and design specifications.

e The software requirements analysis activity is to be performed according to the CoORE

method.
System
Requirements - Software)
Hardware
Development

Figure 1. System Development Activities

The shaded region in Figure 1 identifies those activities of system development that are addressed by
this report. A small portion of the system design box is shaded because, near the end of system design,
some information not traditionally provided by an RDD-100 specification can be provided to ease the
transition to software requirements analysis using CoRE. The entire software requirements analysis
box is shaded because a significant portion of the CoRE method is affected by the use of an RDD-100

specification.
1.3 QUESTIONS TO BE ANSWERED

This report is intended to provide detailed answers to the following questions:

* Given an RDD-100 specification of system requirements and design, how can an engineer
most effectively develop a specification of software requirements using the CoORE method?
(An engineer can use the approach shown in Figure 2 and described throughout the remaining
sections of the report.)

1. Introductioa

¢ Does the RDD-100 system specification contain all the information an engineer needs to build
a CoRE specification? ('Yes, see Section 3.2.)

e How does an engineer map system requirements expressed in RDD-100 to CoRE? (See
Section 2.3.)

¢ Canthe RDD-100database schema be extended to include the CoRE schema? (Yes, however,
Ascent Logic’s Abstract Object Editor provides better support for the CoRE schema, as
described in Section 4.)

o Can a CoRE specific report be generated using RDD-100’s Report Writer that will facilitate
the development of 2 CoRE specification from an RDD-100 model? (Yes, as described in
Section 5.)

e Can the RDD-100 bridge to teamwork support an automated transition from an RDD-100
system design to a CoRE software requirements activity using teamwork? (Yes, as described
in Section 6.)

This report answers these questions and includes a supporting example.

1.4 INTENDED AUDIENCE

This report s intended to guide software requirements engineers in developing a CoRE specification
from an RDD-100 system specification. The systems engineer using RDD-100 to develop a system
design can use this report to help identify the kinds of information that a software requirements engi-
neer using CoRE would expect to find in the RDD-100 model, thus allowing smoother transition from
system design to software requirements and design. This report can be used by process and method
developers to help describe an engineering process, including both the RDD-100 tool and the CoRE
method.

It is assumed that readers of this report have a fundamental understanding of RDD-100 and CoRE.
Although this report contains brief overviews of RDD-100 and CoRE, readers should be familiar with
RDD-100 User’s Guide (Ascent Logic Corporation 1992a) and Consortium Requirements Engineering
Guidebook (Software Productivity Consortium 1993) before reading this report.

1.5 ORGANIZATION OF THIS REPORT
The remainder of the report is organized as follows:
* Section 2 provides overviews of RDD-100 and CoRE and compares and contrasts them.

» Section 3 describes an approach for deriving a CoRE software requirements specification
from an RDD-100 system design specification. It describes where to look in the RDD-100
model for information needed by CoRE and describes how to build the CoRE model from the
RDD-100 specification.

* Section 4 describes how systems engineers might extend the standard, underlying database
schema of RDD-100 so that it recognizes CoRE constructs and, therefore, facilitates mapping
from an RDD-100 model to a CoRE model.

* Section 5 describes a CoRE specific report that can be generated using RDD-100’s Report
Writer to facilitate the development of a CoRE specification from an RDD-100 model.

e Section 6 describes how to use the RDD-100 bridge to Cadre’s teamwork/RT tool for those
using teamwork/RT to build a CoRE specification.

¢ The Appendix contains selected examples from the Host-at-Sea (HAS) Buoy system case
study that illustrate the approach described in this report.

1.6 TYPOGRAPHIC CONVENTIONS
This report uses the following typographic conventions:

Seriffontcoi0iiiinnn. General presentation of information.

Italicized seriffont Publication titles and, in the Appendix, eclement
relationships and attributes.

Boldfaced seriffont Section headings and emphasis.

Boldfaced italicized serif font Run-in headings in bulleted lists and, in the Appendix,
minor subsections.

Ralicized sans serif font RDD-100 element names.

Typewriterfont Syntax of code or software responses.

2. OVERVIEW

This section provides an overview of the process and framework upon which the remainder of the
report is based. The proposed process for developing a CoRE specification from an RDD-100
specification is composed of the following activities:

e Use Ascent Logic’s Extender to extend the RDD-100 database schema so that it recognizes
CoRE e¢lements (optional).

¢ Given an RDD-100 model of system requirements and design from systems engineering,
identify those parts of the model that systems engineers need for CoRE (making use of the
extended RDD-100 database schema if possible).

e Generate a report from the RDD-100 model to facilitate mapping to CoRE elements
(optional). |
* Filter the RDD-100 model into teamwork using Ascent Logic’s teamwork bridge (optional).

¢ Create an initial CoRE specification from the RDD-100 model (using the generated
teamwork model and/or CoRE report to facilitate if possible).

e Complete the CoRE specification and begin software design.

Figure 2 illustrates the prope-sd process and shows how it fits into the system development process
illustrated in Figure 1. Boxes represent activities, and arrows indicate sequencing; iteration is implicit
and is not shown. External activities are those performed as usual, regardless of the use of the pro-
posed process (although some assumptions must be made about the RDD-100 system design model,
asdescribed in Section 3.1). Required and optional activities are those activities performed specifical-
ly when building a CoRE specification from an RDD-100 system design model, as described in this

report.

Although Figure 2does notillustrate it, the process is iterative, meaning that the sequence of activities
may be repetitive (i.c., all arrows in Figure 2 are really bidirectional). For example, after building an
initial CoRE specification, systems engineers might decide to revisit the Identify CoRE Inputs activity
because of the acquisition of new or clarifying information.

The remainder of this section provides context for the remainder of this report. Sections 2.1 and 2.2
describe the relevant features of RDD-100 and CoRE, respectively. Section 2.3 compares and
contrasts RDD-100 and CoRE.

2.1 RDD-100

RDD-100 is the implementation of the RDD system design and engineering method (Ascent Logic
Corporation 1992a). RDD encompasses both an empirically derived method for designing systems

2. Overview

Required —7

Activities Identify CoRE Build Initial Complete
Inputs in the —3| CoRE -3 the CoRE
RDD-100 Model Specification Specification

and the rigorous use of a structured, exccutable language that implements an
entity-relationship-attribute (ERA) data model for the systems engineering database. Because of the
generality allowed by the ERA data model, RDD-100 is equally at home whether used to model an
enterprise, a manufacturing process, a large communications system, a subsystem, or relatively
low-level behaviors, such as communications protocols. RDD-100 has implemented the ERA model
using an object-oriented database, which contains only one instance of the system’s descriptive data
and provides multiple views of the data for the design and analysis activities.

Antomated components of RDD-100 that are of particular interest include (O’Rourke 1993):

® Element Editor. Provides an interactive mechanism for specifying and traversing RDD-100
database elements, their attributes, and relationships between them.

® Requirements Extractor. Facilitates the specification of a system requirement hierarchy by
extracting portions of requirements documents.

* Graphics Editor. Permits engineers to describe the dynamic properties of systems using a
graphics language describing behavior in terms of the time sequences of inputs, functions, and
outputs.

® Dynamic Verification Facility. Provides dynamic execution of the system specification as a
discrete event simulation from within the systems engineering database.

® Extender. Allows the user to extend the underlying ERA database schema of RDD-100 to
accommodate more specialized needs (e.g., the engineering change proposal process or the
proposal development process).

2. Overview

® Report Writer. Allows the generation of predefined or tailored reports from the RDD-100
database.

* Teamwork Bridge. Automatically generates a teamwork model from an RDD-100 database.

This section provides a high-level description of RDD-100s systems engineering method (see Section
2.1.1) and data model (see Section 2.1.2) to establish a framework for subsequent sections.

Release 4.0 of RDD-100 provides additional tools for manipulating the contents of the database,
including a multiclement editor and abstract object modeling. Section 2.1.3 provides a brief overview
of how those capabilities may be useful for CoRE specifications. However, the details of Release 4.0
capabilities are beyond the scope of this paper.

2.1.1 RDD-100 METHOD

RDD, the method underlying the RDD-100 tool, is aimed at finding a way to develop
high-performance, high-reliability systems composed of hardware, software, and people. O’'Rourke
(1993) describes the RDD-100 method as a process wherein the system design is driven by the
customer’s expectations of a system behavior, which is traced directly to system requirements and
their original source. The system design is expressed as an allocation of system behaviors (functions)
onto the various components that will compose the implemented system.

O’Rourke (1993) describes the RDD-100 method as the following set of activities:
* Define the engineering problem and system boundaries.
¢ Define a candidate component architecture.
¢ Extract and index requirements; describe desired behavior.
* Decompose and allocate behavior to components (i.c., hardware, software, people, etc.).
¢ Identify and specify interfaces.
e Perform feasibility and tradeoff analysis.
® Describe failure mode behavior.
¢ Plan system integration and test.
e Optimize design.
* Generate specifications and documentation.
¢ Perform verification and validation against expected behavior.

In the context of this report, the first three activities in the above list are considered system
requirements activities. The remaining activities are part of the system design process.

2.1.2 RDD-100 MobEL

The RDD-100 model includes two kinds of elements: those that are part of the system requirements
model and those that are part of the system design model. RDD-100 system requirements elements
of interest for this report include the following (Ascent Logic Corporation 1992a, 1993a):

2. Overview

e Source records the paper input to the system design process.

e SystemRequirement is a detailed functional, performance, and interface requirement derived
over the life of the system specification process.

e Criticallssue is a problem, issue, or limitation.

e Decision is a choicc that has been made to establish requirements based on
SystemRequi .

* Performanceindex is a quantifiable performance limitation or objective.
e Constraint is a required quality or resource limitation on other elements.

o SystemParameter is an operating parameter that may affect cost and/or performance during
development and/or operation.

Figure 3, derived from Ascent Logic Corporation (1993a, 1.5—1.13), illustrates the fundamental
clements and relationships underlying the RDD-100 model of system requirements. All of the
relationships in Figure 3 are bidirectional: arrowheads are used to identify the directions implied by
the relationship names.

ot
Source - I— _______ -
{ Any Element :
{Performanceindex,
Incorporates Documents Traces to, i Constraint, :
Documents ‘ LSystﬁm_mueia,_d:L.
Critical Issue | Traces
T
Requirement [Tracesto | .
Traces to, Traces to,
Documents Traces to
Decision

Figure 3. The RDD-100 System Requirements Model
RDD-100 system design elements of interest for this report include the following:
* Items are model-observable inputs and outputs that arrive at or depart from the system.
— Discreteltom arrives as a unit, represents the limit of observability.

~ Timeltem is a class of legal sequences of Discreteftems.

2. Overvi

¢ Functions transform arriving items into departing items.

— DiscreteFunction transforms one Discretelftem into an unordered collection of
Discreteftems.

— TimeFunction is an aggregation of DiscreteFunctions or TimeFunctions that transforms
an ordered collection of Discretelterns or Timeltems into an ordered collection of
Discreteltems.

e Component is one of the parts (hardware, software, or human) in a system, for example, a

subsystem.

e Graphic constructs represent concurrency, iteration, loops, conditions, selection, and
replication.

— [INet represents sequences of inputs or outputs.

— FNet represents sequences of behavior (functions).
e ftemlink is a logical pathway that carries a message item from one RDDProcess to another.
e ExternalSystem is a separate system outside the required system’s boundary.

* Interface is a mechanism for items to flow across the system boundary or from one component
to another.

Figure 4 illustrates the fundamental elements and relationships underlying the RDD-100 model of
system design. The legend identifies the names of the relationships that identify how the source
clements on the left side of Figure 4 relate to the target elements on the right side of Figure 4.

2.1.3 RDD-100 RELEASE 4
The following new products from Release 4 of RDD-100 may provide improved support for CoRE:

e Multi-Element View. Provides the ability to view and edit multiple RDD-100 database elements
and relationships in a single window. Among other advantages, this tool should facilitate
decomposition of Source documents into hierarchies of SystemRequirements.

o Abstract Object Editor (and Real World Object Editor). Provides the ability to overlay a database
schema on top of the existing one. This tool allows the user to tailor an RDD-100 model for
methods such as CoRE and obviates the need to modify the RDD-100 database schema, as
described in Section 4.

A future release of this report will discuss Release 4.0 of RDD-100 in detail.
2.2 CoRE
CoRE is a method for analyzing, capturing, and specifying software requirements (Software

Productivity Consortium 1993). The Consortium has worked with industrial developers of real-time
and embedded systems to provide a method that addresses their needs. CoRE supports the

2. Ovarview

FNet —
System
10 2
11 8
% interface
3
System 11 3
Remiink 8 TimeFunction
pe— % " Legend
1 Allocated to
/ CMIPM 2 Buittin
8 3 Connected to
Interface < 4 4 Composed of
5§ Inputs
ftemlink 6 Referred by
Discreteitem 7 7 Carried by
8 Serviced by
9 InContext of
INet ;‘1’ Decomposes

1
Timeltem / Performs
1 / s Discreteltem
5

IZ p L — FNet

65— Timeltem

Figure 4. The RDD-100 System Design Model

development of precise testable specifications that are demonstrably complete and consistent. CoORE
also supports key process issues, such as managing changing requirements and reuse. CoRE is a single,
coherent requirements method that:

Integrates Object-Oriented and Formal Models. A CoRE specification organizes the details of the
behavioral model into classes of objects, which provides a mechanism for abstraction, separa-
tion of concerns, and information hiding. Systems engineers use the CoRE class structure to
address objectives like change management or reuse.

Integrates Graphical and Rigorous Specifications. Graphic representation helps all parties (e.g., -
customers, engineers, designers, and programmers) to grasp essential relationships among
system components. CoRE provides a consistent, rigorous interpretation of both graphical
and mathematical notations. This allows the graphical specifications to combine smoothly
with the detailed specifications that are best given in mathematical and textual notation.

Uses Existing Skills and Notations. The 1anguage used to specify requirements in CoRE is based
on familiar concepts and existing notations.

Permits Nonalgorithmic Specification. CoRE is nonalgorithmic in the sense that systems
engineers can specify the required behavior of a system without having to provide an algorithm

10

2. Overview

or detailed design; i.c., systems engineers can always specify the behavior in terms of what the
system must do rather than how it does it.

» Provides Guidance. The CoRE process model provides practical guidance in developing both
the object structure and the behavioral requirements. The behavioral model provides a stan-
dardized structure that helps the developer determine the class structure. The behavioral
model also forms the basis of a systematic process for developing a complete requirements

specification.

Requirements in CoRE are written in terms of two underlying models: the behavioral model and the
class model. The CoRE process describes the order in which the specification is composed, the behav-
ioral model captures what the software must do, and the class model organizes that information. Sec-
tion 2.2.1 provides an overview of the CoRE process, Section 2.2.2 describes the behavioral model,
and Section 2.2.3 describes the class model.

2.2.1 CoRE PROCESS OVERVIEW

The CoRE process is a sequence of activities that systems engineers follow to develop a CoRE
requirements specification. The CoRE process is driven by two concerns. The first concern is the
step-by-step construction of a required behavior specification in terms of the CoRE behavioral model
for a particular system. The goal is to develop a complete and consistent description of the required
behavior. The second concern is the step-by-step packaging of specification pieces in elements of the
class structure. This aspect of the method satisfies packaging goals, such as change management and
reuse. Because packaging and specification activities overlap in time, the threads of these activities
are intertwined in the CoRE method.

The input to the CoRE process is some form of system requirements specification (i.e., the first
activity, identifying system constraints, assumes that a system specification is available). The output
of the CoRE process is a complete specification of the software requirements (i.e., suitable for a
software design process).

The CoRE process is a description of an “ideal” process. The process is idealized rather than “real”
in that it does not account for errors, requirements changes, unknown requirements, or other factors
requiring additional iteration, experimentation, or backtracking. An ideal process is useful because
it provides an external standard to guide development and it serves as a yardstick for measuring
progress. Thus, the ideal CoRE process is divided into a sequence of five activities:

o Identify Environmental Variables. Systems engineers identify candidate environmental
variables and the relations among them. The overall goal is to identify environmental
quantities that denote the monitored and controlled variables, relationships that will become
parts of the required (REQ) and natural (NAT) relations, and relationships that will become
part of the generalization/specialization structure. Identify likely changes and their impacts
on these environmental variables.

» Preliminary Behavior Specification. Systems engineers identify and specify the monitored and
controlled variables. They identify undesired events to which the system must respond and de-
fine monitored variables to denote them. They identify the domain and scheduling type for
each controlled variable and identify modes.

11

2. Overview

¢ (Class Structuring. Systcms engineers create a class structure to address their packaging goals.
They decide how the parts of the behavioral model will be allocated among CoRE classes.
They create boundary, mode, and term classes based on their packaging goals. They define the
class interfaces and identify class dependencies.

® Detailed Behavior Specification. Systems engineers complete the class definitions by completing
the specification of the controlled variable functions and timing constraints for each con-
trolled variable. They refine the class structure to be consistent with the behavioral model
needs.

® Define Hardware Interface. Systems engineers define the system inputs and outputs and define
the input (IN) and output (OUT) relations.

Figure 5 (from Figure 6-1 of Software Productivity Consortium 1993) illustrates the five activities of
the CoRE process along with their corresponding work products. Those work products and activities
whose development is affected by the use of an RDD-100 system design mode] are shaded.

CoRE

System Component " Comstraints
2 _ Specification

Figure 5. The CoRE Process
2.2.2 CoRE BEHAVIORAL MODEL

The CoRE behavioral model provides a standard formal model for specifying the required behavior
of an embedded system. The behavioral model represents the semantics of the requirements
specification. Figure 6 illustrates the underlying behavioral model of CoRE.

2. Overview

This section is divided into three subsections, each of which describes a part of the behavioral model
that s of particular interest for this report: environmental variables (Section 2.2.2.1), input and output
variables (Section 2.2.2.2), and four-variable relations (Section 2.2.2.3).

Four-Variable Four-Variable
Relation Subrelation
———L REQ REQ Subrelation
Behavior ———% NAT To NAT Subrelation
Specification
IN L IN Subrelation
4 our ~P*| OUT Subrelation
Term
Environmental Input/Output .
" Variable Variable Mode Machine
Mode Invariant
Monitored Input Variable
]
to
Controlled Output Variable Transition from Mode
!

Figure 6. The CoRE Software Requirements Behavioral Model

2.2.2.1 Environmental Variables

Environmental variables are physical quantities of interest in the environment of a system. For
example, air pressure is of interest to an automotive engine-control system. There are two kinds of

environmental variables:

* Monitored Variables. Environmental quantities the system must track (e.g., the ambient air

pressure).

* Controlled Variables. Environmental quantities the system sets (e.g., the fuel flow to the

cylinders).

2.2.2.2 Input and Output Variables

Input and output variables are variables representing discrete inputs or outputs of the software. The
complete definition of an input (output) variable describes precisely how the software reads from
(writes to) a device, including the protocol for reading from (writing to) a device and a mapping
between abstract values and the bit patterns read from (written to) the device.

13

2. Overview

2.2.2.3 Four-Variable Relations

Four-variable relations contain ordered pairs of environmental variables and input and output
variables. There are four kinds of relations in the CoRE behavioral model:

e NAT.NAT specifies the external constraints on the values that the environmental variables can
assume. These constraints are properties of the environment that affect the software but exist
independently of the software.

* REQ. REQ specifies properties that the system is required to maintain between monitored
and controlled variables. The REQrelation is the fundamental means of specifying behavioral
requirements with CoRE.

e IN.IN expresses values taken on by the monitored variables as a function of bit settings or
other low-level hardware settings (input variables).

e OUT. OUT specifies values of controlled variables as a function of the values of output
variables.

Figure 7 illustrates how these variables are related by the four kinds of relations.

um

Moni Controlled

Variable \—/ Variable

IN NAT OUT

Input Variable Output Variable
Figure 7. The CoRE Four-Variable Model

2.2.3 CoRE Crass MODEL

The CoRE class model provides a set of facilities for packaging the information in a CoRE
specification. The class model allows you to divide the specification into relatively independent parts
and to control the relationships between parts. The class model is not intended to imply any
requirements about the behavior of the software.

The information in the four-variable model is partitioned among a set of CORE classes. A CoRE class
is a template for defining a subclass or object (conversely, an object is always an instance of a class).
Systems engineers determine such characteristics as the number of classes, what information is hidden
by eachclass, and which parts of the model are allocated to the same class based on their overall goals
for the requirements structure. There are three kinds of CoRE classes:

* Boundary Classes. Contain the definitions of the system’s monitored and controlled variables.
® Mode Classes. Encapsulate mode machine definitions and provide mode information.

® Term Classes. Provide any terms (named expressions of monitored variables) not provided by
the boundary and mode classes.

14

2. Overview

CoRE’s class model exists with quite different motivations than those of design and implementation
methods. CoRE deals with objects and classes as buckets for containing interesting parts for the sake
of designing the specification rather than the system. Designing a specification with classes differs
from designing a system for object-oriented implementation in the following ways:

¢ The CoRE class structure is part of the requirements specification, intended to facilitate
packaging; it is not part of the system itself. It may be that a different class structure will be
applied to the system during implementation.

¢ Although CoRE recognizes an inheritance from superclasses, the idea of class structure for
encapsulating (hiding) information and the depends-on relationship between specification
objects are much more important.

The inheritance relationship is a dominant feature of the structure of programs to be built with
object-oriented implementation languages primarily because of the overwhelming importance of
reusing code from superclasses. Code reuse and, consequently, the inheritance relationship are not
typically critical concerns during requirements specification.

The classes in a CoRE specification are best viewed as “cell walls” created to contain:

z

¢ Encapsulated information (secrets)

* Parts of the system that are likely to change, as opposed to those prone to remain stable

2.3 COMPARING RDD-100 AND CoRE

RDD-100 supports system requirements analysis and design, where a system is made up of hardware,
software, and people. CoRE supports software requirements analysis. For CoRE to be applied to a
software system that is part of a larger system specified using RDD-100, the RDD-100 model must
(and does) contain all of the information needed to build a CoRE specification. Of course, the CORE
requirements writer must know which parts of the RDD-100 model are useful for CoORE and which
are not. -

The earliest activity in the RDD-100 process consists of decomposing system requirements
documents into hierarchies of individual system requirements. The subset of these system
requirements related to the software subsystem being specified using CoRE along with any related
RDD-100 database elements derived from them provides the basis for a CoRE specification.

RDD-100 encourages the systems engineer to define the environment in which the proposed system
will operate. The environment includes those external systems and environmental entities that have
an effect upon the system and those variables that are transferred between the system and the environ-
ment or external system. This information is essential to a CoRE specification, which specifies the
required relationships between variables that are monitored by the software system and those that are
controlled. RDD-100 captures this information using behavior diagrams and provides automatic
translation to the context diagram format recognized by CoRE.

CoRE provides powerful techniques for nonalgorithmic expressions. CoRE’s focus is on tabular
mathematical descriptions of actions as a function of events, conditions, and modes. RDD-100 does
not currently support this notation; it allows specification of behavior using flowlike descriptions for

15

2. Overview

timing and sequencing (behavior diagrams). RDD-100 was not intended to and does not provide the
tools necessary to build a CoRE software requirements specification.

RDD-100 offers robust modeling features for analyzing a system design. The system design is
specified using a hierarchy of behavior diagrams. Making a design analyzable requires the system
designer to include decisions related to logic, sequencing, or concurrency in the behavior diagrams.
From the CoRE perspective, these kinds of decisions may be considered design decisions that should
be avoided during software requirements analysis. As a result, a completed RDD-100 specification,
composed via the RDD methodology, may have more information than is necessary to build a CoRE
specification. More precisely, it is likely that only the highest level behavior diagrams in the RDD-100
model’s hierarchy will be needed for CoRE.

In summary, an RDD-100 system model does not contain all of the information that a CoRE software
requirements specification contains. There is an inherent difference in the level and amount of detail
between system and software specifications. The software specification contains requirements that
are derived from the system specification. A complete CoRE specification cannot be automatically
generated from an RDD-100 specification. However, RDD-100 is a suitable starting point for CORE
because it contains all of the information needed to begin CoRE. The CoRE requirements writer must
know where in an RDD-100 model to find relevant pieces of information and how to build a CoORE
specification from them. The best use of RDD-100 with CoRE is to build the CoRE specification with
a more appropriate tool, such as teamwork, and to make use of the facilitiecs RDD-100 provides for
transitioning from system design using RDD-100 to software requirements using teamwork (and
CoRE).

16

3. AN APPROACH FOR DERIVING A CoRE MODEL
FROM AN RDD-100 MODEL

This section describes an approach, including the process, guidelines, and examples, for deriving a
CoRE software requirements model from an RDD-100 system requirements and design model. The
activities involved in this approach include:

e Building the RDD-100 model (Section 3.1)
* Identifying CoRE inputs in the RDD-100 model (Section 3.2)

e Mapping the information contained in an RDD-100 model to an initial CoRE specification
(Section 3.3)

¢ Completing the CoRE specification (Section 3.4)
This set of activities is not intended to be strictly sequential; iteration is expected.

3.1 BUILDING THE RDD-100 MODEL

To describe an approach for deriving a CoRE model from an RDD-100 model, it is necessary to make
some assumptions about what is contained in the RDD-100 model. This section describes the assumed
process for developing a system requirements model using RDD-100. The intention is to provide the
least number of constraints possible so that the approach is applicable to the widest possible range of
established RDD-100 users.

The assumed process includes a subset of those activities described in Alford (n.d.). The RDD-100
model should not be built any differently than usual, but for the purposes of CoRE, it is assumed that
a minimal set of activities has been performed. The assumed process for developing a system
requirements model using RDD-100 includes:

e System requirciients analysis (Section 3.1.1)

» System functional analysis (Section 3.1.2)

e System design (Section 3.1.3)
Section 3.1.4 offers some suggested tactics for building the RDD-100 model for those systems
engineers who know beforehand that CoRE will be used to specify software requirements.
3.1.1 RDD-100 SysTEM REQUIREMENTS ANALYSIS

The RDD-100 system requirements analysis activity begins by identifying individual system
requirements statements from requirements documents (e.g., a mission statement). Each such

17

3. An Approach for Deriving a CORE Mode! From an RDD-100 Mode!

requirements document is identified in the RDD-100 database by creating an associated element of
type Source. The RDD-100 requirements extractor can be used to parse a textual document and to
create a hierarchy of individual system requirements in the database, known as SystemRequirement
clements. The resulting relationships between elements are:

e Documents relationships are created between Source elements and the SystemRequirement
elements they contain.

* Incorporates relationships are created between SystemRequirement elements and their child
SystemRequirement clements in the hierarchy.

Criticallssue elements are created for recording technical issues critical to the successful development
of the system. Documents relationships relate Source elements to Criticallssue elements, and TracesTo
relationships record their traceability from SystemRequirement elements. When critical issues are
resolved, their resolutions are recorded in Decision elements, and TracesTo relationships are used to
relate these clement pairs. Decision clements may result in the creation of additional
SystemRequirement elements, and TracesTo relationships are also used to relate these element pairs.
Documents relationships may also relate Source elements to Decision elements. Figure 3 illustrates the
elements and relationships supporting the RDD-100 system requirements analysis activity.

For the HAS Buoy case study described the Appendix, there were two Source elements: the HAS Buoy
problem statement (see Section App.1) and a list of requirements stabilities and variabilities (see Sec-
tion App.1.6). Section App.2.2 documents the hierarchy of SystemRequirement elements. Criticallssue
and Decislon elements are described in Section App.2.4.

3.1.2 RDD-100 SysTteEM FUNCTIONAL ANALYSIS

Inthe RDD-100 system functional analysis activity, systems engineers develop a functional model that
reflects the functional requirements of the system (Alford n.d.). The goal is to develop a functional
model that represents the desired behavior of the system. During this activity, systems engineers will
define how the system will logically operate and provide a basis of how the allocated design must
behave. This activity consists of identifying system subsets called Components, whose behaviors are
specified using behavior diagrams.

Begin the RDD-100 system functional analysis activity by decomposing the system into Components
as follows:

¢ Create a Component clement of type System representing the entire specification, with the
name of your system (Components of a particular type are created by setting the Component
Type attribute of the Component accordingly).

» Create Component clements of type ExternalSystem representing systems external to your own
with which your system must interact.

* Create Component elements of type Environment representing entities in the environment that
have an effect on your system.

¢ Create Component elements of other types (€.8., Subsystem, CSCI, etc.) representing internal
parts of the system such that all SystemRequirement elements have been mapped to a

3. An Approach for Deriving s CORE Model From an RDD-100 Model

Component clement (either directly by the TracesTo relationship or indirectly through the
functional model).

Specify the behaviors of these Components as follows:

e Specify the behavior of the System Component element by creating a behavior diagram (FNet)
that contains the functions performed by all related ExternalSystem, Environment, and other

Components.

e Create a HasContext relationship between the System Component element and the FNet
clement.

» Specify interactions between Components using elements of type Timeltem, Discreteltern, or
Interface.

e Describe the precise behavior of an individual Component clement by decomposing and
allocating functionality to TimeFunction and DiscreteFunction elements.

e Specify timing requirements in the “duration” attributes of Functions for subsequent
modeling. Create Performancelndex elements as necessary to capture timing requirements.

e Create additional Criticallssue and Decision elements during this activity as you realize their
need.

The remaining, lower level details of the behavior diagrams are completed such that sufficient detail
is provided to allow RDD-100 to execute the behavior diagram using the Dynamic Verification Facil-
ity. These lower level details are considered design by CoRE: although some may imply constraints
upon the software requirements, others may not be used during the application of CoRE.

Section App.2.7 of the HAS Buoy case study describes the Component clements that were identified
and shows the hierarchy graphically.

3.1.3 RDD-100 System DESIGN

System design is the final activity of the RDD-100 process. The RDD-100 system design activity
consists of allocating the system behavior (functionality) to the system architecture (Alford n.d.). The
engincer should consider several allocation strategies, which can be evaluated using the Dynamic
Verification Facility. ' :

System design using RDD-100 is performed by creating AllocatedTo relationships between
DiscreteFunction clements and Component elements. DiscreteFunction elements are aggregated to
reflect the behavior of the Component (i.c., show inputs, outputs, and the logic the Component is to

perform).

Section App.2.7 identifies the AllocatedTo relationships that were identified for the HAS Buoy case
study.

19

3. An Approach for Deriving 3 CORE Model From an RDD-100 Model

3.1.4 Tacrics THaT SurPorT CORE

This section offers some suggested tactics for building the RDD-100 model for those systems
engineers who know beforehand that CoRE will be used to specify software requirements:

¢ Use techniques that allow you to isolate those parts of the RDD-100 model that are likely to
map to CoRE elements (i.c., those RDD-100 elements identified in Sections 3.1.1 through
3.1.3). For example, use naming conventions for identifying those RDD-100 elements that are
of particular interest to CoRE (e.g., Components, Discreteltems, etc.). In the HAS Buoy exam-
ple, the names of RDD-100 elements of interest to CoRE were capitalized, while those that
were not of interest were stated in lower case.

e When using RDD-100 and creating elements that will later become part of a CoRE
specification (e.g., monitored variables, terms, etc.), make sure that these elements are not
used in ways contrary to the use of CoRE. For example, perform modeled manipulations on
Discreteltens that you expect to become monitored variables via a series of intermediate steps
so that you can represent these manipulations as CoRE terms, and store them in relevant
problem classes.

e Make the behavior diagram corresponding to the CoRE context diagram executable, and
avoid any more detail than is necessary to do so. RDD-100’s DVF is a useful tool for evaluating
a system design. However, DVF leads you to specify algorithmic FNets, which are likely to
provide more detail than is necessary for CORE.

* When using the element editor, specify as much CoRE-relevant information as possible when
recording the textual templates associated with elements (e.g., always specify the Description
attribute of elements). Also, make good use of the consistency checking, particularly the
“fundamental” and “system engineering” levels of checking.

An RDD-100 model is generally useful for CoRE, and the remainder of this report is based on the
assumption that the systems engineer using RDD-100 was not aware of the intent to subsequently
create a CoRE specification. However, if the systems engineer using RDD-100 is aware of a subse-
quent CoRE specification, the tactics described in this section should facilitate transition from RDD
to CoRE.

3.2 IDENTIFYING CoRE INPUTS IN THE RDD-100 MODEL

The RDD-100 system model should contain all of the information needed to begin building a CoORE
software specification. In fact, the RDD-100 model is likely to contain more information than is need-
ed for CoRE. In any case, the systems engineer should verify that the RDD-100 model contains the
necessary inputs to CoRE.

As Figure 5 shows, the necessary inputs to CoRE are: mission statement, system model, system
requirements specification, system component interface specifications, and requirements
information relating to system performance. This section is divided into five subsections describing
how each of these inputs might be recorded in an RDD-100 model. Table 1 summarizes the mapping
from RDD-100 schema elements to CoRE inputs and identifies where to locate candidate RDD-100
schema elements in the RDD-100 System Engineering Notebook (SEN).

3. An Approach for Deriving a CORE Model From an RDD-100 Model

Table 1. CoRE Inputs in the RDD-100 Model

Candidate RDD-100
CoRE Inpets Sel Element(s) Where Found (SEN Chapter)

Mission statement Source External to RDD-100—input documents
System model FNet (system context diagram) | FNet: context diagram is Figure 1-1

Component Components: Chapter 1, “System

Top-Level Description”

System requirements SystemRequirement Chapter 2, “System-Level Operating
specification Requirements”
System component Interface Chapter 10, “Interfaces Between Compo-
interface specifications Remlink nents”

Discreteitem

Timeitem
Requirements information | Performanceindex Chapter 7, “Performance Indices”
relating to system
performance

3.2.1 MISSION STATEMENT

The mission statement is a high-level description of system requirements. The CoRE requirements
writer should look at RDD-100 elements of type Source to find the mission statement.

For the HAS Buoy case study, the equivalent of the mission statement was the HAS Ada-based Design
Approach for Real-Time Systems (ADARTS®) Problem Statement in Section App.1, which was
identified in the RDD-100 database by a Source clement.

3.2.2 SysteM MoDEL

The system model is a functional description of the behavior of the proposed system. The CoRE
requirements writer should look at the RDD-100 behavior diagram (FNet) that models the behavior
of the entire system to find the system model. In the RDD-100 model, a Component element of type
System, named appropriately, should be related to an FNet by a HasContext relationship. This FNet
models the behavior of the entire system.

Figure 8 shows the system model for the HAS Buoy case study. Itis the behavioral model representing
the System Component clement.

3.2.3 SySTEM REQUIREMENTS SPECIFICATION

The system requirements specification is a detailed description of system requirements. The CoORE
requirements writer should look at the RDD-100 hierarchy of SystemRequirement elements to find the
requirements that make up the system requirements specification. RDD-100’s Report Writer
provides the capability to automatically generate reports, such as the system requirements
specification, using a variety of templates, including MIL-STD-490A, DOD-STD-2167A, or
user-defined specifications.

The hierarchy of SystemRequirement eclements (see Section App.2.2) or the entire
RDD-100-generated SEN (see Section App.2) could have served as the system requirements
specification for the HAS Buoy case study.

21

3 An Approach for Deriviag a CoRE Mode! From aa RDD-100 Model

3.2.4 SysTEM COMPONENT INTERFACE SPECIFICATIONS

System component interface specifications describe the interfaces between the subsystems in a system
and between the system and its environment. The CoRE requirements writer should look at RDD-100
Timeltem, Discreteitem, femLink, and Interface clements to find system component interface specifica-
tions. Of particular interest are those clements that are shared by the System Component element (sce
Section 3.2.2) and other Component elements.

Sections App.2.6 and App.2.8 of the HAS Buoy case study identify Timeltem, Discreteltem, ltemLink,
and Interface clements that may be included in the system component interface specification.

3.2.5 REQUIREMENTS INFORMATION RELATING TO SYSTEM PERFORMANCE

Requirements information relating to system performance typically specify end-to-end system timing
requirements. The CoRE requirements writer should look at RDD-100 Performanceindex clements
to find requirements information related to system performance. However, during subsequent CoRE
activities, the requirements likely to identify additional timing and accuracy requirements (e.g., for
REQ relations) are not and should not be contained in the RDD-100 model.

Section App.2.5 identifies the Performanceindex elements for the HAS Buoy case study.

3.3 MAPPING THE RDD-100 MODEL TO AN INITIAL CoRE SPECIFICATION

This section describes how elements of an RDD-100 system design model map to a CoRE software
requirements specification. Based on the RDD-100 approach described in Section 3.1, it describes
what elements of the CoRE model are most likely to be found in the RDD-100 model.

As Figure 5 shows, the first CoRE activity, Identify Environmental Variables, includes development
of the following: CoRE information mode}, candidate environmental variables, likely changeslist, and
environmental constraints specification (NAT). This section is divided into four subsections, each of
which describes what parts of an RDD-100 model contain the information needed to build one of
those products. Table 2 summarizes the mapping from RDD-100 schema elements to CoRE products.

Table 2. CoRE Products in the RDD-100 Model

Candidate RDD-100

Schema Element(s) Where Found (SEN Chapter)

CoRE Products

CoRE information model |/nterface Chapter 10, “Interfaces Between
Component Components”

ExternalSystem
Discreteltemn
Timeltem

Candidate environmental |Interface Chapter 1, “System Top-Level Description”
variables Component Chapter 8, "Item Dictionary”
ExternalSystem
Discreteltem
Timeltem
Criticallssue
Decision
SystemParameter

Likely changes list Criticallssue Chapter 4, “Issues & Decisions”
SystemParameter

Environmental constraints | Constraint Chapter 3, “Design Constraints”
specification (NAT)

3. An Approach for Deriving a CoRE Model From an RDD-100 Model

3.3.1 CoRE INFORMATION MODEL

The CoRE information model captures physical entities and the associations between them that may
be relevant to the software. An RDD-100 System Component element maps to the system entity in the
CoRE information model. Other kinds of Component clements, especially ExternalSystem and
Environment Component elements, are candidates for additional entities in the CoRE information
model. /nterface clements that represent connections between those Components map to relationships
between the corresponding entities in the CoRE information model. Discreteltem and Timeltem
elements that are communicated by those Components map to attributes of entities.

Section App.3.3.1 contains the CoRE information model for the HAS Buoy case study.

3.3.2 CANDIDATE ENVIRONMENTAL VARIABLES
Candidate eavironmental variables (i.c., monitored and controlled variables) can be derived from:
¢ The likely changes list (see Section 3.3.3)

¢ Devices, environmental entities, or external hardware or software that has an effect on your
system (see Section 3.3.1)

From the RDD-100 perspective, candidate environmental variables can be derived from any of the
following RDD-100 elements: Interface, Component, ExternalSystem, Discreteltem, Timeltem,
Criticallssue, Decision, or SystemParameter.

Section App.3.1 identifies candidate environmental variables for the HAS Buoy case study.

3.33 LixeLy CHANGES LisT

The likely changes list identifies likely changes in system requirements. Likely changes should be
indicated by the existence of Criticallssue, Decision, or SystemParameter elements in the RDD-100
model. If any of these elements exist in the RDD-100 model, apply the CoRE criteria to determine
whether the element indicates the need for an addition to the likely changes list.

Section App.1.6 provides a list of likely changes for the HAS Buoy case study. Section App.2.4
identifies related RDD-100 Criticalissue and Decision elements (there were no SystemParameter
clements).

3.3.4 ENVIRONMENTAL CONSTRAINTS SPECIFICATION (NAT)

Environmental constraints are information about environmental variables related to possible values
and interpretation of these values, e.g., the type of the quantity, possible range of values, and maxi-
mum rate of change. Environmental constraints may be indicated by the existence of Constraint ele-
ments in the RDD-100 model. Environmental constraints on the set of possible values that an
environmental variable can take on are recorded by the NAT relation.

The HAS Buoy case study does not provide any examples of NAT relations derived from Constraint
clements.

3. An Approach for Deriving 3 CoORE Model From an RDD-100 Model

3.4 COMPLETING THE CoRE SPECIFICATION

This section describes how the remaining parts of a CoRE specification are affected by the use of
RDD-100 after mapping the RDD-100 model to an initial CoRE specification as described in Section
3.3. In particular, it describes, from the CoRE perspective, where to find the necessary information
to complete the CoRE specification when the RDD-100 is used as the front end to CoRE. Those parts
of a CoRE specification that are unaffected by the use of RDD-100 are not described here.

As Figure 5 shows, the following remaining CoRE products are affected by the use of RDD-100 for
systems engineering: context diagram (including monitored and controlled variables), input and out-
put variabic definitions, and timing and accuracy constraints. This section is divided into subsections
that describe what parts of an RDD-100 model contain the information needed to build one of those
products.

3.4.1 CONTEXT DIAGRAM

The CoRE context diagram captures the interaction of a software system within its environment. The
CoRE context diagram represents a subset of the environment that might be represented in a context
diagram for an entire system, such as for the system model described in Section 3.2.2. In some cases,
however, the two context diagrams may be equivalent in scope, such as in the HAS Buoy case study,
as shown in Section App.3.2.1.

The CoRE context diagram includes a system transformation (Section 3.4.1.1), terminators (Section
3.4.1.2), and monitored and controlled variables (Section 3.4.1.3).

34.1.1 System Transformation

The system transformation on the context diagram is derived from the system entity in the CoORE
information model, which was derived from an RDD-100 System Component, named appropriately
(see Section 3.3.1). The name of the system transformation may be inherited from the corresponding
RDD-100 element.

3.4.1.2 Terminators
Terminators on a CoRE context diagram represent boundary classes. Boundary classes:

* Representinformation about the environment that is relevant to specifying the behavior of the
software

* Require external resources (devices or external software subsystems) to acquire or influence
the information

The set of boundary classes is derived from the likely changes list and the CoRE information model
as described in Section 3.3.1, which are based on corresponding Component, Criticallssue, Decision, or
SystemParameter elements in the RDD-100 model.

3.4.1.3 Monitored and Controlled Variables

CoRE environmental variables are physical quantities of interest to the software. Monitored variables
are environmental variables measured by the software. Controlled variables are controlled by the

3. An Approach for Deriving 2 CoORE Model From an RDD-100 Model

software. Monitored and controlled variables appear on the context diagram as arrows between the
system transformation and terminators (boundary classes).

Candidate environmental variables can be found in the CoRE information model (see Section 3.3.1).
Typically, environmental variables will appear as attributes of entities in the CoRE information mod-
cl. Specifically, when RDD-100 is used, monitored variable candidates can be derived from RDD-100
Discreteltem and Timeitem elements whose Source is a Component with a corresponding entity in the
CoRE information model. Controlled variable candidates can be derived from RDD-100 Discreteltem
and Timeltem clements whose Target is a Component with a corresponding entity in the CoRE informa-
tion model. CoRE recommends using the environmental constraints (see Section 3.3.4) and the likely
changes list (see Section 3.3.3) as a guide in identifying and specifying the definitions of monitored
and controlled variables.

3.4.2 INrUT AND OUTPUT VARIABLE DEFINITIONS

IN relations record how the software can use input variables to approximate the values of monitored
variables. OUT relations record how the software can usc output variables to set the values of con-
trolled variables. Input variables are descriptions of physical interfaces to the environment that allow
software to determine the values of monitored variables. Output variables are descriptions of physical
interfaces to the environment that allow software to set the values of controlled variables.

Section 3.2.4 specifies that system component interface specifications should be contained by
Timeltem, Discreteltem, or Interface elements that are shared by the System Component element and
other Component elements, particularly those of type ExternalSystem or Environment. Those
Component clements of type ExternalSystem or Environment, whose behavior should be specified using
behavior diagrams, are useful in specifying IN and OUT relations. The Timeltem, Discreteltem,
ltemLink, or Interface elements referred to by Section 3.2.4 are useful in specifying the corresponding
input and output variables.

IN and OUT relations for the HAS Buoy case study are contained in Sections App.3.3.4.1 and
App.3.3.4.3, respectively.

3.4.3 TIMING AND ACCURACY CONSTRAINTS

CoRE timing and accuracy constraints define the allowable tolerance in terms of timing and accuracy
associated with CoRE’s mathematical relations. These constraints, which are sometimes based on
requirements information relating to system performance (see Section 3.2.5), may be derived from
Performanceindex elements when using RDD-100 for system design. In other cases, timing and
accuracy constraints will be determined later in the CoRE process after the RDD-100 model has been
completed.

Section App.3.3.6identifies the timing and accuracy constraints for the HAS Buoy case study thatwere
captured in the RDD-100 model.

3. An Approach for Deriviag a CoRE Model From an RDD-100 Model

This page intentionally left blank.

4. EXTENDING THE RDD-100 SCHEMA TO
SUPPORT CoRE

The RDD-100 Extender (Ascent Logic Corporation 1991a) allows systems engineers to tailor the
underlying database schema of RDD-100 for their own needs. Extending the schema such that
CoRE-specific elements, such as monitored variables and input variables, are recognized by
RDD-100 will allow systems engineers to specify designs that are more consistent with the needs of
CoRE.

Table 3 identifies those elements and relationships systems engineers might add to the RDD-100
database schema in support of CoRE as Figure 7 shows. Making these additions to the standard,
underlying database schema of RDD-100 allows it to recognize CoRE concepts and, therefore,
facilitates mapping from an RDD-100 model to a CoRE model.

Table 3. Extended Schema for CoRE

Source Element Relationship Target Element

Controlled Variable Is_A_Kind_Of Environmental Variable
NAT Inverse Monitored Variable
REQ Inverse Monitored Variable
OUT Inverse Output Variable

Monitored Variable Is_A_Kind_Of Environmental Variable
NAT Controlled Variable
REQ Controlled Variable
IN Input Variable

Input Variable Is_A_Kind_Of Input/Output Variable

) IN Inverse Monitored Variable

Output Variable Is_A_Kind_Of Input/Output Variable

ourT Controlled Variable

In experimentation with the RDD-100 Extender for the purpose of supporting CoRE, the Consortium
concluded that the benefit obtained by modifying the RDD-100 database schema for CORE use is mar-
ginal. By adding CoRE-specific elements to the schema, new elements are created that parallel the
purposes of existing elements. The benefit obtained is the capability to refer to RDD-100 elements
by the names of their equivalent CoRE elements (¢.g., monitored variable, input variable).

Ascent Logic Corporation has delivered Release 4.0 of RDD-100 (this report assumes version 3.0.2
of PDD-100), which contains Real World and Abstract Object Editors that obviate the need to extend

27

4. Extending the RDD-100 Schema to Support CORE

the database schema for CoRE using the Extender. The same benefits provided by the Extender can
be obtained using the Object Editors of Release 4.0 of RDD-100 without the drawbacks. The Object
Editors allow systems engineers to overlay a modified schema onto the predefined RDD-100 schema
so that database clements are not replicated for the modified schema. Therefore, Table 3 is included
in this report because it useful for identifying the objects and relations that might be added to the sche-
ma using the Object Editors. In a future version of this report, this section will describe in detail the
use of the Real World and Abstract Object Editors instead of the Extender.

5. GENERATING A CoRE REPORT FROM RDD-100

This section describes a CoRE-specific report that can be automatically generated by RDD-100 to
simplify the process of building an initial CORE specification from an RDD-100 model. Generating
such a report requires that systems engineers use RDD-100’s Report Writer (Ascent Logic
Corporation 1992b) to define the contents of the report.

RDD-100’s Report Writer provides templates ready for use, including the following reports: SEN,
data dictionary, component interface, requirements allocation, requirements traceability, and
2167A-compliant reports (Interface Requirements Specification, System/Segment Specification,
System/Segment Design Document, and, soon, the Software Requirements Specification).

The predefined report that is most helpful to a CoRE analyst is the SEN (Ascent Logic Corporation,
1991b). Section 5.1 describes the contents of the SEN. Section 5.2 describes various options for
generating a CoRE-specific report.

5.1 THE RDD-100 SYSTEM ENGINEERING NOTEBOOK

This section describes the RDD-100 SEN. For each section of the SEN, there is a corresponding
subsection containing a short discussion of its contents and applicability to CoRE.

5.1.1 SYSTEM TOP-LEVEL DESCRIPTION

This section is very useful to CoRE: it describes a high-level view (a TimeFunction) of the system and
identifies the major Components from which the system isbuilt. It also identifies all external interfaces,
performance requirements, sources of system requirements, etc. related to the high-level view of the
system. Finally, it contains the behavior diagram illustrating system functionality from the highest
level. This behavior diagram is very useful in mapping to a CoRE context diagram.

5.1.2 SYSTEM-LEVEL (“ORIGINATING”) REQUIREMENTS

This section contains the hierarchy of system requirements in alphabetical order, including
identification of relationships between them and other RDD-100 database elements. These system
requirements are useful to many CoRE activities.

5.1.3 DESIGN CONSTRAINTS

This section identifies RDD-100 Constraint elements and their relationships to other RDD-100
database elements. These Constraints are useful in identifying CoORE NAT relations.

5.1.4 IssuEs & DECISIONS

This section identifies RDD-100 Criticallssue and Decision elements, which are important to CORE
when identifying likely changes and candidate environmental variables.

29

3. Generating 3 CoRE Report From RDD-100

5.1.5 HierarchicaL FunNcrioN List

This section identifies the RDD-100 TimeFunctions that have been decomposed into lower level
TimeFunctions or DiscreteFunctions (excluding those that are performed by Components). These
functions generally represent a lower level of detail than is necessary for CoRE and, therefore, are
not likely to be of interest to CoRE. Section 5.1.6 describes the details of these functions.

5.1.6 SysteEM FuNCTIONAL BEHAVIOR DESCRIPTION

This section contains the behavior diagrams for the RDD-100 TimeFunctions identified in
Section 5.1.5. These functions generally represent a lower level of detail than is necessary for CORE
and, therefore, are not likely to be of interest to CoRE.

5.1.7 PERFORMANCE INDICES

This section describes the Performancelndex elements that appear in the RDD-100 database, which
are of interest to CoRE when specifying timing and accuracy constraints.

5.1.8 ITEM DICTIONARY

This section describes each Timeltem and Discreteftem in the RDD-100 database. Timeltem and
Discreteltem elements are important to the CoRE practitioner when specifying the CoRE information
model, monitored and controlled variables, and input and output variable definitions.

5.1.9 COMPONENTS

This section of the SEN describes the characteristics of Components in the RDD-100 database, which
are important throughout the CoRE process. This section illustrates the hierarchy of system
Components. This hierarchy is useful in understanding the structure of the RDD-100 model but is not
required by CoRE.

5.1.10 INTERFACES BETWEEN COMPONENTS

This section describes the interfaces between Component elements, including elements of types
Timeltem, Discreteltemn, Interface, and itemLink. This information is important to the CoRE practitioner
when specifying the CoRE information model, monitored and controlled variables, and input and
output variable definitions.

5.1.11 SYSTEM “OPERATIONAY’ PARAMETERS

This section describes the SystemParameter elements that appear in the RDD-100 database, which
may be of interest to CoRE when identifying candidate environmental variables and likely changes.

5. Geoerating &8 CoRE Report From RDD-100

5.2 A CoRE-SPECIFIC REPORT
There are two ways to generate CoRE-specific reports using RDD-100’s Report Writer:
* Predefined RDD-100 reports can be modified after being generated using a text editor.

e The contents of predefined RDD-100 reports are specified using hierarchies of behavior
diagrams, identified by ReportNet elements in the RDD-100 database. Systems engineers can
add or delete ReportNet clements or modify the behavior diagrams that define ReportNets so
that the Report Writer produces a report describing those database elements of interest to
them.

Two ways to modify predefined RDD-100 reports to generate CoRE specific reports using the Report
Writer are:

o Begin with the predefined RDD-100 SEN:

— Modify the headings of individual sections to indicate the potential for mapping from
RDD-100 elements to CoRE elements (e¢.g., modify section headings for the sections
containing ExtemalSystem and Environment Components to indicate the potential for
mapping to CoRE environmental variables).

— Remove those sections that are not of interest to CoRE (i.e., the sections containing
the Hierarchical Function List and System Functional Behavior Specification).

e Ifan RDD-100 schemamodification has been made to support CoRE (see Section 4), a special
CoRE report could be generated that represents all information assigned to CoRE-specific
schema elements. To do this, you could begin with the ReportNets and behavior diagrams used
by the Report Writer that specify a similar predefined report and modify them such that they
specify a report containing CoRE-specific schema elements.

The best approach to generating a CoRE-specific report using RDD-100’s Report Writer for specific
needs depends on the amount of time systems engineers are willing to invest and their expected pay-
back in terms of the amount of time they expect to save using the Report Writer. Systems engineers
must trade off these parameters to determine which of the above approaches best suits their needs.

3

S.W Report From RDD-100

This page intentionally left blank.

6. USING THE RDD-100 BRIDGE TO TEAMWORK

Ascent Logic provides a bridge that allows systems engineers to translate RDD-100 behavior
diagrams to teamwork context diagrams, data flow/control flow diagrams, and data dictionary entries.
Cadre’s teamwork (Cadre Technologies, Inc. 1990) can be used to develop CoRE work products,
although it does not currently support CoRE directly. If systems engineers are using teamwork to
record a CoRE specification, RDD-100s bridge to teamwork can provide a head start in building their
CoRE specification. Some RDD-100 elements can be automatically translated to teamwork objects
that are useful when building a CoRE specification

Section 6.1 provides an overview of how the RDD-100 bridge to teamwork works. Section 6.2 provides
an overview of how teamwork can be used to support CoRE. Section 6.3 describes how to use the
RDD-100 bridge to Cadre’s teamwork/RT tool to support the CoRE method.

6.1 THE RDD-100 BRIDGE TO TEAMWORK

Ascent Logic Corporation (1993b) describes the facility that allows systems engineers to translate
RDD-100 behavior diagrams to teamwork context diagrams, data flow/control flow diagrams, and
data dictionary entries. This bridge automates the transfer of certain elements from an RDD-100 da-
tabase to the teamwork database by automatically generating CASE Data Interchange Format
(CDIF) files from the RDD-100 model. CDIF files can be loaded into the teamwork database using
the twk_put command, which is part of teamwork’s standard tool kit (Cadre Technologies, Inc. 1990).

‘The mapping from RDD-100 clements to teamwork objects is implemented according to the mapping
shown in Table 4. The automated mapping to teamwork assumes that the system design is developed
using RDD-100 behavior diagrams that adhere to some constraints defined in Ascent Logic
Corporation (1993b, 2—-4).

Table 4. RDD-100 Eleinents Mapping to Teamwork

RDD Element Teamwork Object
System Model.
Component Model
TimeFunction Process Bubble or Terminator
DiscreteFunction P-Spec (process specification)
Timeltem Data Flow or Control Flow
Discreteltem Data Flow or Control Flow
DataStore Data Store

Note that only a subset of the elements supported by RDD-100 map to teamwork objects. Also, there
is no mapping to teamwork control specifications, including: state-transition diagrams, state-event
matrices, process activation tables, and decision tables.

&. Using the RDD-100 Bridge 10 Tesmwork

Data dictionary entries are also generated for each generated teamwork data flow, controtl flow, and
data store. Ascent Logic Corporation (1993b, 2-5) describes the contents of the generated data
dictionary entries as follows:

e Data dictionary entries for flows mapped from RDD-100 Timeitems list all items in the
Timeltem’s current decomposition.

* The Description attribute of RDD-100 elements is included in the comments section of data
dictionary entries. All other filled-in attributes of those elements are listed as teamwork
extended attributes (i.c., at the end of the data dictionary entry following a dashed line).

6.2 USING TEAMWORK WITH CoRE

Much of the information in a CoRE specification can be recorded in teamwork in a straightforward
manner. Teamwork can graphically record much of the information that specifies CoRE functional
requirements using teamwork’s decision tables and state transition diagrams. The rest of the CoRE
specification can be recorded as text in teamwork’s data dictionary.

Users can capture CoRE specifications in teamwork because CoRE was designed to use notations and
formalisms that are common to available tools (¢.g., data flow/control flow diagrams, finite state ma-
chines, etc.). Because CoRE departs from some conventions assumed by teamwork, the tool does not
support CoRE as completely as it supports real-time structured analysis. In particular, the checks pro-
vided by teamwork are not useful to the CoRE user, and some of the CoRE specification is recorded
as uninterpreted text.

The mapping from CoRE elements to teamwork objects is shown in Table 5.
Table 5. Teamwork’s Support for CoRE Elements

CoRE Elements Teamwork Objects
Information model Entity Entity in entity relationship diagram
Relationship Relation in entity relationship diagram
Attribute Defined in data dictionary entry for class
Boundary class Class Process bubble in data flow diagram
Mode class control bar in data flow diagram
Class interface . Control flows from process bubbles or from
control bars that represent mode classes
Eavironmental variable Monitored variable Data flow from terminator on context diagram
Data dictionary entry
Controlled variable Data flow to terminator on context diagram
Data dictionary entry
Input/output variable Input variable Data dictionary entry
Output variable Data dictionary entry
Four-variable relations REQ function Control bar in data flow diagram
Decision table

6. Using the RDD-100 Bridge to Teamwark

Table 5, continued

CoRE Elements Teamwork Objects

NAT relation® Text specification in data dictionary entry for
controlled variable

IN relation® Text specification in data dictionary entry for
input variable

OUT relation* Text specification in data dictionary entry for
output variable

Mode dass Mode class Control bar in data flow diagram

State transition diagram in control specification

* A commonly used mapping for teamwork four-variable relations is to a control bar and a corresponding

It is not obvious from Table 5 how CoRE makes use of context diagrams. A CoRE context diagram
is used in much the same way as with teamwork: the central transformation represents the system to
be built, and terminators represent external entities that have an effect on the system. The most signifi-
cant difference is, however, that on the CoRE context diagram, arrows between terminators and the
transformation represent environmental variables, not necessarily the flow of data.

6.3 USING THE RDD-100 BRIDGE TO TEAMWORK FOR CoRE

Of all the objects in the teamwork model generated by RDD-100’s teamwork filter, the most useful
part, in CoRE’s perspective, is the context diagram. However, it probably will need modification for
use by CoRE. Terminators on the teamwork context diagram are mapped from RDD-100 Component
clements of type ExternalSystem, whose behavior is described using TimeFunctions. Although this map-
ping is useful for CoRE, it will not always be a precise mapping to CoRE terminators, which represent
cither sources of monitored variables or targets of controlled variables. Data flows on the CoRE con-
text diagram are equivalent to monitored and controlled variables. The context diagram generated
by RDD-100 may not adhere to this convention. The HAS Buoy Context Diagram of the HAS Buoy
case study (Section App. 3.2.1) provides an example of the context diagram generated by RDD-100.

The data dictionary generated by RDD-100’s teamwork filter provides useful definitions for CoRE.
For example, when a data flow on the teamwork context diagram generated by RDD-100 maps to a
CoRE environmental variable, the data dictionary entry for the data flow is useful as the specification
of the environmental variable.

Attributes of the source RDD-100 elements are provided in the generated data dictionary entries (see
Table 6). Most of these attribute values are useful for a CoRE specification. For example, the mini-
mum value, maximum value, and units fields in Table 6 are useful when defining CoRE’s input and
output data items. However, some of these attributes may not be useful, such as RDD_Type, shown
in Table 6.

35

o.uqmnno-m&u!mw

Table 6. Sample Generated Data Dictionary Entry

Alir_Temperature DI (data flow, pel) =
* An environmental variable describing the atmosphere. *

Author System User;
Creation Date 11 August 1993;
Modification Date 7 October 1993;
Modification Time 3:36:00 pm;
Minimum Value -40.0;

Maximum Value 60.0;

Mean Value 20.0;

Units degree Celsius;
Size 1;

Item Type physical;

RDD Type message;

When teamwork objects are created using RDD-100s filter, RDD-100 is forced to generate labels for
certain objects, such as transformations and data flows. RDD-100 has adopted a convention for identi-
fying sources of those teamwork objects in the RDD-100 database. For example, the suffix “_DI” is
added to the labels of teamwork objects mapped from Discreteffems, and the suffix “_TF” is added to
the labels of teamwork objects mapped from TimeFunctions. These labels are generally effective in con-
veying the purposes of the objects and traceability back to the RDD-100 model. However, maintaining
these labels may become burdensome for the CoRE practitioner using teamwork, and it may be a use-
ful exercise to strip those suffixes from the teamwork objects after the traceability from RDD-100 to
teamwork is understood and recorded.

The lower level (below level 0) data flow/control flow diagrams and p-specs generated by RDD-100
are based on the hierarchy of TimeFunctions in the RDD-100 model. These diagrams indicate the rela-
tionships between TimeFunction, DiscreteFunction, Timeltem, Discreteftem, and DataStore elements in
the RDD-100 model according to the mapping in Table 4. Lower level data flow/control flow diagrams
in CoRE are used to specify requirements class hierarchies, organized into classes. Any effective use
of the RDD-100’s automatically generated data flow/control flow diagram hierarchy for CORE would
be coincidental because criteria for building a hierarchy of RDD-100 TimeFunctions are unrelated to
the criteria for building a CoRE requirements class hierarchy.

APPENDIX: HAS BUOY CASE STUDY

This appendix contains examples from the HAS Buoy system case study. The examples were selected
with the intent to illustrate application of the guidelines contained in this report.

Section App.1 contains the document that records the HAS Buoy problem statement upon which the
case study was based. Section App.2 contains the RDD-100 system design of the HAS Buoy built from
the problem statement of Section App.1. Section App.3 contains the CORE model for the HAS Buoy
that was derived based on the RDD-100 model in Section App.2.

APP.1 HAS BUOY PROBLEM STATEMENT

This section contains the document that records the HAS Buoy problem statement upon which the
case study was based. The problem statement was adapted from Sofiware Engineering Principles (Naval
Research Laboratory 1980).

App.1.1 INTRODUCTION

The Navy intends to deploy HAS buoys to provide navigation and weather data to air and ship traffic
at sea. The buoys will collect wind, temperature, and location data and will periodically broadcast sum-
maries. Passing vessels will be able to request more detailed information. In addition, HAS buoys will
be deployed in the event of accidents at sea to aid sea search operations.

App.1.2 HARDWARE

Each HAS buoy will contain a small computer, a set of wind and temperature sensors, and a radio
receiver and transmitter. The temperature sensors take air and water temperature (Centigrade).
Each buoy will have one or more wind sensors to observe wind magnitude in knots and one or more
wind sensors to observe wind direction. Buoy geographic position is determined by use of a radio
receiver link with the Omega navigation system.

Some HAS buoys are also equipped with a red light and an emergency button. The red light may be
made to flash by a request radioed from a vessel during a sea search operation. If the sailors are able
to reach the buoy, they may press the emergency button to initiate SOS broadcasts from the buoy.

App.1.3 SOFTWARE REQUIREMENTS
The software for the HAS buoy must satisfy the following requirements:

e Maintain current wind and temperature information by monitoring sensors regularly and
averaging readings.

Appeadix: HAS Buoy Case Siuc;

e Calculate location via the Omega navigation system.

¢ Broadcast wind and temperature information every 60 seconds.

e Broadcast more detailed reports in response to requests from passing vessels. The
information broadcast and the data rate will depend on the type of vessel making the request
(ship or airplane). All requests and reports will be transmitted in the RAINFORM format.

e Broadcast weather history information in response to requests from ships or satellites. The
history report consists of the periodic 60-second reports from the last 48 hours.

¢ Broadcast an SOS signal in place of the ordinary 60-second message after a sailor presses the
emergency button. This should continue until a vessel sends a reset signal.

e Cause the red light to start and stop flashing in response to requests from passing vessels.
e Accept external update data. Although HAS buoys calculate their own position, they must also

accept correction information from passing vessels. The software must use the information to
update its internal database.

App.1.4 SOFTWARE TIMING REQUIREMENTS

In order to maintain accurate information, readings must be taken from the sensing devices at the
following fixed intervals:

temperature sensors: every 10 seconds
wind sensors: every 30 seconds

App.1.5 PRIORITIES
Since the buoy can transmit only one report at a time, conflicts will arise.

If the transmitter is free and more than one report is ready, the next report will be chosen according
to the following priority ranking:

SOs 1 highest
Periodic 1
Airplane Request 2
Ship Request 3
Weather History 4 lowest

App.1.6 HAS BuoY STABILITIES AND VARIABILITIES

This section identifies additional requirements imposed onto the HAS Buoy system. Each of these
requirements is classified as either stable (not likely to change) or variable (likely to change).

Appendix: HAS Buoy Case Study

The HAS Buoy requirements that are expected to change are as follows:
1. The number of sensors of each type with which it is equipped.

2. Thetypesof sensors with which it is equipped. In addition to different temperature and wind speed
sensors, a Buoy may be equipped with sonar sensors, wave spectra sensors, and other sensors that
monitor the ocean environment.

3. The range, resolution, and response time of the sensors used.
4. The frequency with which sensors are sampled.

5. The equipment used to determine location. Some buoys may use the Omega navigation system
and its successors. Others may use inertial measurement systems.

6. The sources of external messages that the buoy may receive. In addition to U.S. Navy ships, some
buoys may receive messages from satellites.

7. The format of the messages transmitted and received by the buoy.
8. The history interval, i.e., the length of time of the history .

9. The computer system used, including the speed, primary memory size, and availability of
secondary memory.

10. The number of computers used.
11. The number and type of radio transmitters and receivers used.

12. The frequency with which wind and temperature data will be transmitted. The expected frequency
is once per minute.

13. For some buoys, the position of some sensors may have to be recorded, e.g., water temperature
sensors may be deliberately deployed at different depths.

14. The frequency with which various types of BIT are performed, the types and frequencies of
occurrence of sensor and computer malfunction that require recovery strategies to be invoked,
and the strategies for recovery from resource failure.

The HAS Buoy requirements that are considered to be stable are as follows:

1. The buoy is equipped with a set of sensors that monitor environmental conditions. The value of
a particular environmental condition at a given time is a function of the readings of sensors that
can measure, directly or indirectly, the condition. (A typical function used is the average.) The
number and types of sensors onboard a particular buoy are fixed once the buoy begins operation.

2. The buoy monitors at least air and water temperature and wind speed. It monitors them at its
location.

3. The buoy can determine its location to within a specified tolerance.

39

Appendix: HAS Buoy Case Study

4. The buoy maintains a finite history of the environmental data it has collected, a history of its
location, and a correlation between the two. Included in the history is the time at which data were
collected. The required length of the history does not change once the buoy begins operation.

5. The buoy is equipped with at least one radio transmitter and at least one receiver that enable it
to receive and transmit messages. It shall at least be able to receive messages from passing U.S.
Navy ships in the standard RAINFORM format.

6. The buoy transmits messages containing current wind and temperature information periodically.
The period does not change once the buoy begins operation.

7. The buoy will respond to requests that it receives, via radio, to transmit more detailed reports on
environmental conditions and to transmit weather history information, including both weather
data and the locai.on and time at which the weather conditions occurred.

8. The buoy is equipped with an emergency switch, which, when flipped, causes the buoy to transmit
an SOS signal in place of its periodic wind and temperature reports. The SOS signal ceases when
the buoy receives a reset message.

9. When the location as determined by the buoy is significantly different from the location supplied
externally, the buoy will use self-diagnostics to attempt to determine and eliminate the source of
the error. The criteria for significantly different are fixed once the buoy begins operation.

10. The buoy shall function without noticeable degradation with damage to up to 20% of its sensors.
If more than 20% are improperly functioning, both periodic and request reports shall be marked
suspect. In the event that data are considered unusable, a defective report shall be sent in place
of the suspect data.

APF.2 HAS BUOY RDD-100 MODEL

This section contains the RDD-100 system design of the HAS Buoy built from the problem statement
of Section App 1. The RDD-100 model of the HAS Buoy system is most easily represented in a report
by providing the RDD-100 SEN for the system.

The RDD-100 SEN provides a report including a complete description of all of the information in the
RDD-100 database. However, much of this information is not applicable for the software require-
ments engineer using CoRE (see Section 5). Therefore, only those parts of the SEN that are of interest
to CoRE users are included in this section. In particular, the following portions of the SEN are not
included in this section:

e Section S, Hierarchical Function List
¢ Section 6, System Functional Behavior Description

Note that the RDD-100 notational conventions have been adhered to as closely as possible. That is:
* Major subsections are numbered (e.g., App.2.1 System Top-Level Description).

¢ Minor subsections are in boldfaced italicized serif font.

Appendix: HAS Buoy Case Study

¢ Relationships anc attributes of elements are in italicized serif font.

An additional convention has been adopted for this report: RDD-100 database elements that are not
expected to be of interest to CORE are named with all lower case letters (e.g., “sensor interface box”
instead of “Sensor Interface Box™).

App.2.1 SYsTEM TOP.LEVEL DESCRIPTION

HAS Buoy

Purpose: This is the set of all requirements for the overall buoy system.
Built From Components:

External System: Air
System: HAS Buoy
11 sensors package
Subsystem: 1.1.1 Sensors
1.1.2 sensor interface box
12 communications package
1.2.1 comm interface box
Subsystem: 1.2.2 transmitter
Subsystem: 1.2.3 receiver
13 other packages
External System: Light
External System: Omega System
External System: Sailor
External System: Vessel
External System: Water

External Interfaces
System-Level Performance Requirements:
Air Temperature Accuracy
Period Accuracy to 10%
Water Temperature Accuracy
Source Document: HAS ADARTS Problem Statement
Performs Top-Level Function:
HAS Buoy (see Figure 8). Note: Although the Abstract Object Editor is provided in Release 4.0 of
RDD-100 (not Version 3.0.2), Figure 9, which requires the Abstract Object Editor, is included be-

cause it illustrates the effectiveness of the new tool for supporting CoRE. Note that Figure 9 identifies
those Discreteltems that may map to CoRE environmental variables.

41

PPOIN I0tAByag fong SYH °g nSLy

g a0

,L[v HOday IR

42

Appendix: HAS Buoy Case Study

30Upg 19Iq0 wensqy Supnpu] [PPON Joteysg fong SVH °6 3mB1g

Lai.]

YU s penbe

Appeadix: HAS Buoy Case Study

Inputs:
Air Temperature source: ExternalSystem: Air
Buoy Location source: ExternalSystem: Omega System
Emergeacy Button source: ExternalSystem: Sailor
Vessel Request source: ExternalSystem: Vessel
Water Temperature source: ExternalSystem: Water
Wind Direction source: ExternalSystem: Air
Wind Magnitude source: ExternalSystem: Air
Outputs:

Red Light destination: ExternalSystem: Light
Report destination: ExternalSystem: Vessel

First-Level System Functions:

HAS Buoy TimeFunction: 0 Buoy Performance

App.2.2 SYSTEM-LEVEL (“ORIGINATING”) REQUIREMENTS

In order toreduce the size of this document only a few system-level requirements are provided in their
entirety for exemplary purposes. Only the names of the remaining system-level requirements are
provided.

Air Temperature
Description:
The buoy monitors at least air and water temperature and wind speed. It monitors them at its location.
Traces To: Performancelndex: Air Temperature Accuracy
Source Document: HAS Stabilities |
Communications

The buoys will collect wind, temperature, and location data and will periodically broadcast
summaries. Passing vessels will be able to request more detailed information.

Incorporates System Requirement(s):

History Interval
Message Format
Message Source
Number of Transceivers
Response to Requests

Appeadix: HAS Buoy Case Study

Traces To: Performancelndex: Period Accuracy to 10%
Source Document: HAS ADARTS Problem Statement

Computer
Description:

9. The computer system used, including the speed, primary memory size, and
availability of secondary memory.

Source Document: HAS Variabilities

Emergency Switch

Description:
8. The buoy is equipped with an emergency switch, which, when flipped, causes the
buoy to transmit an SOS signal in place of its periodic wind and temperature
reports. The SOS signal ceases when the buoy receives a reset message.

Source Document: HAS Stabilities

External Location
9. The buoy can accept location data from external sources, such as passing ships,
via radio messages. When the location as determined by the buoy is significantly
different from the location supplied externally, the buoy will use

self-diagnostics to att-mpt to determine and eliminate the source of the error.
The criteria for signifi.antly different are fixed once the buoy begins operation.

Incorporates System Requirement(s): Self Diagnosis
Source Document: HAS Stabilities
Fixed Periodicity

6. The buoy transmits messages containing current wind and temperature information
periodically. The period does not change once the buoy begins operation.

Source Document: HAS Stabilities
Graceful Degradation

10. The buoy shall function without noticeable degradation with damage to up to 20% of its sensors.
If more than 20% are improperly functioning, both periodic and request reports shall be marked

45

Appondix: HAS Buoy Case Study

suspect. In the event that data are considered unusable, a defective report shall be sent in place of the
suspect dat».

Incorporates System Requirement(s): Suspect Reports
Source Document: HAS Stabilities

Hardware

Description:

Each HAS buoy will contain a small computer, a set of wind and temperature sensors, and a radio
receiver and transmitter. The temperature sensors take air and water temperature (Centigrade). Each
buoy will have one or more wind sensors to observe wind magnitude in knots and one or more wind
sensors to observe wind direction. Buoy geographic position is determined by use of a radio receiver
link with the Omega navigation system.

Some HAS buoys are also equipped with a red light and an emergency button. The red light may be
made to flash by a request radioed from a vessel during a sea search operation. If the sailors are able
to reach the buoy, they may press the emergency button to initiate SOS broadcasts from the buoy.

Incorporates System Requirement(s):

Communications
Computer

Emergency Switch
Graceful Degradation
History Interval
Malfunctions
Message Format
Message Source
Number of Computers
Number of Transceivers
Response to Requests
Suspect Reports

Source Document: HAS ADARTS Problem Statement
History Interval
Description: 8. The history interval, i.c., the length of time of the history.
Source Document: HAS Variabilities
History Maintenance
4. The buoy maintains a finite history of the environmental data it has collected, a history of its

location, and a correlation between the two. Included in the history is the time at which data were
collected. The required length of the history does not change once the buoy begins operation.

Appeadix: HAS Buoy Case Study

Source Document: HAS Stabilities
The remaining system-level requirements are listed by name only.

Number of Comp
Number of Transceivers

Response to Requests

Suspect Reports

Water Temperature
Wind Speed

47

Appendia: HAS Bucy Case Study

App.2.3 DESIGN CONSTRAINTS

Cont

Description: The buoy’s parts shouldn’t cost more than $2,000.
Constrains:

Decision: Available Hardware
Decision: Two Formats

Traced From: Decision: Two Formats
RAINFORM Rormat
Description:

The buoy ... shall at least be able to receive messages from passing U.S. Navy ships in the standard
RAINFORM format.

Domain Stabilities, #5
Constrains:

Criticallssue: How Many Formats?
Decision: Two Formats

Traced From:
Criticallssue: How Many Formats?

SystemRequirement: Message Format

SystemRequirement: Message Source
Decision: Two Formats

App.2.4 Issugs & DECISIONS
Decislons that trace from Critical Issues
Issue: Error Correction?

Originator: System User

Origination Date: 23 August 1993

Description:
How is the required error correction to be performed?
From #9, “HAS Stabilities”: “When the location as determined by the buoy is significantly different
from the location supplied externally, the buoy will use self-diagnostics to attempt to determine and

climinate the source of the error. The criteria for significantly different are fixed once the buoy begins
operation.”

Appeadix: HAS Buoy Case Study

Source Document: HAS Stabilities
Traced From:

SystemRequirement: Location Tolerance
SystemRequirement: Malfunctions

Traces To: Source: HAS Stabilities
Issue: How Many Formats?
Originator: System User
Origination Date: 23 August 1993
Description:

At least one format must be recognized for message passing (standard RAINFORM format). Are
others required by the existing vessels’ communications gear? How many others are desirable?

Traced From: Decision: Two Formats
Traces To:

Source: HAS Stabilities
Constraint: RAINFORM Format

Issue: How Much History?

Originator: System User

Origination Date: 23 August 1993

Description:

What is the longest history trail required by any HAS buoy?
#4in Source: “The buoy maintains a finite history of the environmental data it has collected, a history
of its location, and a correlation between the two. Included in the history is the time at which data
were collected.”

Source Document: HAS Stabilities

Traced From: Decision: Available Hardware

Traces To: Source: HAS Stabilities

Decisions that do not trace from Critical Issues

Decision: Available Hardware

Approved By: System User

49

Approval Date: 23 August 1993
! W‘anc

History will be kept based on the available RAM memory provided in the onboard computer. No
specific added provision will be added, to contain costs.

Problem:
The buoy maintains a finite history of the environmental data it has collected, a history of its location,
and a correlation between the two. Included in the history is the time at which data were collected.
‘The required length of the history does not change once the buoy begins operation.

Altemnatives:

1) Ifalong string of history is not a necessity, history should be kept based only on the available RAM
memory provided in the onboard computer.

2) If a long string of history is important, extra RAM memory should be provided in the onboard
computer.

Choice: No. 1 is chosen, pending further notice.
Source Document: HAS ADARTS Problem Statement
Traces To: Criticallssue: How Much History?
Decision: Two Formats
Approved By: System User
Approval Date: 23 August 1993
Description: RAINFORM format will be supported, and a standard SOS format will be supported.
Problem:
The buoy is equipped with at least one radio transmitter and at least one receiver that enable it to
receive and transmit messages. It shall at least be able to receive messages from passing U.S. Navy
ships in the standard RAINFORM format.
Alternatives:
1) The explicit requiremr only for RAINFORM.
2) But, the critical nature of SOSes suggests recognizing older formats as well.

3) Flexibility would be improved if an onboard mechanism to vary selection of formats was
provided.

Appeadix: HAS Buoy Case Study

Chaice: #2 was chosen, the 3rd running afoul of cost constraints.
Source Document: HAS Stabilities
Traces To:

Constraint: Cost

Criticallssue: How Many Formats?

SystemRequirement: Message Format

SystemRequirement: Message Source

SystemRequirement: Minimum Communications
Constraint: RAINFORM Format

App.2.S PERFORMANCE INDICES
Air Temperature Accuracy

Description: Air temperature must be kept to within 1 degree Centigrade.

Units:

Value:

Category: Measurement

Exhibited By:
Component: HAS Buoy
System: HAS Buoy
Component: 1.1.1 - Sensors

Traced From:

SystemRequirement: Air Temperature
SystemRequirement: Sensors

Period Accuracy to 10%
Description:

The broadcast cycle must be accurate to within 3 seconds for the wind sensors, and

1 second for the temperature sensors.
Units:
Value:
Category: Measurement
Exhibited By:

Component: HAS Buoy
System: HAS Buoy

51

Appeadiz: HAS Buoy Case Study

Component: 1.2 - communications package
Component: 1.2.2 - transmitter

Traced From:

SystemRequirement: Communications
SystemRequirement: Software Timing

Water Temperature Accuracy
Description: Water temperature must be kept to within 1 degree Centigrade.
Units:
Value:
Caiegory: Measurement
Exhibited By:
Component: HAS Buoy
System: HAS Buoy
Component: 1.1.1 - Sensors
Traced From:

SystemRequirement: Sensors
SystemRequirement: Water Temperature

App.2.6 ITEM DICTIONARY

acknowledgement
Output From:

Component: 1.2 communications package
Component: 1.2.1 comm interface box
DiscreteFunction: 2.1.1 receive message

(Allocated Onto: Component: comm interface box)

Input To:

Component: 1.1 sensors package

Component: 1.1.2 sensor interface box
DiscreteFunction: 1.2.2 wait for ack

(Allocated Onto: Component: sensor interface box)

Air Temperature
Description: An environmental variable describing the atmosphere.
Ouitput From: ExternalSystem: Air

Appeadix: HAS Buoy Case Study

Input To:

System: HAS Buoy
Component: 1 simple WB

System: HAS Buoy

Component: 1.1 sensors package

Subsystem: 1.1.1 Sensors

DiscreteFunction: 1.1.1 gather periodic samples
(Allocated Onto: Subsystem: Sensors)

Allocated to Component: External System: Air
Buoy Location

Description: An environmental variable describing where the HAS buoy is situated.

Output From: ExternalSystem: Omega System
Input To:
System: HAS Buoy
Component: 1 simple WB
System: HAS Buoy
Component: 1.2 communications package
Subsystem: 1.2.3 receiver
DiscreteFunction: 2.3.1 receive navigation signal
(Allocated Onto: Subsystem: receiver)
Allocated to Component: External System: Omega System
collected data
Output From:

Subsystem: 1.1.1 Sensors
DiscreteFunction: 1.1.1 gather periodic samples
(Allocated Onto: Subsystem: Sensors)

Input To:
Component. 1.1.2 sensor interface box
DiscreteFunction: 1.2.1 send message
(Allocated Onto: Component: sensor interface box)
Emergency Button

Desa:}ptio(::

An environmental variable describing whether a sailor has gotten to the HAS buoy and pressed the

button to cut on the emergency beacon.

53

Appeadix: HAS Buoy Case Study

Output From: ExternalSystem: Sailor
Input To:

System: HAS Buoy

Component: 1 simple WB

System: HAS Buoy

Component: 1.1 sensors package

Subsystem: 1.1.1 Sensors

DiscreteFunction: 1.1.1 gather periodic samples
(Allocated Onto: Subsystem: Sensors)

Allocated to Component: External System: Sailor
internal message
Output From:
Component: 1.1 sensors package
Component: 1.1.2 sensor interface box

DiscreteFunction: 1.2.1 send message
(Allocated Onto: Component: sensor interface box)

Input To:
Component: 1.2 communications package
Component: 1.2.1 comm interface box
DiscreteFunction: 2.1.1 receive message
(Allocated Onto: Component: comm interface box)
Red Light
Description:
An environmental variable describing whether the emergency beacon is turned on or not.
Output From:

System: HAS Buoy

Component: 1 simple WB

System: HAS Buoy

Component: 1.2 communications package
Subsystem: 1.2.2 transmitter
DiscreteFunction: 2.2.2 transmit one singular

Input To: ExternalSystem: Light
Allocated 1o Component: External System: Light

Appendix: HAS Buoy Case Study

Report
Description:

An environmental variable embodying the weather and location report previously requested.
Output From:

System: HAS Buoy
Component: 1 simple WB

System: HAS Buoy

Component: 1.2 communications package
Subsystem: 1.2.2 transmitter
DiscreteFunction: 2.2.1 transmit one periodic
(Allocated Onto: Subsystem: transmitter)

Input To: ExternalSystem: Vessel
Allocated to Component: External System: Vessel
Output From:

Component: 1.2.1 comm interface box
DiscreteFunction: 2.1.1 receive message
(Allocated Onto: Component: comm interface box)

Input To:

Subsystem: 1.2.2 transmitter
DiscreteFunction: 2.2.1 transmit one periodic
(Allocated Onto: Subsystem: transmitter)

Vessel Reguest
Description:
An envjronmental variable describing a vessel’s desire to get a current weather and/or location report.
Output From: ExternalSystem: Vessel
Input To:

System: HAS Buoy

Component: 1 simple WB

System: HAS Buoy

Component: 1.1 sensors package

Subsystem: 1.1.1 Sensors

DiscreteFunction: 1.1.1 gather periodic samples
(Allocated Onto: Subsystem: Sensors)

55

Appendix: HAS Buoy Case Study

Allocated to Component: External System: Vessel
Water Temperature
Description: An environmental variable describing the surrounding ocean.
Output From: ExternalSystem: Water
Input To:

System: HAS Buoy

Component: 1 simple WB

System: HAS Buoy

Component: 1.1 sensors package

Subsystem: 1.1.1 Sensors

DiscreteFunction: 1.1.1 gather periodic samples

(Alocated Onmto: Subsystem: Sensors)

Allocated to Component: External System: Water

Wind Direction

Description: An environmental variable describing which way the wind is blowing.

Output From: ExternalSystem: Air

Input To:

System: HAS Buoy

Component: 1 simple WB

System: HAS Buoy

Component: 1.1 sensors package

Subsystem: 1.1.1 Sensors

DiscreteFunction: 1.1.1 gather periodic samples
(Allocated Onto: Subsystem: Sensors)

Carried by interface link: Wind Direction
Allocated to Component: External System: Air
Wind Magnitude
Description: An environmental variable describing how big the wind is.
Output From: ExternalSystem: Air
Input To:
System: HAS Buoy
Component: 1 simple WB
System: HAS Buoy

Component: 1.1 sensors package
Subsystem: 1.1.1 Sensors

Appeadix: HAS Buoy Case Study

DiscreteFunction: 1.1.1 gather periodic samples
(Allocated Onto: Subsystem: Sensors)

Allocated to Component: External System: Air

App.2.7 COMPONENTS

In order to reduce the size of this document, this section describes only a subset of the Components
in their entirety. All of the Components, however, are identified. Figure 10 illustrates the component
hierarchy described in this section.

Air

Component Type: External System
Description: HAS Buoy must perform measurements of the atmosphere.
Builds Higher-Level Component/System:

ExternalSystem: Air
System: HAS Buoy

Allocated Items:

Discreteltem: Air Temperature
Discreteltem: Wind Direction
Discreteltem: Wind Magnitude

HAS Buoy
Component Type: System
HAS Buoy is the internal part of the system, comprising all hardware and its embedded software.
Builds Higher-Level Component/System: System: HAS Buoy
Built From Components:

1.1 sensors package
1.2 communications package
1.3 other packages

Allocated Functions:

TimeFunction: 0 Buoy Performance
TimeFunction: 1 HAS Buoy

Component-Level Performace Requirements:
Air Temperature Accuracy

Period Accuracy to 10%
Water Temperature Accuracy

57

Apreadix: HAS Buoy Case Study

Kyorexoryy yusuodwo) Aong SYH “0T 9anStg

Appendix: HAS Buoy Case Study

Light

Component Tpe: External System

Description: HAS Buoy must turn on a red emergency light in this external medium.
Builds Higher-Level Component/[System:

System: HAS Buoy
ExternalSystem: Light

Allocated Items: Discreteltem: Red Light

Omega System

Component Tjpe: External System

Description: HAS Buoy must be located via information from this external medium.
Builds Higher-Level Component/System:

System: HAS Buoy
ExternalSystem: Omega System

Allocated Items: Discreteltem: Buoy Location

Sailor

Component Type: External System

HAS Buoy must take emergency button pushes from this personal, but external, medium.
Builds Higher-Level Component/System:

System: HAS Buoy
ExternalSystem: Sailor

Allocated Items: Discreteltem: Emergency Button

Vessel

Component Type: External System

Description: HAS Buoy must receive requests from, and send reports to, this external medium.
Builds Higher-Level Component/System:

System: HAS Buoy
ExternalSystem: Vessel

59

Appoadix: HAS Buoy Case Study

Allocated Items:

Discreteltem: Report
Discreteltem: Vessel Request

Water

Component Type: External System

Description: HAS Buoy must perform measurements of this external medium.
Builds Higher-Level Component/System:

System: HAS Buoy
ExternalSystem: Water

Allocated Items: DiscreteItem: Water Temperature
1 simple WB
Component Type:
Built From Components:
1.1 sensors package
1.2 communications package
1.3 other packages
1.1 sensors package
Component Tipe:
Builds Higher-Level Component/System:

Component: HAS Buoy
Component: 1 simple WB

Built From Components:

Subsystem: 1.1.1 Sensors
1.1.2 sensor interface box

Allocated Functions: TimeFunction: 1 sensor functions
The remaining components are listed only by name.
1.1.1 Sensors

1.1.2 sensor interface box

1.2 communications package

Appeadix: HAS Buoy Case Study

1.2.1 comm inserface box
122 transmitter
1.2.3 receiver

13 other packages

App.2.8 INTERFACES BETWEEN COMPONENTS
Derived Interfaces

Items Flowing “from” Component: comm interface box
“into” Component: sensor interface box

Discreteltem: acknowledgement
Output From: 2.1.1 - receive message
Input To: 1.2.2 - wait for ack

Items Flowing “from” Component: comm interface box
“into” Component: sensors package

Discreteltem: acknowledgement
Output From: 2.1.1 - receive message
Input To: 1 - sensor functions

Items Flowing “from” Component: comm interface box
“into” Subsystem: transmitter

Discreteltem: transmit item
Output From: 2.1.1 - receive message
Input To: 2.2.1 - transmit one periodic

Items Flowing “from™ Component: communications package
“into” Component: sensor interface box

Discreteltem: acknowledgement
Output From: 2 - communication functions
Input To: 1.2.2 - wait for ack

Items Flowing “from” Component: communications package
“into” Component: sensors package

Discreteltem: acknowledgement
Output From: 2 - communication functions
Input To: 1 - sensor functions

Items Flowing “from” Component: sensor interface box
“into” Component: comm interface box

Discreteltem: internal message
Output From: 1.2.1 ~ send message
Input To: 2.1.1 - receive message

61

Appeadix: HAS Buoy Case Study

Items Flowing “from™ Component: sensor interface box
“into” Component: communications package

Discreteltem: internal message
Output From: 1.2.1 - send message
Input To: 2 - communication functions

Items Flowing “from” Subsystem: Sensors
“inte” Component: sensor interface box

Discreteltem: collected data
Output From: 1.1.1 - gather periodic samples
Input To: 1.2.1 - send message

Items Flowing “from” Component: sensors package
“into” Component: comm interface box

Discreteltem: internal message
Output From: 1 - sensor functions
Input To: 2.1.1 - receive message

Items Flowing “from” Component: sensors package
“into” Component: communications package

Discreteltem: internal message
Output From: 1 - sensor functions
Input To: 2 - communication functions
Database Interface Elements
communicates
Connects to:
System: HAS Buoy
ExternalSystem: Vessel
External System: Vessel
controls
Connects to:
System: HAS Buoy
ExternalSystem: Light
External System: Light
locates
Connects to:
System: HAS Buoy

ExternalSystem: Omega System
External System: Omega System

Appendix: HAS Buoy Case Study

System: HAS Buoy

External System: Sailor

ExternalSystem: Sailor
App.2.9 SYSTEM “OPERATIONAE’ PARAMETERS
This section did not apply to this case study.
APP3 HAS BUOY CoRE MODEL

This section contains the CoORE model for the HAS Buoy that was derived based on the RDD-100
model in Section App.2. Section App.3.1 describes how RDD-100 database elements of the HAS Buoy
model were mapped to CoRE elements. Section App.3.2 contains the results of filtering the RDD-100
model into teamwork format. Section App.3.3 contains the remaining CoRE work products for the

HAS Buoy system.
App.3.1 MarPING FROM RDD-100 T0 CORE

‘Table 7 summarizes how RDD-100 database elements map to CoRE inputs for the HAS Buoy model,
acoording to the mapping specified in Section 3.2. For each expected input to CoRE, Table 7 identifies:

¢ The RDD-100 database elements providing the necessary information
¢ An estimation of the degree of completeness provided by the mapping
Table 7. Mapping From RDD-100 to CoRE

Expected CoRE Inputs RDD-100 Element Type (HAS Buoy Instances) | Degree of Mapping
Mission statement Source Complete
e HAS ADARTS Problem Statement
e HAS Stabilities
e HAS Variabilities
System model FNet Complete
* System Context Diagram
Component

HAS Buoy (system)

Air (external system)

Water (external system)

Vessel (external system)

Light (external system)

Omega System (external system)
Sailor (external system)

® 6 & & o 0 o

63

Appeadic HAS Buoy Case Study

Table 7, continued

System requirements SystemRequirement Complete
specification * Air Temperature

e Communications

e Computer

e Emergency Switch

* External Location

* Fixed Periodicity

e etc. (see Section App.2.2)
System component interface Interface Complete
specifications RemLink

Timeltem
Requirements information Performanceindex Incomplete
relating to system performance {* Air Temperature Accuracy

* Period Accuracy to 10%

e Water Temperature Accuracy

Table 8 summarizes how the initial set of CORE work products were derived from RDD-100 database

clements for the HAS Buoy model, according to the mapping specified in Section 3.3.

Table 8. Mapping From RDD-100 to Initial CoRE Products

CoRE Products

RDD-100 Element Type (HAS Buoy Instances)

Degree of Mapping

CoRE information model

Interface
e communications
s controls

* locates

* monitors

e switches

Compléte

Candidate environmental
variables

Vessel Request
Report

Air Temperature
Water Temperature
Wind Magnitude
Wind Direction
Buoy Location
Emergency Button
Red Light

Complete

Appeadix: HAS Buoy Case Study

Table 8, continued

Likely changes list Criticalissue Complete
* Error Correction?

* How Many Formats?
* How Much History?
Decision

« Available Hardware
* Two Formats

Environmeatal constraints Constraint Incomplete
specification (NAT) * Cost
* RAINFORM Format

Table 9 summarizes how the additional CoRE work products were derived from RDD-100 database
elements for the HAS Buoy model, according to the mapping specified in Section 3.4.

Table 9. Mapping From RDD-100 to Additional CoRE Products

CoRE Products RDD-100 Element Type (HAS Buoy Instances) | Degree of Mapping

Context diagram FNet Complete
¢ System Context Diagram

Monitored and controlled vari- | Discreteltem Incomplete
able definitions Vessel Request
Report

Air Temperature
Water Temperature
Wind Magnitude
Wind Direction
Buoy Location
Emergency Button
Red Light

App3.2 TEAMWORK-FILTERED VERSION OF HAS Buoy

This section contains those teamwork work products that were generated by RDD-100’s teamwork
filter from the RDD-100 model of the HAS Buoy system. Some parts of the generated teamwork
model were not useful for CoRE and have been omitted.

Section App.3.2.1 contains the generated teamwork process index, and Section App.3.2.2 contains the
generated teamwork data dictionary. '

App.3.2.1 Teamwork Process Index

The teamwork process index generated by RDD-100 contained a context diagram, a data flow/control
flow diagram hierarchy, and a number of p-specs. The context diagram was derived from the behavior
diagram for the RDD-100 System Component. Each data flow/control flow diagram in the hierarchy
was derived from a corresponding RDD-100 FNet or TimeFunction. The data flow/conirol flow
diagrams contained a data transformation for each DiscreteFunction contained by the FNet or
TimeFunction. Data flows in and out of data transformations were derived from Discreteltemns that were
inputs and outputs of the DiscreteFunctions.

Appendiz: HAS Buoy Case Study

The generated context diagram in Figure 11 turned out to be ideal for CoRE.

Context~Diagram;1
System_Context_Diagram_FN

[___Air_Temperatare_DI

HAS_Buey_TF

Vv'f

Emergency_Button_DI

thlﬂredkll’l

Report_DI

Wiad um DI
Red_Light_DI
Light TF
Omega_System_TF
| Buoy_Location_DI

Vessel_Request_DI

Water_Temperature_DI

Water_TF

8

Neither the generated data flow/control flow diagrams nor the generated p-specs were useful for
CoRE because they provide too low a level of detail. The generated p-specs contained only input and

output lists.

App3.2.2 Teamwork Data Dictionary
This section contains the teamwork data dictionary entries generated by RDD-100.

Figure 11. HAS Buoy Context Diagram

acknowledgement_ DI (data flow, pel) =

Author

Creation Date
Modification Date
Modification Time
Size

ROD Type

System User;

31 January 1992;
7 October 1993;
3:35:59 pm;

1;

message;

Air Temperature DI (data flow, pel) =
* An environmental variable describing the atmosphere. *

Author
Creation Date

System ﬁser;
11 August 1993;

Appeadix: HAS Buoy Case Study

Modification Date
Modification Time
Minimum Value
Maximum Value
Mean Value

Units

Size

Item Type

RDD Type

7 October 1993;
3:36:00 pm;
-40.0;

60.0;

20.0;

degree Celsius;
1;

physical;
message;

Buoy_Location_DI (data flow, pel) =
* An environmental variable describing where the HAS buoy is situated. »

Author

Creation Date
Modification Date
Modification Time
Units

Size

Item Type
RDD Type

collected_data_DI (data flow,

Author

Creation Date
Modification Date
Modification Time
Size

RDD Type

System Usger;

11 August 1993;
7 October 1993;
3:36:00 pm;
characters;

10;

data;

message;

pel) =

System User;

31 January 1992;

7 October 1993;
3:36:01 pm;

1;

message;

Emergency_Button DI (data flow, pel) =
* An environmental variable describing whether a sailor has gotten to
the HAS buoy and pressed the button to cut on the emergency beacon. *

Author

Creation Date
Modification Date
Modification Time
Minimum value
Maximum Value
Units

Size

Item Type
RDD Type

System User;

11 August 1993;
7 October 1993;
3:36:01 pm;
0.0;

0.0;

B.its;

1;

digital;
message;

internal_message_ DI (data flow, pel) =

Author

Creation Date
Modification Date
Modification Time

System User;

31 January 1992;
7 October 1993;
3:36:02 pm;

67

Appendix: HAS Buoy Casc Sty

Size
RDD Type

1;
message;

Red_Light_DI (data flow, pel) =
* An environmental variable describing whether the emergency beacon is

turned on or not. *
Author
Creation Date
Modification Date
Modification Time
Minimum Value
Maximum Value
Units
Size
Item Type
RDD Type

Report DI (data flow, [1) =

System User;

11 August 1993;
7 October 1993;
3:36:02 pm;
0.0;

0.0;

Bits;

1;

digital;
message;

* An environmental variable embodying the weather and location report

previously requested.*

 Author
Creation Date
Modification Date
Modification Time
Units
Size
Item Type
RDD Type

System User;

11 August 1993;
7 October 1993;
3:36:02 pnm;
characters;
100;

data;

message;

transmit_item DI (data flow, pel) =

Author

Creation Date
Modification Date
Modification Time
Size

RDD Type

System User;

31 Januvary 1992;
7 October 1993;
3:36:03 pm;

1;

message;

Vessel Request_DI (data flow, pel) =
* An environmental variable describing a vessel’s desire to get a
current weather and/or location report.*

Author

Creation Date
Modification Date
Modification Time
Units

Size

Item Type

RDD Type

System User;

11 August 1993;
7 October 1993;
3:36:03 pm;
characters;

1;

data;

message;

Appendix: HAS Buoy Case Study

Water_Temperature_DI (data flow, pel) =
* An environmental variable describing the surrounding ocean. *
Author System User;
Creation Date 11 August 1993;
Modification Date 7 October 1993;
Modification Time 3:36:04 pm;

Minimum Value 0.0;

Maximum value 50.0;

Units Degree Celsius;
Size 1;

Item Type physical;

RDD Type message;

Wind_Direction_DI (data flow, pel) =
* An environmental variable describing which way the wind is blowing. *

Author

Creaticn Date
Modification Date
Modification Time
Minimum value
Maximum value
Units

Size

Item Type

RDD Type

Author

Creation Date
Modification Date
Modification Time
Minimum value
Maximum value
Mean Value

Units

Size

Item Type

RDD Type

System User;

11 August 1993;
7 October 1993;
3:36:04 pm;
0.0;

359.9;

degrees of arc;
1;

physical;
message;

Wind Magnitude DI (data flow, pel) =
* An environmental variable describing how big the wind is. *

System User;

11 August 1993;
7 October 1993;
3:36:05 pm;
0.0;

300.0;

10.0;

km/hr;

1;

physical;
message;

App.3.3 THE REMAINING CORE WoRK PRODUCTS

This section contains the remaining CoRE work products that complete the CoRE specification for
the HAS Buoy system. The CoRE specification was recorded using Cadre’s teamwork.

App.3.3.1 CoRE Information Model

The CoRE information model in Figure 12 was recorded using a teamwork entity-relationship

diagram.

69

Appendix: HAS Buoy Case Study

HAS Buoy |———=H °"" Vessel ‘

0<=N

1 0<=N

Light Sailor

Figure 12. CoRE Information Model

App3.3.2 Environmental Variable Definitions

Monitored variables are identified on the system context diagram as system input data flows.
Controlled variables are identified on the system context diagram as system output data flows. The
data dictionary entries associated with the data flows define the environmental variables. Some
examples of environmental variable definitions are shown below.

WaterTemperature (data flow) =
Temperature.

Variable WaterTemperature (MonitoredVariable)
Physicallnterpretation The temperature of the water four feet below the
surface of the water in degrees centigrade.

Type TEMPERATURE
Values 0 .. 100
WindDirection (data flow) =
Direction.
Variable WindDirection (Monitoredvariable)

PhysicalInterpretation The direction the wind is blowing in degrees
(where 0 is due north and 90 is due east),
measured 10 feet above the surface of the water.

Type DIRECTION

Values 0 <= WindDirection < 360 (0 = north, 90 = east,

180 = south, 270 = west)

Report (data flow) =
Report_Type
+ ASCII_Report .

Appendix: HAS Buoy Case Study

Variable Report (Controlledvariable)
Physicallnterpretation
while Report_Type=SOS_Report
broadcasting data defined by DDE SOS_Data
while Report_Type=Wind_and_Temperature_Report
broadcasting data defined by DDE Wind_and_Temperature_Data
while Report_Type=Weather_History Report
broadcasting data defined by DDE Weather_History_bata
while Report_Type=Airplane_ Detailed Report
broadcasting data defined by DDE Airplane_Detailed_Data
while Report_Type=ship Detailed_Report
broadcasting data defined by DDE Ship_Detailed_Data
while Report_Type=None, no broadcasting

Type Enumeration + ASCII Text
Values for Enumeration, see Physicallnterpretation
for ASCII Text, standard 8-bit ASCII character
set

App.33.3 Dependency Graph

The CoRE dependency graph in Figure 13 was recorded using a teamwork level 0 data flow diagram.
Classes are illustrated using data transformations. Terms and environmental variables on class inter-
faces are illustrated using data flows between transformations. Input and output variables are
illustrated using external input and output data flows.

Data flow diagrams were also used to identify the IN, REQ, and OUT relations contained by each
class. There is a lower level data flow diagram (see Figure 14) attached to each class on the dependency
graph containing those relations.

App.3.3.4 Relations

IN, REQ, and OUT relations were defined using teamwork process activation tables. NAT relations
were defined textually in the data dictionary. The following subsections contain examples of these
relations.

App3.3.4.1 IN Relations

Figure 15 illustrates an example of an IN relation for the monitored variable Wind
(IN_Relation_for_Wind). WindVectorX and WindVectorY are terms defined in the data dnctlonary
WindSensors is the input variable used to derive the Wind monitored variable.

IN relations are also needed for the following monitored variables:
e Air_Temperature
e Water_Temperature
e Buoy_Location
s Vessel_Request
* Emergency_Button

!

Appeadix: HAS Buoy Case Study

014
VesselRequest
Time
BuoyLocatioa
Time
Vessel VesselRequest
Interface
Report
5
VesselRequest
AveragedWater
Temperature
Light
Interface
Water 8
Interface
3 RedLight
Time
Notation: Dotted flows represent eveats or state information, WaterTemperature'
solid flows represent environmental variables or terms.
Figure 13. Dependency Graph
28 | —
Air Interface WindSensors
WindVectorX
WindVectorY

s2 IN_Relation_for_Wind
Wind_Seasor_Timing

AirTemperature AlrTemperatureSensor

$1 | IN_Relation_for_Air_Temperature

Air_Temp_Sensor_Timing

Figure 14. Example of a Lower Level Data Flow Diagram for a Class

Appendix: HAS Buoy Case Study

2-528
IN_Relation_for_Wind
Condition 1 Coadition 2 WindSensors(C1) =] WindSensors(C2)= | WindSensors(C3)= | WindSensors(C4)=
WindVectorX >= 0 | WindVectorY >= 0 WindVectorY 0 WindVectorX 0
WindVectorX >= 0 | WindVectorY <0 0 ABS(Wind VectorY) WindVectorX 0
WindVectorX < 0 WindVectorY >= 0 WindVectorY] 0 ABS(WindVectorX)
WindVectorX < 0 WindVectorY < 0 o ABS(WindVectorY) 0 ABS(WindVectorX)

Figure 15. Example of an IN Relation

App.3.3.4.2 REQ Relations

Figure 16 illustrates an example of a REQ relation (REQ_Relation_for_Report) that maps multiple
monitored variables to the controlled variable Report.

S5-~s1;

;10
REQ_Relation_for_Report

Event

Report.Report_Type

Report.ASCII_Report

@T([Time MOD 60} = 0) when InMode(SOS)

“SOS_Report”

ASCII(SOS_Data)

@T([Time MOD 60] = 0) when InMode(Normal)

“Wind_and_Temperature_Report”

ASCII(Wind_snd_Temperature_Data]

@T(VesselRequest = "Airplane_Detailed_Report_Request”)

“Airplane_Detailed_Report”

ASCII(Airplane_Detailed_Dats)

@T(VesselRequest = *Ship_Detailed_Report_Request”)

“Ship_Detailed_Report”

ASCII(Ship_Detailed_Data)

@T (VesseiRequest = "History_Report_Request”)

“Weather_History_Report”

ASCII(Weather_History_Data)

Figure 16. Example of an REQ Relation

A REQ relation is also needed for the controlled variable RedLight.

App3.3.4.3 OUT RELATIONS

Figure 17 illustrates an example of an OUT relation (OUT_Relation_for_RedLight). An OUT
relation is also required for the controlled variable Report.

8~-52:6

OUT _Relation_for_RedLight

Light_Switch ! | RedLight
—————————————— :—:——-----————-—-
-------------- '—F—------——---

Light_On -
[}
Light_Off T

Figure 17. Example of an OUT Relation

App.33.4.4 NAT Relations
Examples of NAT relations for the HAS Buoy system are shown below:

=100 <= AirTemperature <= 100 (degrees centigrade)

0 <= WindMagnitude <= 250 (nautical miles per hour)

App33S Terms

Terms were specified using data dictionary entries. Some examples of term definitions are shown |
below: ;

AveragedAirTemperature (data flow) =

AveragedAirTemperature : TEMPERATURE
s= ROUND { (SUM i: 0 <= i <= § :: AirTemperature(t-10*i) / 6)]

Wind_and_Temperature Data (data flow) =
* Wind_and Temperature can be expressed as a function of time t, where
Wind_and_Temperature Data (t) = the set including each of the
following at time t: =*

{ BuoyLocation
+ AveragedWaterTemperature
+ AveragedAirTemperature
+ AveragedwindDirection
+ AveragedwWindMagnitude } .

App.3.3.6 Timing and Accuracy Constraints

Timing and accuracy constraints were specified using data dictionary entries attached to each IN,
OUT, and REQ relation. Each relation has a body of text with the suffix “_Timing” attached to the
appropriate teamwork process activation table. The data dictionary entries associated with these
bodies of text specify timing and accuracy constraints. Examples are shown below:

Wind_Sensor_ Timing (data flow) =
Periodic (sensor_offset,

30.0 second period,

1.0 second delay).

The wind sensor values are updated every 30 seconds, but the value
is up to 1 second old by the time the software gets it.

Report_Timing (data flow) =
Periodic (startup_offset + 30 seconds,
60.0 second period,
5.0 second delay)
and
Demand (startup_offset,
report_request (Report Type),
reporting_delay (Report_ Type)).

.

Appendix: HAS Buoy Case Study

ot

Reports are generated regularly, but special reports can also be

requested.

reporting_delay (data flow) =
vhen Airplane_Detailed Report => 2.0 minutes;
when Ship Detailed Report => 5.0 minutes;
wvhen Weather History_Report => 6.0 minutes;

Bach kind of report requires a different response time based on
the time the platform will be in range.

App.3.4 INPUT AND OUTPUT VARIABLE DEFINITIONS

Input and output variables were specified using data dictionary entries. Some examples of input and
output variable definitions are shown below:

AlrTemperaturesensor (data flow) =

Dataltem

Hardware

values
DataTransfer
DataRepresentation

AirTemperatureSensor

Air temperature gensor

-128 <= AirTemperatureSensor <= 127
Port B

8-bits, two’s~complement integer

Button_Indicator (data flow) =

Dataltem

Hardware

values
pataTransfer
DataRepresentation

Button_Indicator

Emexrgency button on buoy

Pressed (1) or released (0)

Port E

Most significant bit (bit 0) of the 8-bit port:
2#1xxxxxxx# = Pressed,
2#0xxxxxxx# = Released.

Outgoing_Radio_Message (data flow) =

Dataltem
Hardware
values

DataTransfer
DataRepresentation

Outgoing_Radio_Message
Radio transmitter
SOS_Report,
Wind_and_Temperature_Report,
Airplane_betailed_Report,
Ship_ Detailed_Report,
Weather_ History_ Report,
None.

Port G

512 bytes:

Byte 1: 2#10000001# means bytes 3-512 contain a page of an SOS_Report
2#10000010# means bytes 3-512 contain a page of a
Wind_and_Temperature_Report
2#10000011# means bytes 3-512 contain a page of an
Airplane_bDetailed_Report

75

Appeadix: HAS Buoy Case Study

2#10000100# means bytes 3-512 contain a page of a
Ship_Detailed_Report
2#10000101# means bytes 3-512 contain a page of a
Weather_ History_ Report
2#0xxxxxxx# means None — no message is be transmitted (ignore
bytes 2-512)
Byte 2: Bits 0-3: 4-bits range 1 .. 16 representing total number of
pages in message
Bits 4-7: 4-bits range 1 .. 16 representing number of page
being transmitted
Bytes 3-512: Message represented by ASCII characters.
End of message represented by l16#FF#.

App.3.5 MoODE CLASSES

Mode classes were defined using teamwork state-transition diagrams. There was only one mode class
for the HAS Buoy problem (see Figure 18).

9-31;14

Mode_Class_for_System_Mode SOS
10

Terminate_SOS_Signal
Button_Pressed

Figure 18. HAS Buoy Mode Class

LIST OF ABBREVIATIONS AND ACRONYMS

ADARTS

BEEISFEEEED ¢

Ada-based Design Approach for Real-Time Systems
computer-aided software engineering

CASE Data Interchange Format

Consortium Requirements Engineering
entity-relationship-attribute

Host-at-Sea

input (CoRE’s abbreviation for “input” relations)
natural (CoRE’s abbreviation for “natural” relations)
no date

output (CoRE’s abbreviation for “output” relations)
process specification

Requirements Driven Design

required (CoRE’s abbreviation for “required” relations)
System Engineering Notebook

List of Abbeeviations and Acroayms

This page intentionally left blank.

Alford, Mack
nd.

Ascent Logic Corporation
1991a

1991b

1992a

1992b

1993a

1993b

Cadre Technologies, Inc.
1990

Naval Research Laboratory
1980

O'Rourke, Joel
1993

Software Productivity
Consortium
1993

REFERENCES

Behavior Based System Test Planning. San Jose, California:
Ascent Logic Corporation.

RDD-100 Extensible Database Manager, release 3.0. San Jose,
California: Ascent Logic Corporation.

RDD-100 System Engineering Notebook, release 3.0. San Jose,
California: Ascent Logic Corporation.

RDD-100 User’s Guide, release 3.0.2. San Jose, California:
Ascent Logic Corporation.

RDD-100 Report Writer Manual, release 3.0. San Jose, California:
Ascent Logic Corporation.

RDD-100 Customer Education. San Jose, California: Ascent
Logic Corporation.

RDD-100 Bridge to teamwork. Beta 1. San Jose, California:
Ascent Logic Corporation.

teamwork Toolkit Utilities User’s Guide, release 4.0. Providence,
Rhode Island: Cadre Technologies, Inc.

Software Engineering Principles. Washington, D.C.: Naval
Research Laboratory.

RDD-100: A System Engineering Support Tool. Review Draft, Rev.
02. San Jose, California: Ascent Logic Corporation.

Consortium Requirements Engineering Guidebook,
SPC-92060-CMC, version 01.00.09. Herndon, Virginia:
Software Productivity Consortium.

This page intentionally left blank.

