
Management Science Research Report #MSRR-590

G0

Nmo OTIC
ELECTE

N FEB 021994<,U A

WEIGHTED AND UNWEIGHTED
MAXIMUM CLIQUE ALGORITHMS

WITH UPPER BOUNDS
FROM FRACTIONAL COLORING

Egon Balas
and

Jue Xue'

0

I=___ April 1993

This docurlent h~as b~ee ~PpIOi
|o: public telea.e 0-nd soi its

The research underlying this report was supported by the National Science Foundation, Grant #DDM-
"9201340 and the Office of Naval Research through Contract N00014-85-K-0198.

Management Science Research Group
"Graduate School of Industrial Administration

Carnegie Mellon University
Pittsburgh, PA 15213-3890

'Graduate School of Management, Clark University. 94 2 0 1 12 8

Abstract

The linear programming relaxation of the minimum vertex coloring problem, called the

fractional coloring problem, is NP-hard. We describe efficient approximation procedures

for both the weighted and unweighted versions of the problem. These fractional coloring

procedures are then used for generating upper bounds for the (weighted or unweighted)

maximum clique problem in the framework of a branch and bound procedure. Extensive

computational testing shows that replacing the standard upper bounding procedures based

on various integer coloring heuristics with the somewhat more expensive fractional coloring

procedure results in improvements of the bound by up to one fourth in the unweighted and

up to one fifth in the weighted case, accompanied by a decrease in the size of the search tree

by a factor of almost two. Accesion For

NTIS CRA&I

DTIC TAU3

JustIf!C.jtrc';J

eyAfiý 179 7
-------.! •Dit. 'i)-tio7 I

Avai: ,v:JIor

Dist Special

1 Introduction

Consider an undirected graph G = (V, E) and its complement G = (V, P), where

E {(i,j) Ei,j V \ E}. For any S C V, G(S) denotes the subgraph of G induced by

S. A clique of G is a set of pairwise adjacent vertices, whereas a stable set (independent set,

vertex packing) is a set of pairwise nonadjacent vertices. From the definitions, S is a clique

of G if and only if it is a stable set of G. The maximum clique/maximum stable set problem

asks for a clique/stable set of maximum size. Obviously, the former problem on G is the

latter problem on G and v:ce-versa.

A (vertex) coloring of G is a partition of the vertex set into stable subsets, each of which

is called a color class. A clique covering of G is a partition of the vertex set into cliques.

Obviously, IS,,..., Sp} is a (vertex) coloring of G if and only if it is a clique covering of G.

The minimum coloring/minimum clique covering problem asks for a coloring/clique covering

of minimum cardinality. Again, the former problem on G is the latter problem on G.

We will address the above pair of problems in the formulation

zo =max {lx: Ax < 1, xi E {0,1}, j E V} (1)

for the maximum clique problem, and

to = min {yl : yA > 1, ys E {0,1}, S E S}, (2)

for the minimum coloring problem; where A is the incidence matrix of stable sets versus

vertices, and S is the family of all stable sets of G. Clearly, to _> zo, and the minimum

coloring problem has been frequently used as an upper bounding device for the maximum

clique problem.

"If the 0-1 conditions in both problems are relaxed, then (1) and (2) become a pair of dual

linear programs; hence the fractional coloring problem

t, =rmin {yl:yA> 1, ysŽ>O, SESI (3)

1

also provides a valid upper bound t1 on the value of z0 , and namely a tighter one than to.

Therefore we wish to use (3) to obtain a stronger upper bound on the value of z0 . The linear

program (3) should be easier to solve than the integer program (2); but (3) has exponentially

many variables and there is no known algorithm bounded by a polynomial in IVI for solving

it. In fact (3) is known to be NP-complete [11]. Therefore rather than solving it exactly, we

will use a fractional coloring heuristic to find an approximate solution to (3).

The above problems have their weighted counterparts, where the weight of a clique is the

sum of weights of its vertices. Thus the maximum weight clique problem is

io= max {wx : Ax < 1, xj E {0,1}, j E V} (4)

while the minimum weighted coloring problem and its fractional counterpart are

to = min {yl : yA > w, ys > 0 integer, S E S} (5)

and

t in {yl : yA > w, ys >ŽO, S E S}, (6)

respectively. Unlike in the unweighted case, a color cl-hss S appears in the solution to (5)

with a weight Ys possibly different from 1 (or 0).

For any C C 8, we will denote y(C):= Z(ys: S E C).

In this paper we present approximate procedures for solving the fractional coloring prob-

lem (3) and its weighted version (6). We then embed these procedures as upper bounding

devices into a branch and bound algorithm for solving the maximum clique problem in its

weighted and unweighted versions. Finally, we present extensive computational experience

with the resulting algorithms.

The fractional coloring procedure for unweighted graphs and the corresponding branch

and bound procedure were presented, along with computational results, in [41 and [16].

Further details can be found in [17]. A similar procedure for the unweighted case has been

developed independently in the context of vertex packing by Mannino and Sassano [13].

2

2 A Fractional Coloring Heuristic

The basic idea of our approach is this. Suppose we have an (integer) coloring C1

(S1 ,.. .,Sq) of G, where each S, is a stable set (color class). Since C, is a partition of V,

typically some of the color classes Si are not maximal. Suppose we now augment these

color classes by coloring as many vertices as we can with a second color from among the q

color classes. Let V2 be the set of these vertices that now belong to two color classes. The

coloring C1 thus becomes a collection of overlapping rather than disjoint subsets, but its

weight (cardinality) remains unchanged. If we now find a new coloring C2 of the vertices

in V \ V2, then every vertex will have been colored twice, and thus using one half times

the first and one half times the second coloring, we obtain a full fractional coloring of total

weight (ICI)l + IC21)/2. However, since C2 is a coloring of fewer than IVI vertices, typically

IC2 1 < I C1 I and therefore (IC,1I + IC21)/2 < I C,1 i.e. our fractional coloring is better than C1.

This process can be repeated by using a third, fourth etc. coloring as long as improvements

can be obtained.

The (integer) colorings needed at each iteration will be generated by an Integer Coloring

Heuristic (ICH). We will denote by C := C1 U C2 U ... U Ck the collection of color classes

generated during the procedure. Notice that the color classes Si of each coloring Cj are

generated at iteration j and augmented at subsequent iterations. At iteration k, we will

denote by Uk the set of vertices not yet colored (during that iteration), and by tk the current

value of the fractional coloring at hand.

Fractional Coloring Procedure (FCP)

0. Initialize: t' := oo, C := 0, y := 0, U, = V, k = 1.

At iteration k:

1. Set Uk := V.

2. For each v E Uk, choose a color class Si E C, if one exists, such that Si U {v} is stable,

3

and set

S, :=SiUfV), Uk:= Uk\

3. Apply ICH to G(Uk); let Ck be the coloring found. If ((ICI + ICkj)/k) < tk-, set

t~k (CI + Ckl)/k, C:= C U Ck, k := k + 1

and go to 1.

Otherwise let C* C, I•= t- 1 ,

* 1/(k- 1) for S E C'
YS = 0 for S ý C"

and stop.

Note that the color classes generated by FCP need not be distinct, i.e. repetition is

allowed.

Theorem 2.1 y* is a feasible fractional coloring, with t* = y*(C*); hence [t•J is an upper

bound on the cardinality of a clique in G.

Proof. Each S E C* is stable by construction; hence y* with support C* satisfies all

constraints (3) if and only if

Z(y;:SEC*andvES)Ž_1 forallvEV.

During each iteration except for the last one, every v E V is included in exactly one color

class either in step 2 or in step 3. If there are p iterations, each v E V is included in p or

p - 1 color classes S E C*; and since yý = 1/(p - 1) for all S E C*,

1-(y; : S E C* and v E S) _> (-- = 1 for all v E V.0

It is desirable to have the stopping rule amended to the effect that the maximum number

of color classes allowed is O(IVI).

Theorem 2.2 If the number of color classes generated is 0(IVI) and the ICH used has

complexity 0(h), then FCP can be executed in 0(min {IEI -IlV, ce(G)-. V12} + h. YV[) time.

4

Proof. At every iteration, step 2 requires checking for every pair v, S whether N(v) n S = 0,

where N(v) {w E V : (v, w) E E}. This can be done either by checking for each u E N(v)

whether it has the color S, which takes 0(deg(v)) time, or by checking for each u E S

whether it belongs to N(v), which requires 0(a(G)) time. Thus the complexity of executing

step 2 throughout the procedure (i.e. at most O(IVI) times) is 0(IVI -rmin {IEI, a(G)" IVl}).

On the other hand, the effort involved in step 3 depends on the complexity of the ICH

used. If the latter is 0(h), then the complexity of step 3 throughout the procedure is

0(h - lVi). Thus the complexity of FCH is as claimed. 0J

For dense graphs a(G) is small and the complexity of the procedure is only slightly worse

than o(IV12).

We have tested two heuristics in the role of ICH. One is DSATUR (for Degree of Sat-

uration), a procedure due to Brelaz [8]; which consists of applying n times the following

step:

9 Choose an uncolored vertex v such that the vertices in N(v) represent a maximum

number of color classes, and put v in the first color class where it fits. To break ties, give

preference to vertices with higher degree.

The other one is the simple coloring heuristic SCH, which can be stated this way:

e Open a color class and put in it as many vertices as possible, in order of non-increasing

degree. Repeat this as long as possible.

DSATUR typically finds a better coloring than SCH. In [8] it was found the most efficient

among five heuristics tested (see [12], [14J, [15] for other coloring heuristics). However, the

complexity of DSATUR is 0(1V01), whereas that of our SCH is 0(min {IEI, IV12 \ IEI}). For

very spase and very dense graphs, DSATUR is an order of magnitude more expensive than

SCH.

Before continuing, we illustrate FCP on a graph with 9 vertices.

Example 1 Consider the graph of Figure 1.

k = 1. U1 = V and the first coloring generated is C1 = {,. . . ,S5}, with S, = {1,9},

5

Figure 1:

S 2 {2,5}, S3 = {3,4}, S4 = {6,8}, S5 = {7}. This gives a starting bound of t] = ICI =

IC1I = 5.

k = 2. Vertex 2 can be added to Ss and vertex 4 to S4, i.e. 4 {4, 6, 8}, S5 : {2, 7}.

U2 {1,3,5,6,7,8,9}. ICH yields C2 := {S6, S7, S8, Sg}, with S6 = {1,8}, S7 = {3,5,9},

S8 = {6}, Sq = {7}. (ICI + lC21)/2 = 4.5 < 5, So t2 := 4.5, C = C U C2.

k = 3. Vertex 2 can be added to Ss, vertices 4 and 8 to $9; i.e., S8 := {2,6}, $9

{4,7,8}. U3 := {1,3,5,6,7,9}. C3 := {f 1So, S1, 12,S 13 }, with So := {1,9}, S11 := {3,5},

S12 := {6}, 13 := {7}. (ICI + IC31)/3 = 4.33 < 4.5, so t3 := 4.33, C:= C u C 3.

At this point the number of color classes generated exceeds our limit, so we stop:

C := f{Sl,...,S13}, y, = 1/3 for i = 1,...,13, and [tlJ = 4. 0

The fractional coloring procedure can be generalized so as to apply to the weighted case,

i.e. to finding an approximate solution to problem (6). However, this generalization is far

from trivial. The reason for this is that in the weighted case every vertex v has to be colored

with enough colors of enough weight so that their total weight adds up to the weight of

v. Therefore the integer coloring heuristic used in FCP needs to be replaced by a weighted

integer coloring heuristic (WICH), where each vertex may belong to several (weighted) color

6

classes. For v E V, we will call the residual weight of v, and denote by r(v), the weight

that needs to be "covered" by weighted color classes during the current iteration. Like in

the unweighted case, a full integer coloring is generated at every iteration; but the weight

r(v) to be covered (absorbed) by weighted color classes for each v E V may be less than the

initial weight w(v). This is so because, unlike in the unweighted case, the integer (weighted)

coloring at a given iteration may "overcover" (i.e. color with excess weight) some of the

vertices. In particular, this may happen if in step 2 we fit a vertex v into a color class Si

whose weight ys, exceeds w(v). In such a case the residual weight of vertex v at the next

iteration will be r(v) := w(v) - (ys, - w(v)) < w(v).

By analogy with the unweighted case, at iteration k we will denote by Uk the set of

vertices not yet fully colored (i.e. having positive residual weight) during that iteration, and

by t'k the current value of the fractional coloring at hand. Unlike in the unweighted case,

however, we will have to keep track explicitly of the weights Ys, generated during successive

iterations. These weights will be kept integer until the last iteration, when the appropriate

fractional values will be calculated.

Weighted Fractional Coloring Procedure (WFCP).

0. Initialize: t~° := 00, C =0, y0 := 0, r(v) := 0, v E V, U1 = V, k := 1.

At iteration k:

1. Let

r(v) := r(v)+w(v), yE V; Uk := {vE V:r(v) > 0}.

2. For every v E Uk, choose a color class Si E C, if one exists, such that Si U {v} is stable.

Set S; := Si U {v}, r(v) := r(v) - ysk,1, and if r(v) < 0, set Uk := Uk \ {v}.

3. Apply WICH to G(Uk); let yk be the weighted coloring found, with Ck the correspond-

ing set of color classes.

7

If (ykl-'(C) + yk(Ck))/k < tk-', set

_*: (yk-,(C) + yk(Ck))/k,

{yk-' for S E C

YS YS ysk for S E Ck
0 for S V C U Ck,

C := CUCk, k:=k+1

and go to 1.

Otherwise let C* C, -I := ,j-i,

ky•-(k- 1) for S E C*YS

0 for S V C*

and stop.

Theorem 2.3 y" is a feasible weighted fractional coloring, with -; y*(C*); hence [itJ is

an upper bound on the weight of a clique in G.

Proof. Parallels that of Theorem 1. 0

The complexity of the weighted fractional coloring procedure is the same as that of its

unweighted analog.

The integer coloring heuristic that we use in the role of WICH is a generalization to the

weighted case of SCH, which can be stated as follows:

e Open a color class S and put in S as many vertices v E Vk as possible, in order

of decreasing residual weight. Then reduce the residual weight r(v) of each v E S by

r(vo) := min {r(v) : v E S} and remove from Uk all vertices v such that r(v) = 0. Repeat

this procedure until Uk = 0.

Next we illustrate WFCP on the graph with 6 vertices in Figure 2, where the numbers

in the boxes are the weights.

Example 2.

k = 1. r = w = (3,3,2,2,2, 1), U, = {1,.. .,6}. WICH yields the integer coloring defined

by C1 = {Sl,..., S5}, with S1 = {1,4}, y', = 2; S 2 = {1,3}, y•2 = 1; S 3 = {2,5}, y' = 2;

S4 = {2,6}, y', = 1; S5 = {3}, y' 5 = 1.

8

Figure 2:

We have i E =: i = 1,...,5) = 7, y4, as defined above for i = 1,...,5, yl = 0 for

all other S, and C := C1.

k = 2. r = (3,3,2,2,2,1), U2 ={1,..,6}. We can add vertex 5 to Ss, so S5 :={3,5},

r(5) = 2- 1 = 1. U2 remains unchanged, but r = (3,3,2,2,1,1).

WICH yields the coloring C2 = {S6,...,Sg}, with S6 = {1,3}, yS = 2; S7 = {1,6},

YUs = 1; S8 = {2,5}, YS8 = 1; S9 = {2,4}, y9 = 2.

We have (yl(C) + y2(C2))/2 = (7 + 6)/2 = 6.5 < 7, so we set t2 := 6.5,
Y' for SE C

YS YS y• for S E C2

0 for SVCU C2

and C := C U C2.

k = 3. r = (3, 3, 2, 2, 2, 1), U3 = {1,.. ., 6}. The color classes in C are all maximal.

Applying WICH to G(U3) yields C3 which is the same as C1, i.e. S1o = SI,... , S 14 = S5,

with y3 y- 9 , i = 10,..., 14. Further,

(y2(C) + y3 (63))/3 = (13 + 7)/3 = 6.67 > 6.65,

hence we stop with C* := C, y; = ys for S E C*, y; = 0 otherwise, and t = 6.0

9

It will be shown in the last section on computational results, that the fractional color-

ing procedure provides a substantially tighter bound, sometimes by as much as 7, on the

maximum clique size or clique weight, than the best integer coloring heuristics. The ratio

between the two bounds seems to improve with the size of the graph in favor of the fractional

coloring bound.

3 Using FCP and WFCP in a Branch and Bound Al-
gorithm.

In this section we embed FCP and WFCP into a branch and bound algorithm for

finding a maximum clique, viz. maximum-weight clique, in an arbitrary graph G = (V, E).

The branch and bound algorithm has the same structure as that of Balas and Yu [6] for

the unweighted case and Balas and Xue [5] for the weighted case. FCP in the unweighted

case, and WFCP in the weighted case, are used as upper bounding devices. Because of

the important differences between these two procedures, as well as between the weighted

and unweighted lower bounding devices, we have actually developed two distinct algorithms,

MAXCLQ1 for the unweighted and MAXCLQ2 for the weighted case. We will discuss the

weighted case only; the corresponding steps of the algorithm for the unweighted case can

easily be substituted on the basis of our discussion in section 2.

We start by finding an edge-maximal triangulated subgraph G' of G (see [3],[17]) at the

root node of the search tree, and a maximum-weight clique K* of G'. Then LB := w(K*) is

a lower bound on the weight of a maximum-weight clique in G. Next we apply WFCP to G

in order to obtain an upper bound, UBG, on the weight of any clique in G. If UBG < LB,

we are done; otherwise we branch, based on the following branching scheme (see [61 and [5]

for a proof of validity and discussion):

Theorem 3.1 Let G' := G(V') be an induced subgraph of G, UBG, an upper bound on the

weight of a clique in G', and vi,..., vm an arbitrary ordering of the vertices in V \ V'. If G

10

has a clique K such that w(K) > UBG,, then K is contained in one of the m sets

Vi := {vi} U N(vi) \ {vl,...,vi-I}, i = 1,....,m, (7)

where fori= 1, we define {v1,...,v 1 } =, .

At an arbitrary node of the search tree other than the root, we have a subproblem

P' := (G', I', UBR,), where G' is a subgraph of G induced by some vertex set Vi of the form

(7), 1' is a subset of the vertices in V \ Vi to be added to any clique of G' (to yield a larger

clique of G), and UBG, is an upper bound on w(K) for any clique K of G'.

The statement of the algorithm follows, with L denoting the list of active subproblems

(nodes of the search tree).

Maximum-Weight Clique Algorithm (MAXCLQ2)

0. Initialize. Find an edge-maximal triangulated subgraph G* of G, and a maximum-

weight clique K* of G*. Set LB w(K*). Put into L the problem P := (G, 0, oo) and go

to 1.

1. Subproblem Selection. If L = 0, stop: K* is a maximum-weight clique of G. Otherwise,

choose a subproblem P' := (G', I', UBG,) in L and remove P' from L.

If UBG, + w(I') • LB, discard P' and go to 1.

2. Lower bounding. Use a heuristic to find a maximal clique K' in G'. If w(K') + w(I') >

LB, set K* := K' U I' and LB := w(K*).

3. Upper bounding. Apply WFCP to C' to get an upper b-nund UBG, on the weight of a

clique in G'. If UBGI + w(I') 5 LB, discard P' and go to 1.

4. Branching. Let C, be the integer coloring generated in the first iteration of WFCP,

and let C' be a maximal subset of C, such that y(C•) < LB - w(I'). Further, let vj,..., v,m

be an arbitrary ordering of the vertices in V \ {v : y(C') > w(v)}. For i = 1,.. . , m, put into

L the subproblem P' := (0,,Ii,UBG'), where GC := G'(N(v,)\ {vl,.. .,vi}), I': I'U {v,},

and UBG, := UBG, - w(vi). Then go to 1.

11

Our current implementation uses a subproblem selection rule (step 1) based on a depth

first search strategy, and a lower bounding heuristic (step 2) that constructs a clique at every

node of the search tree by the same procedure as in [5]. In the unweighted case, the lower

bounding heuristic constructs a clique as a byproduct of DSATUR. The main feature that

distinguishes this algorithm from those of [6] and [5] is its upper bounding technique. The

fractional coloring procedure provides a stronger upper bound than the integer coloring used

in [6] and [5], but is of course computationally more expensive.

4 Computational Results.

The procedures FCP and WFCP were implemented in C and tested both as stand-

alone procedures for finding an approximate solution to the (unweighted and weighted)

fractional coloring problem, and as bounding devices in the framework of a branch and bound

procedure. For the purposes of testing, random graphs were generated, having between 100

and 500 vertices, and densities of 0.1 to 0.9. Here density means the probability that a

certain edge is present. The tests were run on a NeXTstation.

Several currently available branch and bound codes for finding maximum cliques (see

[1, 2, 6, 9]) can solve without difficulty problems on sparse random graphs even for sizes well

above 1,000 vertices. Dense graphs are an altogether different matter.

The expected size of a minimum (integer) coloring of a random graph is O(n/logan),

and the corresponding number for a maximum clique is O(logbn) (see Bollobis [7]), where

the bases of the two logarithms are a = 1/(1 - d) and b = 1/d, respectively, with d the

density of the random graph, i.e. the probability that a particular edge is present. It

follows that the ratio between the expected size of a minimum coloring and a maximum

clique is O(n/(logan. o109n)). This shows that the degree of difficulty in solving the problem

increases rapidly with n. Now for fixed n, the above ratio attains its maximum for a = b =

1/(!) = 2. This suggests that the hardest problems are those on graphs whose density is 0.5.

This conclusion, however, is not corroborated by computational experience with any of the

12

Table 1: Fractional Versus Integer Coloring Procedures

Graphs Upper Bounds Computational Effort
Density Iterations CPU seconds

._V _ % tsc_ tDSAT tFCP_ tC__ FCP1 IFCP2 FCP1 [FCP2
10 6.0 6.0 6.0 5.0 2.0 3.5 0.031 0.047
20 9.5 9.0 8.0 8.0 5.0 3.5 0.055 0.069
30 13.0 12.0 11.0 10.0 4.0 6.0 0.039 0.102
40 15.0 15.0 13.0 13.0 7.5 4.0 0.063 0.070

100 50 19.5 18.5 16.5 15.5 5.5 9.0 0.055 0.164
60 23.5 23.0 20.0 19.5 7.5 7.0 0.077 0.148
70 27.5 27.5 25.0 25.0 5.5 5.0 0.062 0.124
80 35.0 34.5 31.5 30.0 5.0 7.5 0.071 0.195
90 43.0 44.5 41.0 39.5 4.5 6.5 0.061 0.212
10 18.0 16.5 14.5 13.5 8.5 7.0 1.024 2.336
20 30.0 27.0 24.0 23.0 13.0 8.5 1.429 3.343
30 42.5 40.5 35.0 34.0 7.5 8.0 0.984 3.577
40 57.0 51.0 46.5 45.0 8.0 9.5 1.171 4.691

500 50 69.0 66.0 58.5 57.5 11.5 12.5 1.742 6.686
60 86.0 81.0 74.0 72.5 9.0 10.0 1.570 6.119
70 105.5 99.5 91.5 90.8 11.5 10.0 2.138 6.823
80 130.5 126.0 114.5 113.5 14.5 12.0 3.880 8.899
90 166.0 166.5 151.0 151.5 11.0 6.5 2.928 5.694

above listed algorithms, which are all branch and bound procedures, differing only in their

branching rules and bounding devices. The general experience with all these algorithms has

been that the size of the search tree, and therefore the computational effort needed to solve

the problem, grows with density not just up to 0.5 but even faster beyond that, and that

this trend continues well beyond the density of 0.9. (This might be different for an approach

based primarily on cutting planes.) Actually, for densities of 0.8 - 0.9 graphs on 200 - 300

vertices are already very hard.

First we examine the performance of the fractional coloring procedures by themselves.

Tables 1 and 2 summarize our findings in this respect, for the unweighted and weighted

cases, respectively. We have examined a larger number of variants and carried out more

extensive testing for the unweighted case. The first two columns of Table 1 describe the

13

Table 2: Weighted Fractional Coloring Procedure

Graphs
IVI Density tiCe twFCI Iterations

10 35.0 29.5 14.0
20 52.5 46.5 7.0

100 50 106.0 92.5 7.0
80 195.0 176.5 11.0
90 255.5 237.5 16.0
10 57.0 45.5 9.0
20 84.5 78.5 3.5

200 50 180.5 159.0 7.0
80 347.5 306.5 18.0
90 454.5 407.5 11.0
10 69.5 55.0 15.5
20 111.0 92.0 12.0

300 50 249.0 218.0 13.0
60 306.0 267.0 12.5
70 382.0 343.0 12.0

random graphs in terms of their size and density. Columns 3, 4, 5 and 6 show the upper

bounds (cardinality of colorings) obtained by SCH (tscH), by DSATUR (tDSAT), by FCP1

(tFcp1), and by FCP2 (tFCp2), respectively, with each entry representing the average of two

runs. The first two procedures axe the two integer coloring heuristics discussed in section 2.

FCP1 is the version of the fractional coloring procedure that uses SCH as its integer coloring

heuristic, whereas FCP2 is the version that uses DSATUR in the same role.

As the numbers show, the integer coloring obtained by DSATUR is typically better than

the one obtained by SCH, though not without exceptions. The improvements in the bound

obtained by FCP1 over SCH range from 0 to ., and FCP2 sometimes goes even beyond

I The number of iterations for FCP1 increases somewhat with problem size, but remains

below 15. Computing times increase both with problem size and density. There is a large

discrepancy between the computing times of the two versions of FCP. This is partly due to

the fact that DSATUR is more time consuming than SCH, but mainly to the fact that in

14

Table 3: Unweighted Maximum Clique Algorithms

Graph MAXCLQ1 . Babel

LB UB Maximum Search Search
IVI Density at root at root clique tree CPU tree CPU

% node node size nodes secondst nodes secondsl

10 4.0 5.0 4.0 16 0.06 31 0.07
20 5.0 8.0 5.0 35 0.09 60 0.12

100 50 8.5 15.5 9.0 216 0.83 252 0.79
80 18.5 30.0 19.5 2,035 19.96 2,192 17.69
90 29.0 39.5 31.0 1,181 25.74 1,698 28.40
10 4.0 7.5 4.5 72 0.48 111 0.32
20 5.0 12.0 6.0 112 0.99 192 0.67

200 50 10.0 27.5 11.0 3,005 17.15 3,721 17.32
70 16.5 42.5 18.0 57,891 555.31 79,734 630.10
80 24.0 53.0 25.5 467,998 7,888.30 893,158 10,761.17
10 4.0 9.5 4.5 152 0.83 196 0.88
20 6.0 16.5 6.0 321 2.02 535 2.13

300 50 10.5 38.0 12.0 21,549 141.95 29.256 152.20
60 13.0 48.5 15.5 126,878 1,115.03 183,454 1,242.19
70 18.5 58.5 20.0 1,228,174 15,361.14 1,521,542 16,221.38
10 5.0 12.0 5.0 228 1.67 295 1.74
20 6.5 20.5 6.5 1,082 5.73 1,462 5.23

400 40 9.0 37.5 10.0 17,208 114.49 24,606 113.35
50 11.5 48.5 13.0 114,141 814.17 141,892 831.20
60 15.0 60.5 16.5 1,094,546 10,244.32 1,333,978 10,043.45
10 5.0 13.5 5.0 314 3.45 415 2.99
20 6.0 23.0 7.0 1,981 12.97 2,740 10.57

500 30 8.0 34.0 8.0 11,530 63.58 13,015 57.56
40 10.0 45.0 11.0 52,053 356.05 66,494 327.80
50 12.0 57.5 13.0 406,211 3,218.75 476,392 3,082.30

t NeXTstation

CDC CYBER 995

15

Table 4: Weighted Maximum Clique Algorithms

Graph MAXCLQ2 BX92
LB UB Maximum Search Search

IVI Density at root at root clique tree CPU tree CPU
% node node weight nodes secondst nodes seconds_

10 28.5 29.5 28.5 9 1.28 13 0.06
20 35.5 46.5 37.0 29 0.69 32 0.09

100 50 62.0 87.5 69.5 76 1.87 99 0.27
80 135.0 176.5 137.0 146 10.84 387 1.71
90 209.9 237.5 213.5 148 21.42 269 1.84
10 34.5 46.0 34.5 67 1.87 68 0.26
20 43.0 78.5 49.0 104 1.99 113 0.47

200 50 77.0 159.0 77.5 1,254 36.52 1,726 5.76
70 123.5 240.0 129.5 7,477 443.97 18,011 87.96
80 184.5 306.5 186.5 27,605 2,789.75 60,038 536.52
10 34.5 55.0 36.5 152 5.84 152 0.75
20 45.0 92.0 46.5 207 8.53 258 1.29

300 50 80.5 218.0 86.5 7,859 282.66 13,611 48.73
60 103.5 267.0 117.5 24,052 1,364.69 42,078 208.66
70 141.0 343.0 150.0 175,996 14,246.57 427,806 2,590.35
10 35.5 67.0 35.5 238 9.67 250 1.48
20 49.0 115.5 50.0 367 18.07 539 2.94

400 40 76.0 222.5 78.5 8,197 324.64 11,379 43.08
50 86.0 272.5 96.0 31,558 1,735.71 58,286 232.41
60 110.0 336.0 117.5 178,089 12,636.95 345,979 1,880.25
10 40.0 86.5 42.5 305 13.16 316 2.32
20 47.5 133.5 53.0 695 51.67 1,510 6.19

500 30 59.0 194.0 68.5 4,815 216.29 6,419 25.52
40 75.0 261.5 83.5 17,395 872.58 25,902 120.25
50 89.5 325.0 101.5 97,318 6,223.33 179,050 842.21

tNeXTstation
tHP 9000/835

16

the experiment reported here we let FCP2 run for 50 iterations in each case, to make sure

we get the lowest value obtainable by our approach.

"Table 2 reports, in a more summary fashion, the corresponding results for the weighted

case. Here iwIcp and tWFCP stand for the weights of the (weighted) integer and fractional

colorings, respectively, obtained by the procedures WICP and WFCP discussed in section 2.

The last column shows the number of iterations of WFCP. Again, each entry represents the

average of two runs. As in the unweighted case, the improvement in the bound obtained by

the fractional coloring procedure over the integer one varies between 0 and .1

Next we turn to the tables describing the performance of the fractional coloring procedure

as an upper bounding device in the framework of a branch and bound algorithm. Table 3

reports on MAXCLQ1, the branch and bound code for the unweighted problem. Again,

every entry represents the average of two runs. The column "LB at the root node" shows

the lower bound obtained by finding an edge maximal triangulated (EMT) subgraph of G

and a maximum clique in that subgraph. Comparing the entries of this column with those

of the column showing the actual maximum clique sizes, we find that the EMT subgraph

yields a very strong lower bound: the difference between this lower bound and the actual

maximum clique size is as follows:

0 in 7 cases
0.5 in 3 cases
1.0 in 7 cases
1.5 in 6 cases
2.0 in 1 case
2.5 in 1 case

The fourth column, "UB at the root node," shows the upper bound obtained by the

fractional coloring procedure FCP2, which uses DSATUR as its integer coloring heuristic.

Although this procedure, as shown in Table 1, improves the upper bound sometimes by more

than 1, nevertheless the gap between it and the lower bound is very significant, the ratio

between the two being in the range 1.25 - 4.5. As a result of this situation, the number

of search tree nodes that need to be explored is very large and grows fast with the graph

17

density.

The last two columns of Table 3 compare the results of MAXCLQ1 with those of the

branch and bound procedure of Babel [1], which seems to be the most efficient code in

the literature. We see that in every case MAXCLQ1 generates smaller search trees than

Babel's code, sometimes by a factor of 2. This is due primarily to the stronger upper bounds

obtained by the fractional coloring procedure. A second explanation lies in the strong lower

bound generated at the root node by solving the EMTS problem. The computing times are

shown only for completeness; they are hard to compare, because the runs were performed on

radically different computers. It should also be mentioned that the computational results of

Babel are taken from [1], and the random problems solved with the two procedures, although

of the same size and density, are not the same.

Finally, Table 4 describes the performance of MAXCLQ2, our branch and bound code

for the weighted maximum clique problem. Again we find that the lower bound obtained by

generating a triangulated subgraph of G and finding a maximum-weight clique in it, is pretty

strong, though not to the same degree as in the unweighted case: in a couple of instances

the ratio between LB and the maximum clique weight is less than 0.9. The gap between

the upper and lower bounds remains large in the weighted case too, with the ratio of the

two bounds exceeding 3.0 in some cases. The last two columns compare the performance of

MAXCLQ2 with the branch and bound code of Balas and Xue [5] (BX92), whose structure is

similar to that of MAXCLQ2, except for the fact that it does not use the fractional coloring

procedure. We see that use of this improved upper bounding procedure substantially reduces

the size of the search tree, sometimes by a factor of more than 2. Again, the computing

times are not comparable because of differences in the computers. However, the computing

times of MAXCLQ2 can be compared to those of MAXCLQ1, and the comparison shows

that the time spent per search tree node is about 5 times higher in the weighted case than

in the unweighted one. This is partly due to the fact that the weighted fractional coloring

problem is inherently more difficult than the unweighted one, and partly to differences in

18

the intensity of the implementation effort in the two cases.

To conclude, the fractional coloring procedure is undoubtedly a powerful device for

strengthening the upper bound obtained by integer coloring. Its incorporation into a branch

and bound framework has produced algorithms that compare favorably with other state of

the art procedures.

References

[1] L. Babel, "Finding Maximum Cliques in Arbitrary and Special Graphs." Computing, 46:

321-341, 1991.

[21 L. Babel and G. Tinhofer, "A Branch and bound Algorithm for the Maximum Clique

Problem," ZOR-Methods and Models of Operations Research, 34: 207-217, 1990.

[3] E. Balas, "A Fast Algorithm for Finding an Edge-Maximal Subgraph with a TR-

Formative Coloring," Discrete Applied Mathematics, 15: 123-134, 1986.

[4] E. Balas and J. Xue, "Fast Maximum Clique Algorithms," TB17.4, TIMS/ORSA Las

Vega, May 7-9, 1990.

[5] E. Balas and J. Xue, "Minimum Weighted Coloring of Triangulated Graphs, With Ap-

plication to Maximum Weight Vertex Packing and Clique Finding in Arbitrary Graphs,"

SIAM Journal of Computing, 20. 209-221, 1991. "Addendum," SIAM Journal on Com-

puting, 21: 1000, 1992.

[6] E. Balas and C.S. Yu, "Finding a Maximum Clique in an Arbitrary Graph," SIAM

Journal on Computing, 14,: 1054-1068, 1986.

[7] B. Bollobis, Random Graphs. Academic Press, 1985.

[8] D. Brelaz, "New Methods to Color the Vertices of a Graph," Comm. of ACM, 22. 251-

256, 1979.

19

[9] R. Carraghan and P.M. Pardalos, "A Parallel Algorithm for the Maximum Weight Clique

Problem," Technical Report CS-90-40, Department of Computer Science, Pennsylvania

State University, 1990.

[10] F.D.J. Dunstan, "Sequential Colorings of Graphs," in Proceedings for the 5th British

Combinatorial Conference, 19: 456-463, 1975.

[11] M. Gr~tschel, L. Lovisz and A. Schrijver, "Polynomial Algorithms for Perfect Graphs,"

Annals of Discrete Mathematics, 21: 325-356, 1989.

[12] F.T. Leighton, "A Graph Coloring Algorithm for Large Scheduling Problems," Journal

of Research of the National Bureau of Standards, 84: 489-506, 1979.

[13] C. Mannino and A. Sassano, "An Exact Algorithm for the Stable Set Problem," IASI-

CNR Report No. 334, Rome, Italy, 1992.

[14] D.W. Matula, G. Marble and J.D. Isaacson, "Graph Coloring Algorithms," in R.C. Read

(ed.) Graph Theory and Computing, Academic Press, London, 109-122, 1972.

[15] D.J.A. Welsh and M.B. Powell, "An Upper Bound for the Chromatic Number of a Graph

and its Application to Timetabling Problems," Comput. Journal, 10. 85-86, 1967.

[16] J. Xue, "Fractional Coloring Heuristic With Application to the Maximum Clique Prob-

lem." ARIDAM V, Abstracts, RUTCOR Report #2-90, May-June 1990, p. 67.

[17] J. Xue, Fast Algorithms for Vertex Packing and Related Problems, Ph.D. Thesis, GSIA,

Carnegie Mellon University, Pittsburgh, PA 15213, 1991.

20

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO 3. RECIPIENTS CATALOG NUMBER

MSRR-590

4. TITLE (and Su&bti) 6. TYPE OF REPORT & PERIOD COVERED

WEIGHTED AND UNWEIGHTED MAXIMUM CLIQUE ALCORITHMS WITH

UPPER BOUNDS FROM FRACTIONAL COLORING Technical Report, April 1993
6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(S) & CONTRACT OR GRANT NUMBER(S)
Egon Balas
Jue Xue DDM-8901495

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA

Graduate School of Industrial Administration &WORKUNITNUMBERS

Carnegie Mellon University
Pittsburgh, PA 15213-3890

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Personnel and Training Research Programs April 1993
Office of Naval Research (Code 434) 13. NUMER OF PAGES
Arlington, VA 22217 20

14. MONITORING AGENCY NAME & ADDRESS (If different born Com~oting Ofies) 15. SECURITY CLASS (of thi.s wt)

15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of t"i Report)

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If dlfaent from Report)

18. SUPPLEMENTARY-NOTES

19. KEY WORDS (Continue on rever sde if necessary and Identify by block number)

Clique
Stable set

Vertex packing
Fractional coloring

20. ABSTRACT (Continue on rersie side Vf necessary and identify by block numbe)
We describe efficient approximation procedures for both the weighted and unweighted version.
-of the problem. These fractional coloring procedures are then used for generating upper

bounds for the (weighted or unweighted) maximum clique problem in the framework of a branch
and bound procedure. Extensive computational testing shows that replacing the standard up-
per bounding procedures based on various integer coloring heuristics with the somewhat more
expensive fractional coloring procedure results in improvements of the bound by up to one
fourth in the unweighted and up to one fifth in the weighted case, accompanied by a decreas
in the size of the search tree by a factor of almost two.

