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I PREFACE

This paper was prepared by t Institute for Defense Analyses (IDA) under the IDA
Independent Research Program. The objective of the research was to compare the relative

sizes of functionally equivalent programs written in the Ada and FORTRAN computer

languages.

1This paper was reviewed by Bruce N. Angier and D. Graham McBryde.
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I. INTRODUCTION

S
A. BACKGROUND

i The in-tr ction of the Ada computer programming language in the early 1980s has

been cited as one of the major weapons in the fight to reduce the proliferation of computer

languages and to control the cost of software in the Department of Defense (DoD). The
features of the Ada language were carefully chosen to enable good engineering practices5 and structure to be imposed during the development and maintenance of computer
software. However, the use of these structural and engineering features presents new

problems for the cost analysts responsible for estimating either the size or the cost of

software systems to be developed in Ada.

Most software cost-estimating models in use today assume that the cost of

developing a computer program is a function of the size of the program (plus other

representations or measures of the iomplexity of the program), the skills and experience of

the programmers, and other factors that affect cost. Typically, these cost models use lines
of code as a representation of the size of a software program or i oject. For example,
Reference [ 1] employs the following relationship between effort to develop software and

the size of the code

IE = a(K.OC)Pflm, (1)

where E is defimed to be the staff-months of development effort, a and P are the

parameters that have been previously estimated, KLOC is defined as thousands of source
lines of delivered code, and mi, are multipliers or cost drivers that account for differences in

software product attributes, computer attributes, personnel attributes and project attributes.

The use of a line of code as a unit of measure is appropriate and effective when
dealing with line-oriented languages such as FORTRAN or assembly languages. However,

several problems arise when applying a FORTRAN-specific or line-oriented cost model to

software being developed in Ada.

First, instead of being line-oriented, Ada is block-oriented, which means its

statements and declarations can span several lines or be nested within one another. This

I-1



implies that, instead of simply counting carriage returns, a special Ada-specific way of 3
counting the effective number of lines in an Ada program is needed. Further, even given a
way of measuring the size of an Ada program by some method of line counting, there is no
assurance that a line of Ada by this definition will capture the same amount of function as a

line of FORTRAN. This means that two functionally equivalent programs in the two
languages might be considerably different in size, as measured by lines of code. Finally, m
there is no assurance that the cost to develop a line of Ada by this definition will be the

same as the cost to develop a line of FORTRAN. 5
B. OBJECTIVE 3

This paper addresses the functional size issues but not the programming effort
issues raised when comparing the sizes of Ada and FORTRAN programs.I However, there m
are currently no standard rules for normalizing the sizes of Ada developments and
FORTRAN developments with respect to the functionality delivered. i

Information about the relative sizes of functionally equivalent programs is needed
by any organization that is considering a transition to the use of Ada in application areas in

which they have previous experience in FORTRAN. The reasoning is that such an
organization would be able to estimate the size of a programming job if it were developed in

FORTRAN. However, it would have no way of knowing whether an Ada solution would I
be more or fewer lines of code. What is needed is the added knowledge about how large an
Ada solution to a problem will be, given an estimate of size for a FORTRAN solution. This
knowledge will allow FORTRAN organizations to "bootstrap" their software cost-
estimating capabilities to include developments in the Ada language. Eventually, the need I
for this stop-gap technique will be eliminated by fust-hand experience with Ada.

The focus of this study can be expressed in algebraic terms. The relationship I
between effort and size in line-oriented languages such as FORTRAN has been studied
extensively by software engineers and cost analysts [3] and can be represented by

equation (2),

EF = cr(KLOCdflMi (2)1

T ibe programming effort issues can be addressed by observing the cost required to develop Ada programs I
of vanous sizes. There are several databases conmining oburmvations of productivity on Ada projects.
One of the best examples is the work done at the MHRE Corporation ad reported in Reference [2].

1-2 a



where the subscript F denotes FORTRAN. Researchers ae learning about the relationship

between effort and size in block-oriented languages such as Ada as represented by

uation (3),

E, = 6(KLO•C)'f"m,. (3)
Ii

where the subscript A denotes Ada.

I' What is less known is the relationship between the size of an Ada program and a

functionally equivalent FORTRAN program, or

I RI)OCA = f(KLOC,). (4)

We focus on FORTRAN because the impetus for this research stems from the Institute for

Defense Analyses' work for the Strategic Defense Initiative Organization (SDIO). Space

systems have historically employed FORTRAN for both the ground segment software and

the software embedded in the spacecraft or satellite itself. Cost-estimating relationships

using FORTRAN lines of code have been the rule. However, the SDIO plans to field space

I systems software that will be predominately written in Ada. By determining the differences

in size between functionally equivalent FORTRAN and Ada programs, this study will

further our understanding of how traditional FORTRAN cost- and size-estimating models

will have to be adjusted to handle the Ada language. In addition, by understanding the

differences in size between functionally equivalent FORTRAN and Ada programs, we can

estimate the error incurred by cost analysts when they simply use Ada and FORTRAN

lines-of-code counts interchangeably.

I1
I
I
I

I'
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II. APPROACH

In order to compare the sizes of functionally equivalent Ada and FORTRAN

programs, we devised a simple experimental procedure. The procedure involved rewriting

standard FORTRAN programs and routines using the Ada language. First, we developed

an Ada solution for each program using the features of Ada as appropriate, such as

packages and user-defined types. Because programming style can affect program size, we

also wrote both terse and verbose versions of each of the FORTRAN and Ada programs.

This yielded six functionally equivalent versions of each algorithm studied-three in

FORTRAN and three in Ada. We then selected two established defmitions for an Ada line

I of code and compared the number of Ada lines of code in these new programs to the

number of lines in the original FORTRAN programs.

I This chapter describes the test programs we selected and the formatting and code-

counting conventions we employed.

I A. TEST PROGRAMS

A total of four FORTRAN routines were used in the experiment Three FORTRAN

routines and their drivers were taken from Numerical Recipes in FORTRAN [4]. The

National Aeronautics and Space Administration (NASA) Software Engineering Library

I(SEL) supplied the fourth FORTRAN program [5], along with an Ada translation, which

we adapted for our basic Ada version of the program. Terse versions of the FORTRAN

routines were devised by taking "shortcuts," such as allowing implicit declarations and

eliminating certain unnecessary statements, such as format statements and continue

I statements. Verbose versions were devised by separately declaring variables, adding

explicit format statements, and adding other optional statements to improve clarity. The

terse versions of the Ada routines were devised by allowing multiple variables to appear in

a single declaration and by using only positional parameter associations. The verbose

versions were devised by separately declaring all variables and by using named parameter

associations. By having a terse, normal, and verbose version of each algorithm in each

language, we were able to obtain a useful picture of how the range of possible program

I sizes for a given function would differ in the two languages.

I
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I
The three routines selected from Numerical Recipes were:

* Quicksoat--a sorting routine that uses a "partition-exchange" sorting method.

"* Fast Fourier Transform (FF1)--a computational algorithm that relates physical 3
proceses defined either in the time domain or frequency domain.

"* Moments of a Distribution--a statistical routine that computes the moments
(e.g., mean, variance, kurtosis) of a given distribution.

A fourth routine, an orbit propagator provided by the NASA/SEL, computes the I
orbital position of an earth satellite. These four were selected because they cover a range of
computational applications likely to be used in space systems, and the algorithms involved
are well known and widely used.

B. ADA AND FORTRAN FORMATTING AND STYLE 1
For comparisons we used two methods to measure the size of each of the Ada and

FORTRAN subprograms and their drivers. Method 1 involves adopting a specific style for I
the formatting of the code and then simply counting the number of non-comment, non-
blank lines in the file containing the code. The most complete definition we found for Ada 3
formatting and style was "Ada Quality and Style: Guidelines for Professional
Programmers" [6]. Except when deliberately employing either a verbose or a terse format, 3
we adopted those rules of style for the examples of Ada used in this report. For the style of
the FORTRAN examples, we followed the conventions detailed in American National

Standard Programming Language FORTRAN (ANSI FORTRAN) [7]. This standard was
adopted by the DoD in 1978.

Method 2 is a count of the number of source statements that appear in the code.

Because this method measures the number of logical statements it is not sensitive to the

number of physical lines a statement occupies. It is therefore not sensitive to formatting,
comments or blank lines. Because of the multiple declaration option in Ada, this method is
still somewhat sensitive to programming style, however. The specific declaration and I
statement counting rules we followed for both methods are described in "Code Counting
Rules and Category Definitions/Relationships" [8]. To be consistent with the terms used in
that report, we call Method 1 the physical source statement count, or the PSS count, and
Method 2 the logical source statement count, or the LSS count.2  !

I
2 TWe defmitioIs of PSS and LSS are identical to the deftmiiom in [9]. 1
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Although Reference [8] also discusses how to count comments in each language,

we chose to ignore all comments and blank lines when measuring the sizes of our examples

for this study. Also, we adopted the definition for a source statement to mean any

programming instruction. In other words, all Ada declarations, statements, and pragmas

are counted as source statements. In FORTRAN a source statement can be an executable

statement, a data declaration, or a compiler directive.

C. CODE-COUNTING CONVENTIONS: SIZING ISSUES

The two selected methods for measuring program size are each compromises

between the amount of the information captured by a size measure and the complexity of

taking the measurement. The PSS method requires the program to be first formatted

according to a set of rules and then simply counts the number of carriage returns in the

code, excluding blank lines and comments. This approach either requires that a particular

style be followed by the code developers or that a formatter (or "pretty printer") be used

before any line counting is done. The LSS method defines a method for counting syntactic

units rather than counting lines at all, so that the formatting of the code is immaterial. This

LSS approach can be useful when reporting size outside of an individual development

organization where styles and formatting rules may differ. However, it requires the

additional complexity of processing or parsing the code in order to obtain the size count

automatically.

Each statement, declaration, or pragma in Ada terminates with a semicolon (";").

Semicolons are also used to separate formal subprogram and entry parameters. Computing

LSS means counting the semicolons except when they appear in (1) comments, (2)

character literals, and (3) string literals. We decided to count the semicolons in formal

parameter lists because formal parameters are, in effect, declarations. Although this count

always misses the last parameter, we felt that correcting for this small effect was not worth

the added complexity. A logical source statement in FORTRAN can be computed by

counting only those lines that have the blank character in column 1 and either a blank or a

zero in column 6. This follows from the convention that comments in FORTRAN are

identified as those lines with the character "C" or "*" in column 1, while continuation lines

have any character except a blank or a zero in column 6. This rule, therefore, counts only

non-comment, non-continuation lines. In structured FORTRAN (such as that used in our

examples) the statement "end if" is not counted as a logical source statement but it is

included in the count of physical source statements.

IH-3



I
The difference between the PSS and LSS methods and how they apply to counting 5

code in Ada and FORTRAN can best be illustrated through a simple example. Table 1I-1
shows a portion of the FORTRAN and Ada code found in the Fourier analysis subroutine. 3

Table 11-1. Comparison of Ada and FORTRAN "if...then" Statements

FORTRAN LSS Ada LSS
if (j.gLi)thCa . f J > I then

IMWPKWBO) Temp-.- Data (J); S
mmp-tdam+1) , Data (J):= Data (1); S I
dataoU-ai) S Data (1):. Tonp; •
dW+)=dam(i+1) / end if- ,
dati).mW S

end if3

The portion of the subroutine is an "if...then" statement written in the styles

according to the references noted above. (Capitalization is not significant in either language.
The lower-case convention used in the FORTRAN example is adopted from [41.) The Ada
PSS count is five and the FORTRAN PSS count is eight. The Ada LSS count is four and
the FORTRAN LSS count is seven. There are four semicolons in the Ada code. The "end

if" in the FORTRAN code is not counted as a logical statement since it is required by and 3
part of the "if' statement.

U
I
a
I
I
I
I
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III. RESULTS

In this chapter we examine the results of applying the code and style conventions

discussed in the preceding chapter to the four test programs. We examine some of the

differences between Ada and FORTRAN that might explain the results, and we discuss the

notion that the Ada language exhibits scale economies (i.e., as the size of the program

grows the number of Ada lines grows slower than the size of an equivalent FORTRAN

program). Finally, we discuss the effect of our results on the practice of software cost

estimating.

A. PSS AND LSS COUNTS

The results of applying the code-counting methods to the FORTRAN and Ada

examples using the conventional programming style examples are summarized in

Table HI-1.

ITable I11-1. Lines-of-Code Count for Four Programs

FORTRAN Ada Adaf/RTRAN
ProIrm PSS LSS PSS LSS PSS LSS

Quicksort 92 79 141 106 1.53 1.34
Moments 68 61 124 109 1.82 1.78
Fourier 133 115 189 147 1.42 1.27
Orbit 1,101 803 1,382 1,065 1.25 1.32£ Mean: 1.51 1.43

There are several interesting aspects to the results. The PSS count is always greater

Ithan the LSS count. The Ada code count is in every case greater than the FORTRAN code

count. The Ada code count is, on average, 50-percent greater than the FORTRAN count

5 when measured by PSS. The Ada code count is, on average, 40-percent greater than the

FORTRAN count when measured by LSS. McGarry and Agresti, in an experiment of

parallel development of flight dynamics systems by two teams of programmers, one team

using FORTRAN and the other team using Ada, reported the Ada product was significantly

larger (measured by PSS) than the FORTRAN product by a factor of almost three [10].

McGarry and Agresti posit three reasons for the large difference in the counts. First, the

characteristics of the Ada language itself (about which more will be said in the next

I



3
sections). Second, additional functionality was built into the Ada version (the Ada team 3
developed a more contemporary screen-oriented user interface). Third, the Ada version was

not driven by tight schedules and funds as was the FORTRAN version; thus, there was a

tendency to continually add capability to the Ada version. Our experiment controlled for the

latter two factors. Our results also indicate that as the size of the program grows, the

difference between the FORTRAN and Ada counts falls. This result suggests that Ada

exhibits economies of scale relative to FORTRAN.

In order to determine if the observed differences between the Ada and FORTRAN I
code counts are statistically significant, we conducted a nonparametric test. We would

expect Ada to be greater than FORTRAN half of the time and less than FORTRAN half the

time. As noted, the Ada program code counts were always greater than the FORTRAN

counts. Obviously, we would reject the null hypothesis that the Ada and FORTRAN counts 3
were the same. One might wonder whether the same results would be observed if the

programs were decomposed into their smaller constituencies. We decomposed the four

programs into 17 corresponding modules. In only one out the 17 components was the Ada

component not larger than the equivalent FORTRAN component. Here again we would

reject the null ,ypothesis that the Ada and FORTRAN counts were the same.3

In carrying out this experiment, we observed that FORTRAN, like Ada, has

optional variations in style that can change the number of lines in a subroutine depending

on the formatting used. We also observed that certain kinds of statements, such as input

and output statements, were more verbose in Ada than in FORTRAN, while other kinds of a
statements, such as assignments to structured data, could be expressed more efficiently in

Ada. The affect of these variations in style are discussed in detail in the next two sections. 3

3 Th nonparametric test that we conducted was the sign test. To test the hypothesis that Ada code counts
are greater than FORTRAN code counts, we needed to determine whether the null bypothesis (code
counts ae the same) could be rejected at a specific level of significance a TM null bypothesis can be
rejected if x > k,, where x is the number of positive differences (i.e., Ada code count is greater than

FORTRAN code count) and k, is the smallest integer that satisfies
N I .L Xg M-zPY..: , (,,X2)) 5a,

where n is the sample size. When the sign test was performed on the four programs, the null
hypothesis could not be rejected at the 5-percent level of significance. However, at the 10-percent level,
we rejected the null hypothesis and concluded that the Ada code counts are greater than FORTRAN. We U
then conducted the sign test on the 17 components and rejected the null hypothsis at the 5-percent
level.

111-2 t



I
3 B. DECLARATIONS

This section discusses specific issues with respect to how declarations can be

3 counted in both Ada and FORTRAN and why we chose to write and count them as we did.

FORTRAN allows the implicit declaration of variables, where the data type is

implied by the first letter of the name (beginning a symbolic name with the letters 'r

through "N" implies an integer while any other letter implies a real number). In spite of this3allowance, most programming practices now dictate explicit declaration as a way of

avoiding certain kinds of errors. Nevertheless, it is common in FORTRAN to use a single3 statement to declare all the variables of a certain type rather than to place each declaration on

a separate line. Conversely, most of the guides about Ada style recommend using a

separate line for each declaration. This allows the initialization of variables during the

elaboration of their declarations, and also improves the maintainability of the code, though

it tends to inflate both the LSS and the PSS for Ada when compared with FORTRAN. As

discussed earlier, in order to understand the variability in program size due to the

observance of these and other conventions, we wrote and compared both terse and verbose3 versions of each routine in each language.

Another stylistic issue that tends to increase the size of a program written in Ada3over a similar one written in FORTRAN is the use of descriptive names. Since FORTRAN
symbolic names are limited in length to six characters [7, section 2.2] it is often easier to fit3 a long expression that contains several names on a single line. In several of our examples,

multiple editor lines were required to write an expression in Ada that took only one line in

FORTRAN. One might argue that the descriptive choice of names in Ada might reduce the

need for in-line commentary as compared with a corresponding FORTRAN program,

meaning that the effect on the size of a fully commented program may be counterbalanced.

However, since we did not study the effects of commenting on program size, we did not

attempt to investigate this possibility. Further, this issue only affects the physical source3 statements (PSS) and not the count of statements and declarations (LSS).

In Ada, formal parameters are declared along with the name of a subprogram, rather

than in a subsequent declarative area, as is the case with FORTRAN. The effect of this on

size is often canceled out, depending on the counting method used, because this practice

Smakes the program unit declaration longer in Ada, but it eliminates the need to repeat the

parameter names in a later declaration.

3 Ada allows, but does not require, the declaration of a library-level subprogram

(i.e., a procedure or function) to be compiled separately from its executable body. If this

M
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I
separation is not done, the number of lines needed to write a given program will be 3
reduced. However, most style guides recommend the addition of these lines because it can

greatly reduce the recompilation effort required if a subprogram body is modified. A

separate subprogram declaration can also be used within a declarative area, usually to allow

mutual visibility between two locally-declared subprograms. In the case of subprograms

exported from a package declaration, the subprogram declarations are always separated

from their bodies, which appear in the package body. In all tes cases, however, the extra

programming effort required to provide a separate subprogram declaration is negligible 3
because it is simply a verbatim repetition of the specification part of the subprogram body.

In fact, some Ada development environments automatically complete the repeated syntax so 3
that no additional typing or editing is required of the programmer. (It might be argued that

maintenance is made more complicated by this syntactic duplication in the language since

both copies have to be modified in the case of a change. However, the more likely

maintenance situation is a change to the unique code in a subprogram body rather than the

redundant interface code in the specification.) For these reasons, one might argue that

separate subprogram declarations should not be included in the size of a program.

However, we deemed it not worth the added complexity of defining counting rules to 3
compensate for this.

Since FORTRAN does not allow the definition of structured data types, arrays are

often used for various logical data structures. This simplifies the declaration of such

structures, because it requires only a dimension statement, but at the possible expense of 3
more elaborate processing later in the program. To assign an array value to an array object

in FORTRAN, it is necessary to use a loop that explicitly assigns each component. In

comparison, Ada array objects contain implicit information about their own size and

bounds, which allows the array objects to be assigned to one another with single

assignment statements.

The manipulation of arrays that represent nested data structures can require even

more complexity. For example, the FORTRAN version of the fast Fourier transform used

in one of our examples uses an array of real numbers to represent an array of complex

numbers. The odd-indexed values are the real parts and the even-indexed values are the I
imaginary parts. This practice required the "do" loops to use an increment of two rather

than one each time the complex numbers were processed. When we initially translated the 3
programs into Ada, extra statements were required to implement these loops because Ada

does not allow "for" loops that skip values in the loop range. When the algorithms were 3

m-4 I
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3 written in a more appopriate Ada style using structured data, however, the loops were

reduced to half the number of statements required by their FORTRAN equivalents.

I C. STATEMENTS

5 This section presents issues with respect to how statements can be written and

counted in both Ada and FORTRAN.

3 One of the most noticeable differences in program size between Ada and

FORTRAN programs was in the statement areas used for input and output. Because Ada

allows only a single value to be either input or output with each statement, the translation

into Ada of a formatted FORTRAN input/output statement often resulted in considerable

expansion. This effect can be clearly observed by comparing the driver routines in Ada and

FORTRAN for the example engineering algorithms. For example, the three "write"
statements in the driver for the Fourier transform routine required five statements, while the3 same output in Ada required 27 statements.

One of the stylistic issues that allows a single FORTRAN program to be written3 with different numbers of lines is the use of separate "format" statements when specifying
input and output columns rather than including this information directly in the "read" orI"write" statements. Our FORTRAN program examples, which were originally written
without "format" statements, were re-styled to conform to the conventions found in [7] in
order to make them representative of industry programming standards. Note that the

verbose and terse versions of the FORTRAN programs show the different ways to effect

input and output formatting.

We noticed several minor differences between the syntactic conventions used in the

two languages when applying the counting rules chosen. One minor difference between the

languages is that Ada always implicitly declares loop variables. This is to ensure that the
availability of that variable is limited to the scope of its loop. It also has the effect of3 reducing the size of the program by one declaration. Another minor difference is the

implicit "return" statement at the end of an Ada subprogram. A "return" statement is still
i required if processing is to stop at any other point, but most Ada subprograms are written

to return after their last statement. In a FORTRAN routine, the last line must be an "end"3 statement. It has the same effect as a "return" statement, which is to return control to the

referencing program unit. Nevertheless, it is common to see both a "return" and an "end"

statement in a FORTRAN subprogram. A third minor difference is the lack of a need for a

-- "continue" statement in Ada. Although a "continue" statement is rarely required in
FORTRAN, it is common practice to use one at the end of a loop to avoid confusing the

M-5
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last statement in the loop with the statements that follow the loop. In comparison, Ada 3
loops require an "end loop"; however, this increases the number of physical lines (PSS)

only, not the number of statements (LSS).

It should be noted that an inconsistency between the LSS methods for Ada and

FORTRAN existed. In FORTRAN the "else" statement is counted as a logical source

statement, but it is considered part of the same logical statement as its containing "if"

statement in Ada. Thus, it was not counted as an additional logical source statement in Ada

[81. 1

D. ECONOMIES OF SCALE IN THE ADA LANGUAGE 3
As previously noted, the relative difference between the FORTRAN and Ada counts

fell as the size of the four programs in the experiment grew. An interesting question 3
concerning this observed scale effect is: At what program size would the Ada code count

fall below the FORTRAN code count? A graphical representation of this cross-over or 3
break-even point is presented in Figure n-1.

A& = FORTRAN

Break-even eke ______• J

Ads KLOC I
II

B I
B

FORTRAN KLOC

Figure 11-1. Break-Even Size 1
The Ada and FORTRAN lines of code (measured in thousands) are represented on 3

the Y and the X axis, respectively. The ray that passes through the origin at 45 degrees

represents points where the number of Ada and FORTRAN lines of code are equal. The

curved line represents a hypothetical relationship between Ada and FORTRAN. If

economies of scale exist, we would expect this relationship to exhibit a curvilinear form

similar to that depicted in Figure rn-I. This form suggests that as the size of the program
grows, the number of Ada lines required to perform the function grows, more slowly than
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3does the corresponding FORTRAN program. The point where the two lines intersect

represents the break-even point. The interpretation of this point is that any program of size3 greater than B could be written with fewer lines in Ada than in FORTRAN.

What is the actual shape of the curvilinear line? We estimated a regression curve of

3 the form:

KLO -A- a.LOCp,

I where a and J are the coefficients to be estimate, and p is a stochastic disturbance rm.

3 The results of estimating the coefficients using the four test programs were:

KLOCA = L26KLOC,"7

(1.27) (11.3) (5)

'-.97 SEE= .16

The numbers in parentheses are the t-scores of the FORTRAN coefficient and intercept

term. If there were a scale effect, we would expect the coefficient on the FORTRAN
variable to be less than one. In this case, the value of coefficient is 0.937. Using these

regression results the break-even point was computed to be around 40,000 lines of code.4

Note that we have estimated the point where functionally equivalent programs in
Ada and FORTRAN would be the same size. However, this is the break-even size only
from the perspective of development effort if the cost to develop a line of code in either
language is the same. To compute the break-even cost, we must drop the implicit
assumption that the cost to develop a line of code is the same for both languages. The3cross-over point would depend on the values of the parameters used in the FORTRAN and
Ada cost or effort estimating equations.5

Fremn tk rgessiW we foold
KLOCA = 1.26AWCF'".'I If tm were no difference between Ada and I)RTRAN, then the relationship would simply be A = F.

Setting these two redationships equal to each otber, we have
1.26KLOCF = FOC,

and solving for the break-even poit, we find:

etat= 39,190.

5 As an example, assume that the effort estima equation for FOTRAN is take be
£r = 3"0/A7MFt'
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A word of caution about the interpretation of these results is in order. The results 3
are based on only four relatively small programs, all of which are smaller than the projected

break-even point. However, there is at least some anecdotal evidence from NASA/SEL and

others that suggests that the magnitude of our estimate is consistent with their findings in
this area [5].

The question remains as to why we should observe this scale effect with the Ada

language. Several especially noticeable differences between the two languages may

contribute to the effect. One difference was the fact that as program size increased, the

executable portions increased slower in Ada than in FORTRAN. Although the declarative

portions increased more in Ada than in FORTRAN, they contributed less to overall sue. InI

our largest example, the executable portion was smaller in Ada than in FORTRAN even

though the overall size was greater in Ada. Table 111-2 presents a view of the four test 3
programs separated into their executable and declarative portions.

Table 111-2. Executable and Declaration Code Count

OIRTRAN LOC AdaLOC AdafJRTRAN
Po Exeumobie IDeduarave Exemutble Dadaradve Execuatae DecIsrave

Quicksort 72 7 81 25 1.12 3.57
FFT 104 11 110 37 1.05 3.36
Moment 52 9 71 38 1.36 4.22 I
Orbit 738 65 701 364 0.95 5.66

II t
An example from the FF1 test program illustrates this tradeoff between the number

of executable and declarative statements. Table M-3 presents functionally equivalent Ada

and FORTRAN code taken from the FFT program.

If our results that indicate significant differences in size between functionally 3
equivalent FORTRAN and Ada programs are correct, then the practice of cost analysts to

I
i

ad the effort esdimafting equation form Ada development is aumed a be

Setting these two equations equal to ea other and ubstituting in our estimated relationship between
Ada and FORTRAN, we Set

5."8[.26XLOC,':9"]' 3."0KOCF"12.

Solving for F, we find the point of equal effort for Ada and FORTRAN developments is about
485,000 lines of code. g
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i use Ada and FORTRAN lines-of-code counts interchangeably will induce errors in the

subsequent cost estimatI
Table 111-3. Dselarations Versus Statemnents

FRTRhAN Ada________________

REAL Dat (2*-) type Complex is rcord
REAL mpn wt Rea: Fla
REAL wi. wr Imagim y: Float

U ~type Ccunplex-.AInay is mcay (Natural rsnge<.)o(Complex;funcdc "+ 0.,cfLtight.Complex) amum Complex;
(alcdom "-" (t am ) re I Complex;
functim"O"(LctRgccnlx retu Complex;
Data: ComplexArmy (I..N);
W, Temp: Complux;

m T wi -,'vAU+1> Te :.W*Dm a
W wr*maM• m+1) -wiuqata) Data J):Data (: ) - Temp;

Datm()-D@i) - tmp Data (I) :- Dat (1) - Temp;
D"a+)lData(i+t) - tmnpi
Data(i)-Data(i) + tempr
VDat0+l)=Datma.0) + tempi

How large these potential errors can be is seen in Table m11-4. The table's first

column is the number of lines of FORTRAN code. The second column is the estimate of
the effort (measured in staff-months) to develop the appropriate FORTRAN lines of code

using an equation taken from [1]. The third column is the estimate of the effort required to

develop Ada code using the FORTRAN code count as the explanatory variable value rather
than the appropriate Ada code count value. In this case, the parameter values were taken
from [2]. The fourth column shows our algorithm that converts FORTRAN lines to the
equivalent Ada lines of code count. The last column shows the effort-estimates that result
from using the Ada code count from column four in the Ada effort-estimating equation.

Table 111-4. Estmate of Error
Esttvte Efiort in Esiae Effort Esiue LO Esma Effort

LO in FORTRAN Using in Ada Using in Ada Using in Ada Using
FORTRAN _"3"°(X_-°r) 3-.s(OCr,)L KCocA - L oc" _A_ -. SLCj_

1,000 3.0 5.8 1,2M0 7.4
5,000 18.2 30.9 5,720 35.6

10,000 39.5 63.6 10,974 70.1
20,000 86.0 130.8 21.054 137.9
40,000 186.8 268.9 40,393 271.6

100,000 521.3 697.3 95,581 665.3,500,000 3,162.0 3,718.4 425,898 3,147.1
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The difference between the effort estimates in column three (which simulate the 3

practice of using Ada and FORTRAN lines of code counts interchangeably) and those in
the last column (which represent the "correct" estimate) is the error. We note that for small

programs the relative error is large (e.g., 27 percent for 1,000 lines of code), then gets

smaller as it approaches the cross-over point at around 40,000 lines, then grows larger

again, but at a very slow rate (at 100,000 lines, the error is approximately 5 percent). I
Obviously, the results are sensitive to the effort-estimating equation used. Again, our
FORTRAN-to-Ada equation is based on a small sample and should be used with caution. 3
However, the point is that significant error can result from the practice of indiscriminately

interchanging code-counting units. 3

I
I
3
I

I

I
!
I

I
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I IV. CONCLUSIONS AND FUTURE RESEARCH

I The main objective of this research was to fill a gap in the knowledge needed by

experienced FORTRAN size and cost estimators when estimating Ada developments for the
first time. Although there are published models for the cost of developing Ada programs
based on their expected size, there has been no standard way of estimating the size of an

I Ada development based on the expected size of an equivalent FORTRAN development.

This work has shown that the sizes of functionally equivalent programs in Ada and

FORTRAN are different. It would therefore be a mistake to assume that either a

FORTRAN effort estimate or the expected number of FORTRAN lines of code would be

sufficient in an Ada estimating equation. One such Ada equation was shown in this study;

however, the magnitude of the error will depend on the exact estimating equations used.

With the added knowledge of how the sizes of functionally equivalent programs in Ada and

FORTRAN compare, a cost estimator can first adjust the expected number of lines of
FORTRAN code to complete a job to a more accurate estimate of the expected number of

lines of Ada code. Then, an Ada effort-estimating equation may be properly applied.

This study should be viewed mainly as a model for further investigation, although

we believe our limited results are still of interest. In particular, we suspect that the tendency

we observed for small Ada programs to be larger than their functionally equivalent

SFORTRAN counterparts is reasonable, as is our further observation that the overhead for

Ada diminishes as the program size is increased. Our limited data suggested that there may

I even be a cross-over point beyond which the size of an Ada program is smaller than a

functionally equivalent FORTRAN program. Although the number of observations was

small and all were below this projected cross-over point, one of the strongest pieces of

evidence that such a point exists, beyond the regression analysis, is that the number of

executable lines of Ada in our largest example was smaller than the equivalent number of

executable lines in FORTRAN. After an inspection of language features, we believed this
to be a reasonable occurrence, because Ada has richer declarative power and, in return, can

Stake advantage of simpler algorithmic processing.

Because the relationship between the sizes of functionally equivalent Ada and

I FORTRAN programs is probably not linear, more observations are needed, and in
particular, observations are needed that are at least an order of magnitude greater than the

I
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largest of our examples. The only published comparison of the sizes of a pair of large Ada 3
and FORTRAN programs developed from the same set of requirements was too
confounded to be useful for this purpose [10]. The only other evidence we found about the
way larger Ada and FORTRAN programs compare was anecdotal, although the opinions

reported to us tended to agree with our observations [5].

A final observation not previously mentioned stems from our interest in examining

the possible variations of program size due to programming style. Although we used what

we considered to be a conventional style of formatting for the programs in our analyses, we
additionally wrote both terse and verbose styles for each example. The most interesting
result we observed was that the possible variation in size for an Ada program is much I
greater than the possible variation for a FORTRAN program. This means that the
comparison of Ada size, effort, and productivity results across organizations (which may 3
not be observing the same style standards) is more prone to error than are similar

comparisons using FORTRAN results. Although we used well-defined counting rules for 3
both languages to maximize the portability of our results, we were not able to similarly
well-define a programming style. In order to assure comparability of Ada size, effort, and

productivity results across organizations, more study is needed into how the size of an Ada
program might be normalized for any implemented functionality.

3
U
U
I
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* APPENDIX A

I ADA AND FORTRAN CODE FOR EXAMPLE PROGRAMS

This appendix contains the code for three of the four programs dicussed in the

report. The three programs are Quicksort, Fast Fourier Transform, and Moments of a

Distribution. The code for the Orbit program was not included becuase of its length. A

copy of the code is available from the authors.

QUICKSORT

I FORTRAN

PROGRAM xsort
C driver for routine sort

INTEGER i,j
REAL a(100)
open(7,fde=TARRAY 1.DAT',status='OLD')
open(8,file='sortprog.out',status=7EW)

read(7,*) (a(i),i=1,100)
close(7)

C print original array
write(8,*) 'Original array:'
do 11 i=1,10

write(8,15) (a(10*(i-1)+j),j=l,10)
11 continue
15 format(lx,10f7.2)I C sort array

call sort(100,a)
C print sorted array

write(8,*) 'Sorted array:'
do 12 iff1,10write(8,15) (a(10*(i-1)+j),j=l,10)

12 continue
close(8)
END

SUBROUTINE sort(n,arr)
INTEGER n,M,NSTACK
REAL arr(n)
PARAMETER (M=7,NSTACK=50)
INTEGER i,irj jstack,k,l,istack(NSTACK)
REAL atemp

I
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1 if(ir-l.ILtM)dhen
do 12 j=l+1Ir

amarrUj)

if(arr(i).le.a),;oto 2
aff(i+1)=aff(i)

I1 I continue

2 arrQi+l)=a
12 continue

ifojstack.eq.0)return
ir-masack(jstack)

jsawk=jstack-2

k=QI+irY/2
teinp=arr(k)
aff(k)=affrl+1)
arrQ1+1)=temp
if(arrQ1+1).gt~arr(ir))then

temp=arr(l+1)

affrir)=teinp
if(arra).gLagir))then1
teinp=affrQ)
arrQl)=arr(ir)
aff(ir)=temp3

if(arr(l+ 1).gt~arr(l))then
temp=arr+l)
arrQ+1)=aff(l)3
arrQl)=temp

j--ir
a=arrQl)

3 continue3

ff(arr(i).ILta)goto 3
4 continue

j=j-1I
if(arr~j).gt~a)goto, 4
ifoj.lti)goto 5
temp=arr(i)3
arr(i)-arr~j)
arr (j)-temp
Soto 3

5 arr (l)=arr(j)U
arr(j)=a
jgwak--jgtak+2
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3 ifjstac.gtiNSTACK)pause 7NSTACK too small in sortif~ir-i+ 1.ge.j-l)then
tk(jstack)=ir

m istack(jstACk-l)=i
er=j-1else

istack(jstack)=j- 1
istack(istack-1)=l
endi

endif

goto I
ENDU ADA

Quicksort Routine
with Textljo;
procedure QuicksortGeneric (Ar: in out ElementArray) is
TempStack : array (1. Max-Size) of Integer,I Stack..Ptr: Integer -= 0;
L :Integer:= 1;
IR : Integer := Arrf ngth;
A :Element;

-I : Integer,
J : Integer,

IQ: Integer,
Found : Boolean;

function "<" (Left, Right: Element) return Boolean is
begin

-- if Left = Right then
_ return False;

end if;
return Left <= Right;

end "<";

-- function ">" (Left, Right: Element) return Boolean is
begin

return not "<=" (Left, Right);
end">";

begin
loop
if IR - L < SubarraySize then

for JJ in L + 1 .. IR loop
A:= A" (JJ);
Found := False;
for l in reverse I .. JJ - I loop
if Arrn () <= A then

Found := True;
Arr (II + 1):=-A;
exit;
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U
else3

Arr(H + 1):= Ar" (1);
end if;

end loop;
if not Found then
Arr (1) := A;

end if;
end loop;
if Stack_Ptr = 0 then

end if-,
IR := TempStack (StackPtr);
L := TempStack (StackP.r - 1);
StackPtr:= StackPtr - 2; 3else I
1:-=L;

J := IR;
IQ:= (L + IR) 12;iU
A:= An" (IQ);
Art (IQ) := Arr (L);loop

while J > 0 loop

if A < Arr (J) then
J:fJ- 1; 3else

exit;
end if;

end loop;
if J <= I then
An" (1):= A;
exit;

end if;-
Arr(I) := Ar(J);
I:=I+ 1;
while I <=- An'Length loop
if A > Arr (I) then
I:=I+ 1;

else
exit;

end if;
end loop;
if J <= I then I
Arr (J) :=A;
I:-J;
exit;

end if-,
Arr (J) := Arr (I);
J:=J- 1;

end loop;
Stack.Ptr := StackPtr + 2;
if Stack.tr > Max-Size then
TextJo.PutLine ("MaxSize must be made larger.');
raise Constraint..Ermor

end if; . AI
A-4
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ifIR- I>=I-L then
TempSuak (Stack_Ptr) := IR;
TempStak (Stwackft - 1) I + 1;
IR:= I- 1;I else
Temp_Stack (StckPwt) := I - 1;
TempStack (StackP-t- 1) := L;
L:=I +;

Uend if-
end if;

end loop;
end Quickaort-Generic;

1 Spdiflcadon for Quicksort

type Element is private;
tyeElent..Array is array (Positive range o) of Element;
with function "<--" (Let Right: Element) return Boolean;
Max-Size: Natural := 50
SubarraySize: Positive := 7;

procedure QuicksorLGeneric (Air: in out EleantArray);

Driver for Quicksort
with QuicksortGeneric;
with Textjo;
procedure XquicksorLGeneric is

package Floato is new Text..o.Floatjo (Float);
Size: constant -= 100;
type FloaLArray is army (Positive range <>) of Float;
procedure Sort is new Quicksort.Generic (Float, FloatArray, "<=w);
A: FloatArray (1.. Size);
File : Textjo.F'leType;
Output: TextIo.FileType;

begin3 Text-o.Open (File, Textlo.n-_File, "TarrayDat");
for I in 1 .. Size loop
FloaIo.Get (File, A (1));

end loop;
Textjo.Close (Fie);

-print original aray
Text-lo.Create (Output, Text-lo.OutFile, "OutputLis");I "!Txtlo.SetOutput (Output);
Te,ý qJo.Put..Line ("Original array:");
-- ,r I I .. 10 loop

i for J I .. 10 loop
Float•jo.Put (A (10 * (1-1) + J), 4, 2, 0);

end loop;
Textjo.NewmLine;

end loop;
-sort array3 Sort (A);
-print sorted army
TextIo.PuLine ("Sorted array:");
for I in 1 .. 10 loop
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for Jin 1. 10 loop3
Floasjo.Put (A (10 *(1-1) + J), 4,2,0);,

and loop;
TCztjo.Newjl.Jne

end loop;U
Textjo.Close (Output);

end XquicksorLGeneaic;

MOMENTS OF A DISTRIBUTION

FORTRANU

PROGRAM xmoment
C driver for routine moment

REAL PI
INThER NbinNdatNpts
PARAbMER(PI=3. 14159265,Npts= lOOOO,Nbin= 100,Ndat=Npts.Nbin)
INTGER ij k~nlim
REAL adevave~curt~data(Ndat),sdev,skew~varx

x=PIj~Nbin
nlim=:nint(sin(x)*PII2.0*NptsINbin)
do 11 k=1,li~m3
dataQi)=x
i--i+l

I1I continue3
12 continue

open(9,fie:='statsprog.out',status='NEW')
write(9, 15) 'Moments of a sinusoidal distribution'
call moment(dataji- 1ave~adv~sev~vartkw~cur)
write(9,16) tCalculated',IExpected'
write(9,17) 'Mean :',avePI/2.O
write(9.17) 'Average Deviation :',adevO570796I
write(9,17) 'Standard Deviation :',sdev,O.683667
write(9,17) 'Variance :',var,O.467401
write(9,17) 'Skewness :',skew,O.O
write(9,17) 'Kurtosis :',curt-O.806249

15 format(hxA/)
16 format(lx,t29,a~t42A/)
17 forma~t( lx~at25X2f5.4)I

close(9)
END

SUBROUTINE moment(data~nave~adev~sdv~vardskew~curi)
INTGER n
REAL adev~ave~curtsdev~skew~var~data(n)3
INTEGER j
REAL p~sep
if(n~le. I)pauae n must be at least 2 in moment'

do I Ij=1,n
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1 auzs+dataoj)
1 continue

avems/n
adev--.
var-•.
skew=O.

do 12 jljn
3=dAtAOj)-ave
adevadev+abs(s)

p=s*s
var--var+p
p=p*s
skew=skew+p
p=p*s

12 continue
adev=adev/n
var=(var-ep**2/nY(n- 1)sdev-sqrt(var)
if(var.ne.0.)then
skew=skew/(n*sdev**3)
cur=curt/(n*var**2)-3.

else
pause 'no skew or kurtosis when zero variance in moment'

endi
return

ADA 
ENDI ADA

Moment Subroutine
with Text-jo;
procedure MomentCGeneric (Data: Data-Arrmy;

Ave : in out Real;
Adev : in out Real;
Sdev : in out Real;
Var : in out Real;

Skew: in out Real;
Curt: in out Real) is

Powers : Real;
Sum :Real;•-- Deviation : Real;
Sum_Devs : Real := 0.0;N constant Integer := DataLength;

i "N<= I then
Textjo.PutLine ("Must be at least 2 in moment.3);

elseI Sum := 0.0;
for J in Data'Range loopSum := Sum + Data (J);
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Ave =Sum Real (N);
Adev .= 0.0,
Var =0.0; 5
Skew := 0.0,;
Curt :-0.0;
for J in Datalmange loop
Deviation := Data (W) - Ave; I
SumDevs := SumDevs + Deviation;
Adev := Adev + abs (Deviation);
Powers := Deviation * Demiation;
Var := Var + Powers;
Powers := Powers * Deviation;
Skew := Skew + Powers;
Powers Powers * Deviation; I
Curt Cur + Powers;

and loop;
Adev := Adev I Real (N);Var := (Vr -Sum..Devs ** 2/ Real (N)) / Real(N - 1);
Sdev := Sqrt (Var);
if Var /= 0.0 then
Skew:= Skew I (Real (N) * Sdev * Sdev * Sdev);
Curt:= Curt I (Real (N) * Var ** 2) - 3.0;

else
Textlo.Put.Line ("No skew or kurtosis when zero variance in momentC);

end if;
end if;

end MomentGeneric; I

Procedure Specification for Moment Routine

t Real is digits >; i
typ DataArray is array (Positive range <>) of Real;
with function Sqrt (Number: Real) return Real;

procedure MomentGeneric (Data: DataLArray; o
Ave :in out Real;
Adev : in out Real;
Sdev :in out Real;
Var : in out Real;
Skew: in out Real;
Curt: in out Real); 3

Driver for Moment Routine
with Text-jo;
with MomenLGeneric;
with MathLib;
procedure XmomentGeneric is

Ave, Adev, Sdev, Var, Skew, Curt, X : Float;
Pi : constant Float:= 3.14159265; U
Nbin : constant Natural := 100,
Npts : constant Natural := 10000,
Ndat : constant Natural := Npts + Nbin; U
Nlim : Integr,
I: Integer:= 1;
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3 type FloaLAmy is array (Positive range o) of Float;

Data: RoatArry (1.. Ndat);
package Intjo is new Text-lo.lnteger-lo (Integer);
package Floatjo is new Textlo.Floatlo (Float);
package Math is new MathjLib (Float);
procedure Moment is new MomenLGeneric (Float,

FloaLArray,
iMa.Sqrt);

for J in 1 .. Nbin loop
X := Pi * Float (J) / Float (Nbin);
Nlim := Integer (Math.Sin(X) * Pi/2.0 * Float (Npts/Nbin));
for K in I .. Nlim loop

Data (I) := X;
I:=I+ 1;

end loop;
end loop;
TextIo.PuLLine ("Moments of a sinusoidal distribution");
Moment (Data (1 .. I- 1), Ave, Adev, Sdev, Var, Skew, Curt);
TextIo.SeLCol (29);
Textjo.Put ("Calculated");
Text-lo.SeLCol (42);
Text_lIo.PutLine ("Expected");
Text-Io.Put ("Mean:");I Text-lo.SeCol (25);
Float-lo.Put (Ave, 6, 5, 0);
Floatlo.Put (Pi / 2.0, 7, 5, 0);
Textjo.NewLine;
Textlo.Put ("Average Deviation :");
Textjo.SetCol (25);
FloatIo.Put (Adev, 6, 5, 0);U FloatlIo.Put (0.570796, 7, 5, 0);
Textlo.NewLine;
Text.Jo.Put ("Standard Deviation: ");

Ii_ Text.jo.SetCol (25);
Float-lo.Put (Sdev, 6, 5, 0);
Float-lo.Put (0.683667, 7, 5, 0);
Textlo.NewLine;
Text-lo.Put ("Variance :");
Text-lo.SeLCol (25);
Float-lo.Put (Var, 6, 5, 0);I Floatlo.Put (0.467401, 7, 5, 0);
TextIo.NewLine;
Textjo.Put ("Skewness: ");
Text.jo.SetCol (25);
Floatlo.Put (Skew, 6, 5, 0);
Float-lo.Put (0.0, 7, 5, 0);
TexLIo.New-Line;
Text-lo.Put ("Kurtosis:");
Text.Io.SetCol (25);
Float-lo.Put (Curt, 6, 5, 0);
Float-lo.Put (-0.806249, 7, 5, 0);
Textjo.NewLine;

end XmomenLGeneric;
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FAST FOURIER TRANSFORM3

FORTRAN

PROGRAM xfouri
C driver for routine fouri

InTEER NNNN25
PARAM]ETE (NN=32,NN2-2*NN)
REAL data(NN2),dcmp(NN2)
INTEGER ipjsin
open(8,file='fourl prog.out',satus='EW')

write(8.*) 'h(t)=real-valued even-function'
write(8,*) 'H(n)mH(N-n) and rea1'?

do I1I i=1,2*NN- 1.2
data(i+l )-0.0

I1I continue

call fourl(dataNNWisign)
call prtft(dataNN2)
write(8,*) 'h(t)=-imaginary-valued even-function U
write(8,*) ¶i(n)--H(N-n) and imaginary?
do 12 i=1,2*NN-.12

data(i+ 1)=1.Wf(((i-NN- 1.0)INN**2+1 .0)U
data(i)=0.0

12 continue
iszgn=l
call four Il(dataNNisgn)
call prntft(damaNN2)
write(8,*) 'h(t)=real-valued odd-function'
write(8,*) 'H(n)=-H(N-n) and imaginary?'I
do 13 i=1,2*NN-1,2

data(i)=(i-NN- 1.0)/NW(((i-NN- 1.0)INN**2+1 .0)
data(i+ 1)=0.O

13 continue
data( 1)=O.0
isign=1
call fourl(dataNN~isgn)U
call prntft(dataNN2)
write(8,*) Xht)=maginary-valued odd-function'
write(8,*) lH(n)=-H(N-n) and real?'
do 14 i=1,2*NN-1,2

data(i+1)=(i-NN- 1.0)INN(((i-NN- 1.0)INN**2+ 1.0)
dataQi)=0.0

14 continueU
data(2)=O.0
isign=1
call fourl(dataNNisgn)I
call prntt(dataNN2)

C transform, inverse-transform testa
do 15 i=1,2*NN-1,2

data(i)=1.0I((0.5*(i-NN- 1INN**2+ 1.0)
dcinp(i)=dat(i)
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data(i+l )=(0.25*(i-NN. 1 /NN*
* exp(-(0.5*(i-NN- I.0Y)INN)2)

dcmp(i+ 1)=data(i+l)
15 continue

call four I (dalaNN~isign)3 ~isign=-l
call fourl(d~atNN.isig)
write(8,20) 'Original Data:','Double Fourier Transform:'

20 format(/Ilx~tlOxat44.a)I ~write(8,2 1) Vk,'Real h(k)','Imag h(k)','Real h(k)',!Imag h(k)'21 fbrmat(/lx~t5^atllxat24xat4lxat53Wa)
do 16 i=1,NN,2
j=(i+1Y/2Iwrite(8,22) j,dcm pi),dcmnp(i+ 1),data(i)INN~data(i+ I NN

22 format(lxi4,2x f12.6,Sx,2fl2.6)
16 continueI END

SUBROUTINE pmntft(data~nn2)
INTEGER n~nn2,m,mmI REAL data(nn2)
write(8,30) Wn','eaI H(n)','Imag H(n)','Real H(N-n)',

* Imag H(N-n)'I 30 format(Il x~t5,a~tl 1 ,a43,At39,a~t52,a)
write(8.'" I) 3,data(l).data(2),data(l),data(2)

31 format( I xi4,2x,2f 12.6,5x,2fl 2.6)3 do 11 n=3,(nn2/2)+1,2
m=(n-l)/2
mm--nn2+2-n
write(8,3 ) m~data(n),data(n+1),data(mm),data(mm+ 1)

11 continue
returnI END

SUBROUTINE fourl(data~nn~isign)
INTEGER isignnnIREAL dt(*n
INTEGER istpj,m~mmax~n
REAL ternpi,tempr
DOUBLE PRECISION theta~wi~wpi,wpr~wr~wtemp
j~n-2*nn

IdoI Ii= ln,2

tempimdataQj+)
datao)=data(i)
data(j+l)=data(i+l)
dataQi)=empr

m=n/2
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1 if (Qnmgc.2).and.(.gtan)) then3

muin/2

j=j+ni

2 if (n~gtamax) then
istep=2*mmax
theta=6.283 185307 17959d0/(isign~mmax)
wpr,=.2.dD~sin(0.5dO~theta)**2U
wpi=sin(fthta)
wr=1I.dO
wi=O~dOI
do 13 m=1,mmax,2

do 12 i=mnjistep
j--i+mmax3
tempr=sngl(wry*data)-sngl(wi)*dataoj+l)
tempi=sngl(wr)*dataoj+l)+sngl(wi)*dataoj)
dataQj)=data(i)-tempr
data(j+1)=data(i+l)-tempiU

12 continue

wi--wi*wpr+wtemp*wpi+wi3
13 continue

minax--istep
goto 2
endif
return

ADA 
END

Fast Fourier Routine
procedure Fourier..Generic (D~ata :in out ComplexArray;

Positive in Boolean: True) is
Istep :Integer,
I: Integer :=1; 1: Ineger
M: Integer,
Mmax: Integer,
Temnp, W. Wp: Complex...Type;I
Theta: Real;
Pi :constant: 3. 1415926535897932;
Siri:Integer:= 1;

ifntPositive then
sign:= -1;3

end if-.
for I in Data¶Range loop
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I

I ifJ >I then
Temp := Data ();
Data (J) := Data (I);
Data () := Temp;

end if;
M := DataLength / 2;I while M >= I and J > M loop

J := J -M;

M :=M /2;
end loop;
J:=J+ M;

end loop;
Mmax := 1;I while Data'Length > Mmax loop
Istep:= 2 * Mmax;
Theta := Pi / Real (Sign * Mmax);
Wp := Make (-2.0 * (Sin (0.5 * Theta)) * 2, Sin (Theta));
W := Make (1.0, 0.0);
for M in 1 .. Mmax loop
for Iteration in 0 .. (DataLcngth - M) I Istep loop

I := Iteration * Istep + M;
J := I + Mmax;
Temp := W * Data (J);
Data (J):= Data (I) - Temp;
Data (I) := Data (I) + Temp;

end loop;
W:=W * Wp +W;

end loop;
Mmax := Istep;

end loop;
end FourierGeneric;

Specification for Fast Fourier Routine
generic

type Real is digits o<;
with function Sin (Angle : Real) return Real;
type Complex_Type is private;
type ComplexArray is array (Positive range <>) of ComplexType;
with function Make (Left, Right: Real) return ComplexType;
with function "(" (Left, Right : Complex-Type) return Complex_Type;
with function "+" (Left, Right: ComplexType) return Complex_Type;
with function "-" (Left, Right: ComplexType) return ComplexType;

procedure FourierGeneric (Data : in out ComplexArray;I Positive: in Boolean :=True);

Driver for Fast Fourier Routine
with FourierGeneric;
with ComplexGeneric;

with Math_Lib;
with Textjo;
procedure XfourierGeneric is - Good Ada driver for routine Fourier_Generic

package Math is new MathLib (Float);
package Complex is new Complex-Generic (Float);
type Complex-Array is array (Positive range o) of Complex.ComplexType;
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procedure Four i s new Fourier-.Generic (Float,3
Math.Sin,
Coinplex.Complex..Type,
Complex_.Array,
Complex.Make,
Complex."*",
Complex. "+%

packae IntComplex.%-");pacageIafjo is new Textjo.Integer-lo (integer);
package Float-jo is new TextLjo.Float-o (Float);
Size :constant integer :=32;
HailfSize: constant Integer: Size/ /2;
Complex-.Data, Dcmp : Complex._,rry (1 .. Size);
Outfile: TexLlo.Fadejype;3

procedure Prntt (Data : Complex-Array) is
Length :Integer: Datatast - DatalFirst + 1;
Limne Integer: 0;

begin
TextJo.New...Line;
Text..Io.SCLCol (4);
Text-jo.Put ("n");
Text-.,o.SeLCol (10);
TextIo.Put ("Real H(n)");
Text-jo.SeLCo1 (22);3
Text~jo.Put ("Imag H(n)");
Textjo.Set.Col (38);I
TextLjo.Put ("Real H(N-n)");
Text-jo.Set-Col (51);
Textjo.PuLLine ("Imag H(N-n)");
Int-Jo.Put (Line, 4);
Text..o.Put C" ");
Float~jo.Put (Complex.RealOf (Data (1)), 5, 6, 0);
Floatjo.Put (Complex.Imaginary...Of (Data (1)), 5, 6, 0);
Text-jo.Put C" ");
Floato.Put (Complex.ReaLOf (Data (1)), 5, 6, 0);
Float~o.Put (Complex.Imaginary-.Of (Data (1)). 5, 6,0);I

for Iin Data'First + I.. DatatlAstl2 +lIloop
Line := I-l1;
Revjtr :=Length + 2 -I;U
IntIo.Put (Line, 4);
Text..o.Put (" ");
Floatjo.Put (Complex.Real-Of (Data (I)), 5, 6, 0);I
Floatjo.Put (Complex.Imaginary-.Of (Data (1)), 5, 6, 0);
Textjo.Put (" ");
Floatjo.Put (Complex.Real-Of (Data (Rev...Ptr)), 5, 6, 0);
Float-jo.Put (Complex.Imaginary-.Of (Data (Rev%ý_tr)), 5,6, 0);
Textjo.New-.Line;

end loop;

end Pmtft;
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Text.jo.Create (Outfile, Text-Io.Out...File, "Output.Lis");
TexL1o.SeLOutPut (Oudfie);
Text~jo.PuLLine ("h(t)=real-valued even-function");
TextIo.Put-Line ("H(n)=H(N-n) and real?");
for I in Complex..,DataRange loop
Complex...Data (1): Complex.MakeI ~ ~(1.0 / (Ffloat (I - HaIf..Size - 1) / Float (HalfSize)) 4'* 2 + 1.0),

0.0);
end loop;
Four 1 (Complex-..Data);
Prntft (Complex-..Data);
TextIo.Put..Line ("h(t)=imaginary-valued even-function");
Textjlo.Put_.,.ne ("H(n)=H(N-n) and imaginary?");I ~for I in Complex_.DataRange loop
ComplexjData (I): Complex.Make

(0.0,U 1.0 / (Ffloat (I - Half...Size - 1) / Float (HailfSize)) 2 2+ 1.0));
end loop;
Fouri (Complex-..Data);
Pmntft (Complex...Data);
Text-Io.Put-.Line ("h(t)=real-valued odd-function");
Text-jo.Put..Line ("H(n)=-H(N-n) and imaginary?");
for I in Complex DataRange loopI Complex-.Data (I): Complex.Make

(Ffloat (I - HailfSize) - 1.0) / Float (Half...Size)I
(((Float (I - Half_.Size) - 1.0)1/ Float (HaILSize)) 2 2+ 1.0),
0.0);

end loop;
Complex...Data (1) :=Complex.Make (0.0, 0.0);3 ~Four 1 (Complex....ata);
Prntft (Complex..Data);
Text..o.Put.Line ("h(t)=imaginary-valued odd-function");
Textjo.Put..Line ("H(n)=-H(N-n) and real?");
for I in Complex_.Data'Range loop
Complex-.Data (I) :=Complex.Make

(0.0,
(Float (I - Half-.Size) - 1.0)1/ Float (Half-..Size)I
(((loat (I - HajLf..Size) - 1.0) /Float (Half...Size)) 2 2+ 1.0));

end loop;
Complex...Data (1) :=Complex.Make (0.0, 0.0);I ~Four 1 (Complex-..Data);
Pmtft (Complex-..Data);
- transform, inverse-transform test3 ~for I in Complex-Data'Range loop
Complex-.Data (I): Coniplex.Make

(1.01((0.5 * Float (I - HalfSize - 1) / Float (Half_.Size)) "'s 2 + 1.0),
(0.25 * Float (I - HaILf.Size - 1)I/ Float (Half-.Size)) *

Math.ExP (-(0.5 * Float (I1- Half..Size - 1) / Float (HalfSize))**2));
Dcmp (I) :=Complex...Data (1);

end loop;I ~Fowrl (Complex....ata);
Fowrl (Complex-..Data, False);
Text..Io.New-.Line;
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Tex~Io.Put C" Odsinal Damn?);3
Textjo.SCLCol (44);
TexLlo.PuLLine ("Double Fourier Transorm");
TexL~o~fcw..Line;
Textjo.Put ("k Real h(k) Imag b(k)");I
Textjo.SCLCoI (41);
Textjo.Put...Une ("Real h(k) Wmas h(k)");
Textjo.New-.Line;I
for I in Complex_.Data'First. Comnpleij~ata'Last /2 loop

Intjo.Put (1, 4);
Floatljo.Put (Complex.Real_.Of (Dcmp (1)), 7,6.,0);
FloatIo.Put (Complex.Imaginazy.Of (Dcmp (1)), 5,6.,0);
Floatjo.Put (Complx.Real..Of (Complex..ata (I)) / Float (Size), 10, 6,0);
Floa:LIo.Put (Ccznplex.Irmaginamy..fv(ComplexjData(D))I

Float (Size), 5,6.,0);Text-o.NewLin1
end loop;
Textjo.Close (Outfie);

end Xfourier...Generic;
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l ABBREVIATIONS

I DoD Department of Defense
FFT Fast Fourier Transform

FORTRAN Formula Translation

IDA Institute for Defense Analyses

SKLOC thousand lines of code

LSS logical source stalement

NASA National Aeronautics and Space Administaon

PSS physical source statement
SDIO Strategic Defense Initiative Organization

SEL Software Engineering Library
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