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PREFACE

This paper was prepared by the Institute for Defense Analyses (IDA) under the H?A
Independent Research Program. The objective of the research was to compare the relative
sizes of functionally equivalent programs written in the Ada and FORTRAN computer

languages.

This paper was reviewed by Bruce N. Angier and D. Graham McBryde.
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I. INTRODUCTION

A. BACKGROUND

The introduction of the Ada computer programming language in the early 1980s has
been cited as one of the major weapons in the fight to reduce the proliferation of computer
languages and to control the cost of software in the Department of Defense (DoD). The
features of the Ada language were carefully chosen to enable good engineering practices
and structure to be imposed during the development and maintenance of computer
software. However, the use of these structural and engineering features presents new
problems for the cost analysts responsible for estimating either the size or the cost of
software systems to be developed in Ada.

Most software cost-estimating models in use today assume that the cost of
developing a computer program is a function of the size of the program (plus other
representations or measures of the complexity of the program), the skills and experience of
the programmers, and other factors that affect cost. Typically, these cost models use lines
of code as a representation of the size of a software program or ; oject. For example,
Reference [1] employs the following relationship between effort to develop software and
the size of the code

E= a(KLOC)‘fImi. ¢))

where E is defined to be the staff-months of development effort, a and B are the
parameters that have been previously estimated, KLOC is defined as thousands of source
lines of delivered code, and m; are multipliers or cost drivers that account for differences in
software product attributes, computer attributes, personnel attributes and project attributes.

The use of a line of code as a unit of measure is appropriate and effective when
dealing with line-oriented languages such as FORTRAN or assembly languages. However,
several problems arise when applying a FORTRAN-specific or line-oriented cost model to
software being developed in Ada.

First, instead of being line-oriented, Ada is block-oriented, which means its
statements and declarations can span several lines or be nested within one another. This
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implies that, instead of simply counting carriage returns, a special Ada-specific way of
counting the effective number of lines in an Ada program is needed. Further, even given a
way of measuring the size of an Ada program by some method of line counting, there is no
assurance that a line of Ada by this definition will capture the same amount of function as a
line of FORTRAN. This means that two functionally equivalent programs in the two
languages might be considerably different in size, as measured by lines of code. Finally,
there is no assurance that the cost to develop a line of Ada by this definition will be the
same as the cosi to develop a line of FORTRAN.

B. OBJECTIVE

This paper addresses the functional size issues but not the programming effort
issues raised when comparing the sizes of Ada and FORTRAN programs.! However, there
are currently no standard rules for normalizing the sizes of Ada developments and
FORTRAN developments with respect to the functionality delivered.

Information about the relative sizes of functionally equivalent programs is needed
by any organization that is considering a transition to the use of Ada in application areas in
which they have previous experience in FORTRAN. The reasoning is that such an
organization would be able to estimate the size of a programming job if it were developed in
FORTRAN. However, it would have no way of knowing whether an Ada solution would
be more or fewer lines of code. What is needed is the added knowledge about how large an
Ada solution to a problem will be, given an estimate of size for a FORTRAN solution. This
knowledge will allow FORTRAN organizations to “bootstrap” their software cost-
estimating capabilities to include developments in the Ada language. Eventually, the need
for this stop-gap technique will be eliminated by first-hand experience with Ada.

The focus of this study can be expressed in algebraic terms. The relationship
between effort and size in line-oriented languages such as FORTRAN has been studied
extensively by software engineers and cost analysts [3] and can be represented by
equation (2),

E, =a(KLOC,)’fIm,-. @)

1 The programming effort issues can be addressed by observing the cost required to develop Ada programs
of various sizes. There are several databases containing observations of productivity on Ada projects.
One of the best examples is the work done at the MITRE Corporation and reported in Reference [2).
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where the subscript F denotes FORTRAN. Researchers are leaming about the relationship
between effort and size in block-oriented languages such as Ada as represented by
equation (3),

E, = S(KLOC) [ T m, 3

where the subscript A denotes Ada.

What is less known is the relationship between the size of an Ada program and a
functionally equivalent FORTRAN program, or

KLOC, = f(KLOG;). @

We focus on FORTRAN because the impetus for this research stems from the Institute for
Defense Analyses’ work for the Strategic Defense Initiative Organization (SDIO). Space
systems have historically employed FORTRAN for both the ground segment software and
the software embedded in the spacecraft or satellite itself. Cost-estimating relationships
using FORTRAN lines of code have been the rule. However, the SDIO plans to field space
systems software that will be predominately written in Ada. By determining the differences
in size between functionally equivalent FORTRAN and Ada programs, this study will
further our understanding of how traditional FORTRAN cost- and size-estimating models
will have to be adjusted to handle the Ada language. In addition, by understanding the
differences in size between functionally equivalent FORTRAN and Ada programs, we can
estimate the error incurred by cost analysts when they simply use Ada and FORTRAN
lines-of-code counts interchangeably.
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II. APPROACH

In order to compare the sizes of functionally equivalent Ada and FORTRAN
programs, we devised a simple experimental procedure. The procedure involved rewriting
standard FORTRAN programs and routines using the Ada language. First, we developed
an Ada solution for each program using the features of Ada as appropriate, such as
packages and user-defined types. Because programming style can affect program size, we
also wrote both terse and verbose versions of each of the FORTRAN and Ada programs.
This yielded six functionally equivalent versions of each algorithm studied—three in
FORTRAN and three in Ada. We then selected two established definitions for an Ada line
of code and compared the number of Ada lines of code in these new programs to the
number of lines in the original FORTRAN programs.

This chapter describes the test programs we selected and the formatting and code-
counting conventions we employed.

A. TEST PROGRAMS

A total of four FORTRAN routines were used in the experiment. Three FORTRAN
routines and their drivers were taken from Numerical Recipes in FORTRAN [4). The
National Aeronautics and Space Administration (NASA) Software Engineering Library
(SEL) supplied the fourth FORTRAN program [5], along with an Ada translation, which
we adapted for our basic Ada version of the program. Terse versions of the FORTRAN
routines were devised by taking “shortcuts,” such as allowing implicit declarations and
eliminating certain unnecessary statements, such as format statements and continue
statements. Verbose versions were devised by separately declaring variables, adding
explicit format statements, and adding other optional statements to improve clarity. The
terse versions of the Ada routines were devised by allowing multiple variables to appear in
a single declaration and by using only positional parameter associations. The verbose
versions were devised by separately declaring all variables and by using named parameter
associations. By having a terse, normal, and verbose version of each algorithm in each
language, we were able to obtain a useful picture of how the range of possible program
sizes for a given function would differ in the two languages.




The three routines selected from Numerical Recipes were:

*  Quicksort—a sorting routine that uses a “‘partition-exchange” sorting method.

»  Fast Fourier Transform (FFT)—a computational algorithm that relates physical
processes defined either in the time domain or frequency domain.

+  Moments of a Distribution—a statistical routine that computes the moments
(e.g., mean, variance, kurtosis) of a given distribution.

A fourth routine, an orbit propagator provided by the NASA/SEL, computes the
orbital position of an earth satellite. These four were selected because they cover a range of
computational applications likely to be used in space systems, and the algorithms involved
are well known and widely used.

B. ADA AND FORTRAN FORMATTING AND STYLE

For comparisons we used two methods to measure the size of each of the Ada and
FORTRAN subprograms and their drivers. Method 1 involves adopting a specific style for
the formatting of the code and then simply counting the number of non-comment, non-
blank lines in the file containing the code. The most complete definition we found for Ada
formatting and style was “Ada Quality and Style: Guidelines for Professional
Programmers™ [6]. Except when deliberately employing either a verbose or a terse format,
we adopted those rules of style for the examples of Ada used in this report. For the style of
the FORTRAN examples, we followed the conventions detailed in American National
Standard Programming Language FORTRAN (ANSI FORTRAN) [7]. This standard was
adopted by the DoD in 1978.

Method 2 is a count of the number of source statements that appear in the code.
Because this method measures the number of logical statements it is not sensitive to the
number of physical lines a statement occupies. It is therefore not sensitive to formatting,
comments or blank lines. Because of the multiple declaration option in Ada, this method is
still somewhat sensitive to programming style, however. The specific declaration and
statement counting rules we followed for both methods are described in “Code Counting
Rules and Category Definitions/Relationships” [8]. To be consistent with the terms used in
that report, we call Method 1 the physical source statement count, or the PSS count, and
Method 2 the logical source statement count, or the LSS count.2

2 The definitions of PSS and LSS are identical to the definitions in [9).
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Although Reference [8] also discusses how to count comments in each language,
we chose to ignore all comments and blank lines when measuring the sizes of our examples
for this study. Also, we adopted the definition for a source statement to mean any
programming instruction. In other words, all Ada declarations, statements, and pragmas
are counted as source statements. In FORTRAN a source statement can be an executable
statement, a data declaration, or a compiler directive.

C. CODE-COUNTING CONVENTIONS: SIZING ISSUES

The two selected methods for measuring program size are each compromises
between the amount of the information captured by a size measure and the complexity of
taking the measurement. The PSS method requires the program to be first formatted
according to a set of rules and then simply counts the number of carriage returns in the
code, excluding blank lines and comments. This approach either requires that a particular
style be followed by the code developers or that a formatter (or “pretty printer’”) be used
before any line counting is done. The LSS method defines a method for counting syntactic
units rather than counting lines at all, so that the formatting of the code is immaterial. This
LSS approach can be useful when reporting size outside of an individual development
organization where styles and formatting rules may differ. However, it requires the
additional complexity of processing or parsing the code in order to obtain the size count
automatically.

6,99

Each statement, declaration, or pragma in Ada terminates with a semicolon (*;”).
Semicolons are also used to separate formal subprogram and entry parameters. Computing
LSS means counting the semicolons except when they appear in (1) comments, (2)
character literals, and (3) string literals. We decided to count the semicolons in formal
parameter lists because formal parameters are, in effect, declarations. Although this count
always misses the last parameter, we felt that correcting for this small effect was not worth
the added complexity. A logical source statement in FORTRAN can be computed by
counting only those lines that have the blank character in column 1 and either a blank or a
zero in column 6. This follows from the convention that comments in FORTRAN are
identified as those lines with the character “C” or “*” in column 1, while continuation lines
have any character except a blank or a zero in column 6. This rule, therefore, counts only
non-comment, non-continuation lines. In structured FORTRAN (such as that used in our
examples) the statement “end if” is not counted as a logical source statement but it is
included in the count of physical source statements.

II-3




The difference between the PSS and LSS methods and how they apply to counting
code in Ada and FORTRAN can best be illustrated through a simple example. Table II-1
shows a portion of the FORTRAN and Ada code found in the Fourier analysis subroutine.

Table li-1. Comparison of Ada and FORTRAN “If...then" Statements

FORTRAN LSS Ad LSS
if (j.gt.i}then 4 if 1> I then
tempr=data(j) 4 Temp:= Data (J); 4
tempi=data(j+1) 4 Data (J):= Data (I); 4
data()=data(i) 4 Data (I):= Temp; 4
data(j+ 1 =datali+1) / end if; 7
data(i)=tempr 4
data(i+1)=tempi /
end if

The portion of the subroutine is an “if...then” statement written in the styles
according to the references noted above. (Capitalization is not significant in either language.
The lower-case convention used in the FORTRAN example is adopted from [4].) The Ada
PSS count is five and the FORTRAN PSS count is eight. The Ada LSS count is four and
the FORTRAN LSS count is seven. There are four semicolons in the Ada code. The “end
if” in the FORTRAN code is not counted as a logical statement since it is required by and
part of the “if” statement.

-4
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III. RESULTS

In this chapter we examine the results of applying the code and style conventions
discussed in the preceding chapter to the four test programs. We examine some of the
differences between Ada and FORTRAN that might explain the results, and we discuss the
notion that the Ada language exhibits scale economies (i.e., as the size of the program
grows the number of Ada lines grows slower than the size of an equivalent FORTRAN
program). Finally, we discuss the effect of our results on the practice of software cost

estimating.

A. PSS AND LSS COUNTS

The results of applying the code-counting methods to the FORTRAN and Ada
examples using the conventional programming style examples are summarized in
Table OI-1.

Table li-1. Lines-of-Code Count for Four Programs

FORTRAN Ada Ada/FORTRAN
Program PSS _ LSS PSS LSS __ PSS LSS
Quicksort 92 79 141 106 1.53 1.34
Moments 68 61 124 109 1.82 1.78
Fourier 133 115 189 147 142 127
Orbit 1101 803 1,382 1,065 1.25 1.32
Mean: 1.51 143

There are several interesting aspects to the results. The PSS count is always greater
than the LSS count. The Ada code count is in every case greater than the FORTRAN code
count. The Ada code count is, on average, 50-percent greater than the FORTRAN count
when measured by PSS. The Ada code count is, on average, 40-percent greater than the
FORTRAN count when measured by LSS. McGarry and Agresti, in an experiment of
parallel development of flight dynamics systems by two teams of programmers, one team
using FORTRAN and the other team using Ada, reported the Ada product was significantly
larger (measured by PSS) than the FORTRAN product by a factor of almost three [10].
McGarry and Agresti posit three reasons for the large difference in the counts. First, the
characteristics of the Ada language itself (about which more will be said in the next
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sections). Second, additional functionality was built into the Ada version (the Ada team
developed a more contemporary screen-oriented user interface). Third, the Ada version was
not driven by tight schedules and funds as was the FORTRAN version; thus, there was a
tendency to continually add capability to the Ada version. Our experiment controlled for the
latter two factors. Our results also indicate that as the size of the program grows, the
difference between the FORTRAN and Ada counts falls. This result suggests that Ada
exhibits economies of scale relative to FORTRAN.

In order to determine if the observed differences between the Ada and FORTRAN
code counts are statistically significant, we conducted a nonparametric test. We would
expect Ada to be greater than FORTRAN half of the time and less than FORTRAN half the
time. As noted, the Ada program code counts were always greater than the FORTRAN
counts. Obviously, we would reject the null hypothesis that the Ada and FORTRAN counts
were the same. One might wonder whether the same results would be observed if the
programs were decomposed into their smaller constituencies. We decomposed the four
programs into 17 corresponding modules. In only one out the 17 components was the Ada
component not larger than the equivalent FORTRAN component. Here again we would
reject the null nypothesis that the Ada and FORTRAN counts were the same.3

In carrying out this experiment, we observed that FORTRAN, like Ada, has
optional variations in style that can change the number of lines in a subroutine depending
on the formatting used. We also observed that certain kinds of statements, such as input
and output statements, were more verbose in Ada than in FORTRAN, while other kinds of
statements, such as assignments to structured data, could be expressed more efficiently in
Ada. The affect of these variations in style are discussed in detail in the next two sections.

3 The nonparametric test that we conducted was the sign test. To test the hypothesis that Ada code counts
are greater than FORTRAN code counts, we needed to determine whether the null hypothesis (code
counts are the same) could be rejected at a specific level of significance a The null bypothesis can be
rejected if x 2 k,, where x is the number of positive differences (i.e., Ada code count is greater than
FORTRAN code count) and k,, is the smallest integer that satisfies

"
x A-X
Pxzk)= Y (3B sa
xnk,
where n is the sample size. When the sign test was performed on the four programs, the null
hypothesis could not be rejected at the 5-percent level of significance. However, at the 10-percent level,
we rejected the null hypothesis and concluded that the Ada code counts are greater than FORTRAN. We
then conducted the sign test on the 17 compounents and rejected the null hypothesis at the 5-percent
level.
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B. DECLARATIONS

This section discusses specific issues with respect to how declarations can be
counted in both Ada and FORTRAN and why we chose to write and count them as we did.

FORTRAN allows the implicit declaration of variables, where the data type is
implied by the first letter of the name (beginning a symbolic name with the letters “T"
through “N” implies an integer while any other letter implies a real number). In spite of this
allowance, most programming practices now dictate explicit declaration as a way of
avoiding certain kinds of errors. Nevertheless, it is common in FORTRAN to use a single
statement to declare all the variables of a certain type rather than to place each declaration on
a separate line. Conversely, most of the guides about Ada style recommend using a
separate line for each declaration. This allows the initialization of variables during the
elaboration of their declarations, and also improves the maintainability of the code, though
it tends to inflate both the LSS and the PSS for Ada when compared with FORTRAN. As
discussed earlier, in order to understand the variability in program size due to the
observance of these and other conventions, we wrote and compared both terse and verbose
versions of each routine in each language.

Another stylistic issue that tends to increase the size of a program written in Ada
over a similar one written in FORTRAN is the use of descriptive names. Since FORTRAN
symbolic names are limited in length to six characters [7, section 2.2] it is often easier to fit
a long expression that contains several names on a single line. In several of our examples,
multiple editor lines were required to write an expression in Ada that took only one line in
FORTRAN. One might argue that the descriptive choice of names in Ada might reduce the
need for in-line commentary as compared with a corresponding FORTRAN program,
meaning that the effect on the size of a fully commented program may be counterbalanced.
However, since we did not study the effects of commenting on program size, we did not
attempt to investigate this possibility. Further, this issue only affects the physical source
statements (PSS) and not the count of statements and declarations (LSS).

In Ada, formal parameters are declared along with the name of a subprogram, rather
than in a subsequent declarative area, as is the case with FORTRAN. The effect of this on
size is often canceled out, depending on the counting method used, because this practice
makes the program unit declaration longer in Ada, but it eliminates the need to repeat the
parameter names in a later declaration.

Ada allows, but does not require, the declaration of a library-level subprogram
(i.e., a procedure or function) to be compiled separately from its executable body. If this
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separation is not done, the number of lines needed to write a given program will be
reduced. However, most style guides recommend the addition of these lines because it can
greatly reduce the recompilation effort required if a subprogram body is modified. A
separate subprogram declaration can also be used within a declarative area, usually to allow
mutual visibility between two locally-declared subprograms. In the case of subprograms
exported from a package declaration, the subprogram declarations are always separated
from their bodies, which appear in the package body. In all these cases, however, the extra
programming effort required to provide a separate subprogram declaration is negligible
because it is simply a verbatim repetition of the specification part of the subprogram body.
In fact, some Ada development environments automatically complete the repeated syntax so
that no additional typing or editing is required of the programmer. (It might be argued that
maintenance is made more complicated by this syntactic duplication in the language since
both copies have to be modified in the case of a change. However, the more likely
maintenance situation is a change to the unique code in a subprogram body rather than the
redundant interface code in the specification.) For these reasons, one might argue that
separate subprogram declarations should not be included in the size of a program.
However, we deemed it not worth the added complexity of defining counting rules to
compensate for this.

Since FORTRAN does not allow the definition of structured data types, arrays are
often used for various logical data structures. This simplifies the declaration of such
structures, because it requires only a dimension statement, but at the possible expense of
more elaborate processing later in the program. To assign an array value to an array object
in FORTRAN, it is necessary to use a loop that explicitly assigns each component. In
comparison, Ada array objects contain implicit information about their own size and
bounds, which allows the array objects to be assigned to one another with single
assignment statements.

The manipulation of arrays that represent nested data structures can require even
more complexity. For example, the FORTRAN version of the fast Fourier transform used
in one of our examples uses an array of real numbers to represent an array of complex
numbers. The odd-indexed values are the real parts and the even-indexed values are the
imaginary parts. This practice required the “do” loops to use an increment of two rather
than one each time the complex numbers were processed. When we initially translated the
programs into Ada, extra statements were required to implement these loops because Ada
does not allow “for” loops that skip values in the loop range. When the algorithms were
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written in a more appropriate Ada style using structured data, however, the loops were
reduced to half the number of statements required by their FORTRAN equivalents.

C. STATEMENTS

This section presents issues with respect to how statements can be written and
counted in both Ada and FORTRAN.

One of the most noticeable differences in program size between Ada and
FORTRAN programs was in the statement areas used for input and output. Because Ada
allows only a single value to be either input or output with each statement, the translation
into Ada of a formatted FORTRAN input/output statement often resulted in considerable
expansion. This effect can be clearly observed by comparing the driver routines in Ada and
FORTRAN for the example engineering algorithms. For example, the three “write”
statements in the driver for the Fourier transform routine required five statements, while the
same output in Ada required 27 statements.

One of the stylistic issues that allows a single FORTRAN program to be written
with different numbers of lines is the use of separate “format” statements when specifying
input and output columns rather than including this information directly in the “read” or
“write” statements. Our FORTRAN program examples, which were originally written
without “format” statements, were re-styled to conform to the conventions found in {7] in
order to make them representative of industry programming standards. Note that the
verbose and terse versions of the FORTRAN programs show the different ways to effect
input and output formatting.

We noticed several minor differences between the syntactic conventions used in the
two languages when applying the counting rules chosen. One minor difference between the
languages is that Ada always implicitly declares loop variables. This is to ensure that the
availability of that variable is limited to the scope of its loop. It also has the effect of
reducing the size of the program by one declaration. Another minor difference is the
implicit “return” statement at the end of an Ada subprogram. A “return” statement is still
required if processing is to stop at any other point, but most Ada subprograms are written
to return after their last statement. In a FORTRAN routine, the last line must be an “end”
statement. It has the same effect as a “retumn” statement, which is to return control to the
referencing program unit. Nevertheless, it is common to see both a “return” and an “end”
statement in a FORTRAN subprogram. A third minor difference is the lack of a need for a
“continue” statement in Ada. Although a “continue” statement is rarely required in
FORTRAN, it is common practice to use one at the end of a loop to avoid confusing the
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last statement in the loop with the statements that follow the loop. In comparison, Ada
loops require an “end loop”; however, this increases the number of physical lines (PSS)

only, not the number of statements (LSS).

It should be noted that an inconsistency between the LSS methods for Ada and
FORTRAN existed. In FORTRAN the “else” statement is counted as a logical source
statement, but it is considered part of the same logical statement as its containing “if”’
statement in Ada. Thus, it was not counted as an additional logical source statement in Ada

[8].

D. ECONOMIES OF SCALE IN THE ADA LANGUAGE

As previously noted, the relative difference between the FORTRAN and Ada counts
fell as the size of the four programs in the experiment grew. An interesting question
concerning this observed scale effect is: At what program size would the Ada code count
fall below the FORTRAN code count? A graphical representation of this cross-over or
break-even point is presented in Figure 1TI-1.

Break-even size

Ada KLOC

) -

FORTRAN KLOC
Figure lil-1. Break-Even Size

The Ada and FORTRAN lines of code (measured in thousands) zre represented on
the Y and the X axis, respectively. The ray that passes through the origin at 45 degrees
. represents points where the number of Ada and FORTRAN lines of code are equal. The
curved line represents a hypothetical relationship between Ada and FORTRAN. If
economies of scale exist, we would expect this relationship to exhibit a curvilinear form
similar to that depicted in Figure III-1. This form suggests that as the size of the program
grows, the number of Ada lines required to perform the function grows, more slowly than
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does the corresponding FORTRAN program. The point where the two lines intersect
represents the break-even point. The interpretation of this point is that any program of size
greater than B could be written with fewer lines in Ada than in FORTRAN.

What is the actual shape of the curvilinear line? We estimated a regression curve of
the form:
KLOC, = akKLOCAu,
where a and B are the coefficients to be estimated, and u is a stochastic disturbance term.

The results of estimating the coefficients using the four test programs were:
KLOC, =126KLOC,™
a.zn aLm o)
R=.97 SEE= .16

The numbers in parentheses are the t-scores of the FORTRAN coefficient and intercept
term. If there were a scale effect, we would expect the coefficient on the FORTRAN
variable to be less than one. In this case, the value of coefficient is 0.937. Using these
regression results the break-even point was computed to be around 40,000 lines of code.4

Note that we have estimated the point where functionally equivalent programs in
Ada and FORTRAN would be the same size. However, this is the break-even size only
from the perspective of development effort if the cost to develop a line of code in either
language is the same. To compute the break-even cost, we must drop the implicit
assumption that the cost to develop a line of code is the same for both languages. The
cross-over point would depend on the values of the parameters used in the FORTRAN and
Ada cost or effort estimating equations.3

4 From the regression we found:
KLOC, = 1.26KLOC;*”

If there were no difference between Ada and FORTRAN, then the relationship would simply be A = F.
Senting these two relationships equal to each other, we have

l.26KLOCp‘m = IQ.OC,- ’
and solving for the break-even point, we find:
1

KLOC, = *1.26
= 39,190.

5 As an example, assume that the effort estimating equation for a FORTRAN development is taken 0 be
E, =3.0KLOC,?,
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A word of caution about the interpretation of these results is in order. The results
are based on only four relatively small programs, all of which are smaller than the projected
break-even point. However, there is at least some anecdotal evidence from NASA/SEL and
others that suggests that the magnitude of our estimate is consistent with their findings in
this area [5].

The question remains as to why we should observe this scale effect with the Ada
language. Several especially noticeable differences between the two languages may
contribute to the effect. One difference was the fact that as program size increased, the
executable portions increased slower in Ada than in FORTRAN. Although the declarative
portions increased more in Ada than in FORTRAN, they contributed less to overall size. In
our largest example, the executable portion was smaller in Ada than in FORTRAN even
though the overall size was greater in Ada. Table ITI-2 presents a view of the four test
programs separated into their executable and declarative portions.

Table lli-2. Executable and Declaration Code Count

FORTRAN LOC AdalOC_ AJUFORTRAN __
_Progmm _ Executable _ Declarstive  _Executable _Declarative  _Executsble _Declarative
Quicksort 72 7 81 25 1.12 3.57
FFT 104 1 110 37 1.0 3.36
Moment 52 9 7 38 1.36 422
Orbit 738 65 701 364 095 5.66

An example from the FFT test program illustrates this tradeoff between the number
of executable and declarative statements. Table III-3 presents functionally equivalent Ada
and FORTRAN code taken from the FFT program.

If our results that indicate significant differences in size between functionally
equivalent FORTRAN and Ada programs are correct, then the practice of cost analysts to

and the effort estimating equation for an Ada development is assumed o be
E, = 5.8KLOC,"™.

Setting these two equations equal to each other and substituting in our estimated relationship between
Ada and FORTRAN, we get:

5.8[1.26KLOC,*" 1" = 3.0kLOC, .

Solving for F, we find the point of equal effort for Ada and FORTRAN developments is about
485,000 lines of code.
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use Ada and FORTRAN lines-of-code counts interchangeably will induce errors in the
subsequent cost estimates.

Table lIl-3. Declarations Versus Statements

e FORTRAN Ad
REAL Deta (2*mn) tychunplunsreea'd

REAL tempi, tempe Real :

REAL wi, wr Mm Flool;

typeCanplex Array is armay (Natural range<>)of Compilex;
function “+" (Left.Right:Complex) return Complex;
m*”mmmcm)mmm

Data : Complex_Armay (1..N);
W, Temp : Complex;

tempr=wr*Data(j) - wi*Data(j+1) Temp :=W*Data (J);
temprewr*Data(j+1) - wi*Data(j) Data (J) := Data (I) - Temp;
Data(j)=Data(i) - tempr Data (I) := Data (I) - Temp;
Data(j+1)=Data(i+1) - tempi

Data(i)=Data(i) + tempr
Data(i+1)=Data(i+1) + tempi

How large these potential errors can be is seen in Table III-4. The table’s first
column is the number of lines of FORTRAN code. The second column is the estimate of
the effort (measured in staff-months) to develop the appropriate FORTRAN lines of code
using an equation taken from [1]. The third column is the estimate of the effort required to
develop Ada code using the FORTRAN code count as the explanatory variable value rather
than the appropriate Ada code count value. In this case, the parameter values were taken
from [2]. The fourth column shows our algorithm that converts FORTRAN lines to the
equivalent Ada lines of code count. The last column shows the effort-estimates that result
from using the Ada code count from column four in the Ada effort-estimating equation.

Table lil-4. Estimates of Ervor

Estimated Effortin  Estimated Effort Estimated LOC Estimated Effort

LOCin FORTRAN Using in Ada Using in Ada Using in Ada Using
FORTRAN E, = 30(KLOC,)' E =5 s(mcg)“‘ KLOC, = 1.26KLOC™ E, = 5.4XLOC, Yo
1,000 30 5.8 1,260 7.4
5,000 18.2 309 5,720 356
10,000 39.5 63.6 10,974 70.1
20,000 86.0 1308 21,054 1379
40,000 186.8 2689 40,393 271.6
100,000 5213 6973 95,581 ) 665.3
500,000 3,162.0 3,718.4 425,898 3,147.1
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The difference between the effort estimates in column three (which simulate the
practice of using Ada and FORTRAN lines of code counts interchangeably) and those in
the last column (which represent the “correct” estimate) is the error. We note that for small
programs the relative error is large (e.g., 27 percent for 1,000 lines of code), then gets
smaller as it approaches the cross-over point at around 40,000 lines, then grows larger
again, but at a very slow rate (at 100,000 lines, the error is approximately 5 percent).
Obviously, the results are sensitive to the effort-estimating equation used. Again, our
FORTRAN-to-Ada equation is based on a small sample and should be used with caution.
However, the point is that significant error can result from the practice of indiscriminately
interchanging code-counting units.
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IV. CONCLUSIONS AND FUTURE RESEARCH

The main objective of this research was to fill a gap in the knowledge needed by
experienced FORTRAN size and cost estimators when estimating Ada developments for the
first time. Although there are published models for the cost of developing Ada programs
based on their expected size, there has been no standard way of estimating the size of an
Ada development based on the expected size of an equivalent FORTRAN development.
This work has shown that the sizes of functionally equivalent programs in Ada and
FORTRAN are different. It would therefore be a mistake to assume that either a
FORTRAN effort estimate or the expected number of FORTRAN lines of code would be
sufficient in an Ada estimating equation. One such Ada equation was shown in this study;
however, the magnitude of the error will depend on the exact estimating equations used.
With the added knowledge of how the sizes of functionally equivalent programs in Ada and
FORTRAN compare, a cost estimator can first adjust the expected number of lines of
FORTRAN code to complete a job to a more accurate estimate of the expected number of
lines of Ada code. Then, an Ada effort-estimating equation may be properly applied.

This study should be viewed mainly as a model for further investigation, although
we believe our limited results are still of interest. In particular, we suspect that the tendency
we observed for small Ada programs to be larger than their functionally equivalent
FORTRAN counterparts is reasonable, as is our further observation that the overhead for
Ada diminishes as the program size is increased. Our limited data suggested that there may
even be a cross-over point beyond which the size of an Ada program is smaller than a
functionally equivalent FORTRAN program. Although the number of observations was
small and all were below this projected cross-over point, one of the strongest pieces of
evidence that such a point exists, beyond the regression analysis, is that the number of
executable lines of Ada in our largest example was smaller than the equivalent number of
executable lines in FORTRAN. After an inspection of language features, we believed this
to be a reasonable occurrence, because Ada has richer declarative power and, in return, can
take advantage of simpler algorithmic processing.

Because the relationship between the sizes of functionally equivalent Ada and
FORTRAN programs is probably not linear, more observations are needed, and in
particular, observations are needed that are at least an order of magnitude greater than the
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largest of our examples. The only published comparison of the sizes of a pair of large Ada
and FORTRAN programs developed from the same set of requirements was too
confounded to be useful for this purpose [10]. The only other evidence we found about the
way larger Ada and FORTRAN programs compare was anecdotal, although the opinions
reported to us tended to agree with our observations [5].

A final observation not previously mentioned stems from our interest in examining
the possible variations of program size due to programming style. Although we used what
we considered to be a conventional style of formatting for the programs in our analyses, we
additionally wrote both terse and verbose styles for each example. The most interesting
result we observed was that the possible variation in size for an Ada program is much
greater than the possible variation for a FORTRAN program. This means that the
comparison of Ada size, effort, and productivity results across organizations (which may
not be observing the same style standards) is more prone to error than are similar
comparisons using FORTRAN results. Although we used well-defined counting rules for
both languages to maximize the portability of our results, we were not able to similarly
well-define a programming style. In order to assure comparability of Ada size, effort, and
productivity results across organizations, more study is needed into how the size of an Ada
program might be normalized for any implemented functionality.
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ADA

This appendix contains the code for three of the four programs dicussed in the
report. The three programs are Quicksort, Fast Fourier Transform, and Moments of a
Distribution. The code for the Orbit program was not included becuase of its length. A

APPENDIX A

AND FORTRAN CODE FOR EXAMPLE PROGRAMS

copy of the code is available from the authors.

QUICKSORT

FORTRAN

C

11
15

12

PROGRAM xsort
driver for routine sort
INTEGER i,j
REAL a(100)
open(7.file="TARRAY 1.DAT status='"OLD")
open(8,file="sortprog.out’,status="NEW")
read(7,*) (a(i).i=1,100)
close(7)
print original array
write(8,*) 'Original array:'
do 11i=1,10
write(8,15) (a(10*G-1)4+j),j=1,10)
continue
format(1x,10£7.2)
sort array
call sort(100,a)
print sorted array
write(8,*) 'Sorted array:’
do 12i=1,10
write(8,15) (a(10*(i-1)+j),j=1,10)
continue
close(8)
END

SUBROUTINE sort(n,arr)

INTEGER n,M,NSTACK

REAL arr(n)

PARAMETER (M=7,NSTACK=50)
INTEGER i,ir,j,jstack k,l,istack(NSTACK)
REAL a,temp




jstack=0
I=1
ir=n
1 if(ir-LltM)then
do 12 j=l+1,ir

a=arr(j)

do 11i=4-1,1,-1
if(arr(i).le.a)goto 2
arr(i+1)=arr(1)

11 gontinue

i=0
2 arr(i+1)=a
12 continue
if(jstack.eq.0)return
ir=istack(jstack)
I=istack(jstack-1)
jstack=jstack-2
else
k=(l+ir)/2
temp=arr(k)
arr(k)=arr(1+1)
arr(l+1)=temp
if(arr(l+1). gt.arr(xr))then
temp=arr(i+1)
arr(l+1)=arr(ir)
arr(ir)=temp
endif

if(axr(]).gt.a;'r(ir))then

tem
arr(l)=arr(ir)
arr(1r)=uemp

1f(arr(1+l) gt.arr(1))then
temp=arr(l+1)
arr(i+1)=arr(l)
arr(}=temp

endif

i=l+1

j=ir
a=arr(l)

3 continue
i=i+l
if(arr(i).lt.a)goto 3

4 cgng.inue

=il
if(arr(j).gt.a)goto 4
if(j.1t.1)goto 5
tem) p=arr(1)
arr(i)=arr(j)

arr(j)=temp

goto 3

5 arr(l)—arr())

arr(j)=a
jstack=jstack+2
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KQsmckgLNSTACK)pause 'NSTACK too small in sort'
if(n-i-; l.ge.jil))‘t_l:ren
istack(jstack)=i
istack(jstack-1)=i
ir=j-1
else
istack(jstack)=j-1
istack(jstack-1)=1
=i
endif
endif
goto 1
END

ADA

Quicksort Routine

with Text_lo;
procedure Quicksort_Generic (Arr : in out Element_Array) is
Temp_Stack : array (1 .. Max_Size) of Integer;
Stack_Ptr : Integer :=0;
L :Integer:=1;
IR : Integer := Arr'Length;
A : Element;
I : Integer;
J : Integer;
IQ : Integer;
Found : Boolean;

function "<" (Left, Right : Element) return Boolean is

begin
if Left = Right then
return False;
end if;
return Left <= Right;
end "<";

gténgtion ">" (Left, Right : Element) return Boolean is
gin

return not "<=" (Left, Right);
end ">";

begin
loop
if IR - L < Subarray_Size then
forJJinL +1 .. IR loop
A := Arr (J));
Found := False;
for IT in reverse 1 .. JJ - 1 loop
if Arr (II) <= A then
Found := True;
Arr(I+1):=A;
exit;
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else
Arr (11 + 1) := Arr (1I);
end if;

end loop;
if not Found then
Arr (1) :=A;
end if;
end loop;
if Stack_Ptr = 0 then
retumn;
end if;
IR := Temp_Stack (Stack_Ptr);
L := Temp_Stack (Stack_Ptr - 1);
Stack_Ptr := Stack_Ptr - 2;
else
I=L;
J:=1R;
IQ=CL+IR)/2;
A= Arr (1Q);
Arr (IQ) := Arr (L);
loop
while J > 0 loop
if A < Arr (J) then
J=J-1;
else
exit;
end if;
end loop;
if J <=1then
Arr(I):=A;
exit;
end if;
Arr () := Arr (J);
I:=1I+1;
while I <= Arr'Length loop
if A > Arr (I) then
I=1+1;
else
exit;
end if;
end loop;
if J <=1then
Arr (J) ;= A;
I:=];
exit;
end if;
Arr (J) := Arr (I);
J=J-1;
end loop;
Stack_Ptr := Stack_Ptr + 2;
if Stack_Ptr > Max_Size then
Text_lo.Put_Line ("Max_Size must be made larger.");
enrtli?; Constraint_Error;
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ifIR-I>=1-L then
Temp_Stack (Stack_Pu) := IR;
Temp_Stack (Stack_Ptr-1):=1+1;
IR:=1-1;

else
Temp_Stack (Stack_Ptr) :=1-1;
'{em;;_Stlack (Stack_Ptr- 1) :=L;

=1+1;

end if;
end if;
end loop;
end Quicksort_Generic;

Specification for Quicksort

generic
type Element is private;
type Element_Amay is array (Positive range <) of Element;
with function "<=" (Left, Right : Element) return Boolean;
Max_Size : Natural := 50;
Subarray_Size : Positive := 7;

procedure Quicksort_Generic (Arr : in out Element_Array);

Driver for Quickso

with Quicksort_Generic;

with Text_Jo;

procedure Xquicksort_Generic is
package Float_lo is new Text_lo.Float_Io (Float);
Size : constant := 100;
type Float_Array is array (Positive range <) of Float;

procedure Sort is new Quicksort_Generic (Float, Float_Array, "<=");

A : Float_Array (1 .. Size);
File : Text_lo.File_Type;
Output : Text_lo.File_Type;
begin
Text_lo.Open (File, Text_Io.In_File, "Tarray.Dat");
forIin 1.. Size loop
Float_lo.Get (File, A (I));
end loop;
Text_lo.Close (File);
~-print original array
Text_lo.Create (Output, Text_lo.Out_File, "Output.Lis");
‘Text_Jo.Set_Output (Output);
Texi_lo.Put_Line ("Original array:");
torlin 1 .. 10 loop
forJin1.. 10 loop
Float_Jo.Put (A (10 * (I-1) + J), 4, 2, 0);
end loop;
Text_lo.New_Line;
end loop;
--sort array
Sort (A);
—print sorted array
Text_lo.Put_Line ("Sorted array:");
forIin1 .. 10loop
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forJin1.. 10
enl;lk:alt_.lo.l’ut (A(10*(3-1)+)),4,2,0);

Te:lu._lo.New_IAne

’?dthOPCl (Outpm)
ext_lo.Close 3
end Xquicksort_Generic

MOMENTS OF A DISTRIBUTION

FORTRAN

PROGRAM xmoment
C driver for routine moment
REAL PI
INTEGER Nbin,Ndat,Npts
PARAMETER(PI=3. 14159265.Npts-10000.me-lOO,Ndat-Nptsd—me)
INTEGER i,jk,nlim
RF.ALl adev,ave.curt,data(Ndat).sdev.skew.var.x
1=
do 12 j=1,Nbin
x=PI*j/Nbin
nlim=nint(sin(x)*P1/2.0*Npts/Nbin)
do 11 k=1,nlim
data(i)=x
i=i+l
11 continue
12 continue
open(9,file='statsprog.out’,status="NEW")
write(9,15) 'Moments of a sinusoidal distribution’
call moment(data,i-1,ave,adev,sdev,var,skew curt)
write(9,16) ‘Calculated’,'Expected’
write(9,17) 'Mean :',ave,P1/2.0
write(9,17) ‘Average Deviation :',adev,0.570796
write(9,17) 'Standard Deviation :',sdev,0.683667
write(9,17) "Variance :',var,0.467401
write(9,17) 'Skewness :'.skew,0.0
write(9,17) 'Kurtosis :',curt,-0.806249
15 format(1x,a/)
16 format(1x,t29,a,142,2/)
17 format(1x,a,125,2f15.4)
close(9)
END

SUBROUTINE moment(data,n,ave,adev,sdev,var,skew,curt)
INTEGER n

REAL adev,ave,curt,sdev,skew,var,data(n)

INTEGER j

REAL ps.ep

isfg(n).lc. 1)pause 'n must be at least 2 in moment'

do 11 j=1,n
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ADA

12 continue

adev=adev/n

var=(var-ep**2/n)/(n-1)

sdev=sqrt(var)

if(var.ne.0.)then
skew=skew/(n*sdev**3)
curt=curt/(n*var**2)-3,

else

pause 'no skew or kurtosis when zero variance in moment'

endif
return
END

Moment Subroutine
with Text_lo;
procedure Moment_Generic (Data : Data_Array;
Ave :in out Real;
Adeyv : in out Real;
Sdev : in out Real;
Var : in out Real;
Skew : in out Real;
Curt : in out Real) is

Powers :Real;
Sum  :Real;
Deviation : Real;

Sum_Devs : Real :=0.0;
N : constant Integer := DataLength;
begi

if N <=1 then

l’g:xt_lo.Put_Lim ("Must be at least 2 in moment.");
e

Sum :=0.0;

for J in Data'Range loop

Sum := Sum + Data (J);
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end loop;
Ave :=Sum/Real (N);
Adev :=00;
Var :=00;
Skew :=0.0;
Curt :=0.0;
for J in Data'Range loop
Deviation := Data (J) - Ave;
Sum_Devs := Sum_Devs + Deviation;
Adev := Adev + abs (Deviation);
Powers := Deviation * Deviation;
Var := Var + Powers;
Powers := Powers * Deviation;
Skew := Skew + Powers;
Powers := Powers * Deviation;
Curt :=Curt + Powers;
end loop;
Adev := Adev/ Real (N);
Var :=(Var - Sum_Devs ** 2/ Real (N)) / Real (N - 1);
Sdev := Sqrt (Var);
if Var /= 0.0 then
Skew := Skew / (Real (N) * Sdev * Sdev * Sdev);
Curt := Curt / (Real (N) * Var ** 2) - 3.0;
else
T:::ft_lo.Put_Lim ("No skew or kurtosis when zero variance in moment”)
éend i,
end if;
end Moment_Generic;

Procedure Specification for Moment Routine

generic
type Real is digits <;
type Data_Array is array (Positive range <) of Real;
with function Sqrt (Number : Real) return Real;
procedure Moment_Generic (Data : Data_Array;

Ave :in out Real;
Adev : in out Real;
Sdev : in out Real;
Var : in out Real;
Skew : in out Real;
Curt : in out Real);

Driver for Moment Routine

with Text_lo;

with Moment_Generic;

with Math_Lib;

procedure Xmoment_Generic is
Ave, Adev, Sdev, Var, Skew, Curt, X : Float;
Pi : constant Float := 3.14159265;
Nbin : constant Natural := 100;
Npts : constant Natural := 10000;
Ndat : constant Natural := Npts + Nbin;
Nlim : Integer;
I:Integer:=1;
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type Float_Array is array (Positive range <>) of Float;
Data : Float_Array (1 .. Ndat);
package Int_lo is new Text_lo.Integer_lo (Integer);
package Float_lo is new Text_lo.Float_lo (Float);
Math is new Math_Lib (Float);
ure Moment is new Moment_Generic (Float,
Float_Array,
Math.Sqrt);
begin
forJ in 1 .. Nbin loop
X:= Pl‘Float(I)/Float(me)
:= Integer (Math.Sin(X) * Pv2.0 * Float (Npts/Nbin));
for K inl. %Ieltlm
Data () :=
I=1+ l;
end loop;
end loop; )
Text_lo.Put_Line ("Moments of a sinusoidal distribution");
Moment (Data (1 .. I-1), Ave, Adev, Sdev, Var, Skew, Curt);
Text_lo.Set_Col (29);
Text_lo.Put ("Calculated”);
Text_lo.Set_Col (42);
Text_lo.Put_Line ("Expected");
Text_lo.Put ("Mean :");
Text_lo.Set_Col (25);
Float_lo.Put (Ave, 6, S, 0);
Float_lo.Put (Pi/ 2.0, 7, §, 0);
Text_lo.New_Line;
Text Jo.Put (" Average Deviation :");
Text_lo.Set_Col (25);
Float_ _lo.Put (Adev, 6, 3, 0);
Float_lo.Put (0.570796, 7, S, 0);
Text_lo.New_Line;
Text_lo.Put ("Standard Deviation: ");
Text_lo.Set_Col (25);
Float_lo.Put (Sdev, 6, 5, 0);
Float_lo.Put (0.683667, 7, S, 0);
Text_lo.New_Line;
Text_lo.Put ("Variance :");
Text_lo.Set_Col (25);
Float_lo.Put (Var, 6, §, 0);
Float_Jo.Put (0.467401, 7, S, 0);
Text_lo.New_Line;
Text_lo.Put ("Skewness: ");
Text_lo.Set_Col (25);
Float_lo.Put (Skew, 6, 5, 0);
Float_lo.Put (0.0, 7, 5, 0);
Text_lo.New_Line;
Text_lo.Put ("Kurtosis :");
Text_lo.Set_Col (25);
Float_lo.Put (Curt, 6, 5, 0);
Float_lo.Put (-0.806249, 7, 5, 0);
Text_lo.New_Line;
end Xmoment_Generic;
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FAST FOURIER TRANSFORM

FORTRAN

PROGRAM xfourl
C driver for routine fourl
INTEGER NN,NN2
PARAMETER (NN=32,NN2=2*NN)
REAL data(NN2),dcmp(NN2)
INTEGER i,isign,j
open(8,file='fourl prog.out',status="NEW")
write(8,*) 'h(t)=real-valued even-function'
write(8,*) 'H(n)=H(N-n) and real?”
do 11 i=1,2*NN-1,2
data(i)=1.0/(((i-NN-1.0/NN)**2+1.0)
data(i+1)=0.0
11 continue
isign=1
call fourl(data,NN,isign)
call pmtft(data, NN2)
write(8,*) 'h(t)=imaginary-valued even-function’
write(8,*) ‘H(n)=H(N-n) and imaginary?
do 12 i=1,2*NN-1,2
data(i+1)=1.0/(((i-NN-1.0¥NN)**2+1.0)
data(i)=0.0
12 continue
isign=1
call fourl(data,NN,isign)
call pmtft(data,NN2)
write(8,*) h(t)=real-valued odd-function’
write(8,*) 'H(n)=-H(N-n) and imaginary?'
do 13 i=1,2*NN-1,2
data(i)=(i-NN-1.0)/NN/(((i-NN-1.0)/NN)**2+1.0)
data(i+1)=0.0
13 continue
data(1)=0.0
isign=1
call fourl(data,NN,isign)
call pmtft(data, NN2)
write(8,*) 'h(t)=imaginary-valued odd-function’
write(8,*) 'H(n)=-H(N-n) and real?
do 14 i=1,2*NN-1,2
data(i+1)=(i-NN-1.0)/NN/(((i-NN-1.0)/NN)**2+1.0)
data(i)=0.0
14 continue
data(2)=0.0
isign=1
call fourl(data,NN,isign)
call pmtft(data,NN2)
C transform, inverse-transform test
do 15 i=1,2*NN-1,2
data(i)=1.0/((0.5*(i-NN-1)/NN)**2+1.0)
demp(i)=data(i)
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data(i+1)=(0.25*(i-NN-1/NN)*
*  exp(-(0.5*(i-NN-1.0¥NN)**2)
demp(i+1)=data(i+1)
15 continue
isign=1
call fourl(data,NM.isign)
isign=-1
call fourl(data,NN,isign)
write(8,20) 'Original Data:', Double Fourier Transform:'
20 format(/1x,t10,a,t44,a)
write(8,21) 'k’,Real h(k)','Imag h(k)',Real h(k)',Imag h(k)'
21 format(/1x,15,a,t11,3,24,a,t41,a,153,a/)
do 16 i=1,NN,2
j=Gi+1)2
write(8,22) j,dcmp(i).dcmp(i+1).data(i)/NN,data(i+1¥VNN
22 format(1x,14,2x,2f12.6,5x,2f12.6)
16 continue
close(8)
END

SUBROUTINE pmtft(data,nn2)
INTEGER n,nn2,m,mm
REAL data(nn2)
write(8,30) ‘n',Real H(n)',Tmag H(n)',Real H(N-n)',
* ‘Imag H(N-n)'
30 format(/1x,t5,a,t11,a,t23,a,t39,a,t52,a)
write(8.21) ),data(1),data(2),data(1),data(2)
31 format(1x,i4,2x,2f12.6,5x,2f12.6)
do 11 n=3,(nn2/2)+1,2
m=(n-1)/2
mm=nn2+2-n
write(8,31) m,data(n),data(n+1),data(mm),data(mm+1)
11 continue
return
END

SUBROUTINE fourl(data,nn,isign)
INTEGER isign,nn
REAL data(2*nn)
INTEGER i,istep,j,m,mmax,n
REAL tempi,tempr
D(gEJBLE PRECISION theta,wi,wpi,wpr,wr,wtemp
n=2*nn
=1
do 11 i=1,n,2
if(j.gt.i)then
temp§=data(j)
tempi=data(j+1)
data(j)=data(i)
data(j+1)=data(i+1)
data(i)=tempr
data(i+1)=tempi
endif

m=n/2
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1 if (m.ge.2).and.(j.gt.m)) then

F-m
m=m/2
goto 1
endif
j=i+m
11 continue
mmax=2
2 if (n.gtmmax) then
istep=2*mmax
theta=6.28318530717959d0/(isign*mmax)
wpr=-2.d0*sin(0.5d0*theta)**2
wpi=sin(theta)
wr=1.d0
wi=0.d0
do 13 m=1,mmax,2
do 12 i=m,n,istep
j=i+mmax i
tempr=sngl(wr)*data(j)-sngl(wi)*data(j+1)
temp_i=sngl(wr)*data(i+1)+sngl(wi)*data(i)
data(j)=data(i)-tempr
data(j+1)=data(i+1)-tempi
data(i)=data(i)+tempr
data(i+1)=data(i+1)+tempi
12  continue
wiemp=wr
WI=Wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi
13 continue
mmax=istep
goto 2
endif
return
END

ADA

Fast Fourier Routine
procedure Fourier_Generic (Data : in out Complex_Array;
Positive : in  Boolean := True) is
Istep : Integer;
J : Integer := 1;
1: Integer;
M : Integer;
Mmax : Integer;
Temp, W, Wp : Complex_Type;
Theta : Real;

Pi : constant := 3.1415926535897932;
bsign : Integer := 1;

gin
if not Positive then
Sign :=-1;
end if;
for I in DataRange loop
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if J > 1then
Temp :=Data (J),
Data (J) := Data (I);
Data (I) := Temp;
end if;
M :=Data’Length/ 2;
while M >= 1 and J > M loop
J:=)-M;
M:=M/2;
end loop;
J=J+M;
end loop;
Mmax := 1;
while Data’Length > Mmax loop
Istep := 2 * Mmax;
Theta := Pi/ Real (Sign * Mmax); .
Wp := Make (-2.0 * (Sin (0.5 * Theta)) ** 2, Sin (Theta));
W := Make (1.0, 0.0);
for M in 1 .. Mmax loop
for Iteration in 0 .. (Data’Length - M) / Istep loop
I ;= Iteration * Istep + M;
J ;=1 + Mmax;
Temp := W * Data (J);
Data (J) := Data (I) - Temp;
Data (I) := Data (I) + Temp;
end loop;
W:=W*Wp+W;
end loop;
Mmax := Istep;
end loop;

end Fourier_Generic;

Specification for Fast Fourier Routine
generic

type Real is digits <;

with function Sin (Angle : Real) return Real;

type Complex_Type is private;

type Complex_Array is array (Positive range <>) of Complex_Type;
with function Make (Left, Right : Real) return Complex_Type;

with function "*" (Left, Right : Complex_Type) reurn Complex_Type;
with function "+" (Left, Right : Complex_Type) return Complex_Type;
with function "-" (Left, Right : Complex_Type) return Complex_Type;

procedure Fourier_Generic (Data : in out Complex_Array;

Positive : in  Boolean := True);

Driver for Fast Fourier Routine

with Fourier_Generic;

with Complex_Generic;

with Math_Lib;

with Text_lo;

procedure Xfourier_Generic is -- Good Ada driver for routine Fourier_Generic

package Math is new Math_Lib (Float);
package Complex is new Complex_Generic (Float);
type Complex_Array is array (Positive range <) of Complex.Complex_Type;
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procedure Four! is new Fourier_Generic (Float,
Math.Sin,
Complex.Complex_Type,
Complex_Array,
Complex.Make,
Complex."*",
Complex."+",
Complex."-");

package Int_lo is new Text_lo.Integer_lo (Integer);

package Float_lo is new Text_lo.Float_Io (Float);

Size :constant Integer := 32;

Half_Size : constant Integer := Size / 2;

Complex_Data, Dcmp : Complex_Array (1 .. Size);

Outfile : Text_lo.File_Type;

procedure Pmtft (Data : Complex_Array) is

Length : Integer := Data'Last - Data'First + 1;
Line :Integer:=0;
Rey__Ptr : Integer;

begin

Text_lo.New_Line;
Text_lo.Set_Col (4);
Text_lo.Put ("n");
Text_lo.Set_Col (10);
Text_lo.Put ("Real H(n)");
Text_lo.Set_Col (22);
Text_lo.Put ("Imag H(n)");
Text_lo.Set_Col (38);
Text_lo.Put ("Real H(N-n)");
Text_lo.Set_Col (51);
Text_lo.Put_Line ("Imag H(N-n)");
Int_Io.Put (Line, 4);
Text_lIo.Put (" ™);
Float_lo.Put (Complex.Real_Of (Data (1)), 5, 6, 0);
Float_Io.Put (Complex.Imaginary_Of (Data (1)), 5, 6, 0);
Text_Io.Put(" ");
Float_Io.Put (Complex.Real_Of (Data (1)), 5, 6, 0);
Float_lo.Put (Complex.Imaginary_Of (Data (1)). 5, 6, 0);
Text_Jo.New_Line;
for I in Data'First + 1 .. Data'Last/2 + 1 loop
Line :=1-1;
Rev_Ptr:=Length +2-1;
Int_lo.Put (Line, 4);
Text_lo.Put (" ");
Float_Jo.Put (Complex.Real_Of (Data (I)), 5, 6, 0);
Float_Jo.Put (Complex.Imaginary_Of (Data (I)), $, 6, 0);
Text_Io.Put (" "),
Float_lo.Put (Complex.Real_Of (Data (Rev_Ptr)), 5, 6, 0);
Float_Io.Put (Complex.Imaginary_Of (Data (Rev_Ptr)), 5, 6, 0);
Text_lo.New_Line;
end loop;

end Pmtft;
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begi
Tgelxnt_lo.Cmate (Outfile, Text_lo.Out_File, "Output.Lis");
Text_lo.Set_Output (Outfile);
Text_Io.Put_Line ("h(t)=real-valued even-function");
Text_lo.Put_Line ("H(n)=H(N-n) and real?");
for I in Complex_Data'Range loop
Complex_Data (I) := Complex.Make
(1.0/ ((Float (1 - Half_Size - 1) / Float (Half_Size)) ** 2 + 1.0),
0.0);
end loop;
Fourl (Complex_Data);
Pmtft (Complex_Data);
Text_lo.Put_Line ("h(t)=imaginary-valued even-function");
Text_lo.Put_Line ("H(n)=H(N-n) and imaginary?");
for I in Complex_Data'Range loop
Compl%x__Data (D := Complex.Make
(0.0,
1.0/ ((Float (I - Half_Size - 1) / Float (Half_Size)) ** 2 + 1.0));
end loop;
Fourl (Complex_Data);
Prtft (Complex_Data);
Text_lo.Put_Line ("h(t)=real-valued odd-function”);
Text_lo.Put_Line ("H(n)=-H(N-n) and imaginary?");
for I in Complex_Data'Range loop
Complex_Data (I) := Complex.Make
((Float (I - Half_Size) - 1.0) / Float (Half_Size) /
(((gloat (I - Half_Size) - 1.0) / Float (Half_Size)) ** 2 + 1.0),
0.0);

P

Complex_Data (1) := Complex.Make (0.0, 0.0);
Fourl (Complex_Data);
Prtft (Complex_Data);
Text_Jo.Put_Line ("h(t)=imaginary-valued odd-function");
Text_lo.Put_Line ("H(n)=-H(N-n) and real?");
for I in Complex_DataRange loop

Complex_Data (I) := Complex.Make

0.0,
(Float (I - Half_Size) - 1.0) / Float (Half_Size) /
(((Float (I - Half_Size) - 1.0) / Float (Half_Size)) ** 2 + 1.0));

end loop;
Complex_Data (1) := Complex.Make (0.0, 0.0);
Fourl (Complex_Data);
Pmtft (Complex_Data);
-- transform, inverse-transform test
for I in Complex_DataRange loop

Complex_Data (I) := Complex.Make

(1.0/((0.5 * Float (I - Half_Size - 1) / Float (Half_Size)) ** 2 + 1.0),
(0.25 * Float (I - Half_Size - 1)/ Float (Half_Size)) *
Math.Exp (-(0.5 * Float (I - Half_Size - 1) / Float (Half_Size))**2));

Dcmp (1) := Complex_Data (I);
end loop;
Fourl (Complex_Data);
Fourl (Complex_Data, False);
Text_Jo.New_Line;
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Text_lo.Put (" Original Data:");
Text_lo.Set_Col (44);

Text_lo.Put_Line ("Double Fourier Transform:");

Text_lo.New_Line;

Text_lo.Put ("k Real h(k) Imag h(k)");
Text_lo.Set_Col (41);

Text_lo.Put_Line ("Real h(k) Imag h(k)");
Text_lo.New_Line;

for I in Complex_Data'First .. Complex_DataLast/ 2 loop

Int_lo.Put (1, 4);

Float_lo.Put (Complex.Real_Of (Dcmp (D), 7, 6, 0);
b a(tlz), 5, 6, 0);

Float_Jo.Put (Complex.Imaginary_Of (Dcm

Float_lo.Put (Complex.Real_Of (Complex_]

(D) / Float (Size), 10, 6, 0);

Float_lo.Put (Complex.Imaginary_Of (Complex_Data(l)) /

Float (Size), 5, 6, 0);
Text_lo.New_Line;
end loop;
Text_lo.Close (Outfile);
end Xfourier_Generic;
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