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SUMMARY

During the three project years, empirical studies of scale relationships in the retrieval of sea ice
lead statistics have been undertaken, as have modeling investigations of atmospheric influences on the
satellite signal. Additionally, we have developed statistical models that describe the scaling properties of
leads. The empirical studies have been based primarily on comparisons within and between Landsat and
AVHRR imagery, while the atmospheric models have been specific to the AVHRR. Submarine sonar data
have been used in the statistical model development.

Specific accomplishments include: atmospheric temperature and humidity profiles for the Arctic
have been constructed from Soviet ice island data and were used in the construction of three-season
"standard” atmospheres for the central Arctic, resampling methods have been tested on various types of
imagery, and nearest-neighbor resampling has been shown to be the most effective in maintaining the
spectral characteristics of leads while spatial interpolation (e.g., bilinear) retains their spatial structure;
empirical relationships between pixel size and lead width have been determined; procedures for the
retrieval of lead statistics have been developed and applied to Landsat and ERS-1 SAR data; the
relationship between "apparent” lead widths measured along a transect (e.g., from submarine sonar or as
a sampling method for satellite imagery) and the "true” lead width distribution has been formalized in a
statistical sense, so that one distribution may be obtained from the other; a statistical model has been
developed for the retrieval of lead area fraction from measurements along a line; a method to partially
adjust the total lead area fraction for field-of-view was developed and tested on AVHRR and Landsat
imagery; a combination of SAR and AVHRR was used to estimate true lead temperature and width; the
effects of atmosphere/surface conditions on the AVHRR-measured radiance in the thermal channels have
been examined in terms of the thermal contrast between leads and the surrounding ice pack and the
relationship between atmospheric optical depth and lead size has been quantified; information on Arctic
aerosol optical depths during LEADEX has been collected by two of the investigators and has been used
to assess the extent of tropospheric and stratospheric aerosols and their effect on lead detection from
satellite; satellite and irn sitt data collected during LEADEX and SIMMS 92 have been used to test the
theoretical and empirical models/methods developed during the first two project years, and shows these
models/methods to be generally valid.

Additionally, two workshops for the satellite remote sensing investigators of the Leads ARI were
hosted by this group in Boulder. One workshop report and seven referreed papers have been published,
with three others in press or submitted for publication. Two graduate students have been supported part-
time over the course of the project.




PROJECT OBJECTIVES

The goal of this project is to understand how sensor characteristics, atmospheric properties, and
surface conditions influence the detection and interpretation of sea ice leads using Advanced Very High
Resolution Radiometer (AVHRR) and other satellite data. We seek to determine the sources and
magnitudes of errors inherent in the measurements, how data from different sensors can be combined, and
how lead statistics change with the different spatial resolutions of existing and future sensors.

In partial fulfillment of these objectives, we have defined which atmospheric and surface
parameters are most critical for lead detection. Based on model simulations, we have been able to better
evaluate the importance of Arctic-specific model parameters; e.g., temperature and humidity profiles and
aerosols, for the purpose of accurately simulating sensor responses. Sensor characteristics such as spectral
response, field-of-view, spatial resolution, scan geometry and data processing methods coupled with scene
variability (solar zenith angle, ammospheric opacity, surface temperature, snow cover, ice thickness, size
with respect to sensor resolution) determine feature signatures. The effects of these parameters had to be
examined before lead signatures could be evaluated in terms of lead width and orientation, particularly
for features that occur near spatial and radiometric limits of sensor resolution.

The NOAA AVHRR satellite sensor provides daily, Arctic-wide coverage of ice conditions at
moderate resolution and low cost. These image sets contain information that is of primary concern to
research and operational interests in the Arctic. Although a variety of studies have examined various
aspects of remote sensing of sea ice, essentially no work had previously been done to relate lead signatures
observed in AVHRR data to lead characteristics. This lack of substantive verification work left key
questions unanswered and posed significant research problems relevant to current lead investigations.
Specifically, the following questions motivated our research:

Lead and Surface Characteristics: How does lead detection depend on ice thickness for given sets
of sensor properties, surface temperatures, and atmospheric conditions? Since the temperature
contrast between open water and ice provides a means to map leads using thermal imagery, to
what degree does this contrast affect the apparent width of a lead as observed in an image and our
ability to detect it? Does lead orientation affect lead detection when a wide-angle scanning
instrument such as AVHRR is used instead of a nadir-viewing sensor such as Landsat? How
accurately must surface temperatures be measured to yield accurate lead calculations?

Atmospheric, Boundary Layer, and Solar Zenith Angle Effects: How do these factors combine
with surface conditions and path length to the sensor to determine the thresholds of lead detection?
What feedbacks to the atmosphere do leads create, and how will these affect detection; e.g., ice
crystal plumes from open leads that extend up to - and in some cases through - the top of the
inversion layer? What are the characteristics of "typical" polar atmospheres (i.e., water vapor
content, temperature profiles, cloud microphysical characteristics), how are they treated in radiative
transfer models, and how do these factors affect remote sensing?

General Sensor Considerations: In what ways might sensor scan-angle, sensor calibration, data
gridding, and image enhancements influence the ability to detect leads? Are lead statistics derived
from image centers where spatial resolution is greatest comparable to those derived from image
limbs where resolution is poorest?

While we do not claim to be able to answer all of these questions completely, the results of the past three
years’ research have given us at icast partial answers to each.
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To accomplish our objectives, our approach included both modeling and empirical studies (Figure
I.1). The radiative transfer modeling is done for the purpose of simulating the satellite sensor response
under a variety of atmospheric and surface conditions. The empirical studies include: a comparison of
lead statistics determined in imagery of varying scales; e.g., AVHRR, Landsat, SAR, and OLS data; effects
of different resampling methods and digital image enhancements on lead detection in AVHRR and Landsat
data; use of distributions derived from the low resolution imagery to estimate characteristics of the
distributions obtained in the high resolution images; and the relationship between lead width and spacing
statistics measured along a transect to the true distributions.

Resuits from this woik will be important to the development and application of lead detection and
mapping algorithms proposed elsewhere within the Leads ARI. For exampie, the ability to more
accurately access lead width and spacing distributions from medium resolution imagery is crucial to the
evaluation of large-scale heat flux estimates. The modeling and empirical approaches to quantifying the
relationships of scale discussed here are a necessary first step to operational lead analysis from satellite
data.

Satellite data used in this study includes Landsat visible, AVHRR visible and thermal, ERS-1
SAR, and OLS visible and thermal. Additionally, lead statistics have been derived from submarine sonar
data. Radiosonde temperature and humidity profiles from arctic ice islands are employed for radiative
transfer studies. Each data type is described in more detail in the appropriate sections.

This report is divided into four parts. The first details those studies that directly relate to
retrieving lead statistics from satellite imagery: image preprocessing, sensor field-of-view, and sampling
methods. The second part describes radiative transfer studies of how the atmosphere affects the satellite
signal and how this in turn might affect lead statistics derived from the imagery. Part III details the use
of data collected during LEADEX and other field experiments. Part IV summarizes the accomplishments
to date.
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Fig. L1. Overview of the modeling and empirical approaches to the study of lead mapping and relationships of scale
in satellite data. The radiative transfer model on the left is used for sensitivity studies and to generate simulated
imagery. This imagery as well as Landsat data are degraded to coarser resolutions. The simulated multi-resolution
data sets, along with actual data from different satellite sensors. are used to study the effects of measurement scales
on derived lead statistics.




PART I: IMAGE-RELATED STUDIES

The empirical portion of this study involves the comparison of AVHRR, Landsat, and - to a
limited extent - KRMS data. These sensors provide a broad range of spectral and spatial resolutions. In
this section, the potential effect of image preprocessing methods on lead statistics is examined.

I.1 IMAGE PREPROCESSING AND ITS EFFECT ON LEAD STATISTICS

Figures 1.2 and 1.3 show the effect on lead detection in AVHRR imagery of different resampling
methods and different digital number thresholds for "lead / no lead” mapping. The plots in Figure 1.2 of
digital numbers along transects in AVHRR data processed using different resampling schemes show some
relatively small shifts in digital number (DN) within leads and adjacent to leads, which would yield a
change in estimated lead-covered area (such as at transect location 292-293 in Figure 1.2a). For small
leads, the potential exists to perhaps mask the lead completely (as at transect location 279 in Figure L.2a).
Figure 1.3a shows results using a threshold that detects small and large leads. The threshold used for
Figure 1.3b detects only the larger leads. The effect of the "smoothing" interpolations (bilinear and cubic
convolution) is to eliminate about 0% of the smallest leads using this threshold detection scheme. Figure
1.4 summarizes the effect of threshold and resampling scheme on total lead-covered area (in this case, the
percent of an AVHRR image covered by leads). The effect of using different resampling schemes is small
compared to the effect of choosing different thresholds. Thus, while Figure 1.3 suggests a substantial
reduction in small leads when interpolations are used vs. nearest neighbor, the effect of the loss of these
small leads on total lead area is relatively small. However, it is also worth noting that, since the turbulent
fluxes from a given lead-covered area may increase as the proportion of lead-covered area in narrow leads
(as opposed to wide leads) increases, any systematic shift by the processing scheme toward a reduction
in small leads may need to be considered when calculating regional estimatcs of surface fluxes.

To further examine the effects of different interpolation schemes, "synthetic" images containing
a simulated lead or lead complex with different shapes and dimensions (e.g., the patterns shown in Figure
1.5) are used. Four lead types were created (e.g., "Type 1", etc. in Figure 1.5): Type 1 represents narrow
open-water leads; Type 2 wider open-water leads; Type 3 leads with new and young ice growing from
the edges of the leads; and Type 4 representing leads with new ice building up along one side of the leads.
These images were then resampled using bilinear interpolation and nearest-neighbor methods. Resampling
was applied to a 45° rotation of the original images. Table L.1 lists the change in lead-covered area
resulting from the resampling and determined using two different thresholds. A DN of 10 (a typical
reflectance for open water) was chosen to represent open water and a DN of 85 was used for ice-covered
pixels. The effects are clearly dependent on the threshold chosen to define the cut-off between whether
to consider a pixel as part of a lead or not. Both the bilinear and nearest neighbor interpolations cause
large reductions in the area assumed to be open water. When 4 threshold is chosen at a higher reflectance,
such as would be appropriate to detect all pixels with some open water or thin ice in them, then the
percentage of pixels with some lead-covered area increases substantially when bilinear interpolation is
used.

In addition to affecting the calculation of lead-covered area, the different resampling schemes
affect the appearance of leads in an image, and thus the ability of an interpreter or automated pattern-
recognition scheme to detect the leads. In particular, nearest neighbor resampling tends to break up the
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linearity of leads. Figure 1.6 shows a lead complex in Landsat imagery resampled using nearest neighbor
(Figure 1.6a), with an attempt at reconstituting the linearity using a median filter (Figure 1.6b). As with
most enhancements, the improvement is subjective, but the lead patterns appear more well defined in the
median-filtered image.

Additional insight into the effects of spatial resolution and sensor properties can be gained by
comparing colocated imagery from different sensors. Figure 1.7 shows registered Landsat Multi-spectral
Scanner (MSS) imagery (top) and AVHRR data (bottom) for a portion of the Beaufort Sea. While the
same general lead structure is apparent in both images, the ability to detect the smaller leads is
considerably reduced in the AVHRR image (maximum spatial resolution of 1.1 km) vs. the 80 m Landsat
image. This effect of spatial resolution on lead detection, as well as the effect of different spectral
information on lead mapping, is also illustrated in Figure 1.8, which shows a subsection of the Landsat
and AVHRR images, as well as a KRMS strip superimposed on the Landsat data. This comparison of
how leads are represented in visible-band wavelengths (the Landsat), thermal (AVHRR), and passive
microwave (KRMS), points out the problems of intercomparing lead statistics derived from different
sensors. In this example, threshold detection of lead-cove.ed area in the three data types yields 1.1% lead-
covered area in the Landsat, 12.8% in the AVHRR (which includes apparent low cloud with substantially
warmer temperatures than the ice surface), and 5.4% lead-covered area in the KRMS image.

These different representations are perhaps tetter represented by comparing transects through the
imagery. Figure 1.9 shows such a transect. The lead located at transect location 32 is marked with an
arrow on the Landsat image in Figure 1.8. The transect runs vertically through the imagery. In this
example, a contrast stretch was applied to the AVHRR data to enhance the subtle DN differences ii. the
image. From these comparisons and a similar comparison of transects in AVHRR (unenhanceu’) and
Landsat (Figure 1.7), it is fairly clear that the AVHRR and Landsat reveal similar lead pitterns, bt ¢ that
the number of leads detected, and the image area that is considered to be partially lead-covered, is quite
sensitive to the DN threshold chosen to define lead area. In Figure 1.9, for example, the large lead at
location 32 could be defined as having a lead width from 800 m to about 1500 m in the Landsat data
depending on the DN threshold used, and from 300 m to 1800 m in the AVHRR, again depending on
which DN is selected. The lead information contained in the KRMS data clearly is quite different from
that shown in the other image types.
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Table 1.1. Effect of resampling method (bilincar interpolation = BL, nearest neighbor = NN) and digital

number (DN) threshold on estimation of percent lead-covered area.

Fractional Area Lead Coverage (%)
(by Resampling Method)

Lead Type Threshold None Bilinear NN
1 < 84 0.65 1.23 0.82
2 < 84 1.83 2.61 1.77
3 < 84 1.83 2.59 1.77
4 < 84 1.83 2.60 1.77
1 <10 0.65 0.01 0.00
2 <10 1.83 .19 0.00
3 <10 1.83 0.00 0.00
4 <10 1.83 0.64 0.00
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Fig. 1.6. Effect of NN resampling on lead appearance in Landsat imagery (A), and reconstruction of lead appearance
through the application of a spatial filter (B).
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Fig. 1.7. Colocated Landsat and AVHRR imagery for the Beaufort Sea. showing the representation of the same lead
complex in the different image types.
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in the Landsat image marks the location of the lead and transect presented in Figure 1.9,
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1.2 THEORETICAL ANALYSIS OF THE EFFECT OF SENSOR RESOLUTION
ON OBSERVED FRACTIONAL AREA COVERAGE

An analytical description of the relationship between the satellite-derived fractional area coverage
of a geophysical field and sensor resolution is needed in order to assess the potential error in many
satellite-derived products and to understand in a more quantitative manner the benefits of different sensor
systems. While there have been studies of the effect of sensor resolution on parameter retrieval, the
approaches have been empirical and specific to a single geophysical variable. In the analysis of land cover
classes, for example, the variance within satellite images has been examined as a function of measurement
scale for the purpose of determining the optimal resolution for change monitoring (e.g., Woodcock and
Strahler, 1987, Townshend and Justice, 1988). In studies of cloud fraction, real and synthetic data
containing cloud fields were degraded in resolution, and the fractional coverage was observed as a function
of scale (e.g., Wielicki and Parker, 1992; Wielicki and Welch, 1986; Shenk and Salomonson, 1972).

Even though these studies are useful, no concise statement of the relationship between fractional
coverage and sensor resolution has been given, so that the results are difficult to generalize to other
geophysical fields. A complete analytical description of the problem is difficult at best, involving
geometrical (viewing geometry), spectral (band location and width), radiometric (signal-to-noise ratio,
quantization levels), and spatial (sensor resolution or pixel size) properties. In this section a first attempt
at an analytical approach to the problem is described. We are concerned only with the fraction of the
image area covered by some geophysical parameter; e.g., open water fraction. We iake an approach
similar to that of Shenk and Solomonson (1972) where cloud fields were simulated and the relationship
between pixel size, cloud size, estimated area fraction and true area fraction were expressed for different
thresholding operations. That work is extended, however, by generalizing the problem to any geophysical
variable whose spatial structure can be described by its autocovariance function. Additionally, a specific
probability density function is used as a model of the subpixel area fraction so that the results do not
depend upon a given simulation. In this manner the results are applicable to a wide variety of geophysical
fields including clouds, sea ice fractures ("leads"), and land cover classes. In the next section the
analytical approach is described. The models are then applied to simulated fields of clouds and sea ice
leads in a satellite image context.

1.2.1 ANALYTICAL APPROACH

Our goal is to determine the proportion of pixels in an image that have the characteristic of
interest; e.g., the fraction that are cloudy or that are sea ice leads, etc., given some thresholding operation.
This depends on the distribution of the subpixel area fraction, which is specified by its shape, mean and
variance. The variance depends on the pixel size and the spatial structure of the geophysical parameter,
described by its autocovariance function. The formalization that follows can be applied to virtually any
geophysical parameter whose spatial distribution can be described in this manner.

Let g(x) be a measurable property (e.g., temperature or reflectance) at a point whose position is
represented by the location vector x, and define U to be any condition on g. For example, { might be the
condition g(x) < T,-8, where T, is the surface temperature and d is some threshold amount. The indicator
function /(x) in a square region R is equal to 1 if g(x) satisfies { and O otherwise. The fractional coverage
for which g satifies { is given by
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P=A7 fn Ix) o (1)

where A, is the side length of R and is a normalizing factor. For the rest of the discussion R is a satellite
image. The probability density function (pdf) of /'is f(1) =P and f(0) =1 - P.

Now let g(y) be a measurable property of a pixel Z within R centered at location y (again, a
vector). As measured by the sensor, g, would be an average over a pixel:

a0) = AF [ atx) o

where A; is the side length of the pixel. An argument could be made for using the sensor point spread
(transfer) function, but for simplicity a rectangular spatial response is assumed. The fractional area of R
for which g, satisfies U is an estimate of the true fractional coverage and is

P =N EH: I,(y) )

where N is the number of pixels in R and [, is the indicator function for the pixel based on g,, defined
in the same way as is I (for a point) based on g. Our goal is to relate P’ to P over a range of A,.

To determine P’ analytically the probability density of /, must be known. It is not trivial, and
depends on P, T, pixel size, and the way in which objects satisfying { are distributed in space. Since I,
is a function of g,, which in turn depends on the fractional coverage within a pixel p,, then (under certain
conditions) I, can be expressed in terms of p,. For example, consider a cloud pattern where the cloud top
temperature 7, is everywhere the same and is less than the surface temperture 7,. Let { be a thresholding
operation such that

L1 e < T
z 0 otherwise

where d is some threshold amount. This is equivalent to

[ = 1 if pzz.p (3)
z 0 otherwise

The expression p, 2 p states that the fractional coverage within the pixel is greater than some quantity p,
which in this example has a value such that

(1_p)Ts + pTc < Ta—6
In reality there may be a distribution of T, although we do not address this issue here. So, based on (3).
the probability density of /, is

f,(1) = Prob(P, > p)
(0) = Prob(P, < p) = 1-1,(1)
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where P, represents the random variable subpixel fractional coverage (with specific realization p,), and
Prob(P, 2 p) represents the probability that the fractional coverage within the pixel is greater than some
quantity p. Now, how is Prob(P; 2 p) determined?

For a single pixel the fractional coverage of the geophysical parameter is

pAY) = A2 [0 o

which can be used as an estimate of the true area fraction in the image P. After Stoyan et al. (1989,
pg. 184), the expected value and variance of P, are

W=EWP)=P
(@)
o? = Var(Pz) = E[PZ—E(PZ)]2
- A7 [, 109 ox - AIAZ [, Ix) o - Al
(5)

= A7 [ [, khxn) o o

where &, is the autocovariance function for the indicator function. The effect of pixel size on the
autocovariance function has been studied by Jupp et al. (1988, 1989), although the autocovariance function
in (5) does not depend on pixel size; i.e., it refers to the true underlying (point) autocovariance. The
expression (5) for the variance of the subpixel area fraction can be expanded as

o = A" [~ Kinr{Atan 8]
-8Ar/2 cos[n/4 +E()] + 2r2cos[2&(n)} dr

(6)

where

o

, 0<r<A
2
V2 -1

&0 =

cos™'[1 + (1-rA)|, A<r<Af2

sl =

as given in Rothrock and Thorndike (1984, with a correction made here). This applies to a square pixel
and an isotropic covariance function.

If a specific model distribution for P, is assumed, with expected value and variance as defined
above, then the density of the pixel indicator function is also known. Here we use the Beta distribution,
a two-parameter density function defined over the closed interval 0 € p < 1 that is often used as a model
for proportions:

The two parameters can be determined by maximum likelihood estimation based on the mean and variance
of the subpixel fractional coverage in (4) and (5) (Falls, 1974):
The shape of the distribution is related to the size of the pixel relative to the spatial structure (e.g.,
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v-1({ -p)B-1 F(Y+ﬁ) , A 0, 0<p<i
PP gy ¥P>0 0<P
0, elsewhere

f bera(p) =

B =1 H u(1-p)-o7

ue
Y= —
-H

wavelength) of the geophysical parameter. In the limiting case with very large pixels relative to the
wavelength of cloud elements, for example, most pixels would have a similar subpixel cloud fraction and
the variance would be very small. The distribution would therefore have a single peak. On the other
hand, if the pixel size is very small then the likelihood of pixels being either completely overcast or
completely clear increases, the variance of the subpixel area fraction increases, and two peaks are
expected. This is illustrated in Figure I.10 where the beta distribution is shown for a mean area fraction
of 0.2 and variances of 0.1, 0.05, and 0.01.

The beta distribution has often been used to describe cloud amount frequency distributions (e.g.,
Falls, 1974, Henderson-Sellers and McGuffie, 1991; Jones, 1992). More recently a similar distribution,
the Burger distribution, has also been used (e.g., Henderson-Sellers and McGuffie, 1991). The Burger
distribution is described by the mean cloud amount and a correlation distance defined as the separation
distance between pixels at which the autocorrelation drops below 0.99. Correlation distance was also used
by Gringorten (1979), who developed models through simulations describing the probability of a
meteorological condition occupying some fraction of a line or area.

Jones (1992) presents a shape parameter that can be used to describe the beta distribution. It is
defined as

= ...._G___
(w(1 -w)I*

$>0.6 implies a U-shaped distribution, S=0.6 implies a flat distribution, and $<0.6 implies a distribution
with a central peak. Values of the shape parameter are also shown in Figure 1.10. In the examples that
follow, and in most satellite remote sensing applications where pixel sizes are 1 km or less, S>0.6.

Now we return to the estimate of the total area fraction in an image, P’, which is the proportion
of pixels in the image for which the indicator function takes on a value of 1, as defined in (2). Given the
distribution of subpixel area fraction described here by the beta pdf, P’ is simply Prob(P, 2 p) or the
probability that the subpixel area fraction is greater than some threshold value p. This is the area under
the curve to the 1ight of any given value along the horizontal axis in Figure 1.10.

Figure 1.11 shows the estimated total area fraction for four true area fractions as a function of the
subpixel area fraction variance (along the abscissa) and the threshold value. The variance and the true area
fraction together define the distribution of subpixel area fraction so that a wide range of spatial structures
and pixel sizes is represented in the three plots, independent of any particular geophysical field. For a
given autocovariance function, pixel size decreases toward the right in the plots. Note that there is an
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upper limit on the variance, defined by the point at which the two parameters of the beta distribution are

equal to or less than 0. This point is p-p’. In theory, decreasing the pixel size fraction. Results for three
subpixel area fraction thresholds are shown.

Beta L)lstnbutlons of bubplxel Area Coverage

—r— ™ T —T T

6 H:
5 Mean=0.2

5 —— Var=0.01, $=0.25
L e Var=0.05, S=0.56
3 — — . Var=0.10, $=0.79

Probability Density
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Subpixel Area Fraction

Fig. L.10. Three realizations of the Beta probability density function for a mean subpixel fractional coverage of 0.2
and three different variances. The shape parameter S is also given.
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1.2.2. APPLICATION

Now we apply these models to simulated satellite data. Since these models require some a priori
knowledge of the field’s spatial structure, they cannot be used to assess the error in the total area fraction
estimate from a single image alone. Instead, this section illustrates how the error can be assessed for
typical realizations of two very different geophysical variables: clouds and sea ice leads.

A cloud field is simulated as a distribution of disks whose center locations follow a binomial point
process and whose diameters are approximately normally distributed (in a true Gaussian distribution,
negative diameters would be possible). One realization is shown in Figure 1.12, where the mean diameter
is 2000 m. Sea ice leads are modeled as a Poisson line process. The mean spacing between the lines
(leads) is 3000 m and their orientations are random. The lines are assigned thicknesses (widths) following
the negative exponential density function:

1
fw) = —_e™*
MW = -

where w is lead width and A is the mean width. For the simulations A=200 m. One realization is shown
in Figure 1.13.

(increasing the variance) beyond this point has no effect on the estimate of the total area fraction.

To examine the effects of pixel size on the estimated fractional area coverage, these images were
degraded by simple averaging of 2 x 2 pixel cells. Four degradations were perfomed. Initial pixel size
is 50 m; pixel size doubles with each degradation so that the largest pixel examined is 800 m.

Exponential covariance is a reasonable model for many geophysical parameters and is used here:

k(n = P(1-Pye~", r,a20 (7)

where o describes the dependence of the covariance on the separation distance r. Implicit in this
expression is that g(x) is isotropic. Using (7) in (6) gives

o = AI-PAZ [V or{Afen-85(0)

(8)
_8AN/Z cos[n/d +£(] + 2r2cos[2E(n]} dr

Note that the effects of area coverage and autocovariance (e.g., the size of objects and pixel size) separate
out:

o

P(T-P)
which is essentially Jones’s (1992) shape parameter S. This is not strictly true for the correlation functions
of the cloud and lead models employed here, but is still useful for the purposes of this paper. The

parameter a in (7) and (8) can be determined from observed autocovariances by rewriting (7) in linear
form:

f(A) '
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In[k(n] = In[P(1-P)] -ar (9)

and solving by least squares regression. For the applications below, the parameter a is determined for
three evenly spaced, parallel transects in the imagery and then averaged.

Table 1.2 illustrates the application of the beta distribution and its estimated moments to the
synthetic data in Figures 1.12 and 1.13. Listed are the pixel size relative to the smallest pixel (where the
smallest pixel is 1), a determined from the image, the "true” area fraction P determined from the highest
resolution image in which each pixel is either empty or completely full, the observed variance of the
subpixel fractional coverage P, and the variance of P, estimated by solving (8) numerically. The
difference in the o values for the two different fields reflects their spatial structures where the
(auto)covariance of the synthetic leads falls off more rapidly than that of the clouds. The true area
fraction and the observed and estimated variances in Table 1.2 for the cloud case were used to generate
beta pdfs for comparison with the observed distribution of subpixel area fraction. The results are shown
in Figure 1.14 as the complement of the cummulative probability distribution function. End effects are
due to binning proceduscs. Shown this way it is straightforward to determine the total fractional area
coverage estimate P’ of the image for any threshold. For example, in the top plot of Figure I.14, any
threshold greater than 0.1 (in theory, any value greater than 0) would yield the same cloud area fraction:
0.25. With a larger pixel size, however, this is not the case (Figure I.14, bottom). A threshotd of 0.2
produces a total area fraction of 0.33 while a threshold of 0.6 yields a total fraction of about 0.2.

Table 1.2. Relative pixel size, the covariance parameter, true total area fraction, and the observed and
estimated variances of the subpixel area fraction.

Observed Estimated
Image A a P Var(P,) Var(P,)'
Clouds I 005 0246 0.185 0.178
16 0.133 0.124
Leads { 0.15 0033 0.032 0.029
16 0.010 0.011

! Estimated using (8).
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Fig.1.14. Complement of the cummulative probability function of subpixel area fraction for the cloud field in Figure
1.12, using two different relative pixel sizes. Shown are the observed and estimated distributions, where the
estimated functions are based on the true total area fraction and the observed and estimated variances in subpixel
area fraction (Table 1.2).
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1.2.3 DISCUSSION

Except in the case of a uniform target and background, as with a single cloud deck over open
water, it will generally not be possible to determine the subpixel area fraction and hence to apply the
models presented here. For example, suppose thermal data are being examined for the purpose of
estimating cloud fraction. Even if the background (land or ocean) temperature is known, a small deviation
from that temperature in a pixel could be caused by a small amount of very cold cloud or a large amount
of cloud only slightly colder than the background, or numerous other combinations of cloud amount, cloud
optical thickness, and cloud top temperature. The problem is that a single threshold in terms of subpixel
area fraction P, can translate into a range of temperature thresholds and vice versa. In theory there is a
single P, threshold that would yield the same P’ over a wide range of pixel sizes. This can be seen most
readily in Figures 1.10 and I.14. At the smallest pixel size the distribution of p, is bimodal so that a range
of tiaresholds would yield the same, correct P’; i.e.,, P’ = P. At a large pixel size there may be only one
correct threshold, but it is within the range found for the small pixel case. When dealing with DNs
(temperatures, reflectances, etc.), however, this may not be the case. Further research is needed
concerning the effect of "regularization”, or the averaging over the point spread function of sensors. The
work of Jupp et al. (1988, 1989) is important in this regard.

Given the pixel unmixing problem when the spectral structure of the field is complex, one way
(perhaps the only way at present) to relate the DN threshold to the subpixel area fraction threshold is to
choose a DN threshold very close to the background value. This is analogous to choosing a small
subpixel area fraction threshold, as in the top plot of Figure I.11. If the pixel size is small enough relative
to the spatial structure of the field, then P’ will be a good estimate of P. If the pixel is not small, then
all that can be said is that P’ 2 P see Figure L.11, top). How small is small?

To more easily address this and similar questions, Figure I.15 was constructed as an aid in the
interpretation of (8). The figure shows the normalized variance as a function of relative pixel size 4 and
the slope of the exponential covariance function a. The normalization was done by computing (8) without
the P(1-P) term so as to remove the dependence on P. Therefore, to use this figure the reported values
must be multiplied by this term to retrieve the actual variance of the subpixel area fraction distribution.
The two important relationships in (8) that are illustrated in Figure I.15 are that an increase in the pixel
size or an increase in the rate at which the covariance drops off with distance both result in a decreasing
variance. Not shown in Figure 1.15 but implicit in (8) is the relationship between P and the variance: the
variance of P, is maximum when P=0.5 for a constant A and a.

Now if we interpret the previous condition that a DN threshold close in value to that of the
background translates into a subpixel area fraction threshold of approximately 0.2 (for the purpose of
illustration), then Figures .11 and I.15 can be used together to answer "what if" questions. For example,
suppose that the geophysical field had an exponential autocovariance with a=0.4 and the true area fraction
is 0.2. What would be the estimated total area fraction P’ with a relative pixel size of 2? The variance
based on Figure 1.15 would then be approximately 0.11 and from Figure I.11 the estimated area fraction
would be about 0.28 with a threshold of 0.2, 0.19 with a threshold of 0.5, and 0.12 with a threshold of
0.8. With a relative pixel size of 6 the variance is 0.056 and the area fraction estimates are 0.36, 0.13,
and 0.02, respectively.

In theory a beta distribution that is consistent with the observed autocovariance function can be
chosen. The regression method of estimating the rate of decay of the autocovariance described by (9) also
provides an estimate of P. From these two parameters the variance in (8) is then determined, thereby
defining the beta distribution. However, the autocovariance is affected by pixel size, as described in Jupp
et al. (1988, 1989). Therefore, the autocovariance determin~d by (9) must be translated into the "true"
(point) autocovariance before the correct beta distribution can be determined.
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Fig. 1.15. The variance of the distribution of subpixel area fraction computed from (8), normalized by P(1-P), as
a function of relative pixel size and the slope of the exponential covariance function a. To determine the actual
variance, the contour value must be multiplied by P(1-P).
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1.3 EMPIRICAL ANALYSIS OF THE EFFECT OF SENSOR RESOLUTION
ON LEAD WIDTH DISTRIBUTIONS

The goal of this section is to begin to define the sources and magnitudes of errors in
retrieved lead statistics as a function of the spatial resolutions of existing and future sensors, and to assess
the importance of these errors in a physical context. Here we compare lead statistics retrieved from
satellite imagery of varying spatial resolution, and we examine whether lead statistics derived from
"medium"” resolution imagery (e.g., a field-of-view of 500 - 1000 m) can be used to estimate
characteristics of lead distributions that would be obtained from higher-resolution images with a field-of-
view of about 80 m. The effects of atmospheric effects on the retrieval of lead geometries is examined
in Section Il and in Stone and Key (1993).

1.3.1 METHODS AND DATA

One way to investigate the effects of sensor field-of-view on retrieved lead statistics is to examine
data from existing sensors of various spatial resoiutions, an example of which is shown in Figure 1.8.
While the same general lead structure is appasent in the images, the smaller leads are obviously harder
to detect in the AVHRR image thar toth the Landsat image and the KRMS data. In addition to the
differences in spatial resolution, each sensor is sampling different spectral characteristics. For example,
relatively thin ice forming within leads exhibits a low albedo and relatively high physical temperature, but
the microwave brightness temperature differs dramatically from that of open water. In this example, the
problems inherent in comparing lead statistics using imagery of different spatial resolutions and spectral
characteristics is apparent: application of thresholds to the three data types yields 1.1% lead-covered area
in the Landsat image, 12.8% in the AVHRR (which includes apparent low cloud with substantially warmer
temperatures than the ice surface), and 5.4% lead-covered area in the KRMS image. Depending on which
image type is used, these lead-fraction estimates would yield roughly an order of magnitude difference
in the estimate of turbulent heat transported into the atmosphere from the warmer ocean.

While there are advantages to comparing lead statistics derived from different types of imagery,
such a study is complicated by different acquisition times, spectral bands of the various sensors, and
geolocation problems. To alleviate these sources of uncertainty, we choose to work with images of a
single data type that are successively degraded in resolution by modeling the transfer function between
the initial data and the desired resolution and then sub-sampling. A spatial filter that estimates the point
spread function of the Landsat sensor is applied following the methodology presented in Justice et al.
(1989). At each degradation cycle, Gaussian random noise is added back into the image to reduce the
smoothing effects of the filtering operation.

We start with Landsat MSS band 4 (0.5-0.6 pm) scenes of the Beaufort Sea, March 1988, with
an initial FOV of 80 m (Figure 1.16). The fourth-order trend surface is removed from the original grey
scale image (Eppler and Full, 1992) in order to correct for brightness variations caused by typically low
sun angles in the Arctic. Images with FOVs of 160, 320, 640, and 1280 m are then created using the
spatial filter. Each degradation is segmented using a threshold based on the Sobel operator edge detector.
This procedure determines the discrete spatial gradient at each pixel in both dimensions. When its
histogram is compared with that of the original image, the point of intersection determines an adequate
cut-off between a lead and the ice. We note that the lead/not-lead decision is somewhat subjective; linear
features from older, refrozen leads, for example, may or may not be included as leads. To differentiate
between leads and other low-albedo features such as shadows and isolated open-water areas, valid lead
fragments are identified using tests based on width and orientation.
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Linearity is determined through correlation/regression analysis of pixels within the candidate
features. Lead widths are measured perpendicular to the regression line, at 1 km intervals, and the slope
of the regression line is the measure of the feature orientation.

Fig. 1.16. Landsat MSS band 4 scene of the ice pack north of Alaska in March 1988. Area covered in the images
is approximately (80 km)’. The degraded images have pixel sizes of 80 m (upper left). 160 m (upper right), 320
m (lower left), and 640 m (lower right).
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In addition to the series of degraded-resolution Landsat images, "synthetic” images are generated
as an additional tool to study the effects of spatial resolution on observed lead characteristics. These
synthetic images represent lead networks as recorded in a thermal channel; e.g., leads and the surrounding
ice are assigned different physical temperatures. The reason for using simulated leads is that their
geometrical characteristics are completely known. Lead networks are simulated as a Poisson line process,
where the mean spacing of lines (leads) is 2500 m and the orientations are random. The lines are assigned
thicknesses (widths) following the negative exponential density function with mean width A. For the
sirmlaticns, A = 200 m based on lead observations derived from submarine sonar data (e.g., Key and
Peckham, 1992). For this stage of the study, leads can consist of either open water or thin ice within the
surrounding matrix of thick ice. Three ice thicknesses are used: 0 (open water), 5, and 15 cm; the
surrounding thick ice has a thickness of 2 m. Corresponding temperatures are 271, 256, 248, and 235 K.
In the simulation, ice thicknesses within leads are assigned probabilities consistent with ice thickness
distributions reported by Maykut (1982). One realization of the Poisson line process is shown in Figure
I.17. The initial pixel size is 137.5 m, assigned so that the pixel size after the third degradation is 1.1 km,
the nominal FOV of the AVHRR sensor at nadir.

1.3.2 OBSERVED CHANGES IN LEAD GEOMETRIES WITH FIELD-OF-VIEW

The distribution of lead widths corresponding to the images in Figure I.16 (degraded-resolution
Landsat imagery) is shown in Figure 1.18. The disappearance of small leads due to reduction in contrast
and the apparent increase in the relative frequency of large leads as pixel size increases can readily be
seen. In this particular Landsat sample, we find that leads narrower than approximately 250 m disappear
as the resolution of the Landsat image is degraded to 320 and 640 m. However, the criteria for how a
given lead will "grow” in width or disappear during image degradation depends on contrast in reflectance
of the lead compared to that of the surrounding ice. For example, a narrow, open-water lead might
increase in apparent width while decreasing in contrast as pixel size increases during the first degradation.
However, in the subsequent degradation, the lead may “disappear” as the averaging of the sub-resolution
lead and the surrounding ice raises the pixel reflectance above a given threshold. A narrow refrozen lead,
in comparison, might disappear during the first degradation since the brightness contrast between the thin
ice in the lead (rather than open water in the previous case) and the surrounding ice is initially smaller.

Orientations of leads can also be expected to change if the orientations are anisotropic (i.e., have
a preferred orientation). An illustration of this is shown in Figure I.19 for the Landsat image in Figure
I1.16. Results from other Landsat scenes show similar patterns and are therefore not shown. Lead widths
and orientations from the simula..d lead networks (e.g., Figure 1.17) exhibit similar dependencies on pixel
size although orientations do not change substantially as with the real data since the basic pattern is
isotropic.

Figure 1.20 shows the change in mean lead width as a function of field-of-view for six Landsat
images. We find that while the manner in which widths of individual leads changes is highly variable,
the mean lead width, averaged over the entire image, seems to change in a more predictable way. This
is a potentially important property since "true” mean lead widths might then be predicted based on
measurements from a lower-resolution sensor.

The change in total lead areal coverage as a function of field-of-view is illustrated in Figure 1.21
for the six Landsat images. The change in area fraction with increasing pixel size is generally exponential.
The actual rate of change is, however, sensitive to the threshold levels used. In fact, it can be shown that
lead area fraction may either increase or decrease with increasing pixel size depending on the threshold
used. However, when the same thresholding method is used the lead fraction difference between
degradation cycles varies in a predictable way. In other words, though the definition of a "lead” in the
original image is still subjective, once defined it remains consistent throughout the range of degradations.

I
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Fig. 1.17. One realization of a lead network simulated by a Poisson line process with thick lines. Pixels sizes are

137.5 m (upper left). 275 m (upper right), 550 m (lower left), and 1100 m (lower right). Grey-scale values represent
brightness temperatures.
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Fig. 1.18. Lead width distributions for the Landsat image series in Figure 1.16. Widths are grouped in 100 m bins.




Part I: Image-related Studies 31

fixel Size: 80 m 08 Pixel Size: 160 m

o
<)
g
@
—

p.
N
T

Relative Freguency
o o ¢
N &

Relative Frequency

o
F-

g
o
o
o

1 A il

60 120 180 60 120 180
Orientation (degrees) Orientation (degrees)

Pixelr Size: 640 m

o
o

Pixel Size: 320 m

Relative Frequency
o o
H [s)]
Relative Frequency
o e o
o (2] w

o
(M)
o
)
i

©
o
o
o

(=]

1

60 120 180 60 120 180
Orientation (degrees) Orientation (degrees)

o

Fig. L19. Lead orientations for the degraded Landsat series shown in Figure 1.16. Orientation is the angle that a
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Fig. 1.20. Change in mean lead width as a function of field-of-view for six Landsat images.
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Fig. 1.21. Change in total lead fractional area as a function of field-of-view for six Landsat images.
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1.3.3 CONTRAST EFFECTS AND THRESHOLD SELECTION

The reason for the change in lead geometrical characteristics with sensor resolution is now
examined in terms of contrast. We define the normalized contrast as a ratio based on the target and
background temperatures, 7, and T

TT - TB
TB

C=

Of course, the contrast ratio nesd not be defined in terms of temperature, so that 7; and T, could also be
reflectance or digital number (ON). Letting p be the fractional area coverage of a lead in a pixel; e.g.,
width/FOV, then the total contrast which takes into account the reduction in temperature contrast as a
function of pixel size is

[PT,+(1-p)T5)- T

C. =
tot TB

pC

The change in total contrast can be seen in Figure 1.16, and is shown in more detail in Figure 1.22
where four individual leads, each with a different initial contrast, are placed in an image context. The lead
at the top of the figure has the lowest initial contrast. The images are degraded as described previously,
with noise added initially and at each degradation. The change in the total contrast of each lead from one
degradation to the next is shown in Figure 1.23.

If every pixel in the image is to be labeled as either a lead pixel or not a lead pixel, then some
thresholding operation must be used. One possible method is to choose as a threshold the background
temperature plus some multiple of its variability o, say Tz+20. This threshold can also be expressed as
a unitless contrast ratio:

y = 20

Ty
If the total contrast of a pixel is below this value, then the pixel is not a lead pixel. This threshold
contrast includes implicitly the effect of the fractional area coverage of a lead within the pixel. It can be
used to determine the minimum initial contrast, or critical contrast, necessary for a lead of a given width
in a pixel of a given size to be detectable:

c - Cm
p

where the asterisk represents a critical (cutoff) value and C’ =Y.

Figure 1.24 shows total contrast as a function of the initial contrast and the width/FOV ratio of
leads, i.e., the combinations of the later two variables that give rise to a specific total contrast. For
example, an initial contrast of 0.15 and a p (width/FOV) of 0.15 yields the same total contrast (0.02) as
an initial contrast of 0.05 and a p of 0.4. The total contrast can also be considered as the threshold
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contrast in that any point below a contour chosen as the threshold contrast represents a lead that is not
detectable. For example, given a background ice temperature of 240 K with a standard deviation of 5 K,
the threshold contrast as defined above is 0.042. If there exists a lead that is S00 m wide passing through
a 1 km pixel, (so p = 0.5) then its initial contrast must be at least 0.084 (which is its critical contrast) for
it to be detected. Given a background temperature of 240 K, this criticai contrast translates into a lead
temperature of 260.2 K.

Degradation 1

Fig. 1.22. Four single-lead images of varying initial contrast (not shown) degraded three times. Initial lead width
is one pixel. Gaussian noise is added after each degradation.
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Part I: Image-related Studies 37
1.3.4 EFFECTS OF CHANGES IN FIELD-OF-VIEW ON TURBULENT HEAT FLUX

As noted in previous sections, image characteristics affect the retrieval of lead width distributions
as well as total lead area. To quantify the effects of these image characteristics, we calculate turbulent
heat flux as a function of lead area and lead width. Changes in both the mean lead width and lead-
covered area are considered in the calculation of sensible and latent heat flux as a function of fetch
(treated here as the lead width), surface temperature, air temperature, and wind speed using the procedure
outlined by Andreas and Murphy (1986). In this approach, a bulk Richardson number defines atmospheric
stability that controls convective turbulence based on temperature and wind speed. Convective turbulence
combines with the mechanical mixing introduced by the step effect of an air mass in equilibrium with
thick sea-ice conditions travelling over the physically rough edge of a lead and the considerably warmer
open water or thin ice in the lead. The addition of mechanical turbulence introduced by the ice-lead
boundary tends to result in a higher rate of heat transfer from smaller leads compared to larger leads.
Thus, for a given areal coverage of leads in an image, a greater number of smaller leads will result in
more heat loss to the atmosphere than from a lesser number of larger leads, even though the total amount
of open water in the image remains the same. Under the conditions examined by Andreas and Murphy
(1986), this decrease in flux as lead width increases becomes negligible for lead widths greater than about
200 m.

To illustrate the effects of changes in lead statistics using different image fields-of-view, we
calculate sensible and latent heat flux using the above approach for the data presented in Figure 1.20 and
the associated changes in lead areal coverage in Figure 1.21. An open-water temperature of -1.8° C, wind
speed of 5 m s, air temperatures of -28.9° C at a reference height of 2 m, ocean salinity of 34 ppt, air
pressure of 1000 mb, and a neutral-stability drag coefficient of 1.49 x 107 are used to represent typical
mid-winter (January) conditions over the Arctic sea ice pack (Maykut, 1978; Andreas and Murphy, 1986).
Although leads are often covered by thin ice rather than open water and thus have a lower surface
temperature than open water, the assumption that the leads are not refrozen and have a surface temperature
of -1.8° C is a useful baseline for our calculations. Turbulent (sensible plus latent) heat flux from leads
is calculated using the mean lead width at each field of view and then weighted by the areal coverage ~f
leads for the six MSS images used in Figures 1.20 and 1.21 to yield an areally-averaged heat flux.
Turbulent fluxes from open-water leads under these conditions are around 300 Wm™ compared to a flux
of nearly O from surrounding ice taken to be three meters thick. Thus, lead fraction and lead width
dominate the transfer of turbulent heat through the ice pack during winter. Table 1.3 shows these areal
averages for the six MSS images. Since the effect of increasing the fields-of-view in these examples is
to decrease the apparent lead fraction, areally-averaged fluxes decrease as field-of-view increases.
However, as noted earlier, the choice of thresholds can affects both the magnitude and direction of change
in lead statistics with changing FOV. If we assume that the lead widths and lead fractions measured using
the 80 m FOV imagery are closest to reality, then the errors introduced by using lead widths and lead
fraction measured at a 640 m FOV are substantial - averaging 45% over the six images. Since the change
in turbulent heat transfer with changing lead width is greatest for smaller leads, those images with smallest
mean lead widths at the 80 m FOV (such as Images C and F) are most affected. In the images studied
here, where the mean lead width is fairly large, the effect of errors in lead fraction is about five times that
of the effect of uncertainty in lead width.
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Table 1.3. Areally averaged turbulent (sensible + latent) flux (in Wm™) for typical January conditions as
a function of field of view for six MSS images. The percent change in the flux between FOVs of 80 m
and 640 m is also shown.

Image
FOV (m) A B C D E F
80 235 191 174 507 106 15.0
160 222 177 144 470 9.7 121
320 199 161 117 416 8.2 8.9
640 16.7 140 79 337 5.6 53

% change 29 27 55 34 47 65

1.3.5 TRANSLATION BETWEEN SCALES

From the previous discussions it is obvious that lead statistics change significantly as a function
of field-of-view, and that there are important implications of these changes for large-area turbulent heat
flux estimates. Is there any possibility of estimating the true lead widths and area fractions from those
observed in lower-resolution imagery?

1.3.5.1 Width Distributions

Given that very small features will generally not be resolved, the issue then becomes one
concerning the possibility of using the distribution of lead widths measured at low resolution to estimate
the complete or "true” distribution. For example, assume that lead widths x follow a negative exponential
distribution with an unknown mean A. From a sampling point of view it is useful to treat the distribution
of widths as discrete and address the number #; of leads in bin i that have widths between x; and x;+w:

n = NWgoxn (10)

1

where w is the width of the bin and N is the unknown total number of leads in the spatial area. The idea
is that n; is measured for a few bins, and that A and N are estimated. To accomplish this, (10) is rewritten
in linear form as

l

In(n) = In(%“_’) - %x. (11)

Letting a = In(Nw/A) and b = X' and solving for a and b by the method of least squares with the observed
data, the mean of the distribution and the total number of leads can then be estimated.

Experiments with this model show it to be very sensitive to the bin width and the number of bins
in which leads actually occur in the lower-resolution imagery. This is not unexpected considering that
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the entire range of x is being estimated in the least squares model by observations in only one part of its
range. A more fundamental problem exists with this method: as shown earlier, the widths of the leads
observed in the lower-resolution data are probably not the true widths of those leads. Figure 1.25
illustrates the problem where the actual lead width distribution - which is exponential - in the simulated
leads image of Figure 1.17 is estimated using the above method and the obsctvauons from each degraded
image. Significant departures from the actual distribution are obvious.
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Fig. 1.25. Estimated actual width distributions from observed lead widths at each field-of-view or degradation
(DEGO-DEG3) of the simulated lead network shown in Figure 1.17. Also shown is the model distribution used to
generate the leads in the image.
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Is it possible to unmix the pixels and thereby obtain the true lead widths? Using a single spectral
band, it is not possible when ice of different thicknesses, and thus different reflectances and surface
temperatures, are present in the field-of-view. For a brief time during the summer when new ice is not
forming in the leads, the percentage of open water within the FOV can be calculated with a single spectral
band since all leads can be assumed to contain only open water and therefore essentially the same
reflectance or temperature. During the winter when no visible-band data are available, no unmixing is
possible since leads can consist of a large range of ice thicknesses. During the spring and fall months the
problem can, in theory, be solved using one thermal and one visible-band observation and an energy
balance approach as follows. The total contrast of a lead pixel in both a thermal and a visible-band image
of the same lead are observed. The mean background (ice) temperature and albedo, 7, and o are
determined from the data. This leaves two equations with three unknowns:

T.-T

Cro!,lR =P TT 2
B

A=A

CIot,Ws =p Ta 2
B

Actually, the target (lead) temperature and albedo are physically related, although the relationship is a
complex one. An energy balance model is used to determine the target albedo for a given target
temperature (Maykut, 1982):

(1-ap)F, -l +F +¢ 07¢+F3+F9+Fc =0

where a is the albedo, ¢ is the longwave emissivity, ¢ is the Stefan-Boltzmann constant, I, is the amount
of shortwave energy that penetrates the ice and does not directly heat the surface, F, and F, are the
downwelling shortwave and longwave radiation, F, and F, are the sensible and latent heat fluxes, and F,
is the conductive heat flux. A flux toward the surface is positive. The energy balance equation is solved
for a range of possible target temperatures, T < 77 < 273.15 K, until a combination of p, Tt, and o is
found that is consistent with the observed total contrasts.

While in theory this method will work, in practice it would be difficult to accurately estimate all
the necessary parameters. It is not our purpose here to present methods of retrieving these parameters,
but instead we summarize the potential error through an example of the sensitivity of the energy balance
approach: if the target albedo a; can be estimated to within 0.05, for example, the range of p that could
satisfy the above equations is 0.455 to 0.556 for a,=0.7, a true p of 0.5 and a true o; of 0.2. Witha 1 km
FOV this translates into a range in lead widths of 445 to 556 m, where the true width is 500 m. While
the use of physical models can help the unmixing process, we do not expect that we will ever be able to
fully resolve the mixture components with existing data.

As can be seen in Figure 1.20, however, the unmixing of pixels to determine the actual lead widths
observed may not be necessary. The fact that the mean lead widths change in a predictable way with
increasing pixel size implies that the mean of the width distribution measured at one field-of-view can be
used to estimate the mean width at another field-of-view. Even though the rate of change of mean lead
width with pixel size depends on the threshold used (not shown), the relationship is approximately linear
for a given thresholding operation. This relationship can be utilized as follows. For an image at a given
field-of-view, determine the mean lead width. Degrade the image and once again determine the mean lead
width using the same thresholding operation as before. The two points define a line analogous to those
in Figure 1.20. The mean lead width at a narrower FOV can then be determined and applied in (11).

Of course the relationship is not perfectly linear, so that some error in the predicted mean lead
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width can be expected. As an cxample, we consider the two images with the smallest and greatest error
in turbulent heat flux due to FOV, as given in Table 1.3, images B and F. The relationships for these two
images are among the most nonlinear of those examined. For image B the mean lead width at a pixel size
of 320 m is 680 m; degrading that image to a 640 m pixel size would yield a mean lead width of
approximately 1080 m, also as indicated. If these two points were then used to extrapolate back to a FOV
of 80 m, the estimated lead width would be 360 m as opposed to the 231 m value actually measured in
the imagery. The difference between the turbulent flux calculated for a single lead (no area-weighting)
whose width is the mean width at 320 m FOV and that calculated at the 80 m FOV is 16 Wm* (4.1%
difference) compared to 12 Wm? (3.1%) using the mean width extrapolated to an 80 m FOV from
measurements at 320 m FOV. For image F, which showed the greatest sensitivity of turbulent fluxes to
field-of-view, the corresponding errors are 25 Wm? (6.3%) and 15 Wm? (3.8%).

1.3.5.2 Total Area

If lead area fraction in satellite imagery follows a known scaling law, then the "true" area fraction
can be estimated from the area fraction determined at any scale. Fractal geometry is type of scaling
relationship that has been used in the analysis of geophysical phenomena and deserves mention in the
context of lead area. In particular, the stream length-drainage area relationship has been described in terms
of fractals (Robert and Roy, 1990). However, in that and related studies the streams have no width and
are therefore not applicable to the lead studies presented here. In contrast, Karlinger and Troumman (1992)
have examined the "fat" fractal relationship between river channels with finite widths and drainage area.
An examination of the data presented in Figure .21 reveals that in general the fractional area coverage
of leads decreases exponentially (log-linear) with increasing pixel size, and in some cases the decrease is
even linear, so that the log-log relationship described by fractal scaling laws does not appear to apply.

As with lead widths, the rate of change of area fraction with increasing pixel size is not constant,
but rather is a function of the threshold used. In fact, the direction of change is also threshold-dependent,
so that the lead area may increase or decrease with increasing pixel size. The theoretical reasons for this
are examined in Key (1993) where the distributions of the subpixel area fraction of various geophysical
fields with known covariance structures are modeled by a Beta probability distribution, and the estimated
total area fraction in an image is determined as a function of threshold. Unfortunately, the relationship
between digital number (or temperature or reflectance) and the subpixel area fraction can be complex, so
that expressing the subpixel area fraction threshold as a DN threshold is often not possible.

Therefore, perhaps the best estimate of the true area fraction of leads in an image is obtained using
the procedure outlined earlier for mean lead width: degrading the image once, assuming an exponential
or possibly linear relationship, and extrapolating back to a smaller FOV. Of course, the same thresholding
operation must be used for both images (the Sobel operator here). As was done in the previous section,
the potential error in this method for the Landsat images can be examined using the data in Figure 1.21.
Using image B, lead fraction extrapolated to an 80 m FOV from observations at an FOV of 320 m is
0.031 versus the observed fraction at 80 m of 0.0378. Combining this error with the error in open-water
turbulent flux associated with mean lead width as calculated in the previous section, the error in using the
extrapolated lead fraction and lead width versus the statistics observed at an 80 m FOV is 5.7% of the
areally-averaged iurbulent heat flux. If the lead statistics are not adjusted for field-of-view, i.e., if the lead
statistics observed at an FOV of 320 m are used, then the error increases to 15.6%. For image F, the error
is 20% using the extrapolated statistics compared to 40.7% percent using the statistics at 320 m. In these
two cases, extrapolating the lead statistics reduces the average error in turbulent flux by about 57%. This
technique is further applied to AVHRR and Landsat TM data in Section II1.2.2.
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1.4 LINEAL METHODS OF ESTIMATING LEAD PARAMETERS:
WIDTH DISTRIBUTIONS MEASURED ALONG A TRANSECT

Perhaps the largest source of high-resolution data that is potentially useful for lead statistics is that
collected by submarine sonar over the last three decades. For ice draft information these data are
invaluable. But can they also be used for statistics of lead geomertries; i.e., lead widths and spacings?
Lead width and spacing statistics have been examined in two sonar data sets. Both are in the Canada
Basin (Figure 1.26); one in August of 1970 and one in October of 1978. Tables 1.4 and 1.5 show the
results. How realistic are these data? If leads are conceptualized as linear features of some width, then
crossing the lead at any angle other than perpendicular to its local orientation will result in an overestimate
of the actual width.
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Figure 1.26. Sonar transect locations through the central Canada Basin (August 1970) and northeastern
Canada Basin (October 1978).
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Table 1.4. Lead widths (m) and standard deviations (below) in the QUEENFISH data by region, maximum
draft (cm), minimum width (m). Also given are the maximum lead widths encountered. No statistics are
given if fewer than 20 leads were found in a region.

MAX DRAFT/ REGION
MIN WIDTH a B o D E F e H
30 /3 26.5 33.1 21.3 26.5 47.7  ———me- 18.5 23.8
2.1 2.9 2.4 2.6 7.1 2.6 3.7
20 60.5 66.1 54.8 53.5 68.3  ~--—-=  —mmmee oo
3.8 5.8 5.6 5.2 9.6
50 88.2 109.7  -—--—- 100.4  ——=mm=  mmmmem mmmmee oo
5.3 '10.8 10.4
200 —mmm=m mmmmmm mmmmm mmemm eeeen e s e
Maximum: 228 502 130 283 327 70 90
70 / 3 32.6 54.8 27.5 32.1 49.4 36.4 34.7 40.0
3.3 3.8 2.0 2.8 7.0 8.3 3.8 3.7
20 63.7 78.1 55.6 54.2 73.7 55.9 59.0 60.4
6.8 5.2 3.9 4.2 9.9 13.9 6.4 5.4
50 106.1 129.2 106.5 104.2  129.5  ----— 98.1 105.5
14.3 8.5 7.9 9.5 19.0 10.3 9.1
200 mmmm=m mmmmmm mmmmmm e men e e e
Maximum: 885 526 255 294 374 537 257 227
100 / 3 28.9 40.8 32.9 30.9 50.5 32.4 36.4 40.0
2.4 2.5 2.5 2.2 6.5 6.6 3.7 3.6
20 59.3 70.4 70.2 53.6 74.1 ————m- 57.9 62.8
5.4 4.1 5.5 3.8 9.1 5.9 5.6
50 102.4 126.6  124.5 98.6  123.0  -~—-—- 98.6  109.6
11.9 7.8 11.2 8.1 15.9 10.0 9.8
200 mmmmm- mmmmem mmmmem e een e e e
Max imum 886 533 763 299 374 539 263 269
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Table 1.4, cont. Lead widths (m) and standard deviations (below) in the
northeastern Canada Basin data by region, maximum draft (cm), minimum width
(m). Also given are the maximum lead widths encountered. No statistics are
given if fewer than 20 leads were found in a region.

MAX DRAFT/ REGION
MIN WIDTH I J K L M
30 / 3 116.9 9.6 10.2  ~--—-- 5.4
100.8 4.9 2.4 1.7
20  ~==-mm mmomms semeee mesees e
50  ----m= mmmmem —emmee emmmee oo
200 ——m-mm mmmmmm mmmmee e e
Maximum: 2181 153 83 42
70 / 3 30.8 14.4 17.6 8.7 15.9
l6.1 2.0 3.3 1.3 4.2
20 132.8 62.5 65.8  —----- ——=——-
81.4 9.3 13.7
T e e
200 --mmmm mmmmmm mmmeem e e
Maximum: 2274 234 342 72 510
100 / 3 28.17 17.9 18.8 9.4 16.5
12.1 2.1 2.7 1.1 4.5
20 104.6 61.6 68.8  -——-—- 84.7
52.9 7.4 10.8 29.9
50 - mmmmem —memem emmeen e
200 2 --=mmm mmmmmm mmmmee mmeem e
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Table 1.5. Lead spacings in the QUEENFISH data, by region, maximum draft (cm), minimum width (m).
=mean spacing (m) with standard deviation below, N=number of leads per kilometer. Also given are
the maximum spacings encountered. No statistics are given if fewer than 20 leads were found in a region.

MAX DRAFT/
MIN WIDTH

20

50

200

Maximum:

70 / 3

20

50

200

Maximum:

100 / 3

20

50

=z

w 4 wn -4 72}

Z »n Z 0o 2 u

568.2

1238.

929.9
118.9
1.06

2821.6
601.9
0.31

9321

364.1
34.6
2.56

926.6

97.9
1.02

2935.7

621.9
0.33

739.4
82.2
1.31

1897.2

307.5
0.51

513.0
41.2
1.8
1050.0
102.5
0.3

3226.

553.1
108.2
1.70

983.4
221.0
0.98

2190.9
402.5

0.45

2551.0
759.2
0.33
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Table 1.5, conr. Lead spacings in the northeastern Canada Basin data, by
region, maximum draft (cm), minimum width (m). S=mean spacing (m)
with standard deviation below, N=number of leads per kilometer. Also
given are the maximum spacings encountered. No statistics are given if
fewer than 20 leads were found in a region.

MAX DRAFT/ REGION
MIN WIDTH I J K L M
30 / 3 S: 3381.9 4567.3 2477.4  --———- 2996.1
1500.2  2495.0 913.9 1948.1
N: 0.15 0.22 0.36 0.17
20 - -
50  mmemm= mmmmem mmmmee e eeee
200 mmemmm mmeeee --
Maximum: 23429 71342 42161 37059
70 / 3 994.4  700.1 928.5 1763.9  911.1
229.6  129.7  159.7  449.3  169.6
N: 0.96 1.37 1.01 0.53 1.07
20 S: 4476.4  4587.8  4479.7  —-—=-=  ————mo
1396.3  1513.8  1513.3
N: 0.19 0.21 0.20
50  mmmmem mmmeem mmmmem e e
200 -- ————— —meee-
Maximum: 24918 13508 10022 25355 14562
100 /3 S: 739.6  585.6  635.4  858.2  709.5
130.6 73.9 89.7  197.8  110.9
N: 1.28 1.65 1.53 1.09 1.36
20 S: 2896.8  2765.0  2860.5  —-—-——- 4493.1
795.8  623.6  608.4 1214.4
N: 0.29 0.35 0.31 0.19
L I —————-
200  mmmmmm ememem mmmmem mmmmee oo
Maximum: 12353 7298 10022 25212 11154
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A methodology has been developed for estimating width distributions of linear features from
measurcments along a transect through a network of such features. A probabilistic determination of this
error is described here, providing a starting point for the application of stochastic geometry theorems in
the analysis of lead geometries. Errors in statistics derived for other lead and keel features are discussed
briefly. While the application is to sea ice leads and sonar data, the methods also apply to the general
problem of sampling linear features along a transect.

1.4.1 DEFINITIONS, NOTATION, AND AN ILLUSTRATION

In the following discussions, notation follows that used in probability theory, where F,(z) denotes
the distribution function (df) for the population random variable Z with specific instance z (i.., F,(z) =
P[Z < z]) and f,(2) is the probability density function (pdf). Additionally, E[Z] and Ve.[Z] are the
expected value and variance of Z.

The problem is to relate a distribution of lead widths taken along a line perpendicular to the local
orientation of a lead (the "actual” width) to the lead widths measured along a transect (the "apparent” lead
width), taking into account lead orientations, and lead crossing angles. As illustrated in Figure 1.27, the
following continuous random variables are defined:

X - actual lead width,

X’ - apparent lead width measured along a transect, X’ 2 X,

© - lead orientation (0 < © < m),

A - lead intersection angle (0 £ A < m)
with specific realizations x, x’, 0, and a. Additionally, let ¢ be the transect orientation (0 £ ¢ < n). The
position and orientation of a lead within the plane are uniquely specified by the length of the perpendicular
that connects the lead to the origin, and the angle that it makes with a fixed reference line. The
intersection angle A is measured between the transect and the lead, anticlockwise, and is the difference
between their orientations. Finally, define A" = |r/2 - A] to be the crossing angle (o in Figure 1.27)
measured between the transect and a perpendicular to the lead orientation (0 < A’ < 1/2). The relationship
between apparent and actual lead widths is

x =_ X (12)

cos(A)

where X < X’. Rearranging terms, a lead crossing angle can be determined from the lead widths by

A’ = cos™ [ﬁ]
X

The potential inaccuracies of measuring lead widths along a transect can be illustrated by randomly
choosing a transect orientation and location on a satellite image. Here we provide an example with a
Landsat Multispectral Scanner (MSS) band 4 (0.5-0.6 pm) scene of the Beaufort Sea, March 1988 (Figure
1.28). The pixel size is 80 m; image size is 80 x 80 km, a subset of a Landsat scene. To increase the
sample size of lead widths measured along the transect, multiple transects of the same orientation are
placed randomly on the image. It is assumed that the pattern of leads is similar beyond the image
boundaries. Processing of the Landsat data for the retrieval of lead statistics is as follows. A dynamic
threshold procedure is applied that estimates the probability density function of a mixture population
(lead/ice) for small regions within the image, and a binary image results. Valid lead fragments are
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identified, where "valid" refers to a linear feature for which a meaningful width and orientation can be
determined. Linearity is determined through correlation/regression analysis. Lead widths are measured
perpendicular to the regression line, every kilometer along the lead length, and the slope of the regression
line is a measure of the lead orientation. Further details of this procedure are given in Key et al. [1990).

Transect

Fig. 1.27. The geometrical relationships between a lead and a transect. See text for definition of angles and length
variables.
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Fig. 1.28. Landsat MSS band 4 scene of the ice pack north of Alaska in March 1988. Area covered is approximately
(80 km)>. Field-of-view is 80m.

The distribution of these actual lead widths x is shown in Figure 1.29 and orientations 6 in
Figure 1.30. The mean lead orientation is 0.67 radians (38°, approximately southeast to northwest where
the top of the image is north). For a transect orientation ¢=3.0 radians (172°, south-southwest to north-
northeast), the distribution of apparent lead widths x’ is illustrated in Figure 1.31, with crossing angles o
shown in Figure 1.32. The mean actual width is 348 m with a standard deviation of 201 m, while the
mean apparent width is 368 m with a standard deviation of 474 m. Additionally, the maximum actual lead
width in the image is 1,376 m, while the maximum width measured along the transect is 2,818 m. With
a transect orientation of 0.13 radians (7.4°) the difference between the actual and apparent mean widths
is 139 m and the maximum width is 2,670 m. From this example it is clear that significant errors can
result from sampling along a transect. The following section presents a method to assess this error.
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1.4.2 PROBABILITY MODELS

Theorems of stochastic geometry that are applicable n.ere have been developed through the study
of fibers as a stationary random process in the plane. If we use this analogy with lead networks, then after
Stoyan et al. (1987, p. 240) the df of intersection angles is

f‘“ sin (& - ¢) dF.(9)

(13)
[ 1sin @ - 0)1 oF®)

Fula) =

where F,(a) is the probability of intersection angles between 0 and a, Fg(0) is distribution function for
lead orientations, dFg(0) = fo(0) 4B, o increases in an anticlockwise sense, and in the integral
Fo(m + o) = 1 + Fg(a). The pdf f,(0) may be an assumed mathematical distribution or may be based on
an observed rose of direction.

If the leads are isotropic then the corresponding orientations have a simple uniform probability
distribution in the interval 0 < 0 < &; i.e., fo(0)=1/r for all 0. In this case the distribution of intersection
angles is independent of the transect orientation. The probability of crossing a lead that is oriented across
the transect (a0 — 7/2) is greater than for one running more parallel (a — 0 or n). The associated
intersection angles have density
f(a) = V2 sin a , O<a<n

A

which is not uniform but is symmetrical about a = n/2. The corresponding distribution function is

F(a) = J; f(w) dv =% (1 - cos a) , O<osr

which is a special case of (13) for fo(8) = 1/n. In the anisotropic (preferred orientation) case we use (13)
for the distribution of intersection angles, and the corresponding densities are determined numerically.

Two different intersection angles correspond to each crossing angle so that the distribution and
density functions for the crossing angle are

Fylo) = PIA < af
= AIZ-A| < o]
= A-o’ < (A-) < o]
= A(Z-) S A< (Z+l)]

=F, A(%*al) - F, A(‘:'_a/)

and

dF,

fla) = o

= f(Ze) + f(2-0)

which in the isotropic case yields F,(a) = sin a’ and f,(a’) = cos o’.
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An expression for the joint density function of the apparent and actual lead widths can be derived.
Suppose that the joint pdf of X and A” are known, which will be f; ,(x,a') = fy(x)f, (') if the two variables
are independent. Then if Y and Z are two new random variables that are functions of X and A’ such that

Y =Xand Z = X’ = X/cos A’, then the joint pdf of ¥ and Z can be ccmputed using a standard theorem
(Ross, 1984, p. 217):

fd12) = fiaxx) = fadxcos™ () 2 1) - X"

= 00 fileos™(Z)] = [(x)? - X7 14
X" X (14)

The first of these expressions is valid whether or not X and A’ are independent. If, however, future
research indicates that large leads are oriented differently than small leads, for example, then the joint
density function must be determined in another manner (possibly from observations). Using (14) the pdf
of apparent lead widths can be obtained:

Flx) = [T Foelxx) o
= [0 hdeos (X1 X [y - X o (15)

The df of apparent lead widths can be obtained by integrating (15) or by conditioning on the value of X,
again assuming that X and A’ are independent. The latter method yields

Fo(x) = L’ FA,[COS‘1(§)] £(x) dx (16)

which is based on the df rather than the pdf of A”. The functions can be discretized as arrays and the
integral in (16) approximated as a sum:

Fx() = A 2/: F.Gid) £4) . i £[1.N], x=ih, y=jA (17)

i=

where F,(j.f)) = F,[cos"(i/j)], N is the number of discrete observations and A is the increment between
observations. If these functions are expressed as matrices, (17) becomes

Fe. =AF, f,
fe =1 Fa' Fy

whose derivation is given in Key and Peckham (1991).

In this study the error in measured lead width is defined as X’-X (which is always positive),
although other definitions such as X/X’ would also be useful. Equation (14) allows us to compute the
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distribution of the error as follows:

Fe8) = PX-X < 8] = [*[™ fofux) o dx,  a20

For the isotropic case

X + a

F,_{8) = J;‘” £4x) Va [___‘/2’“3 } dx

All moments of X’-X can be computed from f,. .

Lead Widths in Landsat Image
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Fig. 129. Lead width distribution for the scene in Figure 1.28. Widths are measured along a perpendicular to the

local orientation of the lead, and are grouped in 100 m bins. The mean width is
348 m, the standard deviation 201 m, and maximum width 1376 m.
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Fig. 1.30. Lead orientations for the scence in Figure 1.28. The mean orientation is 0.67 (38.4°) with standard
deviation 0.87° (49.8°).

30( '—
> 2OE-
& L
> I L
e X
8 [
2 I
85 10_—
.
o:J.L...A..[.—lﬂ....gﬂ..,mi...md
0 500 1000 1500 2000 2500 3000

Width (m)

Fig. 131. Lead widths from a randomly-chosen transect across Figure 1.28. Transect orientation is 3.0° (172°) or
approximately south-southwest to north-northeast where the top of the image is north. The mean width is 368 m,
the standard deviation 474 m, and maximum width 2818 m.
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Lead Crossing Angles
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Fig. 1.32. Lead crossing angles for a transect across Figure 1.28. Transect orientation is the same as in Figure 1.31.
The mean crossing angle is 1.09" (62°) with standard deviation 0.23° (13°).

1.4.3 APPLICATION

These models are now applied. First, A lead width distribution measured from sonar data is used
to estimate the actual lead width distribution, for both isotropic and anmisotropic orientations. Lead
orientation and actual width distributions are then assumed known, and the expected error in lead width
is determined for a variety of situations.

Lead width distributions have been described by power laws (Wadhams, 1981; Steffen, 1987) as
have floe sizes (Rothrock and Thorndike, 1984). The negative exponential distribution has also been used
(Dickins et al., 1986) with mean lead width A and variance A’. The exponential model implies that there
are a finite number of small leads, and that the field is characterized by a length scale A. In fact, the lead
width distribution may be scale-free, in which case a power law would be appropriate. There is, of course,
a lower limit imposed by the resolution of the measuring instrument, and for this reason as well as for
clarity of illustrating expected values, we use the negative exponential model.

Lead orientations may be random or may have a preferred orientation. A Gaussian model is used
here for preferred orientations. It is recognized, however, that the actual shape of the distribution may
be bimodal, where large leads with one orientation are intersected by smaller leads at another. Intersection
angles of approximately 28° have been observed elsewhere (Marko and Thompson, 1977). This situation
is not obvious in Figure 1.30, although the distribution is not purely Gaussian either.

Table 1.6 lists the expected error for a variety of conditions, where error is defined by the
difference between the actual and measured lead widths. Case 1 considers the situation where the apparent
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lead width distribution is known. The apparent lead widths are based on submarine sonar data recorded
by the USS QUEENFISH in August of 1970 in the central Canada Basin (McLaren, 1989). Ice draft data
were measured by an upward-beamed fathometer with a footprint diameter of approximately 2.7 m and
a vertical accuracy of £10 cm. Sequences of continuous points with drafts <30 cm constitute leads, an
example of which is given in Figure 1.33. Given a mean apparent lead width of 60.6 m, the expected
value of the error is 65.7 m with a variance of 1466.1 m’. For cases 2-7 in Table 1.6 the actual width
density function is assumed known, and the apparent lead width distribution is estimated. For cases 2 and
3, the crossing angle distributions are shown in Figure 1.34, and the error distributions in Figure 1.35. In
the preferred orientation cases (2-5) the error means and variances are clearly dependent upon transect
orientation.

Other applications of this procedure are possible. For example, laser profilometer transects are
analogous to sonar transects, and the methods outlined above could be used for lead and ridge spacing
distributions and their associated errors. As in the illustration with Landsat data, transect sampling of
satellite imagery is a natural application. Similarly, heat flux through leads is in part a function of fetch,
and fetch is a function of the actual lead width and the crossing angle of the wind. If the wind direction
is constant as it travels across the network of leads, then the distribution of fetches can be determined from
the distribution of actual lead widths. Finally, it may be possible to estimate open water fraction over a
large area from the apparent lead width and spacing distributions measured along a transect. This research
is currently in progress, with results to be presented subsequently.

Table 1.6. Expected error in lead widths (m) under a variety of assumed distributions and mean values.

Case j;(’ fx fe ¢’ EX-X) Var(X - X"
1 ? Sonar Uniform  --- 65.7 1466.1
2 A=20m ? Gaussian® 2.36 (1359 3.7 3.1
3 A=20m ? " 0.52 (30°) 325 165.9
4 A=40m ? " 2.36 (135° 4.8 6.4
5 A=40m ? " 0.52 (30°) 36.0 345.3
6 A=20m ? Uniform - 43.2 653.1
7 =40m ? " --- 64.2 1391.2

! Width distribution model is negative exponential.
279" refers to the unknown distribution.
3 Parameters of the Gaussian model are p=n/4" (45°) and 0=0.3" (17°).
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Fig. 1.33. Submarine sonar ice draft data for a 2.5 km section within the Canada Basin north of Alaska. Leads are
defined as continuous sequences of points with drafts no greater than 0.3 m (dashed line); six leads occur in this
section.
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Fig. 1.34. The distribution functions of crossing angles F,. for cases 2 (solid) and 3 (dashed) in Table L6.
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Error Distributions
Transect Orientations: 2.38 (solid), 0.52 (dashed)
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Fig. 1.35. The distribution functions of the lead width errors, F. x-x» for cases 2 (solid) and 3 (dashed) in Table 1.6.
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1.5 LEAD FRACTIONAL AREA COVERAGE ALONG A TRANSECT

In the previous section sea ice leads were modeled as a Poisson line process and a method was
was presented for estimating the "actual” lead width distribution from a width distribution measured along
a transect (the "apparent” lead width distribution). The purpose of this section is to extend that work to
the estimation of the fractional area coverage of leads from measurements along a line. This line could
be a submarine transect under the ice or on a satellite image. Two methods from stochastic geometry are
presented although applications have not yet been performed. While the problem is illustrated with respect
to sea ice leads it should be noted that the general lineal method described here is applicable to any
geophysical parameter with known (or determinable) spatial structure.

1.5.1 GENERAL LINEAL METHOD

The general expression for the estimate of the fractional area coverage, p’, of a geophysical
parameter whose actual fractional coverage is p, regardless of the the spatial structure of that parameter
is

P o=y jul(x)dx

where /(x) is the indicator function for the underlying function g(x) at location x and the factor y, is
needed for normalization and depends on the shape of the structuring element U (e.g., it may be the length
of a line or the area of a square). The indicator function takes on a value of 1 if g(x) satisfies some
condition and 0 otherwise. For example, if a thresholding procedure is used to determine whether or not
each pixel in an image or each data point in submarine sonar data represents some phenomenon, then
I(x)=1 if the data value passes the threshold test and /(x)=0 otherwise. Again, this applies to any
structuring element U.
Following Stoyan et al. (1989) the expected value of p’, E(p"), is p and its variance is

Var(p) = E(@/-pf = u [, [ kAix-yD ko

where k, ic the autocovariance fuaction of the 1ndicator function /;
k() = E[x) (x+n] ~EAx)P

The displacement or lag r = |x-y}| is such that the covariance depends only on the distance between the
two points and not on direction. The assumptions are that the geophysical field g(x) is stationary and
isotropic.

Now we consider the case where the structuring element is a line. For measurements along an
array of N parallel lines, each of length L, the unbiased estimate of the fractional area coverage is

_ |
P (18)

where [ is the total length of NL where /(x) = 1. Extending the work of Rothrock and Thorndike (1984),
the estimation variance is
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Var(p) = N-'L~ L Lk,([x—y|)dxdy (19a)
= 2N-1L L(L-r) k) dr (19b)

where € is the set containing the N lines and r = |x-y|, the distance between two locations x and y on
the line.
Exponential covariance is a reasonable model for many geophysical parameters and is used here:

k(n = p(1-p)e (r,a20) (20)

where o describes the dependence of the covariance on the distance r. The parameter a can be
determined from observed autocovariances by rewriting (20) in linear form as

In{k(A] = In[p(1-p)] -ar (21)

and estimating o from the data through a least squares regression.
In the case of exponential covariance the estimation variance in (19) is

2p(1-p)(1 + "ZL" ) (22a)

Var(p)

aNL

2p(1-p)(1 —&)
oNL

]

(22b)

1.5.2 APPLICATION

One real and two simulated images are used in the application of the above methods. The real
image is a Landsat MSS band 4 (0.5-0.6pm) scene of the Beaufort Sea, March 1988. The binary image
produced by applying a threshold to the original grey-scale image is shown in Figure 1.36a. The pixel
size is 80 m; image size is 24 x 24 km, a subset of a full Landsat scene. Next, a network of leads is
simulated as a Poisson line process. The mean spacing between lines (leads) is 3000 m and their
orientations are random. The lines are assigned thicknesses (widths) following the negative exponential
density function:

1_.
fw) = —e™*
W) = =

where w is lead width and A is the mean width. For the simulation A = 200 m. One realization of the
Poisson line process is shown in Figure 1.36b, again as a binary image, where the pixel size is 137.5 m.
Lastly, a cloud field is simulated as an ensemble of disks whose diameters are appioximately normally-
distributed (in a true Gaussian distribution negative diameters would be possible) and whose center




Part I: Image-related Studies 60

locations follow a binomial point process. This model is appropriate for cumuliform clouds but is
obviously not applicable to stratiform cloud decks. One realization is shown in Figure 1.36¢.

As stated earlier, the expected value of p’ is p; i.e., the mean of the sampling distribution of
sample proportions is the same as the population or true mean. The variance of the sample proportions
is given by (19) in the general case and (22) for exponential covariance. How well does this theory
compare to observations? As the first step, the “true” autocovariance functions were estimated from six
random, horizontal transects through each image. The a coefficient in (21) was computed for each of the
six transects and then averaged. With the simulated clouds and leads the horizontal transects should
adequately represent the two-dimensional structure since the patterns are isotropic. This is less true,
however, with the Landsat image where a preferred orientation is apparent. Table 1.7 gives the results of
the least squares fit of the exponential autocovariance function to the observed autocovariances in the
images. Listed are the regression-estimated variance (the antilog of the y-intercept in (21)), a, and the
correlation coefficient. Next the distributions of sample fractional area estimates and their first two
moments (mean and variance) were determined by computing p” with (18) for each of 500 single, random,
horizontal transects through each image (i.e., the number of transects used to calculate p’ in (18), N, is 1
for each of 500 samples). Distributions of p’ were also computed for sets of ten such parallel transects
giving 5000 transects (N=10 for each of 500 samples). Figure 1.37 shows how the distribution of the
estimates changes as a function of the number of transects or, effectively, total transect length. For single
transects (solid lines) a broad range of p’ are possible.
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Fig. 1.36. (a) Binary image based on a Landsat MSS
band 4 scene of the ice pack north of Alaska in
March 1988. Field-of-view is 80 m; area covered is
approximately (24 km)>. (b) A simulated lead
network modeled as a Poisson line process with thick
lines. Field-of-view is 137.5 m; image size is
approximately (42 km)>. (c) A simulated cloud field
based on a random disk model. Field-of-view is
137.5 m; image size is approximately (42 km)’.
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Fig. 1.37. Relative frequency histograms of the
distribution of estimated area fraction for different total
line lengths. Plots correspond to the images in Figures
1.36a-c.
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Table 1.8 gives the true area fracuon p, the means and variances of the estimated area fraction p’
from the observed distributions in Figure 1.37, and the variance computed from (22b), where L=304 pixels
(same units as r in (21)). The mue area fraction is the proportion of pixels in the binary image where
I(x)=1. It is apparent that the theoretical variance of the estimate given in (22) is generally applicable for
the simulated leads and clouds in Figures 1.36b and 1.36¢. For the Landsat data, however, the variance
of the estimate for the 500-set simulation is three times as large as that computed with (22) or a factor
of 1.7 for the standard deviation. This is due to the arisotropic nature of the lead network in the image
and the large variability in the autocovariance function computed for individual transects. A two-
dimensional autocovariance function and a modification of (22) may be needed in such cases.

Table 1.7. Regression-estimated parameters of the autocovariance
function for the images in Figure 1.36.

Figure p(l-p)!  «a R

la 0.029 0319 -0.99
1b 0.078 0.554 -0.96
lc 0.218 0.121 -0.92

! Estimated with (21).

Table I.8. Actual and estimated fraction area coverages for Figures 1.36a-c
using one and ten transects,

N = 1x500 N = 10x500
Figure p E(p’) Var(p) E(p) Var(p)

la G.035 0.035 2.07e-3 0.036 2.35e-4
(6.84¢-4)! (6.84¢-5)

Ib  0.067 0.067 7.56e-4 0.067 7.62e-5
(7.38¢e4) (7.38¢-5)

Ic 0215 0.218 7.28e-3 0.214 7.78e-4
(8.93¢-3) (8.93e-4)

! Values ir parentheses are computed with (22b).

The fact that the distributions of area fraction estimates tends toward Gaussian as N increases
suggests a method for hypothesis testing and confidence interval estimates. If a normal distribution is
assumed to apply, then the probability that a particular area fraction estimate comes from a population
with area fraction p can be determined. This is perhaps most useful for confidence interval estimates of
the true area fraction, defined as
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P -2B2)sd(p) to p +2(p/2)sd(p)

where sd(p”) = [var(p")]” is the standard deviation of p’ and 1-f is the level of confidence. Since the
variance depends on an unknown p, p’ is used as an estimate in (22). As an example, suppose that for
Figure 1.36b samples of one and ten transects are taken and for both p’=0.05. Assuming the
autocovariance structure given in Table 1.8 and computing the variance of the estimate with (22b) the
confidence interval estimate of the true area fraction at the 90% confidence level is [0.011, 0.089] for a
single transect and [0.038, 0.062] for a sample of ten transects. Neither of these intervals contains the true
area fraction p=0.067. Of course, the probability of obtaining such a p’ from a population with a true
fraction of 0.067 is very small, particularly for the set of ten transects (0.01 as opposed to 0.24 for a single
transect), so that this example is improbable but useful for illustration. If, on the other hand, we obtain
a sample p’ of 0.07 then the confidence interval estimate of p is [0.024, 0.116] for a single sample transect
and [0.056, 0.084] for a set of ten. Both contain the true area fraction but the larger sample size gives
a much smaller range for the estimate.

The shortcoming of this approach is that the autocovariance function must be known. It may be
possible to estimate it from the data itself if the sample size is large enough, although this is somewhat
circular. In some cases it may be possible to infer a covariance structure by assuming a simple model of
the geophysical variable, as done in Rothrock and Thorndike (1984) for sea ice floes. Even so, some
knowledge of the field is needed; in their case the diameter of the floes. If, however, some basic
autocovariance structure can be assumed for ditierent cloud types, sea ice leads, etc., then the above
procedure is certainly useful for planning sampling studies, ~1d probably applicable to data analysis as
well.

1.5.3 SPECIAL CASE: POISSON PROCESSES

For certain stochastic processes it is possible to determine the fractional area coverage from
measurements along a line without any a priori knowledge of the process. Here such a possibility is given
for a Poisson line process like the one used above as a model of leads.

For a Poisson process the area fraction is related to the intensity' t of the process and the mean
"area" of the objects :

p = Prb[O is covered] = 1-¢~* (23)

where O is an arbitrary origin. The area measure corresponds in units to the intensity me:  ; e.g., for
leads the intensity is the number of points per unit distance and { is mean lead width.

The area fraction can be now estimated from lineal measurements through the use of the line
(lead) thickness (width) distribution. The area term in (23) is the overall mean line thickness, W, defined
as

"The intensity of a stochastic process is commonly called the density of the process. The former term
is used here in order to avoid confusion with the concept of probability density.
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W=r' L"w(e)oe

where w(0) is the mean thickness of lines with orientation 6 (0 < 0 < nt) (Miles, 1964). This applies to
lines oriented isotropically; i.e., with a uniform distribution such that fo(0) = ' where f, is the probability
density function for line (lead) orientations. For anisotropic thick lines then

W= L w©) dF.,(0)

where dF 4(0) = f¢(0) db, and Fg is the cummulative distribution function for orientations. A method for
determining the actual lead width distribution, and hence W, from the width distribution measured along
a transect has been presented in (Key and Peckham, 1991),

As an example of the use of (23), the lead network in Figure 1.36b was generated with 1 = 1/3
(3 km mean spacing) and W = 0.2 km. This gives a p’ estimate using (23) of 0.064 compared to the value
of 0.067 reported in Table I.8. The discrepency is a function of the image creation and thresholding
process, where all leads must fill an entire pixel.

In practice the intensity of the process is not known. For leads modeled as a Poisson line process
an estimate of T can be obtained from the transect data, where the points of intersection of the transect
with leads constitute a Poisson process of intensity 2t/n. The accuracy of this estimate depends on the
size of the region over which the measurements are made. For Figure 1.36b estimates of t range from
0.19 to upwards of 0.45 which results in an estimate of p’ in the range of 0.037 to 0.086. There is, of
course, some variability in the estimate of W as well, which is discussed in (Key and Peckham, 1991).




Part 11: Radiative Transfer Studies 66

PART II: RADIATIVE TRANSFER MODELING STUDIES

I1.1 RADIATIVE TRANSFER MODELING AND MODEL VALIDATION

In order to utilize radiative transfer models most effectively, we have reviewed how they treat
factors such as ice cloud morphology, cloud optical thickness, low level inversions, boundary layer effects,
and other aspects relevant to the polar regions. A particular concern is that existing models, cloud
properties, standard atmospheres, etc. have typically been developed for low and mid-latitude applications,
and may thus contain biases or shortcomings when applied to polar regions. Part of this effort involves
incorporating polar atmospheres and cloud properties into the models. Arctic-specific temperature and
humidity profiles have been obtained and are discussed in the next section. Unfortunately, little
information on the microphysical characteristics of arctic clouds is available. Data that are available,
however, were incorporated into the models where appropriate. This is limited primarily to arctic stratus
experiments during the early 1980°s, and some measurements of aerosols. Additional data is expected to
be obtained during LEADEX by instruments on the NOAA P-3.

I1.1.1 RADIATIVE TRANSFER MODEL

Work described in this part of the report relies heavily on simulating radiances measured by the
AVHRR sensor. To simulate radiances in the AVHRR thermal channels, daily temperature and humidity
profiles in each season are used with the LOWTRAN 7 radiative transfer model (Kneizys et al., 1988).
Radiances are modeled for sensor scan angles from 0° to 60° in 10° increments. The appropriate sensor
response function is applied to the calculated radiances, and radiances are then converted to brightness
temperatures. Atmosperic chemical composition, background tropospheric and stratospheric aerosols for
the subarctic winter and summer models are used, since no such information is available from the ice
islands. The optical properties of Arctic haze have not been exteusively measured; model calculations
(Blanchet and List, 1983) show that the volume extinction coefficient of Arctic haze is generally of the
same order of magnitude as that of the tropospheric aerosols. Therefore, the use of tropospheric
background aerosols is appropriate.

In order to test some sense of the validity of the radiative transfer model, downwelling longwave
irradiances (fluxes) computed with LOWTRAN were compared to measurements at South Pole, Greenland
and Denver. Radiosonde data from the three locations were used for the calculations. To obtain
irradiance, E, from LOWTRAN (which outputs radiances, L) the calculation was done for four angles (8
streams) and employed the weighting function:

E = n(0.3626838L, + 0.3137066L, + 0.2223810L, + 0.1012285L,)

where the subscripts of L refer to the sensor zenith angles 79.430°, 58.296°, 37.187°, and 16.201°,
respectively. Additionally, a single-angle method (52.5°) was tested and found to give fairly accurate
results. The bandwidth of 3.5 - 50 pm used in the calculations corresponds with the bandwidth in which
a pyrgeometer measures. The LOWTRAN irradiances differed from the measurements by -4.7% to +5.6%.
Assuming 5% accuracy for the pyrgeometer data these results are acceptable. Results for clear sky are
listed in Table II.1.
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Table I1.1. Comparison between modeled and observed longwave fluxes under clear sky conditions.

Station and Date Measured 4 Angles Error (%) 52.5° Error (%)
(W m?) (W m?) (W m?)
Denver, 9-30-89 334 336 +0.60 320 -4.19
South Pole, 12-28-86 128 124 -3.13 117 -8.60
South Pole, 7-31-86 71 75 +5.63 71 0.0
South Pole, 11-6-86 107 102 -4.67 96 -10.28

Calculations were also done for cloudy sky conditions. In comparisons of model results and
observations, the observed cloud fraction, A., must be considered. Here the model is used to estimate
clear and overcast fluxes, and these are weighted by the observed cloud fraction.

A remaining problem concerns the differences between the microphysical properties of
LOWTRAN'’s cloud models and those of the observed clouds, which are unknown. Table I1.2 gives the
results of the cloudy sky comparisons.

Table I1.2. Comparison between modeled and observed longwave fluxes under cloudy conditions.

Station and Date Measured 4 Angles Error (%) 52.5° Error (%)
Cloud Fraction, Type (W m?) (W m?) (W m?)

Greenland, 7-23-90; 309 301 -2.59 301 -2.59
8/8, stratocumulus
Greenland, 7-26-90 283 282 -0.35 275 -2.48
3/8, stratocumulus
Greenland, 7-1-90 225 227 +0.89 217 -3.56
1/8, cirrus
South Pole, 7-16-86 157 156 -0.64 156 -0.64
8/8, cirrus
South Pole, 11-26-86 126 129 +2.38 122 -3.17
8/8, cirrus

To examine the effect of vertical temperature structure on upwelling longwave radiation, radiances
in the three channels were estimated using arctic mean and subarctic standard winter and summer profiles
(described below) with identical seasonal surface temperatures. The maximum difference in radiances was
0.05 W m™ sr' indicating that the vertical temperature distribution of the relatively dry arctic atmosphere
plays a very small role in the attenuation of upwelling longwave radiation.
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I1.1.2 ICE ISLAND DATA

Analyses are based on atmospheric temperature and humidity profiles collected by rawinsonde
from a Soviet ice island (NP-26), located at approximately 85° N 170° W during 1983-1987 (Figure II.1).
Generally two observations per day were collected covering a vertical range of 0-25 km. Profiles that
have at least 10 levels are retained in the analysis. Observations include temperature, dew point
depression, wind speed, and wind direction. For the years 1986-87 surface-based cloud observations are
also available. These observations include low, middle, and high cloud types, height of the cloud base,
and cloud fraction.

Only clear sky profiles are of interest in one of the studies below, and since the satellite thermal
radiances under cloudy conditions will reflect cloud top temperature and a significant amount of cloud
cover will affect the lower tropospheric temperature structure, clear sky "seasons" that differ in their
vertical temperature and humidity structures are then defined. The seasons are determined objectively with
a squared Euclidean distance clustering algorithm; the variables are temperature and humidity at each
level. To reduce the degree of statistical dependence between levels, only one measurement per kilometer
was used. The resulting seasons are winter: October through March, summer: June through August, and
transition: April, May, and September. The resulting mean seasonal temperature profiles for clear, cloudy
(greater than 75% cloud cover), and mixed conditions are shown in Figure I1.2.
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Figure II.1. Location of the Soviet ice island NP-26.
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Figure I1.2. 2 -ctic winter, transition, and summer temperature profiles under clear, cloudy, and mixed conditions
from a Soviet ice island located in the Canada Basin.




Part II: Radiative Transfer Studies 70

1.2 ATMOSPHERIC INFLUENCE ON LEAD DETECTABILITY

Here we address the need to understand how different sensors respond radiometrically to varying
surface types and intervening atmospheric layers by evaluating the combined use of multispectral image
and contrast analyses to determine thresholds of lead detection under varying atmospheric conditions. Our
objective is to estimate the narrowest resolvable lead under a given set of surface and atmospheric
conditions, sensor FOV and viewing geometry. Although this investigation focuses on the use of AVHRR
data, the approach should have general applicability to other thermal sensors of differing spectral response
and view characteristics. The modeling results presented here contrast simulations of clear-sky conditions
with those including the effects of various types of horizontally homogeneous cloud or aerosol layers.
Cloud detection using AVHRR data is not addressed. For a discussion of polar cloud detection see Key
and Barry (1989), Sakellariou et al. (1992) and Yamanouchi et al. (1987) and references therein.

Our overall approach is as follows. We first simulate top-of-the-atmosphere (TOA) radiances for
three thermal channels of the AVHRR instrument. Average clear-sky January conditions for the central
Arctic are assumed. Operating in the NIR and IR "atmospheric window" regions of the spectrum, these
channels are especially sensitive to surface emissions, but are also affected by any intervening atmospheric
layer that absorbs/emits thermal radiation. Thus, surface (or skin) temperatures and emissivities are varied
to evaluate the effects of different surface types. All modeled radiances are converted to equivalent
blackbody temperatures (brightness temperatures) by inverting the Planck function (NOAA, 1991) to
facilitate comparisons with physical temperatures and the analyses of bispectral results (NIR-IR brightness
temperature differences) and derived thermal contrasts. Next, model clouds or haze layers are
hypothetically inserted into the atmosphere to examine the behavior of simulated brightness temperatures
and brightness temperature differences (BTDs) as a function of layer optical depth. These "split window"
results are then examined for signatures that characterize haze, stratiform water clouds, clear-sky ice
crystal precipitation (ICP) or high level cirrus clouds. Finally, by normalizing the difference between
channel brightness temperatures of a lead pixel and its background (i.e. the multiyear ice pack) by the
brightness temperature of the background scene normalized contrast values are derived and evaluated as
a means to determine the limits of lead detection given certain sensor characteristics and
atmospheric/surface properties.

I1.2.1 RADIANCE SIMULATIONS

The radiative transfer code LOWTRAN 7 (Kneizys et al., 1988) (hereafter simply LOWTRAN)
is used to compute top-of-the-atmosphere upwelling radiances from which satellite-derived brightness
temperatures are simulated. In cases involving haze, changes in the properties of aerosols as a function
of relative humidity (RH) are accounted for (e.g., Shettle and Fenn, 1979; Blanchet and List, 1987) by
first modifying the effective refractive indices of the bimodal particle size distribution and then
recomputing extinction and absorption coefficients based on Mie theory (Kneizys et al., 1980).

In this study we simulate AVHRR radiances for channels 3, 4 and 5. Channel 3 measures in the
NIR window region of the spectrum and is centered at 3.7 pm while the IR channels 4 and 5 are centered
at 10.8 ym and 12.0 pm, respectively. All our calculations include the effects of multiple scattered
thermal radiation and are made at steps of 5 cm (equivalent to 0.06 pm at 11 ym). The angular and
spectral dependencies of snow and water emissivities are also taken into account. In all cases,
LOWTRAN was initialized for average clear-sky January temperature and humidity profiles based on an
analysis of Soviet ice island data collected in the central Arctic (e.g., Key and Haefliger, 1992; Serreze
er al., 1992). The mean clear-sky January temperature and dewpoint temperature profiles are shown in
Figure I1.3 with the boundaries of subsequently prescribed hypothetical layers of haze, stratus cloud, cirrus
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cloud and ice crystal precipitation indicated. Because there is essentially no information available on the
vertical structure of atmospheric gases in the central Arctic, we assume that average “subarctic winter”
concentrations of O,, CH,, CO and N,O exist in the atmosphere when running LOWTRAN. Model
subarctic winter background aerosol concentrations for the troposphere (2 to 10 km) and the stratosphere
(10 to 30 km) were also prescribed. To simulate haze effects, boundary layer (0 to 2 km) aerosol
concentrations were varied by specifying the layer visibility, but in all other cases the default "rural”
aerosol model for the boundary layer was used. To examine the full range of AVHRR scan angles (0°
to approximately 55°) we made calculations at 0° (nadir), 20° and 50°. Only results for 0° and/or 50° are
presented here.
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Fig. I.3. Mean clear-sky January temperature and dewpoint temperature profiles for the central Arctic, Also shown
are the vertical positions of hypothetical layers of cirrus cloud, boundary layer haze, ice crystal precipitation and
stratus cloud that are prescribed for radiative transfer simulations that are described in the text.
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11.2.2 INTERVENING ATMOSPHERIC EFFECTS

The effects of four commonly observed atmospheric phenomena in the Arctic are considered: 1)
Arctic haze (e.g., Rahn and McCaffrey, 1980; Valero et al., 1989; Valero et al., 1983) which persists over
large regions of the Arctic, especially during late winter and early spring, 2) Arctic stratus cloud (e.g.,
Tsay and Jayaweera, 1984; Tsay et al., 1989; Curry et al., 1992) which commonly obscures satellite
viewing of the sea ice surface in summer, but may be thin enough during the winter months to make lead
detection feasible, 3) clear-sky ice crystal precipitation (ICP) which has a significant effect on the radiation
balance of the surface/atmosphere system in the Arctic (Curry et al., 1990; Curry et al., 1989a; Curry et
al., 1989b) and 4) high level cirrus clouds which are the "most-frequently-occurring cloud type" observed
in the central Arctic during winter and spring (Warren et al., 1988). Each of these has a distinct effect
on the upwelling thermal radiation emitted from the underlying surface and atmosphcre depending on their
microphysical properties, geometric thicknesses and positions within the atmosphere. The differences in
the radiative properties of atmospheric aerosols (haze), water droplets or ice crystals result in varying
degrees of scattering and absorption as a function of wavelength. These differences can be exploited using
multispectral techniques to distinguish various types of attenuating layers that may exist in the Arctic
atmosphere assuming that the underlying surface properties can be determined by other means.

11.2.2.1 Arctic Haze

The optical properties of Arctic haze have not been extensively measured, but model calculations
indicate that the volume extinction coefficients of Arctic hazes are to a first approximation the same order
of magnitude as those for tropospheric aerosols (e.g. Blanchet and List, 1983; Tsay et al., 1989). Because
Arctic haze generally contains an anthropogenic component of carbonaceous material transported from the
lower latitudes (Rosen et al., 1981; Kahl and Hansen, 1989), the "urban" aerosol model of LOWTRAN
was selected to simulate low level haze layers. This model represents a mixture of 20% soot-like aerosols
and 80% rural type aerosols contained in the 0 to 2 km boundary layer (Kneizys et al., 1980). The
extinction coefficient B for boundary layer haze as defined in LOWTRAN is determined from :. prescribed
atmospheric visibility V using Koschmieder’s formula: V = 1/B In(1/£), where £ is a threshold contrast
taken to be 0.02.

The infrared opacity of aerosol layers is known to increase quite dramatically with increasing
relative humidity (Blanchet and List, 1987; Shettle and Fenn, 1979), thus an assessment of how water
uptake by hygroscopic aerosols affects simulations of brightness temperatures and BTDs was also made.
Results for a saturated haze layer (RH = 99.9%) composed of "wet" aerosol particles are contrasted with
those for moderately dry (RH = 70%) haze layers found to characterize mean January conditions in the
Arctic.  LOWTRAN is designed to modify the absorption and scattering coefficients of aerosol
distributions by 1) assuming growth of particulates as a function of RH based on the results of Hanel
(1976), 2) adjusting their effective refractive indices and 3) recomputing their radiative properties based
on Mie theory (Kneizys et al., 1980).

11.2.2.2 Arctic Stratus

Arctic cloud climatologies show marked increases in average low cloud amounts during spring
attributed to the presence of stratiform water clouds within the boundary layer which reach a maximum
coverage of about 70% during the summer months (Huschke, 1969, Vowinckel and Orvig, 197G). Stratus
clouds have a potentially dramatic impact on the surface-atmosphere heat budget depending on wheti.cr
their shortwave albedo effects or longwave greenhouse effects dominate the lower tropospheric radiation
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balance (Curry et al., 1992). Summertime visible stratus optical depths tend to be large, in cases
exceeding 20 (Herman and Curry, 1984), thus the use of visible imagery to detect leads is not practical,
and because thermal contrasts between leads and multiyear sea ice tend toward zero as cloud opacity
increases, detection using thermal imagery is also impractical in most cases. During winter, however,
stratus cloud cover is often less than 20% and the cloud layers tend to be thin optically with visible optical
depths on the order of 2 (Curry et al., 1992). Detecting leads using thermal imagery in winter may,
therefore, be possible. Using the LOWTRAN model for "stratus” we assess the feasibility of detecting
leads during winter by assuming that a horizontally homogeneous cloud layer 380 m thick exists in the
lower atmosphere as indicated in Figure 1. For stratus simulations the desired range of visible (0.55pm)
optical depth T was obtained by varying the conversion factor from equivalent LWC (g m”) to extinction
coefficient (km™) in the LOWTRAN code (Kneizys et al., 1988). The stratus droplet size distribution is
represented by a modified gamma distribution;

nn = 27r2e0%

where r is the droplet radius and n is number density. The total number density is taken to be 250 cm™
and the mode radius is 6.67pm (for mass distribution). Details of the LOWTRAN cloud models are given
in Shettle et al. (1988).

11.2.2.3 Layers of Ice Crystals

Both the high level cirrus cloud and low level ice crystal precipitation simulations were made by
inserting the LOWTRAN "standard" cirrus model (Shettle er al., 1988) into the atmosphere at the vertical
positions indicated in Figure I1.3. For both conditions the desired range of optical depth was obtained by
assuming the appropriate values of 0.55pm volume extinction coefficients for a 2 km thick cirrus based
at 8 km and a 1 km thick ICP layer based at the surface. Note that ice crystal precipitation has been
observed from the surface to heights exceeding 3 km in the Arctic, but it is most frequently observed
below about 1 km (Curry et al., 1990).

For all of the cases discussed above theoretical calculations were made for a visible optical depth
range of 0 (clear-sky) to 100, but results are presented only for values between 0 and 10. Realistic layer
thicknesses and extinction values of aerosols and ice crystals are such that visible optical depths rarely
exceed 10 and although stratus optical depths may exceed this value during the summer months, low
thermal contrasts and high visible opacity preclude lead detection at this time of year. In the winter, even
when mixed-phase layers contain small amounts of liquid water, optical depths are generally within the
range represented here.

I1.2.3 SURFACE CHARACTERISTICS

Model runs were initialized for three different surface temperatures to characterize open or
refrozen leads and a fourth temperature representing the surrounding ice pack which is assumed to be 2
m thick and in equilibrivm with the surface air temperature. In the discussion that follows, the terms
"skin" and "surface" temperature are used interchangeably and should not be confused with shelter
temperature (measured 2 m above ground level) which is generally higher than the actual skin temperature
when a surface-based temperature inversion exists. Shelter temperature may differ from skin temperature
by more than 10°C depending on the region and time of year (e.g., Stowe et al., 1988, Rossow et al.,
1989). The following temperatures were computed to represent a range of lead types: for open leads, 271
K. for leads covered by 5 cm thick ice, 256 K; and for 15 cm thick leads, 248 K. The ice pack was
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assumed to be in thermal equilibrium with the surface air and was assigned the temperature of 235 K
corresponding to the first rawinsonde level.

All surfaces with the exception of open leads are assumed to be snow-covered and directional
snow emissivities were modeled following the procedure in Dozier and Warren (1982). This method
involves calculating the single scattering albedo, asymmetry factor and phase function for snow grains
using a Mie code before determining the directional, wavelength-dependent emissivities using the delta-
Eddington approximation of the radiative transfer equation. These emissivities were then integrated over
the response function for each channel i:

[e a0
€0 = ——0r
[ o0 o

where £(A,0) is the emissivity in direction 6 at wavelength A and ¢, is the i* sensor response function.
Key and Haefliger (1992) note that differences between the integrated emissivities for the NOAA series
7,9, and 11 AVHRR sensors are on the order of 0.0001. In the current study we use the NOAA 7 values
only. For brightness temperature simulations over open leads, the angular dependence of channel
emissivities of water are determined through Fresnel calculations. Table I1.3 gives the angular emissivities
used in the current analysis as a function of AVHRR scan angle and surface type. In reality, newly
refrozen '=ads are clear of snow, thus pure ice emissivities should be used for best results. However, the
authors are aware of no comprehensive set of measurements nor method from which the spectral,
directional emissivities of planar ice can be determined. The emissivity of ice approaches unity and is
often assumed to be 1.0 for field investigations (e.g., Konig-Langlo and Zachek, 1991). A more accurate
value may be 0.97 (Hobbs, 1974) which is within 2% of the snow values listed in Table I1.3. Thus, the
assumption that all surfaces are snow-covered will not result in serious errors in simulated brightness
temperatures nor will differences in channel brightness temperatures or contrast ratios be affected
significantly.

TABLE I1.3. Angular emissivities of snow
and water in NOAA 7 AVHRR channels 3,
4 and 5 at two satellite scan angles.

Snow Water
Channel 0° 50° 0° 50°

3 998 992 976 .96l
4 999 99 992 984
5 99 987 986 .972

For even more accurate simulations of brightness temperatures, channel radiances should also be
integrated over the appropriate sensor response functions. These vary from one satellite to another as
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discussed in Key and Haefliger (1992). In that study, they found that by using the full response functions
instead of assuming rectangular functions (i.e., 100% response at all wavelengths within the portion of the
channel where the actual response is at least 50%) the brightness temperature differences were only on
the order of 0.05 K for channel 4, but were about 0.5 K for channel 5 assuming typical January conditions
in the central Arctic. Because we focus here on channel 4 results, we use the rectangular function for all
simulations rather than performing this time-consuming integration. This is justified in that the
computation of normalized contrasts are based on differences and ratios of brightness temperatures at one
or another wavelength so that small absolute biases due to differences in response functions have a
negligible effect on the final results.

I1.2.4 RESULTS
11.2.4.1 Simulated Brightness Temperatures

Examples of channel brightness temperatures as a function of visible (0.55 pm) optical depth are
shown in Figure I1.4 for boundary layer haze, ice crystal precipitation and high-level cirrus clouds at 0°
and 50° satellite scan angles for channels 3, 4, and 5 of the AVHRR instrument. These layers were
positioned as shown in Figure 1 and mean January temperature and humidity profiles were assumed.
Within each panel (from top to bottom) are plots that relate to the different prescribed surface temperatures
representing open leads, leads of 5 cm and 15 cm thickness (271 K, 256 K and 2438 K, respectively), and
the multiyear pack ice (235 K). Note that the boundary layer is moderately dry during January in the
central Arctic with RH averaging about 70% between the surface and 2 km suggesting a predominance
of clear skies containing low concentrations of dry aerosols during this time of the year. At zero optical
depth the physical surface temperatures are reasonably well represented by simulated channel brightness
temperatures because the selected channels are all within NIR and IR window regions of the spectrum
where sensitivity to the relatively dry Arctic atmosphere is least and because open water, newly refrozen
leads and snow-covered surfaces all have high emissivities. Regardless of the underlying surface type,
channel 3, 4 and 5 brightness temperatures tend to converge to the blackbody radiating temperature of the
top of the intervening cloud or haze layers as optical depths increase, though the rate of convergence
varies depending on the microphysical properties of the intervening layer and the layer’s position and
mean temperature relative to the surface. Scan angle effects are also apparent by comparing corresponding
panels for 0° and 50° viewing angles. No matter what type of surface or intervening medium exists, the
convergence of simulated brightness temperatures to layer top temperatures occurs faster when viewing
off-nadir. This is due to the increase in optical path length by a factor 1/cos(8), where 0 is the satellite
scan angle as viewing angles increase from nadir.
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Fig. IL4. Simulated brightness temperatures for layers of boundary layer haze, ice crystal precipitation and high-level
cirrus cloud for three AVHRR thermal channels assuming four surface types (from top to bottom at left of each
panel). open water, 5, 15, and 200 cm thick ice. Results are shown for satellite view angles of 0° and 50° over a
range of 0.55um optical depths between 0 and 10. Mean clear-sky January temperature and humidity profiles for
the central Arctic are assumed.
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Because haze particics absorb and emit much less NIR and IR radiation than do ice particles or
water droplets at a given visible optical depth, haze layers neither attenuate nor enhance significantly the
thermal emissions from the surface. Thus, simulated NIR and IR brightness temperatures during typical
winter conditions are not very sensitive to changes in acrosol loading in the boundary layer. In these
situations, the relatively dry haze layers become essentially black at visible optical depths exceeding 95
(equivalent to an infrared optical depth of about 6). This extreme value corresponds to an unrealistic
visibility of less than 85 m. As noted by Blanchet and List (1987), however, the infrared opacity of
aerosols increases dramatically as relative humidity increases. In fact, IR optical depths may exceed those
for visible wavelengths in saturated haze layers. This phenomenon occurs due to the uptake of available
water by hygroscopic particles such as sulfuric acid and deliquescent compounds within the layer causing
a shift to a larger particle size distribution and corresponding enhancements of the absorption and
scattering cross sections of the particles.

We .valuated the effects of increasing relative humidity on aerosol layers by hypothetically
saturating the O to 2 km layer and recalculating the brightness temperatures for a "wet" aerosol layer. This
is easily accomplished using LOWTRAN because the absorption and scattering coefficients are modified
in accordance with hygroscopic growth as described previously. The optical depth dependence of channel
4 brightness temperatures for a haze layer with mean RH = 99.9% was found to be virtually identical to
that for a haze layer having RH = 70% while channel 5 brightness temperatures tended to converge
slightly faster to the blackbody temperature of the layer. The NIR channel 3 simulations revealed the most
pronounced change due to saturation. They indicated slightly faster convergence with increasing optical
depth than either of the IR channels and also, interestingly, NIR values converge to a temperature below
the physical temperature of the layer top. This leads to negative NIR-IR spectral differences.
Qualitatively, an optically thick, saturated haze layer has similar radiative behavior as does a stratiform
water cloud. As these layers increase in opacity they become black to infrared radiation resulting in a
rapid convergence of brightness temperatures (no matter what the underlying surface is) to the physical
temperature of the layer top; but in the NIR, thick layers totally attenuate the upwelling radiation from
the surface while contributing little to TOA radiances because these layers have low NIR emissivities.
Thus, NIR brightness temperatures are actually colder than corresponding IR values (e.g., Yamanouchi et
al., 1987). These are important considerations because the relative magnitudes of NIR-IR bispectral
differences as a function of relative humidity, phase and optical depth may be exploited to distinguish
different types of intervening atmospheric layers.

The importance of knowing the vertical position of an intervening layer is apparent by comparing
the results for the low level ICP with those for high cirrus clouds. Both layers have identical
microphysical and radiative properties based on the standard LOWTRAN cirrus model. However, their
net radiative effect on the upwelling radiation field differs significantly because of their relative
temperatures and proximity to the nearly black underlying surfaces. Brightness temperatures above the
ICP layer converge more rapidly with increasing optical depth than do corresponding temperatures above
cirrus because the top of the ICP layer coincides with the warmest region of the atmosphere which is
directly influenced by surface emissions. Radiation emitted by the surface contributes significantly to the
total upwelling radiation through absorption and secondary emission by the ICP layer at a relatively warm
layer temperature. A similar radiative effect occurs in the case of cirrus, but the cold, dry atmosphere
below the cirrus layer has little effect on the upward radiative flux and the cloud particles themselves
absorb and re-emit this radiation at a much colder temperature. As with haze and stratiform water clouds,
these different radiative effects give rise to distinct signatures of brightness temperatures and bispectral
differences as a function of optical depth.




Part II: Radiative Transfer Studies 78
11.2.4.2 NIR-IR Bispectral Differences

Differences in BTD signatures for combinations of surface and layer types as a function of optical
depth may be used to distinguish varying surfare and atmospheric properties within a sate!lite scene, a
necessary step in developing a lead detection algorithm. For example, at a cirrus optical depth of about
3.0 the BTD between channel 3 and channel 4 (T, - T,,) over an open lead is appiuximately 13K whereas
this differeace is only about 2K if a low level ICP layer of equal optical depth is present as viewed at
nadir.

To more clearly illustrate the potential use of split window imagery to distinguish between various
cloud and aerosol layers that are common in the Arctic Figure II.5 was constructed. Shown are values
of (T,; - T,,) for three different layers already discussed, dry (70% RH) and wet (99.9% RH) haze layers
within the boundary layer and ICP in the lowest kilometer of the atmosphere, and in addition, results are
given for the stratus layei described above and shown in Figure I1.3. Each panel includes plots of the
simulated T, - T, values for the four surface types assuming a scan angle of 0°. It is clcar that bispectral
differences are sensitive not only to optical depth but also to relative humidity and the phase of the
particles. Bispectral signatures for dry aerosols are insensitive to increasing optical depth except for those
related to multiyear ice. Under saturated hazy conditions there is a distinct monotonic decline in BTDs
with increasing t over all surface types with negative values observed except over multiyear ice when t
< 5. Such separations between multiyear ice signatures and other surface types should permit better
identification of background pixels needed to normalize thermal contrasts for the purpose of distinguishing
leads. If a stratus layer is present within the warm region of the atmosphere a sharp fall-off to
significantly large negative values occurs in the range of optical depths between ¢ and abcut 2.5 with a
converging upward signal as t increases further. In the case of a low-lying ICP laye: posiiive differences
of 0.5K to 3.5K peaking between optical depths of 0.5 and 1.5, are apparent whereas tor a similar (cirrus)
layer placed high in the atmosphere BTDs as large as 13K were noted for = = 2.5 (sec Figure {1.4). In
theory, if TOA NIR and IR radiances can be measured accurately much information can be extracted by
analyzing bispectral images. Unfortunately, the AVHRR channel 3 data is reported to be t00 noisy to be
uscful for cloud detection at cold temperatures (Yamanouchi et al., 1987), but hopefully. future spaceborne
radiometers will provide data of sufficient quality to resolve the signatures described here.

| Gy N




Part II: Radiative Transfer Studies

9=0°

Aerosols, RH=70% .

— Open Water
..« 5 cm Ice
-- 15 cm Ice
—-. 200 cm Ice

b e a4 4 4« 1 4 a4

Ice Crystal Precipitation

4 6 8
Optical Depth

10

—- Open Water
..-- 5 cm Ice

- - 15 cm Ice
—-- 200 em Ice

P S Y al

ol

Al
|

-6 e
0 2

4 6 8
Optical Depth

10

79

)

Aerosols, RH=99.9%

—— ——————
— Open VWater
-.-- 5 cm Ice
- - 15 cm Ice -
~.. 200 cm Ice

00

| SR

PR VRS N SR UY S DA S R S E S S

4 6 8 10
Optical Depth

Stratus Cloud

]

T

00

— Open Water

---- 5 cm lce

—- 15 cm Ice 4
—-- 200 cm Ice

Optical Depth

Fig. [1.5. AVHRR channel 3 minus channel 4 brightness temperatures <s a function of 0.55 um optical depth for
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11.2.4.3 Normalized Atmospheric Contrast

Normalized atmospheric contrast is a wavelength dependent quantity, varying with atmospheric
opacity, expressed in terms of the brightness temperature difference between any given pixel and the
background scene normalized by the brightness temperature of the background (in this case taken to be
the 2 m thick multiyear ice):

TH(t.A) - Tg(t,A)

Tg(t.A) @

C{tA) =

where T; is the brightness temperature of the target (lead) and Ty is the back .ound brightness
temperature. Hereafter, in all expressions involving contrast the wavelength dependence is assumed and
the A is omitted. Figure II.7 shows the behavior of this quantity for IR channel 4 derived from the results
presented in Figure I1.4. This measure of contrast provides a potentially powerful means to detect leads
using thermal imagery both for daytime and nighttime conditions. Although, in most cases, Figure I1.6
indicates a rapid decrease in normalized contrasts as optical depth increases, realistic cirrus, ICP or haze
optical depths are generally within a range that should permit the resolution of leads using thermal
contrasts provided that radiances can be measured accurately, sensor field-of-view is small relative to lead
widths and full use of ancillary data is made. Curry et al. (1990) for instance, measured ICP visible
optical depths ranging from about 0.03 to 20, but in five out of seven cases T was less than about 5, within
a range in which thermal contrast should be measurable. With regard to cirrus, even for large extinction
coefficients their optical depths are limited because they are confined to regions of the upper troposphere
bounded above by the tropopause. As an example, a cirrus cloud having a large visible volume extinction
coefficients, say x,,, = 0.2, 7 km thick (AZ = 7.0) would have an optical depth of only 1.4, where 1 =
K.,AZ. Such large extinctions would exist only for cirrus composed of very large ice crystals with
proportionally large total ice .vater contents (IWCs) (e.g., Stone et al., 1990) which occur rarely in
extremely cold environments (e.g., Stone, 1992; Plan and Harshvardhan, 1988; Heymsfield and Platt,
1984). In cases involving haze, the aerosol loading would need to be extreme before thermal contrasts
diminished significantly. There is no observational evidence that aerosol layers can attain optical depths
that would preclude lead detection using thermal imagery. For instance, mean 0.5 pm optical depths for
haze layers observed over Barrow, Alaska, even when nearly saturated, were only about 0.2 (Mendonca
et al., 1981) and the maximum 0.5 pm optical depth measured during what has been described as a
"megahaze” event was about 0.7 (Dutton et al., 1989). Of course, mixed phase haze layers containing
large concentrations of ice crystals will tend to attenuate thermal radiation much like pure ICP layers do.
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Boundary Layer Haze, Day and Night

Fig. I1.6. Differences between AVHRR channels 3 and
4 brightness temperatures as a function of boundary
layer haze optical depth at 0.55pm during the day ]
(thick lines) and at night (thin lines) overeachof the [ .- ... ]
four surface types described in the text. Satellite scan 20
angle is 50°, solar zenith angle is 75° and solar azimuth
angle is 30°.
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Finally, channel contrasts for the 380 m thick stratus cloud (computed but not shown) were also
analyzed to evaluate whether or not leads are detectable during winter when stratus layers tend to be
optically thin. IR channel brightness temperatures for the four surface types were observed to converge
in a similar manner as was noted for the boundary layer ICP (Figure 11.4), thus simulated IR contrasts
under the influence of stratus clouds are nearly equal to those computed for the ice crystal precipitation
luyer shown in Figure IL.7. The convergence of channel 3 brightness temperatures with optical depth was
found to be even more rapid than for the IR channels so that NIR contrast values diminish more quickly
with optical depth. Both IR and NIR contrasts are likely to be below measurable threshold values
(discussed below) to make lead detection possible when stratus layers are present because their optical
depths are typically in the range of 2 or greater. Our simulations indicate that normalized contrasts will
be very difficult to resolve at this level of opacity.
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Fig. [1.7. Normalized AVHRR channel 4 contrasts between three lead ice thicknesses (open water, 5 cm and 15 cm
ice) and the background 2 m thick ice for boundary layer haze, ice crystal precipitation and high-level cirrus cloud
as a function of 0.55um optical depth. Results are shown for satellite view angles of (° and 50° derived from the
brightness temperatures shown in Figure I1.4.




Part II: Radiative Transfer Studies 83

11.2.4.4 Lead Detection Based on Critical Contrast

The normalized contrast C(t,A) in (1) is defined in terms of the target (lead) and background
(multiyear ice) temperatures but says nothing about the geometrical characteristics of the target or imaging
system. In such a context it assumes that a given lead pixel is completely within the FOV of the satellite
radiometer. We now examine how contrast varies as a function of lead width and sensor field-of-view
to account for image pixels that contain both lead and multiyear ice surface types.

Letting p be the fractional area covered by a lead within a pixel; i.e., p = width/FOV, the total
contrast C,, that takes into account the reduction in temperature contrast due to atmospheric and spatial
effects is

[PT:(1) +(1-P) Tp(1)] - Ta(v)
Tg(7)

Ct (D) =
= pC(7)

If every pixel in the image is to be labeled as either a lead pixel or a background pixel, then some
thresholding operation must be used. One possible method is to choose as a threshold the mean
background temperature plus some multiple of its variability o, say Tz(t)+20. (In reality o may also be
a function of 1.) As in (1), this threshold can also be expressed as a normalized (non-dimensional)
contrast ratio:

y = 20
T4(7)

If the observed total contrast of a pixel is less than this value, then the pixel is not a lead pixet. This
threshold contrast includes implicitly the effect of the fractional area covered by a lead within a pixel; i.e.,
it is a total contrast. Low values of y will generally result in more pixels being labelled as lead pixels
because the background is more homogeneous if o is small. Thermal features should be more
distinguishable when contrasted with a more homogeneous background scene. y can also be defined in
terms of some critical normalized atmospheric contrast:

C'ry) =X
p

where the asterisk represents a critical (cutoff) value. This expresses the normalized atmospheric contrast
necessary for a lead to be detected if an intervening layer of optical depth t is present.

To address the question of what minimum lead width can actually be resolved under specified
atmospheric conditions and sensor FOV, we need to eliminate hypothetically the atmospheric effects and
account for varying FOV. We therefore define the critical contrast of a lead as the normalized
atmospheric contrast at zero optical depth C'(t=0,y). We can relate C"(t,y) back to the critical contrast
C’(1=0,y) with the data provided in Figure I1.7 in the following manner. Nadir viewing is assumed. A
log surface is fitted to the contrast data for ICP and cirrus cloud, while a planar surface is fitted to the
aerosol contrast data. Least squares regression is employed where the independent variables are the actual
brightness temperatures at 1=0 of the three lead types and optical depth. The dependent variable is
contrast:
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C'(v) = a+bT(r)+ct

where the subscript i denotes aerosol, ICP or cirrus cloud; C*;=In(C") for ICP or cirrus cloud and C*'=C"
for an aerosol layer. For a given width to FOV ratio p, optical depth © and threshold contrast v, the target
brightness temperature T is estimated for the appropriate background temperature from Figure I.4. T
is then used in the regression equation above to determine the atmospheric contrast at that optical depth.
Inverting the equation and setting T equal to O gives the critical contrast C'(7=0,y). As discussed earlier,
IR brightness temperatures at t=0 are very close to the physical surface temperatures because these
surfaces have emissivities approaching unity and the low water vapor content of the atmosphere has a
negligible influence on the upwelling radiation.

Figure I1.8 shows critical normalized contrast contours for leads as a function of p and optical
depth for haze, ICP and cirrus cloud at two assumed values of y. As mentioned above, it is unlikely that
contrasts in the presence of strzius clouds can be sufficiently resolved for realistic values of stratus optical
depth to permit lead detection, therefore stratus is omitted from this analysis. The contours in Figure I1.8
indicate the critical contrast that a pixel must exceed in order to be designated as a lead pixel for the
assumed threshold contrast vy, again assuming mean clear-sky January conditions in the central Arctic.
Such plots can be used to estimate the minimum lead width resolvable in an AVHRR channel 4 image
under certain conditions in the following manner. Assume, for example, that the sensor’s resolution is
1.0 km (FOV = 1.0) at nadir and a 1 km thick ICP layer is present above the surface. If we prescribe a
normalized contrast threshold of 0.04 and a critical contrast of 0.2 as detection criteria, then Figure I1.8
can be used to estimate the narrowest resolvable lead in a channel 4 AVHRR image as a function of the
layer’s optical denthi. For an optical depth of 8, the width/FOV ratio is 0.35 thus, the narrowest detectable
fead would be 0.35 km wide. Under these conditions, any 1. id less than about 350 m wide would not be
detectable if the ICP optical depth exceeded 8.0. Following ihe same procedure but assuming an ICP
optical depth of 1, the minimum detectable lead width is about 0.22 km given equal threshold criteria.
If we now relax the threshold criteria and do the same analysis for y = 0.02, then a lead would need to
be only about 180 m wide in order to be resolved at a pixel resolution of 1 km if v = 8, or 110 m wide
if t=1. For any given combination of optical depth, contrast threshold and critical contrast the minimum
detectable lead width will be systematically smaller if, instead of ICP, a haze layer is present and slightly
greater if cirrus cloud is present based on this technique and the theoretical results presented in Figure I1.8.

It is suggested here that bispectral techniques be used in conjunction with image contrast analyses
to develop an operational procedure to detect and map leads in the polar regions. However, because a
continuum of signatures exist depending on atmospheric, surface and geometric effects, it will be essential
to constrain the problem by first determining the state of the atmosphere and surface using a combination
of multispectral techniques. Of particular importance will be the retrieval of surface temperatures (e.g.,
Key and Haefliger, 1992) because the thermal contrast between leads and the tackground ice pack may
be a key parameter for determining the threshold of lead detection under various conditions.
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Fig. I1.8. Critical contrast of a lead as a function of its fractional coverage within an image pixel (width/FOV) and
the 0.55um optical depth of aerosols (haze), ice crystal precipitation and cirrus cloud. For a given set of geometrical
and atmospheric conditions the contours indicate the minimum contrast (at an optical depth of zero) that must exist
in order for a lead to be detectable for specified values of threshold contr. .. y assuming a satellite viewing angle of
(°. Mean clear-sky January conditions for the central Arctic are assumed. Results are given for two values of
threshold contrast: y=0.04 and y=0.02 as defined in the text.
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I1.2.5 DISCUSSION

The theoretical results presented above are enlightening, but we have obviously oversimplified the
problems associated with lead detection. We have presented results that only represent average January
conditions in the central Arctic and consider only four discrete surface types and four idealized
hypothetical models to simulate what in nature is a complicated mix of intervening atmospheric effects.
In reality, any of these variables assume a continuum of values that change spatially and temporally.
Clouds and aerosol layers are naturally inhomogeneous having physical, radiative and microphysical
properties that vary in space and time and frequently occur as multiple layers of mixed phase particles.
Intense winds, for example, dynamically force stratiform layers sometimes creating banded structures,
especially for layers composed of condensed particles downwind of leads. The detection of leads is
further complicated by constantly changing viewing geometries related to sensor FOV, satellite scan angle
(and sun angle if daytime conditions exist). Non-linear radiative effects are caused by increasing optical
paths at the same time that pixel resolution degrades with increasing scan angle. To develop an
operational lead detection algorithm, highly parameterized models will need to be used, perhaps in
conjunction with comprehensive “look-up" tables listing expected contrast values and corresponding BTDs
for a realistic range of combined surface and atmospheric properties. Furthermore, a step-wise approach
will be necessary utilizing ancillary information to further constrain the problem. The use of cloud
Clearing algorithms is essential to assure accurate surface temperature retrievals and remote sounding
techniques need to be improved in order to resolve atmospheric temperature and humidity profiles and to
determine the physical, radiative and microphysical properties of intervening layers. Theoretically,
multispectral analyses provide a basis for estimating these properties, but in reality it may be years before
prototype methods are validi.ed and approved for operational use.
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I1.3 ICE SURFACE TEMPERATURE RETRIEVAL

The ability to retrieve surface parameters from satellite data in the polar regions is constrained by
our limited knowledge of atmospheric temperature, humidity, and aerosol profiles, the microphysical
properties of polar clouds, and the spectral characteristics of the wide variety of surface types found there.
In this section we present results in the retrieval of ice surface temperature (IST) from the thermal
channels of the Advanced Very High Resolution Radiometer (AVHRR) sensors on-board the NOAA series
satellites.

Sea and land surface temperature (SST and LST) retrieval algorithms have been developed using
the thermal infrared window portion of the spectrum, with the degree of success dependent primarily upon
the variability of the surface and atmospheric characteristics. The general approach to estimating surface
temperature is to relate satellite observations to surface temperature observations with a regression model.
Lacking sufficient observations, however, satellite radiances or brightness temperatures can be modeled
by application of the radiative transfer equation. This approach is commonly used for SST retrieval.

To our knowledge, little effort has been directed to the retrieval of the sea ice surface temperature
(IST) in the arctic, an area where the first effects of a changing climate are expected to be seen. The
reason is not one of methodology, but rather our limited knowledge of atmospheric temperature, humidity,
and aerosol profiles, the microphysical properties of polar clouds, and the spectral characteristics of the
wide variety of surface types found there. We have developed a means to correct for the atmospheric
attenuation of satellite-measured clear sky brightness temperatures used in the retrieval of ice surface
temperature from the split-window thermal channels of the AVHRR sensors on-board three of the NOAA
series satellites. These corrections are specified for three different "seasons” and as a function of satellite
viewing angle, and are expected to be applicable to the perennial ice pack in the central Arctic Basin
(Figure I1.1). We do not develop a completely new methodology; instead we modify a standard procedure
for use with arctic-specific data. It is assumed that a valid cloud-clearing algorithm exists and that only
clear sky radiances are being examined. The cloud clearing problem in polar satellite data is not trivial,
however. For a review of polar cloud detection algorithms, see Key and Barry (1989) and Sakellariou
et al. (1991).

For the retrieval of IST a multi-channel algorithm that uses empirical relationships to correct for
water vapor absorption is employed:

Teo=a+bT, +cTy + d[(T,-T;)sec6]

where T, and T, are the satellite-measured brightness temperatures (K) in the AVHRR thermal channels
and O is the sensor scan angle. The coefficients are determined through a least squares regression
procedure, where surface temperatures are regressed against modeled brightness temperatures.

AVHRR thermal channel radiances are simulated with LOWTRAN as described previously.
Directional surface eiissivities for snow are modeled (Dozier and Warren, 1982): the single scattering
albedo and asymmetry factor in the scattering phase function are calculated from the Mie equations and
the directional, wavelength-dependent emissivities are derived from the delta-Eddington approximation to
the equation of radiative transfer. The directional emissivities are then integrated with the response
function for each channel as described previously.

The use of the rawinsonde profiles in modeling the surface tem-rature requires an additional step
since the first measurement in each profile is the shelter tempeiuc . not the surface temperature.
Therefore, the (unknown) surface temperature for each profile is a<-igned a series of values representing
the range of possible surface temperatures for the observed conditions during the month to which the

rofile belongs. An energy balance model (Maykutr, 1982) is used to determine these surface temperatures,
based on the observed range of shelter temperatures and wind speeds (the mean +1 standard deviation)
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in the ice island data for each month.

The seasonal dependence of the coefficients is illustrated in Table I1.4, where coefficients from
each season were applied to data from every other season. Results are shown for NOAA 9 and indicate
errors between 0.1 K for transition coefficients with winter data and 0.6 K when summer coefficients are
used with winter data. Similarly, the satellite dependence of the coefficients is shown in Table IL.5 for
summer conditions. On the average, errors ranging from 0.1 to 1.0 K, depending on season, can be
expected when applying coefficients derived for one satellite to data from another, the smallest errors
occurring between NOAA 7 and 9 coefficients and data. Using SST coefficients developed for the North
Atlantic and the Greenland Sea area to estimate IST would result in an underestimate of up to 0.7 K,
largest in winter and at scan angles of 40° and greater. While the sensor scan angle is included explicitly
in the correction equation, its effect in the dry arctic atmosphere is small, generally less than 0.1 K.

Surface temperature measurements taken by a PRT-5 thermal radiometer during CEAREX in
March 1989 were compared to estimated ISTs from NOAA 11 AVHRR data. The mean IST for a sample
of four AVHRR pixels was 258.9 K while the mean PRT-5 temperature (adjusted for an emissivity of
0.998) of four consecutive measurements one kilometer apart was 259.04 K. Given the difficulties in
comparing the two data sets these results are encouraging.

In summary, using the split window channels and scan angle, the rms error in the estimated ice
surface temperature is less than 0.1 K in all seasons. Inclusion of channel 3 (3.7 pym) during the winter
decreases the rms error by less than 0.003 K. Overall, employing the IST coefficients results in increased
accuracy of up to 0.6 K over SST cocfficients developed for the North Atlantic and the Greenland Sea
areas.

Additional details are provided in Key and Haefliger (1992).

Table I1.4. RMS error in applying coefficients (NOAA 9) developed for one season (left) to data from
another (top).

Data from:
Winter Summer Transition
Coefficients:
Winter 0 0.403 0.128
Summer 0.587 0 0.342
Transition 0.117 0.219 0
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Table II.5. RMS error applying coefficients (summer) developed for one satellite (left)

to data from another (top).

Data from:
NOAA 7 NOAA 9 NOAA 11
Coefficients:
NOAA 7 0 0.272 0.655
NOAA9 0.296 0 1.017
NOAA 11 0.682 0.96! 0

89
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PART III: ANALYSIS OF LEADEX AND OTHER IN SITU DATA

In this section we discuss data collected during LEADEX and its application to some of the
procedures and models described in the previous sections. These applications are not exhaustive, but do
provide some insight into problems that remain in the satellite remote sensing of leads.

1.1 ARCTIC AEROSOLS

The June 1991 eruptions of Mount Pinatubo ejected massive amounts of debris and sulfur dioxide
gas into the stratosphere. Increased concentrations of aerosols in the stratosphere can perturb the radiative
balance of the entire earth/atmosphere system (e.g., Minnis et al., 1993; Har:sen et al., 1992; Dutton and
Christy, 1992). This "volcanic forcing" is characterized by tropospheric cooling caused by an increase
in the planetary albedo and by stratospheric warming primarily due to infrared absorption by aerosol
particles. After reacl’ ‘g a peak, the stratosphere’s opacity normally decays exponentially in time at a rate
dependent on the magnitude, time of year and location of the eruption (e.g., Gerber and Deepak, 1984;
Hofmann and Rose::, 1987). Although the net radiative effect of atmospheric aerosols depends on many
factors, the optical thickness and effective size distribution of the aerosols are most important (Lacis et
al.,, 1992). Aerosol optical thickness is a nondimensional parameter used to quantify the spectral
extinction of direct solar irradiance by aerosols integrated along a path between an observer and the sun.
If measurements of extinction can be obtained over a suitable range of wavelengths, then an effective size
distribution of an aerosol laver can be inferred (King et al., 1978).

During the spring of 1992 an extensive series of in situ measurements were made using airborne
techniques as part of the Fourth Arctic Gas and Aerosol Sampling Program (AGASP-IV) in conjunction
with the Arctic Leads Experiment (LEADEX). Nearly 1300 spectral measurements of solar irradiance
were made from near the surface into the stratosphere using handheld sunphotometers during seven flights
of the NOAA WP-3D aircraft. We focus here on an analysis of the stratospheric data to quantify the
spectral opacity and infer effective size distributions for the Pinatubo aerosols present in the Arctic.
Ancillary surface measurements are presented in support of the aircraft data analysis and are further used
to estimate a decay rate of stratospheric optical depth following the period of peak aerosol concentration.

While the radiative transfer modeling results presented in previous sections indicates that aerosols
play a relatively small role in the remote sensing of leads using thermal data, the results presented in this
section are important because

1. the aerosol amounts measured are twice the value typical of the Arctic so that their impact on
leads remote sensing in the thermal portion of the spectrum cannot be ignored, and

2. multiple scattering of shortwave radiation by aerosols is significant, especially at the levels
measured.

While we have not emphasized remote sensing with shortwave sensor channels, they provide a potentially
valuable source of information and should be the focus of future research.
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I11.1.1 MEASUREMENTS

The data are derived from two types of radiometric observations: (1) airborne and surface-based
measurements made using sunphotometers, and (2) direct beam, wideband solar irradiance measurements
made at a ground station. The primary data are derived from spectral measurements made during flight
segments flown above the tropopause. Additional sunphotometer measurements were made at the surface
near Resolute, N.-W.T., as part of the 1992 and 1993 Seasonal Sea Ice Monitoring and Modeling Site
(SIMMS) field programs (Reddan et al., 1992), and in the vicinity of Anchorage, Alaska. The
sunphotometer observations were made using two handheld, dual-channel instruments that sense directly
transmitted solar irradiance at 380 and 500 nm, and at 778 and 862 nm, respectively; each channel having
a nominal half-bandwidth of 5 nm and a field of view of 2.4°. The wideband (350-695 nm) pyrheliometer
data were collected at the NOAA Climate Monitoring and Diagnostics Laboratory’s Barrow Observatory
(CMDL/BRW). The "wideband method" used to estimate optical depth was described by Dutron and
Christy (1992). Only data collected during cloud-free periods are analyzed. The locations and dates
corresponding to the various measurement periods are shown in Figure III.1. The curved vectors are back-
trajectories representing stratospheric winds prior to each flight.

Fig. IIl.1. Distribution of sunphotometer measurements made during AGASP-IV/LEADEX stratospheric flight
segments and at surface locations (ANCH, TALK, and SIMMS). Wideband pyrheliometric measurements were made
at the Barrow Observatory (BRW). Curved vectors represent stratospheric winds for 36 hours prior to each flight
(back-trajectories).
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Airborne observations were made through optical glass winaows whenever viewing was possible
within £30° of the solar azimuth relative to a plane perpendicular to the aircraft heading (e.g., Dutton et
al.,, 1989). The sunphotometers were carefully calibrated at high-altitude sites before ~nd after AGASP-IV
and again prior to SIMMS’93 in accordance with recommended procedures using the Langley plot method
(Shaw, 1983). Each instrument was determined to be stable with precision of about 0.002 optical depth
units (ODUs). All optical depth values reported ia this paper account for Rayleigh scattering, ozone
absorption at 500 nm, and changes in relative airmass as a function of time and location. Attenuation by
the optical glass was also accounted for when reducing the aircraft data. Thus, from total slani-path
irradiance measurements, columnar aerosol optical depths were computed. Estimated uncertainties due
to all sources of error are no more than 0.02 ODUs (Reddy et al., 1990), or less than 10% of typical
values reported here. The wideband measurements are accurate to within £0.04 ODUs (Dutton and
Christy, 1992).

II1.1.2 RESULTS
II1.1.2.1 Stratcspheric Aerosol Optical Depths

L. y direct measurements made above the tropopause and the clear-sky, ground-based
measurements were selected for analysis. Tropopause heights for each flight were determined on the basis
of the analyses of Herbert et al. (1993); these range from about 7 km to 10 km, depending on
geographical location and synoptic conditions. Stratospheric components were estimated from the surface
measurements of total-column optical depth by subtracting predetermined "background" values for the
troposphere, a method also used by Asano et al. (1993). For our purposes the March 1979-1982 monthly
mean background values of spectral aerosol optical depth estimated for BRW (Durron et al., 1984) were
systematically subtracted from the respective measured values. Note, however, that March background
values are typically smaller than those for April and larger than those for May or Tune based on recent
wideband analyses (Dutton, unpublished data). Figure III.2 shows the mean stratospheric aerosol optical
depths, plus and minus one standard deviation (x16), derived from observations made at the corresponding
times and locations shown in Figure III.1. The tropospheric background values used to correct the surface
measurements are also shown with ranges of uncertainty indicated.

Several features of Figure II1.2 are notable. First and most important, the values derived for all
times and locations are 1 to 2 orders of magnitude greater than stratospheric backgrouud levels (Toon and
Pollack, 1976), these values also exceed similar measurements made in the Arctic approximately a year
after El Chichon erupted (Spinhirne and King, 1985; Dutton er al.. 1984). Second, optical depths derived
from the aircraft observations tend to be rather flat spectrally in the visible range compared with the 1992
surface results. Third, three of the flights, 403, 406 and 407, indicate a high degree of homogeneity in
time and space, as evidenced by their small standard deviations, similar magnitudes, and spectral
dependencies. Fourth, the values for flight 402 are about 60% lower than those measured during flight
407 despite their having similar flight tracks and altitudes relative to the tropopause. Fifth, the curve for
SIMMS’92 also falls below all of the AGASP curves except for that of tlight 402, suggesting that either
temporal and/or spatial variations occurred over the period and geographical region represented by these
data, or that the SIMMS data are negatively biased due to incorrcci assumptions made regarding the
tropospheric background corrections. And last, the values for SIMMS '93 are significantly lower and have
a different spectral signature than those for SIMMS'92, indicating a decay in onacity from one year to the
next as well as a change in microphysical characteristics.
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Fig. 1II.2. Mean stratnspheric spectral aerosol optical depths derived for the flight segments and surface locations
shown in Figure III.1. Slight spectral offsets are used to clearly indicate values at plus and minus one standard
deviation (vertical bars). S$92 and S93 are averages of the SIMM'92 and SIMMS'93 data, respectively (only 380
and 500 nm measurements were made in 1993); ANCH is the average of the Anchorage (ANCH) and Talkeetna
(TALK) data. The TBG curve (adapted from Dutton et al. (1984)) gives the values and estimated ranges of the
tropospheric background corrections used to derive stratospheric optical depths from the surface-based measurements.

I11.1.2.2 Inferred Aerosol Size Distributions

Based on the data presented in Figure II1.2, effective aerosol size distributions were inferred using
the constrained linear inversion algorithm of King et al. (1978). The radius sensitivity (r,,, S 7 < r,.)
(Spinhirne and King, 1985) determined for our particular set of measurements was within the range
7,:,=0.10 £0.02 ym and r,,,,=1.10 £0.10 pm. We assumed an index of refraction of 1.45-0.0i based on
earlier in situ observations of the Pinatubo aerosol layers (Deshler et al., 1992). The inversion results are
presented in Figure IIL.3. Each curve shows the total number concentration dN (cm?) for seven radius
increments [dlog(r)]. The vertical bars indicate the range of number density determined by inverting the
mean spectral optical depth data £1o. We find that, for the period and geographical region of interest,
the inferred size spectra tend to fall into two groups. Both are bimodal, having a large-particle mode
centered at about 0.50 pm radius and a small-particle mode of higher concentration peaking below about
0.18 ym. These results suggest that the volcanic aerosols present in the Arctic about 10 months after
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Pinatubo crupted were slightly larger than the newly formed particles observed over Laramie, Wyoming
several weeks after the eruption (Deshler et al., 1992) but were smaller than those estimated by Asano et
al. (1993) in Japan approximately 2 months before the Arctic observations were made. Their independent
determinations of size spectra also show the bimodal feature noted here attributed to the superposition of
a monodisperse large-particle (volcanic) mode onto a small-particle (background) mode. Similar bimodal
size spectra were inferred using photometric measurements made at high northern latitudes about a year
after El Chichon erupted (Spinhirne and King, 1985).
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Fig. I1.3. Effective aerosol size distributions showing the range of number concentrations dN (cm'® at each radius
interval [dlog(r)] inferred from the optical depth data shown in Figure III.2.

I11.1.2.3 Time Decay of Stratospheric Opacity

To evaluate the decay of the Pinatubo aerosol layer(s), we analyzed the BRW optical depth data
and the spectrally-weighted average of the 380 and 500 nm SIMMS observations for the successive 1992
and 1993 spring periods. At BRW the optical depth reached an average peak value of about 0.19 during
early May 1992 and declined thereafter (updated frem Dutton and Christy (1992)). Assuming that optical
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depth t decays exponentially in time ¢ after reaching its peak value 1, i.e., ©(1) = T, exp(-1/T), a fit to
the BRW data yields a time constant 7 of 13.3 months. A corresponding fit to the SIMMS data yields
a time constant of 13.7 months, assuming that the peak opacity also occurred during May 1992 and that
the BRW seasonal background tropospheric corrections were valid for the SIMMS site. We give credence
to these estimates because independent measurements from geographically distinct sites were used to
obtain very similar results noting, however, that the actual overall decay of volcanic aerosols may not be
well represented by a smooth exponential function (Hofmann and Deshler, 1987). At least another year
of monitoring is needed before our results can be corroborated. Our preliminary analysis suggests that
the Pinatubo aerosols are being systematically removed from the Arctic stratosphere, but at a slower rate
than estimated following earlier volcanic eruptions. On the basis of in siru midlatitude measurements of
aerosol size distributions, Hofinann and Deshler (1987) estimated the decay rate (e-folding time) of total
stratospheric mass after the El Chichon eruption to be about 10.3 months and between 8 and 10 months
following the 1974 eruption of Fuego in Guatemala. High-latitude satellite observations of 1.0 pm
stratospheric aerosol optical depth (McCormick and Trepte, 1987) also exhibited faster decay rates
following the 1980 Mt. St. Helens and the El Chichon post-volcanic periods than we report here.

I11.1.3 DISCUSSION

It appears from Figure II1.2 that temporal and/or spatial variations in stratospheric aerosols
occurred in the Arctic during spring 1992. The lower relative opacity noted for flight 402 can be
explained by differences in synoptic conditions during the respective flight periods (Herbert et al., 1993).
During flight 402 strong northerly winds transported polar air into the region whereas for the later three
flights moderately weak southerly flow was generally observed. An analysis of isentropic back-trajectories
(e.g., Harris and Bodhaine, 1983) based on the ECMWF 2.5° gridded data supports the svnoptic analyses.
Figure III.1 shows 36 hour back-trajectories representing the flow at altitudes ranging from about 14.5 to
15.8 km referenced to the respective midflight segments. This analysis suggests that relatively clean
Arctic air displaced or mixed with lower latitude air, effectively reducing the stratosphere’s opacity prior
to flight 402. The formation of the polar vortex during the previous autumn/winter probably prevented
high concentrations of Pinatubo aerosols from penetrating the central Arctic. Similar gradients related to
the position, size, and shape of the polar vortex were observed several months after E1 Chichon erupted
(McCormick et al., 1983).

The relatively large 380 nm optical depths measured during flight 402 and at all the surface
locations during spring 1992 (Figure II1.2) indicate fundamental differences in the aerosols’ microphysical
properties compared with the results of other flights or the SIMMS '93 data which show less variation over
the visible wavelengths. The apparent increase in attenuation at 380 nm is most likely due to the presence
of higher concentrations of small particles (Figure II1.3) that have greater extinction efficiencies as the
ratio of size-to-wavelength (r/A) increases (van de Hulst, 1981). Because such enhancements are most
pronounced in the results derived from highly variable surface measurements we suspect that tropospheric
haze, not visible against the "milky" appearing stratosphere, may have contaminated these particular
results. The sharp decreases evident at the large-particle end of the inferred size spectra are attributed to
the observed decreases in opacity for A > 778 nm.

Finally, we speculate that the apparent longevity of the relatively large Pinatubo aerosols in the
Arctic may be due to the vaporization and regrowth processes discussed by Hofinann and Rosen (1987),
possibly augmented by general circulation patterns that favor the heating of the Arctic stratosphere during
winter (Robock and Mao, 1992) and the accumulation of aerosols at high latitudes.
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II1.2 LEAD CHARACTERISTICS FROM CO-LOCATED
AVHRR, DMSP OLS, LANDSAT TM, AND ERS-1 SAR

In Section I we describe theory and observations outlining the effects of spatial resolution on lead
statistics. Here we apply and extend those results to additional data sets. To compare whether substantial
differences might exist in lead statistics derived from different image types, we have assembled a data set
consisting of AVHRR direct-readout imagery, Defense Meteorological Satellite Program (DMSP)
Operational Line-scan System (OLS) data, Landsat Thematic Mapper (TM) images, and ERS-1 synthetic
aperture radar (SAR) data for 15 April, 16 April, and 18 April 1992. The TM and SAR imagery were
co-registered as part of a separate NASA-funded effort. The AVHRR imagery were obtained from Ron
Lindsay (Univ. of Washington), with additional AVHRR and OLS provided by Florence Fetterer of NRL.
Pixel sizes for the georeferenced data were 1 km (AVHRR), 0.5 km (OLS), and 25 m (SAR and T™M).
For comparison, the AVHRR and OLS sections corresponding the the SAR and TM coverages were
subsectioned out, and the SAR and TM resampled to | km pixels. For a variety of reasons, not all data
sets were co-registered with each other. The matching data sets are OLS and AVHRR thermal channels
for 15 April; AVHRR (all channels) and TM (all channels for 16 April; SAR (15 April) ccregistered with
the 16 April AVHRR and TM; and all AVHRR and TM channels for 18 April. The image sets for 15
and 16 April are discussed here.

The lead-statistics program (hereafter "LEADSTATS") described in Section 1.3.1 was used to
calculate leads data from each image section. The images were first converted to binary "lead/not-lead"
images using an interactive thresholding procedure. Thresholds were set to capture as many apparent leads
as possible (open water and thin-ice leads) in each image. While this procedure is subjective, it allowed
us to maximize the information content in each image. The resulting binary images were then processed.

II1.2.1 AVHRR AND OLS: EFFECTS OF SPATIAL AND RADIOMETRIC RESOLUTION

Figures I11.4a and I11.4b show co-located OLS and AVHRR thermal-band imagery, with a pertion
of each image resampled (nearest-neighbor sampling) to equivalent pixel sizes of 250 m (Figure II1.5a and
II1.5b). In this example, the greater radiometric resolution of AVHRR tends to outweigh the effects of
lower spatial resolution; the AVHRR data capture the same lead patterns as visible in the OLS, as well
as showing additional lower-contrast leads (either refrozen or narrow open-water leads) that are not
resolved in the OLS image. However, the effect of the lower spatial resolution of AVHRR vs, OLS is
shown in the apparent lead widths in the two images, where the AVHRR data suggests wider leads than
is indicated in the OLS. Both the radiometric and spatial resolution effects are depicted in a transect
through the two images (Figure II1.6). In this example, most of the leads are 2 digital numbers (DN) or
less of the ice background DN value in the OLS data. The tendency for AVHRR to overestimate lead
width relative to OLS is apparent at locations 150 and 725 along the transect. This difference obviously
depends on the threshold selected to define leads. In Figure III.7, for example, selecting a threshold for
each image type to capture only the warmest pixels yields quite similar results. Along this transect, the
thresholds used in Figure II1.7 results in 8.0% of the transect mapped as leads in the AVHRR data, and
7.0% in the OTS data When the same thresholds are applied to the full image subsets in Figure iii.4,
the difference in lead area is greater (total lead area of 18.2% in the OLS and 28.5% in the AVHRR),
indicating the difficulty of selecting a single threshold to yield uniform results acrose even a relatively
small portion of images.

The detail in the AVHRR data due to the greater radiometric resolution compared to OLS has a
large effect on the ability of the LEADSTATS routine to define leads with high confidence. For cxampie.
when cloud cover is excluded from the images shown in Figure 111.4, and thresholds manually selected
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to highlight leads, LEADSTATS identifies only a single clearly-defined lead and 3 ill-determined leads.
In the AVHRR image, 87 leads are clearly defined, with another 130 ill-determined leads. While this
difference might be reduced by trying a variety of thresholds, it points out that mapping of lead area using
spatial patterns and context is even more sensitive to radiometric information than is lead-area mapping
using thresholds only.

111.2.2 LANDSAT THEMATIC MAPPER, AVHRR, AND SAR: EFFECTS OF RESAMPLING,
WAVELENGTH, AND SCALE

As noted above, a set of Landsat TM, AVHRR, and SAR data were assembled to allow lead
features to be intercompared at different spectral wavelengths and spatial sampling (Figure IIL8).
Obvious features of this set are the close correspondence between the AVHRR and Landsat T™M Ch. 2
image (originally 30 m field-of-view resampled to 1 km pixel size) and the utility of the Landsat thermal
channel (Ch. 6; originally 200 m field-of-view) to discriminate open water from refrozen leads. Also
apparent are large differences between the SAR image and the TM and AVHRR data. The SAR image
was acquired one day earlier, but the lack of direct correspondence to the TM and AVHRR imagery is
typical of data compared elsewhere. Figure II1.9 highlights the differences between the SAR and TM Ch.
2. These differences are apparently due to a large range in surface backscatter that is not necessarily
related to ice thickness, whereas the albedo and temperature information in the TM and AVHRR data
appear to be more directly related to open-water and refrozen leads. The intermediate backscatter of areas
indicated as open water in the TM and AVHRR suggests that the open-water areas are being roughened
by wind, and thus not spectrally distinguishable from thin ice. Differences between ERS-1 SAR and
optical and thermal-wavelength data are discussed in further detail in the following section on the
evolution of lead patterns in response to atmospheric circulation. A comparison of Landsat thermal
channel 6 and AVHRR thermal channel 4 (Figure III.10) points out the effects of the higher radiometric
resolution of AVHRR, which shows more lead detail in spite of AVHRR’s lower spatial resolution. The
effects of this lower spatial resolution on apparent lead width is also demonstrated in this figure.

While the TM and AVHRR data are qualitatively similar when mapped to equivalent pixel sizes,
comparisons of statistics of lead-covered area can vary considerably depending on the threshold used to
define lead area in the AVHRR data. Selecting a threshold that delineates most of the leads in the
AVHRR data yields substantial overestimates of lead area compared to lead area mapped from TM data
gridded to a 50 m pixel size. For example, selecting thresholds in this manner for AVHRR Ch. 2 and Ch.
4 yields lead areas of 4.7% and 3.0%, compared to 0.8% in the 50 m TM Ch. 2 data. To explore this
issue of how lead statistics intercompare across different fields-of-view, we apply a method discussed in
Key et al. (1993b) and in Section 1.3.5.2 of this report. In this approach, it was noted that lead area
mapped using a single threshold tends to decrease roughly linearly with pixel size. This decrease is due
to the progressive loss of radiometric contrast of lead pixels with surrounding ice pixels as spatial
resolution decreases. Thus, by calculating lead area L at resolution K, and K', where K’ is a resolution
degraded following some spatial interpolation method, then the resulting slope can be used to estimate L
at some finer spatial resolution.

To test this approach as a means of intercomparing lead area estimated at difference pixel sizes,
we degraded the 1 km AVHRR for 16 April to pixel sizes of 2, 3, and 4 km using bilinear interpolation.
The TM data were also degraded to 50, 100, 200, S00, and 1000 m pixels. In keeping with the
assumption of loss of lead area with decreasing resolution, a threshold should be selected such that only
the darkest (in upucal wavelengths) or warmest lead pixels are flagged as lead area. The alternate
approach of selecting a threshold to mavimize the apparcnt lcad coverage produces an overcstunate of lead
aiea. Given that radiometric contrast decreases as leads no longer fill a single pixel, attempting to select
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an intermediate threshold value then places entire pixels into a lead-area class, when in fact only a portion
of that pixel (or perhaps none of the pixel, depending on the spatial interpolation used) actually consists
of lead area. Thus, when as above, we select a threshold in the AVHRR data to highlight the lead
patterns, the result was about 5 times more lead area than actually exists, based on the I.andsat TM data.
While this effect of threshold selection may be intuitively obvious, the tendency nontheless is present to
select thresholds that give the most visually pleasing maps of lead networks. However, selecting a
threshold by the "minimum rule" given above is not only more realistic of the true situation, but also lends
itself to automated processing, where the image can be scanned for minimum reflectances or maximum
temperatures to provide the appropriate thresholds.

Thresholds selected in this manner produced the following lead-area proportions in the full-
resolution and degraded AVHRR and Landsat data. In the case of the Landsat data, a threshold was first
selected using the 50 m image, and then applied to the degraded data, e.g., as a test of what happens when
the true reflectence of an open lead is known.

Table III.1. Lead area as a proportion of total ice area, estimated using a "minimum-rule” threshold from
AVHRR imagery degraded from 1 km to 4 km pixel sizes using bilinear interpolation.

Channel 1 km 2 km 3 km 4 km
Ch. 2 0.63% 0.31% 0% 0%
Ch. 4 0.28% 0.19% 0.14% 0%

Table II1.2. Lead area as a proportion of total ice area, estimated using a "minimum-rule” threshold from
Landsat TM imagery degraded from 50 m to 1 km pixel sizes using bilinear interpolation.

Channel 50 m 100 m 200 m 500 m 1 km
Landsat TM 2 0.78% 0.72% 0.63% 044% 0.23%

The change in lead area with pixel size is essentially linear in the AVHRR data. From the slopes of these
lines, we can estimate the lead area at a pixel size of 50 m, which we can take to represent the true areal
coverage of leads. Applying this to the AVHRR Ch. 2 and Ch. 4 data yields estimated lead area at 50
m pixel sizes of 0.93% for Ch. 2 and 0.37% for Ch. 4. The combination of the minimum-rule threshold
selection and this adjustment for pixel size takes the lead area proportion in the correct direction, although
with the small lead fractions in these data, the effect of the change is fairly small. Using the Landsat data
as, for example, a MODIS-type product where one wished to estimate lead area from 500 m data, and was
able to use a subset of a higher-resolution MODIS channel or coincident Landsat data to define a "true"
lead reflectance threshold, then by degrading the 500 m data to | km, the resulting slope results in an
estimated lead area of 0.63% for a 50 m pixel size. This is clearly an improvement over simply using the
lead-area estimate from the 500 m data alone. If nothing else, this approach helps to avoid overestimating
lead area from low-resolution data, while offering an adjustment that compensates at least partly for the
loss of contrast with interpolation.

t
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The detail present in the full-resolution TM data (not shown) make the TM imagery particularly
well-suited to test the effects on lead statistics of spatial resampling. Using LEADSTATS, 177 well-
defined leads (representing 1.7% of the total area) were identified in the full-resolution TM image, 43
leads (also 1.7% of the image area) at 100 m pixel size resampled using nearest-neighbor sampling, and
48 leads (1.5% of the area) at 100 m resampled using bilinear interpolation. The difference between the
sampling methods is typical of the loss of spatial pattern but retention of radiometric integrity offered by
nearest-neighbor sampling, whereas bilinear interpolation tends to retain the linearity of leads but due to
irterpolation. a portion of lead pixels are lost due to radiometric averaging with surrounding ice pixels.
This trade-off between retaining spatial patterns and preserving the spectral signatures will depend on lead
width, since the detectability of narrow leads will be more affected by spatial interpolation than will large
leads. The effects of interpolation are also dependent on the contrast between leads and the surrounding
ice cover.

To investigate the effects of AVHRR spectral channel on lead retrieval, lead statistics were
calculated from AVHRR channels 1-4 at 1 km pixel size, and from the SAR image resampled to 1 km
pixels (e.g., the image sets in Figure III.8). More lead segments are defined using AVHRR Ch. 1 (39
leads) than Ch. 2 (29 leads) perhaps due to the slightly greater contrast between open water/thin ice and
snowcover in Ch. 2. The total lead area is about the same (approximately 4% of the image area). With
the AVHRR thermal channel 4, 15 leads are found (about 1% of the area). The difference between the
lead-area estimates at the optical and thermal wavelengths appears to be a reasonable estimate of the
differences between the proportions of open water and thin ice within the pack. In the SAR image, the
total number of lead fragments identified (15) and total lead area (1%) were similar to the AVHRR data,
although the actual areas classified as lead bore little resemblance to leads mapped in the AVHRR data.

II1.2.3 EVOLUTION OF LEAD PATTERNS IN AVHRR AND ERS-1 SAR DATA

Spaceborne SAR is the only sensor that can produce sequential coverage of the ice pack under
all weather conditions at spatial resolutions suitable to detect individual leads. In principal then, SAR data
should be well-suited for observing the evolution of leads under different wind and ice-motion regimes.
However, as demonstrated above, substantial uncertainties exist in how leads actually appear in terms of
backscatter properties, compared to lead patterns apparent in optical and thermal-wavelength imagery.
To investigate whether the analysis of a sequence of SAR images rather than a single scene can aid in
interpreting lead patterns, a time series of SAR data has been interpreted for locations in the Beaufort Sea
during periods of strong synoptic activity during 15-31 October 1991, and for an annual cycle from
October 1991 through October 1992 (Maslanik et al., 1993; Heinrichs et al., 1993). Results from the
October case study is discussed below. This work was also supported by NASA funds, where the
SAR-derived lead fractions and ice concentrations were compared to SSM/I, AVHRR, and ice model
output. Here, we focus on the leads-mapping issue.

For the 15-31 October case study, three sets of SAR imagery resampled to 100 m pixels were
acquired for three locations in the central Beaufort Sea. Three to four overlapping images were selected
for each site. As in the examples cited above, a backscatter threshold was selected for each image to
discriminate as well possible open water/thin ice from first-year and old ice in the uncalibrated SAR
images. Statistics on numbers of leads, lead width, and orientation were derived for each image using the
LEADSTATS program, Visual interpretation of the SAR time series sets provides the best indication of
how lead patterns evolve under the different wind regimes in the October case. Ice motion is slow
enough to allow observation of the same features in the ice pack over most of the sampling period. At
all three sites, no leads are visibie in imagery acquired on 17 October, prior to the passages of deep
low-pressure systems on 21-23 October. As the lows move through the region, leads develop in the
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central Beaufort oriented in nearly the same direction as the geostrophic winds. By 26 October, the lead
orientations have changed to primarily north-south in the northern and central Beaufort sites, with no
leads visible at the southern site. The same pattern is present on 29 October at each site.

Using the LEADSTATS routine, the maximum amount of any of the SAR images classified
definitely as lead area did not exceed 0.7%. When all pixels with backscatter values below the
classification threshold were included, the estimate of open water/thin ice area is still small for all the SAR
images studied for the October case, with little evidence of a large-scale opening of the pack due to
passage of the strong synoptic systems. Fither little change in open-water fraction occurs due to the
variable winds, or the changing ice conditions are not apparent in the SAR data. The time span between
images is long enough to allow refreezing. However, since some leads remain visible over 5 to 9 days,
it is likely that some evidence of a substantial opening of leads would be apparent. It is also possible
that openings occur that are sufficiently small to be undetected ai ihe SAR pixel size (100 m in the Lo-Res
imagery used here). Analyses using full-resolution (25 m) ERS-1 SAR imagery for a different application
(Steffen et al., 1993) did not suggest that the resampling to 100 m resulted in a significant change in
open-water/thin ice fraction. However, this comparison needs to be repeated for the specific cases
considered here.

Discrimination of leads in SAR data is complicated by the complex backscatter properties of open
water and thin ice. As noted above, the main sources of uncertainty and lack of unique backscatter
signature are the effects of wind speed (affecting open water areas), and variability in surface dielectric
properties and surface roughness that can occur in thin ice forming in leads. Open-water areas can have
very low backscatter under calm conditions with backscatter increasing as wind speed increases, such that
open-water leads can be indistinguishable from surrounding ice, as is apparently the case in the
comparison of Landsat TM, AVHRR, and SAR discussed earlier. If wind speeds are high enough, and
perhaps depending on wind direction and lead orientation, open-water areas can be the highest-backscatter
features in SAR images (Steffen, et al., 1993).

AVHRR data for the October case study provide a qualitative look at sea ice conditions, although
cloudiness is too extensive to permit digital classification of ice concentration from AVHRR during much
of the period. In general, as was the case with the comparison with TM and SAR, the AVHRR data
suggest greater amounts of leads than the SAR data indicate. Given the relationships of SAR backscatter
to a number of factors such as wind speed, surface brine expulsion, and frost-flower formation, it is quite
possible that leads apparent in AVHRR thermal-channel data will not be visible in the SAR. For example,
Figure II1.11 shows co-registered AVHRR and SAR coverages for 29 October. While the large leads in
the SAR are also visible in the AVHRR thermal-band data, other leads apparent in the AVHRR image
do not appear in the SAR. The physical temperatures of the leads in this AVHRR image average about
5 K warmer than the surrounding ice (245 K vs. 240 K), indicating that the leads either consist of young
ice (rather than open water), or are narrower open-water leads that, through resampling and interpolation,
appear as wider, lower-temperature features. A threshold classification of this portion of the AVHRR
image corresponding the the SAR scene yields about 7% of the area as open-water/thin ice ("warm" ice)
65% first-year ice (mid- temperature ice), and 28% old ice ("cool" ice).

Since the apparent lead temperature at the AVHRR field-of-view is a function of lead width, lead-
surface temperature, and ice-surface temperature (e.g., the observed pixel temperature is a mixture of
temperatures of the lead and ice surface), then knowledge of lead width reduces this system to a single
unknown (lead-surface temperature) if we assume that accurate lead width can be estimated from SAR,
and ice-surface temperature can be reasonably estimated from AVHRR data elsewhere in the image. Thus,

T, = (T - T,PY/P, .,
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where T, is the lead-surface tempeature, Ty is the observed AVHRR pixel temperature, T, is the thick-ice
surfacc temperature. P, is the proportion of thick ice in the pixel, and P, is the proportion of lead in the
pixel. For the image in Figure III.11, using the large lead in the center of the images, T, = approximately
243 K, T,= 240 K, and since lead width from the SAR is about 400 m and the AVHRR pixels are 2 km
by 2 km, P, = 400 m/2000 m and P, = (2000 m - 400 m)/2000 m. From the above equation, T, thus
equals 255 K, suggesting that the lead is in fact refrozen. The single example given here could be refined
by using full-resolution (12.5 m) SAR to get estimate lead width as accurately as possible, since if the lead
is in fact 200 m wide, then T, is near 270 K. Alternatively, if it is known that the lead is actually open
water, such as if wind roughening yielded a very high backscatter clearly due to wavelets on the water
surface, then this knowledge can be used to constrain the estimate of lead width. In the case given above,
for example, the lead would be unlikely to be much smaller than 200 m, since T, then becomes greater
than the freezing temperature. A 100 m lead would require a T, of about 300 K. Given this surface
temperature, and also wind speed, radiation, conductivity, and ocean heat flux, a rough estimate could be
made of the ice thickness within the lead. Another application of this pixel "unmixing" through
corcbination of SAR and AVHRR might be to define a true reflectance or surface temperature for leads,
which could then be used in the procedure discussed earlier to correct lead-area estmates for pixel size.
This would be equivalent to the degraded-Landsat example, where the best threshold to use was known
(since it was determined from the 50 m TM data). In this case, however, the threshold does not require
a high-resolution image such as Landsat, and can make use of the wider availability of SAR data.

As one would expect from the operation of the leads-mapping routine, area classified as leads is
substantially smaller than total open water/thin ice area defined by a simple threshold. In the case of the
SAR data studied here, the "spatial coherence” criteria that the leads-mapping routine uses to define leads
is particularly important, since manual interpretation of the SAR data shows that much of the area
classified as open water/thin retain a consistently low backscatter over the full 15-day study period, which
is unlikely given the expected refreezing of open water areas. The lead areas, however, evolve in a logical
manner over time. These results indicate that, as suggested by other investigators, some of the uncertainty
in SAR classification can be alleviated using pattern recognition tools in addition to simple backscatter
thresholds.

II1.2.4 SUMMARY

Comparisons of the different image types allows us to assess the effects of spatial resolution,
radiometric resolution, resampling method, and temporal information on leads mapping. AVHRR and
Landsat Thematic Mapper imagery (resampled to match the AVHRR pixel size) contain essentially the
same information in terms of discimination of leads. The choice of resampling methods (bilinear
interpolation or nearest-neighbor sampling) depends on whether retention of spatial patterns or radiometric
information is most critical.

While SAR data clearly contain leads information, comparison to the other image types shows that
the variable backscatter of thin ice and open water in the single-channel, singlc-polarization ERS-1 SAR
substantially complicate the interpretation of leads, and can potentially cause large errors when automated
leads mapping routines. Accurate discrimination of lead features in single- channel SAR data will likely
require spatial operators. However, even when spatial features such as linearity and orientation are used,
SAR classification is limited by a variety of factors that can render lead backscatter indistinguishable from
the backscatter of the surrounding ice. It is likely that the best classifiers will consider both spatial and
temporal patterns and changes in backscatter, as well as the actual backscatter values themselves.

For cases where the same leads are apparent in both SAR data and AVHRR, then it should be
possible to estimate the lead surface temperature from the AVHRR thermal channels, given the "true" lead
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width as estimated from the SAR data. An example is given for a matched set of AVHRR and SAR
images. This combination could unambiguously define open-water leads from refrozen leads. Also, with
additional information such as air temperature, winds. and oceanic heat flux, this surface temperature could
be used to derive the ice thickness within refrozen leads. In practical terms, the accuracy of this approach
is limited by differences in acquisition time between the SAR and AVHRR data and. to a much less
extent, errors in retrievals of surface temperature from AVHRR. Other potentially valuable approaches
exist that take advantage of combinations of data and ancillary information to, for example, estimate lead
fraction when wind speeds are known (Heinrichs et al., 1993), or to calculate wind speeds when leads are
known to be open water (Steffen et al., 1993).
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Fig. I11.4.  Co-located DMSP OLS (a, top) and AVHRR (b, bottom) thermal-wavelength imagery for the
central Beaufort Sea on 15 April 1992, Pixel dimensions are 1 km for AVHRR and 250 m for OLS.
Warmer areas appear brighter.
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Fig. [IL5. Enlarged portions of OLS (a, top) and AVHRR (b, bottom) for 15 April 1992, with both
image types resampled to 250 m pixels. Location of the transect plotted in Figure IIL6 is indicated on
(b).
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AVHRR, OLS transect (15 Apr.)
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Fig. I11.6. Transect of AVHRR and OLS digital numbers along the transect shown in Fig. IIL.5. The
AVHRR transect is plotted above the OLS transect. an offset of 50 was added to the OLS digital
numbers for ploting purposes.
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AVHRR, OL3, lead thresh. (15 Apr.)
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Fig. Il.7. Comparison of portions of the transect mapped as leads using AVHRR and OLS digital-
number tiresholds. Digital numbers greater than the selected thresholds were mapped to a value of 200.
Apparent are the limited radiometric range of the OLS data, effect of threshold on estimated lead width,
and the good spatial registration between the two images.
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Fig. IL.8. Co-registered Landsat TM Channel 2 for the central Beaufort Sea (top left), TM thermal
channel 6 (top right), AVHRR Channel 1 (bottom left), and ERS-1 SAR (bottom right), each gridded to

1 km pixel size. TM and AVHRR were acquired on 16 April 1992. SAR data were acquired on 15 April
1992.
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Fig. I11.9. Enlarged Landsat TM Ch. 2 (a, top) and ERS-1 SAR (b) from Figure II1.8.
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Fig. II1.10. Co-registered Landsat TM thermal channel 6 (top) and AVHRR thermal channel 4 (bottom)
for 16 April 1992,
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Fig. IIl.11. Co-located SAR and AVHRR coverage for the central Beaufort Sea. Typical lead widths in
the SAR data are about 500 m. Some lead patterns probably consisting of thin, warmer ice are apparent
in the AVHRR image but not in the SAR data.
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II.3 VALIDATION: SURFACE TEMPERATURE

Here we report on the application and validation of the IST retrieval procedure using a suite of
in situ data collected during the May-June 1992 Seasonal Sea Ice Monitoring and Modelling Site (SIMMS)
field campaign. Satellite-derived estimates of IST are compared to near-surface air temperatures, surface
temperatures derived from upwelling longwave (broadband) radiation measurements, and from a
thermocouple just below the snow surface. Since the satellite field-of-view (FOV) is at best 1.1 km,
comparisons are also made with surface temperature estimates collected over an approximately 1 km’ area
with a hand-held infrared thermometer. The problems encountered are not unlike those experienced in
the validation of sea surface temperatures, where there are a variety of ways of measuring the surface
temperature in situ. Note again that the "surface” temperature refers to the skin or radiating temperature
of the snow or ice surface.

I11.3.1 METHODOLOGY

Surface microclimate data were collected during the SIMMS 92 (Seasonal sea-Ice Modeling and
Monitoring Site) field experiment. The first-year icc (FYT) site [74° 41.66° N, 95° 35.22’ W] was the
focus of the measurement program and operated from 19-April to 26-June. Air temperatures were
measured with thermocouple sensors. All sensors are accurate to within approximately 0.3° C. The
sensors were housed within ventilated phychrometer shieldings. While air temperatures were measured
at five vertical levels, the air temperature sensor used for this study (Tal) ranged in height between 54
cm and 57 cm above the snow surface from May 10 to May 24, and between 47 cm and 65.5 cm after
May 24 to the end of the experiment. As with air temperatures, snow temperatures were measured in
profile within the snow cover extending from the snow/ice interface to near the snow surface, using a
thermocouple epoxied in the tip of white plastic tubing (20 cm x 0.5 cm). All sensors and leads were
painted white. The temperature from the thermocouple nearest the surface, the depth of which varied
from 0-3 cm, is used here.

Downwelling sky and surface emitted broadband infrared radiation (4-50 pm) were measured with
Eppley Precision Infrared Radiometers. One of these pyrgeometers was mounted on an extension arm
approximately 8.9 m from the snow surface on an instrument tower. A sky facing pyrgeometer was
mounted on a post, approximately 35 m west of the instrument tower. Instrument height was
approximately 1.5 m above the snow surface. The flux measurement was corrected for the infrared
radiation emitted by the thermopile using the Stefan Boltzman equation and a measure of the internal
instrument temperature as recorded using the precision thermistor (YSI 44031) housed within the
instrument. Thermistor tolerance is approximately +0.125° C between -10° and -20° C; however the
measurement error is probably closer to £0.2° C when logged to the 21X micrologger. Regardless of
theses specifications, the accuracy of the instrument is difficult to quantify because of possible heating of
the instrument dome due to absorbed incident short-wave radiation; consequently, the temperature of the
dome was also monitored in order to assess the degree to which any heating of the dome may bias the
flux measurements.

The surface thermodynamic temperature based on pyrgeometer data, T,y Was estimated from the
upwelling longwave radiation emitted by the surface, LT,M,, according to the Stefan-Boltzman law:
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LYt |4
Torg = (—:"L']‘ - 273.15
ce€

where T, is in degrees C, o is Boltzman’s constant, and € is the emissivity, taken to be 0.99 here.
However, because the emissivity is less than unity, the upwelling radiation measured by the sensor, LT,
is the sum of the radiation emitted by the surface, LT,,,,,, and that portion of the downwelling atmospheric

radiation, L{, that is reflected by the surface:
Lt =Lty + (1-¢)L!

so that this reflected component must be removed from the upwelling radiance before calculating the
surface temperature. The discussion in the appendix suggests that the uncertainty surrounding our 7.,
estimate is approximately +0.2° C.

In order to characterize the spatial variability of the temperature field over an area comparable to
an AVHRR pixel, skin temperatures measured with an infrared (IR) thermometer (7,,,,... and snow/ice
interface temperatures (7,,) were measured along transects within the 1 x 1 km sample site and the
multiyear site. Each set of surface observations at the FYT site consisted of measurements spaced 200 m
apart along two randomly-selected 1 km tansects, with the time between measurements kept to a
minimum. The typical time required to cover the ten stops was about 90 minutes, with sampling times
selected to correspond to AVHRR overpasses whenever possible.  Tjz,..., Was measured with an Everest™
hand-held IR thermometer; a non-contact instrument that determines a brightness temperature of the object
within the instrument’s field-of-view based on received radiation in the 8-14 ym range. The instrument
is factory-calibrated to yield a representative accuracy of 0.5°C in an operating environment of 0° - S0°C.
The manufacturer estimates that accuracy below 0°C is approximately the same. The instrument was
tested periodically by measuring the temperature of fresh water at its freezing point in a slush bucket,
where the IR thermometer typically yielded temperatures of +/- 0.3°C. During measurements along the
transects, the IR thermometer was allowed to reach equilibrium temperature with its surroundings.
Measurements were taken with the IR thermometer held about 1 m from the surface at an angle to the
surface of approximately 45°. Emissivity of the snow-covered sea ice was set at 0.99.

For the retrieval of IST we use the methodology of Key and Haefliger (1992), as described in an
earlier section. Local Area Coverage (1.1 km field-of-view at nadir) data from the NOAA-11 and NOAA-
12 satellites collected by Atmosphere Environment Service are used. First-order calibration was performed
following the methods described in NOAA (1991a). Additional corrections were applied to the data to
account for the nonlinear response of the thermal channels (Weinreb et al., 1990; NOAA, 1991b). The
AVHRR scan angle ranges from 0° to approximately 55°. Since the IST retrieval can only be done for
clear sky conditions, and because automated cloud detection in the polar regions is difficult at best, images
that are clear over the first-year ice site are selected through a visual analysis of various combinations of
the AVHRR visible, near-infrared, and thermal channels. However, it appears that even this manual
interpretation of the imagery may not be adequate for detecting low-level ice crystal precipitation
("diamond dust") and very thin stratus.

I1L3.2 RESULTS

The near-surface air temperature, T, the surface temperature from the thermocouple buried just

beneath the snow surface, T,,,, and the temperature based on upwelling longwave radiation, 7,,., are
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shown in Figure II1.12 for May and June, at a solar time of approximately 1000. Values for T,
represent all measurents where the thermocouple was less than 3 cm below the snow-air interface. The
snow temperature is typically higher than the other two temperature measurements in the early part of the
experiment due to the insulating effect of the overlying snow. Snow temperatures are sometimes greater
than the melting point of the snow after the initial stages of melt onset in late June due to warming of the
sensor by increased transmission of solar radiation throughout the snow layer. Table II1.3 provides a
statistical comparison of the different measures of "surface” temperature. The two periods in May reflect
early spring (8-18 May) and the transition to late spring conditions (20-24 May), when surface air
temperatures become warmer than T, signifying a change in the direction of heat transport toward
warming of the ice surface at the snow/ice interface. Ti,,,,., and T, ; were grouped, and averaged over half

hour intervals to coincide with the half hour averages of 7, and 7,,.

Table II1.3. Comparison of mean temperatures (°C) and range of differences for 8-25 May at the FYT site.

Time Period
8-18 May 20-25 May 8-25 May
Mean Temperatures:
Tovrg -13.39 -6.74 -11.76
T. -14.74 -7.72 -13.02
T ginerm -13.90 -6.52 -12.09
T, -8.92 -6.40 -8.15

Temperature Differences:

T‘IRIhenn - Tp_vrg:

Mean Difference -0.51 0.22 -0.33
Standard Dev. 0.62 0.62 0.69
Terhem - Tair:

Mean Difference 0.84 1.20 0.93
Standard Dev. 1.32 0.44 1.17
prrg - Tair.'

Mean Difference 1.35 0.98 1.26
Standard Dey. 1.19 0.90 1.13
7}them - T.v-i:

Mean Difference -5.69 -0.42 -4.08
Standard Dev. 2.26 2.33 3.36
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Values of T,y are plotted with 7, in Figure IIL.13 for May and June. The temperature
reported as T,z iS @ mean of 10 pixels around the FYTI site whose fields-of-view contained first-year ice
only (i.e., no land), covering approximately 13 km’, depending on the sensor scan angle. Gaps in the time
series result from periods of extensive cloud cover. The maximum time difference between the in siru
and satellite observations is approximately 20 minutes. Differences between the temperature pairs range
from less than 0.1 K to more than 3 K, with the satellite estimates almost always less than the in situ
values. The differences between T,z and T, (not shown) are less, but the sign of the difference is
usually the same.

Temperatures obtained from the IR thermometer, Ty, are compared to 7, and the snow-ice
interface temperature, 7, , in Figure II1.14. The systematic difference between Ti,y,,, and T,,,, over the
8-25 May period is small (0.33° C difference); Ty, measuring slightly lower in early spring (-0.51° C)
and slightly higher during the late spring conditions (0.22° C). The discrepancy is less than that shown
in Figure III.13 between the T, and T,,,,; Which is not entirely unexpected since T,z represents a
sample in time and 7}, a time average. The difference between Ty, and 7, at any one time may also
be large, as shown by both the fairly large standard deviations (Table II1.3). Absolute differences ranged
between 0.02° C and 1.80° C. T, follows the general increase in heat input to the surface energy budget,
with less da; iv day variability because of the insulating affect of the overlying snow cover (Figure I11.14).
Snow depth averaged 26+9 cm from 8-25 May.

1.3.3 DISCUSSION

The temperature differences observed in our study are likely due to undetected clouds in the
imagery, the spatial and temporal variability of the temperature field, incorrect assumptions concerning
the surface emissivity and atmospheric conditions, inaccuracies in the model used in the development of
the satellite retrieval algorithm, and instrument error.

I11.3.3.1 Undetected Clouds

Despite the multi-spectral approach to the manual selection of clear images, there are conditions
where condensed water simply cannot be detected with the spectral information that the AVHRR provides.
This is particularly true for very thin clouds such as Arctic stratus. Even more difficult to detect are low-
level water or ice fogs, the most common being ice crystal precipitation in winter and early spring. The
problem in their detection is that they usually exist within the low-level temperature inversion and may
result in top-of-atmosphere radiances very close to what would be observed in their absence; i.e., their
radiative properties, both shortwave and longwave, are similar to those of the surface. This often equates
to a top-of-atmosphere temperature difference of a few degrees or less.

A re-examination of the satellite data after the initial manual cloud cover assessment and a
comparison with cloud observations taken at the meteorological station Resolute Airport indicate that some
form of thin cloud may actually have been present over the FYI site at the times of the AVHRR
acquisitions. However, as cloud conditions may differ over only a few kilometers, it is impossible to state
conclusively how often this problem influences our analysis. While cloud type and opacity were estimated
for the entire sky hemisphere during the IR thermometer measurements, additional information is needed
concerning clouds that lie along the path between the satellite and the surface temperature measurements.
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111.3.3.2 Spatial and Diurnal Variability of Surface Temperature

Variability of Tp,,,, within the 1 km site arises primarily from differences in snow depth, the
shadowing effects of sastrugi-like features, and changes in temperature during the time required to cover
the transects. Shown are all observations of T,.,. throughout the period, ploited by local time. The
apparent relationship between solar zenith angle and skin temperature is biased somewhat by sampling date
for times between 1600 hrs and 2000 hrs since these observations were all collected on a single day. The
greatest source of spatial variability is likely due to shadowing. Measurements taken with the shaded
versus sunlit aspects of sastrugi (typical height of 10 - 15 cm) filling the entire field of view of the IR
thermometer yielded temperature differences of as much as 10°C in clear-sky conditions, but only 1°C
when overcast. In the normal sampling, the IR thermometer was held further away from the surface to
yield a larger field-of-view that typically encompassed a mixture of shadow and sunlit areas, but not
necessarily in equal proportions.

Figure II1.15 shows the spatial variability of T,,,,., in June over a 10 pixel area around the FYI
site. There were no open water or thin ice (significantly less than 1 m) areas in the scene. The standard
deviation in the temperatures measured with the IR thermometer is up to twice that of the AVHRR-derived
ISTs. Minimizing the time to sample the transects would reduce the variability of Tz,

The surface temperature may change rapidly in response to radiative forcing. T, represents an
average of this temperature over a half hour period. While 7,,.,, also represents an average, its value
may be biased by the non-systematic number of samples within the averaging period (ranging from 1 to
6), the irregular time increments between samples, and by spatial variability.

I11.3.3.3 Assumptions Made in the Retrieval Procedures

A number of questions arise concerning the assumed properties of the surface and atmosphere
affecting the AVHRR data and, potentially, the pyrgeometer measurements. One such assumption
concerns the emissivity of the surface for the IR thermometer measurements. All reported observations
of Tiemem are based on an emissivity setting of 0.990, which is the highest setting possible on the
instrument. This value is probably appropriate for the broadband emissivity of snow with grain sizes in
the 100 - 200 um range, but not for the 8-14 pm spectral range of the IR thermometer. In that range, the
emissivity of snow is closer to 0.993 (Dozier and Warren, 1982). The relationship between
thermodynamic tempertaure 7 (K), emissivity €, and radiance L (milliwatts/m’-steradian-cm™) is derived
from the Planck function as

C,A
m(ec,).’
—_— % l
L

where ¢, and c, are constants (c, = 1.1910659 x 10”° milliwatts/m*-steradian-cm™ and ¢, = 1.438833 cm-K)
and A is the wave number (cm™). While the difference between the assumed and probable snow
emissivity is not large, it does result in a temperature overestimate of approximately 0.3°C.
Additionally, the upwelling radiance measured by the instrument is the sum of the radiation
emitted by the surface and the downwelling atmospheric radiation reflected by the surface. (We consider
any depletion or addition of radiation from the atmosphere itself to be insignificant given the short
atmospheric path from the sensor to the surface.) While the amount of downwelling atmospheric radiation
reflected by the surface is relatively small given the high surface emissivity, it does increase the radiance

T -
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received by the sensor. If corrections for this effect were made, values of T,,,., would be even lower
and closer to the satellite-derived temperatures by an estimated 0.1 K to 0.2 K.

Assumptions concerning atmospheric conditions could play a role in explaining the differences
between the satellite-derived and in situ temperatures.  As described earlier, the retrieval algorithm is
based on ice station data from the central Arctic Ocean. The coefficients were derived for three seasons
and in some sense represent the mean conditions during those periods. How do these mean conditions
compare with those observed during SIMMS’92? May falls into the transition season of Key and
Haefliger (1992), while June falls into their summer season. Differences between the ice station and the
SIMMS location (represented by nearby Resolute) are shown in Table II1.4 in for total precipitable water,
near-surface air temperature and aerosol optical depths. No information is available on the actual aerosol
optical depth at the drifting ice station so that the value shown in the table is the assumed amount used
in model calculations. While the surface air temperatures at the two locations (and times) are different,
the range of temperatures used in the development of the IST retrieval algorithm is similar to that
experienced during SIMMS’92. The water vapor amounts are also similar. Aerosol amounts are different,
primarily as a result of stratospheric aerosols from the eruption of Mt. Pinatubo, as observed during
AGASP IV (Arctic Gas and Aerosol Sampling Program) over the Beaufort Sea, 1992 (Stone et al., 1993
and Section IIL.1 of this report). Although the overall effect of aerosols on the attenuation of upwelling
longwave radiation is small, an aerosol amount greater than that expected would produce a lower top-of-
atmosphere radiance which, especially at significantly off-nadir views, would result in an underestimate
of IST.

Table II1.4. Mean precipitable water, surface temperatures, and aerosol optical depths at a drifting ice
station and Resolute, N.-W.T.

Ice Station Resolute
Transition' Summer’ May June
Precipitable Water 4.6 6.6 4.2 7.1
(mm)
Surface Temperature -194 -0.9 -13.8 -2.7
©
Aerosol Optical Depth  0.07° 0.07 2.5 20

"April, May, September, 1987
’June - August, 1987
3Assumed value for model calculations

Lastly, there may be a bias in the retrieved ISTs due to AVHRR calibration errors. This may not
be trivial; for example the nonlinear calibration alone can make a difference of more than 1°C. Overall,
however, we expect calibration errors to be much less, on the order of 0.1 K to 0.2 K.

111.3.3.4 Possible Errors in the Calculation of T,

Given that the adjustments to T, and T, just discussed will decrease the differences
between the two measurements, and given that both of these temperatures are typically lower than that
derived from the average upwelling longwave broadband radiation T, . we are left wondering if there are

any reasons why 7, would be biased. pyrg
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The vertical placement of the pyrgeometer at 8.9 m above the surface could play a role. Early
in the season when temperature inversions are common, the atmosphere between the surface and the sensor
is warmer than that of the surface. Given that the atmosphere i relatively warm, that the surface
emissivity is less than unity, and that relative humidities near the surface are high, one would expect an
increase in longwave radiation received at the sensor over that emitted by the surface. Radiative transfer
calculations of upwelling longwave flux confirm this, although the increase in the estimated physical
temperature of the surface is small, 0.3° - 0.4° C for a surface temperature of -13°C. Additionally, the
large field of view associated with the pyrgeometer samples the emitted infrared radiation from a much
larger area than the hand-held pyrometer, and the IR emitted by the support tower infra-structure and other
‘non-snow’ objects are also sampled.

Our derivation of L using the pyrgeometer assumes that any solar heating of the instriment dome,
and subsequent re-radiation to the thermopile is negligible, and that the thermopile temperature is closely
approximated by the case temperature. There is little reason to believe a large discrepancy in temperature
between the thermopile and case thermistor given their close proximity, The net effect of the solar heating
of the dome is to increase the calculated value of L. Solar heating of the dome is not expected for the
inverted pyrgeometer (LT), and in fact the case and dome temperature differed on average by only 0.10°
C between 8-25 May, with the dome being actrally cooler than the case. The opposite was observed for
the sky facing pyrgeometer. Slight heating of the dome for Ll was observed, but is not considered to be
a factor that significantly influences 7,,,,.

I11.3.4 CONCLUSIONS

In an effort to validate the satellite retrievals of ice surface temperature, differences between
AVHRR-derived ice surface temperature, T4, and the radiating temperature derived from measurements
of upwelling longwave (broadband) radiation, 7., during May and June in the Canadian Arctic were
observed to range from less than 0.1°C to more than 3°C with T,z always less than T, . Similarly, the
mean temperatures of spatially-distributed measurements made by a hand-held IR thermometer, T,,.,...
were typically less than 7, although the differences were not as great as between 7,44 and 7,,,,,. The
temperature measured by a thermocoupie placed approximately 1 c¢cm below the snow-air interface
illustrates the insulating quality of the overlying snow, being higher than the radiating temperature in the
carly part of the season.

While these results can be explained to a limited extent by instrument calibration, incorrect
assumptions of the surface emissivity and atmospheric conditions, and model inaccuracies, the main issue
with a validation exercise such as this is in the definition of the “correct” surface temperature and of the
method chosen to measure this temperature. The temperature of interest is the radiating temperature, not
the near-surface snow temperature or the near-surface air temperature. In theory the upwelling longwave
radiation can be used to determine this temperature, but in practice care must be taken to obtain an
accurate value. The spatially-averaged temperatures measured with the IR thermometer suggest a possible
negative bias in the AVHRR-derived temperatures, with a possible simple correction for this bias.
However, the spatial and temporal variations in skin temperatures observed during the sampling of the
1 km transects with the IR thermometer are too great to permit a determination of a bias with any
certainty. We conclude that there is probably a negative bias in T, as computed here, on the order of
0.5° Cto 1° C. To determine the actual magnitude and source of this bias we need a well-calibrated.
airborne radiometer measuring in the same spectral bands as the AVHRR (to reduce the atmophseric
effects and to obtain adequate spatial coverage), combined with refined surface observations that include
faster sampling, more precise instrumentation, and more detailed observations on cloud properties and
distributions relative to the AVHRR scan.




Part H1: Analysis of LEADEX and Other Data

Surface Skin, A|r and Snow Temps
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Fig. M.12. Near-surface air temperature, temperature measured by a thermocouple just
below the surface, and temperature derived from upwelling longwave radiation at the FYI
site.
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AVHRR and In Situ Surface Temperatures
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Fig. TI.13. Surface temperatures estimated from upwelling longwave radiation
measured at the surface and from the AVHRR thermal channels at the first-year
ice site during May and June.
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In Situ Surface Temperatures
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Fig. IlI.14. Surface temperatures measured with the IR thermometer (spatial means)
and those based on upwelling longwave radiation. Also shown are snow-ice interface
temperatures measured (means).
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AVHRR Skm Temperature Varlatlon
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Fig. IT.15. Variability of satellite-derived surface temperature within a 10-pixel area
around the FYT site.
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III.4 APPLICATION OF SKELETAL MODELING FOR LEAD RETRIEVAL

The method described in an earlier section for the retrieval of lead widths and orientations has
one serious shortcoming: it is based on a linear regression procedure and is therefore inapplicable to
leads or lead fragments that are curved. Additionally, the origin of the coordinate system upon which
correlations and regression fits were based was arbitrary, but linear correlation is not insensitive to
rotation. We have therefore investigated the use of a recently-developed method for the retrieval of
lead geometrical characteristics: skeletal modeling (Banfield, 1992).

Briefly, this procedure uses skeletons, a tool from mathematical morphology, to provide a
useful structural description of the shape of a lead. The skeleton of an object is the set of poiats that
describes the "center” of the object, in this case the centers of the largest open bal's that touch the
boundary of the lead at two or more locations.

The procedure was applied to the AVHRR image shown in Figure III.16. Only clear sky ice
areas were examined. Cloud clearing was done by applying a threshold to the channel 3 (3.7 pm)
reflectances, which was estimated by subtracting the Pianck radiance for that channel based on the
temperature measured in channel 4 (11 pym) and dividing the remaining radiance by the solar radiance
in that band.

A binary image (lead/ice) was then used as input to the code provided by J. Banfield. The
results are shown in Figure II1.17 for lead area, lead width, and lead skeletal length (the length along
the lead as opposed to the length of the main diagonal).




Fig.

Part llI: Analysis of LEADEX and Other Data 123

AVHRR Channel 2, LEADEX Area
—

III.16. AVHRR channel 2 (0.9 ym) image of the Beaufort Sea, 18 April 1992, during LEADEX.
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Fig. III.17. Lead areas, widths, and skeletal lengths for the image in Figure II1.16, as determined by

the skeletal modeling method.
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PART IV: SUMMARY OF ACCOMPLISHMENTS

IV.1 ACCOMPLISHMENTS

Over the course of this three-year project, empirical studies concerning scale relationships in the

retrieval of sea ice lead statistics have been performed, as have modeling investigations of atmospheric
influences on the satellite signal. Additionally, statistical models that describe the scaling properties of
leads have been developed. The empirical studies have been based on Landsat imagery, while the
atmospheric models have been specific to the AVHRR. Submarine sonar data have been used in the
statistical model development. Specific accomplishments include:
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The parameterizations of clouds, haze, and atmospheric chemical constituents in the LOWTRAN-7
radiative transfer model have been reviewed. Atmospheric temperature and humidity profiles for
the Arctic have been constructed from Soviet ice island data and were used in the construction
of three-season "standard" atmospheres for the central Arctic.

Resampling methods have been tested on simulated, AVHRR, and Landsat images, as have the
effects of digital enhancements. Nearest-neighbor resampling has been shown to be the most
effective in maintaining the geometrical and spectral characteristics of leads.

Empirical relationships between pixel size and lead width have been illustrated.

Procedures for the retrieval of lead statistics have been developed and applied to Landsat imagery
successively degraded to more coarse resolutions. Applications to ERS-1 SAR data have also
been explored, although a single-channel SAR does not appear to provide adequate spectral
information for ice type discrimination. New methods of retrieving lead statistics utilizing
mathematical morphological techniques have been applied to AVHRR data collected during
LEADEX.

The relationship between "apparent” lead widths measured along a transect (e.g., from submarine
sonar or as a sampling method for satellite imagery) and the "true” lead width distribution has
been formalized in a statistical sense, so that one distribution may be obtained from the other.
Submarine sonar data have been analyzed in this context.

A statistical model has been developed for the retrieval of lead area fraction from measurements
along a line; e.g., a submarine sonar transect or a lineal sampling method for satellite images.

The effects of atmosphere/surface conditions on the AVHRR-measured radiance in the thermal
channels have been examined in terms of the thermal contrast between leads and the surrounding
ice pack. Surfaces include open water, 5 cm, 15 cm, and 2 m thick ice. Atmospheric conditions
include clear sky with haze, cirrus, and low-level ice crystal plumes. The relationship between
atmospheric optical depth and lead size has been quantified.

Information on Arctic aerosol optical depths during LEADEX has been collected by two of the
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investigators on the NOAA P-3 with sun photometers. This data has been used to assess the
extent of tropospheric and stratospheric aerosols and their effect on lead detection from satellite.

9 Satellite and in situ data collected during LEADEX and SIMMS’92 have been used to test the
theoretical and empirical models/methods developed during the first two project years, and shows
these models/methods to be generally valid.

Additionally, two workshops for the satellite remote sensing investigators of the Leads ARI prior
to LEADEX were hosted by this group in Boulder. Seven referreed papers have been published, with
three others submitted for publication. Two graduate students have been supported part-time over the
course of the project.

IV.2 RECOMMENDED RESEARCH

Future work should include an investigation of the shortwave channels of the AVHRR and OLS
sensors, following a methodology similar to that presented here for the thermal channels; i.e., the effects
of aerosols, clouds and ice crystal precipitation on upwelling radiation should be examined. Concerning
the retrieval of lead geometrical characteristics, using the visible and near-infrared channels should aid in
the unmixing of pixels containing a lead of unknown ice thickness and "background" ice, where having
measurements at a variety of wavelengths should reduce the number of possible ice thickness/lead width
combinations, as suggested earlier.
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