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ABSTRACT

Error Growth In Poor ECMWF Forecasts

Over The Contiguous United States. (August 1993)

Norman Ray Modlin, B. S., North Carolina State University

Chair of Advisory Committee: Dr. James P. McGuirk

Successive improvements to the European Center for Medium-range Weather

Forecasting model have resulted in improved forecast performance over the Contiguous

United States (CONUS). While the overall performance of the model in this region was

found to have improved during the period of the 1981-1990 winter seasons, the number

of poor forecasts increased over this time.

This study uses the Root Mean Square (RMS) error to measure the performance

of 5-day 500 mb winter forecasts over the CONUS. Poor and good forecasts were

defined in terms of the 10-year distribution of the RMS values between the 1981 and

1990 winter seasons.

Subjective analysis of a subset of poor forecasts yielded no obvious patterns of

error growth, location or propagation in the evolution of poor forecasts. A tendency was

noted for in situ amplification of forecast errors. Additionally, successive forecasts

verifying on the same day were found to have similar error patterns, with increased

amplitudes at longer forecast lengths. This implies that the initial conditions are not a

significant source of the error in poor forecasts.

Empirical Orthogonal Function (EOF) analysis of error growth in time and space

revealed significant differences between poor and good forecasts. Good forecasts were

found to have the majority of RMS growth on day 1 while poor forecasts did not

experience rapid error growth until days 3 and 4. For poor forecasts, the leading EOFs

revealed a wave pattern down stream of the Rocky Mountains. This pattern evolved and

propagated throughout the forecast period until it dominated the 5-day error field. No
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similar pattern was revealed in the error fields of good forecasts. This pattern suggests a

dynamic link between the Rockies and the zonal wind. although no link with the 500 mb

geostrophic wind could be established.
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CHAPTER I

INTRODUCTION

Weather forecasting has been greatly advanced in the latter portion of this century

due to the advent of Numerical Weather Prediction (NWP) models. Despite tremendous

advances in NWP, the goal of a perfect forecast model can not be realized for many

reasons. Among them is the fact that the models use discrete observations and numerical

methods to analyze and predict continuous meteorological fields and processes. As a

consequence, errors in these forecasts are an unpleasant, yet unavoidable result. By

studying the error characteristics of the operational NWP models, we may be able to

recognize in advance if a model is producing suspicious forecast results. Additionally, the

identification of these characteristics is essential in order to modify and improve their

performance over time. Knowledge of the shortcomings of an NWP model, such as the

European Center for Medium-Range Weather Forecasting (ECMWF) model studied here,

is necessary to accurately interpret the results of the model and to identify forecasts that

perform poorly. Specifically, this study will investigate the growth of 500 mb errors over

the Contiguous United States, hereafter referred to as the CONUS. The focus of the error

growth study will involve 5-day forecasts which are identified as poor performers in terms

of Root Mean Square (RMS) error over this region. Comparisons are also made with

good performing forecasts at this level and forecast length. The error growth is studied in

both space and time.

The objectives of this research are presented in Chapter HI. Chapter EIl discusses

the evolution of the forecast model and reviews previous studies of forecast model errors.

The data used in this research is described in Chapter IV, as well as the procedures to be

used. In Chapter V, a climatology of error fields is developed, using both the absolute

The style used is that of Monthly Weather Review.
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errors and the RMS error. Chapter VI presents the growth of the forecast errors in time

and space, as well as the sensitivity of the growth of errors to differing initial conditions.

Finally, Chapter VII summarizes all results from the research presented. The Appendix

lists the valid dates of the poor and good 5-day forecasts that comprise the data sets used

in the analyses of this study.
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CHAPTER H

RESEARCH OBJECTIVE

The objective of this research is to document the occurrence and temporal and

spatial structure of 500 mb forecast errors in poor 5-day forecasts over the contiguous

United States. The distribution of errors, both forecast and RMS, are investigated to

provide clues as to the preferred locations of error occurrence. Also, regional differences

in the long-term distribution of RMS errors are quantified. The evolution of these errors

are described in terms of typical spatial and temporal modes. It is hypothesized that there

are preferred modes or patterns for these errors and that differences exist between the

error modes of poor and good forecasts. It is also hypothesized that the error patterns

and their growth are sensitive to the antecedent 500 mb pattern used as initial conditions

for a particular run. By documenting the existence and growth of these error modes and

their sensitivities, this research identifies areas of deficiency in the ECMWF model, assists

in the identification of poorly evolving forecasts and provides input for future

improvements.

The objectives of this research will be met by:

1. The construction of a climatology of the error fields.

2. A subjective study of error evolution, to include a case study.

3. Empirical Orthogonal Function (EOF) analysis of forecast error growth in

both time and space.

4. A comparison of the EOF results for poor and good forecast categories.

5. A comparison of the EOF results for different time periods in the evolution

of the ECMWF model.
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CHAPTER M

BACKGROUND

Ever since the pioneering attempt at NWP by Richardson (1922), forecasts have

been verified against the existing analyses to gauge the accuracy of the prediction and to

identify and correct areas of deficiency. Retrospective looks such as Platzman (1967) and

Lynch (1992) have shown that Richardson's model could not overcome problems with the

data used as initial conditions. Recognition of such limitations has resulted in successively

improved models, up through the current ECMWF model. As with previous models, this

one has been studied repeatedly to determine its error characteristics.

Analysis of the error characteristics of the ECMWF must be viewed in light of the

changes made to the model over time, which are intended to reduce the total forecast

error. These changes are documented by Trenberth and Olson (1988). The most

significant changes include the following:

a. Change from a grid-point to T63 spectral model in April 1983.

b. Inclusion of envelope orography in February 1984.

c. Extensive change to the model's analysis procedures in May 1984.

d. Modifications to radiative parameterization in December 1984.

e. Increase in horizontal resolution to T106 and modification to parameterizations

of convection, clouds and condensation in May 1985.

f. Increased vertical resolution from 16 to 19 levels in May 1986.

g. Revised use of observations and data selection methods which improved the

analysis procedure in September 1986.

Lorenz (1982) performed a study of 500 mb height forecasts versus analysis using

data from the 1980-81 winter season operational ECMWF grid-point model. This study

analyzed the global root mean square (RMS) errors in the forecast verification using the

height fields in spectral format. He noted that we have a good understanding of the
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dynamical processes which govern atmospheric motions, which is essential in order to

predict the atmosphere's future state. However, the atmosphere itself is unstable with

respect to small-scale perturbations. Therefore, observations which accurately measure

large-scale features, but contain uncertainties at smaller scales, will lead to forecasts

containing large-scale errors comparable to those which would exist if large-scale errors

were present in the initial data.

Lorenz (1989) studied simulations of a simple chaotic forecast system in an effort

to determine which has the greater effect on overall system performance; improvements to

the analysis procedures or improvements to the forecast model. The simulation forecast

model used sets of equations for which the solution could be computed and used as exact

initial data. Analysis and model errors were then added to the data and forecast system,

respectively, and then reduced singly and in combination. Improvements to the analysis

procedure alone were found to bring the analysis more in line with the initial data, while

increasing the difference between the analysis and forecasts. The analysis improvements

were found to be most effective at shorter time ranges. Forecast model improvements,

when viewed alone, reduced the total error as compared to the initial data, while reducing

the forecast to analysis difference. Model improvements were most effective at longer

time ranges. The greatest benefits to the overall system were achieved in concert, that is

model improvements were more effective if the analysis had been previously improved,

and vice versa. While these results may seem intuitive, Lorenz (1989) states that the

results may not directly apply to the ECMWF system, because the simulations were not

based on real atmospheric behavior and since daily ECMWF error behavior may not be

independent of preceding days or the initial state.

The systematic error characteristics of the spectral ECMWF were reported by

Arpe and Klinker (1986). The spectral model was chosen to replace the grid-point model

because the spectral model more accurately predicts the movement of short waves (Girard

and Jarraud 1982) while achieving greater computational efficiency (Simmons 1983). For
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the period April 1983 - April 1985, Arpe and Klinker (1986) found that the spectral model

correctly identified the positions of 500 mb troughs in 10-day forecasts, but incorrectly

forecast their amplitudes. The errors exhibit a wave number 2 pattern with 500 mb

heights under forecast over Northern Europe and the Bering Strait, and heights over

forecast over Canada and Siberia. This error pattern was found to develop from the onset

of the 10-day forecast period, with the error growing in place continually through the

period. An error dipole pattern was found to exist near the main mountain ranges. This

dipole continued, although reduced in amplitude, after the introduction of envelope

orography in February 1984. Arpe and Klinker (1986), as well as Arpe (1989), found that

the error fields exhibited an equivalent barotropic characteristic, although the error

amplitudes did increase with height. Additionally, Arpe (1989) found that the most

significant reductions of systematic error were achieved by modifications to the convective

and radiative parameterizations in December 1984 and May 1985, respectively, with the

most significant improvements noted in the winter season. This study also noted that the

ECMWF model has poor skill in predicting blocking situations.

The work of Lorenz (1982) was extended by Dalcher and Kalnay (1987). Their

study separated total forecast mean square error into systematic and random components.

This work found that systematic errors were dominated by low total wave numbers and

that the error growth rate increases monotonically with total wave number. Dalcher and

Kalnay (1987) also advocate the measurement of error growth at finite times versus the

Lorenz (1982) concept of "doubling time of small errors," since the determination of small

errors can lead to extrapolation difficulties in a discrete data set. The current study is

concerned with error growth measured at finite times.

A detailed study of the ECMWF model performance over the CONUS was

accomplished by Netterville (1991). This study identified specific ECMWF 5-day

forecasts of 500 mb height which performed poorly over the CONUS. The period of

study was the 1981-1990 winter seasons. Poor forecast performances were identified in
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terms of the RMS error of the forecast over the CONUS, and its relation to the annual

distribution of these RMS values. The significant finding was that all cases of poor 5-day

forecasts were found to have anomalous height departures at the initial time of the

forecast in one of the three known Northern Hemisphere blocking regions. However, the

presence and recognition of the blocking patterns alone was judged inadequate to

determine a priori the skill of individual 5-day ECMWF forecast over the CONUS.

Additionally, Netterville (1991) noted that both the winter season 5-day mean RMS error

and its variability over the CONUS region decreased over the period of study, indicating

increased forecast performance. However the annual number of poor 5-day forecasts

increased toward the end of the period of study. This result indicates that the distribution

of RMS errors at 5 days may not be normal, but instead may be skewed toward larger

values. However, this issue was not addressed directly by Netterville (1991).

in summnary, much work has been accomplished to document the systematic error

characteristics of the ECMWF model. As systematic errors were identified, successive

improvements to the model were incorporated in order to reduce these errors. These

improved models have also been studied to document the effects of the changes. Error

evolution has been studied both theoretically and empirically, but on a global basis.

Evolution of errors over a limited region, specifically for specific classes of forecast

performance, has not been presented.

This study will incorporatk the results from these previous studies, most notably

those of Netterville (1991), in order to measure the time evolution of the error field for

poor forecast performances, its deviation from known systematic errors and atmospheric

modes, as well as the sensitivity of the error evolution to initial conditions. However,

while Netterville (1991) focused on the relationship between initial conditions and forecast

performance, the research presented here will study evolutionary factors between the time

of the initial conditions and the resulting 5-day forecast.
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CHAFPER IV

DATA AND PROCEDURES

A. Data

The data set used in this study consists of 500 mb analyses and forecasts for the

1981-1990 winter seasons based on the global operational ECMWF model. A winter

season is defined as a 100 day period beginning on 1 Dec of the previous year; that is, 1

Dec 1980 starts the 100 days of the 1981 winter season. For each of the 100 days, the

verifying analysis for 00 UTC is available, as well as the ten forecasts for this valid time

which were initiated 1-10 days prior. This format is commonly referred to as the "Lorenz

format" and is further described by Lorenz (1982). The data are archived on magnetic

tape as global coefficients of spherical harmonics with triangular truncation at total wave

number 40. The spectral coefficients were converted to conventional heights (meters)

using routines obtained from ECMWF and mapped onto a 3.75 by 3.75 degree grid over

the Northern Hemisphere in this study for ease of computation. The resulting grid points

over the Northern Hemisphere are shown in Fig. 1. In keeping with Netterville (1991),

the region of interest is the CONUS region bounded by 60 W, 131.25 W, 22.5 N and

56.25 N. This region with corresponding grid points is shown in Fig. 2.

B. Procedures

Forecast performance at 5-days over the CONUS is judged in terms of the RMS

statistic. Forecast performance will be analyzed using the following tasks:

a. Calculate the absolute errors over the Northern Hemisphere for the entire data

set.

b. Compute the RMS value for the CONUS for all forecasts.

c. Construct 10-year histograms of the RMS values and compute the basic

statistics of the distribution.
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Figure 1. Northern Hemisphere with 3.75 by 3.75 degree grid.ii~iii...........

Figure 2. CONUS region of interest with 3.75 by 3.75 degree grid.
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d. Define critical values for poor and good forecasts based on the 10-year

distribution of RMS values.

The distribution of RMS error over the CONUS will be compared with other

regions of the Northern Hemisphere. This regional variation in forecast performance will

be studied in the following manner:

a. Perform steps b. - d. above for the other selected region.

b. Perform statistical tests for significance between the RMS distributions of the

two regions.

Poor forecast error growth through time will be diagnosed using the following

procedures:

a. A sample of poor forecasts will be examined subjectively for the origin, growth

and location of error patterns.

b. The sample set will be examined for differences in error fields of poor forecasts

produced by initial conditions of neighboring days.

c. Significant results and patterns, if any, from a. and b. will be examined

throughout the entire data set.

d. Empirical Orthogonal Function (EOF) analysis will be performed over time on

the RMS values of forecast evolution for both good and poor forecast cases.

Spatial patterns of error growth will be examined by the use of EOF analysis. Two

types of EOF analysis will be performed. These analyses will be performed on the

correlation and covariance matrices of the error fields. Additionally, both EOF analyses

are performed with and without the mean error field. The correlation EOF analysis is used

to extract error modes which are smoothed based on the standard deviation of each data

point. The correlation EOFs accent areas of high variability, because they are not

smoothed about the standard deviations. By leaving in the mean error field, the EOFs

represent deviations about the mean error. However, by removing or correcting for the

mean error, the dominant EOF is the mean error field and the remaining EOFs are
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subordinate to the mean pattern. The EOF analysis will be accomplished in the fonlowing

manner:

a. Perform EOF analysis on the error fields of poor and good forecasts.

b. Examine any differences which exist between these analyses.

The possible effects of bias in the case selection, as well as the effects of successive

model improvements will be analyzed as follows:

a. Segregate the poor forecasts based on the operational version of the model

which was used to produce them.

b. Perform EOF analysis on the error fields of these new data sets.

c. Compare the modes revealed from each version of the model with each other

and with the modes revealed in the 10 year analysis.

A possible cause of the poor forecasts will be investigated by the following:

a. Compute the mean 500 mb zonal wind speeds over different geographical

regions for the length of the forecast period.

b. Plot the distribution of the mean zonal wind speeds against the corresponding

5-day RMS values.

c. Examine the differences between the distributions of the zonal wind speeds for

poor and good forecasts.

C. Equations

Throughout the course of this study, several equations and statistical tests will be

used. They are summarized below.

In keeping with Netterville (1991), the RMS error was chosen as the standard of

performance used to judge forecasts. The familiar formula for this measure is as follows:

where Xf = forecast height at a grid point, Xo = observed height at a grid point and n =

number of grid points in the region of interest.
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The e2 goodness-of-fit test (Ott 1988) is used to determine the statistical

significance of a distribution across several categories. The formula for this statistical test

is:

= (n, E ] (2)

where i = the number of categories, n,= the observed number in category i and E, = the

expected number in category i. The null hypothesis for this test is that all probabilities

for each category are equal to a specified set of probabilities. The null hypothesis is

rejected if J2 exceeds a critical value which is based on the number of categories and the

desired level of confidence.

The geostrophic wind equation is used to compute a value of the mean zonal wind

over the region of interest. The form of this equation from Holton (1993) is:
j I= e (3)

f 4
where W is the mean zonal wind, f is the Coriolis parameter and- is the gradient of

mean 500 mb geopotential heights over a specified latitudinal band. The geopotential

heights are computed from the 500 mb height data.
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CHAPTER V

DISTRIBUTION OF ERRORS

Prior to determining patterns of error growth, it was decided to look at the

distributions of the actual forecast errors. This was done to determine the relative

importance of the CONUS within the overall distribution of errors. Additionally, the

distribution of the CONUS RMS values was revisited to study its statistical characteristics

and seek improved criteria for defining poor forecasts. Finally, the distribution of RMS

error values over a portion of the Pacific Ocean was studied to determine if differences

exist between geographical regions.

A. Distribution of forecast errors

Since the critical error values used by Netterville (1991) are on the order of 100

meters for 5-day forecasts, this number is used as a representative value to measure the

distribution of errors. For each grid point over the Northern Hemisphere, counts were

made of the number of days with 100 meter errors of each sign, as well as for the absolute

value of the error. These frequency plots for the 5-day forecast are depicted in Fig. 3.

Several features are apparent upon inspection of Fig. 3a. Most notable are the

maxima located near Newfoundland and in the Southern Gulf of Alaska. These maxima

affect the extreme northeast and northwest corners, respectively, of the CONUS area of

interest. The CONUS region itself lies in a relative minimum of absolute error frequency.

These two maxima correspond to previously documented climatological regions of

explosive cyclogenesis (Roebber 1984, Uccellini 1990, Alberta et. al. 1991). The

maximum over Newfoundland is dominated by positive forecast errors (Fig. 3b), which

indicates that the main problem for this region is the over forecast of 500 mb heights.

Another positive maximum is present over central Canada, which corresponds to the result

of Arpe and Klinker (1986). Conversely, the Gulf of Alaska maximum is dominated by

negative errors, (Fig 3c), indicating the preference for over development of cyclones or
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100t

a.

Figure 3. Frequency of 5-day 500 mb forecast errors of 100 meters or more for the 1981-
1990 winter seasons. (a.) Absolute errors, (b.) positive errors and (c.) negative errors.
Contour interval is 50 occurrences.



2415

Figure 3. (Continued).
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underdevelopment of anticyclones in the region. This negative maximum is slightly

displaced eastward from the result of Arpe and Klinker (1986). The regions of maximum

positive errors over the Pacific Ocean and northeastern North America and negative errors

over the Gulf of Alaska are aligned with the dominant storm tracks in these regions. Over

the hemisphere, the steepest gradient of this error frequency distribution also occurs

through the mid-latitudes, the region of transient, synoptic scale cyclones. Conversely, the

distributions in the tropics and polar regions are relatively uniform, owing to the low

frequency dynamics of these regions. Together, these results indicate that the most

important regions of error are collocated with the regions of greatest activity or variability

in the atmosphere.

Within the CONUS, the error frequency pattern is relatively zonal, especially in the

Southeast, and increases poleward. However, a localized minima exists along and in the

lee of the Rocky Mountains, primarily in the negative phase (Fig. 3c). This result shows

that cyclones are forecast well in this region, even though the region is a preferred location

for maximum cyclonic development (Roebber 1984). However, this performance may be

enhanced by noting that little if any winter season explosive cyclogenesis occurs in the

region (Roebber 1984).

B. Distribution of RMS errors

Netterville (1991) presented time series of the RMS values over the CONUS to

show their daily variability. However, he did not discuss the overall distribution of these

values with respect to the critical values which he used to define a poor forecast. His use

of the annual mean RMS plus one standard deviation for that year, while attempting to

allow for model changes and improvements, created something of a paradox. The annual

mean RMS values, as well as its annual variability (as measured by the standard deviation),

generally decreased over the 10-year period, indicating improved model performance.

Concurrently, the number of cases which he defined as poor increased in the latter half of

the period of investigation relative to the first half of the period. The resulting paradox is
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that, as the model performs better overall, the number of "poor performances" increases.

This increase in the number of poor forecasts is with respect to a decreasing criterion

(mean RMS error) defining poor forecasts. Thus what Netterville (1991) actually shows

is that as time has passed, the number of forecasts with RMS errors greater than one

standard deviation (for that season) has increased. Thus the distribution of forecast errors

about the seasonal mean has become slightly more skewed with time.

The annual histograms of RMS values (not shown) were studied for their statistical

characteristics. None of the years revealed any significant bimodal distributions and the

critical values used by Netterville (1991) were not located within any local maxima in the

distribution. Thus his criteria for the definition of poor forecasts is rather arbitrary. The

10-year composite distribution for day 5 (Fig. 4) shows a near normal distribution, albeit

slightly skewed toward the higher RMS values.

In the interest of judging all forecasts by the same criteria, poor forecasts were

redefined in terms of the 10-year RMS statistics. For later comparisons, poor and good

forecast RMS critical values were defined to be the 10-year mean RMS plus and minus the

10-year standard deviation, respectively. This yields critical values of RMS values greater

than 104.49 m for poor forecasts and less than 56.40 m for good forecasts. The annual

number of poor forecasts using this criteria is shown in Table 1, while the distribution for

good forecasts is shown in Table 2. Using this criteria for the selection of cases removes

the aforementioned paradox, i. e. , the number of poor forecasts generally decreases with

time just as the RMS measure of performance also decreases. This criterion for poor and

good forecasts was used to categorize forecasts for this research. One result of this

definition is that the set of poor forecasts are biased towards the earlier years of the data

set. Conversely, the good forecasts will be skewed toward the later years of the period.

Notably, the earlier period contains the grid-point and T63 spectral models, while the

latter half of the record was produced by the higher resolution T106 spectral model

(Trenberth and Olson 1988). Additionally, the modifications to the radiative, convective,
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cloud and condensation parameterizations introduced in 1984 and 1985 were found to be

the most significant in terms of reducing the systematic error of the model (Arpe 1989).

The differences of these two data sets will be considered when investigating the

differences between the two categories.

The RMS values were also computed over a region of equal size over the Pacific

Ocean. The region is bounded by the same latitudes as the CONUS region (22.5 - 56.25

degrees N) and by longitudes 135 W and 153.75 E. The 10-year frequency distribution of

these RMS errors is shown in Fig.. 5. Poor and good forecasts were defined in the same

manner as over the CONUS (regional 10-year mean RMS plus or minus one standard

deviation). This yielded critical values of 105.11 m (59.19m) for poor (good) forecasts.

The annual distributions of the poor and good forecasts for the Pacific region are also

contained in Tables 1 and 2. For the Pacific region, 151 poor forecast cases and 36 good

forecast cases were identified. As with the distribution over the CONUS, the Pacific

region distribution is relatively normal and skewed slightly toward higher values.

The RMS errors were computed over both geographical regions to see if regional

differences exist in their distribution. The null hypothesis that the two distributions are

different was tested using the Student's two-tailed t-test with unequal variances (Ott

1988). The resulting p-value from this test is greater than. 1, indicating that there is a

greater than 1 in 10 chance of selecting the two distributions at random. Therefore, there

is insufficient evidence to reject the null hypothesis. Failure to reject the null hypothesis

lends support to the assumption the forecasts for the CONUS and the Pacific do not

present different problems, at least when viewed from an RMS standpoint. Because the

two regions are seemingly similar, no further interest was expressed in the errors over the

Pacific region and the remainder of this research will deal with the errors over the

CONUS.
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Table 1. Annual distribution of poor 5-day forecast cases for the CONUS and Pacific
regions. See text for definition of poor forecasts.

YEAR CONUS PACIFIC
1981 22 19
1982 22 35
1983 14 9
1984 11 15
1985 20 18
1986 9 9
1987 9 9
1988 7 12
1989 11 16
1990 10 9
Total 135 151

Table 2. Annual distribution of good 5-day forecast cases for the CONUS and Pacific
regions.

YEAR CONUS PACIFIC
1981 9 3
1982 4 2
1983 11 3
1984 13 2
1985 9 2
1986 23 4
1987 16 5
1988 23 7
1989 14 2
1990 26 6
Total 148 36
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CHAPTER VI

GROWTH OF FORECAST ERRORS

Based on the separation of the ECMWF forecasts into poor and good categories

as measured by the 5-day RMS error over the CONUS, the growth of forecast error

will now be examined. This examination will reveal the dominant modes of error

growth, both in time and space. Additionally, it will reveal differences between the

dominant modes of poor and good forecasts. This chapter presents the methods used in

this search and the results of the examination.

A. Growth from initial conditions

Plots of the error fields were screened subjectively to identify any patterns that

might exist in the evolution in the fields. Initially, the 5-day forecast error fields were

studied and classified subjectively by patterns in these fields. However, it was found

that no dominant pattern existed which provided useful information about the error

growth. Patterns determined subjectively ranged from error dipoles over the CONUS

to hemispheric error trains. These error dipoles exhibited no preferred orientation.

It was also decided to trace the growth of the error fields through time from the

initial conditions. Netterville (1991) found that the initial conditions by themselves

were not an adequate predictor of forecast skill. With this study, it was hoped to detect

some kind of transient feature which produces a large error field and the resulting large

RMS value.

To accomplish this, a subset of the poor forecast cases was studied. From the

135 poor 5-day CONUS forecasts identified in the previous chapter, 18 were selected at

random. The verifying 500 mb analysis and corresponding 5-day 500 mb forecast for

one of the cases is shown in Fig. 6. This particular forecast exhibits several common

forecast problems. For instance, the 5-day forecast (Fig 6b.) attempts to move the
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a.

b.

Figure 6. 500 mb forecast initiated 3 Jan 82 and valid 8 Jan 82. (a.) Verifying
analysis and (b.) 5-day forecast. Contour intervals are 60 meters.
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cutoff low southwest of Baja California too far eastward. Additionally, the 5-day

forecast exhibits a zonal flow over the Northern CONUS, versus the verifying

northwesterly flow over the northwestern CONUS. The 5-day forecast also incorrectly

placed a high pressure center over Florida as well as over developing the high pressure

center north of the Aleutians.

Using analogous definitions (10-year mean plus standard deviation of RMS), the

forecasts for days 1-4 were judged for their performance. Of the 135 poor 5-day

CONUS forecast cases, the forecasts for days 1-4 were also judged to be poor 25.8,

34.4, 39.1 and 57.8 percent of the time, respectively. These results indicate that the

greatest proportion (42.2%) of 5-day forecasts become poor on the fifth day.

Additionally, it is interesting to note that one fourth of the poor 5-day forecasts are

already poor forecasts on the first day of evolution. It also shows that poor 5-day

forecasts tend to become poor at some point in the middle, rather than near the

beginning, of its evolution. This result has also been documented by Lyons (1992).

A case study of error field evolution is shown in Fig. 7. This figure shows the

daily evolution of the error field as forecast from the initial conditions which produced

the poor 5-day CONUS forecast valid 8 Jan 82. This valid date is the same as the case

shown in Fig. 6. This particular set of initial conditions produced poor forecasts on

days 1, 2, 4, 5 and 6. The main forecast problems, or dominant errors, become

apparent in this case by the third and fourth days. By day 3, the region of negative

errors, or under forecast heights associated with the premature eastward movement of

the low pressure center is apparent over Southern and Baja California. Likewise, so

are the positive errors, or over forecast heights, further to the west in the region where

the low pressure actually should be. A negative/positive/negative error pattern

stretching from the Aleutians to the Canadian-United States border becomes most

apparent between days 3 and 4. This error train is associated with incorrectly forecast
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a.

b.

C.

Figure 7. Daily forecast errors evolving from the initial conditions which produce a
poor 5-day forecast valid 8 Jan 82. (a.) Day 1, (b.) day 2, (c.) day 3, (d.) day 4, (e.)
day 5 and (f.) day 6 errors. Contour intervals are (a.), (b.) and (c.) 50 meters and
(d.), (e.) and (f.) 100 meters. Negative contours are dashed.
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high pressure center north of the Aleutians and the northwesterly versus zonal flow

along the Canadian-United States border.

Two possibilities exist in the evolution of the error fields. The first is that the

errors over the CONUS would result from a transient pattern of error growth. Such a

transient feature might originate from a geographical region or regions which are

poorly sampled by the ground-based observational network, such as the tropical East

Pacific Ocean. An alternative result would be to find that the error patterns grow

largely in place as previously documented by Arpe and Klinker (1986).

In this case study, as in most of this subset, the error fields were found to

amplify in situ rather than as a result of any transient feature. No obvious growth was

found to move out of the tropical East Pacific. However, there were some cases which

exhibited prominent errors in this region. In fact, even though the poor forecasts were

defined based on performance over the CONUS, there were many instances through the

entire data set in which the maximum error amplitude was found well outside the

CONUS region. No correlation can be made between these distant error maxima and

the error patterns over the CONUS, as their positions spanned the entire Northern

Hemisphere mid-latitudes. Likewise, they were found to occur both as mid-latitude

error wave trains and as stand alone features.

The study of the subset of poor forecasts did not produce any "smoking gun"

pattern of error growth. The main conclusion was that the eventual error pattern of the

poor 5-day forecasts grows in place with the bulk of the growth occurring after the

third or fourth day of the forecast. Additionally, it does not appear that the errors are

the resul of any transient feature or one that originates in a poorly sampled region.

Because of the limited results of this study, it was not applied to the entire catalog of

poor forecasts and other avenues of research were followed.
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13. Sensitivity to initial conditions

In addition to the study of error growth described above, the sensitivity of erro

growth of the ECMWF model to the initial conditions was examined. To accomplish

this, the same subset of poor 5-day forecast dates was used and the 4- and 6-day

forecast error fields were studied. These fore.asts were also valid on the same date as

the poor 5-day forecasts. This study was performed to determine if the performance of

the ECMWF is sensitive to the data used as initial conditions for the model. The

underlying hypothesis is that the forecast for a given date will improve as the forecast

length is shortened and worsen as the forecast length is lengthened. More specifically,

if the initial conditions are important, the likelihood is small that the initial errors will

be the same for three consecutive days. The forecasts which were initiated based on

the surrounding initial conditions should not also be poor forecasts. Additionally, this

examination will determine if there is a difference in the dominant error pattern over

the CONUS among the three forecast lengths, or if the patterns are similar.

The 4-, 5- and 6-day forecast error fields from one of the subset cases is

presented in Fig. 8. The valid date of all three forecasts is the same as that of Fig. 7.

Visual inspection of these three forecast error fields reveals that there are not

significant changes in the locations of major errors for the forecast valid date at the

three forecast lengths. Specifically, the high/low error dipole near Baja and the

negative/positive portion of the positive/negative/positive error train along the

Canadian-United States border are evident on all three days. The fact that all three

days produce errors in similar locations indicates that the initial condition•. are not that

important in producing a forecast for this valid date. There were, however, noticeable

differences in the amplitudes of the error centers. This was especially true of the 4-day

errors over the CONUS itself. Generally, the 4-day forecasts for the valid dates in the

subset performed better than the 5- and 6-day forecasts. This trend was noted

throughout the entire sample subset. In fact, for the valid dates of poor 5-day
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Figure 8. Comparison of 4-, 5- and 6-day forecast errors which verify on 8 Jan 82.
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forecasts, 53 % of the corresponding 6-day forecasts were also deemed poor, while only

42 % of the equivalent 4-day forecasts were poor performers. All three days produced

poor forecasts in only 29.6% of the cases. Therefore, extensive runs of poor forecasts

do not appear to be a frequent occurrence.

C. Empirical Orthogonal Function analysis of errors

The research presented thus far is limited by the fact that it is highly subjective.

Additionally, due to high variability in 500 mb patterns, the appearance of a limited

number of dominant error patterns would have been somewhat fortuitous. Therefore,

more objective methods of analysis must be used to reveal the underlying patterns of

error growth. Empirical Orthogonal Function (EOF) analysis is used to gain objective

results.

EOF analysis has become a standard tool of exploratory data analysis (Richman

1986, Preisendorfer 1988). This method of analysis is used to decompose

mathematically a data set into its dominant modes, while also determining the weight or

significance of these modes. Modes are selected by using matrix operations to compute

the eigenvectors of a data correlation matrix. The eigenvectors of this matrix define

the modes of the data set, while the accompanying eigenvalues represent the respective

weights of the eigenvectors. The weight of the eigenvectors represent the percentage of

the total variance of the data set explained by that eigenvector.

EOF analysis is applied through in the following two procedures: First, the

temporal growth of the RMS errors is analyzed over the length of the forecast period.

Secondly, the spatial EOFs of the forecast error fields are computed for each day of the

forecast period. The temporal EOFs show the dominant patterns of error growth rate.

The spatial EOFs highlight patterns and regions of high and low error growth rates.

EOF decomposition of individual forecast days (forecasts for day 1, 2, 3, etc.)

highlight the evolving patterns of error growth. One of the interesting results is that

the dominant error patterns changes from shorter to longer forecasts. In both the
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temporal and spatial cases, comparisons are made between the results derived from the

poor forecast cases and from the good forecasts. Such comparisons point out the

differences in the two categories and possibly reveal a cause for the poor forecasts.

The spatial EOF analysis is restricted to the CONUS region of the gridded data.

This region contains 200 grid points. To reduce computational demands, the number

of grid points used in the EOF routine was reduced. The results discussed below are

computed using 50 grid points over the CONUS. The 50 points represent every other

longitude and latitude, beginning in the northwest corner of the CONUS region. This

results in an effective grid point spacing of 7.5 degrees within the region. The use of

this coarse spacing is still expected to resolve any major patterns, since the major errors

in the field have typical length scales greater than 7.5 degrees.

1. Temporal EOF analysis

As part of the EOF analysis of RMS error growth, the mean growth curve of

the RMS values was derived for all forecasts, as well as for the 135 poor (5-day RMS

errors greater than 104.49 meters) and 148 good (5-day RMS errors less that 56.4

meters) forecast cases. Figure 9a summarizes the mean value of RMS error as a

function of forecast length for each category.

Inspection of the curves shows that the RMS error growth rate of all forecasts is

essentially linear, with an increase of about 15 meters per day through 5 days,

decreasing to 12 meters per day on day 6. This is inconsistent with the normal concept

of exponential growth rate and error doubling time. The implication of this linear

growth rate is that the errors are not, on average, the results of a simple linear

instability with a fixed error growth rate. However, neither the set of poor or good

forecasts parallels this growth curve. For the collection of poor forecasts, the growth is

still linear for days I and 2, but with a growth rate of about 20 meters per day.

However, after day 2, the growth curve increases in slope, with a maximum growth

rate of 30 meters per day between days 3 and 5. After this time, the growth of the
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RMS error is not as dramatic. These growth rates may owe their increase over time to

some kind of linear instability. This result indicates that the RMS of poor 5-day

forecasts increases most significantly on the synoptic time scale. The growth of errors

for good forecasts is less dramatic, as the most growth (10-14 meters per day) occurs

by day 3. After this day, daily growth is reduced to 6 meters or less per day through

day 5. This result shows that, while the majority of RMS error in good forecasts

occurs prior to day 3, the opposite is true for poor forecasts, indicating that poor

forecasts do not become decidedly poor until midway through the 5-day forecast.

Additionally, the collection of poor forecasts has a much greater variability (as

expressed by its standard deviation around the mean of poor forecasts) than the

collection of good forecasts (Fig. 9b). The restricted variability of the good forecasts

effectively provides a lower bound on RMS performance, while the higher variability

of the poor forecast population allows for much more extreme values in this category.

The two forecast categories are essentially separated by day 4 of the forecast period.

Further, the fact that the mean of the 135 poor forecasts moves further away from the

overall mean, and have a greater variability than the 148 poor forecasts, is further

evidence that the overall distribution of 5-day RMS values is not a normal or Gaussian

distribution.

The EOF analysis of all forecasts for a 6-day period yields eigenvectors with

proportions presented in Fig. 10. This EOF analysis removed the mean error growth

rate. Therefore, the EOFs explain only the deviations from the mean error growth

rate. The proportions in Fig. 10 represent the percent of variance explained by the

individual eigenvectors or EOFs. If each EOF were to explain equal proportions of the

total variance, their percentage would be 16.6% (1 part out of 6), since there are 6

EOFs. Only EOFs 1 and 2 (Fig. 11) represent percentages greater than 1 out of 6 and

are deemed significant. A scatter plot of the amplitudes of EOF 1 versus EOF 2 is

presented in Fig. 12. A X2 test was performed using the null hypothesis that the
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distribution in Fig. 12 is different from a completely random distribution of the

amplitues. The random distribution assumes that one fourth of the amplitudes fall in

each quadrant. The p-value for this test is greater than .1. This p-value indicates that

the two distributions could be selected at random more than 10% of the time.

Therefore, the null hypoctbheis that the distribution is dif ferent than a random

distribution can not be re.~ected.

Within each quadrant, in addition to counting the total number of cases, the

number of poor forecasts was also determined by plotting the EOF 1 and EOF 2

amplitudes of just the poor forecasts. It was noted that while only 21.4% of all

forecasts were found in the quadrant of positive EOF 1 and negative EOF 2, 76.6% of

the poor 5-day forecasts were located within this region (Fig. 13). The null hypothesis

that thins distribution is the same as a random distribution was tested. Again using the
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Figure 13. Scattergram of the amplitudes of temporal EOF 1 versus EOF 2 for the
subset of poor forecasts.

Z2 test, this result has a p-value less than .001, representing a less than 1 in 1000

probability of selecting such a distribution at random. Therefore, the null hypothesis

that the distribution of the amplitudes of EOFs 1 and 2 of poor forecasts is rejected.

The combination of positive EOF 1 and negative EOF 2 is a significant pattern of RMS

error growth deviation from the mean in poor forecasts.

Analysis of this combination of EOFs 1 and 2 shows that EOF 1, representing

52.8% of the RMS error variance, is relatively flat. The daily contribution of this EOF

does not vary greatly from day to day, although it does increase slightly through day 4

and then decreases somewhat on days 5 and 6. This decrease actually represents a

return toward the mean RMS error growth rate. Since the EOF is relatively flat, it

shows that much of the deviation from the mean growth rate is already present on day
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1. The decrease in the later dates is due to the tendency of the model to converge back

to its own climatology.

On the other hand, EOF 2, because of its negative phase, initially represents a

tendency for poor forecasts to remain below or near the mean curve for the first 3 days

of the period. As the forecast period goes beyond days 3 and 4, the contrintion from

this EOF becomes positive, indicating that poor forecasts with large negative EOF 2

grow most rapidly in the latter part of the forecast. The change in phase of this EOF is

directly related to the period of greatest RMS growth of the 135 poor forecasts.

Conversely, the distribution of the amplitudes of EOFs 1 and 2 for the 148 good

forecasts was determined (Fig. 14). The result was equally as impressive as the

distribution of poor forecasts, in that most of the good forecasts were concentrated in

the opposite quadrant from the poor cases. The combination of negative EOF I and

positive EOF 2 contained 28.0% of all forecasts but 79.9% of the good forecasts.

Again, the null hypothesis that this distribution is the same as a random distribution

was tested using the ,j test. The resulting p-value is again less than .001, indicating

that this is a significant combination of EOFs. In this case, the opposite sign of EOF I

largely explains the deviation of the good forecasts to a location below the mean error

growth curve, as opposed to the poor forecasts which deviate to a location above the

mean curve. Additionally, EOF 2 differentiates between the rapid growth of RMS

error on days 3 and 4 of poor forecasts and the very slow growth of RMS error on the

same days of the poor forecasts. This dichotomy indicates that the departure from the

mean RMS growth curve for good forecasts is exactly the opposite as that of the poor

forecast growth.

While the EOF analysis presented above demonstrates the significant modes of

RMS error departure from the mean error growth rate, it does so at the expense of

removing the actual mean growth pattern. Because of this, the EOF analysis was

recalculated for all forecasts without removing the mean error growth rate. The
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Figure 14. Scattergram of the amplitudes of temporal EOF 1 versus EOF 2 for the
subset of good forecasts.

resulting eigenvectors are presented in Fig. 15. In this analysis, the mean pattern of

growth is dominant and the remaining eigenvectors represent the departures from the

mean, similar to the discussion above. The weights of the eigenvectors for this analysis

are 96.3, 1.7, 0.1, 0.5, 0.3 and 0.1% respectively. These values indicate that the

mean pattern represents the bulk of all RMS error variance and the deviations are a

much smaller 3.7% of the total.

2. Spatial EOF amlysis

The research presented thus far has shown that the greatest amount of error

growth in poor 5-day forecasts, as judged by the RMS values and their growth, occurs

between days 3 and 5. This corresponds to the time period for synoptic scale

meteorological processes. In order to determine if the error fields of poor and good 5-

day forecasts are related to synoptic scale processes, these fields are analyzed spatially

via the EOF procedure. This procedure is performed for the error fields of each day in
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Figure 15. Leading temporal EOFs of CONUS RMS error growth after correcting for
mean growth.

the evolving poor 5-day forecast. As a result, the dominant evolutionary patterns

appear, and their changes through the foremas period (both in spatia patternsan

dominance) described.

As discussed previously, the spatial EOFs are computed using a reduced set of

grid points (50 vs. 200) within the CONUS region of interest. On day 5, the resulting

50 EOFs explain portions of the total variance of poor and good forecasts as shown in

Fig. 16. From the graph, it is apparent that the first few EOFs combine to explain

much more of the total variance in poor forecasts than in good forecasts. In fact, the

graphs for days 1-4 (only day 5 is shown in Fig. 16) reveal that the dominance

associated with the leading EOFs increases with time. For good forecasts, there wre no

such dominan leading EOFs. Since these are Already defined as good forecasts, it is

reasonable to expect that there is not a dominant pattern of error; that is, the good

forecasts are not flawed by specific patterns of error growth. As with the temporal

N.|
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analysis, these fields and the resulting EOFs are not corrected for the mean daily error

field. Therefore, the EOFs represent the deviations of the error field about the mean

error field of the respective day. This should not be a problem, since the mean error at

individual points is close to zero; that is, there is only weak systematic bias of the

forecasts over the CONUS region. The results are first presented for the spatial EOF

analysis performed on the error fields of the subset of poor forecasts.

The first two EOFs from day 1 of the poor forecasts are presented in Fig. 17.

The pattern of EOF 1 is simply a single phase with all points of the same sign. This

single phase, relatively flat field is similar to what normally results from EOF analysis

of geophysical data. Even though this field is relatively flat, there is a weak mximum
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Contour interval is .05. Negative contours are dashed.
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along the southeast border of the region. The second EOF reveals a dipole pattern

aligned northwest to southeast over the region. This pattern is also fairly normal in the

context of EOF analysis. The scale of this wave pattern is at least 12,000 kin, or twice

the domain width. Together, these two patterns combine to explain 30% of the total

error field variance.

Analysis of the leading EOFs on day 2 of the poor forecast runs (Fig. 18)

begins to reveal a systematic evolution of the error field. The dipole pattern which was

the second EOF on day 1 is now the leading EOF, although its contribution to total

variance has increased from 10% to only 14%. The second EOF is essentially a single

phase pattern, except for one grid point over Arizona. This pattern is similar to the

leading pattern of day 1. Within this pattern, the earlier weak maximum over the

Southeast has become more evident as an axis of maximum amplitude extending into

the Ohio Valley. Additionally, the dominance of this pattern has been reduced by one

third, as it is now responsible for only 12% of the total variance. Even though the

same patterns exist on the first two days, their combined relevance is reduced, while

they have also switched positions with each other. The third EOF begins to reveal an

interesting feature. This EOF is the quadrature, or 90 degree phase shift of the first

EOF. This is evident since the regions of maximum and minimum amplitude of EOF 1

are aligned along gradient regions of EOF 3, and vice versa. The two phases of these

two EOFs combine to reveal all four phases of a standing wave pattern, which explains

25 % of the variance of the error fields on this day. The switching of the first two

EOFs, along with the appearance of the quadrature pattern are is indicative of the

changes underway in the evolution of the forecast error fields.

The leading patterns on day 3 are shown as Fig. 19. The leading pattern is once

again the dipole over the CONUS, which has increased in dominance to over 19% and

become much better resolved. The dipole has also lost much of its northwest to

southeast onrentation and is now aligned almost zonally. The quadrature pattern is now
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Figure 19. Leading correlation EOFs of the day 3 error field of poor forecasts.
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Figure 19. (Continued).

the second EOF, and the combination of these two patterns increases in dominance to

32%. Thus, this wave pattern now explains about one third of the total variance. The

single phase pattern which was present in the first two days is not as readily apparent

by day 3. It might be found most closely in EOF 3, although this pattern has a greater

negative area than was found in EOF 2 on day 2. Additionally, since EOFs 2 and 3

explain nearly the same percentage of the variance (12.86% versus 11.05%), there is

some mixing of signal between the two.

The leading EOFs of day 4 (Fig. 20) indicate that the combination of patterns

which emerged on day 3 have continued to do so. The dipole and its quadrature have

separated from the remaining patterns and now combine to explain 40% of the total

variance in the error fields. These two continue to be the leading modes on day 5 (Fig.
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21), with similar contributions to the variance of the error fields. The single phase

pattern from days I and 2 is not found among the first 5 EOFs on either day, indicating

that it no longer contributes strongly to the error fields.

The evolution of EOFs for the set of good forecasts takes a different course and

reveals their differences from the EOFs of the poor forecasts. On day I (Fig. 22), the

leading pattern is nearly identical to that of the poor forecasts: a single phase,

relatively flat field which explains 20% of the total variance. However, the dipolar

pattern of EOF 2, while being somewhat weaker, has a more pronounced northwest to

southeast orientation than did this pattern in poor forecasts. On day 2 (Fig. 23), the

two patterns switch dominance, as they did in poor forecasts. Additionally, the wave

pattern for good forecasts is in quadrature with the leading wave pattern of the poor

forecasts. However, the closeness of this contribution to variance by EOFs 1 and 2,

both in relation to each other and to the remaining EOFs, reveal that neither is a very

dominant feature, as in poor forecasts. The mixing of these patterns is further

evidenced by days 4 and 5, when they once again switch positions (Figs. 24 and 25).

Finally, it is noted that the quadrature pattern, which was clearly evident in the poor

forecasts, is not as dominant among the first 5 EOFs of any day in the good forecast

subset.

The EOF analysis as discussed above was performed by analyzing the

correlation matrix of the error fields. As a result, the patterns which are revealed have

been smoothed by the standard deviations of the individual points in the error field.

The EOF analysis was once performed again, this time using the values contained in

the covariance matrix or the error fields. The resulting EOFs from this analysis are

patterns which additionally emphasize the variance of the forecast error at all individual

points in the error fields. Some of the results from this second analysis will be

discussed below and compared to the previous results.
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On day I (Fig. 26), the leading EOF is once again the single phase pattern as

before, and as expected. However, the contribution to variance is more pronounced.

The second EOF still has some characteristics of the dipole pattern, but its existence is

largely confined to the western half of the CONUS, as opposed to the longer length

scale found in the covariance EOFs. The single phase remains dominant on day 2 (Fig.

27a), however the presence of a maximum center in Washington resembles the dipolar

pattern. The dipole pattern and its quadrature is revealed in EOFs 2 and 3, however

the two modes are not well separated, either from each other or from the remaining

EOFs, in terms of dominance (Fig. 27b and 27c). On day 3 (not shown) the dipole and

quadrature gain dominance as before, with this dominance continuing through day 5

(Fig. 28). Once again, it must be noted that when this analysis is performed, the

significance of the dipole/quadrature pattern is shown to be increased.

For good forecasts, the single phase pattern is once again the leading pattern on day

I (Fig. 29). However, throughout the length of the forecast, the dipole/quadrature

combination still never manifests itself as one of the dominant, leading patterns. The

pattern is found on day 5 as EOFs 2 and 3 (Fig. 30), but with a low, nondescript

percentage of the variance. As with the correlation EOFs, the contributions to variance

of the good forecast covariance EOFs are muddled as revealed by their flat distribution

in Fig. 31.

The EOFs presented thus far are calculated without correcting for, or removing, the

mean error field of each individual forecast day and forecast category, especially the

poor forecast category. To complete the EOF analysis, the EOFs are again calculated

with the mean error field removed. This mean pattern will be revealed as the leading

mode, as was the case of the temporal EOF presented earlier. In this case, the mean

pattern would represent the systematic model error associated with the particular

forecast day and category.



.25

POOR FORECAST A 1 COVAR NCE EdF 1 21.36-. V~ Vri~ne explained

a.

0

POOR F'ORECAST A 1 COV A R N CE E OF 2 10.§,5 Vri'~nce explained

b.
Figure 26. Leading covariance EOFs of the day 1 error field of poor forecasts.



56

* -2

- -- -------- -- - - - . . - - - - - -

b.

Figure 27.-- Leading c---c EO-s of- the- d---- erro fields-- of-por-or-cst -



57

.21

POOR FORECAST A 2 COVAR ANCE EdF 3 9.9 %~Vir~inee explained

C.

Figure 27. (Continued).



58

2 .2

.24.

POOR FORECAST A 5 COVAR NCE EQ1F 2 18- 2 A Vrince explained

a.

Figue 2. Ladin coarinceEQ~sof he ay5 rro fild f por frecsts



39

.2

.3.

.2.

Figure-- 29 --- ----d---- .o......c .. of -- the- day- ---- error-- fil of good--forecasts.-



.33

b.0
F --gure -30 -Ledn . o...nc --------- of --- th day ero field of goo forecasts... . .. ..---



61

--~~ ~ - --- - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -- .. . . . . . .

-. 2.

Figur 30. (Con --t -----iue----d).... --- ---

00

H25

CC

20

C '

t. . . . .. ------ ,--.. - -- ......... ............................- ...............
............ .... -. -.......- ---- - ---

0

t 6 1 2 2 3 3 4 4
16 I6 I6 1 6

Day 5 EOFs

Poor Cases --- Good Cases ........- Equal Variance

Figure 31. Percentage of variance of the day 5 CONUS error fields explained by the
spatial EOFs calculated from the covariance matrix.
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When this analysis is accomplished, an interesting result is revealed in the poor

forecasts. The mean pattern is essentially a zero field, and is masked in the leading EOF.

Inspection of the leading day 5 poor forecast EOFs (Fig. 32) reveals that these EOFs are

essentially the same as those which were not corrected for the mean. This similarity

extends even to the percentage of variance explained by each EOF. The absence of an

identifiable mean pattern through this analysis indicates that the errors in poor forecasts at

5 days do not contain a systematic bias.

As discussed earlier, the fact that RMS performance increased with time over the

data period, coupled with the use of 10-year statistics to define forecast categories,

introduced some bias into the poor and good forecast data sets. The poor forecast data

set is weighted more toward the earlier years of the data period, while the good forecasts

are slanted more toward the later years. This means that there may be more contribution

to the error modes in poor forecasts from the earlier version of the ECMWF model. To

investigate if this is indeed a factor, the EOF analysis is once again performed for each

forecast category and length. However, in this analysis the error fields are also segregated

on the basis of the operational version of the model used to produce the forecast. In this

data set, the winter seasons 1981-1983 represent the grid point version, 1984 and 1985

are from the T63 version and the 1986-1990 winter seasons are from the T106 model.

Figure 33 presents the leading correlation EOFs for day 5 of poor forecasts from

the 1981-1983 winter seasons. During this period, the grid point version of the model was

the operational version. The familiar dipole pattern is once again the leading EOF at this

forecast length and category. This mode contributes 27% of the variance in this case.

The quadrature pattern is once again revealed in EOFs 2 and 3. These two modes are also

somewhat muddled, as their contributions are rather close (15 and 13.6%, respectively),

although EOF 2 looks most like the quadrature. Compare these patterns with the EOFs of

Fig. 21. This comparison shows that the dominant modes in this category from this 3 year

period are essentially the same as those of the entire 10-year period.
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Figure 33. (Continued).

The leading EOFs from the day 5 error field of poor forecasts from the T1I06

version of the ECMWF are presented in Fig. 34. Once again, the dipole pattern is the

leading pattern, explaining about 31.5% of the variance. The quadrature pattern again

takes its place as EOF 2. This dipole/quadrature pattern is now revealed as the leading

mode in the error fields of poor forecasts of the grid point model and the TI 06 model, as

weli as the entire 10-year set of poor forecasts. Earlier in Chapter V, the inherent bias

caused by the use of 10-year statistics was discussed. This resulted in the selection of

more poor forecasts from the earlier years of the 10-year period, with less poor forecasts

selected from the later years of the data set. However, there does not appear to be a

serious drawback in using the 10-year statistics to differentiate between poor and good
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forecasts, since all three of these data sets exhibit the same error modes in poor forecasts

on day 5.

3. Summary

The existence of this quadrature pattern in poor forecasts, but not good forecasts,

requires further discussion. The leading dipole pattern, which is centered around the

Rockies, resembles that discussed by Arpe and Klinker (1986). However, the existence of

its quadrature is important also. When both phases (positive and negative) of these two

EOFs are taken in combination, the result is all four phases of what appears to be a

standing wave originating due to the Rocky Mountains. The oscillation of this wave is

controlled by the daily amplitudes of the respective EOFs. When the pattern is most

influenced by the leading EOF, the amplitude maxima of the resulting error field will most

resemble the dipole pattern However, when the quadrature portion contributes more to

the total pattern, the amplitude maxima of the resulting error field will be shifted further

downstream from the Rockies. This apparent movement of this feature develops on the 3

- 5 day time scale. This time scale was also identified by the temporal EOF analysis as the

time of maximum RMS growth in poor forecasts. Thus, it appears that the conditions and

times of maximum RMS growth are directly related to the appearance of this orographic

feature.

This apparent standing wave over the CONUS in the error fields of poor forecasts

is tested to determine if it can be associated directly with the occurrence of poor forecasts.

Specifically, it is speculated that these two EOFs reveal an orographic instability in the

form of a standing downstream wave resulting from the Rockies and that this wave can be

related to the mean zonal wind over the CONUS.

Zonal mean 500 mb heights over the sector of the CONUS region are computed at

two latitudes (30 N and 48.75 N) for use in the geostrophic wind equation of Holton

(1992). These give a value of the mean 500 mb zonal wind between approximately 30 and

50 N. The zonal winds were computed for both the initial conditions of all forecast runs,
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as well as for each forecast day. The values of 5-day CONUS RMS were then plotted

against the zonal wind speeds of the corresponding initial conditions which produced the

forecasts. The results are shown in Fig. 35. If the poor forecasts were related, via the

zonal wind, to the standing wave orographic instability, the RMS values of poor forecasts

should be restricted to a narrow range of zonal wind speeds. This range should also be

exclusive of the wind speeds related to the other categories. However, this separation of

good and poor forecasts on the basis of mean zonal winds was not found to be the case, as

the distributions of mean zonal wind speeds are essentially equivalent for both poor

forecasts and good forecasts (Fig. 36). Similar poor results were obtained when this

comparison was made using the mean zonal winds computed over several other

geographical regions immediately upstream from the CONUS region.
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CHAPTER VII

SUMMARY

The error fields of poor 5-day CONUS forecasts have been examined in three

ways. These examinations have revealed several interesting features about the growth

of errors in these forecasts, both from temporal and spatial points of view.

Examination of the raw error data revealed that the CONUS region is in a

relative minimum area when measuring the frequency of errors at the 5-day point. The

maxima which lie just upstream and downstream of the CONUS are in documented

areas of persistent anomalies. The errors over the CONUS are fairly evenly divided

betwen under and over forecasts of the 5-day 500 mb height.

The RMS error value for the CONUS was used as the measure of forecast

performance over the region of interest. In keeping with previous work with this data

set, a normal distribution of this value was assumed. However, in this study, the 10-

year mean and standard deviation were used to provide critical values for poor and

good forecasts. This was done to avoid the paradox in which overall forecast

performance improves, (as measured by annual RMS values), but the actual number of

poor forecasts increased with time. However, this creates a bias in the data due to the

general decrease of the RMS error with time. The subset of poor forecasts is weighted

more toward the early years of the period, while the subset of good forecasts is slanted

more toward the latter portion of the period. A similar study of the RMS distribution

was accomplished for the East Pacific Ocean region immediately west of the coNus

region. It was found that the distribution of 5-day RMS values for this region was not

significantly different than that over the CONUS.

A subjective analysis of the error growth of a subset of the poor forecasts was

accomplished. This revealed no outstanding pattern of raw error growth, location of
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error initiation zones or movement of the error action centers with time. In fact,

maximum error amplitudes in the poor forecasts were found to occur throughout the

entire Northern Hemisphere, rather than in distinct regions. It was also observed that

the error action centers exhibited very little transient behavior, but instead seemed to

grow in situ with time.

Additionally, the same subset of poor forecasts was analyzed to determine the

differences between forecasts originating on successive days which verify on the same

day four to six days later. Again, for the successive forecasts, the main error centers

for the CONUS did not exhibit significant day to day movement. A trend was noted

throughout the entire forecast data set for the percentage of poor forecasts for these

valid dates to increase with increasing forecast length. This would indicate that the

distribution of the RMS error value becomes skewed more with time. On the other

hand, 5-day forecasts that were poor were likely to be poor 6-day forecasts started a

day earlier or poor 4-day forecasts started a day later. This result is not consistent,

however, with the observation that poor forecasts tend not to be episodic.

Due to the limited success of these subjective analyses, a more objective

approach was taken through the use of EOF analysis, both in time and space. The

temporal analysis used the daily CONUS RMS errors which evolved out of each 5-day

forecast run. This procedure showed that there were quantifiable differences in the

evolution of the RMS errors between poor and good forecasts. Good forecasts were

found to have the majority of their RMS growth on the first day of the forecast run.

However, poor forecasts were found to perform as well as all other forecasts for one or

two days before experiencing a rapid growth of error on days 3 and 4. With regards to

the dominant EOFs, the paths taken by poor and good forecasts are completely

opposite. In particular, good forecasts experienced excessively weak error growth on

days 3 - 5. The dominant EOFs were found to explain a significant majority of the

performance of both poor and good forecast RMS growth.



73

The spatial EOF analysis of the daily error fields of evolving poor and good

forecasts revealed significant differences between the two categories. Initially, both

categories were found to exhibit universally typical EOF modes. However, poor

forecasts exhibited a pair of EOF modes which combine to define an apparent standing

wave which seems to originate due to the presence of the Rocky Mountains. This

combination of EOFs becomes dominant on the 3 - 4 day time length indicative of

synoptic weather systems. By day 5, the two EOFs combine to explain over 40% of

the variance in the error fields. No similar pattern or combination of patterns was

found within the analysis of good forecasts.

The pattern evidenced by the leading EOFs of poor forecasts resembles a

standing wave which may represent an orographic instability. In an attempt to relate

the performance of poor forecasts to the presence of this wave, the RMS value of the

poor 5-day forecast was compared to the mean zonal wind speeds over the CONUS.

This comparison was made using both the mean zonal wind from the initial conditions

and the 5-day forecast. No tendency for poor forecasts to be associated with a

restricted range of zonal wind was found. The same poor results were found when the

mean zonal winds were computed over other geographical regions upstream of the

CONUS.

Many questions remain unanswered regarding the causes of poor forecasts, not

only over the CONUS, but on a global scale. This study has focused on diagnosing the

patterns which exist in the error fields over the CONUS region. Further investigation

is necessary to determfixe why these patterns produce poor forecasts. It is possible that

the leading EOFs and the poor RMS error values are more closely related to the wind

fields at other levels of the atmosphere, or even to some combination of levels.

Additionally, it has been suggested that the error action centers or the error trains may

be related to other dynamic variables such as the vorticity field. Since the leading

patterns over the CONUS appear to be linked to the Rocky Mountains, refinements to
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the model orography in this region may also yield successful results. Many other

possibilities exist and warrant further research.

The objectives of this research have been met. The 10-year climatological

distributions of the 5-day RMS values have been examined over different geographical

regions in order to define poor and good forecasts. A case study of error evolution was

presented. The growth of CONUS RMS with time has been analyzed using EOF

analysis and was found to be different for poor and good forecasts. The spatial

evolution of the CONUS error fields was investigated with EOFs and the dominant

patterns were found. The leading spatial patterns were also found to be different for

poor and good forecasts. These EOF results were compared for different time periods

in the evolution of the ECMWF model and no significant differences were found. The

spatial patterns found in poor forecasts suggested a dynamic-orographic relation

between the poor forecasts and zonal winds. However, no strong relation between the

two values was found.
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APPENDIX A

VALID DATES OF POOR FORECASTS

The subset of poor forecasts used in this study consists of 5-day forecasts valid on
the following dates:

801205 820125 840205 870207
801206 820203 840223 870208
801210 820204 841206 870209
801217 820210 841207 870224
810102 820212 841214 871229
810103 820213 841222 871230
810104 820214 841223 880110
810113 820216 841224 880124
810119 820218 841228 880228
810122 820220 850101 880229
810125 820221 850113 881212
810201 821210 850116 881218
810203 821211 850117 890103
810209 821222 850119 890108
810211 821223 850122 890130
810214 821228 850201 890131
810215 821230 850202 890201
810216 830103 850209 890202
810224 830110 850211 890203
810225 830111 850224 890228
810226 830129 850308 890303
810227 830202 851224 900101
811221 830219 851225 900112
820104 830223 851227 900118
820108 831215 851231 900126
820109 831221 860106 900301
820110 831222 860131 900302
820111 831223 860306 900303
820115 831224 860307 900304
820118 831225 861207
820120 831226 861219
820121 840117 870123
820124 840204 870206
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APPENDIX B

VALID DATES OF GOOD FORECASTS

The subset of good forecasts used in this study consists of 5-day forecasts valid

on the following dates:

801207 840123 860217 880121
801208 840211 860218 880129
801220 840224 860219 880130
801223 840303 860303 880131
801224 840304 860309 880205
810112 840305 861205 880208
810114 850126 861210 880214
810115 850127 861215 880216
810124 850128 861220 880226
811215 850215 861221 880227
820129 850217 861224 880306
820303 850218 870108 880307
820305 850225 870119 881216
830107 850226 870120 890105
830108 850227 870128 890109
830121 851209 870129 890114
830122 851215 870216 890117
830131 851216 870217 890119
830205 851217 870220 890120
830208 851221 870307 890128
830209 851228 871207 890207
830211 860102 871208 890210
830301 860103 871209 890211
830302 860110 871212 890222
831205 860121 871220 890224
831206 860124 880108 891207
840103 860201 880112 891210
840105 860205 880116 891215
840107 860208 880118 891219
840118 860213 880119 891220
840122 860215 880120 891223
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900105
900106
900109
900111
900114
900115
900116
900124
900128
900129
900201
900206
900207
900208
900211
900214
900215
900225
W-3226
900309
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