
AD-A275 278

D T I o/0 on the Tera File System

"ELECTE
r B 02 1994 Tera Computer Company

400 N. 34th St.ASeattle, WA 98103

February 5,"1993

1 Introduction

This document describes the mechanism for performing input and output on the Tera File System.
In particular, we discuss the functional characteristics of the rcadQ, wric(), mrmapO, and munmapO
system calls as they are implemented on Tera.

2 Read and Write

A readO system call reads a specified number of bytes from a file's data blocks into a, buffer location
in the user's virtual address space. Similarly. a write() system call writes a specified number of
bytes from a user's virtual addressed buffer into a file's data blocks.

Currently, there are two different approaches to implement rcadO anid wrriteO. We will discuss and
evaluate them in the following sections.

600.

CLW 2.1 Implementation 1
d
SA conventional way to implement fread0 and formatted r~ads involves a call to a library routine

, rJ that dispenses data from its own internal buffer until it runs out, at which time it does a system
".L A call, sys-rea'd0 to the file system. The file system moves via Wiomoin() a specified amount of data

*: from its buffer cache into the library buffer. This continues until t lie requested amount of data has
0-00 been read into a user supplied buffer. In this scenario, the size of thie library buffer determines the
o, frequency of system calls made to the file system.

Using fread0 as an example. the following pseudocode illustrates a conventional Unix implementa-
tion of fr•adO. Note that this example is not intended to be the actual Unix code. This pseudocode
can be made thread-safe by parallelizing accesses to the library buffer. A barrier must be provided

7 0 49 3 9 94-03252

941 o s O67

for all executing threads each time new data is read into the library buffer.

user code:

FILE *stream;
char *buf;
int len;

stream = fopen(filename, "r");
error = fread(buf. len, 1, stream):

10

library code:

fread(stream, buf. len) {
char *libbuf = stream->_p; /* library buffer for srfain */
int resid = stream->r; /* data not yet read in libbuf *5

while (len) { / * loop till actual len is read */
if(!resid) { / * if no more data in libbuf */

/* call file system to read data into libbuf */

libbuf = stream->_p = stream->_sbuf.base; 20

resid = sys_reado;

/* reinitialize libbuf base address */
I
/* copy data from libbuf to user buf *1
bcopy(buf, libbuf, size); 25

libbuf += size; / * increment libbuf ptr */
/ * calculate what has not Ixen read in libbuf */
resid -= size:

len -= size:

stream->_p = libbuf: /* updah ptr to libbuf */ 30

Ii

system code: OM QUA.LMlr IP a
35

.....
.sysrea.d() {

lockvnodeo()
/ * do filk system and device dependent read *"ies
VOPREAD);

uiomove): / * a copy to libbuf *1 40

fd->f.offset += len; /* u,,datt offsd in fdtsc tabh */
*retval = len:

unlockhvnode(): . -

Revision: 1.6 2 I/O on the TFS

2.2 Implementation 2

The mnapO system call with a PROT-SHA RED option has been proposed as a possible alternative
for performing user iyado) and writ(). This implementation is very similar to the previous one
except data resides in a shared buffer cache memory instead of an internal library buffer area. First,
a call to munrnap() is called to ensure that any previously nmrappa) segment is unmapped from
the specified virtual address range. Then. mynapO is called to map a block of data less than or
equal to the size of a file's data block to the task's virtual address space.

Note that by using minapO as a mechanism for all reads and writes, the maximum limit of opened
file descriptors will be restricted by the maximum number of shared mmapped data blocks allowable
per task. Since the limits on opened file descriptors is usually larger in comparison to the limits on
shared mmapped data blocks, this is not a desirable codependency.

Using fread0 again as an example, the following pseudocode shows how rnniapO is used for imple-

Revision: 1.6 3 1/0 on the TFS

menting freado. Parallelization of this code is similar to that of a conventional implementation.

user code:

FILE *stream-,
char *buf:
int len;

stream = fopen(filename, "r");
error = fread(buf, len, 1, stream); 10

library code:

fread(stream: buf, len) {
int size: 15

char *mmapbuf = stream->_p; /* mmap buffEr for stream */
int resid = stream->r; /* data not yet read in mmapbuf */

while (len) { / * loop till actual len is read */
if(!resid) { /* if no morte data in mmapbuf */ 20

/ * first., unmap current buffer */

munmap(stream->_sbuf.base);
/ * mmap as shared */
mmapbuf = mmap(O. &resid, prot. flag, stream->_file);
/* reinitiali:e mmap buffer base address */ 25

stream->p = stream->_sbuf.base = mmapbuf:
}
/* copy data from mmapbuf to user buf *1
bcopy(buf. mmapbuf. size);
mmapbuf += size; /* increment minapbuf ptr *1 30

/* calculatr uthat has not been rfad in minapbuf *1
resid -= size:
len -= size:

I
stream->_p = mmapbuf; /* update stream ptr */ 35

Revision: 1.6 4 1/0 on the TFS

system code:

mmap() {
lock-vnode();
/* do file system and device dependcnt read */

VOPREAD);
pa = vi_mnap(); /* mmap to user's addr spac(

• incrt went refertnc count */
unlockyvnodeo;
*retval = pa: 0

munrnap() {
vmmunmap(pa); /* unmap from user' s addr spac(

C.5 decrtnm~ut refeiTnc(count */ 15

2.3 Evaluations of Implementations

Table 1 compares these two approaches. The primary advantage of mmap is saving a data copy
from system to library buffer. However, at first glance it is not clear what effect the mmapO
implementation will have on global performance of the system; particularly, when time between
usr-read('s can be large. thus tying up valuable file system's buffer cache between an mmapO
and its munmapO. Our plan is to stay with the conventional implementation. In the future, with
performance studies we will explore the global effects of anl mmap implementation.

3 Mmap and Munmap

An mmapO system call allows a user to share a file's data that resides in the file system's buffer
cache by directly mapping the buffer cache block into a task's virtual address space. The advantages
of sharing data between the operating system and its users are to eliminate extra copying between
virtual address spaces: and to provide a meaus for synchronzization between tasks of different address

mmap sys.call

no copy to libbuf copy from system to libbuf
invoke 0 to 2 syscalls invoke 0 to I syscall
buffer cache tied up by user buffer cache not controlled by user
max fd = max mmapbufs no relations max fd and mmapbufs
access 1 FS blk per syscall access 1 or more FS blks per syscall

T.ABLE 1: Compare Read and W'rite Using MNiap or SysCall

Revision: 1.6 I/O on the TFS

spaces. An munmap() system call removes the mapping of part or all of the mmapped block from
a task's address space. Except for specifics discussed in this section minmapO and munmapO are
intended to be SVID 3 compliant.

This document primarily describes minapO as it relates to data shared using the file system's name
space. For example. we will not be discussing anonymous minapO for implementation of dynamic
shared memory with no persistent store.

3.1 Characteristics of Mmap

A file must be opened prior to its data being mnmapped into a user's address space.

Table 2 shows all valid combinations of flags specified in an opcn() call and its corresponding
protection flags in inmap').

Other general characteristics of minapO that are worth mnentioning include:

1. the offset of a file descriptor is not affected after an ninip() call

2. reference count on an nimapped buffer is incremented after a ftwk() system call and is decre-
mented after an x'ec0 system call

3. SVR4 allows mnapping over an address range that is already mmapped. This essentially
performs an inumnapO of the old segment and an nmmap() of the new segment in the same
address range. Because there is potential for hiding programming errors, currently we are
inclined to be stricter in our functionality. On Tera an application must first unmap an
existing mapped segment. before another physical segment can be mapped within the same
address range. Otherwise. an error (EADDRINUSE) will be returned to its caller.

open flag mmap prot flag Return

O..RDONLY PROTREAD OK
O..RDONLY PJIOTWRITE EACCES
O\VIR ONLY PROT-READ EA(CES
OWRONLY PROT_\VRITE OK
OJRD\WR PROTREAD O)K
O.R D\VR PROT_\VRITE OK
O- D\\'I.O('R EAT PROTREAD (K
O-RD\VR.OCREAT PROTW\VITE OI.
O-R D\VR.OAPPEND PROTilREAD 0K
OJRD\VR .O_-APPEND PROTWRITE O0

"IABHLE 2: Validity of Open and Mmap Flags

Revision: 1.6 6 1/0 on the TFS

3.2 Mrnap on Tera

Architectural differences between the memory models of the Tera Computer System Ill and most
conventional page based systems are manifested in the minapO system call.

Table 3 lists some of the major differences of mmap in Tera versus those in other page based
systems.

The Tera memory system supports a segment oriented virtual memory. A physical segment can
"vary in size from 1K to 32M 8-byte words. Since a file's logical data blocks are not guaranteed to
be physically contiguous within the buffer cache. continuous virtual addresses cannot be ensured
across data block boundaries. Therefore, for simplicity our current implementation of mmapo
with PROT.SHARED flag allows at most one file block of data to be mapped at any one time to
a segment.

In addition, the Tera's physical memory is separated into program and data memory. Program
memory is not writeable by a user level thread. Therefore a protection of PROTEXECfor mmapO
has been eliminated from the Tera specification.

3.3 Extensions for Tera

According to SVID 3. ymnap() cannot write beyond an existing end of file. On Tera, we have
extended mmapO to map to newly created data blocks for files that are opened with write permis-
sion. SVID 3 specifies that the protection option of PROT- I[RITE is defined as PROT-READ and
PROT..WVRITE. However, Tera provides write-only access to memory. Therefore, the protection
option of PROTWI'RITE is defined as write-only.

To allow a user to have better control over the actual mapping of one file block at a time we have
extended the mnoap() semantics by creating a new system call, known as nimapjfsblkO.

pa = caddrjt mniaplfsblk(

caddrl addr,
int *len,
int prot.
int flags.
int fd.
off t. off);

Page Based Systems Tera

Page oriented Segment oriented
Execute in data pages No execute in data segments
Map across fixed phys page boundary No map across variable phys segment boundary

"TABLE 3: Compare Mmap on Tera vs on Page Based Systems

Revision: 1.6 7 I/0 on the TFS

S

The major difference between nintap() and mnmap-fsb1k() is the parameter kn. In nirnapjfsbU&"O, ken
is a pointer to return in bytes the actual size of the segment mapped. Len is calculated as follows:

int lbkno = (off + fblksize) / fblksize:
int *len = (Iblkno * f blksize - off);

where:
lblkno is the logical block number where offset (off) lies

and ranges from 1 on.
f blksize is the data block size of the file

References

[1] Tera Computer Company. TERA Principles of Opeivjtion. 1992.

Revision: 1.6 8 1/0 on the TFS

