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Abstract

In the proofs-as-programs methodology, verified programs are developed through theorem-proving
in a constructive logic. Under this approach, the theorem-proving process can be regarded as
a program derivation process. The merits of this approach to programming are twofold. First,
working with proofs instead of programs concentrates the developer's effort on the intellectually
difficult part of the development process: understanding, solving, and explaining the solution to a
mathematical problem. Second, the proof provides a formal and trustworthy basis for an explana-
tion of the program. This thesis investigates the use of proof transformations as a way to address
important concerns in program derivation that are not addressed by theorem-proving alone.

One difficulty with the proofs-as-programs strategy arises from the conflict between elegance
and efficiency. A simple, elegant proof may lead to an inefficient program. A more complex proof
that corresponds to a more efficient program may be difficult to invent or understand. With
proof transformations, a developer can start with an elegant proof that is easy to understand, and
incrementally derive a more complex proof and thus a more efficient program. Another problem
comes from the need for adaptation and reuse. With current automated support for theorem-
proving, it is difficult to re-use previous work other than by re-using lemmas from a library. This
kind of reuse is analogous to the use of subroutine libraries in ordinary programming, and does not
directly support adaptation. Proof transformations provide a way of adapting a proof to a new
context.

One standard approach to metaprogramming tasks like proof transformation has been to use a
separate programming language, such as ML, as a metalanguage for a type theory considered as an
object logic. A more recently developed strategy, which has been applied to programming language
semantics, theorem-proving, and related problems, is the use of a higher-order logic programming
language as a logical framework. This thesis adopts the second approach, using the Elf programming
language, which gives a logic programming interpretation to the Edinburgh Logical Framework.
We show a partially verified implementation of support for the proofs-as-programs strategy and
proof transformations, and argue that the implementation techniques contribute to the concise,
declarative, and verifiable implementation of metaprogramming tasks for formal logic. Through
case studies of small programming problems, we demonstrate that known program transformations
can be implemented in the domain of proofs, and expressed as derived logical rules. The case studies
supply evidence that a development methodology based on proof transformation can provide a useful
integration between the flexibility of program transformation and the formal connection between a
program and its specification of the proofs-as-programs methodology.
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Chapter 1

Introduction

Research in constructive logics and type theories has resulted in a good understanding of the
relation of formal constructive proof to computation, and has produced a number of systems (e.g.,
Nuprl [C+86], the Calculus of Constructions [DFH+911, Alf [Mag92J, LEGO [LPT89], PX [Hay90])
capable of supporting the development of programs by constructive theorem-proving (the proofs-as-
programs strategy). There are now a number of researchers experimenting with the methodology,
but there are many problems that have to be solved before it will achieve applicability to practical
software development.

This thesis continues a line of research that began with the observation of Goad [Goa80] that a
formal proof contains information that is not essential for computation, but that "is useful in the
transformation of computing methods;" his work exploits this information to transform proofs in
order to specialize algorithms to their inputs. Pfenning [Pfe90] generalizes this line of thought and
argues that proof transformation can be used to address two problems with the pure proofs-as-
programs methodology. The first problem is the trade-off between elegance and efficiency, which
exists in the domain of proofs for much the same reasons that it exists in the domain of programs.
The second is the need to adapt programs to changing specifications. A change to a specification
imposes a need to change the associated proof; although theorem proving tools (proof editors,
automated provers, etc.) can support this process to some extent, there are many difficulties that
result in duplication of effort. In this thesis we investigate some ways to address these problems by
proof transformation, using the Elf language [Pfe91a] to implement a small constructive logic and
functional programming language, the extraction of programs from proofs, and transformations on
proofs. We carry out several case studies of program development showing the application of these
techniques.

In this introduction we describe the conceptual basis for the research. Section 1.1 gives a brief
introduction to the proofs-as-programs strategy. Section 1.2 discusses the use of a type theory as a
logical framework. Then we discuss proof transformations and give a small example adapted from
Goad. Finally we make some general remarks about the aims, methods, and contributions of oui
work, discuss some related research, and describe the organization of the body of the thesis.

1
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1.1 Proofs as programs

The development of verified programs through theorem-proving in a type theory or constructive
logic has been explored by many researchers, e.g., [C+86], [CH85], [Hay90], [MW811, [ML80],
[C+86], [CH85], [Hay90]. Although various systems have been used to formalize this proofs-as-
programs strategy, the basic idea is the same: to rely on a realizability interpretation of constructive
logic in order to obtain a program from a proof. A verified program is obtained by the following
process: write a specification for the program as a theorem in the language of a formal deductive
system, prove the theorem in a constructive way, and finally extract a term in a functional pro-
gramming language from the proof. Usually the specification has the form Vx : r. 3y: r'. P(x, y);
then the extracted term has the type r -& r', and it is a function that, given an x of type r,
computes a y of type r' such that P(x, y) holds.

A simple example, presented informally, is the following proof for an algorithm to compute an
upper bound of both the sum and product of two rational numbers. The example is adapted from
Goad [Goa8O].

The specification is the theorem to be proved, which says that, given two rational numbers x
and y, an upper bound for their sum and product exists.

Specification 1.1 Vx.Vy. 3z. (z > x + y) A (z > xy)

The proof of the theorem is a very simple case analysis.

Proof 1.2 There are two cases:

Case x < 1. Then let z = y + 1, since (y + 1 > x + y) A (y + 1 > xy).

Case x > 1. There are two subcases:

Casey< 1. Then let z=x+l, since (x+l >x+y) A (x+l > xy).

Case y > 1. Let z = 2xy, since (2xy Ž_ x + y) A (2xy >_ xy).

0

Programs extracted from proofs closely follow the proof structure; here, the case analyses correspond
to conditionals. For readability, we show programs in ML rather than A-calculus. One possible
realization for the proof is:

Program 1.3

fun u x y = if x <= 1 then y+l else (if y <= 1 then x+1 else 2*x*y)

The virtues of this approach to program development have been described extensively elsewhere,
notably by Bates and Constable [BC85]. Briefly, we can say that working with proofs instead of
programs concentrates the developer's effort on the intellectually difficult part of the development
process, i.e., understanding, solving, and explaining the solution to a mathematical problem. To the
extent that the proof process and program extraction can be trusted, the program so developed is
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guaranteed to be a correct implementation of the formal specification. With an automated system
to aid in the manipulation of proofs, the developer has significant help in carrying out this part
of the development process, and the proof provides a formal basis for the documentation of the
program.

In what sense does Program 1.3 give the computational content of Proof 1.2? Section 2.3
gives a precise description of our working notion of the computational content of a proof, but to
set the stage, this section gives an intuitive explanation based on a constructive interpretation of
logical operations, which originated with Heyting [Hey34]. Formal systems for defining realizability
conform to this interpretation.

The interpretation relies on an informal notion of "construction". For an initial understand-
ing, it is enough to take this to mean a function definable in a suitable programming language.
(Constructions as terms in a typed lambda calculus - the Curry-Howard isomorphism - are de-
scribed in [How69].) Then the following describes what it means to constructively prove a logically
compound statement (this is adapted from [TvD88]):

"* A proof of A A B is given by presenting a proof of A and a proof of B.

"* A proof of A V B is given by presenting either a proof of A or a proof c ý B.

"* A proof of A D B is a construction that when given any proof of A produces a proof of B.

"* There is no proof of I (absurdity, contradiction).

"* A proof of -,A is a construction that when given any proof of A produces a proof of I.

"* A proof of Vx. A(x) is a construction that when given a term t produces a proof of A(t).

"• A proof of 3x. A(x) is a witness t and a proof of A(t).

This description gives a direct intuitive basis for the rules of Gentzen's (intuitionistic) natural
deduction [Gen69], in the sense that it is evident how to compute a proof in the above sense for
the conclusion of each rule, given constructive proofs for the premises. For example, the rule of
implication introduction says that, given a proof of B under the assumption A, we can conclude
ADB:

-p
A

B
B-- DIp

A4DB

But a given proof of B under the assumption A is a construction that transforms a proof of A into
a proof of B, so it is also a proof of A D B on the above interpretation. The rule of implication
elimination says that, given a proof of A D B and a proof of A, we can conclude B:

ADB A
DE

B

According to the interpretation, we have a construction that transforms any proof of A into a proof
of B. Then a proof of B can be obtained by applying this construction to the given proof of A.



4

Now it should be possible to see how Program 1.3 represents the computational content of
Proof 1.2. The end-formula of the proof is Vx. Vy. z. (z > x + y) A (z > xy). The program defines
a function of two arguments, which correspond to the two universally quantified variables of the
formula. It returns a value that witnesses the existential. Strictly speaking, it should return a pair
consisting of a value z and a proofp of (z > x+y) A (z > xy). Since p has no computational interest
we have suppressed it. Section 2.3 describes how our implementation systematically suppresses some
computationally uninteresting information using modified realizability.

The description also gives a basis for rejecting the classical principle of the excluded middle, i.e.
A V -,A for any A. If the principle is accepted, the interpretation implies that we have either a
proof of A or a proof of -,A, i.e., every proposition is decidable. From an operational point of view,
it is also useful to consider the equivalent law of indirect proof, or proof by contradiction:

-- p
-,A

SLIPP
A

If this were acceptable, then in particular we could construct a proof of the form

P
-,3x. A(x)

LIPp
3x. A(x)

But a constructive interpretation of the premise is a construction that transforms a proof of
-,x. A(x) to a proof of I. This does not give any way in general to compute a witness for
the conclusion, that is, a t such that A(t) is true.

So as not to mislead the reader, it is important to mention that there are ways of recovering
computational content from certain classical proofs. Murthy's thesis [Mur90] describes how this
can be done in practice and explores the very interesting connection to nonlocal control operators.

1.2 Type theory as a logical framework

Constructive approaches to mathematics go back at least to the work of Brouwer early in this cen-
tury. The subtleties and implications of these approaches for pure mathematics have little relevance
to this thesis; useful historical sketches can be found in [C+86] and [TvD88]. The type theories
currently being studied in computer science may be said to descend from the AUTOMATH family
of languages [dB80] for the machine checking of mathematics, and from Martin-Lbf's development
of a formal theory for expressing the syntax and semantics of constructive mathematics [ML73].

In current computer science research there are two main ways of exploiting type theory. One
is to use it as a formal representation of constructive logic to support, among other activities,
programming by theorem proving. Since type theory provides an internal A-calculus as well as a
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representation of logic, the computational contents of a proof can be internally represented. This
is the approach of most work with Nupri and the Calculus of Constructions, and there are type
theories (e.g. PX) carefully tailored for use as programming languages. Another approach, that
taken in this thesis, is to use a type theory as a logical framework or metalanguage for formally
representing a logic. LF, the Edinburgh Logical Framework [HHP93] is a type theory designed
for this purpose. Our implementation of proof transformations uses the programming language
Elf [Pfe9la], which gives an operational interpretation to the types of LF to support a logic pro-
gramming style of metaprogramming. The framework approach permits a freer choice of object
logic and programming language than is possible when using a type theory directly as a logic and/or
programming language, and leaves more control in the hands of the implementor (over reduction,
for example). As a consequence, for an object logic we are able to choose a pure logic, since the
framework provides a A-calculus in which to represent the program extracted from a proof, and
we give two different formulations of program extraction. However, this freedom and control have
both an implementation cost and a theoretical cost. An implementation of a type theory will
provide normalization of terms of that theory (which amounts to program execution) for free, and
the metatheory which is worked out for the type theory gives theorems for free about the theory
regarded as a logic or programming language. On the other hand, when the type theory is used as
a framework, the logic and programming language being studied are not the language of the type
theory. The implementor must write (meta) programs to execute programs of the language under
consideration. The metatheory of the framework is not the metatheory of the logic, which must be
developed explicitly.

1.3 Proof transformation

A proof transformation, for the purposes of this work, is a procedure that, given a formal proof
V, produces another formal proof DV, where the validity of V (along with the correctness of the
transformation) guarantees the validity of D', although V and DV may not prove the same theorem.
The transformation tactics of Nuprl [C+86] implement this idea. Because of the close relation
between the structure of a proof and the program extracted from it, a transformation can be useful
for the form of the proof it produces.

Proof transformations may depend on global analysis (as in [Mur90]), requiring inductive proofs
of correctness. However, as we show here, useful changes to program structure may be accomplished
by uniform proof transformations, i.e, those that depend only on local syntactic properties of the
proofs. As will become apparent, in a natural deduction setting they can be thought of as derived
rules of inference. When properly encoded in the Elf language they are proved correct by type
checking. The simplest of these encoded transformations correspond to higher-order patterns in
the sense of [Pfe9lb]. Though often it is not possible to code a rule in this restricted form, the style
of transformation we consider can still be encoded in the form of a single rewrite rule to obtain
an executable Elf program, if the application of the rule is restricted so that only ground terms
(complete closed proofs) are supplied as input. Thus the encodings are related to the work of Huet
and Lang [HL78] on program transformations expressed as second-order patterns, translated to the
proof level, and to that of Hannan and Miller [HM88].
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1.3.1 An example

The following illustration of proof transformation applies Goad's pruning transformation [Goa80]
to Proof 1.2. Pruning is a way of allowing for adaptation and reuse in the case of the specialization
of a program to fixed values for its inputs. Here, proof transformation specializes the proof to
y = .5 by substituting the value for the variable throughout the proof, normalizing the result, and
then pruning.

Here is an informal presentation of the new specification and its proof after the substitution of
.5 for y and normalization. The case distinction on the value of y has been eliminated.

Specification 1.4

Vx. 3z.(z > x + .5) A (z > (x)(.5))

Proof 1.5 There are two cases:

Case x < 1. Then let z = 1.5, since (1.5 > x + .5) A (1.5 > (x)(.5)).

Case x > 1. Now .5 < 1; therefore, let z = x + 1, since (x + 1 > x + .5) A (x + 1 > (x)(.5)).

0

Program 1.6

(From Proof 1.5)

fun u' x = if x <= 1 then 1.5 else x+1

This program can be obtained from Program 1.3 by partial application and reductions in the
A-calculus. This seems to be the best one can hope for by operating purely on the program
without looking at the proof. But it is evident from the proof that the case analysis on x is
unnecessary: when y = .5, x + 1 satisfies the specification regardless of the value of x. Goad's
prtning transformation provides a way to capture this observation because it transforms the proof
rather than the program, allowing us to change the function computed, not just specialize it to one
of its inputs, while ensuring that the program satisfies the specification.

The particular form of pruning needed for this example replaces a case analysis by one of its
arms when the case that holds for that arm is not used. We show the transformation as a schema
for proofs in natural deduction style.

Transformation 1.7 Transform
-p -p
A B

)1  D2  V3

AvB C C

C
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to
-D3

C

provided that B does not appear as an open assumption in V3 .

This transformation is applicable to Proof 1.5 because the assumption x > 1 is not needed in
order to show that (x + 1 > x + .5) A (x + 1 > (x)(.5)). The result of the transformation is the
trivial proof:

Proof 1.8 (of Specification 1.4) We pick z = x '+ 1, since (x + 1 _> x + .5) A (x + 1 > (x)(.5)) for
all x. 0

This corresponds to the program

Program 1.9

fun u"1' x = iX+1

Note that Program 1.9 and Program 1.6 compute different functions, although both satisfy Speci-
fication 1.4.

1.3.2 Proof transformations and program transformations

As the example shows, proof transformation shares many features with program transformation.
Some proof transformations merely translate program transformations into a different domain. For
instance, the substitution and normalization transformations that produce Proof 1.5 from Proof 1.2
correspond to simple program transformations. More significantly, both approaches emphasize a
development process that proceeds by small, intellectually manageable increments, and both aim
at supporting re-use of the objects being developed. But the pruning operation demonstrates
a major difference between the two methodologies. A program describes the functionality of a
computation, but not its purpose; by contrast, a proof describes both: the functionality is specified
by the structure of the proof, and the purpose is expressed by the theorem that is proved. This
added expressiveness allows the pruning transformation to produce Program 1.9, with its different
functionality, from (the proof of) Program 1.6.

In general, proof transformations can, like pruning, both exploit and preserve more information
than pure program transformations can. By "pure" program transformations we mean those that
exploit only the information inherent in the text of the program. They may alter functionality, but
only in very constrained ways like specialization. Since a theorem (i.e., the specification) may have
many different proofs, with corresponding programs of different functionality, proof transformation
has the potential to produce a final implementation that computes a different function from that of
the initial implementation, as the pruning example shows. A proof transformation may even alter
the specification: its validity consists in the property that, if the original proof D is a valid proof
of some proposition P, then the resulting proof V' is a valid proof of some proposition P', where
P and P' need not be the same. Translated into the programming world, this means that a proof
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transformation can give us a program for the specification P', given a program for the specification
P.

1.4 Objectives of the thesis

The general motivation of this work is the hope of bringing the proofs-as-programs strategy closer
to application to real programming tasks. We set out to explore how proof transformation may be
used to attack some of the obstacles to this goal, in particular those noted by Pfenning: the tradeoff
between elegant proofs and efficient programs, and the need to adapt to changing specifications.
Along the way we have learned much about the strengths and weaknesses of a logical framework-
based approach to formulating proof transformations.

The principles that have guided this research are that first, it is best to separate proof trans-
formation from the problem of theorem proving; and second, proof transformations should be
expressed in an understandable and verifiable way. These principles are motivated by the following
observations.

Research on automated support for theorem proving is an active area, and there are several
competing approaches, each with its strengths and weaknesses. As a research strategy, the separa-
tion of proof transformation and theorem proving is valuable as a way to isolate the contributions
transformation may offer to problem solving. We should note however that our approach is predi-
cated on the existence of proof objects of a particular kind. These are not available from all provers
(e.g. the Boyer-Moore Theorem Prover [BM79]) although in principle there seems to be no reason
why they could not be constructed.

The idea that transformations should be expressed in an understandable way is, we hope, non-
controversial. Understandability is a widely accepted goal for programs in general, thus for the
metaprograms that implement proof transformations. L it understandability of proof transfor-
mations may also have importance for the documentation of the extracted program. In a pure
proofs-as-programs strategy without transformation, the proof is considered to be the formal basis
for an explanation of the program. But the tradeoff between elegance and efficiency intervenes:
because of its complexity, the proof of a highly optimized program may not be much good as an
explanation. An automatically synthesized (by transformation and theorem proving) proof is also
not an explanation if the proof is too complex and the synthesis process is not transparent. Thus
we want the proof transformations as part of the explanation of the program. Our work exploits
the logical framework approach, and declarative aspects of the logic programming style, to achieve
executable proof transformations that can be read as derived logical rules.

The verifiability of transformations is perhaps less critical, sixLce the program resulting from
a transformation is verified by a combination of proof checking and program extraction. But
in principle transformations should be correct in general; moreover, it is often useful to know
something more than that a transformation produces a valid proof. We may want to know also the
end-formula of the proof, or some structural feature of the proof. The use of a logical framework
contributes to these goals. We give transformations that can be encoded as derived rules, and thus
verified in general by a proof checker (the type checker of the framework).
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1.5 Research contributions

The thesis makes contributions in two main areas: the formalization of proofs-as-programs and
proof transformations as a set of deductive systems in a logical framework, and the formulation of
program transformations as proof transformations.

We give a partially verified implementation in Elf of basic support for the proofs-as-programs
methodology: a constructive logic, a functional programming language, and the extraction of pro-
grams from proofs. The ideas behind the implementation and verification are not new (see Sec-
tion 1.6 on related work for sources); our contribution has been to synthesize them in a working
implementation and to use it to develop and transform proofs and extract programs. Our imple-
mentation of proof transformations is limited to those that can be expressed as derived rules of
the object logic, although there is nothing in the underlying implementation that prevents more
complex analysis and transformation. This formulation is declarative, easily verifiable, readily
extensible, and independent of the theorem-proving problem. The implementation as a whole is
partial evidence for the feasibility of the metalogical framework approach to metaprogramming for
logic advocated by Basin and Constable in [BC93], although our approach is a hybrid, combining
the weak framework LF and the logic programming capabilities of Elf.

We have shown that, perhaps surprisingly, useful program transformations translated to the
level of proof transformation can be formulated as derived rules of the object logic. We have done
this for two well-known program transformations. This suggests that the extensive research effort
that has been devoted to codifying program transformations can be rather easily translated into the
domain of proof transformation. An alternative view is that proof transformation techniques can
be used to enrich program transformation by providing a simple syntactic formal representation
of the semantic information that justifies a transformation. Our case studies also provide more
evidence for Goad's thesis that proof transformation can achieve results not available from purely
syntactic program transformation.

1.6 Related work

In his thesis Peter Madden [Mad9l] also extends the work of Goad along the lines suggested
by Pfenning's paper. Ile describes a complete Prolog-based reimplementation of Goad's pruning
transformation, extends it to an implementation by proof transformation of the tupling program
transformation strategy, and sketches an extension to divide-and-conquer transformations. This
work aims at full automation, including automatic theorem proving as well as selection of proof
transformation strategies. Thus there is a major difference in philosophy: where we are concerned to
separate transformation from proving and from heuristic concerns, and to express transformations
as transparently as possible, Madden's work emphasizes automated deduction.

Chetan Murthy's thesis [Mur90] studies translations from classical to constructive logic, which
allow programs to be extracted that capture the computational content of certain classical proofs.
His work focuses on the relationship between classical reasoning and nonlocal control operations,
and the exploitation of the relationship to obtain total-correctness proofs of programs using nonlocal
control. Unlike the simple uniform transformations we study here, Murthy's translation is defined
by structural induction on proof trees, and considerable engineering expertise was required to obtain
a feasible implementation. This implementation takes the standard approach of metaprogramming
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in ML, rather than the framework-based approach of our work.

Christophe Raffalli, in [Raf93], describes the use of proof translation to compile functional
programs for an SEC abstract machine. He gives a type system and an operational semantics for
the abstract machine, shows the soundness of the semantics with respect to the type system, and
gives a translation from natural deduction-style proofs in second-order logic to the machine logic.

Working in an essentially "linear" context, Sieg and Wainer [SW93] have investigated proof
translations in which recursive-to-tail-recursive program transformation corresponds to the elimi-
nation of what they call "call-by-value" cuts.

The basic techniques used in our Elf implementation were developed in [HM89], [Han9lI,
[HHP93], and [MP91]. The partial internalization of the metatheory uses methods described
in [HP921, [PR92], and [Pfe92a].

The procedure we use for optimizing code during program extraction is directly derived from
techniques developed by Hayashi [Hay90] for PX, Paulin-Mohring [PM89] for the Calculus of Con-
structions, and Sasaki [Sas86] for Nuprl. Goad [Goa8O] and Schwichtenberg [Sch82], [Sch85] use
similar ideas to reduce the size of the representation of the computational contents of a proof.

1.7 Outline of the thesis

There are two main parts to the thesis: a description of the Elf implementation of proofs-as-
programs and proof transformations, and some case studies of graph search algorithms.

a Chapter 2 gives a short introduction to the Edinburgh Logical Framework and the Elf lan-
guage, then describes the Elf encoding of proofs, programs, and the extraction of programs.

* Chapter 3 presents some of the metatheory of extraction, with a partial formalization of it in
Elf.

* Chapter 4 demonstrates by example a method of encoding and applying a limited class of
proof transformations. A transformation for converting a program to tail-recursive form is
given, first informally, then fully formalized in Elf. Then it is applied to a small programming
problem.

* Chapter 5 presents some case studies, applying proof transformation to breadth-first and
depth-first search. Here the emphasis is on the program development problem rather than on
the formulation of the proof transformations.

* Chapter 6 gives a summary and a discussion of directions for future research.

* In the appendices we provide listings of Elf code with a description of how to access our
implementation and the Elf system by ftp, and some technical remarks on the adequacy of
Elf encodings and the recognition of tail-recursive object programs.
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Chapter 2

Implementation

This chapter describes how we implemented some basic support for proofs-as-programs in a logi-
cal framework, and describes techniques of higher-order logic programming for defining inference
systems over languages represented using higher-ordei abstract syntax. We encoded a natural-
deduction style constructive logic and a programming language in the Edinburgh Logical Frame-
work (LF) [HHP93] using Elf [Pfe89], [Pfe9la], a logic programming language based on LF. Program
extraction, program execution, proof transformations, and other forms of term manipulation were
implemented as Elf logic programs.

Section 2.1 gives a brief introduction to the LF and Elf languages and the principles guiding their
use for encoding inference systems. Section 2.2 describes the encoding of natural deduction proofs
for a first-order constructive logic. Finally in Section 2.3 we treat program extraction, defining a
small functional programming language with a type assignment system and interpreter, and two
forms of program extraction from proofs.

2.1 LF and Elf

LF is a typed A-calculus designed to serve as a framework for the encoding of logics and related
formal systems. Its type system is expressive enough to support straightforward encodings of many
(though not all) formal deductive systems used in reasoning about programming languages, formal
logics, and the like. The decidability of the type system gives practical force to the judgments as
types and the corresponding proof-checking as type-checking principles. Elf is a logic programming
language that gives an operational semantics to LF type declarations: an Elf program is a collection
of type declarations and an Elf query is a type. The query may contain free variables, which are
treated like Prolog logic variables; it succeeds if the system can construct an inhabitant of the query
type from the declarations that constitute the program.

Elf signatures (collections of type declarations) may be used as language definitions, as logic
programs, or both. In a language definition, types and type declarations are used in a way that
corresponds to the usual intuition: they are syntactic categories and declarations of constructors for
those categories. Signatures used in this way are called static and are not used for search. Dynamic
signatures are programs used for search, which implement deductive systems for making certain
kinds of judgments. This dual nature of Elf signatures reflects the LF principle of judgments-as-

12
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types.

2.1.1 The LF type system

First, we briefly describe the LF type theory. Harper et al. [HHP93] give a full description; here
we give the syntax and sketch a few crucial ideas but rely on examples to develop a feeling for the
semantics. LF is a three-level dependently-typed A-calculus of objects, families, and kinds. Families
classify objects and include ordinary types; kinds classify families.

Kinds K Type I llx:A.K
Families A a IHx:A.B I Ax:A.B I AM
Objects M c x I Ax:A.M I M N

The binding operators H and A bind their first argument x:A in the second argument po-
sition. It is conventional to identify terms that differ only in the names of bound variables,
and the usual definitions of free and bound variables and substitution are used. The notation
[M1,...,Mk/X1,...,Xk]N denotes the term that results from the simultaneous substitution of
M 1,... , Mk for free occurrences of X1,... , Xik respectively in the term N, renaming bound vari-
ables as needed to avoid capture.

Families of the form IIx:A. B are product types, which classify functions Ax'A. M at the object
level. When x does not occur free in B, the type IIx:A. B is an ordinary function type; in this case
it is customary to write it as A --+ B. The II operator quantifies over terms at the object level only.
The application of one of these families to an object-level term x reduces to a type that depends
on the value of x (if x appears free in B). Similarly, kinds of the form flx:A. K are product kinds,
which classify dependent type families Ax:A. B. Again x ranges only over object-level terms, and
when x is not free in K we write A --+ K.

The crucial properties of the calculus are first, the decidability of the type system, which yields
a proof checker for any deductive system properly encoded in it, and second, the existence of
canonical forms, which permits the precise statement and proof of the correctness of an encoding.
We discuss the correctness of the encodings of this chapter in Appendix B Rather than reproduce
the calculus in full here, we refer the reader to [HHP93]; but in order to discuss the principles of
the encodings we use, we describe some of its features.

The rules of the calculus assign a type A to an object-level term M in a context r and a signature
E. Similarly they assign a kind K to a type A in a context r and a signature E. Signatures and
contexts have the same structure and are used to maintain a typing environment, signatures being
used to record the types and kinds of constants and contexts being used to record the types of
variables.

Signatures E <> YE,a:K I r,c:A
Contexts r <> r,c:A

The calculus includes rules for deducing when a signature or context is valid, which guarantee
that variables and constants are not "re-declared".
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Encodings in LF of deductive systems that use collections of assumptions (for example, a type
assignment system for a programming language, or systems of natural deduction) often represent
these collections of assumptions in the meta-level context.

Hence it is important to keep in mind the properties of LF contexts stated in Theorem 2.3
of [HHP93]. We sketch them here at an intuitive level:

1. Weakening: a type or kind assignment that holds in a context r holds also in any valid
extension of r.

2. Strengthening: a type or kind assignment a that holds in a context F, x : U, F' holds also in
r, r' provided that x is not free in r, or in a.

3. Transitivity: if the type assignment M : A holds in context r, and the assignment a holds in
context r, x : A, r', then the assignment [M/x]a holds in the context r, [M/x]F'.

4. Permutation: if the assignment a holds in context r, x : A, r', y : B, r", then it holds in the
context r, y : B, r1, x : A, F", provided that x is not free in B or V' and B is a valid type or
kind in r.

There are two important principles that are repeatedly used in LF representations of languages
and deductive systems: judgments as types and higher-order abstract syntax. This section briefly
introduces these principles; as they are encountered in the implementation, they are explained more
fully.

The principle of judgments as types is crucial in encodings of deductive systems. A judgment
is the relation established by a deductive syrtem, for example, the truth of a logical formula or a
typing assignment for a program expression. An LF encoding of a deductive system represents a
proof as an object and a judgment as the type of its proof. That is, to encode a deductive system
in LF, one declares a type family A to represent the judgment. The inference rules of the system
are represented by declaring LF object-level constants that construct objects of that type family.
A deduction in the system may then be represented as an LF object; it is a valid deduction if it
can be given type A in the LF type system. Thus the principle of judgments-as-types gives rise to
the corresponding principle that proof checking (in the encoded deductive system) is type checking
(in the LF system). When A is a dependent type (has a 11-kind), LF type checking can guarantee
some correctness properties of the inference system that would otherwise have to be proved in an
external metatheory. The proof transformations of section 4 are an example; because we encode the
judgment that a proposition A is provable as a dependent type, it is possible to implement proof
transformations so that type checking guarantees that the transformed proof is not only valid, but
still proves the same proposition A.

Judgments may be basic, hypothetical, or schematic. A basic judgment is one established by
the logical system to be encoded, for example, that a formula is provable in first-order logic. We
represent a basic judgment form by a type family indexed by the type(s) of the subject(s) of the
judgment. A hypothetical judgment states that a judgment B is deducible from an assumption A.
In LF this is encoded as a type A -* B; the encoding extends in an obvious way to encoding B
deducible from multiple assumptions A1 ... A, as A, -* ... --* A, -* B. A schematic judgment
that B holds for any term x of type A is encoded as a dependent function type Hx:A. B.
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Higher-order abstract syntax eases the implementation of binding constructs in language defi-
nitions. Instead of explicitly naming variables and managing substitutions, the user can declare a
binding construct as an LF constant that takes a functional argument and constructs a language
expression. Terms are constructed by applying the constant to LF function objects. The usual rule
of 3-conversion is built in to the type theor-, Allowing substitution to be encoded as LF application.
This technique extends beyond language & ,'nition to deductive systems. It is often appropriate
and convenient to represent assumptions introduced during a deduction as bound variables at the
meta-level, instead of managing them explicitly. As long as the object deduction system obeys
the principles of weakening, strengthening, transitivity, and permutation described above for LF
contexts, this kind of representation is faithful.

2.1.2 The Elf language

The core of the Elf syntax is a straightforward translation of LF syntax into a limited character
set, with curly braces {} playing the role of 11 and D playing the role of A. Type annotations may
be omitted; we indicate this by enclosing them in brackets (). The symbol id stands for a variable
or a constant.

Kinds kexp type I {id (:fexp)}kezp
Families fexp id I {id (:fexp)}fexp I [id (:fexp)]fexp I fexp oexp
Objects oexp id [id (:fexp)]°oexp oexp oexp

Elf also allows the use of arrow notation for a dependent type or kind {x:A} M where x is not
free in M. For use in dynamic signatures, which are viewed as logic programs, there is also the
backwards arrow notation A <- B, which stands for LF's B -- A. The arrow is right-associative
(as usual), while the backwards arrow is left-associative. Thus there is an additional alternative for
the category of Kinds and two more for the category of Families:

Kinds kezp ::= ... I fexp-> kexp
Families fexp ::= ... I fexp-> fexp I fexp <- fexp

A family or object expression may be annotated with its kind or type. This is useful in con-
junction with Elf's type and term reconstruction since it can be used to name parameters that are
normally left implicit. Thus there is one more alternative each for Families and Objects:

Families fexp ::= ... fexp kexp
Objects oexp ::= ... I oexp : fexp

Parentheses may be used freely to limit the scope of bound variables and change the associativity
of arrows and type annotations. Any identifier may be used for a bound variable or constant.
Identifiers free in a (top-level) family or kind must be capitalized. In a type declaration these are
implicitly H-quantified. In a query they are treated as logic variables. Omitted type annotations
and the types Gf free variables are supplied where possible by Elf's type reconstruction mechanism.

An Elf signature is a collection of kind and type declarations:
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Declarations decl ::= id: kexp. I id: fexp.

A signature that is declared as static is not used for search and serves as a language definition.
Kind and family declarations in these signatures establish syntactic categories, fitting the usual
intuition about types. However, even when a signature is not used for search, its types may
be thought of as judgments. This is seen in the representation of natural-deduction proofs of
section 2.2.2, which supports simultaneously a treatment of proofs as objects and one of proofs as
ways of establishing judgments.

A signature declared as dynamic may be viewed as a logic program and is used for search by
the ElI" interpreter. Types play the same role that formulas do in Prolog. A query is not a formula
but a type, which may contain free variables. These are treated like the logic variables of Prolog:
if the query succeeds, the substitution found by unification during type reconstruction or search
for each free variable is displayed. Higher-order unification is used instead of first-order unification
as in Prolog. To solve a query the interpreter attempts to construct an object of the given type,
using the declarations in the dynamic signatures available. If the query succeeds, this object, which
represents a proof of the goal query, is available as well as the substitutions for the free variables of
the query. The proof object can itself be used in further goals. An example of Lhis usage appears in
the partially internalized proofs of correctness for the implementation in chapter 3. The availability
of the proof object again manifests the dual nature of signatures: although a dynamic signature is
usually thought of as a program for establishing judgments, it can also be thought of as a language
definition, with its constituent declarations as constructors of terms in the language. These terms
may themselves be objects of computation.

An important feature of dynamic signatures, corresponding to the use of higher-order abstract
syntax in static signatures, is the way ordinary and dependent function types serve to introduce
assumptions. When the interpreter encounters a goal that is a function type A -+ B, A is added to
its stock of rules as an assumption available during the search for a term of type B, causing subgoals
that are unifiable with A to succeed in that search. A goal may also have dependent function type
flx:A. B, with x free in B. When attempting to solve such a goal the interpreter creates a new
parameter x0 of type A and a new subgoal B with x0 substituted for free occurrences of x. The use
of dependent types as subgoals is a common technique in Elf programs that implement deductive
systems over terms represented as higher-order abstract syntax. In such a system, an inference
rule that analyzes a binding construct frequently has a premise that depends on an assumption
about the bound variable. For instance, one might infer a type for a A-abstraction by adding a
type assignment for its bound variable to a context and attempting to infer a type for its body.
Dependently typed assumptions are typically used in encodings of inference rules of this form.
The technique occurs frequently in the implementation described here; there is a more detailed
description of it in section 2.3.1.

2.2 Logic

This section describes the encoding of natural-deduction style proofs for intuitionistic first-order
predicate calculus. The encoding supports the manipulation of proofs as objects rather than proof
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search, and should be viewed as simply a set of constructor definitions defining the abstract syntax
of a logical language and its proof system. Thus the Elf implementation consists of a static signature
for each "language" - the language of propositions and the language of proofs. It does not provide
a theorem prover for natural deduction.

We represent propositions of first-order predicate calculus as object-level LF terms. The lan-
guage definition is a signature that declares the logical connectives and quantifiers as constructors.
This contrasts with other treatments of constructive logic based on type theories, such as Nuprl
and the Calculus of Constructions, in which propositions of the logic are identified with types of
the type theory.

There are several reasons for separating the type of propositions from LF types. LF is a weak
theory that does not include quantification over types. Thus it is not possible in LF to declare
logical connectives as functions over terms of kind Type. Why then choose Elf for an implementa-
tion language? Proof transformations, program extraction, and related tasks are metaprogramming
problems: they cannot usually be implemented for a type theory in that type theory. One stan-
dard approach to metaprogramming has been to use a programming language such as ML as a
metalanguage for a type theory considered as an object logic. We want to implement proof trans-
formations and other metaprograms in a flexible, declarative and verifiable way. As Basin and

Constable [BC93] argue, these goals suggest another approach: the use of a type theory as a met-
alogical framework. Although, as they point out, the weakness of the LF type theory limits the
metareasoning that can be fully internalized, the logic programming interpretation provided by Elf
affords a flexible programming tool for expressing metatheory in a declarative way that also yields
executable metaprograms. The availability of higher-order abstract syntax yields concise, quickly
implementable encodings for many (though not all) deductive systems. This is a good setting for
experimenting with variations on the object logic, the syntax and semantics of the programming
language, and program extraction, without the need to modify the syntax or semantics of the un-
derlying type theory. We in fact exploit this by exploring two definitions of program extraction.
While one must expend the effort to explicitly define these systems, this effort is typically small,
especially when higher-order abstract syntax can be used. The reward is flexibility in choices such
as the definition of program extraction, and the syntax and semantics of the programming language
used for extraction.

2.2.1 Logical language

Our encoding of first-order constructive logic follows the method described in Harper et al. [HHP93].
To simplify the exposition, we show the representation for a logic with only a single sort of indi-
viduals, interpreted as natural numbers. Later in the presentation we show how to modify the
definitions to represent a many-sorted logic.

An abstract syntax for the logic is:

Individuals t ::= x zero succ t

Propositions A ::= T I Al A A2 I Al v A2 I A DA 2 I -,A
IVx.A I 3x.A I tl=t2

To encode this syntax in LF we first define two new types, o for the type of propositions and i
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for the type of individuals:

o: Type
i: Type

Individuals are encoded by declaring two constants for representing zero and the successor
function:

zero: i
succ: i-*l

There is no declaration corresponding to individual variables; they are represented as LF bound
variables through the use of higher-order abstract syntax.

Connectives are encoded in a straightforward way as syntactic constructors. Binary constructors
are curried since there are no finite products in LF.

T: o
_L: o

A: O---+O
V: o-0-0O

D: o -o -- 0

The equality predicate is encoded with a curried function type as well:

The encoding of quantifiers is a simple use of higher-order abstract syntax. Each quantifier
is encoded as a constructor that takes, not a proposition, but a function from an individual to a
proposition. The binding properties of the quantifiers are expressed by LF A-binding. For example,
in the proposition Vx. x = x the two occurrences of x in the equality are bound by the quantifier.
The LF representation is V(Ax:i. x = x), an application of the constructor V to an LF object of
functional type. Thus the schematic nature of a universally or existentially quantified proposition is
captured by the LF meta-language and does not have to be explicitly managed. Only the semantic
distinction - the universal vs. existential nature of the proposition - is left to be expressed by the
encodings of inference rules, reductions, etc.

V: (i--o)-- o
3: (i --+ o) o

The Elf signature (Figure 2.1) corresponding to the LF declarations presents no additional
complications. The differences are due purely to the concrete syntax of Elf.

2.2.2 Natural deduction

In our encoding of proofs, again following Harper et al. [HHP93], we use the dependent types of LF
to ensure that proof checking is LF type checking - even though propositions are object-level terms,
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o : type.
i type.

zero :.
succ i -> i.
eq : i -> i -> o.

true : o.
false : o.
not : o -> o.
and :o -> o -> o.
or : o -> o -> o.
implies o -> o -> o.
forall (i -> o) -> o.
exists (i -> o) -> o.

Figure 2.1: Elf encoding of first-order logic

not LF types. Higher-order abstract syntax supports the representation of the introduction and
discharge of assumptions, as well as the side conditions restricting the free occurrences of variables
in assumptions.

As is customary, we use a tree-like notation in our presentations of natural deduction proofs.
Assumptions are at the leaves, and a formula follows from zero or more formulas immediately
above it by one of the inference rules of the system. Assumptions may be discharged or closed by
an inference (e.g., implication introduction); an undischarged assumption is often called open. We
say a formula depends on the open assumptions above it in the proof tree. The last formula (at
the root of the tree) of a proof is a theorem if it does not depend on any open assumptions. There
is no distinguished set of axioms, though we sometimes refer to an inference rule with no premises
as an axiom.

Figure 2.2 gives the inference rules for natural-deduction style proofs in an intuitionistic first-
order predicate logic. The discharge of an assumption A by an inference rule is indicated by placing
an annotated bar over A:

-- p
A The corresponding rule is indicated by a matching superscript (e.g. DIP). We use either

numbers or letters for superscripts, depending on the context. Letters are useful in the context
of program extraction, where a discharged assumption corresponds to a bound variable in the
extracted program. Substitution is notated as follows: [t/x]A denotes the substitution of t for free
occurrences of x in A. We use this notation freely in subsequent language definitions, assuming
standard definitions of bound and free occurrerces, and the ability to rename variables whenever
necessary. The usual conditions on free occurrences of variables apply to the quantifier rules
annotated with an asterisk. In a proof of Vx. A ending in the use of the rule V1, the variable x
cannot occur free in any undischarged assumption. In a proof of C by 3E with 3x. A as major
premise, the variable x cannot occur free in C or in any undischarged assumption on which the
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A B
AlAAB
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SAEL AER

A B

A B
SVIL VIR

AVB AVB

-p -p
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-p
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B ADB A
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A Vx. AvI, •VE

Vx.A [t/x]A

-- p
A

[t /:;.I4 A3x. A CS.. . I 3EP,
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-p
A
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-AA I

_IA

-TI - iE
T C

Figure 2.2: Natural deduction rules for first-order logic
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t 2 = tl

t = t tl = t2

tl-=2 t 2--t3 tl = t2
-T --U

h = t 3  f(tl) = /(t 2 )

succ th = SUCC t 2
AXO AXS

-'succ t = zero tl = t2

-p
A

[zero/x]A [succ x/x]A
INDP

Vx. A

Figure 2.3: Inference rules for equality and arithmetic

subproof of C depends.

Figure 2.3 presents inference rules for interpreting the individuals of the logic as natural numbers.
For simplicity in the presentation we defer discussion of other theories to later sections.

Note that the treatment of assumptions and the side conditions on variable occurrences means
that the inference rules DI, vI, vE, 3E, and IND are binding constructs. Consider implication intro-
duction:

-p
A

B
A- D BADB

Here p is a name for a hypothetical proof, as the bound variable in a A-abstraction is a name
for a hypothetical value. The scope of p is limited to the subproof ending in the application of
DI labelled p; no other part of the proof tree can include assumptions of A labelled p. Many of

the operations on proofs needed in the implementation, including program extraction and proof
transformation, use the substitution of proofs for assumptions and terms for quantified variables
in a way that conforms to LF /-reduction. Such usage motivates the higher-order abstract syntax
approach to the encoding of proofs.

A proof of a minimal correctness criterion for this kind of encoding of natural deduction is given

by Harper et al. [HHP93].

Figure 2.4 shows the LF encoding of the logical inference rules; Figure 2.5 shows the encoding
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pf: o --+ Type

TI: pf T
-LE: IlC:o. pf I--+pf C
Al: HkAo.IIB:o. pf A -- pf B -+pf A A B

AEL: IIA:o.IIB:o. pf(A A B)- pf A
AER: IIA:o. IIB:o. pf (A A B)- pf B
VIL: IIA:o.IIB:o. pf A - pf(A v B)
VE: IIA:o.IIB:o. pf(A V B) -+(pf A-- pf C) -(pf B--pf C) -pf C

VIR: HkAo.IIB:o. pf B-pf(A V B)
DI: IIAo.IIB:o. (pf A -~pf B) -. pf (A D B)

DE: IIA:o.IIB:o. pf(A DB)--+pf A -pf B
V': IIA:(i -~o) . (llIx:i. pf (Ax)) --. pf (VA)

VE: IIA:(i -. o). llt:i. pf(VA) --+ pf A(t)
31: flA:(i -. o). I1t:i. pf At -. pf(3A)

3E: IIAi -+ o. pf 3A --+ (flx:i. pf Ax -+ pf C) -+ pf C

Figure 2.4: LF encoding of logical inference rules

=REFL: flt:i. pf(t = t)
=SYM: ftlt:i.11ft2 :i. -Pf(t 2 = t1) -. p(tl = t2)

=TRANS: Iltl:i . 11t2:i -I1t3:i- Pf (tl t2) --. Pf 0 2 = t3 ) -. Pf(tl t3~)
=SUBST: IRf:i --* i.Itl:i -flt2:i.11It 3 :i.- Pf(tl = t2) --+ Pf(f (h) f (th))

AXO: V(\x . -'succ x = zero)
AXSUCC: V(\x . VAyi. succ x = succ y

IND: IIAi --.o. pf A zero -+ (IHx:i. pf Ax -. , pf A(succ x)) -+ pf VA

Figure 2.5: LF encoding of inference rules for equality and arithmetic
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of rules for equality and arithmetic. The encoding is based on the declaration of a dependent type
constructor (family):

pf: o ---, Type

The dependent type provides an association between a proof and the proposition it proves, encoded
within the LF type of the term representing the proof. This association permits the encoding of
inference rules to enforce the constraint that any well-typed proof term is a valid proof, i.e., to
maintain the principle that proof checking is LF type checking.

For example, the rule of conjunction elimination on the left is encoded as follows.

AEL : IIA:o. IIB:o. pf(A A B) -* pf A

This defines the constructor AEL as a function that takes as input propositions A and B, and a
proof of A A B. The constructed term has type pf A, i.e., it represents a proof of A. Because of the
dependent type, LF type checking prevents the construction of an incorrect proof. For instance,
there is no way to represent the application of AEL to a proof of T by TI, since it has type pf T.

The other inference rules not involving bound variables or assumptions are encoded similarly.

A simple use of higher-order abstract syntax occurs in the encoding of the rules DI, where it is
used to express the discharge of an assumption, and VI, where it is used to express the restriction
on free occurrences of the universally quantified variable.

The rule DI
-p
A

B
A D BADB

is encoded as follows.

DI: IIA:o.IIB:o.(pfA - pf B) --* pf(A D B)

This declaration defines the constructor DI as a function that takes propositions A and B, and a
function from proofs of A to proofs of B, and constructs a proof of A D B.

A small example proof shows how functional abstraction in LF models the use of assumptions.
Consider the following deduction.

P
zero = succ zero

DIP
zero = succ zero D zero = succ zero

Its LF representation is the closed term:

DI (zero = succ zero)(zero = succ zero)(Ap:pf(zero = succ zero). p)

This term has type pf(zero = succ zero D zero = succ zero).
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On the other hand, the following deduction contains an undischarged assumption and cannot
be represented by a closed LF term:

P
zero = succ zero

:)IP
zero = succ zero D zero = succ zero zero -succ zero

AI
(zero = succ zero D zero = succ zero) A zero -succ zero

In the corresponding LF term:

AI ((zero = succ zero) D (zero = succ zero)) (zero = succ zero)

(DI (zero = succ zero) (zero = succ zero) (Ap: pf(zero = succ zero).p))p

the second occurrence of p is free, representing the open assumption.

Similarly, the encoding of VI models the schematic nature of the premise and enforces the
stipulation that there be no free occurrences of the quantified variable in any open assumption.
The rule is encoded as follows:

VI: HA:(i -- o). (Ilx:i. pf(Ax)) - pf(VA)

The constructor VI has two functional inputs. The first, of type i -+ o, represents a proposition
that is schematic in an individual x. The second, of (dependent) type (llz:i. pf(Ax)), represents a
schematic proof. The constructed term represents a proof (in which the VI rule acts as binder) of
a universal quantification over x (in which V acts as a binder).

As an example, we examine the representation of the following proof:

x=R
VI

VX.X = X

This is encoded as:
VI(Ax:i. x = x)(Ax:i. =REFL x)

Now consider the following "deduction", which is invalid because x occurs free in an undischarged
assumption.

x = zero
VI

Vx. = - zero

This cannot be represented. An attempt to represent it might begin:

VI(Ax:i. x = zero)(Ax:i....)

But there is no constructor that, given a term x of type i, constructs a proof of x = zero.

The representation of the other inference rules involving the discharge of assumptions and the
binding of variables follows the same principles.

The expression of these LF declarations in the Elf language (Figure 2.6) is straightforward,
except for the use of implicit quantification, which is used to reduce the verbosity of the "pure" LF
declarations.

The declaration of the type family of proofs is identical to the LF declaration, but we use the
turnstile-like notation "I -" in place of the constructor pf.
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I- :o0 type.

truei I- true.

falsee {C:o} I- false -> I- C.

andi :- A-) I-B-> I- (and A B).
andel I- (and A B) -) I- A.
ander :- (and A B) -> I- B.

oril : {B:o} I- A I- (or A B).
orir : {A:o} l-B-> B- (or A B).
ore : I- (or A B) -> (0- A -> I- C) -> (I- B -> I- C) -> I- C.

impliesi : (-A-> I- B) -> I- (implies A B).
impliese : I- (implies A B) -> I- A -> I- B.

noti : (I- A -> I- false) -> I- (not A).
note :- (not A) -> I- A -> I- false.

foralli ({x:i} i- (A x)) -> i- (forall A).
foralle {T:i} I- (forall A) -> I- (A T).

existsi {A:i -> o} {T:i} I- (A T) -> I- (exists A).

existse I- (exists A) -> ({x:i} I- (A x) -> I-C) -> I-C.

eq.refl {X:i} I- (eq X X).
eq.sym :- (eq X Y) -> I- (eq Y X).
eq-trans I- (eq X Y) -> I- (eq Y Z) -> I- (eq X Z).
eq.subst I- (eq X Y) -> I- (eq (succ X) (succ Y)).

ax-zero : I- (forall [x] (not (eq (succ x) zero))).
ax-succ :I (forall [x] (forall [y] (implies (eq (succ x) (succ y))

(eq x y)))).

ind : {A:i -> o} I- (A zero) -> ({x:i} I- (A x) -> I- (A (succ x)))
-> I- (forall A).

Figure 2.6: Elf encoding of logical, equality, and arithmetic inference rules
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I- : o -> type.

Because of Elf's term and type reconstruction facility, some arguments of the LF declarations can
be omitted in the Elf encoding, and reconstructed during type checking. For example, the LF
declaration for conjunction introduction is

Al: IIA:o. IIB:o. pf A --+ pf B --+ pf A A B.

But in Elf this can be written

andi : I- A -> I- B -> I- (and A B).

A and B are implicitly quantified in this declaration. When type checking the declaration Elf's
type reconstruction can infer that A and B must have type o since I - takes a term of that type.
When constructing a term by this rule the two propositions are not supplied explicitly, since Elf
reconstructs them from their proofs.

On the other hand, consider the following declaration:

falsee : {C:o- I- false -> I- C.

If C were not explicitly quantified, type reconstruction could still produce the correct type for the
declaration. But to use the rule in the construction of a proof, it is sometimes necessary to explicitly
supply C since it cannot always be inferred from the input proof. Therefore we include the explicit
quantification in the declaration so that an actual parameter for C is accepted by the Elf front end
when the user inputs a proof. An alternative method is to make the parameter implicit:

falsee : I- false -> I- C.

Then if C cannot be inferred from the context, it can be specified in a type annotation, e.g.

impliesi [p: I- false] (falsee: I- (eq zero (succ zero)))

2.3 Program extraction

To implement the extraction of programs from proofs, we first define a simple language of functional
programs. The syntax of the language is implemented in Elf according to the same principles used
in the definition of predicate calculus in section 2.2.1. A typing discipline and operational semantics
for the language are defined in the form of deductive systems encoded as dynamic Elf signatures.
As with the encoding of logic, the representation of programs is external to the underlying logical
framework. Our encodings are in the style of those given by Michaylov and Pfenning for a fragment
of ML in [MP91], which extend the higher-order representations developed in AProlog by Hannan
and Miller in [HM89], [Han9l].
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2.3.1 Programming language

Because we are explicitly defining a language for extracted programs, external to the LF type
theory, there are syntactic and semantic choices open to us. The language presented here is a
simple extension of a A-calculus with primitive recursion, pairs, and disjoint union, with a call-by-
value semaný.cs. The language constructs are chosen to correspond closely to the inference rules
of the logic. Extraction into more expressive languages is not difficult to implement along similar
lines, and we have done so for a miniML-like language.

Syntax of expressions and types

In the presentation of extraction and its meta-theory we use a Nuprl-like syntax for programs [C+86]
in order to emphasize the close relation to the logic. (The semantics of the language, however, is not
the Nuprl semantics.) A BNF grammar for the language follows; it consists of the single syntactic
category cf expressions e.

e::= X I Variables
0 I s(e) I Natural numbers
( el,e 2 ) I fst(e) I snd(e) I spread(el; x,y.e 2 ) Pairs
inl(e) I inr(e) I decide(el; x.e 2 ; x.e 3) I Disjoint union
lamx.e I nat-ind(el; x,y.e 2) I app(e1 ,e2 ) I Functions
()1 Unity
any(e) I neg Error
axiom Self-realizors

(Later in the presentation we add more language constructs as we deal with different theories.)

If we wish only to extract programs from proofs and execute them, there is no need to consider a
type structure for this language. However, we also want to be able to prove (and to do so partially
within Elf) some metatheorems about the correctness of extraction and program execution. For
instance, it is evident from the interpretation of constructive logic described in Section 1.1 that the
type corresponding to a proposition in the object logic of the form A A B should be a product.
Moreover, the evaluation of an extracted term should preserve this type. In order to reason about
such properties we introduce a system of simple types for the language:

Types r ::= nat I rl x T 2 I rlir2 I 7-1 =r 2 I unit I void I atom

These types should be carefully distinguished from the types of the LF calculus; we sometimes refer
to them as object types.

The type system, the operational semantics of the language, and their role in representing the
computational content of proofs are defined precisely in the form of deductive systems given in the
rest of this chapter. Here we informally sketch the main outlines of these ideas.

The program extraction process expresses the computational content of a proof in the form of a
program, losing some of the purely logical content in the translation. (Ideally, all of the purely logical
content is removed; we examine some of the issues this raises in section 2.3.2.) The propositions-
as-types principle implies a similar process of type extraction: to each logical proposition there
corresponds an object type of the programming language.
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The type unit is inhabited by one value, (), and corresponds to logical truth. Thus the value ()
is extracted from the rule of truth introduction.

A pair type may correspond to a conjunction or an existential. When r, x r2 corresponds to
A A B, rl corresponds to A and r2 to B. When it corresponds to 3x. A, T, corresponds to the sort
of x (in the object logic presented so far, this must be the sort of natural numbers i, but later we
will extend the object logic to a many-sorted logic), and r2 corresponds to A. Thus pair formation is
extracted from the introduction of conjunction or existential quantification. The usual projections,
fst and snd, are extracted from conjunction eliminations. The destructor spread is extracted for
existential elimination. The evaluation of spread(el; x, y. e2) proceeds as follows. The expression
el is evaluated to obtain a pair ( vI,v 2 ). Then v, is substituted for x and v2 for y during the
evaluation of e2. The projections are of course redundant, as they are definable from spread, but
the current version of Elf does not include a definition facility, so they are included in the language
for the sake of program readability and the simplicity of Lhe metatheoretical correctness proofs.

A disjoint union type r I r2 corresponds to a disjunction A V B, where 7"1 corresponds to A and
r2 to B. The left and right injections inl and inr are extracted from the disjunction introduction
rules, and the decide destructor from disjunction elimination.

A function type may correspond to an implication or a universal quantification. When T1 =: r 2
corresponds to A D B, rl corresponds to A and r2 to B. When it corresponds to Vx. A, r, cor-
responds to the sort of x (the same considerations apply here as for 3x. A) and T"2 to B. We use
lam to express functional abstraction and app to express application in order to distinguish them
from LF functional abstraction and application. A lam-abstraction is extracted from the intro-
duction rule for implication or universal quantification, and an application from the corresponding
eliminations. The nat-ind constructor permits the definition of primitive recursive functions and
is extracted from inductive proofs.

The type void corresponds to absurdity (falsehood). For a negation -,A there is a corresponding
type r =:, void where r corresponds to A; we extract a function of this type from the rule of negation
introduction. There is a redundancy in our object logic definition in that negation is definable in
terms of implication and absurdity. Like fst and snd, it is included for notational convenience in
the absence of a definition facility in the Elf language. The extraction process collapses the two
notations at the level of types: the term extracted from a proof of -,A has the same type as the term
extracted from a proof of A D I. Such proofs can arise only from the use of negative assumptions
or axioms. Our simple system contains only one negative axiom schema AXO. For an instance of
the schema the extraction procedure extracts neg with object type r =>. void (for any object type
r). The constructor any is used in extractions from the rule of falsehood elimination. This rule
allows an arbitrary proposition C to be inferred from a proof of absurdity. Correspondingly, the
object type inference system allows an arbitrary type to be inferred for a term of the form any(e)
if e has type void. Since there is no closed proof of absurdity in a consistent logic, evaluation of
a term of the form any(e) represents an error. The operational semantics models this error by a
(finite) failure to evaluate. There is no evaluation rule for the constructor any, and an Elf query
of the form ?- eval (any M) V will terminate with failure. Operationally this failure to evaluate
is distinct from the nontermination of a query like ?- eval (app (lam [x] app x x) (lam [x]
app x x)) V. But declaratively both failures are equivalent: there is no evaluation deduction that
inhabits the type of either query.

The type atom contains one element axiom and corresponds to equality assertions. This is a
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somewhat arbitrary choice as there is no computational content to a proof of equality; indeed in
Kleene-style definitions of realizability in the domain of Heyting arithmetic any number will serve
as a realizor of an equality. The types atom and unit are isomorphic and will be collapsed together
when we define a more efficient version of extraction.

As there are no new principles involved in the encoding of the syntax of programs and types
in LF, we show only its implementation in Elf (figure 2.7). Again, constructors with multiple
arguments are curried, and higher-order abstract syntax is used for the binding constructors lam,
nat-ind, spread, and decide.

We represent the types of our programming language explicitly as LF object-level terms. Thus
we define a syntactic category tp of program types as well as the syntactic category term of

program terms. Types are associated to terms by the type inference system presented below.
The representation of types by LF objects is convenient for codifying the correspondence between
propositions of the object logic and types of programs in terms of a type extraction system.

Operational semantics

We give a call-by-value operational semantics for the language as a set of inference rules (fig-
ure 2.8) defining a judgment e ,--- v (e evaluates to v). This is a natural semantics in the style of
Kahn [Kah87]. The choice of call-by-value as opposed to call-by-name is an arbitrary one, although
it does simplify translation into ML, which we have done for some extracted programs.

We show the Elf implementation of the semantics in figure 2.9. This encoding is the first
instance of an Elf signature used for search, i.e., a program as opposed to a language definition.
We think of the family eval primarily as representing a judgment rather than a syntactic category.
However, the signature also represents the syntactic category of evaluation deductions, and the
internalized metatheory of Chapter 3 exploits this representation. For the purposes of introducing
simple programming in Elf it is easier to first view the signature as a Prolog-like program. A
declaration such as

ev-s : eval (s M) (s V) <- eval M V.

can be read as a Prolog-like rule, with the backwards arrow <- playing the role of Prolog's -

syntax. In the LF language, this declaration is equivalent to

ev-s: IIM:term. HV:term. eval M V -- eval (s(M)) (s(V))

This declares ev-s as a constructor in the same way as the declarations we have dealt with heretofore.
But operationally, it is a constructor available to the Elf search mechanism as it constructs a proof
of a judgment, and so it acts as a logic-programming rule.

Examination of the clauses for applications reveals the inefficiency of this implementation due to
the backtracking and consequent repeated evaluation of M when evaluating app M N. Nevertheless
the signature does define an operational interpreter and its structure is suitable for the partially

internalized metatheory of chapter 3.
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tp : type.
term type.

arrow tp -> tp -> tp.

app : term -> term -> term.
lam : (term-> term) -> term.

unit tp.
unity term.

nat : tp.
0 term.
s term -> term.
nat-ind term -> (term -> term -> term) -> term.

* :tp -> tp -> tp.
pair term -> term -> term.
fst term-> term.
snd term-> term.
spread term -> (term -> term -> term) -> term.

I : tp -> tp -> tp.
inl : term-> term.
inr : term-> term.
decide : term -> (term -> term) -> (term -> term) -> term.

void tp.
any term -> term.
neg : term.

atom tp.
axiom : term.

Figure 2.7: Elf encoding of the syntax of program expressions and types
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ev-O e ' v ev-s
0-+0O s(e)c .s(v)

el, e 2 )c*VI,V 2 ) e-arspread(e 1; X, Y.e2) '-+ Vsra

ee1,V2)-fst e 1 2)ev-snd
fst(e) -. snd(e) '--.V

ev-in I ev-inr

-ev-dec-I ev-dec-r
decide(el; X e2 ; X -e3) - V decide(e1 ; x.e 2 ; x.e3) - V

ev1m el -+ lam x.e e2 "- V2  [V2/x]e - v

lamx. e - lamx. e app(el, e2)c - V

ev-pr
nat-ind(ei; z, y. e2) -- nat-ind(ei; x, y. e 2 )

el c-*nat-ind(e..; x, y. e,) e2c -*0 e, -
ev-pr-z

app(ei, e2) c- V

el* nat-ind(e..; x, y. e,) e2 c-+ S(V2 ) app((nat-ind(e2 ; x, y. e,)), V2 ) c-* V3 [V2/z][V3/y]e5 v
ev-pr-s

app(el, e 2) C-4 V

ev-unit ev-ax ev-neg
0-+~~0 axiom -+* axiom neg c~*neg

Figure 2.8: Natural semantics for a functional programming language
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eval : term -> term -> type.

ev.O : eval 0 0.
ev-s : eval (s M) (s V) <- eval M V.

ev.pair : oval (pair M N) (pair V V') <- eval M V <- oval N V'.
orvspread : oval (spread M N) V

<- oval M (pair V1 V2)
<- oval (N V1 V2) V.

ev-fst : oval Cfst M) VI <- oval H (pair VI V2).
ev-snd : oval (snd M) V2 <- oval M (pair V1 V2).

ev-in' oval (inl M) (inl V) <- oval M V.
ev-inr : oval (nr M) (nr V) <- eval H V.
ev-dec-l : oval (decide H Nl Nr) V

<- oval H (inl V')
<- eval (Nl V') V.

ev-dec-r : oval (decide M Nl Nr) V
<- oval M (nr V')
<- eval (Nr V') V.

ev-lam : eval (lam M) (lam M).
ev-app-lam : oval (app M N) V

<- oval M (la MH')
<- eval N Vi
<- eval (M' VI) V.

ev.pr : oval (nat.ind Mz Ms) (nat.ind Mz Ms).
ev-pr-z eval (app H N) V

<- eval M (nat.ind Mz Ms)
<- oval N z
<- oval Mz V.

ev-pr.s oval (app M N) V
<- eval M (natind Mz Ms)
<- eval N (s N')
<- oval (app (nat-ind Mz Ms) N') M'
<- oval (Ms N' M') V.

ev-unity : eval unity unity.
ev-axiom : eval axiom axiom.
ov-neg : oval neg neg.

Figure 2.9: Call-by-value natural semantics in Elf
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Type inference system

In our language types are external to the language of programs, and the type of a program expression
is determined by an inference system, or type assignment system. In order to distinguish this object-
level notion of type from LF typing, we use the notation e E r to express the typing judgment
defined by this inference system. A notion of a context that assigns types to free variables of an
expression is needed.

Contexts r I r,XE T

We adopt the convention that a variable may be declared at most once in any context; thus F(x)
may be written for the unique type assigned to x by the context r. The typing judgment is IF ý- e E r
(read: in context r the expression e has type r).

Figure 2.10 gives a deductive system defining this judgment.

The implementation of this system in Elf (Figure 2.11) depends on the use of assumptions to
represent a context. Instead of declaring a type context and a judgment of : context -> term
-> tp -> type, we declare the judgment of : term -> tp -> type. To model the addition of a

type assignment to the current context, the Elf program makes a typing assumption. For example,
the typing rule for A-abstraction is:

rx E -r -e ET 2  _tp-lam
P F- lamx .e E ri ==• "2

The corresponding Elf rule is:

tp-lam : of (lam M) (arrow A B)
<- {x:term} of x A -> of (M x) B.

The operational semantics of the Elf interpreter models the required treatment of contexts: upon
encountering the subgoal

{x:term} of x A -> of (M x) B

the interpreter creates a new parameter x (modelling the convention that a variable may occur
at most once in a context) and adds the judgment of x A to its stock of rules. It then searches
for a deduction of a type assignment for (the normal form of) the term (M x). When the search
reaches a subgoal of x C for some type C, the assumption of x A is used to supply a type for the
parameter x. This models the type assignment rule for variables:

r(x) = r tp-var
PF-XEr

The type assignment system supports a form of polymorphism sufficient for expressing ML-style
let-polymorphism, although we do not exploit this capability. In the implementation a polymor-
phic type appears as an LF object of type tp containing Elf logic variables, which are subject to
instantiation. An example is the identity function lam x . x, which is assigned the type r =:> r for
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tp-O F I- e E nat tp-s
r I- 0 E nat F !- s(e) E nat

r ý -e l E r i F -e 2 E r 2 Fp p r - e E r i × r2 t -re Ei reErtp-pr r ET Ttp-fst

r I- ( el, e2 ) E rl x T2  r F- fst(e) E r1

IFeEr x r2 tp-snd rl- Er 1 x 72  r~xET1,yET2Fe2Ertp-spread

r Fsnd(e) E r 2  rF spread(el; x,y.e2) E r

rFe~ir1  rl-eEr 2_tp-in rtp-inr
r F- inl(e) E ri 1r 2  r F- inr(e) E ri I r2

r F elE 1r ilr 2  ,x E r71  - e2 E r r,x E -r2 F- e3 E r

rF I- decide(el; z .e 2; x.e3 ) E r

rxE -rFeET2  tp-lam r elEr 1 *r2  r e2Erltp-app

r F lam x.e E rl =:> r 2  r F- app(el,e2) E r 2

r F- el E r r,x E nat,y E r F e2 E rtp-prec tp-unit

r F- nat-ind(el; x,y.e2) E nat =: r r F () E unit

r F e E void tp-any tp-axiom

r F- any(e) E r r F- axiom E atom

tp-neg r(x) = tp-var
rF - neg E 7- = void rF - x E r

Figure 2.10: Type assignment system for the core language
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of : term -> tp -> type.

tpO : of 0 nat.
tp.s : of (s M) nat <- of M nat.

tp.pair of (pair M N) (* A B) <- of M A <- of N B.
tp-fst of (fst M) A <- of M (* A B).
tp-snd of (snd M) B <- of M (* A B).
tp.spread : of (spread Mpr N) C

<- of Mpr (* A B)
<- {x} of x A -> {y} of y B -> of (N x y) C.

tp-inl : {B} of (in. M) (0 A B) <- of M A.
tp-inr : {A of (nr M) (I A B) <- of M B.
tp-dec : of (decide M Ni Nr) C

<- of CI A B)
<- ({x:term} of x A -> of (N1 x) C)
<- ({x:term} of x B -> of (Nr x) C).

tp-lam : of (lam M) (arrow A B)
<- {x:term} of x A -> of (H x) B.

tp.app : of (app M N) B <- of M (arrow A B) <- of N A.

tp-prec of (nat-ind Mz Ms) (arrow nat A)
<- of Mz A
<- ({x} of x nat -> {y} of y A -> of (Ms x y) A).

tp-unity : of unity unit.
tp-axiom : of axiom atom.

tp-any : {A} of (any M) A <- of M void.
tp.neg : {A} of neg (arrow A void).

Figure 2.11: Elf implementation of type assignment
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Proof P : Ppf Proposition $

I- u : P#M I- w: -64tr

Program M : M E Type r

Figure 2.12: Elf implementation of proofs-as-programs

any type r. When presented with the query of (lam [x] x) T, Elf succeeds with a substitution
of the form T = (arrow A A) - A is an internally created logic variable; the substitution constrains
any ground term found fo- T during further search to be a representation of an object type r :> r
for some r.

2.3.2 Extraction

In this section we define judgments 4 and 4t for program and type extraction; this completes an
implementation of the proofs-as-programs view of constructive logic, as shown in Figure 2.12. At
each vertex of the diagram is an LF object encoding a proof, proposition, program, or (object
programming language) type. These objects are related by LF typing assertions - the turnstile
I- here means derivability in LF. The minuscules u, v, and tw should be read existentially: they
are the terms found by the Elf interpreter as it searches for proofs of the judgments 4, 4t, and
E. We have already described the judgments pf (proof well-formedness) and E (object language
type assignment). The judgments P4 M (read: the program M is extracted from the proof P)
and 4 4tr (read: the type r is extracted from the proposition f) are defined so that whenever
- 1P: pf 4ý and - u : P4M and I- w : 6#'r then I- v :M E r. (However, there may be other

types that can be inferred for M; for example, for lam x . x we can infer M E r => r for any type
r.) Moreover if I- u : P 4M and F- x : M -+ V then there is a proof JP' such that F- 1 : pft
and F x' : P'4 V. These results are proved and the proofs partially internalized as Elf programs in
Chapter 3.

The program extraction judgment implicitly defines a kind of realizability interpretation, if
realizability is taken to interpret sentences of the object logic in the domain of expressions of the
programming language. The deductive system for establishing the judgment corresponds in its
essentials to axiomatic characterizations of realizability such as that found in Troelstra [TvD88].
However, the core object logic is too weak to internalize the realizability relation as is done in other
systems. We leave it implicit and rely on reasoning at the metalevel to establish correctness.

The encodings of proofs and functional programs as LF objects facilitate the treatment of type
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Figure 2.13: Type extraction

and program extraction as deductive systems. We first give naive formulations of these systems that
extract types that mimic closely the structure of propositions and programs that mimic closely the
structure of proofs. For the pure first-order logic fragment of our object logic (without arithmetic)
the rules of the type extraction system are precisely congruent to the syntax of propositions; the
rules of the program extraction system are congruent to the inference rules of the logic. Then
we discuss the distinction between proofs with computational content and those without it, and
present a modification of extraction that removes computationally useless subterms of the extracted
program.

Naive extraction

The judgment 4t relates propositions of FOL and types of the programming language as explained
in section 2.3.1. It is defined by the rules of Figure 2.13; its translation into Elf is straightforward
and does not involve any new principles.

The judgment 4 relates natural deduction FOL proofs and expressions of the programming
language. An auxiliary judgment 4' establishes the corresponding relation between individual
terms of the logic and programming-language expressions (in our simple system, these must be
terms representing natural numbers).

The rules for 4 work by a straightforward case analysis of the last inference in the proof under
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consideration; therefore we present them in terms of proof schemas. A schema of the form

matches an object proof ending in a formula A; any variables free in A may also occur free in P.

Since 4 is defined inductively over the structure of proof objects, which contain discharged
assumptions and bound individual variables, a context of extraction assignments for assumptions
and individuals is needed. Variables for individuals are part of the logical language; they are bound
by the quantifiers. Variables for discharged assumptions are part of the proof language and are
bound by the inference rules that discharge them (DI, VE, 3E, and IND). We represent this context
as a pair ( r, A ), where r is a sequence of assignments xi 4' xý for individual variables and A a

sequence of assignments p 4ip. As usual we stipulate that all variables in a context are distinct.

Thus we may treat a context as a pair of partial functions on variables, and write 12(x) = x' when

x 4i x' is an extraction assignment in r, and A ([APA) = p' when [A] p' is an extraction assignment

in A. We extend this convention in the obvious way and also write ( r, A )(x) = x'. We write
( (r, x 4i x'), A) for the result of extending ( r, A ) with the term extraction assignment X 4' x',
and

for the result of extending ( r, A ) with the proof extraction assignment I- 4 p'.

Extraction assignments for assumptions lead to schemas of the form

This matches a proof fragment that depends on an assumption A where p is the (hypothetical)
proof of A. The context ( r, A ) contains an extraction assignment p' for p.

The full form of the extraction judgment is

(r,A ) i-AM4 e

(read: in the context ( r, A ), e represents the computational content of the proof P of A.)

The implementation of extraction in Elf uses the same technique for representing the context
as in the implementation of type inference. Instead of representing it explicitly, we introduce
parameters and assumptions during the search process. Thus the Elf declaration of the extraction
judgment encodes a relation on two objects rather than three, leaving the context implicit:

extract : I- A -> term -> type.
extracttm : i -> term -> type.
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r I- t .e
ex-zero ex-succ

rF - zero o 0 r I- succ t v s(e)

Figure 2.14: Program extraction from individual terms

F(x) -- x, ex-ivar M ex-pvar
rF xt x' (rA F- I A4p'

Figure 2.15: Extraction for individual and proof variables

The full deductive system for program extraction from individual terms and proofs is presented
in Figures 2.14 through 2.19. Extraction from individuals is straightforward in the limited system
under consideration here. The inference rules for extraction from proofs imitate the structure of
the natural deduction inference rules (compare Figure 2.2). We explain a few characteristic rules
in detail and discuss their implementation in Elf.

The simplest case for extraction is a proof in the object logic consisting of an inference rule with
no premises (essentially an axiom, though natural deduction does not distinguish between axioms
and inference rules). An example is:

- TI
T

The corresponding extraction rule has the same structure:

xTr'A ) F FT 1i 4()

Its encoding in Elf is straightforward:

ex-truei : extract truei unity.

Recall that truei has been declared as an object of type I - true; it represents the proof of T
in the extraction deduction. Similarly, unity is an object of type term representing the program
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Figure 2.16: Program extraction, logical rules, part I
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Figure 2.17: Program extraction, logical rules, part 2
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Figure 2.18: Program extraction, logical rules, part 3
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Figure 2.19: Program extraction, arithmetic rules
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expression (). The implicit propositional argument true of the extract judgment is reconstructed
by Elf during the type checking of this rule from the type of truei.

In the case of a proof ending in an inference rule that has premises, but neither discharges an
assumption nor binds an individual variable, extraction simply descends through the proof, extract-
ing program expressions for the subproof(s), and applies the appropriate constructor or destructor
to the resulting program expression. To express this as an inference rule, we use schematic variables
for subproofs - these are distinct from the bound variables associated with assumptions. In the
notation

P
A

P stands for the proof with conclusion A.

Extraction from the rule of conjunction introduction is an example:

XAI

:Pi P 2

(r,A)F A B A 4( el,e 2 )
AAB

The encoding in Elf is again straightforward, simply introducing two subgoals:

ex-andi : extract (andi P1 P2) (pair Ml M2)
<- extract P1 M1 <- extract P2 M2.

Again term reconstruction permits the omission of the implicit propositional argument, since andi
has been declared with type I- A -> I- B -> I- (and A B).

The DI rule is a simple example of the treatment of the discharge of assumptions by adding an
extraction assignment to the context ( r, A).

xjI

-4

AP

( F ,A )F P, lamp'.e

B
) lP

ADB

The assignment

[A]4P



45

associates the hypothetical proof p of the assumption A with the program variable p, bound by
the lam-abstraction. As a result, when a goal of extracting an expression from p occurs in the
deduction, the rule ex-pvar for proof variables applies.

The Elf implementation models the context ( 1',,A ) at the meta-level by introducing assump-
tions. The Elf encoding of the rule x3i is:

ex-impliesi : extract (impliesi P) (lam M)
<- {p:I- A} {p':term} extract p p' -> extract (P p) (M p').

In contrast to the assumptions introduced in the implementation of the type assignment system,
which quantify over one parameter representing a bound program variable, here we quantify over
two parameters: p represents a bound proof variable and p' represents a bound program variable.

The treatment of bound individual variables in proofs is much the same, but the extraction
assignment added to the context is modelled as the extract-tm judgment. An example is the
extraction rule for VI:

(((r,x4x'),Ap- ) j4e
xvI

, A 4 lamx'.e
Va. A

The Elf implementation is:

ex-foralli : extract (foralli P) (lam M)
<- {x:i} {x':term} (extract-tm x x' -> extract (P x) (M x')).

Program simplification during extraction

As noted above, naive extraction results in a program containing many subterm, that carry no
computationally useful information. Intuitively speaking, this is because the only logical formulas
whose proofs involve choice are disjunctions and existential quantifications. A prouf of 4 V 8
provides a method for deciding whether A or B holds; a proof of 3x. A provides a method for finding
a particular natural number t (the "witness") such that [t/x]A holds. The inference rules for the
other logical connectives merely combine the proofs of their components in an appropriate way. If
the components are void of computational content, so is the resulting proof. We call formulas free
of 3 and V uninformative. By extension we call their proofs, the object types extracted from them,
and the programs extracted from the proofs uninformative as well.

The work described here is an adaptation to the Elf setting of the basic ideas of modified
realizability developed for the Calculus of Constructions by Paulin-Mohring [PM89] which in turn
takes from the PX system [Hay9O] the idea of syntactically defining a class of content-free terms.
Sasaki [Sas86] develops these ideas for Nuprl. The negative formulas of Schwichtenberg [Sch82],
[Sch85] are used in a similar way to decrease the complexity of realizing terms.
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We define extraction procedures for types and programs that simplify the extracted terms to
remove uninformative subterms while retaining computationally useful information. As for naive
extraction, the extracted programs are well-typed and the extracted types can be inferred for them
by the type inference system of Figure 2.10.

In order to preserve well-typedness, we distinguish between positive and negative uninformative
formulas.

The positive uninformative formulas are the Harrop[Har60] formulas:

Harrop formulas H ::= T It 1 = t2 I H A H I Vx.H I A D H

where A is any formula.

For these formulas we extract the unit element (). Programs can be further simplified by noting
that an expression extracted from A D B, where A is Harrop, will have type unit =:> r, where r
is the type extracted from B. But this type carries no more information than r itself, so we may
as well extract a term of type r instead. Similar considerations apply to extraction from A A B
where either A or B is Harrop.

As a small example, consider a program to compute the predecessor, extracted from a proof of
Vx . x = zero V (3y . x = succ (y)). The equalities are Harrop formulas; their proofs are represented

in the program by the special constant axiom.

nat ind( (inl(axiom)) ; x, v. inr(( x, axiom )))

The type of this expression is nat =* (atom I (nat x atom)). The occurrences of the type atom
represent the uninformative parts of the proof.

When the proof is simplified by extracting unit terms () for Harrop formulas, the resulting
program has type nat =ý- (unit I nat). The simplification removes the purely logical part of the
proof, leaving the left and right injections and the witness, which is the predecessor value we want
to compute.

nat-ind(inl(()); x, v. inr(x))

The negative (uninformative) formulas are

Negative formulas N ::= I -,A

where A is any formula.

These are treated separately from the Harrop formulas because of the intuitionistic absurdity
rule -LE, which allows the deduction of any formula from a proof of I. Recall the corresponding
typing rule:

r i- e E void tp-any
r F- any(e) E r

Terms extracted from proofs of negations have type r =ý* void; we cannot simply reduce these
to the unit element () if they appear in any(e), or the result cannot be typed. Nor can we extract
an element of type void if the semantics of the language is to faithfully reflect a consistent logic.

Consider another predecessor program, this time extracted (naively) from an inductive proof of
Vx. -,x = zero D 3y. x = succ y. The absurdity rule IE occurs in the base case of the induction.
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h-true h-eq
Harrop T Harrop t, = t2

Harrop A Harrop B h-and Harrop Ah-andh-forall
Harrop A A B Harrop Vx . A

Harrop B
h-implies

Harrop A D B

Figure 2.20: Harrop formulas

nat ind(lam v. any(app(v, axiom)); x,p. lam v. ( x, axiom ')

The extracted type is nat =:* (atom =>. void) =* (nat x atom). The program subexpression
of interest is lam v. any(app(v, axiom)), extracted from the base case of the induction. The
component atom :> void of the type corresponds to the bound variable v, which (for the base
case) represents a proof of -,zero = zero, which is not provable in a consistent system. Thus this
case returns a function which it would be an error to apply; that is why the function body is
any(app(v, axiom)), which cannot be evaluated. Any term that could be bound to v would have
no computational content, so it is desirable to eliminate it altogether. But we must still insure that
an error is signalled in the base case, which would not happen if we simplified the subexpression
to (); and any(()) is not typable. Instead we extract the constant neg for any proof of a negative
formula, and app(neg, ()) for any proof of -, so the simplified subexpression is any(app(neg, O)))
which is typable. The whole simplified program is:

nat-ind(any(app(neg, ())); x, p. x)

with type nat =: nat.

As before, we give the implementation of simplification during extraction of types and programs
in the form of deductive systems. We define the following judgments:

1. Harrop A (A is a Harrop formula): Figure 2.20

2. Uninf A (A is an uninformative formula): Figure 2.21

3. Inf A (A is an informative formula): Figure 2.22

4. A 4' T (type extraction/simplification): Figure 2.23
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Liarrop A
unin-h unin-n

Uninf A Uninf-,

unin-f Uninf A Uninf B unin-and
Uninf I Uninf A A B

Uninf A -unin-forall Uninf B -unin-implies
Uninf Vx. A Uninf A D B

Figure 2.21: Uninformative formulas

inf-or inf-exists
Inf A V B Inf 3x. A

Inf A inf-andl Inf B inf-andr
Inf A AB Inf AA B

Inf A inf-forall Inf B inf-implies
Inf Vx. A Inf AD B

Figure 2.22: Informative formulas
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Figure 2.23: Type extraction/simplification
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Figure 2.24: Program extraction/simplification for uninformative proofs

5. A J8 e (program extraction/simplification): Figures 2.24, 2.25, 2.26, and 2.27

The first three are simple syntactic properties of formulas: (1) is a straightforward deductive
formulation of the grammar of Harrop formulas given above; (2) defines uninformative formulas
as formulas built up from Harrop and negative formulas; and (3) is the complement of (2). The
main judgments are the extraction/simplification of types and programs, guided by the syntactic
analysis given by the three auxiliary judgments.

The deductive systems for both type extraction and program extraction are modifications to
the naive extraction.

In type extraction most of the rules of Figure 2.13 are retained, but premises are added to
them to ensure that all subformulas are informative. When the whole formula is uninformative
no analysis of subformulas is done; we merely need to distinguish between Harrop and negative
uninformative formulas. For conjunction, implication, and existential quantification extra rules are
added to account for uninformative subformulas. No special rule for type extraction from equalities
is needed since they are Harrop.

Program extraction is defined similarly although complications arise because of the elimination
rules of the logic. Extraction for individual terms and for individual and proof variables is defined
in the same way as for naive extraction (Figures 2.14 and 2.15 respectively), so we omit their
explicit definitions. For uninformative formulas and the introduction rules of the logic, program
extraction has the same form as type extraction. For logical disjunction, extraction is defined as
for the naive case. Even if both A and B are uninformative, a proof of A V B always contains at
least the computation of which case holds, so the extracted program expression must be a left or
right injection into a disjoint union type, although that type may be simpler than in the case of
naive extraction.
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Figure 2.25: Program extraction /simplification, conjunction rules
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Figure 2.26: Program extraction/simplification, disjunction rules
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Figure 2.27: Program extraction/simplification, implication and universal quantification rules
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Figure 2.28: Program extraction/simplification, existential quantification and absurdity rules
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Figure 2.29: Program extraction/simplification, induction rule

The elimination rules for conjunction, implication, and existential quantification require checking
for uninformative subformulas to avoid applying a destructor (projection, function application, or
spread) inappropriately. For the elimination of an implication A D B, naive extraction yields
app(el, e2). But we must now account for the possibility that A is uninformative and thus el is
not a function; in that case the program to be extracted is el alone. (If B is Harrop the rule
XSH of course applies.) The conjunction elimination rules are treated in an analogous way. Naive
extraction for the existential quantifier elimination rule yields an expression spread(el; X1 , x2 . e2)
where x, is bound to the witness term and x2 to the proof term during the evaluation of e2 . But
if A is uninformative there is no proof term, and instead we extract app(lam x, . e2 , el).

The rules xsDIR (Figure 2.27) and xS3EL (Figure 2.28), which deal with implication introduction
and existential elimination respectively, have the interesting feature that extraction is performed
on subproofs containing proof variables for which no extraction assignment is introduced in the
context. Thus for instance the rule XSDIR can succeed only if

can be deduced for arbitrary p. At first glance it might seem that extraction could fail without
an assignment for p. But for uninformative formulas extraction/simplification does not need to
examine the proof. As a consequence we have the following:

Lemma 2.1 (Elimination of proofs of uninformative formulas) If Uninf A and there is an extrac-
tion deduction

thnteeir, (As, nexr. p', A2) ) a-to-d

then there is an extraction deduction

C ::F , A•, A2) 4.,•-• e
£MB
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Proof 2.2 The proof is an easy induction on the structure of C.
In the cases where C ends in xs-', xs.L, or XSH, the deduction does not depend on the environment.

If E ends in extraction from a proof variable:

ex-pvar
r , AI,-, [p] , A2) ) t- [BI' q'

there are two cases. If B is A then B is uninformative and there is an extraction deduction for B
ending in xs-', xs.L, or xsH. Otherwise construct the deduction

ex-pvar
,(AA2) [B I lq1

The other cases are easy inductions since every assumption in the conclusion of an extraction
deduction occurs in every subdeduction. 0

In Figure 2.30, we show a fragment of the Elf implementation of simplifying extraction. There
is one feature of this program that has not appeared before: some dependently-typed terms are
annotated with their types. The following rule for extraction from an implication introduction is
an example:

exs.implil : extract.simp (implie-i (P: I- A -> I- B)) M
<- uninf A <- inf B
<- {p: I- Al extract-simp (P p) M.

Here the argument P of impliesi is a function from a proof of some proposition A to a proof of
some proposition B, and one of the premises is that A is uninformative. We annotate P with its
type in order to express this premise.

Related work

The use of syntactic criteria to detect formulas void of computational content comes from the PX
system [Hay90]. The idea is developed for the Calculus of Constructions by Paulin-Mohring [PM891
and for Nuprl by Sasaki [Sas86].

Both PX and Constructions are stronger logics than ours in which programs are terms of the
logic and realizability is definable in the logic. This provides a different basis for proving the
soundness of extraction.

Unlike our extraction and Paulin-Mohring's, extraction in PX does not reduce a functional type
A -+ B where A is uninformative (type 0 in the terminology of PX) to the type B. As a result the
types of extracted terms retain more structure than in our scheme.
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extract-.simp, I A -> term -> type.

exs-.unit :extract..simp (P: I- A) unity <- harrop A.

exs-.iinplil extract..simp (impliesi (P: I- A -I-B)) M
<- uninf A <- mif B
<- (p: I- Al extract..simp (P p) M.

exs-implel extract-.simp (impliese (P: I- (implies A B)) Q) M
<- uninf A <- inf B <- extract-.simp P M.

exs-.andi2 :extract-.simp (andi (P: I- A) (Q: I- B)) M
<- uninf A <- min B <- extract..simp Q M.

exs-,andell :extract..simp (andel (P :I- (and A B))) M
<- inf A <- uninf B <- extract..simp P M.

exs..anderl extract..simp (ander (P : I- (and A B))) M
<- uninf A <- inf B <- extract..simp P M.

exs-.existsil :extract..simp (existsi A T -.) M
<- ({x:i} uninf (A x)) <- extract..tm T M.

exs-.existsel : extract..simp (existse P (Q: I- (exists A))) (app (lami M) N)
<- ({:i} uninf (A X))
<- ({:i} {x:term} extract-.tm X x

-> {p: I- (A X)} extract..simp (P X p) (N x))
<- extract-.simp Q N.

exs-.existse2 :extract..simp (existse P..min P-.maj) (spread N M)
<- ({:i} inf (A X))
<- ({X:i} {x:term} extract-.tm X x

-> P:I- (A X)} {p:term} extract-.simp P p
->extract..simp (P..min X P) (M x p))

<- extract..simp P..maj N.

Figure 2.30: A fragment of program extraction/simplification in Elf
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In our system extraction is defined for all propositions and proofs, whether informative or not.
In Constructions extraction is defined only for informative terms; but as Paulin-Mohring observes
it can be defined for all terms essentially in the same way as in our system.



Chapter 3

Some Metatheory

Some correctness properties of extraction can be partially verified in Elf by formulating deduction
transformations along the lines described in [PR92], [HP92]. As these authors point out, the veri-
fication technique is essentially that described in [Des86], but the dependent types of LF eliminate
the need for explicit reasoning about the validity of the objects involved, and the term and type
reconstruction of Elf mechanize the management of many details. We give informal proofs of the
correctness properties along with their partial internalization in Elf; they cannot be completely
internalized since there is no internally representable induction principle for LF signatures.

The first property of extraction we consider is type soundness: when we extract a program
expression e from a proof of a proposition A, and we extract a type r from A, we want to be able
to deduce e E T in the type assignment system of Figure 2.10.

Theorem 3.1 (Type soundness of extraction) For any P, A, e, and T, if F- e and F- A 4 'r

then [- e E T.

The second property we consider is evaluation soundness: when we extract a program e from a
proof 7P of a proposition A, and e evaluates to v, we want there to be a proof P7 of A from which
we can extract v.

Theorem 3.2 (Evaluation soundness of extraction) For any P, A, e, and v, if F- Pj4e and

-e -* v then there is a proof 1" such that F- A4

Both type and evaluation soundness have proofs by straightforward induction over the structure
of extraction and evaluation deductions, respectively. These proofs construct formal deductions of
the required type from given formal deductions. The dual nature of Elf signatures - which can
be viewed as either logic programs or language definitions - supports the direct expression of the
constructive parts of the proofs. Each case of the induction is expressed as an Elf clause that matches
a deduction of a part' ilar shape. Thus to partially internalize the proof of type soundness we
formulate an Elf sign; are to translate deductions of extraction judgments to deductions of typing

59
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assignment judgments. The signatures that define extraction and typing assignment judgments are
viewed here as language definitions, althougl- they are also executable Elf programs.

When discussing the proofs, we will need to name the formal deductions of extraction, typing,
etc. To say that some judgment J is derivable, we often write simply "J"; we write P :: J when D
is a deduction of the judgment J.

This chapter is organized as follows: first we present a proof of type soundness for naive ex-
traction, with its partial formalization in Elf. Then we show how to modify the proof for ex-
traction/simplification. A similar but briefer presentation of evaluation soundness follows. An
interesting feature of the evaluation soundness proof is that its formalization implements a set of
reductions for intuitionistic proofs with induction.

3.1 Type soundness

The proof is an induction on the structure of the extraction deduction. Since extraction deductions
in general depend on a context of extraction assumptions, we generalize the theorem accordingly.
The proof must construct a typing deduction for every extraction deduction, so it is necessary to
define the typing assignments that correspond to a context of extraction assumptions. In accor-
dance with the propositions-as-types principle, the typing assignment p E r that corresponds to

an extraction assumption MA 4p depends only on the proposition A and not on the proof P. So

the following lemma allows us to translate any context of extraction assumptions to a context of
typing assignments:

Lemma 3.3 (Totality of type extraction) For any formula A there is a unique type 7 such that
- A4'tr.

The proof is an easy induction on the structure of formulas, appealing to the type extraction
deduction rules of Figure 2.13.

Definition 3.4 Given a context of extraction assumptions ( F, A ) where

F=xi ,...,xm' and A = P, ,

we define

1. [F] = x E nat,..., x' E nat

2. [Al =p' E rl,...,p" E -, where A14 T1,...,A, t r,.

3. [( r,A )I = [rr, [Al, i.e., the typing assignment context obtained by appending [F] and [A].

With these definitions we can generalize Theorem 3.1 to the following.

Lemma 3.5 (Type soundness of extraction in arbitrary contexts)

if FA) F- P 4je and I- A4tr then [(F,A)l F-eETIf ( MA
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Since the extraction judgment depends on the judgment t 4 e (extraction from individual terms)
a type soundness property for individual term extraction is also needed:

Lemma 3.6 (Type soundness for individual extraction) If r F- t 4' e then [f1] F- e E nat.

The proof is trivial since the only terms in the object logic are natural numbers. Its representation
in Elf is a very simple example of the partial verification technique that we apply to the proof of
Lemma 3.5. Here is the Elf signature that represents the proof of Lemma 3.6:

tsetm : extracttm T M -> of N nat -> type.

tsetm-zero tsetm ex-zero tpO.
tsetmsucc : tsetm (ex.succ E) (tp.s D) <- tsetm E D.

The clause tsetm.zero corresponds to the base case of the proof, which constructs the depth-one
typing derivation for the program expression 0. The clause tsetm-succ contains a subgoal that
represents an appeal to the induction hypothesis. There is no clause translating extraction from
variables (rule ex-ivar of Figure 2.15), because extraction contexts are represented at the meta-level
as Elf contexts. This is reflected by representing the translation by a meta-level assumption, a
technique shown in the presentation to follow.

The encoding of the proof of Lemma 3.5 in Elf follows the same basic principles. We declare a
type family to represent the lemma:

tse : extract (P: I- A) M -> extract-tp A T -> of M T -> type.

This declaration expresses a relation between a program extraction deduction, a type extraction
deduction, and a typing assignment deduction. Proving Lemma 3.5 amounts to giving a total
function from the first two deductions to the third. The encoding of the proof in Elf is partial in
the following sense: we can code this function as an Elf signature, and the well-typedness of each
declaration in the signature guarantees that the construction carried out is correct. But there is no
internal guarantee that the signature determines a total function (and clearly we cannot code the
construction directly as an Elf function since it is not schematic). This guarantee could probably be
obtained by applying the schema checking of [PR92] to the proofs of type soundness, and possibly
also to evaluation soundness. We have partially schema-checked the type soundness proof by hand.
Further work in this direction is beyond the scope of the thesis since full schema checking has not
been implemented.

We give some characteristic cases of the proof. Reference to Figures 2.10, 2.11 (type assign-
ment), 2.13 (type extraction), and 2.14 through 2.19 will help in following the argument. Since the

extraction deduction :: ( F,A ) F- IP 4e closely follows the structure of the object proof P the

cases can be characterized by the last inference of P. The cases are of the following main kinds:
base cases (P ends in TI or one of the axiom schemas of arithmetic), first-order inductive cases
where the last inference does not bind any individuals or discharge any assumptions (AI, AEL, AER,

VIL, VIR, DE, and -,E), and higher-order inductive cases where the last inference binds a parameter
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and/or discharges an assumption (VE, DI, -'I, VI, 3E, 1I, VE, and IND). The lemmas needed for
each type of case are introduced as needed. A simple lemma needed throughout the proof is:

Lemma 3.7 (Inversion for type extraction) Given C :: 4 A t r, the last inference rule of C is
uniquely determined by the form of A.

The proof is easily seen by inspecting the rules of Figure 2.13.

Base cases

The base cases are those in which the extraction deduction E:: ( A, A) F 4 e consists of the

application of a single rule without premises. For our simple system of arithmetic, these are the
rules for extraction from a proof of T, an equality, or the negation of an equality. We show the
reasoning for the negative axiom schema AXO.

Ca.e C =
XAXO

(r,A) succ t = ze neg

By inversion any type extraction from -'succ t = zero has the form

xt=
succ t = zero V atom

xt-'
-,succ t = zero 4t atom * void

Then construct the following typing deduction of the form required:

tp-neg

F(r,A )1 F neg E atom : void

0

The constructive content of this case is expressed by the Elf clause:

tse-ax-zero : tse ex-ax-zero
(ext.not (Et: extract.tp (eq (succ T) zero) atom))
(tp-neg atom).

First-order inductive cases

For cases where the object proof P ends in one of the rules Al, AEL, AER, VIL, VIR, DE, or -'E,

no extraction assumptions are introduced into the context in the subdeduction(s) of C. These
cases are straightforward. We apply the totality of type extraction to obtain type extraction
deductions corresponding to the subdeductions. We can then apply the induction hypothesis to
the subdeductions. We show the case for DE as an example.
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Case £ =
E• E2

Pi P2

( r,A I- A D B A ) ~4 app(el,e)
B

Assume there is a type extraction deduction T :: B 4• r.

Since type extraction is total there is a type extraction T' :: A 4 T'. Construct the type
extraction T" =

Tr' T
A~t 71 B4Jt7

XtD
A D B Vt r' =>. T

Applying the induction hypothesis to £C and T" yields the typing deduction V1  [(r, A)] I-
el E r' =>. r. Applying it to £2 and T' yields V2  [(F,A ,, - e2 E r'. Then construct the
typing deduction

T)1  D2

[(rA 1 el E r' -r r(rA) e2 E 7' tp-app
[(r,A )1 Fapp(el,e 2 ) E r

The Elf clause representing this case is:

tse-impliese : tse (ex-impliese E2 El) Et (tp.app D2 Dl)
<- tse El (ext.implies Et Et') DI
<- tse E2 Et' D2.

The two subgoals represent the two uses of the induction hypothesis. The term (ext-implies Et
Et') represents the construction of the type extraction T".

Higher-order inductive cases

Where the object proof P er 's in a rule involving a binding construct, some manipulation of the
context is required. When t' e -j.Ay discharged assumptions and no bound individuals (VE, DI,
-,I), Lemma 3.7 (inversion) and Definition 3.4 (context translation) are sufficient for the application
of the induction hypothesis. We show the case for DI as an example of this kind of reasoning.
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Case =

A( F ,A )F ' #lamp'.e
B

SDXDI
- )P

ADB

By inversion the corresponding type extraction deduction has the following form:

A 4 t'r B 4t r2
xt)

A D B 4'7t-1 =* 72

By definition 3.4, [( F, (AI [ 4p') ) = rrl, [, P' E r

Applying the induction hypothesis to V' with T2 yields the typing deduction P:: rr], [Al, P' E
7-1 - e E T2 . Then construct:

[ri], [A],P' E T1 F e E T2 tp-Iam

rrl, [A] F lamp'.e E T-1 =' T2

This is the typing derivation required since [r], rAl = r( r, A )]-
0

The Elf clause correspondipg to this case is:

tse-impliesi : tse (ex-impliesi E) (extlimplies Et2 EtI) (tp-lam D)
<- ({p} {p'} {e: extract p p'} {d} tse e Eti d

-> tse (E p p' e) Et2 (D p' d)).

The term (extimplies Et2 EtI) represents the use of the inversion principle. Since the extrac-
tion V' is represented as a term (E) of functional type, the appeal to the induction hypothesis is
represented as a subgoal of higher-order judgment type. The type soundness assumption in this

subgoal tse e EtI d represents the translation of the assumption I p' in the extraction context

to the typing context p' E r1 , reflecting Definition 3.4.

When individual parameter binding is involved, as in VI and 3E, we need a permutation property
for typing assignment contexts:
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Lemma 3.8 (Permutation for typing assignment contexts) if F1 ,x 1 E riF 2 ,x 2 E r 2 ,r 3 I- e E r
then F1,x 2 E r 2, F2,xi E rT, r 3 I- e E r.

The lemma can be proved by an easy induction on the structure of typing derivations, keeping in
mind the assumption that no variable occurs more than once in a context.

Here is the reasoning for type soundness for VI. It has nearly the same structure as the DI case.

Case C =

(r,• • •'),A P #-I]e

By inversion the corresponding type extraction deduction has the following form:
VV

(r,~)F A 4'r Imx.

A4J.t r
xtv

Vx. A 4•t nat *= r

By definition 3.4, [(F, x 'x'),A )1 = [rIx' E nat, [A1.
Applying the induction hypothesis to V' with T' yields the typing deduction P :: [F], x' E
nat, [Ai F- e E r. We apply the permutation lemma to obtain a typing deduction D'
[ri, r[l,x' E nat ý e E r.

Then construct:

Jri, [Al, x' E nat F- e E r tp-Iam
[r17, [A F lam x' .e E nat *r

0

The Elf clause implementing this case is:

tse-foralli : tse (ex-foralli E) (ext-forall Et) (tp-lam D)
<- ({x} {x)} {e:extract.tm x x'} {d}

tsetm e d -> tse (E x x' e) (Et x) (D x' d)).

Again we use a subgoal of higher-order judgment type to represent the use of the induction hypoth-
esis. In this case the context translation is represented by the assumption tsetm e d, since the
context is extended in its individual variable domain rather than its proof variable domain. The
use of the permutation lemma is not explicit, because contexts are represented as LF contexts, for
which permutation holds.
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The rules 31, VE, and IND involve substitution in propositions. These cases use the property
that substitution of individuals has no effect on type extractions:

Lemma 3.9 Substitution lemma for type extraction: If f- A4It 4T then 1- [t/xI]A 4 r.

The proof is quite simple, but requires a definition of substitution for individual variables in type
extraction deductions. For any T :: A 4t r, the substitution of a term t for an individual variable
x in T is constructed by substituting t for x in A, and recursively substituting t for x in any
subdeductions of T. It is easy to see that this results in a valid type extraction T' :: [t/x]A 4t r.

In addition the extraction rules for 31 and VE depend on extractions from individual terms of
the logic, so these cases use Lemma 3.6 (type soundness for extraction from individuals).

We give the reasoning for the rule of existential introduction:

Case C =

e2rF t#i el FrA~ #e2

X31
1P( , )F [t/z]A 31 ( el,e2

3'.

By inversion, the corresponding type extraction deduction has the form

A 4t r'
xt3

3x. A 4W nat X T'

Applying Lemma 3.9 (substitution in type extractions) to T1, we obtain a type extraction
T :: [t/x]A4 4 r'. Lemma 3.6 applied to El gives the typing assignment P, :: [( F, A )l I-
el E nat. Then the induction hypothesis applied to £2 with T2 yields the typing assignment
V 2 :: [( r,A)] A - e2 E r', and thus

P, V

[( r,A) )Ie E nat [(2 ,A)I e2Er'tppr-tp-pr

r( r,A )1 F (e,,e 2 ) E nat x r'

0

The Elf clause for this case is:

tse-existsi : tse (ex.existsi E2 (El:extract.tm T M))
(ext-exists Et) (tp.pair D2 DO)

<- tsetm El D1
<- tse E2 (Et T) D2.
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The term (Et T) represents the use of the substitution lemma. This representation is justified
by a general property (called compositionality in [HHP93]) of our encodings. Compositionality
guarantees that representations are faithful with respect to substitution. In particular, [T/x]E
represents [t/xje if T represents t and E represents e (where the parameter x is identified with the
variable x). Recall that the higher-order abstract syntax encoding of 3 represents 3x. A as a term
oi the form (exists A) where A has functional type. Thus the Elf representation of the type
extraction rule xt3 contains a premise of (dependent) functional type as well:

ext-exists : extract.tp (exists A) (* nat Tp)
<- {x:i} extract.tp (A x) Tp.

So the representation of the type extraction deduction T, is not Et but (Et x) for some parameter
x, and we obtain the substitution [T/x](Et x) by 3-reduction of the term (Et T).

3.2 Type soundness for extraction/simplification

A type soundness theorem for the extraction/simplification judgment l, is more valuable, as the
property is no longer so obvious. We present the proof as a modification of the proof of the previous
section.

Theorem 3.10 (Type soundness of extraction/simplification) If I- 4, e and F- A 4' r then I-

e E r.

Again we generalize the theorem to arbitrary contexts, so a translation of extraction assumption
contexts to typing assignment contexts is needed. The required definition is the obvious modifi-
cation of Definition 3.4. For the translation to be well-defined, we need the analog of Lemma 3.3,
totality of type extraction.

Lemma 3.11 (Totality of type extraction/simplification) For any formula A there is a unique type
r such that 1- A gt, r.

The proof is an easy induction on the structure of formulas, appealing to the type extraction
deduction rules of Figure 2.23, together with the following (easily seen by inspection of Figures 2.20
through 2.22):

Lemma 3.12 The judgment Inf is the complement of the judgment Uninf, and for any formula
A, if Harrop A is deducible then Uninf A is deducible.

Definition 3.13 Given a context of extraction assumptions ( F, A ) where

r xl,z'x ..... ,x. 4 x' and A= [APý1 , 4 .. A A]4 •P"

we define

i. [f1 = x' E nat,...,x' E nat
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ii A P', E 7-,.-..,• A Er. where Ai A~rl.. 4,A ' r..

iir. [(,A ) = [rr, ril, i.e., the typing assignment context obtained by appending [ri and fzAl.

Using these definitions we generalize the type soundness theorem as before:

Lemma 3.14 (Type soundness of extraction/simplification in arbitrary contexts)

if(r,A)-A j4,e andI- A4gr then [(r,A)]F -eE r.

Extraction/simplification depends on the same individual term extraction judgment 4' that
naive extraction does, thus Lemma 3.6 (type soundness for term extraction) is used in the new
proof.

We appeal to an inversion principle for type extraction/simplification throughout the proof, a
modification of Lemma 3.7.

Lemma 3.15 (Inversion for type extraction/simplification) Given C :: A 4t T, the last inference
rule of C is uniquely determined by the form of A.

This is proved easily by inspection of the inference system of Figure 2.23, keeping in mind Lemma 3.12.

Again we present a few characteristic cases of the induction on the structure of the given extrac-
tion deduction E. Reference to Figures 2.10, 2.11, 2.20 through 2.27, and 2.30 will help in following
the presentation.

When the extraction deduction ends in a rule that does no simplification (all subformulas are
informative) the proof for naive extraction carries over directly. Thus we do not show the reasoning
for deductions ending in XSAI, XSAEL, XSAER, xsDI, xSDE, xVI, XVE, XSI, XS3E, or XSIND of Figures 2.25
through 2.29. Of the extractions that perform simplifications, we again have base cases, first-order
inductive cases, and higher-order inductive cases.

Base cases

The base cases concern extraction from uninformative proofs, where the end formula is a Har-
rop formula, a negation, or I. The first two of these are trivial, constructing depth-one typing
derivations corresponding to the depth-one extraction derivations.

Although the reasoning is easy it is worth examining the case for extraction from proofs of I
since it has no analog in the proof for naive extraction.

Case . =
xs_[

(LF,A) F- 4.s app(neg,()

Assuming the type extraction T :: 14 ' ,-, the inversion principle gives r = void. Then
construct tp-negtput

[( FLA )1 - neg E unit =:> void rP r, A ) F- () E unit tp-uni

tp-app
A(Pr, )1 F- app(neg, ()) E void
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0

The Elf clause for this case:

tse-f : tses exs.f exts-false (tp.app tp.unity (tp.neg unit)).

First-order inductive cases

When the object proof ends in one of the inference rules Al, AEL, AER, VIL, VIR, DE, or -'E, and
one of the subproofs is uninformative, the extraction rule performs simplification. As in the proof
for naive extraction, these cases are straightforward because no assumptions are introduced into
the context. Verifying them simply requires checking that the type extraction/simplification rules
and the program extraction/simplification rules match up correctly, dropping the appropriate parts
of the types and program expressions. As an example we show the case for DE.

Case . =

U I__

Uninf A Inf B ( F, A A ýjB 4.,e

'P P2

(rA )- ADB A E e
B 

D

Assume there is a type extraction deduction T :: B 4' r.

Construct the type extraction T' =

U I T
Uninf A Inf B B 4'T

xstDR
A D B 7-

Applying the induction hypothesis to V' and T' yields the typing deduction ):: [(F, A ]-
e E 7 as required.
0

The Elf clause that implements this case follows.

tse.impliesel : tses (exs-implel E' Ib Ua) T D
<- tses E' (exts-impr T Ib Ua) D.
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Higher-order inductive cases

Of the higher-order cases, only those for object proofs ending in DI, 31, and 3E involve simplifica-
tions other than extraction of (). If A is uninformative, to extract a program from a proof of 3x. A
by 31 we extract just an expression e representing the witness t for which [t/x]A holds, instead of
a pair. As a result the proof for this case is simpler than its counterpart for the case where A is
informative, since there is no need to reason about the type extracted from [t/x]A. In fact although
the representation of the object proof is higher-order, the construction for this case is represented
using only first-order subgoals.

Case C =

UninfA rl-t4ie
xs31L

[txA31 4
3z. A

The type extraction from 3x. A must have the form:

U
Uninf A

xst3L
3x-x. A 4 nat

By Lemma 3.6 (type soundness for term extraction) there is a typing derivation :: P ( F, A F] I-
e E nat as required.
0

The Elf clause that expresses this case is:

tse-existsil : tses (exsexistsil (Etm:extracttm T M) Ua)
(exts.exl Ua) D
<- tsetm Etm D.

Next we consider cases (XSDIR or xs3EL) where the object proof discharges an uninformative
assumption and as a result the extracted program is simplified. (Uninformative assumptions can
also be discharged by VE and IND, but they do not affect the extraction: in the case of the induction
rule IND, if the discharged assumption is uninformative, so is the end-formula of the proof, so the
extraction rules for Harrop and negative formulas cover this case. In the case of VE where the
major premise is A V B with both A and B uninformative, extraction nevertheless retains the
information of which holds, A or B.)

When extracting from proofs ending in DI or 3E the uninformative assumptions do not lead to
the introduction of assumptions in the extraction deduction (see the discussion in Section 2.3.2 and
the rules in Figure 2.27 and Figure 2.28). As a result the reasoning for DI does not involve any
extension of the context:
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Case £ =
£1

U IT
Uninf A InfB (B,A e

XSDIR

A

BB DIP

ADB

The corresponding type evtraction must have the form:

U I T
Uninf A Inf B B4 tr

xstjDR

By the induction hypothesis applied to £' and T there is a typing derivation V :: e E 7 as

required.
0

The following Elf rule formalizes this case.

tse-impliesil : tses (exs.implil E Ib Ua) (exts.impr Etb Ib Ua) D
<- ({p} tses (E p) Etb D).

Although the subgoal introduces the parameter p it does not introduce any assumptions on p.

This reflects the fact that p stands for an uninformative proof whose structure cannot affect the
extraction (E p) (Lemma 2.1 of Section 2.3.2).

Extraction for 3E extends the context, but only in its individual variable domain.

Case E =
£2U£1 •

Uninf A (P,A) I- 4 iel ((,x4Y),A) Q 4i,2

XS3EL
--p

A

Q 4bapp((lamx' .-e2),el)
3x.A C

C

Assume T2 :: 4' C r T.
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Construct the type extraction derivation T, =

U

Uniuf A xst3L
3x. A 4' nat

By the induction hypothesis applied to EI and Tj, there is a typing deduction )1  [(F, A )1 t-
el E nat.

By the induction hypothesis applied to E2 and T2 , there is a deduction P 2  [((F, x i x'), A )1 -
e2 E r. By definition [( (F, x 4' x'), A )] = [F ,X' E nat, [A]. By permutation for typing
assignment contexts, there is a deduction D' :: [F1, [Al,x' E nat I- e2 E T. Then construct

V)5

[I F, A )],x' E nat - e 2 E T tp-Iam )

[(F,A )- lamx'.e 2 E nat =:T [( F,A)1 I- ei E nat tp-app

F( l,A )1 I- app(lamx'.e 2 ,el) E 7

0

This case is formalized by the following Elf clause.

tse-existsel : tses (exs.existsel Ee Ec U) Et
(tp-app D1 (tp-lam D2))

<- tses Ee (exts-exl U) D1
<- ({x} {x'} {etm:extract-tm x x'}

{d} tsetm etm d ->
{p} tses (Ec x x' etm p) Et (D2 x' d)).

As in the previous case the last subgoal introduces the uninfor.tiative proof parameter p without
introducing assumptions on p.

3.3 Evaluation Soundness

The proof of evaluation soundness for naive extraction is an induction on the structure of the
evaluation deduction V :: e -+ v (see Figure 2.8 for the evaluation inference system). Each case
of the induction constructs an object proof; since evaluation is closely related to proof reduction,
this gives us a set of executable reductions for object proofs. Note that we are not proving a
normalization theorem for the object logic, and because the semantics does not evaluate under
functional abstractions, the soundness proof does not give even weak normal forms in the sense of
Prawitz [Pra7l].

Again we generalize to arbitrary contexts of extraction and prove the following lemma.
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Lemma 3.16 1fF- e ,-- v and ( r,A) FA •jte then there is a proof P' such that ( PA )

The following judgment represents the lemma in Elf:

tr-ev : eval M V -> extract (P:I- A) M -> extract (P':I- A) V -> type.

As for type soundness, we need a related lemma for extraction from individual terms. It is partic-
ularly simple because of the limited nature of our theory; in fact any expression extracted from an
individual evaluates to itself.

Lemma 3.17 Ifr F- t•4'e and e - v then FrF- t 4,v

The Elf signature representing this lemma and its proof follows.

tr-ev-tm : eval M M' -> extract-tm T M -> extract-tm T M' -> type.

tr-ev-tm-z trevtm evO ex.zero ex-zero.
tr-ev-tm-s trev_.tm (ev.s Ev) (exsucc E) (ex.succ E') <- tr-ev-tm Ev E E'.

We do not have as clean an inversion principle as for type soundness: the form of an extracted
program limits but does not uniquely determine the last inference of the extraction. Inspection of
the extraction rules of Figures 2.16 - 2.19 gives the following correspondences.

Lemma 3.18 (Inversion for program extraction)

If E:: (F,A) F- NP 4e, then the form of e and the form of A determine the last inference of C as

follows.

1. e a variable ex-pvar

2. If e = 0 or e = s(e)' then e cannot be extracted from an object proof.

3. e = (el, e2 ) Inspection of the extraction rules gives xAI or x3I. But since the object proofs in
question end in introduction rules, the outermost connective of A is enough to disambiguate.

4. e = fst(e') : XAE,

5. e = snd(e') : XAER

6. e = spread(el; x,y.e 2 ) : x3E

7. e = inl(e') XVIL

8. e = inr(e') XVIR

9. e = decide(el; x.e 2; x.e 3) : xvE
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10. e = lam x. e' : The extraction must end in xDI, xVl, or x-,. But again these are all introduc-
tion rules, and the outermost connective of A uniquely determines the last inference.

11. e = nat-ind(el; x,y.e 2 ) : XIND

12. e = app(el, e2 ) XDE, xVE, or x-E

13. e = () : xT

14. e = any(e) : xl

15. e = neg : xAXO

16. e = axiom : x=R, x=Y, x=T, x=U, or XAXS

We also need a substitution lemma for program extractions. A fully detailed proof requires
definitions of substitution for program expressions, logical formulas, natural deduction proofs, and
extraction contexts. We omit the details as there is nothing unusual about them, except for
contexts. Here we only define substitution for an individual variable in a context:

Definition 3.19 (Substitution in contexts)

[t/z]( A,[Ap] ') - ([/]P,', P

Note also that substitution of a proof P for a proof variable [B is defined only if A and B are

identical.

Lemma 3.20 (Substitution in program extractions)

i. if ((r,x 4i x'), A) F- e and r P t0!•ie'

then ( F, [t/x]A ) I- [tlx] P]1[e'lx']e

ii. If ,(, q') ) 1-.4 •e and ( F, A ) F-Q el

then ( r, A ) F [Q/q] j4J[e'/q']e

Corollary: If x is not free in A,

and ( (F,x 4Px'),(A, ,q') ) -�j4e and r F t 4'et and ( r,A ) F [t/x] Qj[et/x']eQ

then ( FA ) F- [t/x][Q/q]P J4[et/x'][eQ/q']eAM
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The proof is again a structural induction on extraction deductions, and depends on a similar
lemma guaranteeing that substitution of individual terms and proofs in natural deductions preserves
validity.

The proof of the main lemma 3.16 is a straightforward induction on the structure of the evalu-
ation deduction; we present only a sample of typical cases and their representation in Elf.

Base cases

In the case that e -- e (ev-Iam, ev-pr, ev-unit, ev-ax, and ev-neg) the conclusion is immediate. Each
case is represented in Elf by a clause without subgoals:

tr-ev-lam : tr-ev evlam E E.
tr.ev.pr tr-ev ev.pr E E.
tr.ev-unity : tr-ev ev.unity E E.
tr-ev-ax tr-ev ev-ax E E.
tr.ev.neg tr-ev ev.neg E E.

Congruence cases

Where evaluation merely descends through a non-binding constructor (ev-pair, ev-inl, and ev-inr) the
conclusion follows easily by applying the induction hypothesis or Lemma 3.17 (evaluation soundness
for individuals) to the subdeduction(s) of the evaluation. The cases ev-inl and ev-inr are trivial. We
show the case where the evaluation ends in ev-pair in detail.

Assume V =

Vl V2
e1l -v 1  e2 " V2

( el,e 2 ) V1, V 2 ) ev-pair

Then there are two subcases: the corresponding extraction £ ends in xA^ or x3I (Lemma 3.18).

Case £ =

1 £2

(F,)I -r]4el (F,A ) I-jj4 e2

XAI

AAB

By the induction hypothesis applied to V1 and £E there is an object proof P' such that
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vjJ:- V1 . Similarly we have 2 2:: v2 . Then construct

Il E2

(F, A) V[J2 V2

XAI

(r,Ap) A BB Al.(,v v 2 )

0

Case E =
E E£2

r F- t4e, (r,A )4EJJ e2

x3I

(r, A ) F [t/l]A 3 ( ele 2 )
3x .A

By Lemma 3.17 (evaluation soundness for individuals) we have £E r F t1i vl. By the

induction hypothesis for V2 and £2 there is an extraction £E F, A 4 -jjjA4J v2 . Then

construct

XAI

A B 1P2('~ 2

0

The constructive content of this case is represented by the following pair of Elf clauses.

tr-ev.pr-and tr-ev (ev.pair Evr Evl) (ex.andi Er El) (ex-andi Er' El')
<- tr-ev Evr Er Er'
<- tr-ev Evi El El'.

tr-ev-pr-ex tr-ev (ev.pair Evr Evl) (ex-existsi Er El) (ex-existsi Er' El')
<- tr-ev-tm Evl El El'

<- tr-ev Evr Er Er'.
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The other congruence cases are similarly encoded in Elf.

tr-ev-inl : tr-ev (ev.inl Ev) (ex-oril E) (ex.oril E')
<- trrev Ev E E'.

tr-ev.inr : tr-ev (ev-inr Ev) (ex-orir E) (ex-orir E')
<- tr-ev Ev E E'.

The evaluation rule for successor (ev-s) is also a congruence, but the conclusion follows trivially
since there is no rule that extracts an expression (s(e)) from a proof.

Reduction cases

Proof reductions arise from eliminations (ev-fst, ev-snd, ev-spread, ev-decide-I, ev-decide-r, ev-app-lam,
ev-pr-z, and ev-pr-s).

The cases for evaluation of fst(e) and snd(e) are dual; we show the reasoning for fst(e).

Case V-
V1e (VI, V2)

ev-fst
fst(e) -ý v

By inversion an extraction E of fst(e) has the form

e1

, XAEL
p

(r,A•) F AA^BA 4fst(e)
A

By the induction hypothesis on V, and C, we have an extraction ' from a proof of A A B
which by inversion has the following form:

XAI

P1  P 2

A B

Then P1 is the required object proof with 6( :: ( 4,V, ) - •ivi.

0
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This case and its dual are represented in Elf by the clauses:

tr.ev-fst tr-ev (ev.fst Ev) (ex-andel E) El
<- tr-ev Ev E (ex-andi Er El).

tr-ev-snd tr-ev (ev.snd Ev) (ex-ander E) Er
<- tr-ev Ev E (ex-andi Er El).

Case V =

VI V2el "-+ ( vi,v2 ) Vll XI[V21yje2 V<--. reaev-spread

spread(ei; x, y. e2) - v

By inversion the extraction C has the form

C2

X3E

A
(rF,A )- • Q 4spread(el; x,y.e 2 )

3z'. A C
MY

C

By the induction hypothesis on V, and C1 we have an extraction of ( vI, v2 ) from a proof of
3x'. A. By inversion the extraction has the following form.

E2

rI-t~iv1  ( F,A )FI- J•v2

X31

( r, ) I- [tlx'IA 1 4(vI, v2 )
3x' . A

Then Lemma 3.20 (substitution), applied to C2, El, and .2 allows us to substitute t for x', vl
for x, P' for y', and v2 for y in C2. (Since x' is not free in A we can apply the corollary.) We
obtain the extraction

C:: (', A) F- [t/•xl[V/y'][ A1[vI/x][v21yle2gQ C
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Since x' is not free in C, [t/x,][pI1y'] is a proof of C. Then applying the induction

hypothesis to V2 and ' we have a Q' such that ( F, A ) I- 427] v, as required.

0

The Elf representation of this case is an example of the use of term reconstruction to manage the
details of the proof:

tr-ev-spread : tr-ev (evspread Ev-r Ev-p) (ex-existse E-ex E-min) E'
<- tr-ev Ev-p E.ex (exexistsi E Etm)
<- tr-ev Ev-r (E-min - - Etm - - E) El.

The terms that represent t, vI, P', and v2 of the informal proof need not be supplied (they corre-
spond to the underscores in the input) since they are found during term and type reconstruction
for the clause.

The two evaluation rules for decide are dual to one another. We show the case for left injection.

Case V -

V1  V2
el + inl(v1 ) [vl/x]e 2 --* V

ev-decide-I
decide(el; x.e 2 ; X-e3) V

By inversion any extraction ( of decide(el; x . e2 ; x . e3 ) has the form

C2 E3

xvE

A4 B

FA ) I- Pi P2 Pa3 4decide(el; x.e 2 ; z.e 3 )A B C C E

The induction hypothesis for V, and El, together with inversion, gives C( =

XVIL

(rF,A )l- A vL 4inl(vl)
AVB
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We use the Substitution Lemma applied to E2 and C' to obtain

62 r, A) F[ P/pP2I [VI lXle2

Then the induction hypothesis applied to V2 and E2 yields an extraction of v from a proof of
C as required.
0

This case and its dual are represented in Elf as follows. Again term reconstruction relieves us of
the need to supply all the terms involved in the use of the Substitution Lemma.

tr-ev-decl : tr-ev (ev.dec.l Ev Ev.l) (exore Er El E) E''
<- tr-ev Evl E (ex.oril E')
<- tr-ev Ev (El - - E') E''.

tr-ev-decr : tr-ev (ev.dec.r Ev Ev.r) (ex.ore Er El E) E''

<- tr-ev Ev-r E (ex.orir E')
<- trev Ev (Er _ _ E') E''.

Case V =
VI V2 V3

el + lam x . e e2 "-* v2  [v2 /x]e - V ev-app-Iam

app(el,e 2 ) -- v

By inversion there are three possible forms for the corresponding extraction £: the object
proof can end in DE, -,E, or VE. The proofs for these cases present no new features; in each
subcase we employ inversion and substitution to obtain an extraction deduction to which the
induction hypothesis applies, and the resulting object proof is the obvious reduction of the
original one.
0

The Elf code that implements the three subcases is:

tr-ev-lam-all : tr-ev (ev.app-lam Ev-r Ev.arg Ev-lam) (ex-foralle Etm E) E''
<- tr.ev Ev1lam E (ex.foralli E')
<- tr.'ev-tm Eva.arg Etm Etm'
<- tr..ev Ev-r (E' - - Etm') E''.

tr..ev.lam-imp : tr.ev (ev-app-lam Ev-r Ev-arg Ev-lam) (ex.impliese E-min E-maj) E'
<- tr-ev Ev-1am E.maj (ex-impliesi E)
<- tr-ev Ev.arg E.min E-min'
<- tr-ev Ev-r (E - - E.min') E'.

tr-evlam-not : tr-ev (ev.app-lam Ev-r Ev-arg Ev1lam) (ex.note E-pos E.neg) E'
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<- tr-ev Ev1lam E.neg (ex.noti E)
<- tr-ev Ev.arg E-pos E.pos'
<- tr-ev Ev-r (E - - E.pos') E'.

Case V=

V1 V2  V3  V4
el -* nat-ind(e2 ; z, y. e.) e2 - s(v 2 ) app((natJnd(e,; z, y. e)), v2 ) -' v3 [v2 /1][v 3 /y]e, -- v

ev-pr-s
app(e1, e2) -- v

By inversion there are three possible forms for the corresponding extraction F: the object
proof P can end in DE, -'E, or VE.

If P ends in DE, then el is extracted from a proof of an implication A D B. Since el
nat ind(e,; x, y. e5 ), by induction there is another proof of A D B from which we can extract
nat-ind(e,; x, y. e,). By inversion this extraction must end in xIND; but this is impossible.
The same reasoning applies to -,E; therefore the only case to consider is VE. Here we see that
the inversion principle is too weak, and we must appeal to the induction hypothesis to prove
the totality of the translation function we are constructing. This is a weakness in the proof
that could be avoided if we used a different encoding of induction in the object logic.

£2

4F,AF ýel FFt4ie2

"xVE

(rPA) F Vz'.A Japp(el,e 2 )
[t/x']A

By the induction hypothesis applied to V1 and E1 we have an extraction C' which by inversion
has the form:

=&

Eb Y,

(r,A) e [z.eez ((rX,'4X),(A, 4y) ) 4 Ae

[succ x'/x']A
xIND-Ay Il

A(rAP1, P,4a-ide; 0~,

[zero/x']A [succ x'/x']A n d ; .

V rI. A INDY
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By lemma 3.17 applied to V2 and £2 we have an extraction of s(v 2). This must have the form

C2
r - t'4 v2

xtm-s
r F- succ t',4is(v2)

where t = succ t'.

From £C and £C we construct the extraction
C3=

(P~FAJ) I-nat-ind(ez; x,y.e8 ) Fr t'4iv 2

xVE
p

(r,A) F Vz'.A .Iapp(nat-ind(e,; x,y.e,),v 2)Y- E
[t'/x']A

Then we can apply the induction hypothesis to V3 and £3 to obtain

E6 ::(F,A )I VZ'.AE 4 ,V 3S[t'/x']A

By the substitution lemma applied to £E with £. and £3 we have

V
'( r, A F [t'/x'[P'ly'• A 4/[v 2/x][v 3/yle.

[succ x'/x']A

Since succ t' = t the conclusion of the object proof is [t/x]A. Then the induction hypothesis
applied to V4 and £6 gives an extraction of v from a proof of [t/x]A as required.
0

The following Elf code represents the constructive content of this case:

tr-ev-prs :
tr-ev (ev-pr-s Ev-s Ev Ev.p) (ex-foralle (ex-succ Etm) E) E'
<- tr-ev Ev.p E (ex-ind Es Ez)
<- tr-ev-tm Ev (ex.succ Etm) (ex.succ Etm')
<- tr-ev Ev-s (Es - - Etm' - - (ex-foralle Etm' (ex-ind Es Ez))) E'.
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3.4 Discussion

We have shown a fragment of the metatheory of the implementation. Type soundness is illustrated
by the following diagram. The colon ":" is LF typing; pf 4) is the type of object proofs with
conclusion C. The dotted arrow corresponds to the typing derivation constructed by the soundness
proof.

(Proof) P (LF type) pfr4

414I
(Program) M - - -C -(Type) r

The following diagram illustrates evaluation soundness in the same way. The dotted arrow la-
belled "reduce" corresponds to the relation between the given proof P and the proof P1 constructed
by the soundnpss proof.

(LF type) pf 4P

(Proof) P - - reduce --- (Proof)

1 'U
(Program) Ml (Program) V

An immediate consequence of type and evaluation soundness together is subject reduction for
the set of programming language expressions that can be extracted from proofs.

Other correctness theorems could be encoded in the same way. (Fo; an implementation in
the same style of the metatheory of an encoding of Mini-ML similar to our programming language
encoding, see [PR92].) Type and evaluaton soundness would then allow us to carry the metatheory
over from the domain of programs to the domain of proofs; for instance, we could get a very weak
normal form for natural deduction proofs from a proof that evaluation of an extracted program
produces a "value" (for some appropriate definition of value).



Chapter 4

Proof transformation

The proof transformations considered in this thesis are for the most part syntactic transformations
expressible by means of higher-order patterns in the spirit of Huet and Lang [11L78]. The next
chapter explores the application of these transformations in program development without giving
details of their implementation. This chapter gives a detailed account of one proof transformation
and its implementation in Elf. Section 4.1 informally describes the transformation and shows how
to formalize a simple version of it in Elf and apply it to a proof. This rather naive formulation
needs improvements described in subsequent sections. Section 4.2 describes how to avoid gener-
ating detours in the result proof that require the application of expensive proof normalizations.
Section 4.3 discusses modifications to the encoding for the suppression of unwanted computation
in the extracted program.

4.1 Tail recursion introduction

A well-known programming strategy for the improvement of a recursive function definition is the
introduction of an accumulator argument to achieve a tail-recursive form, which can be compiled
to a loop. This strategy has long been studied by researchers in transformational programming, for
example in [BD77], [Bir84], and many others. There is a transformation that performs the analogous
optimization at the level of proofs; its application to a small example program shows that in some
cases the proof transformation can perform more optimization than techniques restricted to the
program level.

4.1.1 Language extensions

In order to work out the example it is necessary to add a small theory of lists of natural numbers
to the logic, and to extend the theory of natural numbers. These theories are somewhat ad hoc,
and are selected for convenience in working out this particular example. This is a result of the very
limited capabilities of the base system, which does not support inductive definitions, unlike fully
developed systems like Nuprl and Coq. The extended logic is a many-sorted first-order logic with
sorts {n ats, lists}, where lists are monomorphic. This is obtained by modifying and extending the
abstract syntax of the core logic (page 17). The modification is simple: the individual variables x

84
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become sort-annotated variables x, and the equality symbol and quantifiers are also sort-annotated
(=i,Vi, 3i). The logical syntax is then extended as follows:

Individuals t:: ... I pred t tt - t2 I signum t I tl ? t2

Lists 1= x I [I t::l I if tthen 11 elsel 2

Propositions A ::= "'" I Ve.A I 3,x'. I l =1l2 1 t El

The predecessor function is denoted by "pred". The signum operator is used to build conditional
functions; signum x = 0 if and only if x = 0 and signum x = 1 if and only if x $ 0. This is
used to axiomatize > as a function on natural numbers, which in conjunction with the list-valued
arithmetic switch (if-then-else) permits the construction of the conditional function needed for the
example of this chapter. The syntax for lists is ML-like, with [I denoting the empty list and
denoting the cons operator.

Figures 4.1 and 4.2 show the inference rules for the sorts of natural numbers and lists used in the
formalization of the proofs for the example. Inference rules for equality and quantifiers over lists
are omitted since they are identical to those for natural numbers except for the sort. List induction
is parametric in It and x'; thus neither parameter may occur free in any open assumption on which
[ []/lt]A or [x' :: le/le]A depends. For the remainder of the chapter we omit sort annotations
whenever the context makes the intended sort clear.

The programming language is extended accordingly. Extraction of programs from proof, is not
difficult to extend to the new language. There are now three primitive relations - equalities for
natural numbers and lists, and the list membership relation; these are all considered uninformative
for the purposes of extraction.

e :: ... I [] I e : e2 Lists
list-ind(el; x, y, z.e 2 ) Primitive recursion on lists
el - e2 j Subtraction
el > e2  Comparison
if el then e2 else e3  Arithmetic switch

For the sake of readability the programs of this chapter are shown in ML syntax. A straightforward
mechanical translation can be defined, but we also freely rename variables, introduce let-bindings,
and use pattern-matching. Natural numbers are represented as ML integers, and lists as ML lists.
Pairs are represented as ML tuples; fst(e) and snd(e) correspond to ML #1 e and #2 e. A primitive
recursion over natural numbers nat ind(el; x,y. e2 ) is represented as

fun f 0 = el
I f n = let val y = (f (n-1)) in e2 end

where f is a new variable, and el is represented as el and e2 as e2. Primitive recursion over
lists is translated analogously. The union type rl1. 2 with its injection constructors inl and inr is
represented by the following datatype definition:

datatype ('a, 'b) union = inl of 'a I inr of 'b;
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tI =i t2 A
=S

[t2/tl]A

PredZ
pred zero =i zero

PredS
pred succ t =i t

SubZ
t - zero =i t

SubS
t- succ t 2 =j pred (tI - t 2 )

Signum
signum t =j (succ zero) - ((succ zero) - t)

GEq

t1 Ž t 2 =i signum (t2 - tO)

Figure 4.1: Extension to theory of natural numbers
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-- p
A

( [l/t 1JA [ I : e/IIA
LINDP

Vtl*. A

- AXnil

-4E

AXhd
t E ::

ti E 1
AXtl

ti E t 2 :: 1

p
xi El

ti E t2 ::I [t2/tl]A [fx/tx]A
EE

A

LSz
(if zero then 11 else 12) = 11

LSs
(if (succ zero) then 11 else 12) = 12

Figure 4.2: Fragment of a theory of lists of natural numbers
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Elf encodings of these language extensions and the extracted programs of this chapter are given
in Appendix D and Appendix E.

4.1.2 A simple proof and program

The presentation of the tail recursion proof transformation is organized around a small example: a
program to select all elements of a list that satisfy some constraint. For concreteness and simplicity,
it is expedient to fix the selection criterion for the example program, and develop a function that,
given a list I of natural numbers, computes a list of all elements of I that are at least 2. Following
is the specification with a simple proof.

Specification 4.1

V1.3r.[Vy.YE rT(YEl A y>2)]

Proof 4.2 The proof is by induction on the list 1. If I is empty, choose r to be empty as well.
Otherwise I = x :: I' and, by the induction hypothesis, there is an r' such that Vy . y E r' -* (y E
P' A y > 2). Then if x > 2 let r be x :: r'; otherwise let r be r'. 0

The following program is extracted from a formalized version of the proof:

Program 4.3

fun select D = 0
I select (x::l) =

let val r = (select 1) in
if x >= 2 then x::r else r

end

This can easily be transformed at the program level to tail-recursive form using the fold-unfold
system [BD77]. One introduces an auxiliary function with an extra "accumulator" argument that
builds up the result as control is passed down the chain of recursive calls. Here is a sketch of the
fold-unfold method (a is the ML list append operator).

First define an auxiliary function with accumulator argument k.

fun sel 1 k = k(select 1)

Unfold the definition of select in the body of sel:

fun sel E k = kMC
I sel (x::l) k = kQ(if x >= 2 then x::(select 1)

else (select 1))

Then equational reasoning yields:
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fun ael 0l k = k
I sel (x::l) k = if x >= 2 then (kt[x])@(select 1)

else k@(select 1)

Folding yields a new recursive definition of sel; the original function select can now be defined
in terms of it:

Program 4.4

fun sel 0 k = k
I sel (x::l) k = if x >= 2 then (sel 1 (kt[x]))

else (sel 1 k)

fun select 1 = sel 1 0

The transformed definition of sel is tail-recursive, but is inefficient since it uses the append
function. There is a similar development that shifts the inefficiency to the base case of the recursion,
giving:

fun sel D k = (reverse k)
I sel (x::l) k = if x >= 2 then (sel 1 (x::k))

else (sel 1 k)

where reverse is defined in the obvious way.

The specification requires only that the result contain the elements of I that are at least 2, so
sel could equally well be defined to accumulate its result via the recursive call sel 1' Ux: :,
without reversing the result list. But since this change does not preserve functional equivalence,
it is not straightforward to accomplish via purely syntactic program transformation. One could
avoid the difficulty by observing that 1 is treated here as a set, not a list, and working in a more
appropriate algebra. Depending on the context in which the function is used, this may or may
not be easy to do. The use of a proof transformation yields a similar tail-recursive program that
computes with lists but does not use the append or reverse functions.

4.1.3 Informal description

How might one transform Proof 4.2 to obtain a proof whose realizing program is tail-recursive? In a
constructive proof of VI. 3r. -6(l, r) by list induction, the inductive step must construct some term
t such that for arbitrary x, t(x :: 1, t), using the induction hypothesis 3r'. 4ý(, r') as a premise.
The term t corresponds to the value that is returned by the extracted program. A recursive call in
the program is extracted from a use of the induction hypothesis in the proof. A program is tail-
recursive when it does no computation with the results of its recursive calls. Correspondingly, an
inductive proof is realized by a tail-recursive program when the term t is identical to the parameter
r' of the induction hypothesis. That is, if the proof appeals to the induction hypothesis to obtain
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a parameter r' satisfying the specification for 1, and shows that the same value r' also satisfies the
specification for x :: I for any x, the extracted function is tail-recursive. An induction proof whose
extracted program is tail-recursive is tail-inductive.

In Appendix C we give an Elf program to recognize tail-recursive object programs, and discuss
the partial representation in Elf of a proof that the transformation of this chapter yields a tail-
recursive program if it succeeds.

For example, Proof 4.2 appeals to the induction hypothesis with P' for 1 to obtain r' such that
Vy.y E r' ý* (y E P' A y > 2); this corresponds to the recursive call select 1 in the extracted
program. The program is not tail recursive because in the case that x > 2, r' does not satisfy the
specification for x :: l' and the proof constructs the term x :: r'. This construction corresponds to
the computation Ux: :r) (where r is bound to the result of the recursive call) in the program.

To find a tail-inductive proof, it is necessary to modify the induction hypothesis. That is, a
new specification is needed that implies the original one. The proof of the new specification is
an inductive subproof that corresponds to the auxiliary function definition sel of the fold-unfo!d
derivation. However, much of the new inductive subproof consists of inferences from the originai
induction proof: it is built by a form of lemma insertion [Pfe90].

Lemma insertion is the process of inserting new inferences (proofs of lemmas) into a given proof
in such a way that the new proof is valid if the original proofs and the new inferences are valid.
Perhaps the simplest example of such a transformation is the following: given a proof .11 of 4ý D 'P
and a proof 12 of T D 4), we can transform

/)

to

v ~ Tl
D ID

This is an example of a proof transformation that does not change the specification 4t, but only
the method of proof, which determines the form of the implementation. The correctness of the
transformation is a trivial meta-theorem for any useful formalization of the proof system. The
transformed proof has a different computational content than the original one. It still contains all
the original computational content (since D is a subproof); typically proof reduction is applied after
lemma insertion in order to remove redundant computational content and obtain a program with
different properties. Thus lemma insertion is analogous to the definition of an auxiliary function
followed by unfolding in a program derivation in the fold-unfold system [BD77]. It creates a context
that is exploited by subsequent transformations.

Lemma insertion and proof reduction by themselves determine nothing about program develop-
ment - it is the choice of lemmas and of proof methods that express programming knowledge. The
formalization/implementation of tail recursion introduction presented here does not capture all of
the programming knowledge involved: it introduces an improved recursion structure if the user can
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provide the right lemmas and proofs for insertion. By expressing some minimum requirements for
the form of these lemmas and proofs it can provide some guidance to a user, reducing the search
space for a solution.

Thus before the lemma insertion transformation can be applied, some insight and knowledge of
the problem domain must be applied to invent the right lemmas and their proofs.

First, it is necessary to find a function h that accumulates the desired result of the computation
in an auxiliary argument k as computation descends through the recursive call sequence. Suppose
the original proof concludes V1. 3r. 4(l, r) where I and r are lists. Then h should take the result
k accumulated so far for I and combine it with the head x of the current list so that $(1, k) D
0(l o [x], h(x, k))(where o stands for the list append operation). Somewhat unexpectedly, a proof
of this implication is not required for the proof transformation; it is only a guide to the choice
of h. This choice can often be "read off" from the original proof. Since the original proof is not
tail-inductive, there is a term f(x, r) that plays a crucial role in the inductive step. The proof
appeals to the induction hypothesis to obtain a parameter r such that $(l, r), and then constructs
f(x, r) such that for all x 4t(x :: 1, f(x, r)). If 4'(l, r) does not depend on the order of elements in I
and r then h = f is an acceptable choice.

The second preparatory step is to choose a formula TJ(k, r, s) that expresses the fact that k is
an accumulator argument and s is the new final result. The transformed proof will prove

Vl.Vk.Bs.Br.4(l,r) A I(k,r,s)

by an induction obtained by lemma insertion from the original induction. From this will follow
Vl. 3r. 0(l, r), but not by the obvious trivial method of eliminations. This part of the proof will
show that for an appropriate initial term k0 , '1(l, s) follows from 4I(l, r) A *(ko, r, s); thus the
tail-recursive computation of s can replace the non-tail-recursive computation of r. This is stated
more precisely below.

A simple choice for It(k, r, s) is s = r + k where "+" is chosen from an algebra appropriate to
the problem domain. This can often be done - perhaps always, if one is willing to shift the problem
specification to another algebra - but it is not required; equality is often more than is needed. IP
need only express a relation for which three crucial lemmas hold. Informally these are:

1. There is a value k0 such that if 4(I, r) A @ (ko, r, s) then t(l, s), for any r, s, and 1. This
ensures that the new computation satisfies the old specification.

2. If @(h(x, k), r, s) then I(k, f(x, r), s). This is the crucial requirement for achieving tail recur-
sion. It ensures that in an induction step for V1. Vk. 3s . 3r. 6(1, r) A @(k,r, s) a parameter
s given by the induction hypothesis for I also satisfies the conclusion for x :: 1.

3. There is a function so(k) such that T•(k, r0 , so(k)) for all k, where r0 is the term that witnesses
the existence proof for the base case of the original proof. In all our examples so(k) = k.

If the select example were posed in terms of sets rather than lists, a good choice of T (k, r, s)
would be (s = r U k). In that case the proof would proceed by structural induction on a type
of finite sets with constructor U+ (so r ti { x } denotes the disjoint union of r and { x }). In this
formulation f(x,r) - r W { x }; choosing h(x, k) =_ I x } w k makes it trivial to show the crucial step
s = (r W I x }) U k from s = r U ({ x } w• k) using the associativity of set union. Whenever 1@ can
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be expressed as an equality s = F(k,r) the crucial requirement 2 above becomes F(h(x, k), r)
F(k,f(x,r)). A comparison with Bird's analysis [Bir84] of general accumulation strategies in
program transformation shows that this requirement is a special case of a "continuity condition"
for the accumulation strategy; when this case holds, the strategy results in a tail-recursive program.
Thus if T can be expressed as an equality, pure program transformation techniques have the same
power as the proof transformation described here.

Since the example is posed in terms of lists instead of sets, it is not possible to use equality and
for this example proof transformation accomplishes more than syntactic program transformation.

Once the lemmas are formulated and proved, the rest of the transformation is mechanical, and
can be implemented in Elf as a rewrite rule. The rest of this section is a description of the rule in
terms of proof schemas, with its application to the select example. The following section gives its
formalization and implementation in Elf.

The original induction proof has the following form:

Proof schema 4.5

q
(r)

VB
: _(x ::1, f(x, r))

4D ([], ro) 3r.,6(1, r) 3r.,t(x :: 1, r)

3 r . -I,( [], r ) 3 r . 4ý(x :: 1, r )- I D
LINDp

Vt. 3r. $(l, r)

In this schema boldface symbols are (possibly higher-order) pattern variables. Where a pattern
variable is applied to some terms t, ... ti as in 4(l, r), the whole application is a pattern in which the
terms t, ... ti may occur free. The font used for the pattern variable indicates whether the pattern
may match a formula (upper-case Greek letters), an individual (Roman letters, e.g., f(x,r)), or a
part of a proof (script style capitals, e.g., V) in the object logic. A schema of the form

matches an object proof ending in a formula IV; any variables free in I' may also occur free in V.
Similarly a schema of the form



93

matches a proof fragment that depends on %I' and has V" as conclusion; any variables free in %F or
V ' may occur free in V. Ordinary italic letters stand for bound variables and parameters of the
object logic.

For the select example, A(l, r) matches Vy. yE r €t (y E 1 A y _Ž 2). Note that higher-order
patterns respect the binding properties of the object language. Thus in $(tl, t2) = Vy . y E t2 #

(y E t, A y _> 2), y may not occur free in t, or t2. In the Elf implementation the use of function
objects in the LF caUculus to represent higher-order patterns, in combination with higher-order
abstract syntax, enforces this restriction. When the meaning is clear from context, we will write
"the term t" to mean a term that matches the pattern t, and similarly for formulas and proofs.

The next three schemas describe the lemmas concerned with the auxiliary specification %P, which
expresses the relation between the original result r, the accumulator argument k, and the new result
S.

1. To recover the original specification from the new conclusion of the induction the transfor-
mation requires a proof IIR of

Lemma schema 4.6 (Recovery lemma)

Vl.Vr.Vs.(,(l,r) A %F(ko,r,s)) D (l,,s)

for some term k0 .

For the select example %I(k,r, s) is Vy.y E s *= (y E r V y E k); thus the transformed
induction sub-proof will prove:

Specification 4.7

Vl.Vk.3s.3r.[Vy.y E r # (y E 1 A y > 2)] A [Vy.y E s - (y E r V y E k)]

The term ko is the empty list [], and it is easy to show

VI.Vr.Vs.[(Vy.yEr*4(yEl A yŽ2)) A (Vy.yEs4*(yEr V yE []))]D
Vy.yEsý*(yEl A y>2)

Operationally this proof corresponds to a redefinition of the original function in terms of an
auxiliary function which is extracted from the induction subproof. It determines an initial
value k0 for the accumulator argument k.

2. The second obligation imposed by the transformation is a proof :7S of

Lemma schema 4.8 (Inductive case lemma)

Vx.Vk.Vr.Vs. '(h(x,k),r,s) D 41(k,f(x,r),s)

where the pattern f(x, r) is given by the original proof matching Schema 4.5 and the pattern
h(x, k) is supplied by the user.
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For the select example, f(z,r) = if x > 2 then x :: r else r. Choosing h(X,k) = if x >
2 then x :: k else k leads to the following lemma, which is easily proved:

Vx.Vk.Vr. Vs .(Vy.y E s,# (Y E r V y E (if x > 2 then x :: k else k))) D
(Vy.yEs4*(yE(if x>2 then x::r else r) V yE k))

Viewed operationally, h determines the value bound to the accumulator argument k in the
recursive call of the extracted program.

3. For the base case of the new inductive subproof, the transformation requires a proof XB of

Lemma schema 4.9 (Base case lemma)

Vk. %(k,ro,so(k))

ro is the witness term for the base case of the original proof matching Schema 4.5; so is
supplied by the user.

Operationally, so(k) is the value that will be returned in the base case of the recursion.

For the list selection example, ro is the empty list f, since that is the witness for the base
case in Proof 4.2. No further processing is needed of the value accumulated in k, so we choose
the identity function for lists as the value for so. Then, applying Specification 4.7, we have
41(k, [1, k) = Vy. y E k #> (y E [] V y E k), which is trivial to prove for all k.

The proof transformation inserts the proof T B into the base case subproof of the original proof,
the proof IS into the step case subproof, and constructs a proof of the original specification from
the new specification using the proof ZR. The result has the following form:

Proof schema 4.10

$(l,r) A %1(h(x,k),r,s)

VBI 4P (x :: 1,f(x,r)) A %(k,f(x,r),s)

Vk.3s.3r.k([],r) A %F(k,r,s) Vk.Bs.3r.$(x ::l,r) A %F(k,r,s)
LIND 1

Vl.Vk.3s.3r.4ý(I,r) A %F(k,r,s)

:DR

VI . 3r . ý( I, r)
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"DBI is constructed from DB of Proof schema 4.5 and ."B; V•, from Ds and IS, and DR from
"R in the obvious way. We use double horizontal lines in the schema to elide trivial quantifier

elimination and introduction steps.

The following is an informal statement of the new proof of Specification 4.1 obtained by applying
this transformation to the select example:

Proof 4.11 We first show

Vl.Vk.3s.3r.[Vy.yE rý (y El A y> 2)] A [Vy.yE s *(yE r V yE k)]

by induction on 1. If I = [] then choose s = k and r = []. Otherwise 1 = x :: 1'. If x > 2, then by
instantiating the induction hypothesis with 1' and x :: k, we obtain a list r' containing all elements
> 2 of I' and a list s' containing all the elements of r' and x :: k. Then choose r = X :: r' and
s = s'. Otherwise -ix > 2; again by the induction hypothesis there is a list r' as before, and a list
sI containing all the elements of r' and k. Let r = r' and s = s'.

Now for any list 1, there are lists s, r such that

[Vy.yE r 4* (y El A y Ž2)] A [Vy.y Es t* (yE r V yE [])]

Since s contains exactly the elements of r, we have

Vy.yE s -* (yE 1 A y >2)

and

V1.3r.[Vy.y E r,* (y El A y Ž2)]

0

The form of the inductive reasoning in this proof determines a tail-recursive computation, but
only for the parameter s: the term s' given by the induction hypothesis for 1', x :: k satisfies
the specification for x :: 1', k, but the term r' does not; we must construct x :: r' as witness for
the inner existential quantifier. To look at it another way, we have developed a program that
computes the answer we want twice: once by the original, non-tail-recursive method, and once by
a new method that (on its own) is tail-recursive. Thus it may seem that the transformation has
not accomplished anything! However, there is a proof transformation that removes the unwanted
computation associated with the inner existential quantifier. This transformation is quite general
and does not impose any further proof obligations on the user. It introduces a double negation to
produce an inductive proof of the following:

Vl.Vk.3s.-,-,3r.[Vy.yEr *(yEl A yv' 2 )] A [Vy.yEs* (yE r V yE k)]

Section 4.3 discusses this transformation in detail.

The rest of this chapter describes the implementation of the transformation. Applied to the
example the implementation yields the following extracted program:

Program 4.12
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fun sel 1
let fun sel' nil = (fn k => k)

I sel' (x::l') = let val p = (sel' 1') in
fn k => (p (if x >= 2 then (x::k) else k)) end

in (sel' 1 nil)
end;

Like the result of the fold-unfold derivation (Program 4.4), this program is tail-recursive. But it is
more efficient because the partial result is accumulated by the application of the list constructor
instead of the append function. The difference is a consequence of working with the specification
and its proof throughout the development rather than restricting the reasoning to the properties
of the program alone. It is an instance of the phenomenon noted by Goad [Goa80]: using proof
transformation he demonstrated that a program can be specialized to a particular class of input
values by exploiting the fact that there is no need to preserve functional equivalence of the successive
stages of program development.

4.1.4 Formalization

The first step in the formalization of the transformation is to declare a judgment that relates the
input proofs and individual terms to the output proof. By giving the types of the terms related by
the judgment the declaration provides static (type-checking time) correctness guarantees. (For the
Elf syntax of lists and list quantification see Figure 4.3.)

tail-rec :
{RO} {SO} {KO} {F} {H}
{Phi: ilist -> ilist -> o}
{Psi: ilist -> ilist -> ilist -> o}
U, Input proof:
I- (Iforall [1] lexists [r] (Phi 1 r))
%% Base case lemma:
-> I- (lforall [k] Psi k RO (SO k))
U,? Inductive case lemma:
-> I- (forall [x] iforall [k] iforall [r] iforall [s]

implies (Psi (H x k) r s) (Psi k (F x r) s))
U.? Recovery lemma:
-> I- (iforall [1] lforall [r] lforall [s]

implies (and (Phi 1 r) (Psi KO r s)) (Phi 1 s))
U Output proof:
-> I- (lforall [1] lexists [r] (Phi 1 r))
-> type.

The logic variables in the declaration correspond to the pattern variables of the proof and lemma
schemas of the previous section; e.g., RO corresponds to the pattern variable ro, Phi corresponds
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ilist : type. %lists of natural numbers

n1 ilist. Xempty list
cns i -> ilist -> ilist. %cons

leq ilist -> ilist -> o. %equality for lists

iforall (ilist -> 0) -> 0. %universal quantifier
lexists (ilist -> o) -o o. %existential quantifier

iforalli ({x:ilist} I- (A x)) -> I- (iforall A).
lforalle {T:ilist} I- (1forall A) -> I- (A T).

lexistsi {A:ilist -> o} {T:ilist} I- (A T) -> I- (lexists A).

lexistse ({x:ilist} I- (A x) -> I- C) -> i- (lexists A) -> I- C.

lind {A:ilist -> o}
I- (A ni)

-> ({l:ilist} I- (A 1) -> {x:i} I- (A (cns x 1)))

-> I- (iforall A).

Figure 4.3: Elf encoding of lists of natural numbers
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to 4, and so on. The types of the individuals and functions on them RO ... H need not be given
since the Elf type reconstruction algorithm can infer them from their contexts in the declaration.

The declaration ensures that the judgment relates (a term representing) a proof of Vl. 3r. $(l, r)
(which can be thought of as an input), other input terms representing individuals, functions on
individuals, and the proofs of the lemmas to be inserted, and another proof (which can be thought
of as an output) of VI . 3r . 4P(1, r) . Assuming that the logic is correctly encoded, if a query of the
form "?- tail-rec ... <proof-term> ... P" succeeds, the LF type system ensures that the
variable P is bound to a term that represents a valid proof of the same proposition.

The other step in the encoding is to write a clause describing the forms of the terms related by
the judgment tail.rec. This can be done by transcribing the schemas of the previous section into
Elf. We then have a one-clause Elf "program" that implements the transformation as a rewrite
rule.

First we encode Proof schema 4.5, which describes the input proof.

tl-rec : tail-rec

U Input proof:
(lind ([1] lexists Er] Phi 1 r)

(lexistsi (Er] Phi nl r) RO Db)
([i] [p: I- (lexists [r] Phi 1 r)] [x]
(lexistse (Er] Eq: I- (Phi 1 r)]
lexistsi - (F x r) (Ds x 1 r q))
p)))

For the sake of readability this declaration includes some type and term information that can be
inferred by Elf. Agaln the upper-case letters are Elf logic variables, and correspond to the pattern
variables of Proof schema 4.5. Thus for instance Ds corresponds to the subproof Vs. Since the
transformation is encoded as a pattern match with no subgoals, these variables are instantiated
only by higher-order unification with the object proof term supplied in the query. Thus Phi is
bound to a function from two lists to the matrix of the 10o formula proved, RO to the list that
witnesses the base case of the induction, Db to the proof of the base case, and so on.

Some care must be taken when coding transformations this way to avoid encountering unification
problems that are not solved by the Elf implementation. If an encoding restricts its use of logic
variables for pattern matching to higher-order patterns (in the sense of [Pfe9lb]), only deterministic
unification problems will arise during execution. These problems fall within a decidable subcase
of higher-order unification (which is undecidable in general), discovered by Miller [Mil9l] for the
simply typed lambda calculus and extended to LF by Pfenning. The main idea of the restriction
is that variables subject to instantiation during search (like Ds) should occur only as generalized
variables. Roughly speaking, a generalized variable is a term of the form xYl ... yn where x is
subject to instantiation and the yi are distinct bound variables (not subject to instantiation). In
the example above, the subterm Phi 1 r is a generalized variable, while Phi ni r is not. The
latter term could lead to nondeterminism if unified with one containing a logic variable; but this
does not cause problems when the clause is used as intended, that is, the input proof and lemmas
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are given as ground terms in the query.

Note that the subproof Vs is represented by a logic variable of functional type in order to
express the fact that the parameters x, 1, r, and q may appear free in this part of the proof.

The encodings for the proofs of the three lemmas to be inserted are trivial: a logic variable for
each proof is all that is needed. This is because the transformation does not depend on the structure
of these proofs. We use Elf logic variables ILb, I-s, and ILr to correspond to the pattern variables
TB, TS, and TR respectively. Similarly the transformation does not depend on the structure of
the individual terms and the functions on them (ro and so on), so these too are encoded as logic
variables. The clause at this stage reads:

tl-rec : tail-rec
RO SO KO F H
Phi Psi
UY. Input proof:
(lind ([E] lexists [r] Phi 1 r)

7.U Base case:
(lexistsi (Er] Phi nl r) RO Db)
U.7 Step case:
(Ell Ep: I- (lexists [r] Phi 1 r)] [xl
(lexistse ([r] [q: I- (Phi 1 r)]
lexistsi - (F x r) (Ds x 1 r q))

p)))
%% Base case lemma:
I.b
U. Step case lemma:
1-s

%% Recovery lemma:
I-r

Once all the inputs are described and named, the pattern of Proof schema 4.10, which describes
the output proof, can be formalized and added as the final argument of the clause tlrec. Where
the schema elides the details of how the lemmas are inserted, the formalization must give them
explicitly.

Consider the base case of the output proof. It is assembled from the subproof DB of the input
proof and the auxiliary proof "B. It must prove

Vk.3s.3r.$([],r) A ^F(krs)

Since TB proves Vk . 'I(k, ro, so(k)) it is necessary to eliminate the quantifier before using it. VB,
which proves @([],ro) can be used directly. Thus the whole base case of the new induction is
described by the pattern:

(iforalli [k] lexistsi - (SO k) (lexistsi - RO (andi Db (iforalle k I.b))))
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Similarly before using Xs, which proves

Vx .Vk•.Vr .Vs. (h(x,k),r,-S) D 41 (k, f(x,,r),s)

the transformation must perform eliminations on the induction hypothesis

Vk.Bs.3r.4,(l,r) A ,I,(k,r,s)

to obtain %P(h(x, k), r, s). The implication derived from IS can then be used to obtain %I,(k, f(x, r), s).
The subproof also needs 4(x :: 1,f(x, r)), which is obtained by again performing eliminations on
the induction hypothesis and applying Vs. Finally the appropriate quantifiers must be introduced.

Then the step case of the induction is encoded as:

[1] % list parameter
Ep] % induction hypothesis
[xl % element parameter
(iforalli [k]
(lexistse ([s] [q']
(lexistse ([ra Lq]
lexistsi - s
(lexistsi - (F x r)

(andi
(Ds x 1 r (andel q))
(impliese
(iforalle s (1foralle r (iforalle k (foralle x I-s))))
(ander q)))))

q1))
(iforalle (H x k) p)))

For similar reasons in order to use the proof ZR of

Vl.Vr.Vs.(4(l,r) A %'F(ko,r,s)) D T(ls)

to obtain a proof of the specification Vt. 3r. i(l, r) it is necessary to eliminate the quantifiers before
the implication can be used.

The whole clause defining the rewrite rule in Elf is shown in Figure 4.4. With this clause and
formalizations Psi, IB, Is, IR of I', TB, TS, and ZR respectively, we can transform a formalization
P of Proof 4.2 to a formalization of Proof 4.11 by submitting the following query to Elf:

?- tail..rec RO SO F H KO Phi Psi P IB Is IR Q.

Here the italic variables (e.g., P) stand for closed LF object terms provided by the user. The
text in typewriter font (e.g., RO) is input as-is by the user; thus the variables RO0... Phi and Q are
Elf logic variables. If the query succeeds the Elf interpreter displays the terms bound to them in
the course of the search. Note that when the specification Psi, the input proof P and the auxiliary
proofs IB, Is, and IR are given as ground terms in the query, it is not necessary to provide terms for
RO, SO, F, H, KO, or Phi; they are found by unification in the course of term and type reconstruction.
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tl-rec
tail-rec
RO SO KO F H
Phi Psi
%.%. Input proof:
(lind ([1l lexists [r] Phi 1 r)

U% Base case:
(lexistsi (Er] Phi nl r) RO Db)
%%/. Step case:
(Eil [p: I- (lexists [r] Phi 1 r)0 [x)
(lexistse (CEr [q: I- (Phi 1 r)0
lexistsi - (F x r) (Ds x 1 r q))

p)))
,.%% Lmma proofs:
I-b I-s I_r
%.%, Output proof:
(iforalli [E]
U% Recovery of original specification:
lexistse (Es] Ep'J
lexistse (Er] [p]
(lexistsi - s (impliese (iforalle s (iforalle r (Iforalle 1 I_r))) p)))

p')
(iforalle KO

(iforalle 1
%% New inductive sub-proof:
(lind (El) Iforall ([k] lexists Es] lexists [r] and (Phi 1 r) (Psi k r s)))
U% Base case:
(lforalli [k] lexistsi - (SO k) (lexistsi - RO (andi Db (lforalle k I.b))))

%% Step case:
(El) Cp] EX)
(iforalli [k]
(lexistse (Es] [q']
(lexistse (Er) [q]

lexistsi - s
(lexistsi - (F x r)

(andi
(Ds x 1 r (andel q))
(impliese

(iforalle s (iforalle r (iforalle k (foralle x I-s))))
(ander q)))))

q'))
(iforalle (H x k) p)))))))).

Figure 4.4: Elf implementation of the tail recursion transformation
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On the other hand, it is necessary to give the predicate 'k explicitly because the corresponding logic
variable Psi does not occur as a generalized variable in the declaration of the judgment tail-rec.

The proof term bound to Q has some undesirable features. It is likely to contain "detours": each
inserted lemma will typically be a maximum formula in the sense of Prawitz [Pra7l], being the
conclusion of an introduction rule and the premise of the corresponding elimination rule. These
detours are reflected in the extracted program as redices like the following fragment, extracted
from the transformed list selection example proof. The reader is not intended to decipher to
computational meaning of this; what is important is the appearance of the unreduced application
of the function u. This reflects the quantifier and implication eliminations immediately following
introductions in the source proof.

let fun u x' z1 z2 z3 q y =
case (q y) of inl p') > inl )

I (nr p') =>
case (if x' >= 2 then inl ) else inr 0)

of (nl q') => if y = x' then inl () else inr )
I (nr q') => iir )

in
(s, (if x >= 2 then x::r else r, (u x k r s p2)))

end

The next section discusses how to avoid introducing these detours.

The more serious defect is that, as we mentioned before, because Q contains a proof of the
informative formula

VI.Vk.3s.3r.A(l,r) A %I(k,r,s)

the program extracted from Q must compute both witnesses r and s, doing all the computation of
the original program as well as the new computation introduced by the transformation. Section 4.3
describes how to eliminate the computation of r by introducing double negations into parts of the
inductive subproof.

4.2 Suppressing detours in the output proof

Transformations on proofs often introduce detours which can be removed by normalization. But
since normalization is expensive, and may remove redices which the user would prefer to keep, it is
better to encode a transformation so that it does not introduce unnecessary detours in the result
proof.

In the case of the tail-recursion transformation, examining the pattern for the output proof
shows that detours in the form of quantifier or implication introductions immediately followed by
eliminations are likely to be introduced when the lemma proofs I.b, I-s, and IX are used. These
detours can be avoided by lifting the universal quantifiers of the object logic to the meta-level.
That is, the judgment takes schematic proofs of the lemmas, represented as functions of dependent
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type from list terms to proofs. In addition, for Lemma schemas 4.6 and 4.8, we lift the object-
logic implication to the meta-level. Then the beta reductions performed by Elf in the course of
producing canonical terms take the place of explicit proof normalization. The lifted representation
is faithful to the object logic; this is a consequence of the fact that constructive minimal many-sorted
predicate logic is representable in LF via the propositions-as-types interpretation, as described in,
e.g., [Bar9l]. In this interpretation universal quantification in the object logic is represented by
fl-quantification and implication by simple function types.

We describe lifting for the simplest case first. Instead of requiring a proof of Lemma schema 4.9:

Vk . %F (k, ro, so(k))

we require a function from a term representing a list to a proof of the lemma, with type:

llk:ilist. pf %P(k,ro,so(k))

In Elf's concrete syntax this is:

{k:ilist} I- (Psi k RO (SO k))

With this representation, the pattern for the output proof no longer needs the VE rule. Instead
the schematic proof, represented as an LF function, is applied to a term to produce an object-level
proof. Thus the subterm in the original encoding

(Iforalle k I.b)

becomes

(I-b k)

Similarly, the type of the proof of Lemma schema 4.8 becomes:

S{x {kJ {r} {s- I- (Psi (H x k) r s) ->1- (Psi k (F x r) s)

Instead of the sequence of eliminations

(impliese (iforalle s (1foralle r (iforalle k (foralle x I.s)))) (ander q))

the pattern for the output proof contains the application

(I-s x k r s (ander q))
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tl-rec : tail-rec
RO SO KO F 9
Phi Psi

% Input proof:
(lind ([I] lexist. (Er] Phi 1 r))

%Y. Base case:
(lexistsi ([r] Phi nl r) RO Db)
YY% Step case:

(ElJ Ep: I- (lexists (ErJ Phi 1 r))J Ex]

(lexistse (Er) Eq: I- (Phi 1 r)0
lexistsi - (F x r) (Ds x 1 r q))

p)))
YY. Lema proofs:
Ib I-s I_r
YY. Output proof:
(iforalli (El)
UeX Recovery of original specification:
lexistse ([s) Ep'J

lexistse ([rJ [p]
(lexistsi - s (I-r 1 r s p)))

p')
(iforalle KO

(iforalle 1
%%Y, New inductive sub-proof:

(lind (Ell lforall (EkJ bexists (Es] lexists (Er] and (Phi 1 r) (Psi k r s)))))

Y,%% Base case:
(iforalli (Ek) lexistsi - (SO k) (lexistsi - RO (andi Db (I.b k)))))

U,. Step case:
(CE lp] pxE

(iforalbi Ek]
(lexistse (Us] [q'J
(lexistse (Er] [q]
lexistsi - s
(lexistsi - (F x r)

(andi (De x I r (andel q)) (1i- x k r s (ander q)))))

q'))
(iforalle (N x k) p))))))))).

Figure 4.5: Lifted Elf implementation of tail-recursion
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lift-all : I- (forall A) -> ({x} I- (A x)) -> type.

lift-all-down : lift-all (foralli P) P.
lift-all-up lift-all P (Nx] foralle x P).

Figure 4.6: Correctness of lifting

The encoding of Lemma schema 4.6 is treated in the same way. The complete declaration of
the lifted form of the judgment tail..rec is shown in Figure 4.5.

The soundness of this lifting technique is easy to see: from any schematic proof HIx. t a proof
of Vx. - can be built by the application of the constructor VI, and a similar argument holds for
implication. Completeness follows from the observation that for any proof P of Vx . t there is a
schematic proof Ax. (VE x P) of type lIx. t, and similarly for implication. Correctness of lifting
can be formulated and proved very simply using the techniques of Chapter 3. We show the fragment
for the case of universal quantification over terms of sort i in Figure 4.6. The clause lift-all-dovn
shows soundness since it gives an object proof for an arbitrary lifted proof P, and lif t-all-up shows
completeness, giving a lifted proof for any object proof. The clauses defining lift-all could be
executed as proof transformations to lift arbitrary given lemmas, but in the special case (but in
practice a very likely case) of a lemma's proof terminating in VI, the clause lif t-all-up would
introduce a detour in the resulting proof. In this case the proof P given by lifttall-down is the
desired lifted version.

Pragmatically, the benefits of lifting are twofold: it improves efficiency by reducing the size
of the proof terms to be processed during transformation and program extraction, and results
in simpler, more compact and intelligible encodings of transformations. The same technique has
been used by Pfenning [Pfe92a] in an Elf implementation of Plotkin's continuation-passing style
conversion [Plo75], following an analysis by Danvy and Filinski [DF92].
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Program 4.13

fun sel 1 -
let fun sel' nil (fn k => (k, (nil, fn x => inr 0)))

I sel' (x 1') = let val p = (sell 1') in
fn k =>
let val (s, pl) = (p (if x >f 2 then (x::k) else k)) in
let val (r, p2 ) = pi in
let val r' = (if x >= 2 then (x::r) else r) in
let val p3 =
fn y => case (p2 y) of

(inl p') => (inl 0)
I (ir p') ->I

case (if x >= 2 then inl () else inr )
of (inl q') => (if y = x then inl C) else inr 0)

I (inr q') -> inr ) in
(s, (r', p3 )) end end end end end

in let val (s, p) - (sel' 1 nil) in
let val (r, pl) = p in s

end end end;

Figure 4.7: Superfluous computation in select example

4.3 Suppressing unwanted computation

As we noted above, the transformed proof still contains all the structure of the original, including
the now superfluous inner existence proof for r. As a result the extracted program is still not tail-
recursive. This can be seen in Figure 4.7, which shows the program extracted from the proof for
the select example. Roughly speaking, the outlined code corresponds to the existence proof for r.
More precisely, the auxiliary function sel I has type:

int list -> int list -> int list * (int list * (int -> (unit,unit) union))

But all we really need is int list -> int list -> int list; the extra structure is generated
by the existence proof for r. (Removing uninformative terms during extraction does not help here
because the presence of an existential quantifier and a disjunction in the specification makes it
"informative".) To avoid the unwanted computation, we further transform the inductive subproof
to obtain a proof of

Vl.Vk.3s.-'-,3r.-@(1,r) A *(k,r,s)

Introducing the double negation of the existential quantifier for r prevents the extraction of a
program to compute r, since we have defined negative formulas as uninformative.

The double negation introduction can be done easily since the following are derived rules of the
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object logic:
-p
A

A B -,-•A
-'-'A-'-'Bhyp

Their derivations give the needed proof transformations in the form of rewrite rules. These are
applied to the appropriate subproofs - those that have 3r. $(t, r) for some term t - as the output

proof is constructed.

First, given a closed proof D with end-formula A, transform V to:

Proof schema 4.14

P D
-IA A

-E

Similarly, given an open proof depending on the premise A:

A

V

B

transform it to:

Proof schema 4.15

-p
A

V

-q
-'B B

2_A
-'-lA -iA

Translation into Elf is straightforward:
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doubleneg AI-A-> I- (not (not A)) -> type.

dblneg : doubleneg D (noti Up] (note p D))).

doubleneg_ lpres

(0- A -> I- B) -> (0- (not (not A)) -> I- (not (not B))) -> type.

dbl-neg_ l-p
doubleneg-.lprea D ([pnnA] (noti ([pnB] note pnnA (noti ([pA] note pnB (D pA)))))).

We use these double negation transformations in tail-recursion introduction to hide the unwanted
computation of the witness r. We change the transformation so that it produces an inductive
subproof of

VI.Vk.3s.-'--3r.$f(l,r) A @(k,r,s)

To obtain this proof we apply the double negation transformation doubleneg to the part of the
base case of the induction that proves the existence of r. Without the use of double negation, the
base case has the following form:

Proof schema 4.16

ID [],ro) %(k, ro,so(k))
Al

4 ([],ro) A 41(k,ro,so(k))

3r. 6([],r) A %I(k,r,so(k))

Vk.As.A,.'Q([],r) A %I(k,r,s)

(The double horizontal bar elides the obvious quantifier introductions.)

With double negation it has the form:

Proof schema 4.17

VB IB

A([],ro) A F(k,ro,so(k))
Aý([],ro) A %F(k,ro~so(k))

-,3r.,([],r) A 'I(k,r,so(k)) r.A-.,([],r) A 'I,(k,r,so(k))
-,E

-,i-r. 4,([],,r) A ('(k,r,so(k))

Vk.3s.-,-',r.4.Q(f,r) A ,'I(kr,s)
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In a similar way we apply the transformation doublenegl-prem to the portion of the step case

that proves the existence of r.

Since the recovery lemma ITR requires 0(1, r) as a premise, and this premise is no longer avail-
able, we must also apply double negation to this part of the proof; the whole transformed proof

now has as conclusion:
V1. 3s. -••I(,s)

We could again implement the modified transformation as a simple rewrite rule, but it is more
convenient to retain separate judgments for introducing double negations, and introduce subgfds

into the tail-recursion transformation. The Elf code fragment that builds the base case of the
induction subproof

(iforalli (Wk] lexistsi - (SO k) (lexistsi - RO (andi Db (I.b k)))))

becomes

(Iforalli [k] (lexistsi - (SO k) (NNI.b k)))

and we add the following subgoal to construct the proof of the double negation (which is schematic

in k) and bind it to NNIb:

<- (Mk1 doubleneg (lexistsi - RO (andi Db (I.b k))) (NNI-b k))

In the previous version of the transformation the step case of the induction is built by the

following:

([1] [p1 Lx] (iforalli [k]
(lexistse (Cs] [q']
(lexistse (Er] [q]
lexistsi - s

(lexistsi - (F x r)
(andi (Ds x 1 r (andel q)) (I.s x k r s (ander q)))))

q'))
(iforalle (H x k) p))))

We change this to:

([1] [p] [x] iforalli [k]
(lexistse ([s] [hI

lexistsi _ s (NN_I_s 1 x k s h))
(Iforalle (H x k) p)))
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Again we need a subgoal to construct the proof of the double negation, this time schematic in the
parameters x ... s and the assumption hyp, and bind it to NNI-s

<- ({i} {x} {k} {s}
doubleneg_ 1_prem
(Ehyp: I- (lexists ([r] (and (Phi 1 r) (Psi (H x k) r s))))]
(lexistse ([r] Eq: I- (and (Phi 1 r) (Psi (H x k) r s))]
(lexistsi - (F x r)
(andi (Ds x 1 r (andel q)) (I.s x k r s (ander q)))))

hyp))
(NNI.s 1 x k s))

The previous version of the transformation completes the proof via the following:

(iforalli (E[]
lexistse (Es] [p']
lexistse (Er] [p] (lexistsi - s (I.r 1 r s p)))

p')
(Iforalle KO

(iforalle 1
UZ New inductive sub-proof:

With double negation this becomes:

(iforalli [E]
(lexistse (Es] [p] lexistsi - s (NNI-r 1 s p))
(iforalle KO
(iforalle 1

UY, New inductive sub-proof:

The following subgoal builds a proof of the required double negation, schematic in 1 and s, and
binds it to NNIx

<- ({i} {s}
doubleneg.-lprem ([q] lexistse (Er] Eq') I_r 1 r s q') q) (NNI.r 1 s)).

For the select example this transformation yields the following program:

Program 4.18



111

fun sel 1 -

let fun sel' nil = (fn k => k)
I sell (x::l') = let val p = (sel' 1') in

fn k => (p (if x >- 2 then (x::k) else k)) end
in (sel' 1 nil)
end;

After the introduction of double negation the transformed proof proves Vt. 3s . -t-(1, s). Thus
this is an example of specification transformation as well as proof transformation. In what sense
then does the extracted program meet the original specification Vl. 3s.4(I,s)? If the only ad-
missible sense of the phrase "meets a specification" is "is extracted from a constructive proof of
a specification", then it does not. But when 4' is not informative (as in the example) the term
extracted from a proof of 0' has no computational use; that is the point of simplification during
extraction. From the point of view of pure verification, -,-,0 is an equally good specification.

This loose argument is supported by the fact that other systems use closely related techniques to
suppress computation. The PX system [Hay90] provides a modal operator, equivalent to double
negation, for succinctly expressing classical truth. Sasaki [Sas86] uses double negation in the op-
timization of Nuprl programs, and also points out that other kinds of uninformative formulas can
also be exploited to suppress computation. Paulin-Mohring [PM89] gives a type in the Calculus of
Constructions for any A that hides its informative contents; this type is not quite the double nega-
tion of A but is a simpler type with similar properties. Schwichtenberg [Sch85] defines a classical
existential quantifier equivalent to the double negation of the constructive one. He shows that his
system is closed under the Markov rule by an analysis of normal derivations that is closely related
to the double negation transformations we use.

Aside from these general considerations, although we have not carried out a proof, it is evident
that the tail-recurs;on transformation with double negation yields an extracted program that is
functionally equivalent to the transformation of Figure 4.5, if the predicate 4 is not informative.
This follows from two considerations. First, extraction/simplification "ignores" uninformative sub-
proofs, so the only computationally relevant expressions are those extracted from the witnessing
term for 3s . 4(I, s); second, this witness is unaffected by the double negation introductions.

4.4 Discussion

We have shown how a well-known program transformation strategy, conversion of a recursive func-
tion definition to tall-recursive form, can be encoded and generalized as a proof transformation

expressed as a rewrite rule.

This encoding provides two levels of correctness guarantees. At the program level, we know that
the program meets its specification because it is extracted from a proof of the specification. This
guarantee is inherent in the proofs-as-programs methodology, independent of implementation. At
the level of proofs, the LF type system ensures that the transformed proof is a valid proof of a
particular known end-formula. This is the same assurance that the object logic encoding gives for
inference rules. As Harper et al. point out [HHP93], given the kind of encoding of natural deduction
we have used, LF does not distinguish between inference rules and proofs of higher-order judgment
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type. Similarly, there is no distinction between inference rules and the proof transformation we
have demonstrated here. It may be viewed as a derived rule of the logic, although one of an unusual
kind: we normally think of an inference rule as taking proofs of some premises Ai and giving a
proof of some new formula A. But the purpose of the proof transformation is to construct a new
proof with a different structure, which may have the same end-formula as its input proof (as in the
naive version of the tail-recursion transformation).

It may seem that our proof transformation is significantly different from a derived rule of infer-
ence because it analyses the structure of its input proof, whereas an inference rule depends only on
the end-formula(s) of its input proof(s). This difference is an artifact of the way we have formulated
the transformation. It is convenient to think of the transformation as taking a proof matching Proof
Schema 4.5 as input because the writing of a proof of that form is an easy and natural first step
in program development. But we could also conceive the transformation as the proof of a rather
baroque derived rule of inference:

p P P
D(1, r) 4(l,r) A '(k 0 ,r,s) (h(x, k), r)

4ý(fl, r0) I (x :: 1, f(x, r)) if(1, s) IP(k, f(x, r), s) %P(k, r0, so (k))

VI . 3s . ",-, (/, s)

From a formal point of view the only unusual feature of this rule is the imposition of constraints
on individual terms represented by the occurrences of r0 ... h.

The ability to express the tail-recursion transformation as the proof of a derived rule of infer-
ence is significant because it results in a static, declarative, yet effective formulation that can be
proved correct by the LF type system. This kind of transformation can be contrasted with proof
transformations like cut-elimination (normalization in natural deduction systems) or the double-
negation translations studied by Murthy [Mur90], which correspond to inference rules that are not
derived, but admissible. The difference is significant for both the generality and the efficiency of
the transformations. An admissible rule does not remain valid under all extensions of the logic
in question, but a derived rule does. Thus a transformation expressible as a derived rule remains
applicable as we work in different theories. Moreover, an admissible rule is usually proved by in-
duction over the structure of proofs; as a result the complexity of its implementation is high. By
restricting ourselves where possible to derived rules we obtain transformations that are valid for any
theories we may wish to add to the core object logic, and that are feasible to implement. On the
other hand we may also expect to be able to do more with an admissible rule that is not derived.
Murthy's translations from classical to constructive logic are a notable example of a complex and
correspondingly powerful proof of admissibility.



Chapter 5

Case Studies

In this chapter we turn from the discussion of techniques for encoding proof transformations to
the application of these transformations to program development. We develop two case studies:
breadth-first search in a tree, and depth-first search in a directed graph. These search procedures
have applications in graph problems such as the detection of cycles, finding connected components,
and topological sort.

In our development of breadth-first search we adapt the tail-recursion transformation of the
previous chapter. As in the example of the select program, the transformation again induces a
change of functionality in the extracted program. In our study of depth-first search we consider
how proof transformation can be used to adapt to a small change in specification: we begin with a
program to compute the transitive closure of a relation, and consider how to adapt its proof when
the specification is changed to reflexive transitive closure. Here we develop a proof transformation
closely related to the program transformation technique of finite differencing [PK80]. In both case
studies, we examine the problem of removing function parameters that act as "loop bounds": they
represent explicit termination proofs, but serve no purpose for computation.

5.1 Breadth-first search in a tree

Breadth-first search is a simple procedure often presented in terms of a queue and a while loop
that terminates when the queue is empty [AHU83]. Termination of the loop is not quite straight-
forward to see, even in the absence of the complications introduced by the possibility of cycles in
a general graph. This section considers the simplest possible case, that of a tree. We begin with
a straightforward proof by induction on a measure of the size of the tree, which yields a function
defined by primitive recursion over natural numbers. The recursion parameter is superfluous for
the computation, so the next step in the development is to change the basis of the induction in
order to remove this parameter. Finally, we transform the proof to tail-inductive form to obtain a
function definition that can be compiled to the standard while-loop form of the algorithm.

113
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5.1.1 Definitions

The usual theories of lists and natural numbers are assumed as a basis for the example. The syntax
for lists given in Chapter 4 is extended by adding a definition of an append function for lists,
denoted by o.

Definition 5.1 (Labelled trees, forests)

1. A labelled tree is a structure node(x,l) where x (the label) is a natural number and I is a list
of labelled trees.

2. A forest is a list of labelled trees.

Definition 5.2 x Et t (x labels a node of t) if

1. t = node(x, 1), or

2. t = node(y,l), x $ y, and there is a tree u in 1 such that x Et u.

We extend the notation to forests in the obvious way; x Et 1 if there is a tree u in 1 such that x Et u.

A structural induction principle for labelled trees can be expressed by the following inference
rule, parametric in x and 1:

P
Vu.u E 1 D [u/t]A

[node(x,l)/t]A Y

Vt. A

Definition 5.3 The size of a tree is size(node(x,l)) = 1 + EtiEsize(t).

Again, we extend the notation to forests: size(l) = EtEI size(t).

5.1.2 An initial algorithm

The traversal problem can be specified as one of collecting all the labels of a given tree.

Specification 5.4

Vt.3r.Vy.y E r 4* y Et t

The method of proof determines the order of traversal. A proof by structural induction on trees
leads to a depth-first traversal. For a breadth-first traversal we use induction on the size of a list
of trees. Here is a sketch of an initial proof. (Recall that o denotes the append function.)

Proof 5.5 We first generalize to a forest 1 and prove

Lemma 5.6 Vn.Vl.size(l) = n D (3r.Vy.y E r 4* y Et 1)
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by induction on n. If n = 0, 1 must be the empty list, so choose r = []. Otherwise n > 0, and
I = node(x, v) :: u for some x, v, and u. Since size(uo v) = n - 1, by the induction hypothesis there
is a list r' such that Vy.y E r'4 4 y Et u o v. Then x :: r' satisfies Vy.y E x :: r'* y Et 1. 0

Formalizing the proof and extracting a program requires adding a tree datatype with its size
function to the object logic and programming language. We give an ML version of the necessary
primitives:

datatype ''a tree = node of (''a * ("a tree) list)
fun size (node(x,l)) =

1 + (fold (in (a,b) => a+b) (map (in a => size a) 1) 0)

Then the following can be extracted from the proof:

Program 5.7

fun bfs t
let fun bfs-aux 0 [] = [D

I bfs-aux 0 (t::l) = (any (neg M))
I bfs-aux n [D = (any (neg M))
I bfs-aux n ((node (x,v))::u) = (x::(bfs.aux (n-1) (uWv)))

in (bfs.aux (size t) [t]) end

Recall that program extraction produces (any (neg 0)) from the inference I - C where C is
arbitrary. This occurs in Proof 5.5 when the precondition size(l) = n is false.

5.1.3 Transforming the domain of induction

Because of the use of induction on natural numbers, Program 5.7 has an extraneous parameter n.
This corresponds to a termination proof for the search. The parameter n can be eliminated after
program extraction using Sasaki's dead code unification technique [Sas86]. Another approach is
described for PX in [Hay90]; this can be adapted in an ad-hoc way to our setting. The advantage
of this approach is that it operates at the level of proofs and simplifies further proof transformation.

PX provides conditional inductive generations to support the definition of inductively defined
sets and the generation of inference rules for induction over these sets. The simple formalism
presented here does not support this kind of definition, but at the meta-level one can introduce a
new induction principle and prove that it is a derived rule by giving a transformation that expands
an application of the new rule to a proof using only more primitive rules. The type-checking
of an Elf encoding of the transformation corresponds to checking the derivation of the induction
rule. Specifying how to extract code from the new inference rule also allows the transformation
to be applied (in the other direction) to Proof 5.5 in order to obtain better extracted code. As
Hayashi points out, this technique allows the separation of the termination proof of a program from
other verification considerations; the derivation corresponds to the termination proof of a program
development in the PX style.
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The new induction principle needed, tree list induction, can be formulated as follows:

P
[u o V/l]A

[D/I]A [node(x, v) :: u/l]A
VI.A INDTspVl. A

The derivation of the rule follows from

1. V1 : tree list. 3n. n = size(l) is provable by list induction with a nested structural induction
on trees.

2. Vn : nat .Vl : tree list. n = size(l) D A is provable by induction on natural numbers from the
premises of INDTs and the definition of size.

3. From (1) and (2) VI : tree list .A follows trivially.

Using this derivation as a transformation on Proof 5.5 gives the following proof of Specifica-
tion 5.4:

Proof 5.8 We generalize to a forest I and prove

Lemma 5.9 V1. 3r.Vy. y E r ,*y Et l

by induction on size(l). When I is the empty list we choose r = []. Otherwise write 1 as node(x, v)
u. By the induction hypothesis there is a list r' such that Vy .-y E r' * y Et u o v. Then
Vy.y E x :: r', y Et 1. 0

Code extraction for the new induction principle can be specified in the same style used for the
core object logic in Section 2.3.2. We depart from that presentation by giving the extracted code
in ML syntax, generating a function definition where f is a fresh variable name.

InfA (rA)I-[ #e1 (A, el F vF 0' P) 4. e2
[node(x, v) :: u/gA

XsINDTS

[u o v/lA f [] = ei

(1,A )F P1  P2  f(node(x',V)::U) u')
[ 0fl/A [node(z, v) :: u/lA INDTSp [(f (u'Qv'))/p']e 2

V1. A

Then the following program can be extracted from Proof 5.8:
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Program 5.10

fun bfs t =
let fun bfs-aux 0 = 0

1 bfs-aux ((node (x,v))::u) = (x::(bfs-aux (uWv)))
in (bfs.aux [t]) end

5.1.4 Adapting the tail-recursion transformation

Using the fold-unfold system Program 5.10 can be transformed to a tail-recursive definition by
the same method shown in section 4.1.2 for the select example. Just as in that derivation, the
resulting program accumulates its partial result by applying the append function. To obtain a
tail-recursive program via proof transformation, we adapt the tail recursion transformation to tree
list induction, and apply it to Proof 5.8.

In order to formulate proof transformations for a class of inductive proofs, it is useful to introduce
some definitions. These are rather weak definitions, as it is not our purpose to formally treat
induction in general in our simple implementation, but only to give an informal generalization
which can easily be formalized for a given induction rule. An induction principle that meets
Definition 5.11 is not thereby a valid one; it must be proved correct using the method of the
previous section.

Definition 5.11 A simple induction principle of the object logic is an inference rule of the form

P . P. .' DSINDs A

The precondition P may be empty, but must be Harrop if it is nonempty. Each premise Pi has the
form:

1. [txl,... ,tin/x1,... ,xn]A with each tii either a constant term or the parameter xi, or

2.

-p -p P
Cil ... Cik [dil,..., din/x1,..., xrn]A

[4 1 9l , .. . ,tin / X 1 ,7. .. ,X n ]A

That is, Pi may depend on the premises Cij and [dil,... , din/x,... , x,]A discharged by the
application of the rule INDs. Each Cij is atomic.

Given such an induction principle,

1. A is the induction predicate.

2. P is the precondition
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3. z, ... zn are the parameters of induction.

4. A premise of the form (1) above is a base case.

5. A premise of the form (2) above is an inductive case.

6. For an inductive case P.i the terms dil, ... , din are the descent terms.

7. For an inductive case P'i any parameters occurring in Cil ... Cik, dil,... ,din, or til,.. . ,tin

are the proper parameters of Pi.

For example, in tree list induction INDTS, zX . . Xn corresponds to the single variable I of type
tree list. The precondition is empty. The base case P1 is [ U/hA. The inductive case P2 is
[node(z, v) :: u/l]A, with a single discharged assumption { [u o v/l]A }, and proper parameters
Z, U, V.

Given a simple induction principle, a tail recursion transformation can be written for it. We
describe it in terms of higher-order patterns using the notation of Section 4.1.3. The transformation
is defined on an input proof that terminates in an application of the given induction rule with
an induction predicate of the form 3r. 4(zx,... ,zn, r), where xl,...,zx, are the parameters of
induction. Each base case Pi has the following form, where X,,... ,zn may occur free in til,. .. tin
(c, npare Proof schema 4.5):

Proof schema 5.12

4 (til, •• ,tin, ri)
31

3r.46I(tij,...-,tin, r)

Each inductive case P'i has the following form, where the proper parameters pil,..., pij of Pi may
occur free in Cil ... Cik, dil,... ,din, and til,.. tin:

Proof schema 5.13

iqi
Cii ... Cik AI'(dij,...din, r)

Aý(tiil,...-, tin, fi (Pil,. . pij, r))
31

3r. 4ý(dij, . .•, din, r) 3r . 4I(til, . .•, tin, r)

3lr. O(til,...-,tin, r)

As in the special case of Chapter 4 the transformation requires an auxiliary specification %F
expressing the way in which the result is to be accumulated. Thus the transformed proof contains
a subproof, terminating in an application of the given induction rule, of

VX1 .... VXn .P D Vk.3s.3r. (x 1 ,...,n, r) A %I'(k,r,s)
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For ease of comparison the lemmas needed for the transformation are given here in the style of
Section 4.1.3, although in an implementation the lifted forms described in Section 4.2 are easier to
work with.

1. The transformation requires a proof DR of

Lemma schema 5.14 (Recovery lemma)

Vx .... Vx..Vr.Vs.(4( 1 ,... ,x.,r) A %F(ko,r,s))DAI(x,,... ,x,s)

for some term ko.

2. For each inductive case Pi of the subproof, the transformation requires a proof 1i of

Lemma schema 5.15 (Inductive case lemma)

Vp11. ... VpijVk. Vr. Vs. A(h(pjj,...,pjj, k), r, s) D %(k, fi(pil,... I pij, r), s).

where the pattern fi(pij,...,pj,,r) is given by the original proof and the pattern h(pi1 ,..., pjj,k)
is supplied by the user.

3. For each base case we require a proof T" of

Lemma schema 5.16 (Base case lemma)

Vk . ,I,(k,r, si(k))

ri is the witness term for the base case of the original proof; si is supplied by the user.

The construction of the result of the transformation is analogous to the special case described
in Chapter 4. For each base case Vi of the input proof the transformation constructs the following
subproof from the original proof and the corresponding base case lemma. Here Vi is derived from
Ti by VE (it corresponds to the lifted form of Section 4.2). Double horizontal lines indicate the
obvious sequence of introduction rules.

Proof schema 5.17

'D,

6(til,.. - ,- tin, ri) (k, ri,si(k))
AI

4 (tii,...,ti,,ri) A qf(k,ri,si(k))

Vk. s.3r.A(til,...,tin,r) A *(k,r,s)

Similarly, for each inductive case VPi the following subproof can be constructed from the original
proof and the corresponding inductive case lemma. Again ." corresponds to the lifted form of the
proof Ti of Lemma Schema 5.15, and double lines indicate obvious introductions and eliminations.
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Proof schema 5.18

Cil ... Cik O(dil,...,di,r) (d,...,d,,r) A 'I(h(pj,,...,pj,k),r,s)

I',I
IF~k fj~pj,. .,pj~ r),) _ Al

tI... ,ti. fi(Pil,... ,Pij, r)) A 4'(k,fi(p j,.. ,pij, r),s)

Vk.s.r.b(tl,...,ti.,r) A 'P(k,r,s)

From these subproofs the transformation builds an induction in the obvious way. The original
conclusion then follows from the recovery lemma DR (again V'R denotes the lifted form):

Proof schema 5.19

VIND

Vx .... Vxn.P D Vk.Is.3r. (x1 ,...,xn, r) A 4P(k,r,s)

S(x1 ,. .. ,xr) A 'I'(ko,r,s)

"D'R

VX1... V~n•- P D 3s. 4I•(xjl,.... Xn, ,8)

Except for the difference in the induction principle, the transformation can be applied to the
breadth-first search problem in the same way as it was to the list select example; the same auxiliary
specification %P(k, x, r) Vy . y E r ý* (y E x V y E k) can be used.

The new specification for the inductive subproof is:

Specification 5.20

Vl.Vk.3s.3r.(Vy.y E r * y Et 1) A (Vy.y E s ý* (y E r V y E k))

We show only the instantiation of the crucial lemma schema 5.15 that establishes the induction
step. The term h 2(X,u,v,k) that governs the accumulation of the partial result is x :: k, and
the term f 2(X, u, v, r) given by the original inductive subproof is x :: r. Thus the instantiation is
(omitting the unused parameters u and v):

Lemma 5.21

V.Vk.Vr.Vs.[Vy.yEs*(yEr V YEx::k)]D[VYYEs (yEx::r V y Ek)]
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Inserting the appropriate instantiations of the lemma schemas 5.14, 5.15, and 5.16 into the
inductive subproof of Proof 5.8, results in a new proof of Specification 5.4. We sketch the proof
here:

Proof 5.22 We first prove

Vi.Vk.3s.3r.(Vy.y E r • yEt1) A (Vy.yEs * (yE r V yE k))

by induction on the tree list I. If 1 = flchoose r = [] and s = k. Otherwise I = node(x, u) :: v. By
the induction hypothesis there are lists s' and r' such that Vy . y E 8' €* (y E r' v y E x :: k) and
Vy .-y E r' * 1/ Et v o u. Then let s be s' and let r be x :: r'.

Then for any tree t there are lists s and r such that (Vy. y E r 4* y Et [tJ) A (Vy. y E s €* (y E
r V y E [])). Then s contains exactly the labels of t. 0

As in the example of Chapter 4, it is necessary to transform the proof further by inserting a
double negation in order to eliminate the computation of r. The following program can then be
extracted:

fun bfs t =

let fun bfs-aux [ k = k
I bfs-aux ((node (x,v))::u) k = (bfsaux (uev) (x::k))

in (bfs.aux [(I] [) end

5.1.5 Formalization

The formalization of tail-recursion introduction in Elf for a given induction principle is straightfor-
ward, following the procedure described in Chapter 4. Formalizing the transformation in general is
more difficult and is beyond the scope of this thesis, requiring a general treatment of (restricted) in-
duction. Ideally, the system would be augmented with a way of introducing an inductive definition
(e.g., as in Nuprl, Coq or PX) with an associated rule of inference. An Elf logic program could then
be written to analyze any proof by induction and apply the appropriate form of transformation.

Figure 5.1 shows the formalization of the syntax of trees and tree lists, with the functions append
and size, equality for tree lists, and quantifiers.

The change of induction principle of Section 5.1.3 is formalized by giving a derivation in Elf of
the induction principle INDTS. The first step is to formulate INDTs as an inference rule:

indts : {A: tlist -> o}
I- (A ni)
-> ({X:i} {U:tlist} {V:tlist}

I- (A (appnd U V)) -> I- (A (cns (nod X V) U)))
-> I- (iforall A).

Then a pattern-driven proof transformation can be written to convert any proof using INDTS to
one using induction on natural numbers, lists of trees, and trees, or vice-versa. Type-checking the
clause defining the transformation verifies the derivation of the INDTS inference rule.
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tre : type. %labelled trees
tlist : type. %lists of trees

nod : i -> tlist -> tre. %tree constructor

n1 : tlist. %empty tree list
cns : tre -> tlist -> tlist. %cons for tree lists

appnd tlist -> tlist -> tlist. %append

size tre -> i. %size of a tree
tlsize : tlist -> i. %size of a tree list

leq : tlist -> tlist -> o. %equality for tree lists

tforall (tre -> o) -> o. %quantification over trees
texists (tre -> o) -> o.

iforall (tlist -> o) -> o. %quantification over tree lists
lexists (tlist -> o) -> o.

Figure 5.1: Elf encoding of trees and tree lists
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As usual the transformation is encoded as a judgment and a single defining clause that expresses
the rewrite. The judgment is:

expand.indts : {A: tlist -> o} I- (iforall A) -> I- (iforall A) -> type.

For readability we present the transformation in terms of the following constants defining lemmas
needed for the derivation. This encoding hides the inductions on trees and lists of trees.

1. p-nl : {L I- (eq zero (tlsize L)) -> I- (leq n1 L) -> type.

That is, for any list of trees 1 and proof that the size of I is zero, there is a proof that I is the
empty list.

2. p-cns : {L} {N} I- (eq (succ N) (tisize L))
-> I- (exists [x] lexists [u] lexists [v]

(and (eq N (tisize (appnd u v)))
(leq (cns (nod x v) u) L))) -> type.

That is, for any 1, n, and proof that the size of I is n + 1, there is a proof that 1 can be
decomposed as node(x, u) :: v with size(v o u) = n.

3. p.ex : {L} I- (exists [n] eq n (tlsize L)) -> type.
That is, for any list of trees $1$ there is a proof that $\siz(l)$ exists.

These lemmas are referenced as subgoals in the same way as is done for the double negation
transformations of Section 4.3.

Figure 5.2 shows the Elf code for the rewrite rule.

5.2 Depth-first-search in a directed graph

This section presents an example of the use of proof transformation to adapt to a small change in
specification. After some preliminary definitions and lemmas comes an initial proof and program to
compute the transitive closure of a relation; if the relation is viewed as a directed graph, the program
corresponds to a depth-first traversal of the graph. This proof is improved by changing the domain of
induction using the method of Section 5.1.3. The resulting proof is adapted to compute the reflexive
transitive closure by a process closely related to the finite differencing program transformation.

5.2.1 An initial algorithm

We begin with some basic notations and lemmas for graphs.
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exp-.indts
{A:tlist -> o} {Base..case:I- (A nl)}
{Step..caue: ({Xi} {U:tlist} {V:tlist}

I- (A (appnd U M) -> I- (A (cns (nod X V) U)))

expand-indts A
(indts A Base-.case Step-.case)
(iforalli El :tlist]
existse
(En:i] Ep: I- (eq ii (tisize 1)))
implies.
(iforalle 1 (foralle n
(md (En) iforall El] implies (eq n (tisize 1)) (A 1))
(iforalli E1] impliesi [q: I- (eq zero (tisize 1))

(leq-.subst..o (El] A 1) (P-.nl 1 q) Base-.case))
(En [p': I- (iforall El] implies (eq n (tisize 1) (A 1))
(iforalli El) iinpliesi Eq: I- (eq (succ n) (tisize 1))
(existse (Ex] [phl lexistse (Eu) [p2] lexistse (Ev]
[p3: I- (and (eq n (tisize (appud u v)))

(leq (cns (nod x v) u) 1)
(leq-.subst-.o (El) A 1)
(ander p3)
(Step-.case x u v (impliese (lforalle (appnd u v) p') (andel p3)))))

p2) p1) (P-.cns 1 n qM

p)
(P-ex 1))

<- ({l} {q} p-.nl 1 q (P-.nl 1 q))
<- (Wl {n} {q} p-.cns 1 n q (P..cns 1 n q))
<- MIl p-ex 1 (P..ex 1)).

Figure 5.2: Elf derivation of tree list induction
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Definitions and lemmas

Definition 5.23 A graph is a pair ( V, E ) where V is a finite enumerated set of nodes and E is
a binary relation on V.

Definition 5.24 Given a relation E E V x V, a node x E V, and a set U C V, we writc

1. xEy when (x,y) E E

2. E(x) for{y I xEy}

3. E(U) for U E(x)
xEU

Definition 5.25 Given a relation E E V x V, we define

1. E+, the transitive closure of E, by

(a) xE+y when xEy,

(b) xE+y when for some z xEz and zE+y.

2. E*, the reflexive transitive closure of E, by

(a) xE*x,

(b) xE*y when for some z xEz and zE*y.

Lemma 5.26 Given a relation E in V x V and U C V, E*(U) = U U E+(U).

Definition 5.27 Given a graph ( V, E ), and nodes u, v E V, a path in ( V, E ) from u to v is a
sequence ( xoiX,... ,Xn ) with xi,. . ..,x,, E V and xiExi+l for 1 < i < n, and x0 = u, xn = v.

The length of the path is the number of edges n.

The following definition models a common explanation (e.g. [AHU83]) of depth-first search, in
which each node is marked "seen" as it is visited, and is thereafter excluded from the search in
order to ensure termination. This can be modelled by restricting the codomain of the edge relation
E to a given subset U of the node set V. Intuitively, this "cuts" edges into the set V \ U but not
the edges leaving the set. Operationally, U is the set of unmarked nodes.

Definition 5.28 Given a binary relation E E V x V, and U C V, Eu = E n (V x U). E+' denotes
(Eu)+, and similarly for Et.

Lemma 5.29 Given a graph ( V,E), sets R,U C V', U' C U, and nodes x,y E V, u E U:

1. E+,(R) C E+(R) and Euu,(R) C Eu(R).

2. x(Eu\•{u)*y if and only if there is a path p from x to y such that if u occurs in p then u = x.
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3. x(Eu\{, ))+y if and only if thcrr is a path p of length n > 0 from x to y such that if u occurs
in p then u = x.

The following lemma is crucial to depth-first search since the algorithm depends on the elimi-
nation of cycles for termination.

Lemma 5.30 (Cycle Lemma) Given a graph ( V, E ), a set U C V, nodes x, y E V, and u E U, if
x(Eu )*y then x(EU\{u})*y or there is a node z such that x(E[\{ u\})*-z and z Eu and u(Elr\{ } )*y.

Proof 5.31 Assume u E U and zErly. Then there is a path p = ( x0 ,.... x, ) with n _> 0, x0 = X,
x,, = y, xi E U for i > 0, and xiExi+l for 0 < i < n. If u does not occur in p then x(Elr\{,,))*y
trivially. Otherwise let xj be the first occurrence of u in p and let xk be the last occurrence of u in

p.
Ifj = 0 (i.e. it = x = x0 ) then ( u,xk + 1.... Ix,, ) is a path from x to y; thus x(E,\f{u))*Y.

Otherwise if j = i (i.e. u = y = x,,) then ( x ... ,.xj-,u ) is a path from x to y. Then
x(Eu\{u,)*xj-l, xj-iEu, and u(Eu\{ju})*y.

Otherwise, ( xo, ...... i, u, x ,. •,-x,, ) is a path from x to y. Then x(EU\ { ,, )°xj_ . xi Eu,
and u(Eu\{u})*y.

Corollary: For x, y E V and u E U, if x(Eu)+y then x(EL\{ ,,))+y or there is a node such that
x(Eu\{j})+z and zEu and u(Eu\{u})*y. 0

A proof and program for transitive closure

Depth-first search in a directed graph arises from induction on a pair of sets of nodes ( 1", R ). 1,
is the set of nodes to be searched and R is a set of root nodes from which the search begins.

Here is a specification for computing the set of nodes reachable along a nonempty path from a
given set of nodes R in a directed graph ( V, E ):

Specification 5.32 V( VIE ):graph, R.R C_ V D 3w.WII = E+(R)

The proof proceeds by generalization to subsets U of V and to the relation Eu:

Lemma 5.33 V( V,E) :graph, U,R.U,R C_ V D 31V-.W = E+(R)

Specification 5.32 follows easily with U = V.

Proof 5.34 (of Lemma 5.33) The proof is by induction on the pair of sets ( U, R ). At each step
of the induction we decrease U or hold U constant and decrease R.

Case U = {} or R = {}; then let 1W = f).

Case U 1 {} and R = r w R'. There are two cases:

1. Eu"(r) = {}. Then apply the induction hypothesis to U, R' to obtain 11' = E+(R').

Claim: W' = E+( R). Write II for Etr(R). By I.emma 5.29 It" C It'. Suppose x E IU; then
for some r' E R, r'(Eu)+x. If r' E R' then trivially x E 117'. But r' cannot be r. for then
there would be a node i in U with rEu, contradicting Efl(r) = {). So IV C IV'.
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2. Eiu(r) = s W S. Write U' for U \ { s} and apply the induction hypothesis to U', R U { s } to
obtain W' = E+,(R U {s}).

Claim: {s} U W' = E+(R). Again write W for Eu+(R). Suppose x E W, that is, r'E+x for
some r' E R. By the corollary to Lemma 5.30 there are two cases:

(a) r'(Eu,)+x. Then x E W' since r' E R U {s}.

(b) There is a node z such that rI(Eu,)+z and zEs and s(Eu,)*x. If x = s then x E { s} U W'
trivially. Otherwise s(Eu,)+x and since s E R U {s}, x E W'.

So W C 8 U W'.

For the other direction of set inclusion, suppose x E W', that i, rI(Eu,)+x for some r' E

R U { s}. If r' E R the inclusion follows easily. If r' = s then since rEs and s E U it follows
that r(Eu)+x, so x E W. So W' C W. Clearly s E W since rEs and s E U.

0

The proof is formalized as a proof by nested induction on the size of the set U and the structure
of the set R.

In order to formalize the proof and extract a program it is necessary to extend the object
logic and programming language with a sort of finite enumerated sets with a structural induction
principle, and the operations of disjoint union with a singleton, the deletion of a single element,
intersection, and cardinality. On this sort is built another for graphs. A graph is represented as
a pair of a set of nodes and a finite mapping that takes a node to the set of adjacent nodes. The
object logic under consideration forces a fixed choice of data type for representing nodes but this
does not affect the transformation process. Note that there are no set comprehensions in the formal
language; the notations used in the foregoing definitions should be considered as abbreviations.

Programs using these data types are presented in an ML-like syntax extended as follows:

e ::= ... I empty I el++e2 I Finite sets: empty set, singleton union
eille2 I e1&&e2 I el--e 2 I crde Union, intersection, deletion, cardinality
graph(ei,e2) I mapp(el,e 2) I Graphs

The constructor ++ is analogous to cons for lists; an expression of the form e-1 ++ e_2 constructs
the union of a singleton containing the element e_1 with a set e-2. The expression e-1 -- e_2
denotes the set obtained by deleting the element e_2 from the set e-1. The union and intersection
of two sets are represented by I I and kk respectively. The size of a set e is obtained by crd e.

An expression graph(V,E) constructs a representation of a graph ( VE ); an expression
mapp(x,G) evaluates to the set of nodes adjacent to the node x; that is, it represents the com-
putation of E(x) for a graph G = ( V, E ). As usual we freely introduce bindings to improve
readability of programs.

The argument and call structure of the extracted program is a consequence of the structure of
the formalization of Proof 5.34. Here is a sketch of that structure:

First Lemma 5.33 is formalized as
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Lemma 5.35

V(V,E).Vn.VU.(UCV A n=IUI)DVR.RCVD3W.VY.yEW ^ 3x.xER A xEjjy

This presentation still takes some liberty with notation: the use of destructuring is not supported
in the object logical language. However for readability we write ( V, E), V, and E rather than G,
fst(G), and snd(G).

Proof outline 5.36 The proof is by induction on n. If n = 0 then U = {}; let W = {}.
If n = n' + 1 then U is nonempty, and we show

VR.U,RCVD3W.Vy.yEW 4=* 3zx.xER A xE~y

by induction on the structure of R. If R = {} then let W = {}.
Otherwise R = r W R'. There are two cases:

1. Eu(r) = {}. Then apply the inner induction hypothesis to R' to obtain W' and let W = W'.

2. Eu(r) = s W S. Write U' for U \ Is} and apply the outer induction hypothesis to U'.
Instantiate R as R U { s} to obtain W', and let W = {s} U W'.

0

The extracted program:

Program 5.37

fun tclos (G as (graph(V,_))) R =

let fun tclos-1 0 empty R = empty
[ tclos_1 0 (u ++ U) R = raise neg
[ tclos-1 n U R =

let fun tclos_2 empty = empty
[ tclos_2 (R as (r ++ R')) =

case (mapp(r, G) && U) of
empty => (tclos_2 R')

I (s ++ S) =>
(s ++ (tclos.1 (n-1) (U -- s) (s ++ R)))

in (tclos_2 R) end
in (tclos.I (crd V) V R) end

Although the asymptotic complexity of this program is already good (1Vi2, assuming appropriate
implementations of the set operations), just as in the breadth-first search program (Program 5.7),
the induction on natural numbers results in an unwanted parameter for the function tclos_1.
The nested set induction causes the extraction of nested mutually recursive function definitions
which can be combined into one definition. The next section shows how to apply the technique of
Section 5.1.3 to solve both these problems.
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P p
E(r) n U = {},A E(r) n U = s W S,[U \ {s}/VU[rW R U {s}/R]A

[{}/U]A [{}/R]A [rI+J R/R]A [r wR/R]A INDoP

V(V,E).VU.VR.(UCV A RCV) DA

Figure 5.3: Induction principle for depth-first search

5.2.2 Transforming the domain of induction

The technique applied here is the same as that applied to the breadth-first search problem: intro-
duce a new induction rule and give its derivation from more primitive inference rules; encoded in
Elf, the derivation can be executed as a program transformation. However, here the new rule INDDF

is more complex. It is shown in Figure 5.3. We sketch its derivation:

Theorem 5.38 Given a predicate A in which variables V, E, U, R may occur free, the rule INDDF

is derivable in the object logic with induction on natural numbers and structural induction on finite
sets.

Proof 5.39 Under the given assumptions, a proof of

V(V,E).Vn.VU.(U C V A n = IUI) D VR.R C V D A

can be constructed by nested inductions on n and the structure of R as in Proof outline 5.36.

Since the size of a set is primitive in the object logic, VU. 3n. n = IUI is provable. The re-
quired proof can be constructed by the elimination rule for the existential quantifier, with trivial
introductions and eliminations for implication and the universal quantifier. 0

We sketch the extraction process for the derived rule here without giving all the details. For
readability the extracted expression is shown in the extended ML-like syntax given above, using
recursive function definition and pattern matching.

Given extraction assumptions ( r, A ), and an object proof of the following form:

p p
E(r) n U = {},A E(r) n U = s L+J S, [U \ { s}/U][r W R U { s}/R]A

P1 P 2  P3 :4
[{}/U]A [{}/RJA [r t R/R]A [r I± R/R]A

IND DFp

V(V,E).VU.VR.(UCV A RCV) DA

extract an object program of the following form:
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fun f G empty R = el
I f G U empty - e2
I f G U (R as (r++R')) =

case (mapp(r,G) && U) of
empty => [(f G U R')/p]e 3

Cs÷+S) -> [(f G (U -- s) (s++R))/p]e 4

The subexpressions el ... e4 are given by the following premises for the extraction. The notations

4 g and #s, and indicate the extraction judgments for graphs and finite sets, respectively. Different

fonts distinguish variables of the logic (x) from variables of the programming language (x).

* Inf A (A is informative)

* ( (FG4G'R4SR)'A ) - U el

* ((rG4oGU4sU),A)- [{} 4A , e2

e ( (r,G49G, UlSu, R!•SR,r-#'r, SlsS~s,•Is),(A, E() PU=1 4 P

E(r) nU U = {} A A

F )n 4. e3

[r W R/R]A

* ((r,G4gG,U4sU,R4SR,r4ir,S4SS,s4is),

(A, E(r) n U = s L+J S A [U\ {s}/U][r, WR U {s}/RIA 4sP))

F E(r) n U = s LtJ S A [U \ {s}IU][r R U {s}IRIA
P44

[r L+ R/R]A

With the derivation of INDDF we can transform Proof 5.36 to a similar proof based on the
new induction rule INDDF. The extraction procedure sketched above yields a new program that
improves on Program 5.37 in two ways. The extraneous termination parameter has been removed.

In addition, because the derived induction rule corresponds to two nested inductions, the new

program contains only one local recursive definition instead of two.
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Program 5.40

fun tclos' (G as (graph(VE))) R f
let fun tclos-l' G empty R = empty

I tclos-l' G U empty = empty
I tclos-l' G U (R as (r++R')) =

case (mapp(rG) && U) of
empty => (tclos-l' G U R')

I (s++S) =>
(s ++ (tclos.l' G (U -- s) (s++R)))

in (tclos-l' G V R) end

5.2.3 A transformation to reflexive transitive closure

Lemma 5.26, which says that E*(R) = E+(R) U U for any R C V, is the basis for an easy proof
for reflexive transitive closure. This proof contains Proof 5.34 as a subproof.

Specification 5.41 V( V, E ) : graph, R. R C V D 3X. X = E*(R)

The proof proceeds by generalization in the same way as for the transitive closure Specification 5.32:

Lemma 5.42 V( V,E : graph, U,R.U, R C V D 3X.X = R U EU+(R)

Specification 5.41 follows easily with U = V by Lemma 5.26.

Proof 5.43 (of Lemma 5.42) The proof is trivial: by Lemma 5.33 there is a set W = E+(R); form
the set R u W. 0

The extracted program relies on the local function definition tclos-' of Program 5.40, extracted
from Proof 5.34:

Program 5.44

fun rtclos (G as (graph(VE))) R
let fun tclos-j G empty R f empty

I tclos-l G U empty = empty
I tclos-1 (G as graph(V,E)) U (R as (r++R')) f

case ((mapp(r,G)) && U) of
empty => (tclos_1 G U RI)

I (s++S) =>
(s +÷ (tclos-1 G (U -- s) (s++R)))

in R 11 (tclos-l G V R) end
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A finite differencing transformation

The transformation problem in this example is a special case of finite differencing [PK80]. Proof 5.43
gives the reflexive transitive closure of a set R as the union of R and its transitive closure; finite
differencing can be used to compute the union incrementally. As a program transformation, finite
differencing applies when there is a difference equation expressing incremental computation, such as
(A u { a }) U B = (A U B) U { a }. This section shows how to use such equations at the level of proofs
in an analogous way. The transformation is very similar to the tail-recursion transformation; in
fact, the analysis of the inductive subproof is identical to the analysis for tail-recursion introduction.
This is not surprising since both are instances of promotion, as pointed out in [Bir84].

The problem in this particular form of finite differencing is to distribute the computation of set
union over a recursive function definition. A proof transformation for this purpose can be formulated
for any simple induction principle INDs (Definition 5.11). It operates on a proof containing an
inductive subproof and, like the tail-recursion transformation, requires proofs of lemmas for each
case of the induction. Since it is based on equations, it is somewhat simpler to specify. As usual
we describe it in terms of higher-order patterns.

In what follows we abbreviate the parameters and terms of thq given induction principle by
tuple variables. Thus i, denotes the parameters of induction x1,. .. , x,, and drn denotes the terms
di 1,...,d,,d occurring in an induction hypothesis, etc.

The input proof has the form

Proof schema 5.45

VIND

Vin .P D 3z) -(l,,, Z)

TP

Vin,,. P D 3y. -(Vin, Y)

where VIND terminates in an application of the simple induction rule INDs. As usual, double
horizontal lines abbreviate sequences of obvious introduction or elimination inferences. We will use
the subproof VD to form an auxiliary specification for a new inductive subproof in the style of the
tail recursion transformation. The transformed induction will prove

Vin -P D 3y. -,-3z. -(tn z) A Y = g(tn,z)

However, the presentation follows the same format as that for the tail-recursion transformation:
first we describe a transformation that produces an inductive subproof without double negation.
The double negation transformations of Section 4.3 can then be applied to selected subproofs of
the result to eliminate unwanted computation.
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We repeat the patterns describing the inductive subproof of the input proof from Section 5.1.4,
changing some parameter names for convenience.

Each base case of DIND has the following form, where x 1,.. . ,x3, may occur free in til,.. ,tin:

Proof schema 5.46

Bi

3z. -I,(ii,, z)

Each inductive case Pi has the following form, where the proper parameters pil,..., pi, of Pi may
occur free in Cil ... Cik, dil,... ,din, and til,.. ,tin:

Proof schema 5.47
S• qi

Cil ... Cik ,( di,, z)

Ii

Sz))3z . 4ý( din, Z) 3z . €]k( in , Z)3Eq

3z . t4i,,, Z)

For each case ,Pi of the induction the transformation requires a proof 4i of an equation. For a base
case 4i must prove, for some hi and for all in:

hi(in) = g(ii,fi(in))

For an inductive case 4i must prove, for some hi and for all pij and z:

hi(Pij, g(din, z)) = g(,in, fi(Pij, Z))

This equation is used with the induction hypothesis when constructing an inductive case of the
output proof to provide a witness t for 3y. y = g(tin, fi(Pij, z)). The witness term is hi(pij, y) where
y is, in turn, the witness provided by the induction hypothesis. Thus hi should be chosen so that it
is cheap to compute, compared to the cost of g(in, z). For the transitive closure problem, assuming
a cost of (IAI + IBI) 2 for A U B, the cost of hi should be no more than a constant since the induction
principle results in a IV12 algorithm. As expected (since depth-first search is inherently IV12 in time
complexity) for this example the transformation does not produce an asymptotic improvement in
the execution time of the algorithm.

The transformation yields a proof of the original specification, containing an inductive subproof
of

Vin.-P D 3y. 3z.- A(-n, z) A y = (.z)

The cases of the induction are constructed from the cases of the original induction subproof and
the lemmas 4i.

Each base case of the induction is constructed as follows:
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Proof schema 5.48

Sf,(i.)) ji) = g(iijiin, , ))
AI

fii) A h.(i.) = g~jfji)

3y. 3z. ,I(i, z) A y = g(iin, z)

Each inductive case has the form:

Proof schema 5.49

qi, AEL

Cil ... Cik (ai,,z) Z)

•'i 9i, hER hj(Pij, g(din, z))

Y = g(ain, z) =g(ii, fi(Pj, Z))

t(iin, f,(pij, z)) hi(pij, y) = g(in, f,(Pij, z))
A hi(P 1 ,y)itI'in•,,fi(fiij, z)) A hi (pij, y) = g(tin, fi (Pij, Z))

3y•1.z.4(ain,z) A Y'= g(din,z) 3y. 3z. '0(tin, z) A y = g0in, Z)
3Eq'

3y. 3z.,,(in, z) A y = g(in, Z)

The new proof has the form:

Proof schema 5.50

a
*'(in, z) A y = g(, z)

AEL

$(i, z)

a
40(i,, z) A Y = g(in, z) V'IND

AER
S= g( Z,z))

*(in, Y) =S Vn. P D 3y. 3z. -(i,, z) A y =g(in, z)

*(2n, z) A Y = g(& , z) D ''(+n, Y) DI.(, z) A Y = g(in, z)

41(ift, Yi)

Vin .P D 3Y. i(,n, Y)

Applying finite differencing to depth-first search

We now show how the transformation can be applied to Proof 5.34. Matching this proof against
Proof schemas 5.45 through 5.47 yields the following instantiations:
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"* g: AV.AE.AU.AR.Ar. R U r

"* From the first base case:

-i. : VE,{},R

-f : AV. AE.AU. AR.{}

"* From the second base case:

- i2. V,E,U,{}
- f 2 : AV.AE.AU.AR.{}

"* From the first inductive case:

- p3: V,E,U,R,r
- a3.: V,E,U,R

- t 3 , : V,E,U,r WJR

- f3 : AV.AE.AU.AR.Ar.Ay.y

"* From the second inductive case:

- p4j : VE,U,R,r,s,S

- i4n: VE,U\{s},(r W R) U {s}

- t4n: VE,U,rtJR

- f 4 : AV.AE.AU.AR.Ar.As.AS.Ay.{s} U y

With these instantiations we are in a position to examine the proof obligations (the equations)
for the four cases of the induction.

1. Z 1 must prove

hi(V,E,U,R) = Ru {}
for some hi; the obvious choice is AV. AE. AU. AR. R, so the proof obligation becomes

VR.R = Ru {}
which is trivial to prove.

2. £I2 must prove

h 2(V, E, U, R) = {} U {}
so we choose the constant function yielding {} for h 2 , and again have a trivial proof obligation
of {}={} u {}.

3. For 43 the user must find some h 3 so that for any z

h3(V,E,U,R,r,R U z) = (ri WR) U z

Choosing AV. AE. AU. AR. Ar. Ay. r W± y for h 3 leads to the proof obligation

rWJ(R U z) = (ri WR) U z

which follows easily from the associativity of set union.
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4. For Z4 the user must find some h4 so that for any z

h4(V,E,U,R,r,s, S,((r W R) U {s}) U z)= (r L R) U ({s} U z)

Choosing AV. AE. AU. AR. Ar. As. AS. Ay. y for h4 leads to the proof obligation

((r R) U Is}) U z = R) U (s) U z)

which again follows easily from the associativity of set union.

The result of the transformation is the following proof of Lemma 5.42:

Proof 5.51 We prove the following lemma by induction on the pair of sets (U, R):

Lemma 5.52

V( V,E ).VU.VR.U,R C V D 3W.3X.X = R u Ei(R) A W =R U X

Case U = {}; then let X = {} and W = R.

Case R = then let X W = {}.
Case U ? {}, R = r W R'. There are two cases:

1. Eu(r) = {}. Then apply the induction hypothesis to (U,R') to obtain X' = Eu (R') and
WI = R' U X'.

By the reasoning of Proof 5.34 Eu+(R') =- Tu(r L9 R'). So let X = W'. Thus W' =

R' U fu+(rL•jR'). Then by the associativity of set union {r} U W' = (rkJR') U Eu+(rWR').
So let W = {r} U W'.

2. Eu(r) = s L±J S. Write U' for U\{s} and apply the induction hypothesis to (U',R U {s}) to

obtain X' = (Eu, +)(R U {s}) and W' = (R U { s}) U W'. By the reasoning of Proof 5.34

{s}U •uu,+(R U {s})= E-u+(R). Solet X = {s}UX'. Now W'= (RU {s})u(Eut,+)(RU

{s}) = R U ({s} U (fu',+)(R U {s})) by associativity. Then W' = R U fuu+(R), so let
W=W'.

Lemma 5.42 follows trivially. 01

Once the proof is further transformed by inserting double negations, the following program can
be extracted. It traverses the graph in depth-first order, adding nodes to the result as they are
removed from the root set R. This corresponds to a post-order listing of a depth-first spanning
forest with roots in R.
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Program 5.53

fun rtclos' (G as (graph(V,E))) R =
lot fun rtclos-l' G empty R = R

I rtclos-1' G U empty = empty
I rtclos-l' (G as graph(V,E)) U (R as (r++R'))

case ((mapp(r,G)) && U) of
empty => r ++ (rtclos-1' G U R')

I (s++S) =>
(rtclos_11 G (U -- s) (s++R))

in (rtclos-1' G V R) end

5.3 Discussion

The two case studies of this chapter demonstrate that simple proof transformations expressible as
derived rules of the object logic can be used to obtain results comparable to those of program trans-
formation while maintaining a formal basis (the object proof) for an explanation of the program.
The capability of proof transformation to alter the functionality of the extracted program, already
seen in the example of Chapter 4, appeared again in the case of breadth-first search. However, the
significance of this capability remains to be seen. It may be more important that this methodol-
ogy integrates the flexibility of a transformational approach with the formal connection between a
program and its specification provided by the proofs-as-programs methodology.

The program development of the depth-first search case study can be duplicated at the program
level by fold-unfold program transformations combined with Sasaki's dead code elimination tech-
nique [Sas86]. Dead code elimination would produce the transitive closure function Program 5.40
from Program 5.37. The developer could then define reflexive transitive closure in terms of set union
and transitive closure. Fold-unfold transformations would eventually yield our final program. But
a proof that this meets the specification of reflexive transitive closure is external to this process,
while such a proof is integral to the proof transformation approach.

The proofs produced by the transformations of the case studies could of course be developed
directly. The end product of the depth-first search development, in particular, is no more com-
plicated or difficult to understand than the initial proof. Part of the point of the example is to
show how transformations can be used to avoid re-doing a proof from the beginning when the
specification changes slightly. The transformation isolates proof obligations so that a user does not
need to repeat the theorem-proving tasks already done. Where the end product of the develop-
ment is more complex than the "natural proof," a record of the transformations used to obtain it
may be useful as a formal basis for documentation of the extracted program. The proof for the
tail-recursive form of breadth-first search is a small example of this: to an uninformed reader the
presence of the accumulator parameter requires explanation. A large, highly optimized proof will
likely contain many such obscure points. Keeping such a record would amount to lifting the design
record advocated in [SS83] from the domain of programs to the domain of proofs.



Chapter 6

Conclusion

This chapter summarizes the thesis and discusses some directions for further research.

6.1 Summary

This work has explored a transformational extension to the proofs-as-programs methodology. We
have focused on a declarative formulation of proof transformations and a partially verified imple-
mentation based on a logical framework and higher-order logic programming. Our case studies show
that known program transformations can be translated into the domain of proofs in the form of de-
rived rules of the object logic. In the case of tail recursion introduction, we demonstrated the effect
noted by Goad for the case of specialization: the increased power of such a proof transformation
over its corresponding purely syntactic program transformation.

We gave an implementation of the core of the support for programming as theorem-proving: a
constructive logic, the syntax and semantics of a small functional programming language, and the
extraction of programs from proofs. There are far more advanced systems capable of supporting
programming by theorem proving, and they are increasing rapidly in sophistication. But these
systems are committed to a particular logic and programming language and provide limited support
for verified metaprogramming. The framework approach allows for rapid experimentation with
various object logics, programming languages, notions of program extraction, and metaprograms.

The implementation is concise and was easy to develop largely because of an intensive use
of higher-order abstract syntax. This was possible because of the choice of logic, programming
language, and the kind of proof transformations to be treated. However, it is important to stress
that the use of a logical framework is not restricted to cases where higher-order abstract syntax is
an appropriate technique.

We have shown how our choice of implementation strategy supp arts verified metaprogramming.
Proofs of correctness properties of program extraction were partially internalized as Elf programs
in such a way that type checking of the programs amounts to the checking of the constructive parts
of the proofs. We encoded proof transformations as rewrite rules so that their type-correctness
is equivalent to a proof that they are derived rules of the object logic. This style of encoding
gives a strong guarantee of correctness, not only for the result of a particular application of the
transformation, but for the transformation itself.
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While we have not given a formal method for the translation of known program transformations
to the domain of proofs, the case studies demonstrate that such translation is feasible, and that
the result is likely to be expressible as a derived logical rule. We gave rules in this form for
transformations to introduce tail-recursive structure, to perform finite differencing, and to change
the basis of a recursive definition, and applied them to several small programming problems on lists,
trees, and directed graphs. Our study of tail-recursion showed that proof transformation resulted in
a useful change to the functional behavior of the extracted program, which would not be obtained
by syntactic program transformations that preserve functionality. Although Goad demonstrated
this effect for specialization, we do not know of any other examples in the literature.

6.2 Assessment

The implementation and case studies are evidence that metaprograms for treating proof systems
can be easily implemented in a declarative way that lends itself to verification, and effectively
applied to useful tasks in program development.

Although we used a very simple object logic, in principle the approach is independent of this
choice. While encodings of richer logics or special-purpose logics are not necessarily trivial to
achieve, there is a wide range of choice even with the particular framework we used. Given the
current interest in variations on logics and programming languages for proofs-as-programs (e.g.
[Mur90], [PW90], [Raf93]), the implementation methodology demonstrated here can be a valuable
aid to research.

The methodology we used can work with a wide varioty of theorem-proving tools. The only
requirement is that proof objects can be generated by ite p (,of process. Thus it could be used in
conjunction with interactive proof assistants such as Coq o. Nuprl, or with the addition of proof
objects, automated deduction systems like the Boyer-Moore prover [BM79] or provers that are
components of larger systems like the software development system KIDS [Smi91].

The potential of our approach is not limited to applications to program development by the
proofs-as-programs methodology, or to programming in the small, or even to programming. It
can be used wherever the adaptation and reuse of formal deductions is of interest. With further
research, the use of proof transformations could have an impact on methodologies and support
tools for a variety of tasks where formal proof is important. This impact will come primarily from
the fact that proof transformation offers support for the modification and reuse of formal proofs
that provide a basis for verification and documentation, reducing the cost of these activities. The
framework-based implementation strategy used in this thesis provides the flexibility and ease of
programming necessary to support experimentation in new areas of application. The variety of
possible settings in which it will be interesting to explore the use of proof transformation is an
argument in favor of our implementation strategy, at least as a basis for research. Its flexibility
and independence of the choice of logic and theorem-proving tools can support quite different lines
of research, yet allow sharing of techniques between them.



140

6.3 Future work

The implementation described here could be improved and extended in a number of ways. The work
of Felty [Fel89] on the specification and implementation of theorem provers in the closely related
setting of AProlog, combined with our work, would provide a basis for a complete implementation
in Elf of support for programming by theorem proving. The tacticals she developed for theorem
provers in AProlog could be adapted to the problem of high-level control of the proof transformation
process.

Planned extensions to the Elf language promise improved support for the structuring of object
languages, theories, and metaprogiams. The module system of [HP99] would greatly ease the task
of creating and maintaining a scaled-up implementation, by providing name-space management
and explicit representation of the relations between deductive systems in the form of parametrized
signatures and realizcrs. Intersection types as proposed in [Pfe92b] could be used to decrease the
duplication of code in the encoding of many-sorted first-order logic.

While the expression of a proof transformation as a derived logical rule has advantages for
expressiveness and automatic verification, it is too specific. For instance, tail recursion introduction
had to be encoded separately for different induction principles, and the encoding is also sensitive to
different case analysis structures in the input proof. The generality of the transformations can be
increased by coding them as logic programs that handle a class of proof structures, but at the cost
of conciseness and declarative form. A general treatment of induction for the object logic along
the lines of Hayashi's conditional inductive generations (Hay90] or the inductively defined types
of Coq [PM93] might be one way to attack this problem. It would also be interesting to try to
formulate transformations as signatures parametrized to a particular induction principle using the
proposed Elf module system.

Our formulation of proof transformations does not completely specify the associated theorem-
proving obligations. In most cases the transformation represents an obligation as a pattern which
is only partially instantiated by unification with the input proof. Peter Madden has shown in his
thesis that similar problems for the tupling transformation can be solved by heuristics and analysis.
This work could certainly be extended to our implementation framework.

Further experimentation with case studies will be required to understand the potential value of
proof transformation for the program development process. It would be valuable to find a char-
acterization of circumstances in which proof transformation can do more than syntactic program
transformation. The tail-recursion examples that we studied produced a change in the functionality
of the extracted program. But as we noted, this would not occur if the problems were specified
on the domain of sets rather than lists, because the corresponding functions on sets are equal.
The specification in terms of lists may be thought of as arising from a commitment to a particular
concrete data type; from this perspective the proof transformation is a tool for recovering from a
premature commitment, a common problem in software maintenance.

Further case studies could also reveal to what extent proof transformations can syntactically
capture heuristics and semantic side conditions for program transformations. Since a proof de-
scribes formally how a program implements its specification, it may contain more clues to how
the program can be transformed than the program itself does. As we have seen, proof transforma-
tions necessarily capture proof obligations for a program transformation. Perhaps existing program
transformation approaches could be enriched with a proof-transformational formulation that would
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provide a uniform language for expressing some heuristic knowledge and all of the semantic cor-
rectness criteria.

These case studies should ideally explore hard program development problems like those treated
by the state-of-the-art program transformation and synthesis research. This will require a richer
object logic than was used in this work, such as Nuprl or Constructions, as well as good proof
development tools.

One way to attack such examples would be to do the work entirely within a proof development
system like Coq, implementing proof transformations in the ML metalanguage. Although the
metaprograms would be less easily verified and less declarative in style than the encodings developed
in this thesis, this approach could lead to insights into how such proof development systems can
support the reuse and adaptation of proofs in general, not only proofs of programs. A variation on
this approach would be to use the chosen system for theorem-proving but interface it to a framework
like Elf where proof transformations could be more easily represented and verified.

An alternative line of research is to view proof transformation as an enrichment of program
transformation, and to build more directly on research in that area. For example, many features of
Smith's KIDS system [Smi9l] could in principle be recast as proof constructions and proof trans-
formations. Theorem-proving in this system is accomplished by goal-directed inference, driven by
the needs of the programming problem at hand. This approach to proof fits well with the way proof
transformations impose proof obligations. Directed inference may be well-suited to the problem
noted above of fully instantiating proof obligations, as well as that of fulfilling those obligations.
Some of the optimizations of KIDS have already been translated to the domain of proofs, for ex-
ample specialization (by Goad) and finite differencing (in this thesis). The treatment of abstract
data types suggested by Pfenning [Pfe90] could probably be used as a proof-transformational basis
for the data type refinement feature of KIDS. Implementing the major features of a system like
KIDS in a proofs-as-programs setting augmented with proof transformations would be a hard but
rewarding task. Because KIDS contains a great deal of programming knowledge and high-level op-
erators, such an implementation would provide significant help with case studies of the application
of the proofs-as-programs methodology to difficult programmiig problems. Proof objects could
provide a uniform framework for the representation of the information that is exploited at each
development step. This is potentially valuable for both the correctness of the implementation of
the transformation system and the documentation of the program Levelopment process.



Appendix A

Elf encodings from Chapter 2

All Elf code in this thesis is accessible (at the time of writing) by anonymous ftp from Carnegie
Mellon University. To obtain the code:

Y, ftp ftp.cs.cmu.edu
Name: anonymous
Password: (your e-mail address)
ftp> cd /afs/cs/user/apa/ftp
ftp> type binary
ftp> get thesis-elf.tar.Z
ftp> bye

% uncompress thesis-elf.tar.Z
% tar -xvf thesis-elf.tar
Srm *.tar

(ftp.cs.cmu.edu has internet address 128.2.206.173)

This will create a directory proof-trans/ with the Elf code and examples in various subdirectories.
For the Elf implementation itself see the file /afs/cs/user/fp/public/READNE.

A.1 First-order logic and arithmetic

%%Y. First-order constructive logic.

=Y. Static

%,7,7 Propositions.
%Y. Syntactic categories.
o type. %name o A B C
i: type. %name i Ti T2 T3

%%% Syntax.
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true : o.
false : 0.
not o -> 0.

and o -> o -> o.

or o -> o -) a.
implies : -> o -> o.
forall : (i -> o) -> o.
exists : (i -> o) -> o.

%%%. Proofs
I- : -> type. /name I- P Q P1 P2 P3 Q1 Q2 Q3

truei :- true.

falsee {C:o} f-false-> I-C.

andi :- A -> I- B -> I- (and A B).
andel :- (and A B) -> I- A.
ander I- (and A B) -> I- B.

oril {B:o} I-A-> I- (or A B).
orir : {A:o} I-B-> B- (or A B).
ore (I- A -> I- C) -> (I- B -> I- C) -> I- (or A B) -> I- C.

impliesi 0(- A -> I- B) -> [- (implies A B).
impliese I- (implies A B) -> I- A -> I- B.

noti (I- A -> I- false) -> I- (not A).
note I- (not A) -> I- A -> f- false.

foralli ({x:i} I- (A x)) -> - (forall A).
foralle {T:i} I- (forall A) -> I- (A T).

existsi {A:i -> o} {T:i} I- (A T) -> I- (exists A).
existse ({x:i} I- (A x) -> I- C) -> I- (exists A) -> I- C.

XX Interpret "i" of FOL as natural numbers.

7,7,7 Static.

zero :.
succ: i->i.

U% Equality
eq : i -> i -> o.

eq.refl {X:i} I- (eq X X).
eq-sym I- (eq X Y) -> I- (eq Y X).
eq-trans I- (eq X Y) -> I- (eq Y Z) -> I- (eq X Z).

eq.subst {F:i -> i} I- (eq X Y) -> I- (eq (F X) (F Y)).



144

axuzero :{:i} I- (not (eq (succ X) zero)).
axusucc {X:i} {Y:i} I- (eq (succ X) (succ Y)) -> I- (eq X Y).

Y.% Induction

ind : {A:i -> o} I- (A zero) -> ({x:i} I- (A x) ->I- (A (succ x)))
-> I- (forall A).

A.2 Functional programming language

YO% Abstract syntax of terms and types.

%Y.Y, Static.

tp : type. 'hame tp Tp Tp' Tp''
term type. %name term M N MI' N' M'' No)

arrow tp -> tp -> tp.

app term -> term -> term.
lam (term -> term) -> term.
fix (term -> term) -> term.

unit tp.
unity term.

nat : tp.
0 : term.
s : term -> term. Y.prefix 100 s
nat-ind term -> (term -> term -> term) -> term.

* : tp -> tp -> tp.
pair term -> term -> term.
fst term-> term.

snd term-> term.
spread term -> (term -> term -> term) -> term.

I tp -> tp -> tp.
iul : term-> term.
inr : term-> term.
decide : term -> (term-> term) -> (term-> term) -> term.

void : tp.
any term -> term.
neg term.

atom : tp.
axiom : term.
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%YY% Call-by-value natural semantics.

oval term -> term -> type.

evO :oval 0 0.
ev-s oval (s M) (s V) <- oval N V.

ov.pair : oval (pair N 5) (pair V V') <- oval N V <- eval I VI.
ev.spread : eval (spread N N) V

<- eval N (pair VI V2)
<- oval (N VI V2) V.

ev-fst eval (fst M) Vi <- eval N (pair VI V2).
ev-snd oval (snd M) V2 <- oval M (pair VI V2).

ev-iul eval (inl M) (inl V) <- eval N V.
ev.inr eval (nr M) (nr V) <- eval M V.
ev-decl eval (decide M 11 Nr) V

<- eval M (inl V9)
<- eval (N1 V') V.

ev-decr eval (decide M N1 Nr) V
<- eval N (inr V')
<- eval (Cr V') V.

ev.lam : eval (lain M) (lain M).
ev.app.lam : eval (app M N) V

<- eval M (lam N')
<- eval N VI
<- eval (N' VI) V.

ev.pr : eval (nat.ind NO Ms) (nat-ind MO Ms).
ev.pr.z eval (app M I) V

<- eval M (nat.ind NO Ms)
<- eval N 0
<- eval MO V.

ev.pr-s eval (app M N) V
<- eval M (nat-ind MO Ms)
<- eval I (s I')
<- eval (Ms 1' (app (nat.ind MO Ms) I')) V.

ev-unity eval unity unity.
ev-axiom eval axiom axiom.
ev.neg : eval neg nog.

Y,7,7, Type inference.

of : term -> tp -> type.
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tpO : of 0 nat.
tp.s : of (a M) nat <- of M nat.

tp-pair of (pair M 1) (* A B) <- of N A <- of N B.
tp.tat of (fat M) A <- o (* A B).
tp.and of (and M) B <- of N (* A B).
tp-spread : of (spread Mpr I) C

<- of Mpr (* A B)
<- {x} of x A -> {y} of y B -> of (N x y) C.

tp-inl :{B} of (nl M) (0 A B) <- of M A.
tp.inr : {A} of (inr M) (I A B) <- of N B.
tp.decide : of (decide N 1l Er) C

<- of M (I A B)
<- ({x:term} of x A -> of (11 x) C)
<- ({x:term} of x B -> of (Er x) C).

tp-lam : of (lam M) (arrow A B)
<- {x:term} of A -> Aof (N x) B.

tp.app : of (app M N) B <- of M (arrow A B) <- of N A.

tp.prec : of (nat.ind Nz Na) (arroa nat A)
<- of Nz A

<- ({x} of nt -> {y} of y A -> of (Ms x y) A).

tp-unity : of unity unit.
tp-axiom : of axiom atom.
tp-any : {A} of (any M) A <- of M void.
tp.neg :A} Aof neg (arrow A void).

A.3 Program and type extraction

7%77 Extraction from individual terms of arithmetic.

%%% DYNAMIC

extract-tm i -> term -> type.

ex-zero extract-tm zero 0.
ex-succ extract-tm (succ X) (a M) <- extract-tm X M.

%%% Extraction of fpl functions from
%%% intuitionistic proofs.

%%% Dynamic.
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extract A- A -> term -> type.

ex-truoi : extract trusi unity.

ex-falses : extract (false* C P) (any N) <- extract P K.

ex-andi : extract (andi PI P2) (pair 11 12)
<- extract P1 11 <- extract P2 N2.

ex-andel : extract (andel P) (fst N) <- extract P N.
ex-ander : extract (ander P) (and N) <- extract P N.

ex-oril : extract (oril B P) (Ul N) <- extract P N.
ex-orir : extract (orir A P) (inr N) <- extract P N.

ex-ore : extract (ore P1 P2 Q) (decide N Nl Er)
<- extract Q N
<- ({x:I- A} {v:term) extract x v -> extract (P1 x) (11 v))
<- ({x:I- B} {v:ternj extract x v -> extract (P2 x) (Er v)).

ex-impliesi extract (impliesi P) (lam N)
<- {x:I- A} {v:teru} extract x v -> extract (P x) (K v).

ex-impliese extract (impliese PI P2) (app M1 M2)
<- extract PI M1 <- extract P2 N2.

ex-noti : extract (noti P) (lam N)
<- {x:I- A} {v:termu (extract x v -> extract (P x) (N v)).

ex-note : extract (note P1 P2) (app K1 12)
<- extract PI M1 <- extract P2 12.

XXX Extraction for arithmetic

XX Dynamic.

ex-foralli extract (foralli P) (lam N)
<- {x:i} {v:term} extract-tm x v -> extract (P x) (M v).

ex-foralle extract (foralle T P) (app M N)
<- extract P N <- extract-tm T 1.

ex-existsi extract (existsi A T P) (pair N N)
<- extract-tm T N <- extract P M.

ex-existse extract (existse P Q) (spread N M)
<- ({x:i) {x':term} extract-tm x x,

-> {p:l- (A x)} {p':term} extract p p'
-> extract (P x p) (M x' p'))

<- extract Q N.

ex-refl : extract (eq.refl X) axiom.
ex.sym : extract (eq-sym P) axiom.



148

ex..trans extract (eq..trans P1 P2) axiom.
ex-smubst extract (eq..subat F P) axiom.
ex-.ax-.zero extract (ax..zero X) neg.
ex..ax-.succ extract (ax..succ X Y P) axiom.

*x-.ind : etract (md A Pz Ps) (nat-.ind Iz NO)
<- extract Pz Iz
<- {x:i} {v:terz} extract-.tm x v

-) p:I- (A x)) {w:torm} extract p w
->extract (Ps x p) (Is v in).

%%Extraction of fpl types.

%%.Dynamic.

extract-.tp : -> tp -> type.

ext-.true :extract..tp true unit.

ext..lalse :extract..tp false void.

ext-.not extract..tp (not A) (arrow Tp void)
<- extract..tp A Tp.

ext-.and extract..tp (and A B) (* Tpl Tp2)
<- extract..tp A TpI

<- extract-.tp B Tp2.

ext-.or extract..tp (or A B) 0I Tpl Tp2)
<- extract..tp A Tpl

<- extract..tp B Tp2.

ext-implies extract-.tp (implies A B) (arrow TpI Tp2)
<- extract-.tp A TpI

<- extract-.tp B Tp2.

V.%%. Extraction of 1 p1 types.

%%%. Dynamic.

ext-.forall extract-.tp (f orall A) (arrow nat Tp)
<- {x:i} extract-.tp (A x) Tp.

ext-.exists extract..tp (exists A) (* nat Tp)
<- {x:i} extract-.tp (A x) Tp.

ext..eq :extract..tp (eq X Y) atom.
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A.4 Extraction/simplification

*X%. Extraction/simplification of fpl terms from intuitionistic proofs.

oxtract.simp : I- A -> term -> type.

7,7, Uninformative proofs
exs-n: extract-simp (P: I- (not A)) neg.
exsaf: extract.simp (P: I- false) (app neg unity).
exasun: extract.simp (P: I- A) unity <- uninf A.

7, CONJUNCTION
YX%, Don't build (pair M N:B) if B is uninformative.
exs-andil : extract-simp (andi (P: I- A) (Q: I- B)) N

<- int A <- extractsimp P M <- uninf B.

%% Don't build (pair M:A N) if A is uninformative.
exs-andi2 extract-simp (andi (P: I- A) (Q: I- B)) M

<- uninf A <- inf B <- extract-simp Q M.

exs..andi3 extract-simp (andi (P: I- A) (Q: I- B)) (pair M N)
<- inf A <- extract.simp P M
<- inf B <- extractsiimp Q N.

%% Don't build (fat M:(* A B)) if B is uninformative.
exs-andell extract.simp (andel (P : I- (and A B))) M

<- inf A <- uninf B <- extract-simp P M.

exs-andel2 extract-siap (andel (P : I- (and A B))) (fat M)
<- inf A <- inf B
<- extract.simp P M.

YXYX Don't build (snd M:(* A B)) if A is uninformative.
exs-anderl : extract-simp (ander (P : I- (and A B))) M

<- uninf A <- inf B <- extract-simp P M.

exsaander2 : extract.simp (ander (P : I- (and A B))) (snd M)
<- inf A <- inf B

<- extract.simp P M.

,7X DISJUNCTION
exs-oril : extrac- ..mp (oril B P) (inl M)

<- extra, .zxmp P M.

exs-orir : extract.simp (orir A P) (inr M)
<- extract.simp P M.

exs-ore : extractsimp (ore P1 P2 Q) (decide M 11 Nr)
<- extractsimp Q M
<- ({P:I- A} {p:term} extract-simp P p -> extract-simp (PI P) (Ni p))
<- ({P:I- B} {p:term} extract-simp P p -> extractsimp (P2 P) (Nr p)).
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%X IMPLICATION
U% Don't build (lan M) if A is uninformative.
ex..implil : extract.simp (impliesi (P: I- A -> I- B)) M

<- uninf A <- iut B
<- {p: I- A} extract.simp (P p) M.

exs-impli2 : extract.simp (impliesi (P: I- A -> I- B)) (lam M)
<- inf A <- inf B
<- {Q: I- A} {q:term} (extractsimp Q q -> extractsimp (P Q) (M q)).

%% Don't build (app M N:A) if A is uninformative.
exs-implel extract.simp (implies. (P: I- (implies A B)) Q) M

<- uninf A <- inf B <- extract.simp P M.

exs-imple2 extract.simp (impliese (P: I- (implies A B)) Q) (app M 1)
<- inf A <- inf B
<- extract.simp P M <- extract.simp Q N.

%% NEGATION
%% (noti P) will always be caught by the rule "exs-n" since the conclusion is "(not A)".
%% (note P) will always be caught by the rule "exszf" since the conclusion is "false".

%% ABSURDITY
exsafalsee : extract.simp (false. C P) (any M)

<- extract.simp P M.
%X% ASSERTION
exs-isay : extract.simp (isay A) unity.

%%% Extraction with removal of uninformative parts.
%%% Requires pap/extract-simp.elf

%%% DYNAMIC

%% UNIVERSAL QUANTIFICATION
exs-foralli extract.simp ((foralli P):I- (forall A)) (lam M)

<- inf (forall A)
<- {X:i} {x:term} (extract.tm X x -> extract.simp (P X) (M x)).

exs-foralle extract.simp (foralle T (P: I- (forall A))) (app M N)
<- inf (forall A)
<- extract-simp P M <- extract-tm T N.

%% EXISTENTIAL QUANTIFICATION
/.Y Don't build (pair M N:A) if A is uninformative.

exs-existsil extract-simp (existsi A T -) M
<- (Cx:i} uninf (A x)) <- extract-tm T M.

exs-existsi2 extract.simp (existsi A T P) (pair M N)
<- ({x:i} inf (A x))
<- extract-tm T M <- extract-simp P N.



%%We don't have (pair H I:A) if A is uninformative.
exs..existsei extract-.simp (exists. P (Q: I- (exists I)) (app Clam H) N)

<- C{Z:i} uninf (A X))
<-({:i} {x:term} extract..tm X x

-> (p: I- (A X)} extract-.simp (P X p) (N x))
<- extract..siup Q N.

exs..existse2 extract-.simp (exists. P-.min P-.maj) (spread N M)
<- ({:i} min (A X))
<- ({X:i} {x:term} extract..tm X x

-> P: I- (A W) {p:term} extract..simp P p
->extract...simp (P...in X P) (H x p))

<- extract..simp P..maj I.

%%. INDUCTION
exs..And :extract..simp (ind A Pz Ps) (nat-.ind Iz Is)

<- ({X) inf (A W)
<- extract-.simp, Pz Iz

<- X:i} {x:term} extract-.tm X x
-> P:I- (A X))} {p:term} extract-.simp P p
->extract..simp (Ps X P) (Is x p).

%%% Extract simplified type

%%% Dynamic.

ex..tp..s a -> tp -> type.

exts-.h: ex..tp..s A unit <- uninf A.
exts-.n: ex..tp..s (not A) (arrow T void) <- ex..tp..s A T.
exts-.false ex...tp..s false void.

exts-.andl ex..tp..s (and A B) T
<- mtf A <- ex..tp..s A T
<- uninf B.

exts..andr ex..tp..s (and A B) T
<- uniuf A
<- inf B <- ex..tp..s B T.

exts-.and ex..tp..s (and A B) (* Ti T2)
<- inf A <- ex..tp..s A Ti
<- min B <- ex..tp..s B T2.

exts..or ex..tp..s (or A B) (I Ti T2)
<- ex..tp-.s A TI
<- ex..tp..s B T2.

exts-.impr :ex..tp..s (implies A B) T
<- uninf A
<- inf B <- ex..tp-.s B T.

exts..imp ex..tp..s (implies A B) (arrow Ti T2)
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<- min A <- .x...tp-.. A TI
<- int B <- ex-.tp-.s B T2.

.xts-.all .x..tp..s (forall A) (arrow nat T)

exts-e.xl *x-.tp-.. (exists A) nat
'-({x:i} unint (A x)).

exts~ex :*x..tp..s (exists A) (* nat T)
<- ({x:i} int CA x))
<- C(x:i} .x..tp...s (A x) T).



Appendix B

Adequacy of encodings

This appendix discusses the faithfulness of the encodings of the object languages and inference
systems of Chapter 2. Following Harper et al. [HHP93], we describe minimal correctness properties,
called adequacy theorems, for the encodings. Proofs of adequacy tend to be rather stereotyped and
filled with unenlightening detail, so we omit them.

Adequacy in general consists of two properties: the existence of a bijective representation func-
tion from the expressions of a language to be represented to terms of the formalized representation,
and the compositionality of the representation function. The bijection ensures that every language
expression has a unique representation as a canonical term of the representing type, and that every
such canonical term represents a language expression. Loosely speaking, a representation function
is compositional when it commutes with substitution. Thus to state an adequacy theorem in full
it is necessary to define a representation function, possibly parameterized to a set of variables if
open terms must be treated, and to define substitution in both the language to be represented and
the representing formalism. The key idea in such theorems is to identify the variables of the repre-
sented language with the variables of the formalism. This identification reflects the basic principle
of representations based on higher-order abstract syntax.

The encodings of first-order logic and natural deduction we used closely follow those of Harper
et al. Although their encoding is for classical logic, this does not materially affect the statements
and proofs of correctness (the major change is to omit the classical absurdity rule from the natural
deduction inference system). Rather than restate the adequacy theorems for these we refer the
interested reader to [HHP93].

We assume as background the definition of canonical forms for LF terms and the proof of their
existence.

B.1 Adequacy for syntax of program expressions and types

Adequacy for the functional programming language and its type system is easy to state. We omit
the definition of substitution as it is the usual one. The definitions of representation functions
use typewriter font for LF/Elf term constructors (e.g., pair). An expression of the form Ax. e
represents an LF/Elf term of functional type.

153
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We repeat the syntax of the function programming language used for extraction:

e ::= x I Variables
o I S(e)I Natural numbers
( el,e 2 ) I fst(e) I snd(e) I spread(el; x,y.e 2) Pairs
inl(e) ] inr(e) I decide(el; x.e 2; x.e 3) I Disjoint union
lamx.e natind(e,; x,y.e 2) I app(e,,e 2 ) I Functions

o 1 Unity
any(e) j neg Error
axiom Self-realizors

The Elf signature for the representation of programming language expressions and types, which
we denote by EPL:

tp : type.
term : type.

arrow : tp -> tp -> tp.

app : term-> term -> term.
lam : (term-> term) -> term.

unit : tp.
unity : term.

nat : tp.
0 term.
s term -> term.
nat-ind : term -> (term -> term -> term) -> term.

* : tp -> tp -> tp.
pair term-> term -> term.
fst : term-> term.
snd term-> term.
spread : term -> (term -> term -> term) -> term.

I tp -> tp -> tp.
inl : term-> term.
inr : term-> term.
decide : term -> (term-> term) -> (term-> term) -> term.

void tp.
any term-> term.
neg term.

atom : tp.
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axiom : term.

Definition B.1 Given a set of variables X = {x,.. Xn , we define the corresponding Elf context
rx as {xi :term,...,xn :term}.

Definition B.2 Let X be a set of variables. The following defines the representation function -x
for programming language expressions. The notation Ex,X . .. ,, denotes the representation function
for the set X extended by the addition of the variables x1,... ,, X.

ex(x) = x, if x E X
Cx(O) = 0
ex(s(e)) = s Ex(e)
,x(( ej,e 2 ))= pair Ex(el) cx(e2)
,x(fst(e)) = fst -x(e)
Ex(snd(e)) = snd -x(e)
Ex(spread(el; x,y.e 2)) = spread -x(el) (Ax : term. Ay : term. ex,,V(e2))
ex(inl(e)) = nl cx(e)
Ex(inr(e)) = inr Ex(e)
Ex(decide(el; x.e 2 ; x.e 3 )) = decide cx(el) (Ax : term.Ex,x(e2)) (Ax :term.cx,x(e 3 ))

ex(lam x.e) = lam Ax : term.cx,x(e)
ex(nat-ind(el; x,y.e 2)) = nat-ind -x(el) Ax : term. Ay :term. cx,x,y(e2)
Ex(app(ei,e 2 )) = app Ex(ej) Ex(e2)

Ex(O) = unity
Ex(any(e)) = any ex(e)
ex(neg) = neg
-x(axiom) = axiom

Theorem B.3 Adequacy for programming language syntax: For any set of variables X, Ex is
a bijection between the expressions of the programming language with free variables in X and the
canonical forms of type term in the signature EPL and the context rx. The encoding is com-
positional, i.e., for a program expression e with free variables in X = { xl,... ,xn} and program
expressions el,... , e,, with free variables in Y,

cy([el/xl,...,en/xn]e) = [cy(el)/xl,...,,-y(en)/xn]cx(e)

Adequacy for programming language types is simpler to state since there are no type variables.
The obvious definition of the representation function - for types can be made without reference to
a set of variables - E(r1 x r2) = * (Trl) E(r 2 ), etc. Compositionality does not apply, so adequacy
amounts to:

Theorem B.4 Adequacy for programming language types: E is a bijection between the type ex-
pressions of the programming language and the canonical forms of type tp in the signature EPL.

B.2 Adequacy for programming language semantics

The correctness properties for evaluation and type assignment deductions can be stated in much the
same way. Evaluation is particularly simple since only closed programming language expressions
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occur in evaluation deductions, and these deductions do not introduce any assumptions. Thus
there is no notion of substitution for an evaluation deduction, and an adequacy theorem can be
formulated as for the representation of programming language types.

Type assignment deductions introduce assumptions; thus to state adequacy it is necessary (again
following Harper et al.) to slightly reformulate the system to be represented so that assumptions
are labelled by variables. Then the substitution of a type assignment deduction T :: X I- e E r for
an assumption variable ý :: x E 7 can be defined so that substitution preserves the validity of de-
ductions. This entails simultaneously substituting x for e in the programming language expressions
of the deduction, as well as combining sets of typing assumptions. The representation function
- is then defined in terms of the representation functions for programming language expressions
and types. Since representation of programming language expressions is parameterized by a set of
programming language variables, we define:

Definition B.5 Given a set of typing assumptions X = :: xi E r1,... •, xn E r-, }, the

projection to programming language variables p(X) is I Xl... , xn }.

Figure 2.11 shows the Elf signature that represents the type assignment system of Figure 2.10.

However, this form of the signature exploits the Elf term and type reconstruction facility to avoid

showing implicit arguments that must be made explicit in order to formulate statements of ade-
quacy. In practice these arguments are supplied by Elf; we show a full declaration for the type
inference rule for A-abstraction as an example:

tp-lam : {M: term -> term} {A: tp} {B: tp}

of (lam M) (arrow A B)
<- {x:term- of x A -> of (M x) B.

Here the argument M of the constant lam, and the types A and B are made explicit. The arguments

of all other constants in the signature can be similarly treated. With the signature EPL that defines

the syntax, let the resulting signature be ETP- The representation function can then be defined in

terms of F2TP. We show the definition for functional abstraction as an example:

T
X,x E 71 - e E 7"2 tp-lam -X F- lam x. e E 7- :* -r2

;p_..am (Ax : t;erm.e-(x),.(e)) -(71) -(T 2 ) (Ax: term. A : of x E(71). E(T))

Definition B.6 Given a set of typing assumptions X = {, :: xi E 7 1 ,.. -,n :: xn E n}, we

define the corresponding Elf context rx as {x 1 : term,...,xn : term,61 : of xi E(n),...,

of xn ,iTr)I.

Theorem B.7 Adequacy for type assignment deductions: E is a bijection between the typing de-

ductions T :: X F- e E r and the canonical forms of type of CP(x)(e) e(r) in the signature ETp and

the context r x. The encoding is compositional, i.e., for a typing deduction T :: X F- e E r where

X ={ :: xi E r1 ,...,F1  :: xn E Tn} and typing deductions 7" :: X' F- el E T1,...,T7n :: X' F- en E
Tn

E( 'T1•1,• •• ,"Tn•n]")= [e(7j1)1•1,. . ., (")•](
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Although there are more details to be handled, adequacy for extraction and extraction/simplification

deductions can be stated similarly.



Appendix C

An Elf program to recognize
tail-recursive form

The following program encodes a deductive system for establishing whether a program is in tail-
recursive form. The key idea of the deduction is to check whether a given bound variable occurs
free in certain subterms of a recursive definition. There are three judgments of the system. The
judgment tLrec-pgm holds if a program expression is tail-recursive as a whole. The judgment
tL-rec-def holds if a primitive recursive function definition is tail-recursive. Finally, tiLrec-body
is defined on functions from program terms to program terms, and does the real work of checking
that the bound variable represented by the function parameter occurs only in legal positions. Note
that there are two rules for the case where the construct app (lam M) N occurs. This corresponds
to a let-binding, where the function parameter of interest must be restricted to occur in the binder
or in the body, but not both.

tl-rec-pgm : term-> type.
tl-rec-def : term-> type.
tl-rec-body : (term -> term) -> type.

trbody-id : tl-rec-body ([x] x).
trbody-app : tl-rec.body ((x] app (N x) I)

<- tl-rec-body N.
trbody-app-laml : tl-rec-body ([x] app (lam N) (I x))

<- tl..rec.body ([x] N (I x)).
trbody-app-lam2 : t•lrec.body ([x) app (lam (N x)) I)

<- tL-rec.body ([x] N x N).
trbody.lam : tl-rec-body (Ix) lam [y] N x y)

<- ({y} tl-rec-body (Ex] N x y)).
trbody-case : tlrec-body (Ex) decide N (11 x) (Jr x))

<- ({y} tl-rec-body (Ix] 11 x y))
<- ({y} tLrec-body (Ix) Ir x y)).

trbody-if : tl-rec-body (Cx] if N (NO x) (Ni x))
<- tlrec.body ([x] NO x)
<- tl-rec-body (Cx] NI x).

trdef-nat-ind : tl-rec-def (nat.ind Nb Ms)

158
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<- tl-rec-.pgm Nb
<- ((x) tl~rec-.body (Cy) Nz x y)).

trdet-.list-.ind :tl-rc-.def (list-.ind KNil Mcons)
<- tl-rec..pgm KNil
<- ({l) {x} ti-rec-.body ([y] Ncons 1 y x)).

trpgm-n.at..ind :tl-rec-.pgm (nat-.ind Kb NOs
<- tl-rec..def (nat-ind Nb NZ).

trpgm-.list-.ind :tl..rec..pg. Cliut..ind KNil Ncons)
<- tl-.rec..dof (list..ind Nnil Mcons).

trpgu..app :tl-rec-.pgm (app N N)
<- tl-rec-.pg. N
<- tl-rec-.pgm I.

trpgm-.lam tl-rec-.pgm Clam N)
<- (Wx tl-.rec...pgm x -> tl,.rec..pgm (N x)).

trpgmu..inity :tl..rec..pgm unity.
trpglu... tl-rec-.pgm 0.
trpgu... tl-rec-.pgm Cs N)

<- tl-rec-.pgm N.
trpgm-.pr :tl..rec-.pgm (pair XN )

<- tl-rec-.pgm N
<- tl-.rec-.pgm N.

trpgm-.f at :tl-.rec-.pgu Cf t N)
<- tl-rec-.pgm N.

trpgm-.snd :tl-rec-.pgm Cand N)
<- tl-rec-.pgm N.

trpgm-.spread :tl-rec-.pgm (spread N 1)
<- tl-rec..pgm N
<- ({z} {y} tl..rec-.pgm x -> tl-.rec-.pgm y

-> tl-.rec-.pgm (I x y)).
trpgmin...:al tl..rec-.pgm (ml N)

<- tl-rec-.pgm N.
trpgm-.inr tl-rec-.pgm Cmxr N)

<- tl-rec-.pgm N.
trpgm-.decide :tl-rec-.pgm (decide N 11 Er)

<- tl-rec-.pgm N
<- ({x} ti-rec..pgm x >tl-rec-.pgm (N2 x))
<- (Wx ti-rec-.pgm x ->tl..rec-.pgm CIr x)).

trpgm-.any :ti-rec-.pgm (any N)
<- tl-rec-.pgm N.

trpgm-.neg :tl-rec..pgm neog.
trpgm-.case-.nat :ti-rec-.pgm Ccase-.nat N No NO)

<- tl-rec-.pgua N
<- tl-.rec-.pgm 10
<- Wx tl..rec-.pgm x -> tl..rec-.pgm CNs x).

trpgm..pred :tl-rec-.pgm Cpred N)
<- tl-rec-.pgm M.

trpg.m-minus tl-rec-.pgia CM - N)
<- ti... ý%c..pgm N
<- ti

trpgm..pluL tl-.zec-.pgm (N + N)
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<- tl-rec-pga N
<- tl-rec.pga N.

trpgw.mul : tl-rec-pga (sul N I)
<- tl-rec-pga N
<- tl-rec.pgo I.

trpg•u.sign : tl-rec.pgo (signum M)
<- tl-rec.pga N.

trpgn_eq : tl-rec-pgm (N = I)
<- tl-rec-pgo N
<- tl-rec-pgm I.

trpgmnif : tl.rec.pg, (if N It If)
<- tl-rec-pga N
<- tl-rec.pgm It
<- tl-rec-pgm If.

trpgm.ge : tl-rec-pgm (M >= I)
<- tl.rec.pga N
<- tl-rec-pgm I.

trpgmeq? : tl.rec.pgm (=? N N)
<- tl-rec.pga N
<- tlrec-pgm I.

trpgmsnil tl-rec-pgm nil.
trpgm-cons tl-rec.pgm (cons N I)

<- tl-rec-pgm M
<- tl.rec.pgm I.

trpglu.case.list : tl-rec.pgm (case-list M Inil Ncons)
<- tl-rec-pgm N
<- tl-rec.pgm unil
<- {W} tl.rec.pgm x -> {1} tl-rec.pgm 1

-> tl-rec-pgm (Icons x 1).
trpgM_@ : tl-rec-pgu (0 N I)

<- tl-rec-pgm M
<- tl-rec-pga I.

Using the techniques of Chapter 3, we partially encoded a proof that the tail-recursion intro-
duction transformation of Chapter 4 yields a tail-recursive program if it succeeds.

Theorem C.1 Any program extracted from the output proof constructed by a successful application
of tail-recursion introduction is tail-recursive.

The theorem is represented by the declaration:

tl-rec-pf :
tail-rec-doubleneg ------ Phi Psi
Input-proof I1 12 13
Output-proof ->

extract.simp Output-proof Prog -> tl-rec-pgm Prog -> type.
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The proof relies on "inversion": since the transformation is defined by a single clause, the form
of the output proof can be read off from that clause. This in turn determines the form of the
extraction deduction, thus of the extracted program, in enough detail that the required deduction
of tail-recursiveness can be constructed. The representation of the proof is incomplete because we
have assumed without proof that any program expression extracted from an individual term of the
logic is tail-recursive. This is not hard to prove although the details are tedious. The following
clause represents the partial proof:

tr-pt :
(RO} (SO} ({SO} (ESO :k} {k'} extract-ltm k k' -> extract-ltm (SO k) (XSO k')}
(KO} ({KO} MEKO : extract-l-tm KO MKO}
{F}

(EH :x} (x'} extract-tm x x' -> Wk} (k'} extract-l.tm k k' -> extract-l-tm (H x k) (Nh x' k')}
{Phi} {Psi} {Db} {II} {I2} {13}
{Ds} {inbase} {Nnstep} {Iconc} {Nnc.ded} (Nns.ded} {Inb.ded}
{base.trpf {k} tl-rec-pgm k -> tl.rec.pgm (MSO k)}
{inittrpf : tlrec-pgm MKO}
tl.rec.pf

(tl.rec.doubleneg RO SO KO F H Phi Psi Db I1 12 13
Ds Nnbase Instep Nconc
Nnc-ded Inesded Inb-ded)
%. Extraction deduction must have the following form:
(exs-lforalli
(Eli] [11' [ell: extract-l-tm 11 l1']
exs-lexistsel
(exs.lforalle EKO
(exs.lforalle ell
(exs.lind (El[ El') Eel: extract-l-tm 1 1')
Ep) Ep'] Cep: extract.simp p p']
[x) Lx'] [ex: extract-tm x x')
exs-lforalli (Ek] Ek') [ek: extract-l-tm k k']
exs-lexistsel (exs.lforalle (EH x x' ex k k' ek) ep (inf.lforall [k] inf.lexists))

(Es) Es') [es: extract-l-tm s s')
Ehyp) [ehyp: extract.simp hyp unity]
exslexistsil es (Ex] unin.n))
(El) unin.n))

(inflforall [El inflexists))
(exs-lforalli

(Ek] Ek') [ek: extract-l-tm k k') exs.lexistsil (ESO k k' ek) (Ex) unin.n))
(inf-lforall [1E inf.lexists))

(El) inf-lforall El) inf-lexists))
(inf.lforall El) inf1lforall [k] inf-lexists))

(inf.lforall [k] inf.lexists))
(Es) [s') [es: extract-l-tm s s') Ep) [ep: extract-simp p unity]
exs-lexistsil es (Es) unin-n))

( El:ilist] unin-n))
(inf-lforall (El) inftlexists)))

% Deduction that extracted program is tail-recursive:
(trpgm-lam
( El] Ctrl]
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tzpgm..app
(tzpgm..app
init-.trpf
(trpgm...app
tri
(trpga-.list..And
(trdof-lint...ind
((1J [z] trbody-.las ( [y] trbody-.app-.laul Ctrbody-.app trbody-.id)))
(trpga...1a (kJ EtrkJ base-.trpf k trk) ))

(trpguj-am ([xJ [trxJ trx))))



Appendix D

Extensions of Elf encoding to
many-sorted logic for Chapter 4

D.1 Extended arithmetic

%% Interpret "i" of FOL as natural numbers

zero 1.

succ ic-> i.

%% Equality

eq : i -> i -> o.

ax-zero {X:i} I- (not (eq (succ X) zero)).

eq.refl {T:i} I- (eq T T).
eq.repl {A:i -> o} I- (A T) -> I- (eq T T') -> I- (A T').

% Induction

ind : {A:i -> o} I- (A zero) -> ({x:i} I- (A x) -> I- (A (succ x)))

-> I- (forall A).

% predecessor, subtraction, addition, multiplication

prd : i -> i.

prdz : I- (eq (prd zero) zero).
prds :{T} I- (eq (prd (succ T)) T).

sb i -> i -> i.

sbz {T} I- (eq (sb T zero) T).
sbs {TI} {T2} I- (eq (sb T1 (succ T2)) (prd (sb TI T2))).
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ad i -> i -> i.

adz (T} I- (eq (ad T zero) T).
ads {TO} (T2} I- (eq (ad T1 (succ T2)) (succ (ad T1 T2))).

ml i -> i -> i.

mlz I{T} - (eq (ml T zero) zero).
mls ({T} {T2}I- (eq (ml TI (succ T2)) (ad (ml TI T2) Ti)).

7.% "Boolean" functions (zero codes truth, (succ zero) codes falsehood)

Bg : i -> i. 7, (ag x) = 0 iff x = 0, (sg x) <= I for all x

sg: {T} I- (eq (sg T) (Cb (succ zero) (ab (succ zero) T))).

% equality test

eq? : i -> i -> i.

eq?x :{Ti} {T2} I- (eq (eq? T1 T2) (sg (ad (sb TI T2) (sb T2 TI)))).

% conditionals

switch i -> i -> i -> i.

switchz ({T} {T2} I- (eq (switch zero TI T2) Ti).
switchs ({T} {T2} I- (eq (switch (succ zero) TI T2) T2).

%. inequalities

ge? : i -> i -> i. %. greater than or equal

ge?x : {Ti} {T2} I- (eq (ge? TI T2) (sg (sb T2 TI))).

Y.%,7 Extraction with removal of uninformative parts.
Y7Y.% For primitive recursive arithmetic rules of proof.

%%.% DYNAMIC

%,% Equality

% Peq proves (eq TI T2) thus has no computational content.
exzseq-repl extract-simp (eq-repl A Pa Peq) M

<- extract.simp Pa M.

%.% UNIVERSAL QUANTIFICATION
exs-foralli extract-simp ((foralli P):I- (forall A)) (lam M)

<- inf (forall A)
<- {X:i} {x:term} (extract-tm X x -> extract-simp (P X) (M x)).
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exa-.forall. extract-.simp, (torall. T (P: I- (forall A)) (app, N N)
<- min (foralj. A)
<- extract..simp P N <- extract-ta T N.

%%, EXISTENTIAL QUANTIFICATION
/.Y. Don't build (pair N 1:A) if A is uninformative.
exs-.existsii extract-.simp (existsi A T -.) N

<- ({x:i} uninf (A x)) <- extract..tm T N.
.xs..existsi2 extract-.simp (existsi A T P) (pair N 1)

<- ({x:i} min (A x))
<- extract,.tm T N <- extract-.simp P N.

U% We don't have (pair N N:A) if A is uninformative.
exs-.existsel :extract..simp (exists. P (Q: I- (exists A))) (app (lam N) N)

<- ({X:i} uninf (A X))
<- ({X:i} {x:term} extract-.tm X x

-> {p: I- (A X)} extract..simp (P X p) (N x))
<- extract-.simp Q N.

exs-.existse2 extract-.simp (exists. P..min P-.maj) (spread N N)
<- ({:i} inf (A X)
<- C{:i} {x:term} extract-tm X x

-> P:I- (A X)} {p:term} extract-.simp P p
->extract-.simp (P...min X P) (N x p))

<- extract-.simp P-..aj N.

%% INDUCTION
exs-.ind :extract-.simp (md A Pz Ps) (nat-ind Nz Is)

<- M)X inf (A X))
<- extract-.simp Pz Iz
<- {X:i} {x:term} extract-.tm X x

-> P: I- (A X)} {p:term} extract..simp P p
->extract..simp (Ps X P) (Is x p).

D.2 Monomorphic lists

%%(Logical) syntactic categories.

ihist :type. Ynaine ilist 1 k u v w 1' k' u' v' VA

%%%. (Logical) abstract syntax.

iforall (ilist ->o) ->o.

lexists (ilist o> ) o> .

%X%.Y Lists for FOL

ni ilist.
cns i -> ilist ->ilist.
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leq : ilist -> ilist -> 0.

leq-refl {L:ilist} I- (leq L L).
leq-repl {A:ilist -> o} I- (A L) -> I- (leq L L') -> I- (A L').

leq-nl {X:i} {L:ilist} I- (not Cleq n1 (cns X L))).
leq-cns I- (eq X Y) -> I- (leq LI L2) -> I- (leq (cns X LI) (cns Y L2)).

%%% Rules of proof for quantifiers.

iforalli ({x:ilist} I- (A x)) -> I- (iforall A).
1foralle {T:ilist} I- (lforall A) -> I- (A T).

lexistsi {A:ilist -> o} {T:ilist} I- (A T) -> I- (1exists A).
lexistse ({x:ilist} I- (A x) -> I- C) -> I- (lexists A) -> I- C.

lind {A:ilist -> o} I- (A nl)
-> ({l:ilist} I- (A 1) -> {x:i} I- (A (cns x 1)))

-> I- (iforall A).

elem: i -> ilist -> o.
elem-nil : {X} I- (not (elem X ni)).
elenahd : {X} {L} I- (elem X (cns X L)).
elem-tail {Y} I- (elem I L) -> I- (elea X (cns Y L)).
elem-ind : {A:i -> o} {Y} {I} {L} I- (elem Y (cns X L))

-> I- (A X)
-> ({Z} I- (elem Z L) -> I- (A Z))
-> I- (A Y).

elemacase I- (not (eq X Y)) -> I- (not (elem X L)) -> I- (not (elem X (cns Y L))).

elem-decide : {X} {L} I- (or (elem X L) (not (elem X L))).

append : ilist -> ilist -> ilist.
append-id-l {L} I- (leq (append n1 L) L).
append.id.r {L} I- (leq (append L nl) L).
append-assoc {X} {Li} {L2} I- (leq (append (cns X LI) L2) (ens X (append LI L2))).

lswitch i -> ilist -> ilist -> ilist.

lswitchz {TI} {T2} I- (leq (Iswitch zero TI T2) TI).
isvitchs {Ti} {T2} I- (leq (iswitch (succ zero) TI T2) T2).

%%% Extraction/simplification

h-leq : harrop (leq L K).
h-elem : harrop (elem X L).

h-lforall : harrop (iforall A) <- {x:ilist} harrop (A x).
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unin-.laq :unint (leq L K).
unin-..lenu u~ninf (ales X L).

u~nin-1forall unint Ciforall A) <- {x:ilist} uninf CA x).

int-lexists min (lexists A).

inf-.lforall min (iforall A) <- {x:ilist} int CA x).

extract-.l-tm ilist -> term -> type.

ex-.nil extract-.l..ta nl nil.
ex..cons extract-.l-tm (cns X L) (cons X' LI)

<- extract-.tm X X' <- extract-.l-.tm L L).
ex-.append :extract,...tm (append Li L2) (6 Li1 L21)

<- extract-.l-.tm Li Li' <- extract-.l..tm L2 L21.
ex-.lif extract-.l-.tm (1switch X Li L2) (if M Mi 142)

<- extract-.tm X 1M
<- extract..1..tm Li Mi
<- .xtract-.l-.tm L2 M42.

%%Extraction, with simplification, for lists of individuals

%%.DYNAMIC

%% Equality

% Peq proves (leq Ti T2) thus has no computational content.
exs-.leq-.repl :extract-.simp (leq..repl A Pa Peq) 14

<- extract-.simp Pa 14.

%%Y Membership

% P-elem has no computational content
exs-.elem-.ind :extract-.simp Celem-.ind A Y X L P-.elem P-.hd P-tl)

(if (Y' = X') 11 (Er Y'))
<- extract..tm Y Y' <- extract..tm X X'
<- extract-.simp P-.hd 11
<- (MT (t) extract-.tm T t

* ~-> (PI extract-.simp (P-.tl T P) (Er t)).

%% UNIVERSAL QUANTIFICATION
exs-.lforalli extract-.simp ((lforalli P):I- (lforall A)) (lam X)

<- inf (lforall A)
<- {L:ilist} {l:term} (extract..l-tm L 1 -> extract-.simp (P L) (1M 1)).

exs-.lforalle extract..simp (lforalle T (P: I- (lforall A))) (app M4 1)
<- inf (lforall A)
<- extract-.simp P 14 <- extract-.l-.tm T N.
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%% EXISTENTIAL QUANTIFICATION
U Don't build (pair M N:A) if A is uninformative.
exs-lexistsil extract.simp (lexistsi A T -) M

<- ({x:ilist} uninf (A x)) <- extract-l-tm T M.

exs-lexistsi2 extract.simp (lexistsi A T P) (pair M N)
<- ({x:ilist} inf (A x))
<- extract-l.tm T N <- extract-simp P N.

U We don't have (pair M N:A) if A is uninformative.
exslexistsel : extract.simp (lexistse P (Q: I- (lexists A))) (app (lam M) N)

<- ({L:ilist} uninf (A L))
<- ({L:ilist} {l:term} extract_l_tm L 1

-> {p: I- (A L)} extract.simp p unity
-> extract.simp (P L p) (M 1))

<- extract.simp Q N.

exs-lexistse2 : extract.simp (lexistse P-min P.maj) (spread N M)
<- ({L:ilist} inf (A L))
<- ({L:ilist} {l:term} extract-l-tm L 1

-> {P:I- (A L)} {p:term} extract.simp P p
-> extract.simp (P-min L P) (M 1 p))

<- extract.simp P.maj N.

exs-lind extract.simp (lind A Pn P1) (list.ind Nn N1)
<- ({L} inf (A L))
<- extract.simp Pn Nn
<- ({L:ilist} {l:term} extract-l-tm L 1

-> {P:I- (A L)} {p:term} extract-simp P p
-> {X:i} {x:term} extract-tm X x
-> extractsimp (Pl L P X) (NI 1 p x)).

D.3 Functional programming language

%%% Abstract syntax of terms and types.

%%% Static.

% Extensions for nats.

pred : term -> term.
- : term -> term -> term. %infix left 20 -

+ : term -> term -> term. %infix left 20 +

mul : term -> term -> term.
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signum : term -> term.

term -> term -> term. %infix none 10 :

if term -> term -> term -> term.

>= term -> term -> term. %infix none 10 >=
=? term -> term -> term.

% Extensions for lists of nats.

list : tp.
nil : term.
cons : term -> term -> term.
listind term -> (term -> term -> term -> term) -> term.
case-list term -> term -> (term -> term -> term ) -> term.
0 : term -> term -> term.



Appendix E

Elf encodings of extracted programs
of Chapter 4

This appendix gives the programs of Chapter 4 as extracted by the implementation. These differ
from the ML versions not only in syntax but in the absence of let-bindings.

The code extracted from Proof 4.2:

list-ind nil
([l:terml [p:term] [x:terml
app (lam [l1:term] if Ux >= s s 0) (cons x 11) 11) p)

The code extracted from the result of applying the naive form of tail-recursion introduction:

lam [l:term]
spread

(app (app (list-ind
(lam [11:term]

pair 11
(pair nil

(app (l~m [111:term] lam [x:term] inr unity) 11)))
([ll:term] [p:term] [x:term] lam [111:term]

spread (app p (if (x >= s s 0) (cons x 111) 111))
([1111:term] [pl:term]

spread pl
(Ul1111:term] [p11:term]

pair 1111
(pair (if (x >= s s 0) (cons x 11111) 11111)

(app (app (app
(app (app (lam [xl:term] lam [111111:term] lam [1111111:term]

lam [l1111111:term] lam [q:term] lam [xll:term]
decide (app q xll) (Uplll:term] inl unity)
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([pill :term]
decide (if (xl >= s s 0) (inl unity) (nr unity))
([pllll:term] if (xli = xl) (inl unity) (nr unity))
([pllil:term] iar unity)))

x)

111)M
11111)

1111)
p11))))))

1)

nil)
([ll:term] [p:term] spread p ([111:term] [pl:term] 11))

The code extracted from the result of applying the lifted form of tail-recursion introduction:

lam [i:term]
spread

(app (app (list.ind
(lam [ll:term]

pair 11 (pair nil (lam Cx:term] inr unity)))
([ll:term] [p:term] [x:term] lain [111:term]

spread (app p (if (x >= s s 0) (cons x 111) 111))
([11:termj [pi:term]

spread p1
([11111:term] [pll:term]

pair 1111
(pair (if (x >= s s 0) (cons x 11111) 11111)

(lam [xl:term]
decide (app p1l xl)

([p111:term] inl unity)
([pll1 : term]

decide
(if (x >= s s 0) (nl unity)

(nr unity))
([p1111 :term]

if (xl = x) (nl unity) (nr unity))
([p1111:term] inr unity))))))))

1)
nil)

([ll:term] [p:term] spread p ([l1l:termi [pl:term] 11))

The code extracted from the result of applying lifted tail-recursion introduction with double
negation:
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lain [l:tern'
app (lam [l1:term] 11)

(app (app (list-ind (lam [11:term] 11)
(Ell:term] [p:term] Cx:term] lam (i1l:term]

app (lam [1111t:erm] 1111)
(app p (if (x >= s s O) (cons x iii) 1Ii)))) 1)

nil)
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