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ABSTRACT

An integral transform analysis of the static and time-harmonic scattering of the scalar
(two-dimensional) field radiated by a line source in the vicinity of a penetrable and
impedance boundary wedge is presented. The Mellin transform is used to derive the exact
static solution to Laplace’s equation for the dielectric wedge, in the form of a modal series.
The important dielectric edge condition behavior is explicitly contained in this analytic so-
lution. Application of the Kontorovich-Lebedev transform to the acoustic scattering by the
density contrast wedge also gives analytical solutions of the Helmholtz equation, in a form
suitable for the asymptotic extraction of the high-frequency ray components. Similarly,
the transform analysis of the impedance boundary wedge results in a difference equation
to be solved in the transform variable. A special inhomogeneous surface impedance yields
purely algebraic equations for the transforms, which can be solved in closed-form and in-
verted. At each stage, the mathematics and discussion are guided by the physics of both
the acoustic and equivalent electromagnetic scattering problems.
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I. INTRODUCTION

The intentional “or” in the title of this report emphasizes the exact, mathematical equiv-
alence between the acoustic and electromagnetic scattering problems for a two-dimensional,
penetrable wedge. A z—directed, time-harmonic line source at the transverse (z,y) posi-
tion 7' is external and parallel to the edge of an infinite wedge of included angle 2a. Both
the exterior (region 1) and interior (region 2) are composed of simple media having linear,
isotropic, and homogeneous properties. See Fig. 1 of page 7, for example.

In the acoustic problem for the velocity/density contrast wedge, which is generally
called the transmission problem in the mathematics literature, the media (j = 1 or 2)
constitutive parameters are conveniently taken to be the ambient density po; and the wave
speed c;. In the electromagnetic problem, each medium is characterized by its electric
permittivity ¢; and magnetic permeability u;, which naturally appear together as the wave
speed ¢; = 1/,/g;€; and intrinsic impedance n; = {/p; /¢;. The electromagnetic scatterer
is referred to as the dielectric wedge, even though u as well as ¢ can independently differ
in regions 1 and 2.

At the constant angular frequency w, associated with each unbounded medium is the
wavenumber k; = w/c;. The reduced wave or Helmholtz equation

(V2 + k) ¢(F) = —6(F - 7')

governs the total field in each of these three different physical situations:

1. Acoustic line source, with ¥(7) the scalar pressure field. Boundar conditions at
the material interfaces are continuity of the pressure and normal veiocity,

1148 1190
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2. Magnetic line source, where the scalar field of interest is the single z—directed
component of magnetic field H,(F) = ¥(F) in this often-called case of TE or
transverse-electric polarization. A unique solution to Maxwell’s equations requires
continuity of tangential magnetic and electric fields,

1180 1130
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3. Electric line source, where the scalar field of interest is the single z—directed com-
ponent of electric field E, (') = () in this often-called case of TM or transverse-
magnetic polarization. Boundary conditions of continuity of tangential electric and
magnetic fields are

110 110
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All three of these different physical problems are governed by the same differential equation,
with different physical origins for the constants appearing in the mathematically identical
boundary conditions. Therefore, this acoustic and electromagnetic problem is properly
treated as one boundary value problem, and liberal use is made of the archival contributions
of acousticians, electricians, and wave mechanics.

The perfectly soft (Dirichlet or TM boundary condition) or perfectly hard (Neumann
or TE boundary condition) impenetrable wedges are historically solved by separation of
variables. Familiarity with these classical solutions is important for guidance and sanity
checks of any approximate methods applied to the penetrable wedge. The Kontorovich-
Lebedev transform (a spectral superposition of cylindrical waves) of D. S. Jones [49] is
extended in Sections III and IV to handle the density contrast and impedance boundary
wedges, respectively. The analysis of the impedance boundary wedge results in a difference
equation in the transform variable, which is interesting in view of the apparently unrelated
difference equation that appears in a 1959 paper by W. E. Williams 7).

The analytic solution of the Leontovich impedance boundary conditions by Maliuzhinets
[6] in 1958 is still being asymptotically evaluated [9-12,25-26] to derive high-frequency
diffraction coefficients in the spirit of the geometric theory of diffraction (GTD) or related
wedge assemblage [41]. Heuristic diffraction coefficients [27] consisting of the product
of the accepted forms for perfect conductors and plane-wave reflection coefficients at a
dielectric interface are absolutely invalid. A seemingly ad-hoc correction to the physical
optics or Kirchhoff approximation [24] gives results that agree with numerical experiments
in some instances, but offer little hope of getting closer to the important wave physics.
Obviously then, the prospect of rigorously deriving the high-frequency ray behavior is a
prime motivation for the present research effort.

Although it may initially appear strange to the uninitiated, the static solution is a
critical component of any dynamic scattering problem, especially with regard to edge
conditions and behavior in source regions. Section II is a complete and exact solution to
the static dielectric wedge problem. Based on literature searches and discussion with E.
Marx (author of [20-22, 28]), it is presently believed that this static solution is new. The
anticipated peer review of a refereed journal submission based on Section II should confirm
or refute this. It should be noted that the special case with the line source lying on the
z—axis (the wedge bisector) does appear in the Russian text [53]. Furthermore, Smythe
[50)] presents a formal treatment of the static dielectric wedge, which is unfortunately flawed
with divergent integral representations. In any event, the exact static solution of Section
II is now available to confidently answer any questions about the near-in edge behavior.
The static problem is solved using the Mellin transform, which is itself the static limit of
the Kontorovich-Lebedev transform employed in Sections III ard IV.

It is important to address the literature on the penetrable wedge, and to put this
research in historical perspective. Rawlins [1] constructs a perturbation solution of a
volume Fredholm integral equation of the first kind (actually a surface equation in R?),
which converges for low values of the relative permittivity or dielectric constant ¢, = €3 /¢;.
Several authors, including Kleinman and Martin [4], prove convergence for 1 < /&, < 2,
and divergence of the Neumann iteration series for \/¢, > 2. Except for largely numerical
schemes, the 1979 observation “... little progress has been made with solving the canonical




problem ... ” by D. S. Jones [48] has remained true. Fortunately, the progress and solid
foundation of the present research is encouraging, especially with regard to the novel
solution of the impedance boundary wedge.

In competition with the integral transforms that have become the method of choice in
this first phase of the project, surface integral equations are applicable to the transmission
problem. Colton and Kress [59] give one of the most complete, and therefore theoretical,
accounts of coupled Fredholm integral equations for equivalent surface distributions. The
infinite extent of the surface may appear a little discouraging, but perhaps no more so
than the infinite domains in the integral transforms. Davey [5] gets some mileage out of
a physically intuitive subtraction of the expected far (r — oo) surface behavior, which
is to first order the behavior at an infinite, planar boundary. Glisson [19], Marx [20],
and Kleinman and Martin [4] combine the pair of coupled integral equations into a double
integral operator of a single unknown surface function, which they all claim is preferable to
two unknown functions. Two coupled, single integral operators could in fact be analytically
and computationally preferable, especially in view of the “hypersingular” kernel in the
double operator.

The substantial contribution by Chu [45], in 1989, for the impulse response of the den-
sity contrast wedge can serve as a future check on the time-harmonic results of Section III,
after a suitable Fourier transformation between time and frequency. A three-dimensional
plane wave reflection coefficient using a finite number of images is assembled by Deane and
Tindle [46], in one of many JASA papers that underscore the applicability of propagation
in wedge-shaped regions to shallow ocean acoustics. Westwood [47] employs an approxi-
mate summation (integral) of complex ray contributions in the spirit of Felsen, and then
computes some wideband transient responses via the Fourier transform.

The research summarized in this report is a first-principles effort toward a fundamental
understanding of the static and time-harmonic excitation of the dielectric (penetrable)
wedge. Arbitrary transient waveforms are not addressed in this phase of the research, as
a Fourier transform of the time-harmonic response is the traditional and logical approach
to time domain scattering. The case of plane wave excitation is obtained by letting the
source recede to infinity, i.e. *' — oo0. Each section is mostly self-contained, although
frequent reference is made to the details of the completed static solution of Section II. A
concise summary and suggestions for the most fruitful avenues to pursue for the coming
year appear in Section V.




11. EXACT STATIC SOLUTION FOR THE DIELECTRIC WEDGE

Fi1G. 1. Dielectric Wedge and Static Line Charge

The static (k = 0) excitation of the penetrable wedge is treated in the electrical parlance,
where the line charge of unit lineal density is located at the source coordinates (r', ¢') of
Fig. 1. The permittivity of the wedge of angle 2a is €3, which is surrounded by a medium
with permittivity ¢;. Consistent with the other chapters of this report, all geometry is of
infinite extent and invariant in the z—dimension, which restricts the physical domain to
R2.

The irrotational electrostatic field is uniquely characterized by the scalar potential ¢(+),
which is a solution of Poisson’s equation subject to appropriate boundary conditions.
Denote by () the potential field in the external region where the source is

1 '] /
V’¢1(r,¢)=—g;6(r-r)6(¢—¢) (¢ <¢<2r-a) (1)
and let ¥,(7) be the source-free field inside the wedge

Va(r,¢) =0 (-a<¢<a). (2)

Boundary conditions at the material interfaces ¢ = +a for this scalar potential are con-
tinuity of  (from continuity of the tangential electric field) and continuity of the normal
electric flux density ¢;8v; /On (absence of any free surface charge).

In order to simpiify the ensuing analysis, it is expedient to decompose the desired
solution ¥(z,y) for the boundary value problem of Fig. 1 into its odd ¥°(z,y) and even
¥*(z,y) components

v(z,+y) = 1 [¥(z,9) £¥°(z,9)] (¥ 20) (3)

with respect to the z—axis which bisects the wedge. Since y¥°(z,y) is an odd function
of y, it vanishes on the y = 0 plane and is therefore the solution in the upper half-space
y 2 0 for the problem having a soft bisecting plane (Dirichlet boundary condition). This is
equivalent to an out-of-phase image source. Similarly, ¥¢(z, y) is the solution for the hard

7
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Fi1G. 2. Odd and Even Symmetry Components

bisecting plane (Neumann boundary condition), which sustains an in-phase image source.
This symmetry is depicted in Fig. 2.

A. Mellin Transform for the Case of Odd Symmetry.
The source coordinate ¢ = ¢’ divides region (1) into two source-free regions, resulting
in a total of three subregions to consider for the half-space above the perfectly soft plane:

¢2(", ¢)s 0 S ¢ S «
v(z,y) =4 ¥7(r¢), a<o<¢ (4)
vi(r¢), ¢'<o<m

The Dirichlet boundary condition on the soft plane is

1!12(7', 0) =0 (5)
¥ (r,7) =0 (6)
and at the material interface
¢2(r, Q) = '/’1- (r1 a) (7)
8 0 _
6255'/'2(1', a) = ¢ '5;1/)1 (r, ). (8)

Consistent with the conventional Green’s function ansatz, the potential is continuous
everywhere across the source plane ¢ = ¢’

'l"l- (r) ¢') = lﬁ:‘(f, ¢'), (9)
while the discontinuity in normal derivative
o _, O 4/ n_T P
a¢'/f1 (r,¢) 0¢¢1 (":4’)—616(""') (10)
results from integrating (1) from ¢'— to ¢'+.
The Mellin transform [52) is used to transform the radial variable r to a complex variable

s, whereupon the remaining differential equation with boundary conditions in ¢ is solved in




closed-form. The physical solution (r, @) is recovered by careful evaluation of the inverse
Mellin transform. The Mellin transform of f(r) is

F(o) = MUf(ris = [r71(0) dr (11
o
and has +i
» ] c+i00 y
§r) = M FGYir = g [ ) ds 12

as its inversion formula. If r*~! f(r) is absolutely integrable on the positive real axis for
some a > 0, then the inversion is valid for ¢ > a.
The Mellin transform of the product of r? and Poisson’s equation (1)

“+r

7 02 8 d?
8 2 8¢2

537 (7. 8) = —Z6(r = )68 ~ ) (13)
is the simple form
(+ Z5) wato.0) = -Zst9 - 9) (19
0¢2 ! €3 )
This fortunate property of the Mellin transform of the r dependence in the two-dimensional

Laplacian is responsible for its successful application [52]-[54] to potential problems in
wedge-shaped regions. In region (2) where there is no forcing term, this procedure gives

(. + 5‘},) ¥s(s,9) = (15)

The complex variable s is a parameter in the above pair of ordinary differential equations
in ¢, with solutions

Wy(s, ¢) = A(s)sin(s¢) 0<é<a) (16)
V1 (s,4) = B(s)sin(s¢) + C(s) cos(s¢) (e <d < ¢') (17
V}(s,¢) = D(s)sinfs(¢ ~7)] (¢ <$<7) (18)

in view of the soft boundary conditions (5) and (6). Transformation of the four remaining
conditions (7)-{10) gives the set of simultaneous equations

- sin(sa) sin(sa)  cos(sa) 0 A(s) 0

-e-'f cos(sa) —cos(sa) sin(sa) 0 B(s) | _ g (19)
0 sin(s¢’)  cos(s¢’)  sin[s(7 — ¢')] C(s) "
0 cos(eg') —sin(eg') —cosls(r—¢)] 1P |3

9




to be solved for the coefficient functions in (16)-(18). Solution of these yields the (soft)
Mellin transforms

Uy(s,4) = . = I 18- sin[s(r — ¢')]sin(s9)/A(s) (0<é<a) (20)
¥; (s,6) = T sinla(r — §)] {sin(s¢) + T'sinls(¢ — 20)]} /A(s)  (a < ¢ <)
€18 (21)
¥i(s,0)= L sin[s(r — ¢)] {sin(s¢’) + T'sin[s(¢' — 2a)]} /A(s) (¢' <P < 7)
s (22)
with denominator function
A(s) = sin(s7) + I sin[s(7 — 2a)] (23)
and dielectric contrast parameter
€z + €1
B. Modifications for the Case of Even Symmetry.
In the case of & hard ground plane, the Neumann boundary conditions
5‘%1/»2&, 0)=0 (25)
—q-tl)"'(r ) =0 (26)
0¢ 1\"

replace the Dirichlet boundary conditions (5) and (6) of the previous section. A similar
application of the Mellin transform and the other unchanged boundary conditions yields
the (hard) Mellin transforms

L1 cosla(r — o) coss)/A) (0 $<a) (27)

€

¥ (5,8) = 2 coslo(r — )] T cosls(8 — 20)] ~ cos(s4)} /Ale) (2 <4< 4)

w?(‘y ¢) =

(28)
¥t(s,0) = ;’% cos[s(m — ¢)] {T cos[s(¢' — 2a)] — cos(s¢')} /A(s) (¢' < ¢ < 7)

! (29)

where in this case the denominator function is
A(s) = sin(s7) — I'sin{s(7 — 2a)). (30)

Note that, except for the simple scaling by ¢; which persists from the original source
strength chosen in (1), the presence of two different dielectrics is entirely accounted for by
I in all of the above transforms.

10




C. Inverse Mellin Transforms - Preliminaries.
The zeros of the denominator functions (23) and (30)

soft
A(s) = sin(s7) % I'sinf[s(r — 2a)] { hard} (31)

are central to the Mellin inversion (12). These real, simple zeros can be computed via
Muller’s algorithm [56] for arbitrary half-angle o, or solved analytically as the roots of a
trigonometric polynomial when « is a rational multiple of . This procedure is demon-
strated for the particular case a = /3, whereupon the variable change u = s7/3 in (31)

gives
sin(3u) & I'sin(u) =0 (32)

which factors into
[3 £ T - 4sin?(u)] sin(u) = 0. (33)

The required roots are now explicitly given by

4
8p = ~2gin~! /3_%-1: +3m (m=0,%1,£2,...), (34)
0

-f%sin’l \/1#-‘

where it is recalled that the +I' (—I') denotes the case of soft (hard) symmetry. The effect
of the dielectric material (€3 # €y = T # 0) on the potential above both symmetry planes
is a regular displacement of the integer poles for the homogeneous case (¢; = ¢; = I' = 0).
The index n in (34) is a denumerable ordering of these poles.

D. Inverse Mellin Transform for the Case of Odd Symmetry.

As r — 0 the odd potential ¥° — 0 and the dipole behavior ¥° ~ 1/r prevails as r — oo
in the far field. A sufficient Bromwich contour for the complex integration (12) is therefore
guaranteed for the choice of real constant 0 < ¢ < 1. Complete details of the Mellin inver-
sion for the potential ¥s(r, @) of (4) inside the dielectric sector are provided, whereupon
the final forms for ¥ (r,$) and ¢ (r, #) are immediately written by comparison.

The sin(s¢) factor in ¥y(s, ¢) of (20) together with the transform property [52]

M1 {sin(sg)F (s); s} = —S [f(re?)] (35)
renders i alo(r — #Y(r' /o)
sin|8(7 — r'[r)’
fr) = 21rz —ico 8 {sin(s7) +T iin[s(w - 2a)]} ds (36)
G(s)

the desired function. The integration path in (36) has been pushed flush against the
una,glnary axis, and the prmc1pa1 value notation invoked to properly account for the pole
at the origin. For r > »', closure at infinity in the right-half plane gives a convenient

11




Fi1G. 3. Bromwich Contour in the Complex s—Piane

contour on which to apply Cauchy’s integral theorem, and is shown in Fig. 3. Let C, be
a circle of vanishing radius p — 0, centered on the pole s, with residue

.1 _ sin[sp(x — ¢")](r'/r)*"
;lvl-r.% 2t f;n Gls)ds = 8,A'(85) (37)
where the derivative of the soft denominator function is
A'(85) = wcos(s, ) + (7 — 2a)T cos[s, (7 — 2a)]. (38)

The integral around the origin

lim — ¢ G(s)ds = “'A,‘(:)'

p—0 271 Co
follows from the limit s, — 0. Let positive n = 1,2,... be the indices of the poles in the
right-half plane, and let negative n = —1,-2,... identify the poles in the left-half plane.
The odd symmetry of the function A(s) provides

S_n=—8, and A'(—s,)=A'(sn). (40)

(39)

The contribution from the integral around the infinite semicircle R of Fig. 3 is zero for
r > ¢/, while closure in the left-half plane is appropriate when r < r’. Cauchy’s integral
theorem now yields

ro=+{z+ £} s

n=1

which together with (35) gives

halr, )= 21y Salealr = Glenlend) pjpie (r g

n=1

for the sector 0 < ¢ < a (42)

12




as the inverse Mellin transform of (20). Since all three of the transforms (20)-(22) are of
the same general form, the remaining two field expressions are apparently

v (rd) = Ell 3 sin[sn (7 — ¢')] {sir;(:g.'p()s :—)I‘sin[sn(d’ —20)} iyt

n=1

(rsr)
for the sector a < ¢ < ¢’ (43)

and

¢i+(r’ ) = _'e;ll E sin[s, (7 — ¢)] {Siniinz:()s':)r sin[sn (¢’ — 20)]} (r/rl):tl" (rs )

n=1

for the sector ¢' < ¢ < 7. (44)

Note the reciprocity in the last two expressions for ¢ « ¢’. The above reduce to the
correct potential due to a unit line charge located at ¢' = /2 above a soft ground plane
in the special case of no dielectric wedge (€2 = ¢;).

E. Inverse Mellin Transform for the Case of Even Symmetry.

The monopole potential Inr due to the original line source and the in-phase image
is the dominant feature of ¥¢ in the far field as r — oo. Therefore, the condition of
integrability following the transform pair of (11) and (12) is not satisfied, and the Mellin
inversion formula cannot be directly applied to the functions in (27)-(29). Mathematically,
operating with the ¢—derivative of the potential temporarily removes this troublesome
logarithmic variation, which is then restored following the convergent Mellin inversion.

The ¢—derivative of (27)

— T cos[s(7 — ¢')] sin(s¢) oo

0 1
5;‘1’2(3v ¢) = € A(a) (45)
is transformed in the manner of the previous section to
lij T — 1 o= cosls, (7 — ¢')] sin(s,¢), ,, o .
ggtalne) = 2 3 el AUt e gy, )

n=l

where the s, are now the hard poles in (34) and —T replaces I' in (38) for this hard
denominator function (31). The anti-derivative with respect to ¢ yields

‘ll)z(", ¢) - 1 ;-II‘ E COS[Sn(:n—A?('ZIn(;OS(sn¢) (r/rl):ta,. + w*(r) (’_ § r')

n=1

for the sector 0 < ¢ <, (47)

where the boundedness at r = 0 and the known behavior at r — oo specify

0, forr< ¢
wg(r) = { (48)

-1 ’ '
— In(r/#'), forr>r
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as the ¢—independent term in this solution of Laplace’s equation. Similarly, the spatial
potentials from the related transforms (28) and {29) are thus

SR SECILELTUE CICELIRG CLITS

+wg(r) (r$r’) forthesectora< ¢ <¢' (49)

¥1 (r, ¢) =

n=1}

and

i (r,¢) = -:—1 ) cos[sa (7 — ¢)] {Fczj[z’((f;)— 2a)) — cos(sn ¢')} (r/r')E%n

+wz(r) (rs$¢’)  for the sector ¢' < ¢ < x. (50)

n=1

These results are also verified for the special case of a unit line charge located at ¢' = /2
in a homogeneous half-space (e2 = ¢;) above the hard symmetry plane.

F. Results for the Complete Static Solution.

The important edge-behavior of the dynamic fields in the immediate vicinity of the apex
r = 0 is obtained from the above siatic analysis. A quasi-static philosophy of extracting
the dominant behavior of a solution to the Helmholtz (wave) equation

(V2+E) y(F)=0 (51)
from the static (k = 0) solution to Laplace’s equation
Viy(F) =0 (52)

in the neighborhood of boundary discontinuities and sources is well known and successful
([55), [57], and [58]). This analytic solution for the static wedge problem is a valuable
resource for continuing wave studies.

Contours of constant potential are illustrated in Figs. 4-8, all for the case of wedge
half-angle o = 7/3. Even and odd potentials are computed for the separate boundary
value problems and combined according to (3). The line source is located a unit distance
(r' = 1) from the wedge apex at the (z,y) coordinate origin. The domain of Figs. 4-7
is all internal to the unit circle, while Fig. 8 encompasses a larger area. Unfortunately,
the poor numerical convergence of the modal series at r = r' results in slight kinks in the
contours near this unit circle. In fact, the data of Fig. 8 is already smoothed by a numerical
averaging based on the mean value property of potential solutions. This slight blemish in
Fig. 8 has no effect on either the physical interpretation or mathematical integrity of this
analysis. Figs. 4-7 show the effect of varying both the source location (¢’ = /2 or 7) and
the dielectric constant (e = 10 or 100) of the wedge relative to the external medium of
permittivity ¢, = 1. When ¢; = 100 (Figs. 6 and 7), the dielectric wedge is essentially
an equipotential region, which is expected since an increasingly dense dielectric (e — o0)
behaves electrically like a perfect conductor.
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1G. 4. Contours of Constant Potential for the Dielectric Wedge. Case:
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FiG. 6. Contours of Constant Potential for the Dielectric Wedge. Case:
r'=1¢'=x/2,a=7/3, & =1, e =100.
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II1. DENSITY CONTRAST WEDGE VIA THE KONTOROVICH-LEBEDEV TRANSFORM

Following D. S. Jones [49], the Kontorovich-Lebedev transform pair

o(v) = / IWED ) dy  (Rv=0) (1)
0
2f(e) = fim 4 [ i (elo0) o @

is adopted for the time-harmonic analysis (exp[+iwt]) of an acoustic plane wave incident
upon a wedge having the same intrinsic wave-speed c as the surrounding medium, but with
a different ambient density po. Convergence of the transform is assured if

1
[156)sldy < oo 3)
0
and if
/f(y)y'%e"' dy<oco forany a>0. (4)

The geometry is still that of Fig. 1, but the acoustic notation is adopted in this section.
Specifically, a line source of unit strength is located at the cylindrical coordinates (r', ¢')
in the external medium of ambient density po1, and radiates time-harmonic waves at
the radian frequency w. A wedge-shaped scatterer of ambient density pgp; occupies the
sector —a < ¢ < a. The key to applying the Kontorovich-Levedev transform to this
idealized transmission problem is precisely this restriction of a homogeneous wave speed
c. The simplification in the mathematics is obvious in view of the ray physics at planar
interfaces between media with differing density but with the same wave speed and therefore
wavenumber k = w/c. This observation is certainly not new, as evidenced by Chu’s
[45] elegant derivation of the impulse response of this density-contrast/isovelocity wedge-
scatterer.

As in the static case, the mathematics is less cumbersome if the solution is split into its

odd and even components with respect to the symmetry plane y = 0. In particular, the
total scalar field is

¥(z,2y) = L¥°(z,0) £ ¢¥°(z,y))  (¥20) ()

where the odd field ¢° exists above the soft or Dirichlet ground plane and the even field
¥¢ is the field in the half-space above the hard or Neumann ground plane (see also Fig. 2).
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A. Odd Symmetry - the Soft or Dirichlet Ground Plane.
A statement of the boundary value problem consists of the Helmholtz equations

1
(V2 +£) $i(r¢) = —S6(r )66 - ) (a<g<7) (6)
and
(VP + &) va(r,4)=0 (0<¢<a) (7)
together with the Dirichlet boundary conditions on the soft plane
Y2(r,0) =0 and ti(r,7) =0, (8)
and continuity of both the pressure
¥a(r, @) = ¥y (r, @) (9)
and the normal velocity
y @) = ~——=—fo(r, 10
e (r0) = 2, ) (10)

at the material interface. Additionally, suﬁicient decay as r — oo (the Sommerfeld radia-
tion condition)

,lir{.lo\/-(—+ek¢) =0 (11)

is automatically incorporated into the chosen integral representation by the Hankel func-
tion.
Application of the integral operator

-

oo

/dr r H® (kr) (12)
0

to the partial differential equation (6)

2 (ro(n8) + S )+ Bl ) = — 38— )6 4) (19

is followed by two consecutive integrations by parts to remove the r—derivatives. Explicitly,
the first term above is transformed to

/ [ — (r, ¢)] H (kr) dr

r—-t/q(r ¢)H(’)(kr) -k / ¢1(r,¢)H(2)’(kr) dr

=0 by (8) and (11)

= -Impl(r ¢)H(2)'(lcr)| +k/¢1(r, é) [H(z)'(kr) + kr B kr)] dr. 14
14

=0 by (8) and (11)
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Thus, the operation (12) on (13) gives

/ ¥1(2,9) [(kr)211<2>"(kr) + kr H (kr) + (kr)’Hﬂ)(kr)]

-u’llsz)(kr) by Bessel's equation

9 [1 , ,
Mz / SHD () (r,8)dr = ~HP (k)68 — 4), (15)

0

which is the simple differential equation

H? ,
(25 +2) fitw8) = =88 = ¢) (16)
in terms of the Kontorovich-Lebedev transform
fi(v, ) = H(,)(k > / ~H® (kr)ys (r, ¢) dr. (17)

By inspection, the source-free equation (7) now transforms to

2
(6‘97, +v ) fo(v,8) = 0 (18)
with o
]
109 = 7o / HO (kr)s(r, 6) dr. (19)

As in the static analysis of Section II, the source coordinate ¢ = ¢’ divides the external
medium (1) into two source-free subregions, with fields (transforms) distinguished by a F
superscript:

fa(v,¢) = A(v)sin(vé) (0<¢<a) (20)
fi (v,¢) = B(v)sin(vg) + C(v)cos(vd) (ax<$<¢') (21)
fi(v,¢) = D(v)sinfv(¢—7)] (¢'<$ <) (22)

Note that the Dirichlet boundary conditions (8) have been used in writing (20) and (22).
In the source neighborhood ¢ = ¢', the function f; is continuous

f{"(V, ¢') = fl-(uv ¢'), (23)

leaving the derivative operator of (16) responsible for the singularity, which upon integra-
tion from ¢’'— to ¢'+ yields

Fw¢') - ' (v, ¢') = -1. (24)
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These two conditions plus the transforms of (9) and (10) result in four simultaneous equa-
tions

-sin(va)  sin(va)  cos(va) 0 A(v) 0
por cos(va) —cos(va) sin(va) 0 B(v) 0
poz : 1 ! : ' C(V) = 0 (25)
0 sin(vg’)  cos(v¢') sin[v(r — ¢')]
0 cos(vd') —sin(vd') —cosju(x —¢)]] LPW) 1/v

for the coefficient functions in (20)-(22).

The above is necessarily identical in form to the matrix equation (19) of Section II-A
because of the action of both integral transforms on a single partial differential operator
in both media, and the identical boundary conditions. Therefore, a trivial adjustment in
the earlier static solution produces the desired transforms

fav, ) = 1 : ! sin[v(x — ¢')] sin(vg)/A(v) (0<¢<a) (26)
fr(v¢)= %sin[”(r - ¢')] {sin(v¢) + I'sin[v(¢ — 22)]} /A(v) (a<¢ < ¢') -
7
fHv ) = -ll;sin[u('ir — ¢)] {sin(vé') + T'sinu(¢' — 22)]} JA(Y) (&' < $ < 7) o
with denominator function

A(v) = sin(v7) + Tsinf[y(r — 2a)] (29)

and density contrast parameter
T= pPo1 — po2 (30)

por + Po2

The Kontorovich-Lebedev transform pair (1) and (2), and the integral definitions of
(17) and (19) express the physical fields in terms of complex integrals, such as

walrid) = lim -} [ GBS H)dy 0<6Sa) @1
and similarly for ¥ (r, ) and ¥; (r, 9).

B. Even Symmetry - the Hard or Neumann Ground Plane.
The mathematical analysis of the hard ground plane with

%%(r, 0)=0 and %% (r,m)=0 (32)

parallels the development above for the soft case. The convergence problem (due to the
logarithmic static behavior) is avoided by working with the ¢—derivative of the wave
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functions, in the same manner as in Section II-E. In this case, it is desirable to start with
the derivative of the field

fnd) = ulnd) (33)

and the governing partial differential equation (in region (1), for example)

L (r2an ) + gl )+ Kl ) =~ 580~ 8= ¢) (34
so that the boundary terms that result from the integrations by parts can be safely set to
zero, as in (14) above. This procedure is carried through to give final expressions for the
transform functions of (33) which must be evaluated by a clever combination of contour
integration and possibly some asymptotics to extract the critical physical processes. The
static analysis of Section II is good experience and background to continue to make real
progress on this boundary value problem. Enough of the details and equations are pre-
sented here to enable a solid continuation, and to provide a basis for the discussion of the
impedance boundary condition in Section IV.
The integral operator (12) applied to (34) yields

2
(m+) vy = =806 - ) (35)
in terms of the Kontorovich-Lebedev transform
(2)
nlsd)= oo / HP (k) (r, ) dr. (36)

The subscript and superscript notation is consistent with the soft case above. Physical
boundary conditions on the ¢—derivative of the fields can be directly applied to the trans-
forms g(v, ¢), but boundary conditions on v itself involve the anti-derivative of the g(v, ¢)
functions. That is, the Neumann conditions (32) are

g2(v,0)=0 and g{(v,7) =0, (37)
and continuity of pressure and normal velocity at the media interface become
[ { [ ]
[orw.1d6= [ 0:0,8)48 (38)
and 1 i
_91_ (Va a) = —gZ(V) a)1 (39)
po1 po2

respectively. Similarly, the bc;undary conditions due to the impulsive source at ¢ = ¢’ are
¢ ¢

[stw.$yds= / o7 (v,9) do (40)
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and
gf(V, ¢l) _91-(V7 ¢') = -1 (41)

Evidently, solutions of the form

92(v,¢) = A(v)sin(vg) (0<¢<a) (42)
g1 (v,¢) = B(v)sin(vg) + C(v)cos(vg)  (a < ¢ <4 (43)
97 (v,¢) = D(v)sin[v(¢ - )] (¢'<$<m) (44)

have coefficient functions that satisfy the linear equations

Po1

o sin(va) —sin(ra) -cos(va) 0 AWv) 0
cos(va) —cos(ra) sin(va) 0 B(v)| _ (0] (45)

0 sin(vg')  cos(vg’)  sinfy(r — ¢)] C(v) 1

0 cos(v¢') —sin(vg') —cosfu(r~¢')] LD (v) 0

Simple formulas for these transforms are also available through comparison with the ap-
propriate static analysis, which in this hard case is Section II-E.
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IV. IMPEDANCE BOUNDARY CONDITION

A. Homogeneous or Traditional Impedance Boundary.

The Leontovich impedance boundary condition avoids any consideration of the field
interior to the wedge region, and therefore applies in the case of a highly lossy or effectively
impenetrable wedge. As with all of the work reported here, the original boundary value
problem is decomposed into odd (soft) and even (hard) symmetry components. Only the
field in the external region a < ¢ < 7 needs to be examined now, so the subscript notation
is abandoned, but the superscript ¥ is kept to distinguish the fields in the sectors ¢ < ¢'.

The impedance boundary condition in general coordinates

¥(r, @) + 1 y(r,) = 0 (1)

specifies the ratio of the pressure to the normal velocity at the material boundary ¢ =
a. The numerical value of this surface impedance 5 derives from the actual constitutive
properties of the dissipative surface. For a highly lossy material, 5 is complex with a phase
angle 7/4. Note that the limiting values n = 0 and 5 — oo are the classical Dirichlet
and Neumann conditions, respectively, which can serve as partial validation cases. The
mathematical treatment of the even symmetry component or hard ground plane problem
(which is consistently the more difficult case) is illustrated here.

As before, a line source of unit strength is located at (', ¢'), in the space between the
impedance boundary at ¢ = a and :he hard boundary at ¢ = x. The forced Helmholtz
equation is

1
(V2+ ) 9(r,9) = —=b(r—r')o(4-¢) (a<¢<7) (2)
where the two physical boundary conditions in cylindrical coordinates are
16 -
¥(re)+ 2 2(r,) =0 (3
and 8
5$¢(r, 7) =0, (4)
plus the usual Sommerfeld radiation condition.
Let P
£(r,¢) = %1/’(1', ¢) (5)
be the ¢—derivative of the field, and likewise for (2):

25 (7€) + St )+ e ) =~ Lo -6 -0). ®)

Duplicating the progression of Section III, application of the operator
o0
/ dr rH?) (kr) (7
0
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followed by integration by parts, with the aid of the boundary conditions and Bessel’s
equation gives

2
(75 +*) st ) = -8 - ) ®)
with transform
9(v,¢) = H(,, &) / ~HP (kr)¢(r, ¢) dr. (9)
In terms of §(r, ¢), the impedance condmon (3) is
[enoras+ 2emar=0. (10)
The Kontorovich-Lebedev transform of §(r, ¢) is denoted alternately by
9~ (v,8) = A(v)sin(vg) + B(v)cos(vg) (a< ¢ < ¢) (11)
and
9*(v,¢) =C(v)sinfy(¢ - 7)) (¢' <o < m), (12)

which are the solutions of (8) in each source-free sector on either side of the source discon-
tinuity. The Bessel recursion

Hs’)(kr) H(z)l(kr) + H, (kr)
(13)
kr v

and the anti-derivative of (11) give the transformed version of the impedance boundary
condition

%’! {A(v - 1)sin[(v - 1)a] + B(v — 1) cos|(v — 1)a]
+ A(v + 1) sin[(v + 1)a] + B(v + 1) cos|[(v + 1)a]}
— A(v) cos(va) + B(v)sin(va) =0, (14)

which is a linear difference equation in the coefficient functions A(v) and B(v). The Dirac
delta-function at ¢ = ¢’ imparts the pair of boundary conditions

9t ¢')-97(v,¢') = -1 (15)
¢ ¢
[otwords= o 6)d8, (16)
or equivalently
C(v)sin[y(¢' — 7)] — A(v)sin(v¢') — B(v) cos(vg') = -1 (17)
( ) ( ) ( B(v)

cosfy(¢' — 7)) = ———= cos(v¢’) + ——=sin(v¢’). (18)

Although apparently this is not the same approach or rault of W. E. Williams [7], it
is interesting and significant that he too solves a difference equation in modeling the
impenetrable wedge.
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B. Inhomogeneous or Pseudo-Impedance Boundary.

The difference equation above in the analysis of the true impedance boundary condition
results from the 1/r factor in (3). In the perhaps improbable case of an inhomogeneous
surface impedance that is proportional to radius, i.e. n = ry/, the surface condition is

¥ir,a) + n'g’;w, a)=0 19)

and no shifting occurs in the argument v of the transform coefficient functions. No differ-
ence equation need be considered, and the set of linear equations (for fixed v)

n'vsin(va) — cos(va) n'vcos(va) + sin(va) 0 A(v) 0
sin(v¢') cos(vé’) —sinfy(¢' - x)] | | B(v)| = |1
cos(v¢') —sin(v¢’) —cosfy(¢' = 7)) | |C(v) 0 20)

is easily solved.

The inverse Kontorovich-Lebedev transform can be approached from an analytical ad-
vantage, and an inviting opportunity emerges for contour deformation and asymptotics.
Of course the real impedance boundary will ultimately yield to these tactics, but in future
continuation of this scattering research. For the present, consider these far-field (kr — o0)

results
2 ("1 ¢) =
' / 21:k’. e-l‘kr / "UJv (kf') {T]'V COS[U(¢ - a)] - sin[u(¢ - a)]} COS[V(¢' — t)] dv

n'vsin[y(7 — a)] + cos[y(r — a))

—~i00

(a<9<9) (21)

v(r,¢) =
/ i e ikr 7 i"J,(kr') {ﬂ'VCOS[V(¢' — a)] — Sin[l’(¢’ _ a)]} COS[V(¢ - ")] dv

¥ 2nkr n'wsin[y(x — a)] + cosly(x — )]

-$00

(¢'<é<m) (22)
with poles from the roots of the transcendental equation

n'v=—1/tan[y(x — a)]. (23)
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. PROGRESS SUMMARY AND RECOMMENDATIONS FOR CONTINUING RESEARCH

. The complete, analytical solution for the static excitation (Poisson’s equation) of
the dielectric wedge is accomplished using the Mellin transform. This benchmark
solution is believed to be a new result, and is a valuable tool in the study of static
edge condition behavior at the apex of the material wedge.

. The Kontorovich-Lebedev transform has been successfully applied to the density
contrast wedge, resulting in closed-form expressions for the integral transform rep-
resentation of the total fields in both the interior and exterior wedge regions. An
asymptotic evaluation of these transforms at both the far field limit (kr — oo) and
in the immediate vicinity of the apex (kr — 0) is of great interest to both theo-
retical and numerical scattering researchers. Furthermore, this frequency domain
result is a companion to Chu’s [45) transient derivation.

. The difference equation present in the transform variable of the Kontorovich-
Lebedev integral needs to be addressed in order to rigorously solve for the physical
case of the impedance boundary condition

19y _
¢+ra¢-0.

Such a rigorous solution provides for high frequency ray-launching coefficients, in
the manner of the GTD [10] or Wedge Assemblage [41]. Any relationship between
these promising results and the difference equation of Williams (7] and the Mali-
uzhinets function [6],[8-12] must be affirmed and explained.

. In the case of an inhomogeneous surface impedance that is proportional to radius,
i.e. 7 = ry’, the above Leontovich boundary condition is

O

resulting in closed-form integral transforms. Inversion to spatial coordinates (r, ¢)
will closely follow the completed Mellin inversion for the static wedge. If this
inhomogeneous problem is deemed to be of physical interest, then this mathemat-
ical solution is of great value, offering great physical insight into the asymptotic
interactions between the individual scattering mechanisms.

. The coupled integral equations for equivalent surface distributions that were de-
rived during the initial stages of the present research could form the basis for an
alternate method of attack. However, in view of the success to date with the
Kontorovich-Lebedev transform, surface integral equations will not likely be pur-
sued for this proposed research.

. Continuing consultation and interaction with active researchers engaged in related
electromagnetics and acoustics work should be maintained, via paper submission,
paper reviewing, telephone and written correspondence, the 1993 URSI National
Radio Science Meeting, and the University library services.
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CONCLUSIONS

The exact, modal series solution of Laplace’s equation for the static field inside and

outside of the dielectric wedge is obtained via the Mellin transform, and is readily evalu-
ated. Similarly, the Kontorovich-Lebedev transform is effectively applied to the problem
of time-harmonic acoustic interaction with the density contrast wedge. A high-frequency
asymptotic analysis of this transform solution is a promising vehicle with which to un-
derstand and extract the basic physical mechanisms in this canonical scattering geometry.
The integral transform solution of the wedge having impedance boundaries deserves sub-
stantially more mathematical analysis.
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