
!A

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Ulm
ID-

THESIS

A Porting Methodology for Parallel Database Systems

by

Stanley Hugh Watkins

September 1993

Thesis Advisor: David K Hsiao

N TIC

Approved for public release; distribution is unlimited.

94E2 Or 20IS

SECURITY CLASSIFICAT13N OF TWIS PAGE

REPORT DOCUMENTATION PAGE
I&. FWPUHT 5bURITY QA39WXrIT= UNLSIFE 1b RESTRICTIVE MARKINGS

Ia OECUNIIT CLASSIFICATION' AUTHORITY 3. DISTIHIBUTIOuiAVAILABILITY OF HE RMT

2b. DIELASSIFICATION/UOMNORADING SCHhUULt Approved for public release;
distribution is unlimited

4. PERFgRWMING ORGANIZATION REPORT NUMBER(S) 5. MNITORING ORGANIZATION REPORT NUMBER(S)

1.NAME OF HFORMjO ORGANIZATION OFFIC SYMBOL 7a. NAME OF MONITORING ORGANIZATON

Naval Postgraduate School CSNalPogadteShl
6c. ADDRESS MCay. &tate and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. AC P&VINWl5PONSORING Ji5b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

41c. ADDRESS (C*s Staft, and ZIP Cd)10. SOURICE OF FUND)ING NUMBERS

ELEMENT NO. INO. NO. AC O O

11. TITLE (Mdcude Secmty Classification)
A Porting Methodology for Parallel Database Systems (U)

atrls S esis FROM VE/9RTE 0/9 14. DATE OF REPRI Ya. otDy
______________________To__ 09/93__ September 1993 9
16. Uf-FLtMtNTIAMY NU IA, IOI-he views expressed in this thesis are those of the author and -not irifleci- the ofca
policy or position of the Department of Defense or the United States GovernmenL.

17. COSATICODES 18. SUBJECT TERMS (Continue on reverse it necessary and identify by block number)

FIELD I GRU SUB-GROUP Parallel Database, Multilingual and Multimodal Database, MultiBackend
_________________________Database Computer, Porting, MDBS, Heterogenous Database System

19. ABSTRACT (Continue on rev'erse if necessary and identify by block number)
The Multibackend Database Supercomputer (MDBS) pioneered in the Naval Postgraduate School Laboratory'

for Database Systems Research offers an elegant solution to the four most pressing problems associated with, the tra-
ditional approach to very large database management systems: capacity growth, performance improvement, data shar-
ing, and resource consolidation. The purpose of this thesis is to develop a theory of system software portability for
this large and complex network application which will facilitate others in the installation and utilization of MDBS.

The first challenge is the almost total lack of documentation about MDBS software of use to system porters. A
second set of issues revolves around the use of hardware by MDBS, particularly the use of mass storage devices for
the storage and manipulation of base- and meta-data. A third challenge concerns the portability of system calls, shell
programs, and the C language implementation. A final set of portability issues arises from the extensive use of inter-
process and inter-machine communications by MDBS.

[]UNCLASSIFIED/UNLIMITEO [] SAME AS RPT. [] DTIC USERS UNCLASSIFIED -2
JdFKSWN BLE INIVIDUAL22b. TELM PONT415cdude Ae oeo.aid.siao ;(408) ~5-2 Are)Coe)

OD FORM 1473,64 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION =FTHIS PAGE
All other eitions are obsolete UNCLASSEFIED

i

UNCLASSIFIED
SECUR•Y CUASSFCATIMON OF TWS PAGE

Our approach to this project involves first analyzing the aforementioned portability issues. This analysis is tested
y porting the most advanced version of MDBS software to a different platform supported by different hardware and

operating system software.
This thesis provides a framework in which to understand and assess specific portability concerns about MDBS.

We describe the original routines for accessing the mass storage devices and explain why it was necessary to modify
them for portability. We identify and discuss other hardware-specific information coded into MDBS. We identify and
correct problems related to the recompilation of the MDBS code on the new platform. We provide a detailed analysis
of the requirements for and the implementation of inter-process and inter-machine communications for MDBS. In ad-
dition, we expand system debugging features, improve documentation, provide a new demonstration database, and of-
rer advice for future porters of MDBS.

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Approved for public release; distribution is unlimited

A Porting Methodology for Parallel Database Systems

by
Stanley Hugh Watkins

Major, United States Marine Corps
Bachelor of Science (Political Science), United States Naval Academy, 1980

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1993

Author: Authr: ta'nley liugh Watkins

Approved By: 2 64&I "J
Dr. David K. Hsiao, Thesis Advisor

Dr.-C Wu, Second Reader

£*osuaion For,

Ted Lewis, Chairman, lTiS iiA&ii
Department of Computer Science MTIC TAB 0

V n a w o u r i c e d 0"

Justification

Byth•atr ibut I o.!__a..
,�i__Av. ab1,7Ijt oe-dt _

4 . .- I

AV Iex;.ra

ABSTRACT

The Multibackend Database Supercomputer (MDBS) pioneered in the Naval Postgrad-

uate School Laboratory for Database Systems Research offers an elegant solution to the

four most pressing problems associated with the traditional approach to very large database

management systems: capacity growth, performance improvement, data sharing, and re-

source consolidation. The purpose of this thesis is to develop a theory of system software

portability for this large and complex network application which will facilitate others in the

installation and utilization of MDBS.

The first challenge is the almost total lack of documentation about MDBS software

of use to system porters. A second set of issues revolves around the use of hardware by

MDBS, particularly the use of mass storage devices for the storage and manipulation of

base- and meta-data. A third challenge concerns the portability of system calls, shell pro-

grams, and the C language implementation. A final set of portability issues arises from the

extensive use of inter-process and inter-machine communications by MDBS.

Our approach to this project involves first analyzing the aforementioned portability is-

sues. This analysis is tested by porting the most advanced version of MDBS software to a

different platform supported by different hardware and operating system software.

This thesis provides a framework in which to understand and assess specific portabil-

ity concerns about MDBS. We describe the original routines for accessing the mass storage

devices and explain why it was necessary to modify them for portability. We identify and

discuss other hardware-specific information coded into MDBS. We identify and correct

problems related to the recompilation of the MDBS code on the new platform. We provide

a detailed analysis of the requirements for and the implementation of inter-process and in-

ter-machine communications for MDBS. In addition, we expand system debugging fea-

tures, improve documentation, provide a new demonstration database, and offer advice for

future porters of MDBS.

iv

ACKNOWLEDGEMENTS

I would like to thank Dr. David K. Hsiao for his insight and advice in all database

matters and for his assistance reviewing this thesis. Without his knowledge and expertise,

the Multibackend Database System project and this thesis would not be possible.

I would also like to thank the support staff at the Naval Postgraduate School for their

help. Especially, I would like to thank John Locke and Mike Williams for their assistance

with MDBS software and hardware.

Finally, I would like to thank my wife, Stella, for her patience.

V

TABLE OF CONTENTS

1. THE INTRODUCTION .. I
A. THE BACKGROUND FOR THIS THESIS .. 1
B. THE AIM OF THIS THESIS6
C. THE SETTING OF THIS THESIS ... 6
D. THE ORGANIZATION OF THIS THESIS .. 7

IT. THE APPROACH .. 9
A. AN INTRODUCTION .. 9
B. THE TASK .. .9
C. GUIDING CONSIDERATIONS ... 10
D. THE INITIAL PLAN .. 11
E. MODIFICATIONS TO THE PLAN .. 13

m. SOFTWARE ISSUES .. 15
A. AN INTRODUCTION .. 15
B. OPERATING SYSTEM CONSIDERATIONS 15

1. System Call Interface to the Kernel ... 15
2. Differences in the Shell .. 17
3. Differences in Stack Implementation .. 18
4. Path Name and File Name Considerations 19

C. C LANGUAGE COMPILER & LINKER CONSIDERATIONS 19
1. The C Language Library .. 19
2. Type Conversion .. 20
3. Error-Checking ... 21
4. The Linker and the Makefiles .. 22

D. IN CONCLUSION ... 22
IV. HARDWARE ISSUES ... 24

A. AN INTRODUCTION .. 24
B. FIXED DISK ISSUES FOR MDBS .. 24

1. Fixed Disk Requirements .. 24
2. Understanding MDBS Disk Utilization ... 25
3. Implementation Details of the Meta Disk 26
4. Implementation Details of the Base-Data Disk 27
5. Disk Initialization .. 29
6. The Problem and the Solution .. 30
7. Hard-Coded Disk Information .. 33

C. OTHER HARDWARE SPECIFIC ISSUES FOR MDBS 34
1. Workstation Information .. 34
2. Network Communication Information .. 36

D. IN CONCLUSION ... 37
V. COMMUNICATIONS ISSUES ... 38

A. AN INTRODUCTION .. 38

vi

B. MDBS COMMUNICATIONS REQUIREMENTS
AND IMPLEMENTATION ... 38
1. Inter-Process Co m munications ... 38
2. Inter-Machine Communications .. 39

C. COMMUNICATION CHANNEL DESIGN AND FUNCTION 40
1. Process Functions .. 40
2. Design of the Communications Channels 41
3. How MDBS Establishes Communications 41

D. DETAILS IMPORTANT TO PORTERS OF MDBS 44
1. Limitations on Message Lengths ... 44
2. Access to the Network .. 44
3. Socket Definitions .. 45
4. The Socket Directory ... 45
5. A New Aid for Timing Messages ... 46

E. IN CONCLUSION ... 46
VI. MISCELLANEOUS OTHER ISSUES ... 47

A. AN INTRODUCTION .. 47
B. MDBS DIRECTORY INFORMATION ... 47
C. ADDITION/DELETION OF LANGUAGE INTERFACE MODULES 48

VII. CONCLUSIONS .. 49
A. AN INTRODUCTION .. 49
B. WHAT HAS BEEN ACCOMPLISHED ... 49
C. TOPICS FOR FURTHER RESEARCH ... 49
D. IMPLEMENTATION ISSUES .. 50
E. RECOMMENDATIONS .. 51

APPENDIX A. SYSTEM COMPARISON .. 53
A. HARDWARE ... 53

1. Old hardware ... 53
a. Controller: ISI-V model V24S workstation 53
b. Backend: ISI-V model V24S workstation 53

2. New Hardware ... 54
a. Controller: Sun model 4/110 workstation 54
b. Backend: Sun model 4/280 workstation 55

B. SOFTWARE ... 55
a. Old software .. 55
b. New software .. 56

APPENDIX B. AIDS TO DEBUGGING .. 57
A. AN INTRODUCTION .. 57
B. USING DEBUGGING FLAGS ... 57
C. USING TRACE FILES .. 57
D. CHECKING SYSTEM STARTUP .. 58
E. MAINTAINING A HISTORY ... 59
F. UNIX DEBUGGING TOOLS ... 59

vii

G. PROGRAMMING TIPS ... 59
APPENDIX C. CONTROLLER DIRECTORY AND FILE STRUCTURE 61

A. THE "mdbs" DIRECTORY ... 61
B. THE "Sockets' DIRECTORY ... 61
C. THE "UserFiles" DIRECTORY ... 62
D. THE "bin" DIRECTORY ... 63
E. THE "version" DIRECTORY .. 63
F. THE "version/bin" DIRECTORY .. 64
G. THE"run" DIRECTORY .. 65
H. THE "version/COMMON" DIRECTORY .. 66
I. THE "BE" DIRECTORY .. 67
J. THE "BE/COMMON" DIRECTORY .. 68
K. THE "BE/BCOM" DIRECTORY .. 68
L. THE "BE/CC" DIRECTORY ... 69
M. THE "BE/DIO" DIRECTORY ... 69
N. THE "BE/DM" DIRECTORY .. 70
0. THE "BE/RECP" DIRECTORY .. 71
P. THE "version/CNTRL DIRECTORY .. 72
Q. THE "CNTRL/COMMON" DIRECTORY ... 72
R. THE "CNTRLI/CCOM" DIRECTORY ... 72
S. THE "CNTRL.IIG" DIRECTORY .. 73
T. THE "CNTRLdPP" DIRECTORY .. 73
U. THE "CNTRLIREQP" DIRECTORY .. 74
V. THE "CNTRIrIF' DIRECTORY .. 74
W. THE "CNTRLfr/LAngIF' DIRECTORY .. 75

APPENDIX D. BACKEND DIRECTORY AND FILE INFORMATION 77
A. THE "/U" ROOT DIRECTORY ... 77
B. THE "Sockets" DIRECTORY ... 77
C. THE 'UserFiles" DIRY ... 78
D. THE "be.version" DIRECTORY .. 78
E. THE "bin" DIRECTORY .. 79

APPENDIX E. DEMONSTRATION DATABASE ... 80
A. THE DESCRIPTOR FILE (AMMO.d) ... 80
B. THE TEMPLATE FILE (AMMO))......................... 80
C. THE RECORD FILE (AMMO.r) ... 81
D. THE QUERY FILE (AMMOreql) ... 81

APPENDIX F. NEW MDBS FUNCTIONS .. 82
A. THE "host-namejnteger" FUNCTION .. 82
B. THE "initnmeta.NAT"' FUNCTION .. 82

LIST OF REFERENCES ... 84
INITIAL DISTRIBUTION LIST 86

viii

LIST OF FIGURES

Figure 1 : The Multibackend Database Supercomputer ... 3
Figure 2: Multimodel, Multilingual, and Cross-Model Access Capabilities of MDBS. 5
Figure 3: The Original MDBS Configuration .. 11
Figure 4: Thelntermediate MDBS Configuration .. 12
Figure 5 : The Final MDBS Configuration ... 12
Figure 6: Meta-Data Disk Storage Format .. 27
Figure 7: Record Distribution on a Base Data Disk Drive .. 28

Figure 8 : Modified Meta-Data Disk Storage Format ... 31
Figure 9: MDBS Communication Channels .. 42

ix

L THE INTRODUCTION

A. THE BACKGROUND FOR THIS THESIS

Today, governments and corporations are struggling to come to grips with the

explosive growth of information processing requirements. The Department of Defense

alone spends over nine billion dollars annually and is highly dependent on general-purpose

data processing hardware, software and services [United States House of Representatives,

1989, p. 1]. Database systems are an important part of the information processing

challenge. Unfortunately, the performance of database systems have not kept pace with the

technical advances in computer industry as a whole [Elmasri, 1989, p. 637].

The Office of Naval Research (ONR) has identified two interoperable information

systems technology issues. The first of these is data sharing. Data sharing (or data

"exchange) involves the ability to transparently access other user's databases. Traditional

heterogenous database management systems (dbms) do not support access by users

employing other data models and languages. For example, IBM's relational dbms called

DB2, cannot access non-relational databases. Instead, IBM replicates non-relational data in

the heterogenous form in separate non-relational dbms. Any replication of data at different

locations or in different data models is not an answer, since this introduces data integrity

problems and increases storage requirements. The second technology issue identified by

ONR is that of resource consolidation. Resource consolidation refers to more efficient use

of database hardware, software, and support personnel by consolidating them into one

computing environment The proliferation of stand-alone (homogenous/heterogenous)

dbms represents needless duplication in a time of shrinking budgets.

A third database technology issue is processing speed. General-purpose, von Neuman

type computers are not optimized for the tasks performed upon databases. Large databases

are maintained in the secondary storage (e.g., disks). Advances in the speed of secondary-

storage devices have not kept pace with advances in the speed of central processing units.

i ! - -" •m m1

This results in processing delays on the ever-increasingly large amounts of information

stored in the secondary storage [Elmasri, 1989, p. 638].

A fourth database technology issue is capacity growth. As organizations become

larger and more sophisticated, their information processing needs grow. This is not just the

problem of data storage. More significant is the need to process the increasing amounts of

data. The traditional solution to this problem has been the acquisition of larger, more

powerful machines. The restrictions on budget growth and the long lead-time associated

with the acquisition of new hardware make this an impractical approach.

Therefore, a new approach is needed to deal with these four technology issues. Such

alternatives are generically referred to as database machines [Elmasri, 1989, p. 6381. One

database machine which elegantly addresses all four of these issues is the subject of a

continuing project in the NPS Laboratory for Database Systems Research. The project

focuses on the Multibackend Database Supercomputer (MDBS) which is designed to run

on standard, off-the-shelf hardw~are and identical system software consisting of networked

UNIX workstations. A single general-purpose workstation serves as a controller. Multiple,

identical workstations with their respective high capacity drives for the storage of base and

meta data serve as backends. The controller receives queries from the users and broadcasts

them to the backends which then return the results to the controller for post processing and

routing to the users.

Base data of any given database are clustered. The clustered data are placed across

many backend disks. They are configured in a loosely-coupled, parallel architecture which

leads to parallel accesses to the base data. MDBS is also scalable, since an increase in

performance can be achieved by attaching additional parallel backends to share the

workload. MDBS is unique in that the response-time reduction is in direct proportion to the

number of backends employed [Hsiao, 1991, p. 44 and Hall, 1989]. Figure 1 illustrates the

hardware architecture of MDBS. This is a highly scalable architecture whose performance

can be tailored to the needs of the user.

i i ! I I l i ml• ,.,.="="" • ..2

Meta data disk

Base data disks

Paging disk

Tape Drive Meta data disk

Base data disks

Controller-

Paging disk

Meta data disk
BBase data ddsks

Paging disk

Figure 1. The Multibackend Database Supercomputer

3

The MDBS also answers ONR's concerns about data sharing among users employing different

data models and data languages. MDBS employs a single "kernel" data model and data language. The

capability to interface with users working in other data models and languages is provided for through

the addition of language interface software modules with schema transformers and transaction

translators [Hsiao and Kamel, 1989, p. 45]. This use of a multiple-data-models-and-languages-to-

single-data- model-and-language ("many-to-one") mapping avoids the integrity pitfalls of data

replication and permits global concurrency control. Language interfaces for the hierarchical, network,

relational, and object-oriented models have been successfully integrated into MDBS. For more

information on the construction of language interfaces, see [Bourgeois, 1993, p. 29]. A functional/

DAPLEX model interface is under construction. Most exciting is the cross-model accessing capability

provided by the transformers and translators which allows, for instance, a relational user to access and

perform operations upon a database created by a hierarchical user [Zawis, 1987, p. 30 - 74]. This cross-

model access is transparent to the user, meaning that no retraining of the relational user in the

hierarchical data manipulation language is required. Figure 2 represents the multimodel, multilingual,

and cross-model accessing capabilities of MDBS. The Multibackend Database Supercomputer

provides great flexibility in answering the problem of data sharing.

Finally, the Multibackend Database Supercomputer also addresses the problem of resource

consolidation. The multi-model and multi-language capabilities of MDBS obsolete the plethora of

stand-alone heterogenous database management systems currently in use in the DOD community. The

performance of MDBS can be tailored to suit the needs of the user. A single database management

system with a single scalable architecture, MDBS replaces many separate database management

systems with different architectures. Support personnel only need to know and to support one system

(i.e., MDBS). The result is a desirable consolidation and standardization of resources.

Because it offers practical solutions to the problems of data sharing, resource consolidation,

capacity growth and performance gain, we believe the Multibackend Database Supercomputer points

the way to the future for users of very large heterogenous databases.

4

A kernel A hierarchical An object-oriented
database user user database user

I I
and kernel data model and DL/I model and object-on-fl

language interface interface ented data language inter

II
I I

dtbs [A hierarchical A betoineA enldatlabase shema I database bet°ineshma

A A A An
A network hierarchical relational object-oriented

kernel database database
database in in in indatabans the kernel in the kernel

form form form form

A relational database schema A relational database schema
t ical dt se for the obhect-oriented database I

A Anetwork A re,• tonat
database schema [ltbs scem

The network data model e relational data model
and Codasyl interface and SQL interface

A network A relational
database user database user

Figure 2. Multimodel, Multilingual, and Cross-Model Access Capabilities of MDBS
5

B. THE AIM OF THIS THESIS

As described above, MDBS is a very promising approach to the problems facing large

database users. Only off-the-shelf hardware and identical system software are used. This

supports a claim that MDBS is not hardware dependent and should be relatively easy to

migrate to a new hardware platform. Indeed, an earlier version of MDBS was ported from

its original platform consisting of one VAX-I 1/780 and two PDP- 11/44 computers running

VMS and RSX operating systems to its current platform consisting of seven ISI

workstations running Berkeley UNIX operating system[Wong, 1986, p. 7-8J. The aim of

this thesis is to migrate MDBS from its current platform to a newer risc-based platform

running the SunOS operating system to develop a theory of system software portability for

MDBS. This will become important as the interest in porting MDBS to other platforms

grows. This theory of system software portability will address hardware issues, language

issues, communication issues, and other issues important to any future porting of MDBS.

It is hoped that this work will ease the job of moving MDBS to other platforms and spur

more interest in MDBS.

C. THE SETTING OF THIS THESIS

The Multibackend Database Supercomputer is located in the Laboratory for Database

Systems Research at the Naval Postgraduate School. The current hardware consists of

seven IS] workstations based on the Motorola 68020 processor. All ISI workstations are

using the Berkeley 4.3BSD operating system. The new hardware consists of a single Sun 4

Model 100 with two hard disk drives for a controller and two Sun 4 Model 280s each with

three hard disk drives for backends. All three Sun machines operate under SunOS 4. 1. 1.

The inter-machine-communications link remains a standard ethernet cable. For a detailed

description of the old and new platforms, see Appendix A.

The immediate motivations for making this move are threefold. The first motivation

is reliability. The normal lifetime of computer hardware is five years: The current ISI

6

workstations are now seven years old. The support personnel are experiencing difficulty in

keeping these machines operational.

The second motivation is the promise of increased hardware performance. My thesis

advisor has estimated that the overall performance increase will be about 25%. The

increased performance is important to both MDBS operations and the associated activities

of researcher. For some applications, such as re-compiling large sections of the code, the

new hardware will offer a welcome increase in productive time.

The third motivation is provided by the opportunity to utilize the better software

available to users of SunOS on the Sparc architecture. The new platform will more easily

support a much wider range of software useful to the researchers. This includes immediate

X-Windows support plus access to better compilers and other tools.

D. THE ORGANIZATION OF THIS THESIS

This thesis is organized into seven chapters. Chapter I consists of this introduction. In

Chapter I, we outline the approach taken to accomplish the porting and suggests ways in

which this could have been improved. In Chapter II, we consider software issues important

to the migration. In Chapter IV, we discuss the specific hardware issues in porting MDBS

and describe the changes made in moving MDBS to the new platform. MDBS is

communications-intensive, and in Chapter V we are concerned with these communications

issues. In Chapter VI, a collection of other, smaller issues encountered in porting MDBS

are presented. Finally, in Chapter VII, we conclude the thesis and outline problem areas and

related issues requiring further study.

The chapters are supported by five appendices. These five appendices contain

additional technical details, observations, and segments of code. In Appendix A, we

provide a detailed comparison of the old and new platforms. In Appendix B, we provide

information on the use of debugging flags, makefiles, and helpful scripts associated with

MDBS. In Appendix C, a description of the structure and a listing of the files associated

with the controller are given. In Appendix D, a similar listing for a standard backend is

7

given. In Appendix E, the details about the sample database created to demonstrate the

functioning of MDBS on the new platform are given. In Appendix F, the code for the new

functions added to MDBS is provided.

L8

Ii. THE APPROACH

A. AN INTRODUCTION

In a sizable project such as the porting of a large UNIX application, the importance of

an organized approach to the porting task cannot be overemphasized. The software of

Multibackend Database Supercomputer is both large and complex. MDBS consists of

approximately 527 separate files distributed over 68 subdirectories with an aggregate size

of about 23 megabytes (source code, object code, executables, scripts, and temporary files).

The creation of the twelve processes (six in the controller, six in each backend) required to

run MDBS is controlled by forty makefiles at different locations in the controller code.

Each makefile contains information and instructions for compiling and linking the

executable programs. On the top of the size and scope issues, there are issues of hardware

delivery schedules and the interdependent time-tables of co-workers. This chapter presents

the evolution of the porting approach utilized to port MDBS to Sun-4 workstations and

concludes with some recommendations for future porting projects.

3. THE TASK

The successful completion of this project involves changing both hardware and

software. The old IS-V workstations, based on the Motorola 68020 processor and operated

under the Berkeley UNIX (4.3 BSD), are to be replaced by Sun workstations, based on the

Sparc architecture and operated under Sun UNIX (i.e., SunOS 4.1.1). It is significant that

the same Ethernet communications bus is to be used for the new system. A detailed

description of the platforms involved may be found in Appendix A. The workstation

hardware and operating-system software preparations are the responsibility of the support

staff. Since MDBS requires only off-the-shelf hardware and system software, their work is

not detailed here. This thesis instead concentrates on what has been done to move and adapt

the MDBS software to the new platform. Simply stated, this involves relocating the code,

modifying it to function as originally intended, and recompiling all the executables. To

properly modify the student-and-researcher-written software is the heart of the problem.

9

C. GUIDING CONSIDERATIONS

Three considerations shaped the work on this project. First, the time is of the essence.

Only a limited amount of time is available for the completion of the porting. Other

researchers desire to use the enhanced capabilities of the new system. This consideration

has limited modifications to those required to get MDBS up and operating on the new

platform. Non-essential things which require improvement are documented, but such

improvements must wait until later. A list of recommendations for further work may be

found in Chapter VII. A listing of the two completely new functions added to MDBS during

this porting project may be found in Appendix F.

The second consideration influencing the approach to this project has been the

uncertainty as to the delivery date of the new hardware. The transfer of the desired

hardware is contingent upon other acquisitions, and the likelihood of a delay has been real.

This consideration has resulted in a conscious effort to emphasize the advanced preparatory

work which could be accomplished prior to the delivery of the new hardware. The

preparatory work consisted of a thorough analysis of the structure and functioning of

MDBS, a study of the similarities and differences between the old and new operating

systems, and familiarization and experimentation with the new system's compiler. This

advanced preparatory work has paid off handsomely, resulting later in a relatively smooth

implementation with a minimum of unforeseen difficulties.

The final consideration influencing the approach to this project has been the

requirement to minimize the disruption to other researchers working on MDBS. Three

other projects have been conducting research concurrently with the porting project. An

approach is needed which could utilize the existing communication network during the

preparation of the new system without stopping the work of the other teams on the old

system.

These three considerations have influenced the porting plan which is described in the

next section.

10

D. THE INITIAL PLAN

The initial plan was firmed up on February 23, 1993. It calls for a four-month

preparatory period, followed by three months for the modification and one month for the

testing and evaluation. The preparatory period involves the comparative study of both

operating systems' implementation of data types, system calls, and communications.

Differences between the old and new compilers, especially with regard to function libraries,

are examined. This time also allows the selection of a specific version of the MDBS

software to be ported (i.e. the "greg" version has been selected as the most advanced

multibackend version). It is necessary to identify implementation dependent information,

such as host names or data directory names, which are hard-coded into the software. The

preparatory period is also used to prepare "clean" paper models of a backend and a

controller free of the extraneous files left over from prior versions of the software. The

preparatory time also allows an analysis of the new hardware (especially, the new, fixed

disk drives) to assess any impact on the database system software. It is hoped that most

every required change could be identified at this early stage.

The porting is to be accomplished in three phases to minimize the disruption to other

researchers. Phase one, the preparatory work, is supported by the original MDBS

configuration. Note that backends db5, db6, and db9 are crossed out or omitted in Figures

Controller

I db net

isiv isiv s5 ii

Figure 3. The Original MDBS Configuration

11

3 and 4, since they were not functional. The intermediate configuration of phase two would

be achieved by simply adding the three new workstations (one new controller, two new

backends) to existing connections on the network. MDBS will support any number of

backends on the network. It also allows multiple controllers to be physically attached to the

Old
Controller

Su 4 Sn si si un 4 isik I~
New

Controller

Figure 4. The Intermediate MDBS Configuration

network as long as only one of them is operating any of the six controller processes at a

time (this is a function of the inter-machine communications design and port assignments).

Users of the old system may continue to operate normally. The movement of files using the

network remote copy command (rcp) and porting related runs of the new system may be

executed whenever the old system is not in use. This arrangement maximized productive

use of both systems. Once the porting work is completed and the new system is ready for

use, the old workstations may be removed from the network. Note that the position of the

Controller

S~db net

i db2[dbI3[
I Sn 4 lSun 4

Figure 5. The Final MDBS Configuration

12

new controller is changed in Figure 5: This is because the primary contoller doubles as a

communications gateway to another, unrelated network at this site.

The initial plan also focuses the initial work on the backend workstations, rather than

the controller. This is due to the fact that the backends are much simpler and because the

schedule called for the delivery of the backend hardware before the controller hardware.

E. MODIFICATIONS TO THE PLAN

The initial plan supports much of the ground work required before the actual porting

can be started. The effort put into this analysis was time well spent. Like all first efforts,

though, refinement was necessary once the actual work was commenced. A significant

change involved the decision to develop the backends first. Backend-first development is

possible, but not practical, because of the way MDBS compiles and distributes code.

MDBS is designed so that all of the source code for both the controller and the backends

are stored on the controller under the mdbs/VERSION/CNTRL and mdbs/VERSION/BE

directories. A system of forty interrelated makefiles, also on the controller (see the file

listing in Appendix C), handles the significant task of compiling the twelve processes

required to run MDBS. Those six processes pertaining to each backend may then be

manually copied to the mdbs/be.VERSION directory of each backend workstation or

distributed automatically using the user interface documented in [Meeks, 1993, p. 26 - 27].

The small number of shell scripts and related files required for a backend can be copied

from the old backend or from tape. See Appendix D for a listing of all files associated with

a backend. Given the existing arrangement, it is more practical to begin the porting work

on the controller and use its built-in capability to produce the backend executable files.

Another change to the initial plan was the length of time allocated to troubleshooting.

The initial estimates were overoptimistic by a factor of two. This situation arose primarily

because of the length of time required to address problems resulting from undocumented

differences between the compilers, differing implementations of the shell programming

languages, and the degree to which implementation dependent programming techniques

13

were used in MDBS. These difficulties are documented in the chapters which follow.

Additional facts and recommendations thought to be useful to the system porter are

contained in Appendix B.

14

IlL SOFTWARE ISSUES

A. AN INTRODUCTION

The software aspects of portability are defined in terms of the programming constructs

employed and the capabilities of the target operating system and its associated compiler and

library. Early incarnations of the Multibackend Database Supercomputer software existed

on machines running the VMS and RSX operating systems. More modern versions have

been built on 4.2BSD UNIX and, most recently, 4.3BSD UNIX. It should be possible to

port MDBS to many operating systems supporting process control, reliable inter-process-

communication, broadcast communication, and a suitable compiler. For the purposes of

this porting project, MDBS will be moved to hardware running the SunOS UNIX operating

system version 4.1.1. These operating systems are very similar in that SunOS is a derivative

of BSD UNIX [Que, 1990, p. 18].

Developed prior to the creation of the ANSI standard for the C programming

language, MDBS software is written in Kernighan and Ritchie standard C. The compiler

used to create the executable files is the standard compiler (cc) included with the operating

system. The use of implementation dependent programming constructs greatly increases

the difficulty of any porting project. Fortunately, portability has long been a design

consideration for MDBS [Wong, 1986, p. 9), and examples of non-portable code are

infrequent.

In this chapter, we will discuss important issues and relevant differences between the

original and target operating systems and between the old and new compilers. Issues related

to communications will be discussed in Chapter V.

B. OPERATING SYSTEM CONSIDERATIONS

1. System Call Interface to the Kernel

In the UNIX environment, an application, such as MDBS, interacts with the

hardware through a set of approximately one hundred system calls [Rosen and Rosinski and

15

Farber, 1990, p. 10]. These system calls instruct the kernel to perform various tasks, such

as file I/0 or process execution. The use of system calls by MDBS was the first operating

system issue investigated as a part of this porting project.

The fewer and the more basic the system calls used by a UNIX application, the

greater its portability [Rochkind, 1985, p. 16]. Only eighteen system calls are used to

construct MDBS's higher level functions. These are listed alphabetically below, along with

their location in the code.

Table 1: SYSTEM CALLS MADE BY MDBS

System Call Purpose [ISIV, 1986] Location

accept accept a connection on a socket pcl.c, sndrcv.c

bind bind a name to a socket ack.c, pcl.c, sndrcv.c

close delete a descriptor (file or socket) many places

connect initiate a socket connection pcl.c, sndrcv.c

exit terminate a process many places

gethostname get the name of current host bget.c, bput.c, cget.c, cput.c
dbl.c

getnetbyname get access to the network pcl.c

getpid get a process identification number generals.c

gettimeofday get the date and time generals.c

kill send signal to a process shell scripts

listen listen for connection on a socket pcl.c, sndrcv.c

lseek move the read/write pointer cpcountc, dio.c, dicp.c,
rectag.c, zero.c

open open a file for reading or writing many places

read read input (files or sockets) cpcount.c, dio.c, disp.c, iig.c,
meta.c, pcl.c, rectag.c, sndrcv.c

send send a message from a socket ack.c, cb.c, sndrcv.c, others

16

Table 1: SYSTEM CALLS MADE BY MDBS

System Call Purpose [ISIV, 1986] Location

socket create an endpoint for communica- ack.c, pcl.c, sndrcv.c
tion

unlink remove directory entry (file or sndrcv.c, gsmodseLc
socket)

write write output (file or socket) bes.c, cpcount.c, dio.c, iigd-
bl.c, meta.c, pcl.c, rectag.c,
sndrcv.c

We experienced only one problem as a result of differences between the

implementation of system calls on the old and new operating system. The singular

difference was the inability of the lseekO call to return the size of a raw device opened as

a character special file. This technique was employed to return the disk size in the original

version of zero.c. The information is passed to the user as an advisory. It is not critical to

the zeroing function and was commented out of the new version.

2. Differences in the Shell

In UNIX, the shell is a command interpreter program (and programming

language) that serves as an interface between the user and the operating system. The shell

receives commands and arranges to have them executed. The shell scripts, or interpreter

files (start.cntrl, run.be, stop.db*, zero.db*, etc.), supporting MDBS are designed to run on

the C shell, a very common replacement for the original (Bourne) UNIX shell. MDBS

needs a shell that supports job control since it must be able to specify that certain processes

are run in the background. The C shell universally provides this support [Stevens, 1992, p.

248 - 249]. The SunOS provides the C shell, but some differences in its implementation

were noted. The scripts governing the start-up of controller processes (start.cntrl), the start-

up of backend processes (run.be), and the halting of running MDBS processes (stop.cmd)

17

required modification to avoid syntax errors on the new system. The specific modifications

are detailed in Appendix B.

3. Differences in Stack Implementation

Good programming practices are followed with the goal of writing

it iplementation independent code. Where good practices are followed, minor differences

in the underlying implementation are usually unimportant. Sometimes, the form of an

offending statement is subtle. One such example was discovered during this porting

project.

The add-path0 function is a simple procedure located in the utilities.c file. It is

called from twenty-seven places in the controller code. Its purpose is to append the path of

the data directory (DATA_AREA) to the front of any file name passed to it so that a pointer

to the entire construct can be passed to an openO system call. The form of this function used

on the ISIV/4.3BSD platform had worked as intended for years. The function is reproduced

below.

char *add-path (filename)
(

char path [MaxPathLength + MFNLength + 1];

strcpy(path, DATA_AREA);
strcat(path, filename);
return (path);

} /* end add-path */

This same function compiled but caused numerous run-time errors on the new

Sun/SunOS system. The problem results because the storage for "char path" is created

within the add-path function rather than in the original calling routine. The pointer to path

which is returned to the caller is corrupted because of differences in stack implementation

used by Sun. The problem was corrected by modifying add.path0 to accept both the

filename and the storage space for the path from the calling routine.

This is included here as an example of the subtlety of programming problems

which arise because of operating system implementation differences.

18

.4. Path Name and File Name Considerations

Persons involved in porting MDBS to other platforms should be aware of the

following limitations coded into the current implementation. Commdata.def, located in the

COMMON directory, limits the maximum length of file names (40) and path names (40).

The configure.h header file, located in the "version (i.e. greg)/bin" directory allows

backend and controller path names of length sixty-four. No changes were necessary for this

porting project, but some operating systems may impose more restrictive limits.

C. C LANGUAGE COMPILER & LINKER CONSIDERATIONS

1. The C Language Library

Another source of concern for this porting project is compatibility of C language

library header files between the old and new compilers. It is the header files which

determine the availability of library functions, the names of symbols, the format of data

structures, and the specification of communication sockets. Only those functions and

definitions contained in header files referenced by the MDBS code are of concern, but

significant differences in these areas could result in a greatly increased porting effort. The

MDBS code references seventeen system-supplied header files. These are listed below

alphabetically.

Table 2: HEADER FILES REFERENCED BY MDBS

included header files

arpa/ineth

ctype.h

curses.h

errno.h

fcntl.h

math.h

19

Table 2: HEADER FILES REFERENCED BY MDBS

included header files

ndbm.h

netdb.h

netinet/in.h

stdio.h

strings.h

sys/file.h

sys/socket.h

sys/time.h

sys/types.h

sys/un.h

time.h

An analysis of these header files from the old and new systems revealed only

minor differences. Examples which resulted in trivial changes to the code include the

substitution of unsigned character for simple character types in stdio.h. Some of the Sun-

supplied headers, including sockets.h, are actually licensed copies of the BSD code. Both

sets of headers contain some "enhancements", but for the most part, these changes are not

important to MDBS.

2. Type Conversion

C is not a strongly-typed language, but its type-checking capabilities have

evolved over time [Kernighan and Ritchie, 1988, p. 3]. If the two compilers do not handle

type-checking and type conversion (especially implicit type conversions) in the same

manner, then compatibility problems could result.

Two classes of compile-time errors and warnings resulted from this difference in

type handling. The first grew out of the use of the statement, FILE *open(, which was

20

repeated at five locations in the original code (iig.c, uigdbl.c, bes.c, rectag.c, and dio.c). The

original compiler allowed this redeclaration of the return type from the open() system call.

The newer compiler did not. The impact was type mismatches in the way file pointers were

obtained and used. The fix involved rewriting these routines to use file descriptors with

openO, reado, write(, and close() calls rather than file pointers. This was preferable to

using the fopen0 library call to obtain file pointers which could be used with freado,

fwriteo, and fcloseO library calls because of the increased speed of the unbuffered system

calls.

A second class of compile-time problems resulted from differences in the

handling of the automatic conversion of incompatible data types. The older compiler

allowed, and the original MDBS code included, numerous examples of implicit conversion.

One common case involved the interchange of an integer and a pointer. This practice was

allowed in the original definition of C, but is no longer permitted [Kernighan and Ritchie,

1988, p. 31. The second common case involved incompatible structure pointers. An

example from beno.c had a pointer to one type of user-defined structure (type

ctLdefinition) pointing to a very different user-defined structure (type ciat_definition). The

solution to both problems was the addition of careful explicit type conversion.

One curious example of implicit type conversion which did not raise an exception

at compile-time but caused problems at run-time was discovered. The following statement

was included in the source code for the backend put (BPUT) process:

printf(IThe host is %s\n', msg[2 * NoBElength + 2];

Since msg[n] (where n is an integerO is a character, not a string, the %s should be a %c.

This code compiled and ran acceptably on the old system. On the new system, it compiled

without warning but caused the prccss to terminate at run-time.

3. Error-Checking

A newer compiler should have enhanced error-checking capabilities. This held

true in the case of this porting project. The newer compiler identified three errors which had

21

not been detected by the older compiler. Two of these involved missing macro names.

MDBS source code includes a number of debugging statements whose inclusion is

controlled by #ifdef statements. Two of these were undefined, meaning that those sections

of debugging code had never been included. The third error involved an unmatched

parenthesis.

4. The Linker and the Makefiies

The linker performs complicated actions on the object modules under the

direction of the user-supplied makeffles. A wide range of compatibility problems are

possible. First, the newer Sun operating system supports dynamic linking (run-time

linking), something not supported by the older BSD compiler. The impact of this on the

MDBS code was unknown. This feature seems to have no impact on the functioning of the

MDBS software.

Certainly, a careful review of the compiler and linker options (flags) specified in

the makefiles is in order any time an application is moved from one platform to another.

Many of these flags are nearly universal in meaning, but others are implementation

specific. The original MDBS makefiles specified the -20 option. This instructs the compiler

to optimize code for the Motorola 68020 processor. This is inappropriate for the new

system and would cause compile-time errors. These were removed from all forty makefiles.

One unexpected error which did surface involved the linking of the record

processing (RECP) executable. Possibly because of its large size, the makefile directed the

linking of recp.exe in two steps on the older system. This produced a program which always

generated a segmentation fault and dropped core when executed on the new system. The

problem was corrected by modifying the makefile to allow one-step linking.

D. IN CONCLUSION

In this chapter, we have presented seven classes of operating system and language/

compiler issues relevant to the porting of the Multibackend Database Supercomputer

22

software. In the next chapter, we will consider issues relevant to hardware differences of

the new platform.

23

IV. HARDWARE ISSUES

A. AN INTRODUCTION

Unlike some other database machines [De Witt, 1979, p. 122 - 132), the Multibackend

Database Supercomputer was designed from the start to utilize only off-the-shelf hardware

and identical standard system software. The positive result is a mercifully small number of

hardware considerations relevant to the task of porting the software to a new hardware

platform. Two significant hardware issues remain, those related to the optimal use of the

fixed disks, and those related to the storage of hardware specific information within the

code.

B. FIXED DISK ISSUES FOR MDBS

By definition, database machines are not general-purpose computers. Database

machines are specialized for the tasks they must perform. A principal distinguishing

characteristic is the capability to handle very large amounts of stored data quickly. The

MDBS architecture emphasizes the efficient data handling capabilities of large, fast disk

drives in each backend machine.

1. Fixed Disk Requirements

A typical MDBS configuration would involve one fixed disk drive in the

controller and three fixed disk drives in each backend machine. The controller drive is

mounted (attaching the file system to the directory structure) so that it can be used to store

and execute the MDBS programs in the normal manner. Any fixed disk with at least

twenty-three megabytes of usable capacity will suffice. One of the three backend drives

should also be mounted. This disk need only store the approximately two megabytes of

code required by a backend machine. The other two backend drives should not be mounted,

as these will be accessed as raw devices. The size of the first of these two raw drives, the

base data disk, will be determined by the amount of data to be stored divided by the number

of backends over which it can be shared. The second backend disk, the meta data disk,

24

should be about one-fourth the size of the base data disk. In the Naval Postgraduate

School's Laboratory for Database Systems Research the base data drives have been as large

as four hundred megabytes to as small as one hundred megabytes each. irregardless of the

capacity, it is important that all of the attached backends have identical base data drives and

identical meta data drives. The following paragraphs will make the reason for this

requirement clear.

2. Understanding MDBS Disk Utilization

Understanding how MDBS utilizes it's fixed disks is fundamental to the rest of

this presentation. As stated above, the controller machine's disk and each backend

machines' program disk are mounted drives. These are used to store the source code,

executable code, shell programs, transaction files, and temporary files listed in Appendices

Cand D.

The meta disk and data disk are unmounted drives. They remain raw devices so

that they can be used as character special files by the MDBS software. In essence, the entire

fixed drive is viewed as a special kind of file by the operating system. It is not uncommon

to use this approach for database applications on UNIX systems, since it allows the

database management system (DBMS) to by-pass the file system and directly transfer data

between the processes' address space and the fixed disk using direct memory access

[Rochkind, 1985, p. 3 - 4]. The result of bypassing the buffered file system is greatly

improved performance.

The significant performance gain possible with character special files does not

come without a price. Raw devices cannot use most of the convenient file handling utilities

provided by the operating system. It is necessary to write the routines to handle the storage

and retrieval of data on the disk. Frequently, these routines are gathered together into a

collection of subroutines which can be called directly by the operating system kernel. This

is referred to as a device driver [Rochkind, 1985, p. 41. The routines for accessing the meta-

and base-data disks on MDBS are not unified into a device driver. Rather, they are

25

contained in the source code for the directory management (DM, or DIRMAN) process,

which handles meta-data disk access, and the disk input-output (DIO) process which is

responsible for access to the base-data disk.

3. Implementation Details of the Metw Disk

Meta-data describes the structure of the primary information stored in the

database. The meta-data disk stores this information about the base (primary) data using a

special format designed to take advantage of the speed of raw devices used as character

special files.

The beginning of the device contains two global tables, known collectively as the

"header". The first of these tables, the "Next Available Track Table" (NATT) is used to

store the information about the next available (unused) disk track on the data disk which

may be used for starting a new data cluster. The NATT starts at byte zero of the device. The

other table, the "Offset Table" (OT), is a list of database identifiers for databases which

have data stored on any backend machine. The OT begins at byte three of the device. The

entire header is of fixed size. The current value is 500 bytes. All of the values quoted here

are stored in the meta.def file located in the DM directory.

The header area is followed by space for one or more sets of tables. Each set of

six tables contains information about a single database. These six tables are the Descriptor-

to-Cluster Bit Map Table (DCBMT), the Templates fist, the Attribute Table (AT), the

Descriptor-Descriptor ID Table (DDIT), the Descriptor Table (DT), and the Cluster-

Definition Table (CDT). Each table has a pre-determined length specified in the meta.def

file.

#define NATT_OFFSET 0
#define OT_OFFSET 3
#define HEADER 500

Figure 6, on the following page, shows the organization of the meta disk. Identical meta-

data tables are maintained on each backend machine. Each meta-data disk contains a

complete set which is identical to every other.

26

Item Contents Starting Address

Header NATr NATrOFFSET

Block OT OT_OFFSET

DCBMT HEADE.{+(DBnoeDBLNGTH)+DCBMTOFFSET

Meta-Data Templates HEADER+(DB.no*DBLENGTH)+TEhMPOFFSET
Block AT HEADER+(DB_no*DBJLENGTH)+ATOFFSET
for 1st

Database DDIT HEADER+(DBno*DBLENGTH)+DDITr-OFFSET

DT HEADER+(DBno*DBLENGTH)+DTOFFSET

CDT HEADER+(DBno*DB_.LENGTH)+CDT._OFFSET

The meta-data blocks for other databases follow sequentially

Figure 6. Meta-Data Disk Storage Format

Once the disk is opened using the open() UNIX system call, information

pertaining to a database may be written (writeo) or read (reado) from the disk. The location

of the meta information may be simply calculated by adding the header size to the offset

needed to reach the desired table in the nth database, where n is the numerical

representation of the order of the database ids contained in the Offset Table. The routines

for opening and using the meta-disk are contained in the meta.c source file located in the

DM directory. The directory management process, running on each backend machine,

carries out these activities at run-time.

4. Implementation Details of the Base-Data Disk

The base-data (primary data) is the actual data of interest to the user of the

database management system. The base-data disk is also configured as a character special

file, but here the similarity ends. The base-data is stored on the base-data disk in a manner

27

completely different than that of the meta-data. The base-data storage scheme is designed

to spread the records of a database across the backends as evenly as possible. Base-data

information is not replicated. On each backend machine's base-data disk, records are stored

in one or more tracks of the same disk cylinder. During a retrieve operation, all of the

attached backend machines would be performing their reads at the same time. This

arrangement achieves a primary high-performance design goal for MDBS, cylinder

parallel readout of data [Hsiao, 1991, p. 50 - 53]. Figure 7 depicts how four records (x),

residing on different surfaces of the same cylinder, may be efficiently read from a data-disk

drive.

xxx Plaues 2

Base-Data Disk Drive

Figure 7. Record Distribution on a Base-Data Disk Drive

Unlike the meta-data storage scheme, which was based on the simple calculation

of byte offsets into the device, the complicated base-data storage scheme relies on an

understanding of several physical disk parameters (track size, tracks per cylinder, number

28

of cylinders) to arrange the records into the desired tracks of the disk for optimal reading

and writing. Again, the basic storage unit of the base-data disk is the track, not the byte.

This dependence on knowledge about physical disk details makes the code for

the base-data disk the most implementation dependent of all of the MDBS code.

Fortunately, this information has been gathered into three header fides which are listed in

sub-section 7 below.

The routines for opening, reading, and writing the base-data disk are contained in

the disk input-output (DIO) directory and executed at run-time by the DIO process. Each

backend machine knows its next available cylinder and track (if any). Decisions as to which

backend machine will receive a newly inserted record are made by the insert-information

generation (1IG) process on the controller after coordination with the backend DM

processes [Boyne and Demurian and Hsiao and Kerr and Orooji, 1983, p. 29].

S. Disk Initialization

Before their first use, both the meta-disk and data-disk must be initialized. The

initialization process is repeated whenever a database is removed from the system. This

process involves opening the devices and writing null zeros to all or a portion of the device.

For MDBS, this process is referred to as "zeroing" the disk (Note that only meta- and data-

disks should be zeroed - never zero one of the program disks, as this destroys all of the code

stored on the disk!).

Initialization is handled by an MDBS utility named "zero". The executable code

for zero should be copied to the "mdbs/bin" directory on each backend. A master copy of

the zero executable is maintained in the "version (e.g., greg)%bin" directory on the

controller. The source code for zero (zero.c) is located in the "DIO" directory on the

controller. Zero is normally called and passed necessary information (device to zero,

number of bytes to zero) by the shell programs located in the "run" directory of the

controller.

29

6. The Problem and the Solution

The aforementioned methods for initializing, writing, and reading data work well

on the old hardware platform. The old fixed disk drives utilize the Enhanced Small Device

Interface (ESDI). The disks' formatting information is stored on the drive controller, and

the entire surface of the disk is available for use by MDBS.

The new hardware platform is equipped with disk drives utilizing the Small

Computer Systems Interface (SCSI). SCSI is a system level interface, meaning that some

of the controller functions must be built into the drive circuitry [Rosch, 1989, p. 550]. When

one of the new SCSI drives are operated under the SunOS 4.1.1 operating system, the

formatting information for that drive must be written to the disk. Sun refers to this

information as the "label". It is located in the first block (cylinder 0, head 0, track 0) of the

disk. This represents an implementation dependency with respect to the existing MDBS

code, since the existing routines for initializing and writing to both the meta-data and base-

data disks destroy the formatting information stored in the label block on the new drives.

With regard to the disk initialization routine contained in zero.c, the solution is

straight-forward. The old version of zero starts at the first byte (location 0) of the drive and

writes null zeros. We have added a new constant, called "SAFETY._OFFSET", which is

currently defined in meta.def to be 512. The lseek0 system command which zero.c uses to

position the file pointer, now begins writing null zeros at location SAFETYOFFSET,

rather than at location 0. The label block of the drive is passed over and preserved.

The modification to the meta-data disk writing routines is also straight-forward.

The old routines write the header information beginning at location 0 on the meta-data disk.

To avoid destroying the label information, the same SAFETY.OFFSET is added to the

meta-disk before the header block. This is accomplished by adding a new definition

(SAFETYOFFSET) to the meta.def header file and "sliding" the other blocks further into

the device. The advantage of this approach is that it is transparent to the rest of the existing

code. The routines for the calculation of table locations reference the dcfinition of

HEADER, so only the following changes are necessary:

30

#define SAFETY_OFFSET 512
#define NATT_OFFSET 0 + SAFETYOFFSET
#define OTOFFSET 3 + SAFETY_OFFSET
#define HEADER 500 + SAFETYOFFSET

Figure 8 shows the new organization of the meta-data disk.

Item Contents Starting Address

Safety Label 0
Offset

Header NATI NATIOFFSET + SAFETYOFFSET

OT OT_OFFSET + SAFETY-OFFSET

DCBMT HEADER+(DB_no*DB.LENGTH)+DCBMT_OFFSET

Meta-Data Templates HEADER+(DBno*DB_ ENGTH)+TEMPOFFSET
Block AT HEADER+(DB_no*DBLENGTH)+AT-OFFSET

for 1st

Database DDIT HEADER+(DB.no*DBLENGTH)+DDIT-OFFSET

DT HEADER+(DB-no*DBLNGTH)+DT...OFFSET

CDT HEADER+(DB no*DBLENGTH)+CDTOFFSET

The meta-data blocks for other databases follow sequentially

Figure 8. Modified Meta-Data Disk Storage Format

The changes required to protect the label area on the base-data disk require a

different approach. It does not make sense to try to follow a byte-based approach to

protecting the label block, since the existing storage routines are based on cylinders and

tracks. Likewise, an approach which tests every insert operation for indications that a write

31

to the label block is about to occur is not satisfactory since this would impose the overhead

of two extra comparisons per write.

The Next-Available-Track-Table (NATf) on the meta-data disk stores the next

available cylinder and next available track information for the backend on which it resides.

Whenever a backend does not already contain records from an existing database, these

values are both zero. This is because the initialization routine (zero) writes zeros to every

location on the disk. Two global external variables, av.cylinder (type unsigned short) and

av_track (type unsigned char) are declared in dirman.def for the purpose of receiving and

holding these values during execution. The information is read into the variables during an

initialization call to the read_meta_NATT(function in the DM process.

Since our goal is to preserve the label area of the disk, the obvious way to proceed

is to ensure that the available cylinder and track variables never indicate that cylinder 0

track 0 (the location of the label) is available for writing. Rather than modify the routine

which zeroes the base-data disk, we will add a new function, iniLmeta_NATTO, to meta.c

which will write a zero to the available cylinder and a one to the available track portion of

the Next-Available-Track-Table immediately after the meta-data disk is opened. This call

will execute before the readmetaNATT(call so that the global variables receive values

of zero and one, rather than zero and zero.

The first write to the base-data disk now skips cylinder 0/track 0 (where the label

area is located) and writes instead to cylinder 0/track I. This approach costs one track per

backend base-data disk, but avoids the complexity of a byte-based scheme and the run-time

overhead of testing before writing. It also has the advantage of being flexible, in that the

base-data disk's beginning cylinder/track address can be changed to suit the user's need

simply by changing the values of the new constants "first_record_cylinder" and

"firstrecordctrack" contained in dirman.def.

32

7. Hard-Coded Disk Information

As discussed above, certain implementation-dependent fixed-disk information is

hard-coded into MDBS. All of the fixed disk related definitions are contained in four

header files. The following definitions are from the commdatadef file in the COMMON

directory:

#define RecDiskSize 95421000
#define notracks 6
#define TrackSize 8192-2

RecDiskSize refers to the size of the new base-data (record) disk. The definition for

no-tracks is the number of tracks per cylinder (the number of heads) on the new disk.

TrackSize is the segment size for the storage of records on each track of the base-data disk.

It is included here because this was originally the same as the formatted track size of the

disk, but this changed as a result of performance testing several years ago. Changes to this

value should be cartiully considered, as there are numerous side effects.

The dio.h file in the DIO directory contains the device name for the base-data

(record) disk in the following statement:

char *driver_names = (I/dev/sd4c" };

This same value is written into the code for the disk utility rectag.c, and each of the zero.db*

shell scripts located in the "run" directory.

The following definitions are contained in the meta.def header file (these are in

addition to the structure information stated earlier):

#define META_DISK_NAME l/dev/sd2co
#define METADISK_STORAGE 95421000

The METADISKNAME is the device name of the meta-data disk. The value specified

for METADISKSTORAGE is the formatted storage capacity of the meta-data disk.

The final header file containing fixed disk specific information is dirman.def in

the DM directory. It contains the following definition:

#define nocylinders 974

This is the number of cylinders on the base-data (record) disk.

33

C. OTHER HARDWARE SPECIFIC ISSUES FOR MDBS

While the physical details of the fixed disk drives are the most obvious hardware-

specific information coded into MDBS, there are other details important to a porting

project. Details of the workstations and network hardware comprising MDBS must be

considered when moving to a new hardware platform.

1. Workstation Information

One major area of concern involves the storage and use of information (e.g., host

names) relative to the MDBS workstations. The maximum number of workstations

attached to the MDBS ommunication network, their specific names, and the format

(alphabetic characters and numbers) of their names are all hard-coded into MDBS. The

maximum number of backend machines is explicitly coded in two places (once as an

integer, once as a character) in pcl.def (located in the COMMON directory). The character

version of the number is not used by the "greg" version of the software. The maximum

number of backend workstations is implicitly defined in another place in the code. This

statement from ti.c (located in the TI directory) sets a condition for a successful start-up of

the system:

if (NOBE(O] > '0' && NOBE[0] < '3')

This number should be one greater than the maximum number of backend machines. The

dbl_templateO function in the dbl.c source file contains several statements which are highly

dependent on the number (and name) of the workstations comprising MDBS. The values

associated with the variable buMP and it's length (buMPno) are critical. This function

should be carefully analyzed by anyone porting MDBS to a new hardware platform, as it is

very implementation dependent.

A complete set of the host (workstation) names are written into the configure.h

file. Configure.h is the header file for the executable (main) which automates the start-up

and shut-down of the MDBS software. The host name of the controller machine is specified

separately in configure.h and also contained in pcl.def.

34

Some routines in the MDBS code are sensitive to the length of the host names of

the attached workstations. These are routines which pick the names of sending stations

from messages by relying on the length of the station name.The very implementation-

dependent coding of the dbl-templateO function in dbl.c has already been mentioned.

Another example is found in ack.c (from the COMMON directory), which includes this

statement at about line 626:

for (i = 0; i < 4; i++)
loudmouthlil a hp -> hnaeji];

The number 4 represents the number of characters (alphabetic and numeric) in the host

names (e.g., dbl3 is four characters long). The number 4 has subsequently been replaced

by the definition host-namejlength. A similar example is written into pcl.c (also located in

the COMMON directory). Here the implementation dependent statement in the

getfirst_message0 function is:

for (i = 0; i < 4; i.*)
brdcstng-host [i] = hp -> hname[ij;

Here, also, the number 4 results from the number of characters in the host names. Because

of statements like these, all of the host names of the machines making up MDBS should

have the same length. The current implementation is set up for host names of length four,

but this could be changed. The constant MAXHOSTLEN, contained in msg.def (located

in the COMMON directory), could be used to describe the length of host names.

Some sections of MDBS code are sensitive to the format of the host names (e.g.,

"dbl I"). Ack.c, located in the COMMON directory, is a principal source file for routines

which acknowledge messages broadcast by the controller or a backend machine to all other

machines. Some details about the implementation of reliable broadcasting for MDBS are

located in [Wong, 1986, p. 38 - 44, 61]. The routines of this file are very highly dependent

on the composition of host names. As originally implemented, these routines expect to deal

with host names of length three, where the last character is a unique number which can be

convened into an integer. The original code in ack.c also assumed that the highest number

portion of the host name would never be larger than the maximum number of workstations

35

attached to MDBS. We have made those alternations necessary to make the code easier to

port to different hardware with host names of other lengths. New constants have been added

(e.g., lowest and highest numbered workstations) to logically separate the range of the

number portion of the hostnames from the range of index values for the host..names array

(the hostnames array is a two-dimensional array which holds the host names of all

workstations participating in a given run of MDBS). This separation improves portability

and allows the efficient use of higher-numbered workstations. An illustration of this is

provided in the assemble() function located in the ack.c source file. These additions also

improve readability.

The new definitions include host_name_len (the length of the host name suing),

nmn_ws_number (the number portion of the least workstation host name), max_ws_number

(the number portion of the greatest workstation host name). The values associated with

these definitions, located in ack.def and ack.dcl, would have to be adjusted for a different

set of workstations with different host names. The current implementation is set up for a

hostname of length four, of which the last two characters are numbers. No two hostnames

should end in the same numbers as MDBS uses these to uniquely identify each workstation.

A new function, host_name_integerO. which receives the hostname string and

returns the number portion as an integer has been added to ack.c as a replacement for the

old method. The source code for the new, more portable function is contained in Appendix

F.

Almost all of the shell scripts associated with starting and stopping MDBS

contain host name or device dependent information. These simple files, located in the "run"

directory on the controller, include all of the stop.be*, zero.db*, and stop.db* files. All will

require slight modification when MDBS is moved to a new hardware platform.

2. Network Communication Information

The third major source of hard-coded, implementation specific details in the

MDBS code is the communication network. The name by which the network may be

36

accessed and important hardware port assignments are specifically written into the code.

More will be said about this in the next chapter.

D. IN CONCLUSION

In this chapter we have brought forth the three primary sources for hardware-specific

statements in the MDBS code. A specific modification to the way in which the raw devices

are written has also been described. In the next chapter. we will present details of the

communications issues important to porting MDBS to a new platform.

37

V. COMMUNICATIONS ISSUES

A. AN INTRODUCTION

The third major issue which defines the size and scope of the porting task for anyone

moving the Multibackend Database Supercomputer to a new hardware and/or software

platform is communications. The loosely coupled parallel architecture of MDBS is very

highly dependent upon communications. This communication requirement exists between

the processes running on any one workstation and between processes running on different

workstations. This chapter starts with a presentation of the communication requirements of

MDBS. Next, the design of MDBS communications is discussed. Finally, details relevant

to specific implementations are provided.

B. MDBS COMMUNICATIONS REQUIREMENTS AND IMPLEMENTATION

MDBS requires both inter-process and inter-machine communications support. Inter-

process communication (IPC) is communication between the processes running on a single

workstation. The controller depends on reliable inter-process communications to

coordinate the actions of the six processes running concurrently on the controller

workstation. Each backend machine depends on reliable inter-process communication to

coordinate the actions of the six backend processes.

1. Inter.Process Communications

The current implementation of MDBS supports inter-process communication

through the facilities offered by the old (BSD4.3) and new (SunOS 4. 1. 1) UNIX operating

systems. MDBS uses sockets of type SOCK-STREAM in the UNIX domain (AFUNIX)

under the Transaction Control Protocol (TCP) for communications between processes on

the same machine. The TCP communications protocol is reliable, meaning that there is no

need for MDBS to check for the delivery, sequencing, or duplication of messages sent using

this protocol. A message which is transmitted may be assumed to be delivered successfully.

This is of great importance to a database system where data integrity is a central concern.

38

An inter-process communications channel is established asymmetrically using

the client-server model [Leffler and Fabry and Joy and Lapsley and Miller and Torek, 1987,

p. PSI: 8-2 - 8-10]. The client makes the system call, socketO, which creates an endpoint

for communication and returns a descriptor. The client then attempts to connect to a server

using the connecto system call. The server also creates a socket and then uses the bind()

system call to assign a name to the socket. The server then listens for a connection attempt

by the client process. Once the connection has been established, simple read() and write()

system cals may be used to transfer data. These messages are not limited to a specific

length by the operating system. These messages are written into buffers created by MDBS.

The size of the MDBS buffers, not the operating system, limits the maximum size of the

messages.

2. Inter-Machine Communications

Individual MDBS workstations need to be able to send messages to other

individual machines as well as broadcast a message to all other workstations (backend and

controller alike). The current implementation of MDBS also uses the support offered by

UNIX for inter-machine communications. MDBS workstations are all connected to a

standard ethernet cable. MDBS creates sockets of type SOCK_DGRAM in the Internet

domain (AFINET) under the User Datagram Protocol (UDP). The sockets of type

SOCKDGRAM support connectionless, unreliable messages of a small, fixed length

[Rieken and Wieman, 1992, p. 39 - 45, 51]. By unreliable, we mean that messages may

become lost - it is not possible to assume that a message will be received. Since reliability

is critical to this application, another level of communications protocol was added to

MDBS to support reliable broadcasting with acknowledgments. Details of this are

contained in [Wong, 1986, p. 38 - 44,61).

The familiar socket() system call is used to create the socket in the Internet

domain. The connecto system call is used to establish the link. The socket's address

includes the Internet address and port number. Messages are transmitted to another socket

39

of type SOCK_D.GRAM using the sendo system call. The 32-bit Internet address is

automnaically assigned to all messages destined for this socket. Since the messages are of

fixed format and length, MDBS uses the read0 system call rather than the recv0 system

call to read the messages.

C. COMMUNICATION CHANNEL DESIGN AND FUNCTION

Now that the general form of MDBS communications requirements have been

presented, a discussion of the design and use of communications channels within MDBS is

needed.

I. Process Functions

A brief review of the functions performed by the twelve MDBS processes is

included here as an aid in understanding the communication channel design. More detailed

information about these processes and how their functions have changed over time is

available in [Boyne and Demrjian and Hsiao and Kerr and Orooji, 1982, p. 3, 29 - 33],

[Wong, 1986, p. 10, 38 - 44], [Hammond, 1992, p. 4 - 5]. The six controller processes are

controller get (CGET), controller put (CPUT), test interface (TI), request processing

(REQP), insert-information generation (11G), and post processing(PP). The CGET process

is responsible for sending DGRAM messages across the ethernet to other MDBS

workstations. The CGET process is responsible for receiving DGRAM messages from

other workstations. The TI process is the user interface. It contains the routines for

activating the selected language interface and capturing the user's instructions from the

terminal. The REQP process parses the user's requests and checks for proper format and

syntax before forwarding the request. The 1IG process handles the clustering of the

database records across the backend machines. It includes a global table of locality

information (backend number, cylinder, track). The PP process properly formats the results

received from backend machines so that they can be displayed to the user.

The six backend processes are backend get (BGET), backend put (BPUT), record

processing (RECP), concurrency control (CC), directory management (DM), and disk

40

input/output (DIO). Au six of these processes run on each backend machine participating

in MDBS. The BPUT process is responsible for sending DGRAM messages to other

MDBS workstations over the ethernet cable. The BGET process receives these same inter-

machine messages for the backend machine on which it is running. The RECP process is

responsible for the manipulation of records. This includes selection, retrieval, and value

extraction. The CC process is charged with maintaining meta-data and base-data (record)

integrity during the processing of transactions. The DM process is responsible for all access

to the meta-data disk. It coordinates with the record processing process in gathering

information about how the base-data (records) are stored. The DIO process handles all

reading from and writing to the base-data (record) disk.

2. Design of the Communications Channels

To support the inter-process and inter-machine communications requirements of

MDBS, the communications links shown in Figure 9 (on the following page) are

established using the system calls covered in part B. Figure 9 shows all of the channels built

into MDBS, not just the primary ones. Only one backend machine is shown. It is

representative of all backend machines. Note that the inter-process communication links

have arrows. This is intended to show which process initiates the link, not the direction of

information flow, since the SOCKSTREAM connections are bi-directional. The arrows

associated with the SOCK_DGRAM sockets in the PUT and GET processes do not imply

an actual connection, but do show the direction of message flow.

3. How MDBS Establishes Communications

All of the communication channels shown in Figure 8 are established during

system generation (start-up). The MDBS code logically separates the establishment of

inter-process and inter-machine communication. The inter-process communications are

established within each workstation first. The IPC links within each machine are handled

by the send-receive initialization routine (initsrO) contained in the sndrcv.c source file

located in the COMMON directory..

41

Controller
Ethernet

Backend

Figure 9. MDBS Commnunication Channels

42

Once the inter-process channels are established, the inter-machine links are

created. The initcbO (initialize controller-backend communication) function in the cb.c

source file and other functions in the pcl.c source file (both located in the COMMON

directory) handle the establishment of inter-machine communication. Within initcbo, the

initbtocO function sets up the connectionless link and the initackput0 function sets up

the additional reliability layer built into MDBS which allows reliable broadcasting. Each

backend machine needs to identify itself to the controller before the controller's permanent

socket is created. This is handled through the creation of a temporary, "universal" socket

in the controller (using the in.t-servO function in pcl.c). The universal socket is replaced

by the permanent, dedicated controller socket once the controller knows how many

backend machines are presently configured.

The job of establishing the inter-machine communication channels start in the

controller. During initialization, the TI process tells the CGET process to set backend

numbers with a SetNoBE (message code 923) message. The CGET process then receives

an initial identification message (BeWho, message code 925) from a backend over the

ethernet. CGET forwards this message to the CPUT process, which transmits a message

(SetNoBE, message code 925) back to the identified backend over the ethernet.

Initialization is complete when that backend's BGET process sends an inter-process

message with the backend number (SetBeNo, message code 924) to the CC, DM, RECP,

and BPUT processes. These and other process and message related codes are contained in

the msg.def header file.

Shutdown is accomplished by the finish send-receive (fmishsrO) function

and the close socket (closesocko) function. Calls are made to these functions when system

shutdown is ordered by the user or a critical communications failure occurs. Note that the

inter-process communication sockets are unlinked immediately following creation. This

does not close the socket as long as the associated process remains viable. This does ensure

the socket is not left open if the process terminates abnormally [Stevens, 1992, p. 96].

43

D. DETAILS IMPORTANT TO PORTERS OF MDBS

This section contains communications-related information of particular importance to

anyone porting MDBS to another platform.

1. Limitations on Message Lengths

There are limitations to the lengths of both SOCKSTREAM and

SOCKDGRAM messages of which the porter needs to be aware. The maximum length of

the inter-machine messages handled by SOCKDGRAM sockets is set by the operating

system. UNIX limits such messages :o 1450 bytes. This limit is hard-coded into the MDBS

code as the constant BRDCSTSZ (broadcast size) in pcl.def (located in the COMMON

directory). This value might have to be changed on a different operating system platform.

The maximum length of the inter-process messages handled by SOCK_STREAM

sockets is not determined by the operating system, but rather by the amount of buffer space

set aside by MDBS for messages. The constant, MSGLEN (contained in both msg.def and

licommdata.def), limits inter-process messages to approximately eight kilobytes. This

value is related to the track size of the base-data disk. This limit might have to be changed

on a different platform. If a change to the buffer size is necessary, the values of the

following definitions will also have to be changed: RESTMSGLEN (located in msg.defin

the COMMON directory), PP._ResBufSize (located in pp.def in the PP directory),

RESLength and REQLength (both located in tstint.def in the TI directory).

2. Access to the Network

MDBS must be able to gain access to the network and communication ports in

order to implement inter-process and inter-machine communication. Access for inter-

process communication is considered first. The pcl.def file, located in the COMMON

directory, contains the hard-coded name of the network joining the MDBS workstations.

The constant NETNAME (currently "npsisnet') is the name by which MDBS accesses the

network. The getnetbynameo system call, issued from pcl.c, establishes the access.

44

Whatever network name is used, it must be reflected in both pcl.def and the UNIX

operating system's network database. This database is stored in the /etc/networks file.

Inter-machine communications. in the Internet domain, requires additional,

implementation-dependent information. Setting up the inter-machine communications

requires access to the system's network database file, just as the inter-process

communications did. This is because the network's 32-bit intemet address is recorded

there. Communications in the Internet domain also require a port number. MDBS code

includes the hard-coded numbers for four ports. Pcl.def defines the port numbers for the

backend and controller ports:

#define BE_PORT 1650
#define CNTRL_PORT 1651

Ack.dcl defines the port numbers for the retransmission and acknowledgment ports:

#define RETPORT 1700
#define ACKPORT 1800

These port numbers must be assigned by the system administrator and will be different in

every implementation.

3. Socket Definitions

The operating system's definitions for the sockets it supports are contained in the

sockets.h header file. The old and new operating system's versions of this file should be

carefully compared. For this project, no changes were needed.

4. The Socket Directory

The location for the controller and backend sockets is specified in the MDBS

code. The sndrcv.def header file includes the following definition:

#define PREFIX O/u/mdbs/Sockets"

Any change to the location for the sockc.ts in the controller or backend directory structure

must be reflected here.

45

5. A New Aid for Timing Messages

An additional debugging flag has been added to the existing ones in the flag.def

files to allow easier reading of the process trace files. This flag is the send-receive timing

flag (SRTimeFlag). When included in the flag.def files, it causes the system time (in

seconds) to be added to the trace whenever any inter-process communication functions

(send() and receiveO) or inter-machine communication functions (puLmessage(and

get-messageo) are called. This timing information can be useful for understanding or

trouble-shooting the traces belonging to the six processes running on a single workstation,

but are of limited use in making comparisons between different workstations since

workstation clocks are rarely so closely synchronized.

E. IN CONCLUSION

Communications, both inter-process and inter-machine, are central to the functioning

of the Multibackend Database Supercomputer. Any attempt to move MDBS to a new

hardware or operating system software platform must carefully consider the

communications support available on the new platform as well as communications

parameters hard-coded into MDBS.

46

VI. MISCELLANEOUS OTHER ISSUES

A. AN INTRODUCTION

The purpose of this short chapter is to bring out two issues which are important to

porting the Multibackend Database Supercomputer software, but which did not fit neatly

into any of the preceding chapters. These two "loose ends" are the storage of MDBS

directory information, the method for attaching or deleting language interface modules

from the TI process, and certain limitations in the current MDBS implementation.

B. MDBS DIRECTORY INFORMATION

Certain information regarding the directory structure of MDBS is written into the

code. The full pathnames of both the "home" directory and the data files directory (where

users database schema and transaction files are stored) are hard-coded. The commdata.def

file in the "version (greg)/COMMON" directory includes these two definitions:

#define DATAAREA w/u/mdbs/UserFiles/
#define HOME a/u/mdbs/l

The definition of the data files directory is repeated in the licommdata.def file found in the

"/u/mdbs/version(greg)/CNTRLIrl/L.agIF/include" directory.

The full pathname of the directory where the controller communication sockets are

located is also hard-coded. The sndrcv.def file in the COMMON directory includes this

definition:

#define PREFIX lu/mdbs/Sockets'

Any change to this directory structure, including a change to the name of the root

directory ("/u") to which this file system is mounted, would require changes to the above

listed files. The makefiles are written using relative path names, so minor changes should

not affect the integrity of these files.

47

C. ADDITION/DELETION OF LANGUAGE INTERFACE MODULES

MDBS has flexible architecture in terms of both its hardware and its software.

Different versions of the software include different mixtures of non-kernel language

interface modules. The purpose of this section is to identify the critical linkages between

the kernel and non-kernel interfaces contained within the test interface (TI) code.

First, for any of the non-kernel language interfaces to be included, the language

interface flag (LanglFFlag) must be visible to the compiler. This means that the "'define

LanglF_.Flag" statement in the file "Flags.def" located in the TI directory must not be

commented out.

Second, there must be function call to initialize the specific non-kernel language

interface. This is accomplished by loading the schema for the non-kernel model. This call

(e.g., creatreldb_list) should be located around line 90 in the ti.c file.

Finally, it is necessary to add a menu choice and a call to the main procedure for the

desired language interface. This code should be placed within the while loop following the

function call to initialize the interface.

Once these changes are made and ti.exe is recompiled (which may require the

modification of one or more makefiles), the new language interface should be available.

Assuming the new language interface is properly written, the thread of execution in the TI

process may now be switched to the new language interface. Removing a language

interface(s) is accomplished by reversing the above steps. For more information on the

design of a non-kernel language interface, see [Bourgeois, 1993, p. 29 - 36].

48

VII. CONCLUSIONS

A. AN INTRODUCTION

The Multibackend Database Supercomputer offers elegant, practical solutions to the

four most pressing large database problems facing government and industry. MDBS allows

data sharing, resource consolidation, scalable performance, and capacity growth.

B. WHAT HAS BEEN ACCOMPLISHED

In light of its promise, there is a need for a theory of MDBS system software

portability. Such a theory identifies specific issues and problem areas for MDBS

portability. It also increases the understanding of portability issues for parallel databases in

general.

In this thesis, such a theory of system software portability has been developed.

Portability has been addressed from the standpoint of hardware issues, operating system

software issues, and communication issues. General types of problems as well as specific

examples of problems and solutions have been presented. It is hoped that this information

will facilitate the porting of MDBS to other platforms and stimulate interest in and

development of the concepts embodied in MDBS. We have attempted to incorporate the

knowledge gained through seven months of studying and experimenting with MDBS into

this thesis so that the learning curve for future researchers and programmers will be eased.

We have also sought to point out limitations in the current implementation of MDBS which

can be corrected or enhanced.

C. TOPICS FOR FURTHER RESEARCH

MDBS is a large and complicated system. It has developed significantly over the last

dozen years, but there is still more which can be done. This section discusses topics for

further research.

One area for research involves improving the user and database capabilities of MDBS.

Currently, MDBS can only support a single user and one database at a time. MDBS needs

49

to be able to support multiple users and multiple databases simultaneously. Some work has

already been done in this regard. The overall design of MDBS supports multiple users and

databases (e.g. the meta-data and base-data disk organization). Many of the data structures

related to users and databases are written so as to be easily expandable. This work should

be continued.

Another research area is the expansion of the cross-model access capabilities of

MDBS. Currently, the concept has been proved through the creation of a relational-to-

hierarchical cross-model access module. Practical cross-model accessibility is possibly the

most important potential contribution of MDBS. This capability should be expanded and

studied further.

A final area for further research is the development of a more intuitive and efficient

user interface for MDBS. The current command-line interface, which presents the user with

a long series of sometimes confusing choices, is not a suitable interface for something with

the power and flexibility of MDBS. The user interface issue needs to be thoroughly

examined. The goal should be nothing less than redesigning the way in which MDBS

interacts with the user.

D. IMPLEMENTATION ISSUES

There is another class of issues which may not involve pure research but which are

still of great significance to the development of MDBS and its use by students at the Naval

Postgraduate School. This section presents four such issues.

First, the multi-model and multi-language capabilities which have been demonstrated

and used for instruction should be implemented on the multi-backend version of the system.

The network, hierarchical, and object-oriented model-language interfaces are currently

implemented only on the single machine version of MDBS. Some effort has already been

expende ' o begin moving these interfaces to the multi-backend version. This work should

be continued, as the implementation of a single multi-model, multi-language, and multi-

backend system will benefit students, researchers, and staff workers alike.

50

Second, a review of the value used for TrackSize should be made. It can be assumed

from its name that this value was once the physical track size of the base-data (record) disk.

This is not now true, nor was it true on the previous hardware platform. The value of

TrackSize is used in the determination of the value of MSGLEN (message length) in

msg.def. It also figures in the calculation for the maximum number of fragments into which

an inter-machine message may be broken. Interestingly, the value of MSGLEN in

liconmdata.def is different from the one in meta.def. These inconsistencies need to be

resolved.

Third, a review of the number and distribution of header files should be made.

Currently, definitions are dispersed over a large number of directories. These could be

combined into fewer files, each with a common purpose. For example, it would be useful

to have those definitions pertaining to communications parameters in a single file.

The fourth issue is a small one. That portion of the TI process which handles the kernel

model and language, does not automatically generate descriptor (*.d) and template (*.t)

files for the user. The other language interface modules (e.g. the relational model and

language interface) generate the descriptor and template files for the user based upon input

from a description of the database schema. The user of the kernel (ABDL) interface must

create these files off-line and add them to the system manually. A mechanism for creating

these critical files should be added to the ABDL interface.

E. RECOMMENDATIONS

MDBS is a research tool, not a commercial product. It has been the subject of work by

many different students and researchers over many years. As a result, there are a few

shortcomings in its implementation. This section makes some recommendations for

strengthening the code.

It is recommended that more structure be added to the coding of MDBS. The current

implementation of MDBS uses the pre-ANSI (i.e., K & R) C language. This permits an

overuse of global variables and pointers which severely complicates the code and makes

51

maintenance or modification difficult. It is recommended that MDBS be rewritten in a more

structured language (including, possibly, ANSI C). This would allow greater error

checking at compile-time, improve portability, and make the system much easier to

understand.

It is recomnmended that a higher-quality compiler be procured for use by the

researchers and programmers. The current command-line compiler has noticeable

inconsistencies and provides little compile-time error checking.

It is recommended that the commenting of MDBS code be improved. Currently, large

areas of the existing code are not well commented. Until recently, many of the files did not

even include the name of the file as a comment. Lack of comments increases the difficulty

in reading and understanding the code.

It is recommended that two sections of the code should be re-written to improve their

portability. The first of these is ack.c (located in the COMMON directory). This file was

written after most of the other MDBS code and contains several strongly implementation

dependent functions. The second section of code which should be rewritten is the

dbl-template() function in the dbl.c file. The nature of the dependencies are detailed in

Chapter TV, section C.

Finally, it is recommended that a staff programmer be permanently assigned to assist

with the MDBS project. The addition of a programmer/assistant would benefit the project,

the researchers, and the students. This individual could serve as a source for advice on

programming questions, as an expert trouble-shooter, and as the long-term "corporate

knowledge" for the project's implementation details.

52

APPENDIX A. SYSTEM COMPARISON

A. HARDWARE

This following is a summary of the hardware comprising the old and new platforms.

Note that the same standard Ethernet communications network is used with both systems.

1. Old hardware

a Conftoller: ISI.V model V24S workstation (quantity one)

Table 1: OLD CONTROLLER HARDWARE

Item Detail

host name db8

central processing unit Motorola 68020 (16 MHz)

physical ram 4 MB

fixed disk drive(s) two Control Data CDC 86L ESDI drives.
each with 101 MB capacity (MDBS uti-
lizes a 100 MB partition mounted as "/u").

tape drive(s) one 1/2" reel, one 1/4" cartridge

communications backplane(s) two

b. Dackend: ISI.V model V24S workstation (quantity six)

Table 2: OLD BACKEND HARDWARE

Item Detail

host names db3, db4, db5, db6, db7, db9

53

Table 2: OLD BACKEND HARDWARE

Item Detail

central processing unit Motorola 68020 (16 MHz)

physical ram 4 MB

fixed disk drive(s) two Control Data CDC 86L ESDI drives,
each with 101 MB capacity (MDBS uti-
lizes one as a meta disk (raw device) and
one for program code storage (@2 MB,
mounted as "lu"), and
one Control Data CDC Swallow ESDI
drive with 399 MB capacity used by
MDBS as a data disk (raw device)

communications backplane(s) one

2. New Hardware

a Controller: Sun model 4/110 workstation (quantity 1)

Table 3: NEW CONTROLLER HARDWARE

Item Detail

host name dbl I

central processing unit Sun Sparc (RISC)

physical ram 8 MB

fixed disk drive(s) one Micropolis 1558 with 373 MB capac-
ity (MDBS utilizes @ 100MB on a parti-
tion mounted as "/u".

tape drive(s) none f •ckup accomplished via network
or pýo wole tape unit)

communications backplane(s) two

54

SBackend Sun modl 4/280 worekstaon (quantity two)

Table 4: NEW BACKEND HARDWARE

Item Detail

host names dbl2, dbl3

central processing unit Sun Sparc (RISC)

physical run 16 MB

fixed disk drive(s) one Hitachi DK 815-10 SCSI drive with
600+ MB capacity (MDBS uses only
@2MB on file system mounted as "/u" for
program storage) and
two Quantum ProDrive 105S SCSI drives
each with 100MB capacity (MDBS uses
one as a meta disk and one as a data disk -
both are unmounted raw devices)

tape drive(s) one 1/4" cartridge drive

communications backplane(s) one

B. SOFTWARE

The following is a summary of operating system and compiler software on the old and

new systems.

1. Old Software

Table 5: OLD SYSTEM SOFTWARE

Item Description

Operating System ISIV version of BSD4.3 UNIX

Compiler Standard C compiler (cc)

55

2. New Software

Table 6: New System Software

Item Description

Operating System SunOS 4.1.1

Compiler Standard C compiler (cc)

56

APPENDIX B. AIDS TO DEBUGGING

A. AN INTRODUCTION

The suggestions offered in this appendix are meant to be of assistance to persons

modifying or trouble-shooting the MDBS system software. These hints are loosely divided

into six classes.

B. USING DEBUGGING FLAGS

A very useful and flexible set of debugging routines have been built into the MDBS

code. These debugging routines, most of which print (printfo) useful information to the

terminal or trace files, are included amongst the working code in conditional compilation

constructs. These take the form:

#ifdef identifier

(debugging code)

#endif

The idenufier is the name of the debugging flag. The debugging code within the construct

is only compiled into the executable file if the identifier is defined in the header file

specified by the appropriate makefile. These header files are all named flags.def. One is

located in each of the process directories in which compilation takes place (ten in all). The

flag names are never actually removed from the flags.,'2f files. They are commented out to

prevent inclusion of the debugging code. Each flags.def file contains a brief explanation of

the purpose of the flags contained therein. A number of new debugging statements which

may benefit persons porting MDBS were added during this porting project.

C. USING TRACE FILES

Trace files are text files which contain the output of processes which do not write to

the terminal. Careful analysis of these files is the best way to trouble-shoot MDBS or learn

exactly how it performs most of its functions. The start.cntrl (controller) and run.be

(backend) shell programs determine whether a process writes to the terminal or to a trace

57

file. Normally, only the T! process writes to the terminal. The others write to trace files, all

of which end in *.tr. The controller trace files are stored in the version (e.g., greg)/run/trace

directory on the controller and the be.version (e.g., greg) directory on each backend

machine.

The amount of information which is output to the trace file is determined by the setting

of the debugging flags for that process. Most of the information in a trace file is readily

comprehensible once the codes are understood. These codes are contained in the msg.def

header file.

Often a clearly labeled error message will direct the reader to the source of a problem.

Other times it is necessary to study all of the traces together while looking for an abnormal

pattern. Depicting the message flow on a copy of the communication channel map (Figure

8 in Chapter V) can be a tremendous help on these occasions. This is especially true where

the death of one process causes some of the other connected processes to die. Abnormal

termination of one MDBS process often causes a "domino" effect on the other processes.

D. CHECKING SYSTEM STARTUP

A few simple observations can help locate software problems which occur during

system start-up. Check the Sockets directory to see if all of the processes are creating

sockets. A new socket is created for every process on every run of the system. Check the

trace file directories to see if all of the processes are creating their trace files. These are also

deleted and created on each new run. Check to see if a process identification file (.pid file)

has been created in the run directory on each machine. If any of these are missing, the

system initialization is not progressing normally.

Once the system appears to be up and running, execute a process status (ps) on both

the controller and the backends. Check to see that all twelve MDBS processes (six on the

controller, six on the backend) are running. Remember that there is a short delay before the

get processes are started.

58

E. MAINTAINING A HISTORY

The generation and retention of detailed information about every modification and the

system's response is strongly recommended. Use of the UNIX script utility allows the

trouble-shooter to capture screen output (such as the TI process output) or keep a permanent

record of the contents of the trace files from any given run. Scripting the results of the

execution of the makejesults shell program (located in the version/bin directory) produces

a record of all of the compiler's messages from the last make. Scripting system tests

provides a permanent reference. Scripting the trace files for detailed analysis is also

helpful.Something similar to the tp8.stan and tpl3.stan shell programs (located with the

trace files) may be helpful here.

F. UNIX DEBUGGING TOOLS

The standard UNIX trouble-shooting tools (e.g., dbx, lint) were of limited assistance

with MDBS problems. Most of these tools are useful for trouble-shooting a single process,

but lack the facilities for running twelve processes at once. The dbx tool may be useful

where one particular process is causing a serious problem such as a segmentation error.

G. PROGRAMMING TIPS

When making changes to code which is local to one process (those not contained in a

COMMON directory), always execute a make (mk*) in that directory before trying a

system-wide makeall. The system-wide make takes from as little as twelve minutes to as

much as thirty-seven minutes, depending on how much of the language-interface code

involved. This is a long time to wait only to discover a minor syntax error.

Whenever adding new debugging code, always immediately follow the printf0

statement with an fflush(stdout) statement. This ensures that the output of the printf0

statement goes immediately to the appropriate trace file, rather than languishing in the

buffer where it could be lost in case of process termination.

59

Lastly, it is often difficult to determine the time sequence of operations performed in

different processes. Adding the time(O) call to a printfO statement can provide useful clues
in the trace files. The time(O) call returns the system time (in whole seconds) as an integer.

60

APPENDIX C. CONTROLLER DIRECTORY AND FILE
STRUCTURE

The following is a listing of the important directories and files which make up the

controller on MDBS.

A. THE "mdbs" DIRECTORY

This is the "mdbs" directory on the controller. All the other directories descend from

this one. It also contains the temporary files (*.pid) used to store process identification

numbers for the controller processes. These files are deleted and then recreated on each run.

The path to this directory (/u/mdbs/) is hard-coded into the MDBS software as "HOME" in

the commdata.def file.

total 75
drwxrwxr-x 14 mdbs 1024 Jul 6 13:05 ./
drwxr-xr-x 13 root 512 Sep 18 1992 . /
-rw-rw-r-- 1 mdbs 4387 May 29 09:59 .alias
-rw-rw-r-- 1 mdbs 5 Jul 6 13:05 .cget.exe.pid
-rw-rw-r-- 1 mdbs 5 Jul 6 13:05 .cput.exe.pid
-rw-rw-r-- 1 mdbs 242 Apr 26 12:42 .cshrc
-rw-rw-r-- 1 mdbs 5 Jul 6 13:05 .iig.exe.pid
-rw-rw-r-- 1 mdbs 5 Jul 6 13-05 .pp.exe.pid
-rw-rw-r-- 1 mdbs 5 Jul 6 13:05 .reqp.exe.pid
-rw-r--r-- 1 mdbs 114 Mar 8 12:20 .rhosts
-rw-rw-r-- 1 mdbs 1189 Feb 4 14:44 .rhosts.bak
-rw-rw-r-- 1 mdbs 5 Jul 6 13:05 .ti.exe.pid
drwxr-xr-x 2 mdbs 512 Jul 6 13:05 Sockets/
drwxr-xr-x 10 mdbs 2048 Jul 6 13:05 UserFiles/
drwxrwxr-x 2 mdbs 512 Apr 30 12:07 bin/
drwxr-xr-x 7 mdbs 1536 May 10 19:42 greg/

B. THE "Sockets" DIRECTORY

The "sockets" directory contains the six sockets used for inter-process-

communication in the controller. The GPCLC socket is used by the CGET process. The

P_PCLC socket is used by the CPUT process. All of these sockets are deleted and recreated

for every run.

Sockets:
total 2
drwxr-xr-x 2 mdbs 512 Jul 6 13:05 ./

61

drwxrwxr-x 14 mdbe 1024 Jul 6 13:05 ..
srwxrwxrwx I mdba 0 Jul 6 13:05 G_PCLC=
orwxrwxrwx 1 mdbs 0 Jul 6 13:05 IIG=
srwxrwxrwx I mdbs 0 Jul 6 13:05 PP=
arwxrwxrwx 1 mdbs 0 Jul 6 13:05 PPCLC=
orwxrwxrwx I mdba 0 Jul 6 13:05 REQPa
srwxrwxrwx 1 mdbs 0 Jul 6 13:05 TI.

C. THE "UserFies" DIRECTORY

The "UserFiles" directory contains the mass load files (*.r) and the controller's copy
of the descriptor (*.d) and template (*.t) files for each database used with the system. It also

contains the schema information files (*db) and stored transaction request files (*req) for

each database. The one transaction file containing the letters RTH (e.g. SQDRThreq) is

part of the "relational-to-hierarchical" cross-model accessing capability of MDBS). This

controller is set up for use with three databases (i.e. COURSE, SALES, and SQD). For

details on how these files are used, see [Bourgeois, 1993]. The path to this directory (/u/
mdbs/UserFiles) is hard-coded into the MDBS software as "DATA_AREA" in the
commdata.def. file. The directories under this one (abdm, daplex, hierarchical, etc.) hold

duplicate copies of these same database files for each model: Their contents are not listed

here for the sake of brevity.

UserFiles:
total 105
drwxr-xr-x 10 mdbs 2048 Jul 6 13:05 ./
drwxrwxr-x 14 mdbs 1024 Jul 6 13:05 . ./
-rw-r--r-- 1 mdbs 13 Jun 2 1992 .pw
-rw-rw-r-- 1 mdbs 51 Feb 25 21:56 COURSE.d
-rw-r--r-- 1 mdbs 172 Feb 25 21:25 COURSE.r
-rw-rw-r-- 1 mdbs 126 Apr 9 12:11 COURSE.t
-rw-r--r-- I mdbs 316 Oct 19 1992 COURSEsqldb
-rw-r--r-- I mdbs 613 Oct 19 1992 COURSEsqlreq
-rw-r--r-- I mdbs 289 Oct 13 1992 SALESreq
-rw-r--r-- 1 mdbs 120 Oct 13 1992 SALES.d
-rw-r--r-- 1 mdbs 263 Oct 13 1992 SALES.r
-rw-r--r-- 1 mdbs 121 Oct 13 1992 SALES.t
-rw-rw-r-- 1 mdbs 43 Mar 31 15:16 SQD.d
-rw-rw-r-- 1 mdbs 140 Mar 31 15:16 SQD.t
-rw-rw-r-- I mdbs 828 Feb 10 12:35 SQDRTHreq
-rw-rw-r-- I mdbs 813 Feb 10 12:36 SQDreq
drwxrwxr-x 2 mdbs 512 Oct 6 1992 abdm/
drwxrwxr-x 2 mdbs 512 Oct 6 1992 daplex/

62

drwxrwxr-x 2 mdbs 512 Oct 6 1992 hierarchical/
drwxrwxr-x 2 mdbs 512 Oct 6 1992 network/
drwxrwxr-x 2 mdbs 1024 Oct 24 1992 relational/
drwxrwxr-x 2 mdbs 512 Oct 6 1992 saandfLjfiles/

D. THE "bin" DIRECTORY

This is the uppermost of two "bin" directories in MDBS (the other is a subdirectory of

the "version" directory). This directory is used to store utility files, none of which are used

directly by MDBS. The "cpydisks" script was once used for distributing files. The three

scripts beginning with 'z' were used for zeroing meta and data disks. Both functions are

now accomplished in other ways.

bin:
total 134
drwxrwxr-x 2 mdbs 512 Apr 30 12:07 ./
drwxrwxr-x 14 mdbs 1024 Jul 6 13:05 .. /
-rwxr-xr-x 1 mdbs 122 Jan 14 1989 .z*
-rwxr-xr-x 1 mdbs 84 Sep 1 1989 cpydisks*
-rwxr-xr-x 1 mdbs 48 Jun 14 1989 z*
-rwxr-xr-x 1 mdbs 108 Sep 1 1989 zip*

E. THE VERSION (e.g., "greg") DIRECTORY

The "version" directory serves as the top-level directory for each version of the

software on the system. Each version of MDBS software has a unique copy of this directory

and all of its subdirectories. The current version of the software is called "greg", hence the

name of this directory. For details on version control, see [Meeks, 1993].

greg:
total 1151
drwxr-xr-x 7 mdbs 1536 May 10 19:42 .1
drwxrwxr-x 14 mdbs 1024 Jul 6 13:05 .. 1

drwxr-xr-x 8 mdbs 512 Jun 2 12:50 BE/
drwxr-xr-x 9 mdbs 512 Jun 2 11:46 CNTRL/
drwxr-xr-x 2 mdbs 1024 Apr 23 09:20 COMMON/
drwxr-xr-x 2 mdbs 1024 Jun 2 11:31 bin/
-rw-rw-r-- 1 mdbs 1511 Oct 16 1992 d.u
-rw-rw-r-- 1 mdbs 33666 May 10 19:26 dua
drwxr-xr-x 7 mdbs 1536 Jul 6 13:07 run/

63

F. THE "version/bin" DIRECTORY

This is the second "bin" directory in the MDBS controller. This one contains many

important files and utilities. The makefile in this directory is used to control compilation

and linking of all twelve (six controller, six backend) MDBS processes. Executing "make

clean" followed by "makeall" from this directory will remove all object files from the

twelve process directories and then create and distribute the new executables. Note that this

process does not remove the object files making up the "TI" process which are located

below the "'src" directory in the language interface modules. These files must be removed

manually. The shell script "make-results" displays the compiler and linker messages from

the last make. The two source files (main.c, configure.h) for the "main" executable, which

automates the running of MDBS, are located here. The working copy of the main

executable is copied to the "run" directory. The zero executable is copied here after being

created in the "DIO" directory. Zero handles the initialization of the backend data and meta

disks. It must be manually copied to the "bin" directory on each backend machine. Cpcount

is an executable which copies a specified number of bytes from one file to another. Rectag

is an executable utility for manipulating the data disk on a backend machine. L,' must be

copied to the backend "bin" directory. The cpydisks shell script was once used to distribute

the executable processes to the backend machines. It has been supersceded by newer code

written into the "main" executable. The stop.cmd shell script is an older version of the files

used to stop MDBS processes. The newer ones are located in the "run" directory.

greg/bin:
total 422
drwxr-xr-x 2 mdbs 1024 Jun 2 11:31 ./
drwxr-xr-x 7 mdbs 1536 May 10 19:42 .. /
-rw-rw-r-- 1 mdbs 122 Feb 25 12:54 Makefile
-rwxrwxr-x 1 mdbs 37152 Feb 5 13:40 configure*
-rw-rw-r-- 1 mdbs 5673 May 19 10:39 configure.h
-rwxr-xr-x I mdbs 17948 Jun 2 1992 constants*
-rwxr-xr-x 1 mdbs 26479 Jun 2 1992 cpcount*
-rwxr-xr-x 1 mdbs 84 Jun 2 1992 cpydisks*
-rwxrwxr-x 1 mdbs 70533 Jul 2 15:23 disp*
-rwxrwxr-x 1 mdbs 37611 May 19 10:40 main*
-rw-rw-r-- I mdbs 33550 May 19 10:35 main.c
-rw-rw-r-- 1 mdbs 14194 May 19 10:40 main.o

64

-rwixr--r-- 1 mAbs 932 Apr 30 12:05 makeresults*
-rwxr-xr-x 1 mdbs 557 Apr 9 11:42 makeall*
-rw-r--r-- 1 sidba 664 Apr 9 12:14 3akefile
-rwxr-xr-x 1 odbs 26590 Jun 2 1992 rectag*
-rwxr-xr-x 1 modbs 306 Feb 5 13:44 stop.cnmd
-rw-rw-r-- 1 3dbs 1984 Apr 30 12:08 temp.txt
-rwxr--r-- 1 mdbs 26439 Jun 2 1992 zero*

G. THE "run" DIRECTORY

This is the directory from which MDBS is normally run. It contains the executables

and scripts necessary to control the orderly generation of the system The "main"

executable is the program which controls all of the others. It calls the zero command in each

backend using the zero.db* scripts. It calls run.be on each backend to start the backend

processes. The master.run.be.file is a master copy of the files located on the backend

machines. Main also calls star.cntrl to start the controller processes. Ultimately, it calls the

stop.db* scripts to stop the processes when shutdown is signalled. This directory also

contains numerous temporary files created by MDBS. The *.dbl files are database listing

files. Each contains the names of the databases that exist for each model. The *dbs-dat

(database data) files hold schema information about each database. The information in the

dbs.dat files are used to generate a catalog file (.cat) for each database. The .qryfile and

.TransFile temporary files hold information about the latest querry transactions. The

.config.db file stores information (i.e., machine host names) for the most recent MDBS

configuration. The "trace" subdirectory contains trace (*.tr) files generated on the latest run

of MDBS. Each trace file contains the output from the controller process of the same name.

The backend process trace files may be found on each backend machine.

greg/run:
total 243
drwxr-xr-x 7 mdbs 1536 Jul 6 13:07 .1
drwxr-xr-x 7 mdbs 1536 May 10 19:42 .. /
-rw-rw-r-- 1 rdbs 266 Apr 13 13:31 .COURSE.cat
-rw-rw-r-- 1 mdbs 270 Apr 9 12:13 .DTH.cat
-rw-rw-r-- 1 3dbs 156 Apr 9 12:13 .SQD.cat
-rw-r--r-- 1 odbs 353 Apr 9 12:13 .Syntax
-rw-rw-r-- 1 3dbs 929 Apr 23 11:28 .TransFile
-rw-rw-r-- 1 indbs 9 Apr 26 15:27 .config.db
-rw-r--r-- 1 mdbs 10 Apr 9 12:13 .currfile

65

-rwxr-xr-x 1 mdbe 0 Apr 9 12:13 .dapdbs.dat*
-rw 1 mdbs 19 Apr 9 12:13 .exe.awk
-rw-rw-r-- 1 mdbS 4 Apr 9 12:13 .hi*.dbl
-rw-rw-r-- 1 udbs 154 Apr 9 12:13 .hiedba.dat
-rw-rw-r-- 1 mdbs 13 Apr 9 12:13 .net.dbl
-rw-r--r-- I idbs 726 Apr 9 12:13 .netdbs.dat
-rw-rw-r-- 1 mdbe 0 Apr 23 11:28 .output
-rw-rw-r-- 1 mdbs 728 Apr 23 11:29 .qry-file
-rw-rw-r-- 1 mdbs 698 Apr 9 12:13 .reldbs.dat
-rw-rw-r-- 1 mdbs 16 Apr 13 13:31 .*ql.dbl
-rwxrwxr-x 1 mdbs 37611 May 19 10:40 main*
-rwxr--r-- 1 mdbs 436 Nov 6 1992 master.run.be*
-rwxr--r-- 1 mdba 426 Mar 4 13:37 start.cntrl*
-rwxr-xr-x 1 mdbs 76 Feb 23 12:12 stop.dbl*
-rwxr-xr-x 1 mdbs 76 Feb 23 12:12 stop.db2*
-rwxr-xr-x 1 mdb$ 76 Nov 6 1992 stop.db3*
-rwxr-xr-x 1 mdbe 76 Nov 6 1992 stop.db4*
-rwxr-xr-x 1 mdbs 76 Nov 6 1992 stop.dbS*
-rwxr-xr-x 1 mdbs 76 Nov 6 1992 stop.db6*
-rwxr-xr-x 1 mdbs 76 Nov 6 1992 stop.db7*
-rwxr-xr-x 1 mdbs 314 Mar 4 13:59 stop.dbt"
-rwxr-xr-x 1 mdbs 76 Nov 6 1992 stop.db9*
drwxrwxr-x 2 mdbs 512 Jul 15 10:04 trace/
-rwxr--r-- 1 mdbs 230 Feb 23 13:31 zero.dbl*
-rwxr--r-- 1 mdba 230 Feb 23 13:31 zero.db2*
-rwxr--r-- 1 mdbs 230 Feb 23 13:31 zero.db3*
-rwxr--r-- 1 mdbs 230 Feb 23 13:31 zero.db4*
-rwxr--r-- 1 mdbs 309 Feb 5 13:30 zero.dbS*
-rwxr--r-- 1 mdbs 279 Feb 23 13:32 zero.db6*
-rwxr--r-- 1 mdbs 230 Feb 23 13:32 zero.db7*
-rwxr--r-- 1 mdbs 719 Apr 7 11:17 zero.db8*
-rwxr--r-- 1 mdbs 279 Feb 23 13:32 zero.db9*

H. THE "version/COMMON" DIRECTORY

The COMMON directory under the version directory contains source code common

to both controller and backend processes. Much of the code dealing with inter-process and

inter-machine communications is located here. Numerous hardware and network specific

definitions are also contained in the header files located here.

greg/COMMON:
total 241
drwxr-xr-x 2 mdbs 1024 Apr 23 09:20 .U
drwxr-xr-x 7 mdbs 1536 May 10 19:42 . .W
-rw-r--r-- 1 mdbs 16679 Jun 2 1992 ack.c
-rw-r--r-- 1 mdbs 1279 Jun 2 1992 ack.dcl
-rw-r--r-- 1 mdbs 320 Jun 2 1992 ack.def
-rw-r--r-- 1 mdbs 48 Jun 2 1992 beno.dcl

66

-rw-r--r-- 1 mdbs 69 Jun 2 1992 beno.def
-rw-r--r-- I mdbs 8661 Jun 2 1992 cb.c
-rw-r--r-- 1 mdbs 6706 Jun 2 1992 comio.c
-rw-r--r-- 1 mdbS 13788 Jun 2 1992 commdata.def
-rw-r--r-- 1 mdbs 615 Jun 2 1992 comemg.c
-rw-r--r-- 1 mdbs 548 Jun 2 2992 dblgeneral.c
-rw-r--r-- 1 mdbs 7774 Jun 2 1992 dbtzpmod.c
-rw-r--r-- 1 mdbs 3836 Jun 2 1992 orrormsg.c
-rw-r--r-- I mdbs 9360 Jun 2 1992 generals.c
-rw-r--r-- 1 Vdbs 1133 Jun 2 1992 msend.c
-rw-r--r-- 1 mdbs 63 Jun 2 1992 msg.dcl
-rw-r--r-- 1 mdbs 6958 Jun 2 1992 msg.def
-rw-r--r-- 1 mdbs 156 Jun 2 1992 msg.ext
-rw-r--r-- 1 mdbs 555 Jun 2 1992 newdb.c
-rw-r--r-- 1 mdbs 1694 Jun 2 1992 newtmpl.c
-rw-r--r-- 1 mdbs 28116 Jun 2 1992 pcl.c
-rw-r--r-- 1 mdbs 899 Apr 2 11:35 pcl.def
-rw-r--r-- 1 mdbs 590 Jun 2 1992 select.c
-rw-r--r-- 1 mdbs 369 Jun 2 1992 setbeno.c
-rw-r--r-- 1 mdbs 350 Jun 2 1992 setnobos.c
-rw-r--r-- 1 mdbs 27857 Jun 14 1992 sndrcv.c
-rw-r--r-- 1 mdbs 1734 Jun 2 1992 sndrcv.dcl
-rw-r--r-- 1 mdbs 296 Jun 2 1992 sndrcv.def
-rw-r--r-- 1 mdbs 946 Jun 2 1992 sndrcv.ext
-rw-r--r-- 1 mdbs 173 Jun 2 1992 tmpl.dcl
-rw-r--r-- I mdbs 804 Jun 2 1992 tmpl.def
-rw-r--r-- 1 mdbs 188 Jun 2 1992 tmpl.ext
-rw-r--r-- 1 mdbs 7569 Jun 2 1992 utilities.c
-rw-r--r-- 1 mdbs 1592 Jun 2 1992 waitmsg.c

L THE "BE" DIRECTORY

The BE directory is the top-level directory for all of the backend source code and

executables. Under the current approach, all code (including backend code) is compiled on

the controller and then copied to its appropriate destination. A copy of the backend

executables are kept in this directory. The six subdirectories under this directory hold

source code, object code, and makefiles for each backend process.

greg/BE:
total 1864
drwxr-xr-x 8 mdbs 512 Jun 2 12:50 .&
drwxr-xr-x 7 mdbs 1536 May 10 19:42 .W/

drwxr-xr-x 3 mdbs 512 Jun 2 11:58 BCOM/
drwxr-xr-x 3 mdbs 512 Jun 2 11:47 CC/
drwxr-xr-x 3 mdbs 512 Oct 25 1992 COMMON/
drwxr-xr-x 3 mdbs 512 Jun 2 11:49 DIO/
drwxr-xr-x 3 mdbs 1024 Jun 2 11:51 DM/

67

drwxr-xr-x 3 mdbs 1024 Jun 2 12:00 RECP/
-rwxrwxr-x I mdbs 91847 Jul 6 13:01 bget.exe*
-rwxrwxr-x 1 mdbs 91847 Jul 6 13:01 bput.exe*
-rwxrwxr-x 1 mdbs 104564 Jul 2 14:37 cc.exe*
-rwxrwxr-x 1 mdbs 55518 Jul 2 14:36 dio.exe*
-rwxrwxr-x I mdba 126485 Jul 2 15:23 dirman.exe*
-rwxrwxr-x I mdbs 150366 Jul 2 14:50 recp..xe*

J. THE "BE/COMMON" DIRECTORY

This directory holds code which is shared by two or more backend processes. Its

"Object" subdirectory is used to store a significant amount of object code used by backend

processes.

greg/BE/COl*4ON:
total 7
drwxr-xr-x 3 mdbs 512 Oct 25 1992 ./
drwxr-xr-x 8 mdbs 512 Jun 2 12:50 .. /
drwxr-xr-x 2 mdbs 512 Jun 2 11:59 Object/
-rw-r--r-- 1 mdbs 3349 Jun 2 1992 tmplsr.c

K. THE "BE/BCOM" DIRECTORY

This directory contains the source code needed to compile the backend get (BGET)

and put (BPUT) processes. Flags.def contains flags whose setting determine what, if any,

debugging code will be compiled into the executable files. The mk* script can be used to

recompile just the code in this subdirectory. System-wide recompilation is controlled from

the "version/bin" directory. The make_result file contains the compiler's comments (errors,

warnings, etc.) about the most recent compilation. The "Object" subdirectory contains the

object code generated from this source code as well as the makefile and shell scripts for

copying executables to their proper location.

greg/BE/BCOM:
total 14
drwxr-xr-x 3 mdbs 512 Jun 2 11:58 ./
drwxr-xr-x 8 mdbs 512 Jun 2 12:50 .. /
drwxr-xr-x 2 mdbs 512 Jul 6 13:01 Object/
-rw-r--r-- 1 mdbs 3281 Jun 2 1992 bget.c
-rw-r--r-- 1 mdbs 1612 Jun 2 1992 bput.c
-rw-r--r-- 1 mdbs 33 Jun 2 1992 dblocal.def
-rw-r--r-- 1 mdbs 841 Jul 6 12:59 flags.def
-rw-rw-r-- 1 mdbs 394 Jul 6 13:01 make_result

68

-rwxr--r-- 1 mdbs 106 Jun 2 1992 mk'

L THE "BE/CC" DIRECTORY

This directory contains the source code needed to make the executable for the

concurrency contol (CC) process. The makefles and shell scripts function like those in the

"BCOM" directory.

greg/BE/CC:
total 202
drwxr-xr-x 3 mdbs 512 Jun 2 11:47 .1
drwxr-xr-x 8 mdbs 512 Jun 2 12:50 .. I
-rw-r--r-- 1 mdbs 504 Jun 2 1992 .fixed
drwxr-xr-x 2 mdbs 1024 Jul 2 14:38 Object/
-rw-r--r-- I mdbs 21349 Jun 2 1992 atut.c
-rw-r--r-- 1 mdbs 371 Jun 2 1992 cc.dcl
-rw-r--r-- 1 mdbs 6719 Jun 2 1992 cc.def
-rw-r--r-- 1 mdbs 443 Jun 2 1992 cc.ext
-rw-r--r-- 1 mdbs 16851 Jun 2 1992 cccs.c
-rw-r--r-- 1 mdbs 17883 Jun 2 1992 ccds.c
-rw-r--r-- 1 mdbs 10408 Jun 2 1992 ccmain.c
-rw-r--r-- 1 mdbs 16869 Jun 2 1992 ccrp.c
-rw-r--r-- 1 mdbs 13063 Jun 2 1992 ccsr.c
-rw-r--r-- 1 mdbs 680 Jun 2 1992 cinit.c
-rw-r--r-- 1 mdbs 14478 Jun 2 1992 ctut.c
-rw-r--r-- I mdbs 31 Jun 2 1992 dblocal.def
-rw-r--r-- 1 mdbs 824 Jul 2 14:32 flags.def
-rw-rw-r-- 1 mdbs 848 Jul 2 14:37 make-result
-rw-r--r-- 1 mdbs 7214 Jun 2 1992 mallocs.c
-rwxr--r-- 1 mdbs 107 Jun 2 1992 mk*
-rw-r--r-- i mdbs 24214 Jun 2 1992 tuat.c
-rw-r--r-- 1 mdbs 15258 Jun 2 1992 tuct.c
-rw-r--r-- 1 mdbs 21221 Jun 2 1992 tudist.c
-rw-r--r-- 1 mdbs 1156 Jun 2 1992 unixcinit.c
-rw-r--r-- 1 mdbs 979 Jun 2 1992 update.c

M. THE "BE/DIO" DIRECTORY.

This directory holds the source code for dio.exe, the basis of the record disk input-

output (DIO) process).

greg/BE/DIO:
total 36
drwxr-xr-x 3 mdbs 512 Jun 2 11:49 ./
drwxr-xr-x 8 mdbs 512 Jun 2 12:50 .. /
drwxr-xr-x 2 mdbs 512 Jul 2 14:36 Object/
-rw-r--r-- 1 mdbs 1610 Jun 2 1992 cpcount.c

69

-rw-r--r-- 1 mdbs 33 Jun 2 1992 dblocal.det
-rw-r--r-- 1 mdbe 15993 Jun 2 1992 dio.c
-riw-r--r-- 1 mdbs 2102 Jun 2 1992 dio.h
-rw-r--r-- 1 mdba 828 Jul 2 14:34 flags.def
-rw-rw-r-- 1 mdba 183 Jul 2 14:36 make-result
-rwxr---r-- 1 mdbs 112 Jun 2 1992 mk*
-rw-r--r-- 1 mdbs 4994 Jun 2 1992 rectag.c
-rw-r--r-- 1 mdbe 1792 Jun 2 1992 zero.c

N. THE "BEIDM" DIRECTORY

This directory contains the source code Ofo the dibrectuory managemnent (DM) process.

grog/BE/DM:
total 289
drwxr-xr-x 3 mdbs 1024 Jun 2 11:51 .

drwxr-xr-x 8 mdbs 512 Jun 2 12:50./
drwxr-xr-x 2 mdbs 1024 Jul 2 15:23 Object/
-rw-r--r-- 1 mdbs; 8329 Jun 2 1992 ag.c
-rv-r--r-- 1 mdbs 7712 Jun 2 1992 atm.c
-rw-r--r-- 1 mdbs 5455 Jun 2 1992 beno.c
-rw-r--r-- 1 mdbs 4493 Jun 2 1992 cdtmbe.c
-rw-r--r-- 1 mdbs 1055 Jun 2 1992 cdtnwn.c
-rw-r--r-- 1 mdbs 9648 Jun 2 1992 commion.c
-rw-r--r-- 1 mdbs 1688 Jun 2 1992 constants.c
-rw-r--r-- 1 mdbs 14980 Jun 2 1992 cs.c
-rw-r--r-- 1 mdbs 4503 Jun 2 1992 cslresta.c
-rw-r--r-- 1 mdbs 5999 Jun 2 1992 cs3rest.c
-rw-r--r-- 1 mdbs 1562 Jun 2 1992 dbinit.c
-rw-r--r-- 1 mdbs 31 Jun 2 1992 dblocal.def
-rw-r--r-- 1 mdbs 2369 Jun 2 1992 ddit.c
-rw-r--r-- 1 mdbs 5262 Jun 2 1992 desc.c
-rw-r--r-- 1 mdbs 14576 Jun 2 1992 didef.c
-rw-r--r-- 1 mdbs 19862 Jun 2 1992 dirman.c
-rw-r--r-- 1 mdbs 407 Jun 2 1992 dirman.dcl
-rw-r--r-- 1 mdbs 5062 Jun 2 1992 dinnan.def
-rw-r--r-- 1 mdbs 421 Jun 2 1992 dirman.ext
-rw-r--r-- 1 mdbs 7179 Jun 2 1992 disp.c
-rw-r--r-- 1 mdbs 3247 Jun 2 1992 dmfree.c
-rw-r--r-- 1 mdbs 1024 Jun 2 1992 dmnomore.c
-rw-r--r-- 1 mdbs 13480 Jun 2 1992 dmnsr.c
-rw-r--r-- 1 mdbs 904 Jun 2 1992 dmupdtin.c
-rw-r--r-- 1 mdbs 10234 Jun 2 1992 ds.c
-rw-r--r-- 1 mdbs 3790 Jun 2 1992 dsdone.c

-r--r- 1 mdbs 825 Jul 2 15:17 flags.def
-rw-rw-r-- 1 mdbs 1491 Jul 2 15:23 make-result

-r--r- 1 mdbs 5703 Jun 2 1992 mallocs.c
-rw-r--r-- 1 mdbs 45200 Jun 2 1992 meta.c
-rw-r--r-- 1 ndbs 9750 Jun 2 1992 meta.def
-riixr--r-- 1 mdbs; 111 Jun 2 1992 mk*

70

-rw-r--r-- 1 mdbs 6392 Jun 2 1992 newdesc.c
-rwe-r--r-- 1 mdbs 7425 Jun 2 1992 oldnew.c
-rw-r--r-- 1 mdbs 16676 Jun 2 1992 rdtsav..c
-rw-r--r-- 1 mdbs 1300 Jun 2 1992 rdtsort.c
-rw-r--r-- 1 mdbs 4513 Jun 2 1992 tabledump.c
-rw-r--r-- 1 mdba 16447 Jun 2 1992 tu.c

0. THE "BE/RECr' DIRECTORY

This directory contains souce code for the record processing (RECP) process.

grog /BE/RECP:
total 250
drwxr-xr-x 3 mdbs 1024 Jun 2 12:00 .
drwxr-xr-x 8 mdbs 512 Jun 2 12:50 .
drwxr-xr-x 2 mdbs 1024 Jul 2 14:50 Object/
-rw-r--r-- 1 mdbs 952B Jun 2 1992 allsto.c
-rw-r--r-- 1 mdbs 48 Jun 2 1992 beno.dcl
-rw-r--r-- 1 mdbs 5291 Jun 2 1992 chkqry..c
-rw-r--r-- 1 mdbs 978 Jun 2 1992 chkwait.c
-rw-r--r-- 1 mdbs 152 Jun 2 1992 dblocal.def
-rw-r--r-- 1 mdbs 1554 Jun 2 1992 delp.c
-rw-r--r-- 1 mdbs 9466 Jun 2 1992 disks.c
-rw-r--r-- 1 mdbs 145 Jun 2 1992 disks.dcl
-rw-r--r-- 1 mdbs 773 Jun 2 1992 disks.def
-rw-r--r-- 1 mdbs 63 Jun 2 1992 disks.ext
-rw-r--r-- 1 mdbs 1463 Jun 2 1992 findrp.c
-rw-r--r-- 1 mdbs 865 Jul 2 14:39 flags-def
-rw-r--Y-- 1 ndbs 3135 Jun 2 1992 insp.c
-rw-rw-r-- 1 mdbs 1163 Jul 2 14:50 make-result
-rw-r--r-- 1 mdbs 2219 Jun 2 1992 mallocs.c
-rwxr--r-- 1 mdbs 111 Jun 2 1992 mk*
-rw-r--r-- 1 mdbs 1132 Jun 2 1992 nomore.c
-rw-r--r-- 1 mdbs 6632 Jun 2 1992 rbabs.c
-rw-r--r-- 1 mdbs 6006 Jun 2 1992 rcreqs.c
-rw-r--r-- 1 mdbs 19954 Jun 2 1992 recproc.c
-rw-r--r-- 1 mdbs 257 Jun 2 1992 recproc.dcl
-rw-r--r-- 1 mdbs 4875 Jun 2 1992 recproc.def
-rw-r--r-- 1 indbs 283 Jun 2 1992 recproc.ext
-rw-r--r-- 1 mdbs 19690 Jun 2 1992 recpsr.c
-rw-r--r-- 1 mdbs 10332 Jun 2 1992 retby.c
-rw-r--r-- 1 mdbs 25912 Jun 2 1992 retcom.c
-rw-r--r-- 1 mdbs 12334 Jun 2 1992 retp.c
-rw-r--r-- 1 mdbs 1154 Jun 2 1992 rpcont.c
-rw-r--r-- 1 indks 3377 Jun 2 1992 rpfree.c
-rw-r--r-- 1 mdbs 4553 Jun 2 1992 streqs.c
-rw-r--r-- 1 mdbs 1165 Jun 2 1992 unixdisks.c
-rw-r--r-- 1 mdbs 433 Jun 2 1992 unixdisks.def
-rw-r--r-- 1 mdbs 20414 Jun 2 1992 updp.c
-rw-r--r-- 1 mdbs 4693 Jun 2 1992 wcreqs.c

71

P. THE "version/CNTRL" DIRECTORY

This is the top-level directory for controller source and object code. It contains the

executables for each of the six controller processes (CGET, CPUT, IIG, PP, REQP, and TI).

These executables are copied here by shell scripts after being created in the subdirectories

bearing their names.

grog/CNTRL:
total 1784
drwxr-xr-x 9 mdbs 512 Jun 2 11:46 ./
drwxr-xr-x 7 mdbs 1536 May 10 19:42 ..I
drwxr-xr-x 3 mdbs 512 Jun 2 11:34 CCOM/
drwxr-xr-x 3 mdbs 512 Oct 25 1992 COMMON/
drwxr-xr-x 3 mdbs 512 Jun 20 2:25 IIG/
drwxr-xr-x 3 mdbs 512 Jun 2 11:36 PP/
drwxr-xr-x 3 mdbs 512 Jun 2 11:38 REQP/
drwxr-xr-x 4 mdbs 1024 Jun 2 11:40 TI/
-rwxrwxr-x 1 mdbs 91811 Jun 20 13:09 cget.exe*
-rwxrwxr-x 1 mdbs 91811 Jun 20 13:09 cput.exe*
-rwxrwxr-x 1 mdbs 56680 Jun 2 12:48 iig.exe*
-rwxrwxr-x 1 mdbs 56971 Jun 2 12:48 pp.oxe*
-rwxrwxr-x 1 mdbs 84382 Jun 2 12:48 reqp.exe*
-rwxrwxr-x 1 mdbs 496436 Jun 7 10:11 ti.exe*

Q. THE "CNTRL/COMMON" DIRECTORY

This directory contains source code common to two or more controller processes. The

"Object" subdirectory holds a large quantity of object code for controller processes used by

the linker.

greg/CNTRL/COMMON:
total 7

drwxr-xr-x 3 mdbs 512 Oct 25 1992 ./
drwxr-xr-x 9 mdbs 512 Jun 2 11:46 ..
drwxr-xr-x 2 mdbs 512 Jun 20 13:09 Object/
-rw-r--r-- 1 mdbs 3209 Jun 2 1992 tmplsr.c

R. THE "CNTRL/CCOM" DIRECTORY

This directory holds the source code needed to create the executable files for the

controller's get (CGET) and put (CPUT) processes. The function of the makefile and shell

scripts are identical to those discussed for the "BE/BCOM" directory above.

72

grog/CNTRL/CCOM:
total 13
drwxr-xr-x 3 mdbs 512 Jun 2 11:34 .I
drwxr-xr-x 9 mdbs 512 Jun 2 11:46 ..
drwxr-xr-x 2 mdbs 512 Jun 20 13:09 Object/
-rw-r--r-- 1 mdbs 2059 Jun 2 1992 cget.c
-rw-r--r-- 1 mdbs 1225 Jun 2 1992 cput.c
-rw-r--r-- 1 mdbs 33 Jun 2 1992 dblocal.def
-rw-r--r-- 1 mdbs 830 Jun 20 13:06 flags.def
-rw-rw-r-- 1 mdbs 556 Jun 20 13:09 makeresult
-rwxr--r-- 1 mdbs 106 Jun 2 1992 mk*

S. THE "CNTRL/IIG" DIRECTORY

This directory contains the source code for the insert-information-generator (IIG)

processes.

greg/CNTRL/IIG:
total 49
drwxr-xr-x 3 mdbs 512 Jun 20 12:25 ./
drwxr-xr-x 9 mdbs 512 Jur. 2 11:46 .. /
drwxr-xr-x 2 mdbs 512 Jun 2 11:34 Object/
-rw-r--r-- 1 mdbs 11286 Jun 2 1992 bes.c
-rw-r--r-- 1 mdbs 498 Jun 2 1992 dblocal.def
-rw-r--r-- I mdbs 4287 Jun 2 1992 didgen.c
-rw-r--r-- 1 mdbs 827 Jun 2 11:29 flags.def
-rw-r--r-- 1 mdbs 11255 Jun 2 1992 iig.c
-rw-r--r-- I mdbs 244 Jun 2 1992 iig.dcl
-rw-r--r-- i mdbs 1295 Jun 2 1992 iig.def
-rw-r--r-- 1 mdbs 236 Jun 2 1992 iig.ext
-rw-r--r-- 1 mdbs 2931 Jun 2 1992 iigdbl.c
-rw-r--r-- 1 mdbs 5936 Jun 2 1992 iigsr.c
-rw-rw-r-- 1 mdbs 833 Jun 2 11:34 makeresult
-rwxr--r-- 1 mdbs 118 Jun 2 1992 mk*

T. THE "CNTRLIPP" DIRECTORY

This directory contains the source code for the program supporting the post-

processing (PP) process.

greg/CNTRL/PP:
total 56
drwxr-xr-x 3 mdbs 512 Jun 2 11:36 .1
drwxr-xr-x 9 mdbs 512 Jun 2 11:46 .. /
drwxr-xr-x 2 mdbs 512 Jun 2 11:38 Object/
-rw-r--r-- 1 mdbs 137 Jun 2 1992 dblocal.def
-rw-r--r-- 1 mdbs 827 Jun 2 11:29 flags.def
-rw-rw-r-- 1 mdbs 654 Jun 2 11:37 makeresult

73

-rwxr--r-- 1 mdbs 117 Jun 2 1992 mk*
-rw-r--r-- 1 mdbs 8486 Jun 2 1992 pp.c
-rw-r--r-- 1 mdbs 157 Jun 2 1992 pp.dcl
-rw-r--r-- 1 mdbs 1379 Jun 2 1992 pp.def
-rw-r--r-- 1 mdbs 116 Jun 2 1992 pp.ext
-rw-r--r-- 1 mdbs 7201 Jun 2 1992 ppby.c
-rw-r--r-- 1 mdbs 8195 Jun 2 1992 pprba.c
-rw-r--r-- 1 mdbs 5582 Jun 2 1992 ppsr.c
-rw-r--r-- 1 mdbs 11447 Jun 2 1992 repmon.c

U. THE "CNTRL/REQP" DIRECTORY

This directory holds the source code for the request processing (REQP) process.

greg/CNTRL/REQP:
total 119
drwxr-xr-x 3 mdbs 512 Jun 2 11:38 ./
drwxr-xr-x 9 mdbs 512 Jun 2 11:46 ..
drwxr-xr-x 2 mdbs 1024 Jun 2 11:40 Object/
-rw-r--r-- 1 mdbs 13546 Jun 2 1992 chkptu.c
-rw-r--r-- 1 mdbs 35 Jun 2 1992 dblocal.def
-rw-r--r-- 1 mdbs 829 Jun 2 11:30 flags.def
-rw-r--r-- 1 mdbs 823 Oct 4 1992 flags.def.nli
-rw-r--r-- 1 mdbs 4218 Jun 2 1992 isrc
-rw-rw-r-- 1 mdbs 889 Jun 2 11:40 makeresult
-rw-r--r-- 1 mdbs 2989 Jun 2 1992 mallocs.c
-rwxr--r-- i mdbs 107 Jun 2 1992 mk*
-rw-r--r-- 1 mdbs 14580 Jun 2 1992 reqcomp.c
-rw-r--r-- I mdbs 18334 May 12 08:38 reqp.c
-rw-r--r-- 1 mdbs 125 Jun 2 1992 reqp.dcl
-rw-r--r-- 1 mdbs 677 Jun 2 1992 reqp.def
-rw-r--r-- 1 mdbs 91 Jun 2 1992 reqp.ext
-rw-r--r-- 1 mdbs 13270 Jun 2 1992 reqpsr.c
-rw-r--r-- 1 mdbs 40029 Jun 2 1992 ysrc

V. THE "CNTRLITI" DIRECTORY

This directory, and the many subdirectories beneath it, hold the source code for the test

interface (TI) process. The TI process directly interacts with the user by receiving terminal

instructions and displaying results. This directory contains the code supporting the kernel

data language. The directories beneath this one (under the LangIF subdirectory) contain the

code supporting the other model-language interfaces (hierarchical, network, relational,

object-oriented, and functional). It is important to observe that all of the source code in this

directory and every directory beneath it is a part of the same TI process.

74

greg/CNTRLITI:
total 207
drwxr-xr-x 4 mdbs 1024 Jun 2 11:40 .I
drwxr-xr-x 9 mdbs 512 Jun 2 11:46 .. /

drwxr-xr-x 5 mdbs 512 Mar 5 12:39 LangIF/
drwxr-xr-x 2 mdbs 1024 Jun 7 10:11 Object/
-rw-r--r-- 1 mdbs 6555 Mar 5 12:49 dbl.c
-rw-r--r-- 1 mdbs 155 Jun 2 1992 dblocal.def
-rw-r--r-- 1 mdbs 6052 Jun 2 1992 dblsr.c
-rw-r--r-- 1 mdbs 833 Jun 7 09:58 flags.def
-rw-r--r-- 1 mdbs 7384 Jun 2 1992 gdb.c
-rw-r--r-- 1 mdbs 7149 Jun 2 1992 gsdesc.c
-rw-r--r-- 1 mdbs 6214 Jun 2 1992 gsgenrec.c
-rw-r--r-- 1 mdbs 4613 Jun 2 1992 gsgmset.c
-rw-r--r-- 1 mdbs 4682 Jun 2 1992 gsmodset.c
-rw-r--r-- 1 mdbs 2948 Jun 2 1992 gstmpl.c
-rw-r--r-- 1 mdbs 31537 Jun 2 1992 intest.c
-rw-rw-r-- 1 mdbs 1587 Jun 7 10:11 makeresult
-rwxr--r-- 1 mdbs 204 Sep 30 1992 mk*
-rw-r--r-- 1 mdbs 4729 Apr 2 15:16 ti.c
-rw-r--r-- 1 mdbs 9741 Jun 2 1992 tireqs.c
-rw-r--r-- 1 mdbs 16120 Jun 2 1992 tireqsubs.c
-rw-r--r-- 1 mdbs 9185 Jun 2 1992 tisr.c
-rw-r--r-- 1 mdbs 25448 Jun 2 1992 tisubs.c
-rw-r--r-- 1 mdbs 20371 Mar 5 13:18 tstint.c
-rw-rw-r-- 1 mdbs 21055 Apr 16 15:23 tstint.c.bak
-rw-r--r-- 1 mdbs 1049 Jun 2 1992 tstint.dcl
-rw-r--r-- 1 mdbs 1441 Jun 2 1992 tstint.def
-rw-r--r-- 1 mdbs 1188 Jun 2 1992 tstint.ext
-rw-r--r-- 1 mdbs 1961 Jun 2 1992 unixtime.c

W. THE "CNTRLUTI/LangIF' DIRECTORY

This directory serves as the parent directory for all of the non-kernel data model/

language interfaces. All of the code supporting these interfaces can be compiled and linked

using the makefiles located here. Each model/language interface can also be individually

compiled and linked in the corresponding lower level subdirectory. The "include"

subdirectory holds header files common to two or more of thv. non-kernel model/language

interface's code. The "lib" subdirectory is where archival copies of the language interface

code is stored. The "src" subdirectory leads directly to the code for each model/language

interface. These lower level directories are not shown here, but each is logically divided

"75

into four sections (kernel controller, kernel formatting system, kernel mapping system, and

language interface).

76

APPENDIX D. BACKEND DIRECTORY AND FILE INFORMATION

The following is an annotated listing of the directories and files making up each

backend in the Multibackend Database System. Note that the compiled C executables are

normally compiled on the contoller and then copied into the proper directories on the

backend.

A. THE "/U" ROOT DIRECTORY

The "'u" root directory holds numerous temporary files created, used, and deleted by

MDBS. The .pid files are used by MDBS to store process identification numbers gentrated

by the operating system on each run. The .alias file is used by researchers but is not utilized

directly by MDBS.

drwxrwxr-x 13 mdbs 1024 Feb 27 20:12 .I
drwxr-xr-x 14 root 512 Feb 18 1992 /
-rw-rw-r-- 1 mdbs 1668 Jun 14 1989 .alias
-rw-r--r-- 1 mdbs 4 Feb 25 22:56 .bget.exe.pid
-rw-r--r-- 1 mdbs 4 Feb 25 22:56 .bput.exe.pid
-rw-r--r-- 1 mdbs 4 Feb 25 22:56 .cc.exe.pid
-rwxr-xr-x I mdbs 223 Jan 14 1989 .cshrc*
-rw-r--r-- 1 mdbs 4 Feb 25 22:56 .dio.exe.pid
-rw-r--r-- 1 mdbs 4 Feb 25 22:56 .dirman.exe.pid
-rw-r--r-- 1 mdbs 4 Feb 25 22:56 .recp.exe.pid
-rw-r--r-- 1 mdbs 2 Feb 4 14:35 .rhosts
-rw-rw-r-- 1 mdbs 1189 Feb 4 14:35 .rhosts.bak
drwxrwxr-x 2 mdbs 512 Feb 25 22:56 Sockets/
drwxrwxr-x 2 mdbs 512 Feb 12 11:58 UserFiles/
drwxrwxr-x 2 mdbs 512 Nov 5 13:50 be.greg/
drwxrwxr-x 2 mdbs 512 Feb 4 19:49 bin/

B. THE "Sockets" DIRECTORY

The "sockets" directory (under the root directory) contains the six sockets used for

interprocess-communication on each backend. These sockets are deleted and created anew

for each run of MDBS.

Sockets:
total 2
drwxrwxr-x 2 mdbs 512 Feb 25 22:56 .1
drwxrwxr-x 13 mdbs 1024 Feb 27 20:12 ..

77

arwxrwxrwx 1 mdbs 0 Feb 25 22:56 CC=
srwxrwxrwx 1 mdbs 0 Feb 25 22:56 DIO=
srwxrwxrwx I mdbs 0 Feb 25 22:56 DM=
srwxrwxrwx 1 mdbs 0 Feb 25 22:56 GPCLB=
srwxrwxrwx 1 mdbs 0 Feb 25 22:56 PPCLB=
srwxrwxrwx 1 mdbs 0 Feb 25 22:56 RECP=

C. THE 'UserFiles" DIRECTORY

This directory, located directly under the root directory, holds the descriptor (*.d) and

template (*.t) files for each database (e.g. SALES) used by MDBS. Both of these files must

be present or the database will not run. The below listing indicates that this backend is

prepared to support three databases (i.e. COURSE, SALES, and SQD). For details on the

composition of the descriptor and template files see [Bourgeois, 1993].

UserFiles:
total 12
drwxrwxr-x 2 mdbs 512 Feb 12 11:58 ./
drwxrwxr-x 13 mdbs 1024 Feb 27 20:12 . ./
-rw-r--r-- 1 mdbs 51 May 21 1992 COURSE.d
-rw-r--r-- 1 mdbs 126 May 21 1992 COURSE.t
-rw-rw-r-- 1 mdbs 140 Oct 19 1988 SALES.d
-rw-rw-r-- 1 mdbs 121 Oct 19 1988 SALES.t
-rw-rw-r-- 1 mdbs 43 Feb 12 10-50 SQD.d
-rw-rw-r-- 1 mdbs 140 Feb 12 10:50 SQD.t

D. THE "be.version" DIRECTORY

This directory, located under the root directory, is the top-level directory for each

different version of MDBS software on each backend. . In this case, the working version is
"greg" (hence "be.greg"). This directory contains the executable files (*.exe) for the six

backend processes. It also holds the trace files (*.tr). The trace files are text files output by

the processes of the same names. The run.be script is used by the controller to start the six

backend processes.

be.greg:
total 2477
drwxrwxr-x 2 mdbs 512 Nov 5 13:50 ./
drwxrwxr-x 13 mdbs 1024 Feb 27 20:12 .. /
-rwxr-xr-x 1 mdbs 83649 Nov 5 13:23 bget.exe*
-rw-r--r-- 1 mdbs 0 Feb 25 22:56 bget.tr
-rwxr-xr-x 1 mdbs 83649 Nov 5 13:23 bput.exe*

78

-rw-r--r-- 1 mdbs 60 Feb 25 22:58 bput.tr
-rwxr-xr-x 1 mdba 246357 Nov 5 13:23 cc.exe*
-rw-r--r-- 1 mdbs 37 Feb 25 22:58 cc.tr
-rwxr-xr-x 1 mdba 89208 Nov 5 13:23 dio.exe*
-rw-r--r-- I mdbs 465 Feb 25 22:58 dio.tr
-rwxr-xr-x 1 mdbe 375581 Nov 5 13:23 dirman.exe*
-rw-r--r-- 1 mdbs 101 Feb 25 22:58 dirman.tr
-rw-r--r-- 1 mdbs 19 Nov 4 17:10 *xe.awk
-rwxr-xr-x 1 mdbs 335559 Nov 5 13:50 recp.exe*
-rw-r--r-- 1 mdbs 37 Feb 25 22:58 recp.tr
-rwxr--r-- 1 mdbs 431 Nov 5 13:37 run.be*

-rw-r--r-- 1 mdbs 160 Nov 4 17:10 stop.exe

E. THE "bin" DIRECTORY

Located under the greg.be directory, the bin directory holds the utility files used by the

backend. The most important of these is the zero command (zero*) which is used to

initialize the meta and data disks before each run. The other utilities present here are

leftover from earlier versions of MDBS. They are no longer required to run MDBS, but

have been left here because they cai, sometimes be useful. The stop command (stop.cmd)

may be used to stop MDBS processes running on this backend. The .list.stop and exe.awk

files work with the stop command. The cpcount.c file copies a user-specified amount (in

bytes) of an existing file to a new file specified by the user. The cpydisks script was once

used to redistribute backend code.

bin:
total 39
drwxrwxr-x 2 mdbs 512 Feb 4 19:49 ./

drwxrwxr-x 13 mdbs 1024 Feb 27 20:12 .. /

-rw-r--r-- 1 mdbs 0 Jun 14 1989 .list.stop
-rw-rw-r-- 1 mdbs 1610 Jan 14 1989 cpcount.c
-rwxrwxr-x 1 mdbs 84 Jan 20 1989 cpydisks*
-rw-r--r-- 1 mdbs 19 Nov 5 12:52 exe.awk
-rwxr-xr-x I mdbs 373 Feb 5 13:49 stop.cmd*
-rw-r--r-- I mdbs 0 Feb 4 18:50 stop.trace
-rwxr--r-- 1 mdbs 26439 Nov 5 12:52 zero*

79

APPENDIX E. DEMONSTRATION DATABASE

The new AMMO (ABDL) database created for the demonstration of MDBS on the

new hardware and software platform is listed below.

A. THE DESCRIPTOR FILE(AMMO.d)

AMMO

TEMP b s
INFO
COUNT

DODIC a s
A001 J999
K001 Z999

NOMEN a s
AG
H R
S z

QTYa i
1 100
100 1000

$

B. THE TEMPLATE FILE (AMMO.t)

AMMO

2

3
INFO
TEMP s
DODIC s
NOMEN s
3
COUNT
TEMP s

80

DODIC s

QTY i

C.THE RECORD FILE (AMMO.r)

AMMO

0
INFO

D680 Projo

D681. Projo

N232 Fuze

N340 Fuze

COUNT

D680 200

D681 150

N232 180

N340 170

D. THE QUERY FILE (AMMOreqi)

[RETRIEVE(TEMP=INFO) (DODICNOMEN)BY DODIC] %

[RETRIEVE(TEMP=COUNT) (DODIC,QTY)BY DODIC] %

[INSERT (<TEMP, INFO>, <DODIC,M130>, <NOMEN, PROP>) I
[DELETE((TEMP=INFO) and (DODIC=M130))]I

81

APPENDIX F. NEW MDBS FUNCTIONS

During this porting project, numerous adjustments and modifications were made to

the existing code. A few existing functions were almost completely rewritten. New

constants were also added as needed. Consistent with the goals outlined in Chapter 1,

though, only two wholly new functions with their associated calls were added to MDBS.

A. THE "host-name integlr" FUNCTION

This function, located in the ack.c source file, receives a hostname (which may be a

member of the host_names array) and returns only the number portion as an integer. This

integer is used by other functions to uniquely identify the workstation. This function is

called from many locations within ack.c.

int host-nameninteger (hostname)
/* this function is passed an element of the host-names array
(e.g.Odbll") - it returns the number part as an integer. This
routine replaces the old way of picking the number part of the host
name. */

char host.n.enax[n];

char tempthost-name_len + 1];
int tempindex = 0;
int i;

for(i=O;i<hostname_len;i++)(
if(isdigit(host-name[i)) != 0)(

tempitempindex) = hostnameti];
tempindex++;

)
)
tempItempindex) = 1\01;

return (atoi (temp));
/* end host-name-integer() */

B. THE "init metaNATP' FUNCTION

This function, located in the meta.c source file, uses the global definitions of

first.recordcylinder and first_recordtrack (rneta.def) to load initial values to the Next-

82

Available-Track-Table (NAlT) on the meta-data disk. This function is called from the

code in the dirmanxc source file.

initjnetajlNA7TT
/* Store record disk's starting cylinder/track values to NATT *

unsigned short fir-.rec...cyl ufirst-record...cylinder;
unsigned char fir~rec..trk afirst-record...track;
long lseekfl;

#ifd~f EnExFlag
printf(*Enter mnit-metaNATTrW);
ft lush(stdout);

#*ndi f

1* seek to NA?!T area of meta disk *
if (lseek(rnetafptr, (long) NATT_OFFSET, 0) != NATTLOFFSET)

SysError(8, 01 init..m~etaNATT!);

/* write initial valuse */
if (write(metafptr,&fir~rec~cyl,sizeof(fir~reccyl)) < 0)

SysError(l2, 02 init..meta_NATT-);
if (write(metafptr,&fir...rec...trk,sizeof(tir_rec_trk)) < 0)

SysError(12, 03 init_meta_.NATT!);

*ifdef EnExFlag

ft lush(stdout);
#endif
)/* end mnit-metaNATT

83

LIST OF REFERENCES

Bourgeois, Paul A., "The Instrumentation of the Multimodel and Multilingual User
Interface," M. S. Thesis, Naval Postgraduate School, Monterey, California, March,
1993.

Boyne, Richard D. and Demurjian, Steven A. and Hsiao, David K. and Keff, Douglas S.
and Orooji, At, "The Implementation of a Multi-Backend Database Syetem (MDBS):
Part II," Technical Report, Naval Postgraduate School, Monterey, California, March,
1983.

De Witt, David J., "DIRECT - A Multiprocessor Organization for Supporting Relational
Database Management Systems," IEEE Transactions on Computers, Vol. C-28, No. 6,
June, 1979, pp. 395 - 406.

Elmasri, Ramez and Shamkant B. Navathe. Fundamentals of Database Systems. New
York, The Benjamin/Cummings Publishing Company, Inc., 1989.

Hall, James E., "Performance Evaluations of a Parallel and Expandable Database
Computer - The Multi-Backend Database Computer," M. S. Thesis, Naval
Postgraguate School, Monterey, California, June, 1989.

Hammond, Greg Alan, "The Instrumentation of a Parallel, Distributed Database Operation,
Retrieve-Common, for Merging two large sets of records," M. S. Thesis, Naval
Postgraduate School, Monterey, California, June 1992. (H 17526)

He, Xingui and Higashida, Masanobu and Hsiao, David K. and Kerr, Douglas S. and
Orooji, Ali and Shi, Zong-Zhi and Strawser, Paula, "The Implementation of a Multi-
Backend Database System (MDBS): Parts 11 and III," Technical Report, Naval
Postgraduate School, Monterey, California, July 1982.

Hsiao, David K., "A Parallel, Scalable, Microprocessor-Based Database Computer for
Performance Gains and Capacity Growth," IEEE Micro, December 1991, pp. 44-60.

Hsiao, David K., "Federated Databases and Systems: Part I - A Tutorial on Their Data
Sharing," Very Large Database (VLDB) Journal, vl I, no 1, 1992, pp. 127-179.

Hsiao, David K., "Federated Databases and Systems: Part I1 - A Tutorial on Their Resource
Consolidation," Very Large Database (VLDB) Journal, vol 1, no 2, 1992, pp. 285-3 10.

Hsiao, David K. and Kamel, Magdi N., "Heterogeneous Databases: Proliferations, Issues,
and Solutions," IEEE Transactions of Knowledge and Data Engineering, vol 1, no 1,
March 1989, pp. 45-62.

84

Kloepping, Gary R. and Mack, John F. Mack, "The Design and Implementation of a
Relational Interface for the Multi-Lingual Database System," M. S. Thesis, Naval
Postgraduate School, Monterey, California. June 1985. (K587163)

Leffler, Sam and Fabry, Robert S. and Joy, William N. and Lapsley, Phil, "An Advanced
4.3BSD Interprocess Communication Tutorial," Integrated Solutions UNIX
Programmers Supplementary Documents, July, 1987.

Little, Craig W., "The Design and Implementation of Pedagogical Software for the Multi-
Backend/Multi-Lingual Database System," M. S. Thesis, Naval Postgraduate School,
Monterey, California, December 1987. (L692)

Meeks, Andrew P., "The Instrumentation of the Multibackend Database System," M. S.
Thesis, Naval Postgraduate School, Monterey, California, June 1993.

Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language (Second

Edition). Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 1988.

Que Corporation, U.ing UNI, Cannel, Indiana, Que Corporation, 1990.

Rieken, Bill and Weiman, Lyle, Adventures in UNIX Network Applications Programming.
New York, New York, John Wiley and Sons, Inc., 1992.

Rochkind, Marc J., Advanced UNIX Programming. Englewood Cliffs, New Jersey,
Prentice-Hall, Inc., 1985.

Rosch, Winn L., The Winn Rosch Hardware Bible, New York, New York, Simon &
Schuster, Inc., 1989.

Rosen, Kenneth H. and Rosinski, Richard R. and Farber, James M., Unix. System V
Release 4. An Introduction. Berkeley, California, Osborne McGraw-Hill, 1990.

Stevens, Richard W., Advanced Programming in the UNIX Environmen. Reading,
Massachusetts, Addison-Wesley Publishing Company, Inc., 1992.

United States House of Representatives, "DoD Automated Information Systems
Experience Runaway Costs and Years of Schedule Delays While Providing Little
Capability," Report 101-382, November 1989.

Wong, Albert, "Toward Highly Portable Database Systems: Issues and Solutions," M. S.
Thesis, Naval Postgraduate School, Monterey, California, June 1986. (W755)

Zawis, John A., "Accessing Hierarchical Databases via SQL Transactions in a Multi-
Modal Database System," M. S. Thesis, Naval Postgraguate School, Monterey,
California, December, 1987.

85

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
,.Cameron Station

Alexandria, VA 22304-6145

2. Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

3. Commandant of the Marine Corps 2
Code TE 06
Headquarters, U.S. Marine Corps
Washington, D.C. 20380-0001

4. Ms. Doris Mlezko 2
Code P22305
NAWCWPNS
Point Mugu, CA 93042-5001

5. Chairman, Code CS 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

6. Professor David K. Hsiao, Code CS/Hq 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

7. Ronald J. Roland 1
500 Sloat Avenue
Monterey, CA 93940

8. Major Stanley H. Watkins, USMC
6701 Abbey Road
Bartlesville, OK 74006

86

