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ABSTRACT

Lunar spherical harmonic gravity coefficients are estimated from
simulated observations of a near-circular low altitude polar orbiter disturbed
by lunar mascons. Lunar gravity sensing missions using earth-based near-
side observations with and without satellite-based far-side observations are
simulated and least squares maximum likelihood estimates are developed for
spherical harmonic expansion fit models. Simulations and parameter
estimations are performed by a modified version of the Smithsonian
Astrophysical Observatory's Planetary Ephemeris Program.

Two different lunar spacecraft mission phases are simulated to
evaluate the estimated fit models. Results for predicting state covariances
one orbit ahead are presented along with the state errors. resulting from the
mismodeled gravity field. The position errors from planning a lunar landing
maneuver with a mismodeled gravity field are also presented. These
simulations clearly demonstrate the need to include observations of satellite
motion" over the far side in estimating the lunar gravity field. The
simulations also illustrate that the eighth degree and order expansions used
in the simulated fits were unable to adequately model lunar mascons.
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Chapter One

Introduction and Summary

1.1 Background

On July 20, 1989, the 20th anniversary of the first Apollo moon landing,
President George Bush challenged the nation to undertake an ambitious
course of human space exploration. After establishing a manned presence in
earth orbit with the Space Station Freedom in the 1990's, the President
proposed that the U.S. return to the moon, and return to stay. From this
lunar basing point, the U.S. could continue human exploration of our solar
system by undertaking a manned mission to Mars.

The establishment of a lunar base will result in significant lunar traffic
to build, supply, and resupply this facility. This increased traffic will require a
lunar navigation system. As the nation prepares its return to the moon, it
will have to decide whether this navigation system should be earth-based,
vehicle-based or lunar-based.

Our initial voyages to the moon primarily depended upon earth-based
navigation systems, although the manned missions had some on-board
capability. An earth-based method could be adopted for future lunar travel,
but NASA's Deep Space Network (DSN) tracking is manpower intensive,
costly, and is not suitable for high traffic rates. Additionally, earth-based
navigation can only track vehicles on the lunar near side. Adopting an earth-
based navigation system would be an impractical stepping stone for human
exploration of Mars and the solar system.

A vehicle-based navigation system could be developed to support
future lunar traffic. Vehicle-based navigation has become practical because of
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advances in inertial navigation equipment and on-board computing
capabilities. Inertial navigation would be limited by our knowledge of the cis-
lunar environment, principally our knowledge of the moon's gravity field.

The limitations of earth-based navigation and the high accuracy
requirements of certain mission phases (principally landing) may require the
development of a lunar-based navigation system. A simple lunar navigation
system similar to the earth's Global Positioning System (GPS) would handle
high traffic rates and would provide accurate lunar far-side navigation. If
high lunar traffic rates are achieved, then a lunar-based system could provide
a higher accuracy system alternative to vehicle-based navigation.

Many low-altitude mission phases will require accurate knowledge of
the moon's gravitational field, especially its far-side characteristics. Spherical
harmonic models are typically used to model the gravitational field near
celestial bodies. Finite expansion spherical harmonic models, however, do
not accurately model the low altitude gravity field of the moon. This is
because the moon's gravitational field contains significant anomalies,
discovered in the late 1960's by scientists at NASA's Jet Propulsion Laboratory

(JPL) [35], making such models inefficient. From earth-based lunar tracking
data, the scientists developed a lunar gravity model. This model was then
compared to topographical images of the moon and revealed mass
concentrations around the ringed maria. These mass concentrations or
"mascons" exhibit very high frequency gravitational behavior and therefore
require a very high number of terms in the spherical harmonic expansion to
model this behavior. Since their discovery, scientists have postulated

different models to account for the lunar mascon phenomenon, since
expanding the spherical harmonic model to high degree and order was
computationally impractical. Chapter Two surveys the spherical harmonic
and several other gravitational field modeling techniques in more detail.

1.2 Motivation

Since the real lunar gravitational field is difficult to accurately model,
this thesis will study the implications of modeling errors. An inaccurate
model of the lunar gravity field will result in the growth of navigation errors.

20



Chanter One: Inhroductdi and Summary

Mismodeled acceleration forces result in both velocity and position errors.
Since gravitational acceleration is a function of position, position errors will
lead to increased acceleration errors, further increasing the velocity and
position errors. This error propagation may or may not be critical depending
upon the magnitude of the errors, the navigation system's ability to measure
them, and the mission phase accuracy requirements.

Specifically, an inaccurate gravity model will significantly affect any
landing maneuvers with strict accuracy requirements. Unmanned cargo
missions to resupply a lunar base will be particularly vulnerable to errors
from a mismodeled gravity field. Since there is no appreciable lunar
atmosphere, gravity forces dominate a vehicle's descent to the moon's
surface. Since the force of gravity is inversely proportional to the square of
distance, navigation errors due to a mismodeled gravity field increase as the
vehicle descends to the surface. Avoiding unacceptable landing errors will
depend upon an accurate determination of the lunar gravity field.

The scientific community is also interested in developing a more
precise model of the lunar gravity field. A better model can improve
knowledge of the moon's composition and internal structure. Models of
different elements, their densities, and their distribution within the moon's
interior could be developed to match the observed gravitational field.
Gravitational models may also help to determine the selenological thermal
and tectonic history. The discovery of lunar mascons has also led to scientific
speculation about how mass concentrations formed in these shallow seas.
The scientific community hopes that a better understanding of the
gravitational field around the ringed maria and other lunar surface features
will help to determine the origin of these features [2, 35].

The purpose of this thesis is to determine the feasibility of using a
spherical harmonic lunar gravitational model, based on observations of a
near-circular polar satellite, to predict low altitude lunar orbits globally.
Rather than attempting to develop a more precise lunar gravitational field
model, this thesis investigates measurement types and satellite orbits that can
be used to develop gravity field models. Each measurement type will have
advantages and disadvantages in terms of cost, schedule, and accuracy. This
thesis investigates each different method's ability to estimate a lunar
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gravitational potential model and the model's accuracy in predicting future
lunar orbits. By analyzing the capabilities of different sensing methods, this
investigation will allow NASA to plan unmanned lunar precursor missions
to extract the best lunar gravity field information.

1.3 Initial Lunar Gravitational Sensing Method

Current lunar gravitation field models are based upon earth-based
tracking data from the Lunar Orbiter program of the 1960's (Figure 1.3-1).
These unmanned Apollo precursor missions provided photographic imaging
and gravitational mapping of the moon. Apollo lunar navigation was based
upon Lunar Orbiter's gravity field mapping. In addition to the Lunar Orbiter
missions, tracking data from Apollo missions and some Soviet lunar
missions are included in current gravity field models [3, 12, 19, 33, 41, 47].

Lunar Orbiter gravitational mapping missions utilized Doppler
measurements of radio tracking signals. Lunar Orbiter spacecraft were tracked
by NASA's Deep Space Network (DSN) across the near side of the moon [36].
A DSN tracking station sent a continuous wave S-Band frequency to the
spacecraft. The spacecraft received this Doppler-shifted signal and re-
transmitted it to earth. The tracking station received this signal, Doppler-
shifted once again in frequency. The tracking station used this signal to
calculate the relative velocity between the spacecraft and tracking station. The
relative velocity observed was then combined with position tracking data to
estimate the lunar gravity field using methods similar to those discussed in
Chapter Five.

Earth Moon

Figure 13-1: Lunar Orbiter Earth-Moon Geometry

Current lunar gravitation field model accuracy is limited by the
amount of lunar orbital tracking data available. The Lunar Orbiter and
Apollo missions were mostly low inclination missions. Since most missions
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flew about the lunar equator, derived gravity field models emphasize the
effects of anomalies near the equator. Only a fraction of the moon's surface
was covered by these missions [32], and therefore gravity field data is lacking
for lunar polar regions. Additionally, this earth-based gravity mapping
method was limited to observations of near-side lunar spacecraft passes.
Gravitational disturbances on the far side were only determined by their
integrated effects on satellite position and velocity from the end of one near-
side pass to the beginning of the next pass. Thus current lunar gravitational
field models do not provide very meaningful information about the lunar far

side.

1.4 Proposed Lunar Gravitational Sensing Methods

Any future lunar gravitational field sensing system will have to greatly
improve our knowledge of the moon's gravitational field to justify the
mission's cost. To achieve this improvement in accuracy, the system will

have to address the current model's limitations. The motion of an orbiting
body should be sensed without any orbital maneuvering which disturbs the
estimation solution.1 Thus it is desirable to select orbits which are stable for at
least one lunar orbit to avoid re-boost maneuvering. A high inclination,
preferably polar, lunar orbiter would allow observations of satellite
accelerations over the moon's entire surface as the moon rotates under the
orbital plane. A dual orbiter sensing scheme would be better because it would
allow lunar far-side accelerations to be observed. Better still would be a
sensing scheme observing the motion of several satellites in different
inclinations than those available in Apollo-era lunar missions.

NASA is considering two different sensing schemes. NASA's Jet
Propulsion Laboratory has proposed a dual orbiter scheme which uses radio-

based Doppler observations to sense the moon's gravitational field effects [40].
NASA's Goddard Space Flight Center has proposed a co-orbital scheme which

1 Gravitational accelerations experienced by an orbiter are not measured directly. Methods to
measure the accelerations due to gravity therefore use external observations of a body's motion.
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uses a laser-based system which makes both ranging and Doppler
observations [2].

The dual orbiter sensing scheme uses a low altitude, circular polar
satellite and a high apolune polar elliptical satellite (Figure 1.4-1). The
elliptical satellite orbit is positioned so that apolune initially occurs on the far

side of the moon. This increases the duration of lunar far-side viewing. The
orbit is also skewed such that apolune is outside of the earth occultation zone
which increases the time that the elliptical satellite is within the line of sight
of earth tracking stations. From these orbits the relative velocity between the
two spacecraft can be measured using either the bent pipe or the satellite
bounce methods described below.

Low-Altitude Elliptical Satellite
Spacecraft Orbit

Orbit

Earth
Occultation

Zone

S~Two-Way

Coherent
Doppler

Two-Way Coherent Doppler

Figure 1.4-1: Dual Orbiter Sensing Method

The bent pipe method uses a four-way coherent Doppler scheme in
which a high frequency is generated by an atomic clock at a DSN tracking site
and transmitted to the elliptical "viewing" satellite. The "viewing" satellite
uses the Doppler-shifted received signal to generate a lower frequency signal
which it transmits to the circular "gravity sensing" spacecraft. This spacecraft
receives the Doppler-shifted signal and re-transmits it to the "viewing"
satellite. The "viewing" satellite modulates the received Doppler-shifted
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frequency signal from the "sensing" spacecraft onto the frequency signal
received from the tracking station and transmits this signal back to earth. The
signal received by the tracking station is then processed to retrieve both the
relative velocities between the tracking station and "viewing" satellite and

between the "viewing" and "gravity sensing" satellites.

The satellite bounce method uses a two-way coherent Doppler scheme

between the two spacecraft. The circular "gravity sensing" satellite generates a
continuous wave frequency signal for transmission to the elliptical "viewing"
satellite. This satellite shifts the signal's frequency for transmission back to
the first one. The receiving spacecraft extracts the Doppler shift from the
signal, records it and transmits it to earth when in view of an earth tracking
station. Coherent Doppler links between earth tracking stations and either
satellite are used to aid in the estimation of the lunar gravitational field.

Earth-based
k Satellite-to-Satellite

Main Co-Orbiting
Satellite Sub-Satellite

Figure 14-2: Co-orbital Sensing Method

NASA's Goddard Space Flight Center has proposed a co-orbital scheme
in which a satellite in a circular polar orbit ejects a subsatellite in the same

orbit (Figure 1.4-2). Both spacecraft are affected by lunar gravitational
perturbations, so both are "sensing" vehicles and a laser system measures
their relative motion. The satellite contains the sensing equipment and the
subsatellite is a passive reflector for the satellite's emitted laser beams. The
satellite's laser transmits a light beam toward the subsatellite. This beam
reflects off of the subsatellite back to the satellite. A high accuracy ranging
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measurement between the satellite and subsatellite is made by determining
the travel time of a transmitted sub-carrier pulse signal. Lesser accuracy
Doppler relative velocity measurements are made from the frequency
shifting of the transmitted laser signal. Observation data is stored and
transmitted to earth at regular intervals.

1.5 Simulation Tools

The primary tool used to accomplish the goals of this thesis is the
Planetary Ephemeris Program (PEP), a FORTRAN computer program
obtained from the Smithsonian Astrophysical Observatory (SAO) and
executed on Sun workstations at the Charles Stark Draper Laboratory. The
Smithsonian version of PEP has most of the capabilities needed for the
analyses of this thesis. Modifications, coded at Draper Laboratory, have
augmented its capabilities for this thesis research. In addition, auxiliary
software has been developed to analyze lunar orbits, the observation schemes,
navigation uncertainties, and estimated lunar gravitational fields.

Given the description of a body's gravitational field, PEP can
numerically integrate a satellite's motion about that body. For this thesis, PEP

was modified to accommodate a point mass (mascon) gravity model in
addition to the spherical harmonic model. The techniques used in PEP for
numerically integrating the differential equations of motion for a lunar
satellite are described in Chapter Three. This chapter also describes the
methods PEP uses to calculate the partial derivatives of the motion with
respect to orbital initial conditions, gravity harmonic coefficients, and other
parameters. The mascon gravity model modifications coded in PEP are also

covered in Chapter Three.

The Planetary Ephemeris Program (PEP) can also process the

astronomical observations generated by the various lunar gravitational
sensing methods. The many different types of observations that can be
processed in PEP are described in Chapter Four. This chapter also discusses
how PEP generates simulated observations with a truth model (mascon and
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spherical harmonic expansion) and then estimates theoretical values of the
observations for another model (spherical harmonic expansion) to fit those
"truth model" observations. Least squares maximum likelihood estimation
and prediction uncertainty propagation techniques are described in Chapter
Five. For this thesis, noise has not been included in the satellite dynamics.
Kalman filter and system identification techniques may be needed when
processing real observations, because of the noise due to radiation pressure,
gas leakage, and other unmodeled forces. These estimation techniques are

also described in Chapter Five.

1.6 Methodology

The focus of this thesis is the estimation of a lunar gravity field model
based on various measurement types and/or orbital geometries. Each unique
measurement type and orbital geometry combination will be refered to as a
sensing scheme. The standard earth-based orbiter state sensing scheme and
the proposed dual orbiter bent pipe scheme are analyzed in-depth.
Additionally, the co-orbital laser ranging scheme, a non-coplanar bent pipe
scheme, and an earth-based interferometric observation scheme are
investigated to determine whether any of these schemes can reduce the
parameter correlation's observed during gravitational parameter estimation.

Since the true lunar gravitational field is not precisely known, a
"truth" model was developed and used for this investigation, as discussed in
Section 6.4. This "truth" model combines Bills and Ferrari's 16 x 16 lunar
harmonic model [121 up to degree and order five, along with 78 point masses
distributed below the lunar surface to simulate the behavior of mass
concentrations. This truth model was used to simulate observations for the
various sensing schemes.

For each sensing scheme, the coefficients in spherical harmonic fit
models of degree and order 8 and 12 were estimated to optimally represent
the "true" gravity field model by fitting to the "truth" model observations.
Using first guesses for the fit model coefficients and satellite initial osculating
orbital elements, the equations of motion and the equations for the partial
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derivatives of the motion with respect to these quantities were numerically
integrated. From these numerical integrations, theoretical values of the
observations were determined. The observation residuals (difference
between the "truth" model observations and fit model's theoretical
observation values) and the observation partial derivatives were computed
and used to obtain parameter adjustments to the first guesses for the fit model
coefficients and satellite initial osculating orbital elements. This process was
then repeated until either the method converged upon a solution or no
solution could be determined. Chapter Six discusses the implementation of
the estimation process for various sensing methods and certain test cases.

The estimated lunar gravitational field models were analyzed to
determine their accuracy relative to the "truth". Navigation errors
propagated in one lunar revolution were used to determine the estimated
gravitational field model's accuracy. Two types of lunar orbits were analyzed:
a 150 inclination, 100 km altitude, near-circular orbit and a lunar landing
from a 50 inclination, 200 km near-circular parking orbit. These orbits were
propagated using both the "truth" and estimated models. The analysis of the
estimated gravitational field models is discussed in detail in Chapter Seven.
In addition, this chapter discusses the attempts made to break the high
parameter correlations which were discovered during the estimation process.

For the near-circular orbit, the position and velocity errors between the
"truth" and estimated gravity fields were used to quantify the estimated
model's accuracy and thus the sensing method's capability. The gravitational
parameter covariance matrix, determined during the estimation process, was
used with the estimated field's orbit propagation with partial derivatives to
predict position and velocity uncertainties. These predicted uncertainties
were then compared to the true state errors between the two models' orbits.
In real gravity field missions, the true gravity field will not be available for
comparison with the estimate, so it is useful to understand the relation
between these two analyses.

For the lunar landing maneuver, the estimated gravity field model was
used to determine the deorbit burn and the selenographic position for
Powered Descent Initiation (PDI). The spacecraft's circular parking orbit was
numerically integrated until the appropriate time for the deorbit burn. The
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spacecraft's velocity at burn time was then adjusted to simulate the deorbit
maneuver and the spacecraft's elliptical transfer orbit was then integrated.
The spacecraft's position upon reaching the powered descent stage of the
mission was then determined. The "true" PDI point was then compared to
the estimated model target PDI point to determine the model's accuracy for
planning lunar landing maneuvers.

1.7 Summary of Results

The analyses of the 8 x 8 estimated fit models clearly demonstrated that
lunar far-side observations are required in the accurate estimation of the
lunar gravity field. For both the lunar landing maneuver and the satellite
state uncertainty prediction, the observation technique which included lunar
far-side observations in addition to earth-based near-side observations
produced a much more accurate lunar gravity fit model. This estimated
model planned a lunar deorbit maneuver 4.3 times more accurately than the
model based on earth-based observations alone. The earth-based observation
fit model also predicted state uncertainties four times larger than its
counterpart. The earth- and satellite-based fit model produced state errors for
the single orbit that were again roughly a quarter of the earth-based fit
model's errors.

The lunar navigation analyses also demonstrate that the eighth degree
and order spherical harmonic expansion fit models were unable to adequately
model the lunar mascons included in the lunar gravitational "truth" model.
In the best ca.:e, the 8 x 8 fit model predicted single orbit ahead uncertainties of
close to three quarters of a kilometer in position and one meter per second in
velocity. The orbit's actual state errors were closer to three kilometers in
position and two and a half meters per second in velocity. Additionally, the
best fit model produced a fifty-six kilometer position error for the lunar
deorbit maneuver. These results are discussed in further detail in Chapter
Eight, which also recommends several subjects related to this thesis which
deserve further study.
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Chapter Two

Gravity Field Models

2.1 LaIlace's Equation and the External Gravitational Field

According to Newton's law of gravitation, two particles attract each
other with a force, acting along the line joining them, which is proportional
to the p oduct of their masses and inversely proportional to the square of the
distance between them [10, p. 95]. From this law, the gravitational force of a
body of mass m2 acting upon a body of mass mi can be mathematically

represented by the formula:

P= 2 _-y1 3

where G is the universal gravitational constant, and F, and P2 are the position
vectors of bodies one and two respectively.

Unfortunately, this formula is only appropriate if the two bodies are
point masses, or behave as them. Such is the case for spherical bodies if
density is a function of radius from the center only. The point mass model
also provides an accurate representation of the gravitational attraction for

widely separated bodies. In the limit of large distances, gravitational bodies
tend to look like point masses so that mass distribution becomes

unimportant.

For many practical applications, the attracting body cannot be modeled
as a point mass and a different mathematical model must be developed. For
the case in which the attracted body is small compared to the attracting body
and the attracting body is an arbitrary distribution of mass with a finite
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dimension, the force on a mass m located at position vector F in Figure 2.1-1
produced by an element of mass dM with position vector R is

dP(Y)=G mdM FA)(2.1-2)

z m at (x~yz)

....... .•z....

• . . . . . . . . ..•

A :M it EAQ

X

Figure 2.1-1: Distributed Mass acting upon a Point Mass m

Integration over the entire volume of the distributed body will produce the
gravitational force on the mass m of the attracting body of total mass M. This
force can then be represented by a scalar potential U, such that the
gravitational force on a body located outside of the attracting body may be
obtained as the gradient of the scalar potential, or

F(F) =- m VU(p). (2.1-3)

There is a sign convention discrepancy between some of the references used
and PEP documentation [8]. According to Kaula [241, physicists define the
gradient of the potential field as in Equation (2.1-3), whereas astronomers
define the same gradient with a change in sign. The formulas in this thesis
follow the former convention to agree with PEP documentation and software
coding modifications explained herein.

The scalar gravitational potential U can be written in terms of the rectangular
coordinate system of Figure 2.1-1 and the mass density p as [14]

U(F) = -GJJJ1 'dM

=- f G JY d qdC (2.1-4)
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The Laplacian of the scalar potential U in rectangular coordinates is

d2 U d2U d2U (2.1-5)

Taking the required partial derivatives of the potential U from (2.14) yields

-3

V2U _GM [(X _ )2 +(Y- _7)2 + (Z _ )2] +Y

Since the bracketed terms cancel, this reduces to
V2U-O (2.1-7)

This relationship is known as Laplace's equation and applies at all points
outside of the distributed attracting mass. Its solutions are called harmonic
functions. Any scalar function, U, which satisfies Laplace's equation and the
far-field boundary condition that the potential approaches 0 as 1/r can be used
to descibe the gravitational field about some distributed mass. If U is defined
with sufficient flexibility, i.e. an infinite number of orthogonal terms with
undefined constant coefficients, then U can be tailored to describe the
gravitational field outside of any arbitrarily distributed mass. The above
method of deriving (2.1.7) is based upon the method used by Kaula [241, Battin
[10], and Comfort [14].

2.2 Spherical Harmonic Expansion for the Gravitational Potential

The most common gravitational potential model is the spherical
harmonic expansion. This expansion can be derived by solving Laplace's
equation in spherical harmonic coordinates. First, the rectangular coordinate
system of Figure 2.1-1 is converted to spherical coordinates through the
transformation below, which is depicted in Figure 2.2-1. If the center of the
distributed mass is selected as the origin of this coordinate system, the
expansion is simplified.
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x=rcosOcos1 O<r<oo

y=rsinOcoso 0:< 0 < 2g (22-1)

z=rsinO -Y < < J

r

x

Figure 22-1: Spherical Coordinate System

In spherical coordinates, Laplace's equation becomes [241

-r 1 r1- 0 (2.2-2)

One common method of deriving the solution to U in spherical
coordinates is through the method of separation of variables, maintaining the
boundary condition on r. This method can be found in Kaula [24] or Comfort
[14] and leads to the solution

U(r ,,O) = --+ P (sin)[C cosmO + S.. sinmO (2.2-3)
n=O T MffiO

where C.m and %am are constant coefficients and P.m are the generalized
Legendre functions of degree n and order m. Equation (2.2-3) is the complete
real solution of Laplace's equation in spherical coordinates. There are other

solutions which are physically inadmissible since they cause the potential to
become infinite at * = x/2, 3z/2. These solutions involve the associated
Legendre functions of the second kind. Another method of deriving the

solution to U is to expand the denominator of (2.1-4) in Legendre functions.
This is the procedure carried out by Battin [10] and Croopnick [181.

Equation (2.2-3) is the generalized solution of Laplace's equation and
must be modified for the gravitational case. Laplace's equation holds true

everywhere outside the surface of the gravitational body. The harmonic
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expansion, however, is convergent only from pi to - in the radial direction,
where Pl is the body's (lunar) maximum radius, usually the equatorial radius.
Furthermore, p, can be used to non-dimensionalize the Cnm and Snm

coefficients as shown in Equation (2.24). Secondly, U is multiplied by the
gravitational constant and the total mass of the attracting body to satisfy
Equation (2.1-3). The n=O, m=O term is the point mass approximation for the
attracting body and can be separated from the summation for ease of
computation. The Snm coefficient is meaningless for m=O because sin(mO) is
always zero. Separating the m=O terms simplifies the summation. The
Pno(sint) Legendre functions then become the standard Pn(sint) Legendre

polynomials. When the m=O terms are separated, the Cno terms are
commonly replaced by Jn terms, where Jn = -CnO. After the previous
modifications, the spherical harmonic gravitational potential, U, becomes

I-jJ. PI) P(sin O) +

U(r, 0,0)= -GM J(, n1 +

r [X(,,J P(ifln[ nomCO +Snm sin mO]1: l•r P. (sn0[
(2.2-4)

Additionally, if the attracting body's center of mass is the origin of the

coordinate system, then the first degree terms are identically zero [221,

J1 = 0, C11 = 0, Si = 0 (2.2-5)

and the summation limits can begin with the second degree terms.

When dealing with large degree models, it is common to normalize
the Legendre functions, and therefore adjust the tesseral coefficients as well.

The Legendre functions are normalized to satisfy the equation

Jf(1nm(Si sinnO)COSmO)2dOdO = 4z { :< 0 (2.2-6)

ff(pnm (Sin0) Sin M9) 2 d~dO = 47r 3/: < 2

This leads to the following relationship between the unnormalized and
normalized Legendre functions and the inverse relationship between the
unnormalized and normalized coefficients:
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15n -1= -•+1 P, (Me=o0)

1 =/2(2n.+1)(n- m)l p (M>) (2.2-7)

I'fflf(n+m)!

1J"= 2n +1 ]"(m= o)

CnM ( > 0) (2.2-8)

[`ým = I2"l)n I) ~

The Planetary Ephemeris Program (PEP) was modified to allow
normalized Legendre functions to be used for higher degree harmonic
models. Normalized coefficients are better conditioned for PEP's floating
point parameter estimation algorithms, especially for higher degree models.
Appendix A discusses the Legendre polynomials, the generalized Legendre
functions and the recursive formulas developed for their implementation.
Although use of the normalized Legendre functions was considered necessary
for this thesis, this scaling was not considered necessary for the Legendre
polynomials. Because of this inconsistency in scaling, the equations coded in
the software use normalized tesseral coefficients and unnormalized zonal

coefficients.

After accounting for the above-mentioned modifications, the spherical
harmonic potential equation (2.24) becomes

U(r,0,0) = -GM I-=2 J

r )n
r •[C cosmO+9sinmO] 15.((sinO)

(2.2-9)

The Planetary Ephemeris Program uses this equation with finite summation
upper limits. The coding in PEP separates the central body term from the
harmonic summations.
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2.2.1 Relation between Spherical Harmonics and Moments of Inertia

The moments of inertia about a solid body are closely related to the

gravitational potential for a distributed mass. An expansion of Equation (2.1-

4) for the gravitational potential contains the terms for the moments of

inertia.

IJ (.•f(/ + C2) dm It =fJJJ4qdm

body body

I f = (42 + C2 ) dm I f= 4Cdm (2.2.1-1)

body body

I J (4 2 + 172 )dm In =J J7n dm
body body

Equations (2.2.1-1) are valid for any arbitrary rectangular coordinate

system (•q,t,) originating at the body's center of mass. The spherical

harmonic potential function U was developed from the (r,ý,O) coordinate

system of Figure 2.2-1 which corresponds to the (x,y,z) rectangular coordinate

system of Figure 2.1-1. Converting the moments of inertia to this (x,y,z)

system, the second degree coefficients in the gravitational potential function

satisfy the following relations [24, 30, 32, 44].

Y2 =•(1x, + I,) - I= YI-I
0 p2MC 22 = 4p2M (2.2.1-2)

C2=17- $21= I•Z S22= I•
2pM p2M 2p2M

Since the lunar moments of inertia can be obtained by observing the
physical librations of the moon, the second degree coefficients can be
determined without sending spacecraft to the moon. If the (x,yz) axes are
principle axes, the products of inertia will be zero, resulting in

Czn = 0, S2 = 0, S22 = 0 (2.2.1-3)

In the lunar case, the principle axes coincide with the x axis pointing

towards the earth and the z axis pointing along the axis of rotation.

Unfortunately, equations (2.2.1-3) do not hold exactly with the inertial

reference frame used by PEP in this thesis. Since the lunar moments of
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inertia can be experimentally determined from earth, it is possible to
simultaneously process lunar rotation observations with satellite

observations such as those simulated in this theses. In this manner,

equations (2.2.1-3) and the non-zero equations in (2.2.1-2) could be assumed to

hold exactly. Processing lunar laser corner reflector observations [13, 17]
would provide estimates of the second degree coefficients with a very high

degree of confidence and the lunar satellite observations could be

simultaneously processed for estimates of the higher degree coefficients.

2.2.2 Limitations of the Spherical Harmonic Expansion

Although the spherical harmonic expansion is frequently used to

describe the gravitational potential of a distributed mass, it is not an efficient
model for all uses. Since the model is based upon spherical coordinates, it
produces an uneven resolution of coverage from the equator to the poles.
This uneven resolution can lead to modeling inefficiencies.

Figure 2.22-1: Zonal, Tesseral, and Sectorial Harmonic Patterns

The spherical harmonic model breaks the sphere up into zonal,

tesseral, and sectorial patches (Figure 2.2.2-1). The patches are separated by
lines where the terms are identically zero. On one side of the line, the term

will be positive and on the other it will be negative. The zonal, Jn, terms, are

independent of longitude, 0, and dissect the globe of interest into n+1 bands

along lines of latitude. The tesseral terms, Cnm and Snm, dissect the globe of
interest into patches of both latitude and longitude. A tesseral term will have

n-m+1 sections of latitude and 2m sections along lines of longitude. The

sectorial terms, Cnn and Snn, are independent of latitude, *, and dissect the
globe of interest into slices, like sections of an orange.
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Defining a spherical harmonic gravitational model with a specific
resolution at the equator provides an overly fine longitudinal resolution at

the poles. Obviously, finer surface resolutions require higher degree models.
The number of harmonic coefficients, however, grows as the square of the
degree, so increasing the degree of a model is not an insignificant task. A
more efficient model, in terms of coefficients required to define a desired

surface resolution, would use equal size mass density patches over the surface
of the body. Table 2.2.2-1 lists the degree and order of spherical harmonic
models and the number of surface mass density patches required to get
various lunar surface angular resolutions for the gravitational potential. The
table ignores the difficult patch layout problem and resultant inefficiencies, so
that the number of n0 x n* surface mass density patches is the patch area in
steradians (n2X2/180 2) divided into the number of steradians in a sphere (4s).

Table 2.2.2-1: Spherical Harmonic and Surface Mass Density Surface Resolution Comparison

Resolution Spherical Harmonics Surface Layer

Traverse Time Degree & # of
(100 km Alt) Order Coefficients # of Patches

22.5 683 442s 16 X 16 285 82
11.25 341 221s 30X30 957 326
3.297 100 65s 109 X 109 12,096 3,795
1.648 50 32s 218 X 218 47,957 15,190
1.000 33 20s 360 X 360 130,317 41,253

Table 2.2.2-1 lists the travel time to cross a patch of given size, since this
factor is important in determining the resolution obtainable by observing a
low-altitude orbiter. For estimation purposes, there should be at least two
observations (or measurements) within the time it takes to fly over a given
patch. Therefore, with 60 second Doppler count intervals of a satellite in a 100
km altitude orbit, a spherical harmonic expansion of degree and order 30 is
theoretically possible; more than three observations are obtained per surface
patch. Unfortunately, this rule of thumb does not account for smaller

spherical harmonic patches at the poles or the lack of observations during
lunar occultations.

As the table shows, a surface mass density model provides an economy
in the number of coefficients estimated, and might be a preferred approach for
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modeling or estimating the lunar gravitational field. The simulations of this
thesis, however, were done with the spherical harmonic model since a
surface mass density model has not been validated for PEP. Nonetheless,
some of these other modeling techniques are discussed here for completeness.

2.3 Localized Surface-Layer Gravitational Field Models

Since lunar mascons act as localized gravitational disturbances, their
modeling requires a fine degree of resolution to capture their high frequency
content. A very high degree spherical harmonic model is required to model
this behavior, which requires the estimation of a very large number of
coefficients. As shown in the previous section, a more efficient method of
modeling this behavior may be obtained through models focusing on the
local, rather than global, behavior. In an attempt to recreate their high
harmonic frequency behavior, mascons have been modeled by point masses,
lens shaped mass concentrations, and gravity dipoles. In some instances,
these mascon models have been used to model the entire lunar gravitational
field, and in other cases, they have been combined with low degree spherical
harmonic expansions.

2.3.1 Point Mass Model

The point mass model can be used to represent the behavior of an
individual mascon. The gravitational force due to a point mass, Equation
(2.1-1), results from taking the gradient of the following potential.

-Gm 2  (2.3.1-1)u~IF1)- P21

Multiple mascons can be modeled by summing the potential contribution of
each individual point mass. The resulting potential model for n-1 point
masses becomes
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SGmi

V i=2 -Gm (2.3.1-2)

Typically, these point masses are distributed about known mascon
locations. To recreate mascon behavior, the location, mass and depth of the

point masses are adjusted to fit observations. Point masses are positioned
below the lunar surface to avoid singular conditions which would result as

the separation distance approaches zero. To globally model the moon's
gravitational field with point masses, the model should constrain the total

mass and center of mass of the system to known values.

2.3.2 Surface Disk Model

Because point mass models did not satisfactorily fit lunar orbit
observations, scientists turned to more sophisticated surface layer
representations. Scientists at the Aerospace Corporation [47] and the Jet

Propulsion Laboratory [4] replaced the point mass model with a surface disk

or lens shaped model. This model is derived from the potential of an
ellipsoid of uniform density which is given by Equation (2.14) with the
boundary of the ellipsoid used for the limits of integration. The density

function of (2.14) is assumed to be constant and integrates to the mass of the

body. The boundary condition of an ellipsoid is
X2 2 2

+ Y- + z =1(2.3.2-1)
a2 b 2  c 2

where a, b, and c are the dimensions of the ellipsoid along the principal axes

x, y and z. The surface disk or lens model uses the specialized case of an
oblate spheroid. Figure 2.3.2-1 shows a prolate spheroid (a=b<c) and an oblate
spheroid (a=b>c). The gravitational attraction for a point outside an oblate

spheroid of uniform density is [341

S=F - 3Gm l-+k +sin-' (2.3.2-2a)

x - y 2a e [1 1k l+k k
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""KImc2+ae'= (2.3e2-2b)
z a 3e3_[2 2k2 2

where e is the spheroid's eccentricity, so that c2=a2 (1-e 2 ), and the variable k is a
positive solution to the quadratic equation

a2kP +(a 2 +( 2 +y 2 +Z2))kZ2 =0 (2.3.2-3)

a

c oY ~#-

x x

Figure 2.3.2-1: Prolate and Oblate Spheroids

As the thickness, c, of the spheroid approaches zero, the gravitational
attraction of the disk is obtained. The resulting forces are then [47]

Ex y, 3GmrJk+ _(1 '

x y - 27"-(l+ k) sm JY)k (2.3.2-4)

Fz 3Gmr l • l 1 •'[

The mass of the disk is m, a is its radius, and the x, y, and z coordinates are as
in Figure 2.3.2-1. In the limit as the disk's radius, a, approaches zero, the disk
shaped model approaches the point mass model.

The Aerospace Corporation scientists used 600 surface disks of 50 km
radii covering the lunar surface to model its gravitational field [47]. At JPL,
they used 11ý lens-shaped mass concentrations placed about 50 km below the
lunar surface to model the gravitational field [5]. In the JPL model, the lens-
shaped mass concentrations augmented the moon's central body attraction.
Both models employed positive and negative mass disks in order to recreate
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the observations from lunar satellites. Naturally, negative (repulsive) mass
surface disks are not physically realizable, but they do model situations where
a lunar surface feature is significantly less dense than its surroundings.

Both of these surface disk models provided better correlation to lunar
observations than previous models. Unfortunately, they did not constrain
the lunar center of mass. When the models were converted to spherical
harmonic models, J1, C11 and S1 coefficients were required. Additionally,
both models assumed a priori knowledge of the mass concentration locations
and placed them about the moon's surface (or just below it) on a grid pattern.
If such a priori knowledge were not used, the estimation process would
require five terms to describe each surface disk: radius from the moon's
center, latitude, longitude, strength (mass), and disk radius. A better model
would have allowed the concentration's location to vary and would have
constrained the center of mass. This, however, would have involved too
many variables for the model to converge with the given lunar orbiter data.

2.3.3 Gravity Dipole Model

A gravity dipole model has also been proposed to account for the effect
of anomalous mass concentrations upon low orbiting bodies [18]. A
gravitational dipole consists of a mass +m separated from a fictitious mass -m
by a distance d (Figure 2.3.3-1). In the limit as d approaches zero, m is
assumed to get larger so that the product md remains constant. The strength
of the dipole, D, is the result of the following limit

Fi li0m(m') d = 5(F') (2.3.3-1)

Gravitational dipoles have never been shown to physically exist, but a
distribution of these dipoles can be useful for modeling the lunar gravity
field.

The gravitational potential due to a gravity dipole may be written as

f= D(F') csOd
U(r) = -G0 lp _y, 12 d (2.3.3-2)
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where ds is a patch of the surface and the other elements are pictured in

Figure 2.3.3-1.

rr

Figure 2.3.3-1: Surface Gravity Dipole

Gravity dipoles can be useful modeling tools because of their unique
properties. The most useful property is that they produce a discontinuity in
the tangential component of the gravitational field when traversing the
dipole layer. The gravitational field normal to the dipole layer, however,
remains continuous as the layer is crossed. This allows gravity dipoles to
model unexplained out of plane accelerations. Using a ring of mass and
gravity dipoles in a continuous line distribution around the lunar equator;
Croopnick [18] successfully modeled actual disturbing accelerations beneath a
low altitude orbiter. The dipoles were oriented normal to the equatorial
plane, so that they were used to account for out-of-plane disturbing
accelerations. The mass ring, meanwhile, accounted for the radial and
tangential (in plane) components of the disturbing accelerations.
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Orbit Propagation

3.1 Numerical Integration Techniques

Two classes of perturbation methods are used in celestial mechanics to
determine precise spacecraft orbits. General perturbations generalize the
expressions for two-body motion to include disturbing effects of other bodies
using infinite trigonometric series expansions and integrate these series term
by term. Special peturbations use numerical methods for deriving the
disturbed orbit by direct integration of the rectangular coordinates or a set of
osculating orbital elements [10].

Orbit propagation in PEP is performed using the numerical methods of
special perturbations. Numerical orbit determination techniques are prefered
because of the ease of implementation and the accuracy of solutions. The
growing capabilities and increasing speeds of modem digital computers have
significantly increased this method's accuracy and utility. Using Cowell's
method, PEP integrates the equations of motion in rectangular coordinates
fixed in inertial space. Section 3.2 discusses the units and coordinate frames
used in this study's analyses. The equations of motion and the equations for
the partial derivatives of motion with respect to gravity harmonic coefficients
and initial osculating orbital elements, as used in PEP, are covered in Sections
3.3 and 3.4.

Two of PEP's numerical integration techniques were used for this
study: the Adams-Moulton and Nordsieck methods. The Adams-Moulton
constant step size integration technique with 11th differences was used for the
propagation of near-circular lunar orbits [15]. This technique uses predictor-
corrector techniques to accurately extrapolate forward in time a satellite's
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position and velocity. Its integration step size should be smaller then 1/100th

of the satellite's orbital period to ensure numerical stability. An even smaller
step size must be used to accurately sample higher degree gravitational
harmonics. A very conservative rule of thumb is to use a step size of 1/(100n)

of an orbital period to simulate an n X n degree and order spherical harmonic
model. In PEP the step size is 2m days, where m is a negative number. A two
hour lunar orbit using an m = -10 step size will have over 170 steps per orbit,
ensuring numerical stability. An m = -14 step size for the same orbit will
have over 1,365 steps per orbit, which should adequately model a 13 x 13

spherical harmonic gravity model.

Elliptical orbits were propagated by the Nordsieck fifth degree variable
step size technique [381. Since the technique is self starting, it is used to start
the Adams-Moulton method. This technique predicts the orbit ahead using a
fifth degree polynomial whose coefficients are approximations to derivatives
of the function being integrated. The integration output file therefore
contains the satellite position, velocity, acceleration, and jerk [8]. The variable

step size uses a smaller step near periapse, where quantities change more
rapidly. For highly elliptical orbits, this is a more efficient integration
technique, since constant step size methods propagate the entire orbit with
the smallest required step size.

Despite the integration step size used, integration quantities are written
to an output file using a different step size. This output step size is generally
two times the integration step size. For low frequency orbital disturbances,
less frequent output step sizes can be used. A satellite's position and/or

velocity are determined at specific observation times by interpolating from
the satellite's integration output file. Everett eighth difference interpolation
is performed on constant step size integration files. This method fits a ninth

degree polynomial through the ten output times surrounding the
observation time. Hermite interpolation is performed on variable step size
integration files. This method uses a fifth degree polynomial agreeing with

position, velocity, and acceleration at the two output times surrounding the

observation time [8].
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3.2 Units and Coordinate Systems

The numerical integration methods of special perturbations require
that units of time and the gravitational constant are precisely defined. The
time unit in PEP is the coordinate time day defined in terms of atomic time in
Appendix B. The distance unit is the Astronomical Unit (AU), defined by
setting the square root of the gravitational constant times the mass of the sun
to the Gaussian value (see Appendix B).

Numerical integration of the satellite equations of motion are
performed in an inertial Cartesian coordinate system. PEP's current inertial
coordinate system is based upon the mean equinox and equator of the earth of
1950.0, or Julian Date 2,433,282.423. This coordinate system uses the earth's
rotation axis at this time as the z axis, with the x axis along the 1950.0 mean
equinox pointing towards the constellation Aries, and the y axis completing a
right-handed coordinate system. The transformations between this
coordinate system and those fixed in the moon and earth are discussed in
Appendix C.

For lunar satellite propagations, the origin of this coordinate system is
placed at the moon's center of mass. The coordinates of perturbing bodies
during an integration are determined from the coordinates of the earth-moon
barycenter relative to the sun, of the moon relative to the earth, and of
planets relative to the sun calculated by interpolation from an n-body file
supplied from the Smithsonian Astrophysical Observatory (SAO). This n-
body file is based upon the SAO's fit to observational data. The moon's
coordinates are based upon formulas from Brown's lunar theory.

To analyze the PEP propagated orbits, auxiliary software was written to

transform the inertial integration Cartesian coordinates into a selenographic
coordinate system. The selenographic coordinate system is also centered at
the lunar center of mass, but its z axis is the lunar rotation axis, the x axis
points toward the earth, and the y axis completes the right hand coordinate
system (see Appendix C.1). One auxiliary software program computes
selenographic orbital elements and satellite ground tracks from an inertial
integration file. Initial conditions for lunar orbits were chosen in the
selenographic coordinate system. The orbital angles (i, Q, 0)) were then
transformed to the inertial integration coordinate frame in a second auxiliary
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software program using the transpose of the transformation matrix used in

the first program.

For this thesis, inertial Cartesian coordinate frame positions will be
referred to as 2, and in selenographic Cartesian coordinates as G, where the
two are related by the transformation matrix R(t) as follows (Appendix C.1)X U!

2= yl = V(32-1)

[R11  R1  R13 1 &[T]

C1 RMtIX= R21  R22 R23 IX RqT IX(22

_R31 R32  R33 '3,

Additionally, the selenographic Cartesian coordinates are related to the

selenographic spherical coordinates (r,#,O) by the relationship

Srcoscoso1 sncs (3.2-3)

so that the inertial coordinate frame can be related to the selenographic

spherical coordinates used in the spherical harmonic expansion by the
relations

r =(RjII = TA)1o = /1-C (32-4)

sin -Ir(Alg) Cos =4Ci~ (3.2-5)
Cos 0 1 (FZII) Sing 9W (fZIX) (3.2-6)

These transformations are used in PEP's internal transformation
routines, in the two auxiliary software programs, and in the partial

derivatives of satellite motion equations covered in Section 3.4.
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3.3 Equations of Satellite Motion

Because of the nature of the equations of motion for a satellite, PEP

integrates an augmented state vector,

where X,, is the position of body b (satellite) with respect to body I (the moon)

defined by (3.2-1) and X1b is its time derivative:

X6 dy61=[j 9 i]T (3.3-2)

dt
For the following equations, 1, X, and ,* will all be used, although

the reader should realize that "state" refers to the augmented state vector, V.

The equations of motion for a lunar satellite relative to the moon may

be written as:
d 2 _ = X bl (

;r3 + H, + ¶' + H, + other forces (3.3-3)

dt2  rb,

with the initial condition at t=t0

Xb* = f;10 (3.3-4)

In this thesis, the "other forces" (radiation pressure, gas leaking,
thruster firing) are ignored, but can be included when fitting to real

observations. In Equation (3.3-3), the HI and H, terms are the effects of

gravitational harmonics (zonal and tesseral) for the moon and earth
respectively, and the TP term is the point mass perturbing accelerations of

other bodies upon the spacecraft and the subscripts e, s, and p refer to the

earth, sun and planets.

--L (3.3-5)

For the simulations run, the earth and sun perturbing attractions were
included. The effect of all other bodies was considered negligible for these

simulations.
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3.3.1 Effect of Lunar Gravitational Harmonics

The acceleration on a satellite due to the gravitational potential U of
the moon is obtained by taking the gradient of the potential (2.1-3). Since
Equation (3.3-3) already accounts for the central body attraction, the effect of
the remaining harmonics is derived from (2.2-9) without the central body
term. The resulting acceleration is

inr, , rI O'bX-[ "(n + 1)X)I p)T]r
+lXrsn +b

-= GM UA.COMO9,si~ J]
[ Gnn Tcosm + snm O]n+)I x

ir' F. rb, rrm(n+l)Xb,

n=2 Md-bI

m['m cosmo - U. sinmOPnmr. rb{ JT
(3.3.1-1)

where X is the ratio of pli/rbi, Ný is the degree of zonals used in the spherical
harmonic expansion and Nt is the degree and order of tesseral harmonics in
the expansion. The recursive formulas for P., P', PTm, and T' in terms of

the argument sin* which have been coded in PEP are given in Appendix A.

The partial derivatives of the selenographic spherical angles in (3.3.1-1)

are obtained by differentiating Equations (3.2-5) and (3.2-6). This
differentiation results in the following relationships

d(sin = -xT sPne
r - -sin " (3.3.1-2)

*6- sin_ ___ ',XT R o bICo (331)

-•ml Or cos/cos Cos r 2

CoseL ~ T PR2  _SinG 0 Cos~ J Xb. Si (3.3.1-4)
,Xbl r cos o cos t dXb, rb
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Equations (3.3.1-3) and (3.3.1-4) can be simplified by multiplying the
first by -sinO, the second by cosO, and then adding the two equations. This
yields the following formula for the partial derivative with respect to 0.

T

(d21b I) , Co 0 [FZ2 COS 0- R1 sin 0] (3.3.1-5)

Equation (3.3.1-1) is singular at * = ±90* for PEP's algorithms. This is
generally not a problem since it is highly unlikely that a satellite numerical
integration step would land exactly over a pole. One simulation, however,
used a polar location as an initial condition and PEP was unable to propagate
its orbit. The initial mean anomaly for this orbit was altered by one degree
and the integration proceeded without any further difficulties.

3.3.2 Effect of Other Gravitational Body Harmonics

PEP has the capability to include other (non-central) gravitational body

perturbing effects upon a satellite's motion. This enables PEP to handle
spacecraft fly-by missions. PEP can include the effects of a destination, or
target, body's harmonics upon the motion of a satellite traveling towards one
body but which is within the sphere of influence of another body. Using this
feature, PEP can also include the earth's J2 harmonic upon a lunar orbiting
satellite. Higher order terms can also be included for integration accuracy, but
are rarely required.

The effect of earth perturbations on the motion of a lunar satellite
relative to the moon (He from (3.3-3)) is the difference between the effect of
the earth on the satellite (HI'e) and the effect of the earth on the moon (His).
Hbe is given by Equation (3.3.1-1) with a change of subscripts, replacing
subscript I with e. The effect of earth harmonics upon the moor is calculated
by replacing the GM/ terms in (3.3.1-1) by GMK, (the subscript c refers to the
earth-moon barycenter), the subscript I by e, and the subscript b by 1. The He
term in (3.3-3) is then given by

"He = Hbe - HIe (3.3.2-1)
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Since low altitude lunar orbits and eccentric orbits with apolune on the
far side of the moon were simulated, no earth perturbing effects were
included. When processing real observations to estimate the lunar
gravitational field, earth's J2 harmonic should be considered since it is three
orders of magnitude larger than the other earth harmonics.

3.3.3 Effect of Mass Concentrations

For this thesis, PEP was modified to include the effects of mascons
upon lunar orbiting satellites. Since these modifications have not been
integrated into the SAO's version of the software, the Draper Laboratory
modified version will be referred to as PEP-D. PEP-D implements mascons by
modeling them as point masses (Section 2.3.1).

Due to mascon model implementation, the equations of motion for a
lunar satellite relative to the moon (3.3-3) become, in PEP-D,

d2 Xbl G I1., Xb
dt = --G Mr(l +/H-±I + +lH+ +/-e +K (3.3.3-1)

with the same initial conditions, (3.3-4). In Equation (3.3.3-1), the K term is
the effect of all of the mascons and u is their total mass fraction.

The mass of each mascon and its selenographic position in spherical
coordinates is entered into PEP-D as the program is initialized. The mass or
strength of a mascon is input as a fraction of the total central body mass and
both positive and negative values are allowed. If Nk is the total number of
mascons, the total mass fraction of the mascons is then calculated by

Nk

v=) m 0O <V < 1 (3.3.3-2)
i=1

The original central body term from (3.3-3) is reduced by the factor (1-u)
to conserve mass in the lunar system. This will allow the lunar mascon
model to behave identically to the central force model far from the moon.
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The acceleration on a satellite due to the gravitational potential of Nk
mascons is obtained by taking the gradient of the point mass potential (2.3.1-
2). The resulting acceleration is

Nk ii

K =-GMXmi rbi (3.3.3-3)
i=1 rbl

From the input spherical mascon selenographic coordinates, PEP-D
determines their inertial Cartesian coordinates XAf using Equation (3.2-3) and

the inverse of Equation (3.2-2). The coordinates of the lunar satellite relative
to mascon i and their separation are then

= XbI - (3.3.3-4)

rbi = I2bi I
Unfortunately the mascon implementation in PEP-D does not

constrain the lunar center of mass. As mentioned in Section 2.3.2, when
converting a surface layer model with an unconstrained center of mass to a
spherical harmonic expansion, first degree harmonic coefficients h, ClI, and

S11 need to be determined. Rather than modify PEP-D to estimate first degree
coefficients, this thesis uses mascon models in which the lunar center of mass
is not disturbed. If any mascons are used, PEP-D calculates the central body
center of mass by the form la

Nk

Xc.M. = mAOi (3.3.3-6)
i=1

When the somewhat arbitrary mascon "truth" model was created (Section
6.4), this feature was used to determine the placement and mass of
"balancing" mascons to preserve the lunar center of mass.

3.4 Partial Derivatives of the Satellite Motion Differential Equation

The partial derivative of Equation (3.3-3) with respect to a parameter a

yields the variational equations that are numerically integrated in PEP along
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with the equations of motion. The parameter a could be one of the orbit's
initial conditions, the harmonic coefficients of the gravitational field, or other
parameters of interest. Taking into account the effects of mascons, the partial
derivative of Equation (3.3.3-1) with respect to the same parameter a yields
PEP-D's variational equations

_____ Xbl

d(Aldcx rbl
d2(a GM'(1-V) 39b, Al AT~ 1 l (3-4-1)
dt2  3 r, 2 . -bd daJ

-- d+ d-

with the initial condition at t = to

= (3.4-2)
da da

Unless estimating the mass of the moon, the first term in (3.4-1) is zero.
Additionally, since the mascon masses were not estimated in this thesis, the
ratio t was considered constant.

The effect of perturbing body attractions (point mass approximation)
upon the partial derivative with respect to a is obtained by differentiating
Equation (3.3-5), yielding

SGMj[3X20 2T d2O dX~ 1T_ c, r3+, d_ x ,2) dcx J
ja G~ 39j fCTdgil " gi

i=e,s,p77Lr+ 3 r a dc]a

3.4.1 Effect of Lunar Spherical Harmonics on the Partial Derivatives

The effect of the lunar gravitational harmonics upon the partial
derivatives of satellite motion with respect to a parameter a is obtained by
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differentiating Equation (3.3.1-1) term by term. After differentiating, like
series summations can be regrouped for numerical algorithms. The resulting

equation takes the form

dR1 = Al d(GM1 ) + GM,[ Z+ (3..1-1)
aa GMI da b

where 2 is the series expansion for the zonal terms and T is the series
expansion for the tesseral terms. The first term in (3.4.1-1) is set to zero unless
attempting to estimate the mass of the moon. 2, the zonal series expansion,
is provided by the following expression:

•.dj (n + 1)Xbl P -Pn rbl J J+

( l)da bI (n-l)Xb +

l~ n + I)A2 da 2 r
L~n .- db rb, d da

n=2 (-d2 sino T

L -r, (d~b, dcx

___o T ul i si 1P"

(3.4.1-2)

The first term in the above equation is zero since the zonal coefficients are

constant.

After grouping like terms, the series expansion for the tesserals, T,
reduces to the following expression:
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ScomOm+ da snmOj x

dsin - +(n+1)X6
bL • bl rbl

-cosm I: ~ l nn
L - - sinmOdcx, J d+

[E.m Cosmo+ 9., sin mO]T, +

m[9. Cosm - ., sin]MA 2

(3.4.1-3)

The first two terms in this expansion are zero since the tesseral spherical

harmonic coefficients are constant. The expansion for T, and T2 are then

(n + 1) J(n +3)Xb d(lr 
I1 r 2 - Iola -- ',

rb M 2 rbl b( dox cx

Lm r1( )( dilbl r

+(n+l1) ~db dsino },,r ~ur

rb dkb dab urn

(3.4.1-4)
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r. ( drTda JT

t2 (n ._+1)rT •I dfC jt,T + 2 6 P M Si 0

rbI XN, d d o =+Xb l.
+r___ bi X, Oaa+tab J T aO

+rbl) dsn~ dO + P' Jsind*]
+rI d~b, ) dcc d&bI dccýa J

(3.4.1-5)

The recursive formulas for calculating P., P;,, Pn, P,,,, l,,,, and P'.m
in terms of their argument sin$ are included in Appendix A.

Additionally, based upon the transformation between selenographic
spherical coordinates and the inertial frame (3.2-4), (3.2-5) and (3.2-6), the
following partial derivatives are obtained.

rbl d - [bl " J + dF Xb, (3.4.1-6)r d! rb =a rd

r+,cos+ -Z2 +(• Cos 0- •l sin O)T OXb, 34I7

(02 in(dA 2 r dr"Lifl --J +
rbl = da (3.4.1-7)

~da

[2 fblsin~ RZ3 ]( df41 )
/7 b, J+ 3

rb, d2bda T R3  s d Xb dsin 4.1-8)Lp' Sint - Ab rl R dcSin}
a rbl d0I Trbl da c
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[cs2 Cosin i 6R l dOsn

d~T da
rbICO A da+ COIsin d Si d O'b (3.4.1-9)

rbl bI4 bi da dd:RbI)

PEP has the option of using different degrees of spherical harmonic
models for calculating the partial derivatives in Equation (3.4-1) than for
calculating the satellite motion in Equation (3.3-3) or (3.3.3-1). Since
calculating the effect of the harmonics is such a tedious process, calculating
the partial derivative's harmonic effect with a lower degree spherical
harmonic model can save quite a bit of computer time. This option works
well for high altitude earth satellites where J2 dominates the other harmonic
effects. This option was found impractical for low altitude lunar satellites, so
the same degrees N. and Nt were used as the summation upper limits in
Equations (3.4-1) as in (3.3.3-1).

3.4.2 Effect of Earth Spherical Harmonics on the Partial Derivatives

The effect of earth harmonics on the partial derivatives of satellite

motion with respect to a parameter cc is calculated by differentiating Equation

(3.3.2-1). This calculation involves differentiating two factors of the form of

Equation (3.4.1-1) since the effect of the earth harmonics on the moon must be

subtracted from the effect of the earth harmonics upon the lunar satellite. For

this thesis, the effect of earth harmonics upon the partial derivatives were

neglected in Equation (3.4-1) because all of the orbits propagated were low

altitude ones:

d'e 0 (3.4.2-1)
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3.4.3 Effect of Mass Concentrations upon the Partial Derivatives

The effect of mass concentrations on the partial derivatives of satellite
motion with respect to a parameter a is obtained by differentiating Equation
(3.3.3-3) assuming that the total lunar mass remains constant.

dk GMI m1 li[396i (2 d9N dxbi, dnin Xbi (3.4.3-1)
T _jririda da da 3b

The above equation was not coded into PEP-D. The partial equations
were calculated on orbit fitting runs and all of the orbit fitting was done to
spherical harmonic models. The spherical harmonic plus mascon truth
model was run to generate the satellite observations for each gravitational
sensing method, for which partial derivatives were not required. If PEP-D
was used to estimate coefficients in a spherical harmonic plus mascon model,
this equation would be required and could be used in an estimation fit which
varied the mascon strength and location.

3.4.4 Effects of Initial Conditions on the Partial Derivatives

The partial derivatives of the satellite's initial conditions with respect

to a from Equation (3.3-4) (used as initial conditions (3.4-2)) are zero unless

the parameter itself is a satellite initial condition. For the cases where a is a

Cartesian coordinate initial condition, the partial derivative is obtained from

the following relation.

"1 0 0 0 0 O0

O•Xbl010000

A 10  I 0 1 0 o (3.4.4-1)
a ;Looo~ooi0 0 010 01

Rather than solve the partial derivatives with respect to inertial
Cartesian initial conditions, PEP uses the partial derivatives of the initial
osculating elliptical orbital elements (ao, eo, io, flo, coo, Mo) or (ao, eo, io, flo,
(Q+Qo)0, (Q+co+M)O). The osculating orbit is the one which would result if the
disturbing forces in Equations (3.3-3) or (3.3.3-1) were instantly "turned off"
and the satellite's motion continued along the two-body orbit defined by the
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central body force. These orbital elements, like the Cartesian coordinate state
vector, completely describe the satellite's initial state. Calculating the partial
derivatives with respect to the initial osculating elliptical orbital elements is
numerically more efficient because only the partial derivative with respect to
the initial osculating semi-major axis grows with time. Reference [6] contains
the formulas for the partial derivatives of the initial conditions with respect
to the initial osculating elliptic orbital elements in the integration coordinate
frame.

3.4.5 Checking Partial Derivatives by the Difference Method

To verify that partial derivatives were being calculated correctly, they
were checked using a finite difference method. This method was used to
check both position, A, and observation partials. For these checks, orbits
and/or observations with partials were generated with two different values of
the parameter a (ca, and Q2). The finite difference method then verifies the
partial derivatives of the quantity of interest, r (scalar position coordinate or
theoretical observation), by verifying the following equality.

".• 1 -LAi =r a'afa2 (3.4.5-1)
check 4 a=, + da ]]~ I Fa, - Ta2

This check allows coding errors to be detected and verifies the proper
execution of the program. Once coding errors are fixed and the program is
being run properly (appropriate control inputs are used), the orbit fitting
process generally converges to a solution. If the program is running properly
but has difficulty converging upon a solution, this indicates that parameters
are too highly correlated, the observations do not provide adequate
observability, or the fit model is an inadequate representation of the observed
behavior.
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4.1 Observation Simulation and Processing

Knowledge of the world in which we live is based upon observations,
or measurements, of physical phenomenon. Theories that attempt to explain
and model natural occurrences are developed to explain previous
observations and are validated by accurately predicting future behavior. The
discovery of the planet Neptune is an example of the impact observations
have upon the development and refinement of theoretical models. After the
discovery of Uranus, astronomers could not reconcile observations of the
planet's motion with theoretical predictions. English astronomer John Couch

Adams and French astronomer Urbain-Jean-Joseph Le Verrier, independently
studying the motion, concluded that Uranus' behavior was due to a planet

beyond it. Using a new model, both astronomers were able to predict the
location of this ultra-Uranian planet, and shortly thereafter Neptune was

discovered [10, pp. 472-473].

The Planetary Ephemeris Program (PEP) was designed to process

observations of the sun, moon, planets, stars, and spacecraft and to further
scientific knowledge through this observation processing [8]. PEP processes
observations of interplanetary, earth, and lunar spacecraft using observation
files. These files, based on actual astronomical observations or simulated

observations, are made up of observation series. Observation series are
limited to a single sensing method (Section 4.2) and a pair of observation
types (Section 4.3). Multiple observation methods, types, periods, and
frequencies are accommodated within PEP by either including more than one
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observation series in an observation file or by using more than one
observation file at a time.

To optimally estimate a spherical harmonic expansion fit to the lunar
gravity field for this thesis, PEP generated simulated "truth" model
observations based upon the observation geometry and measurement type
being evaluated. Observation series for each observation geometry and
measurement type were created using PEP's dummy observation feature
where output observation files were created from knowledge of earth-based
observing sites, and observing and observed satellite states determined from
numerical orbit propagations which used the gravitational "truth" model.
These observation series included each method's associated measurement
error - an indication of the statistical accuracy of any given measurement.
The error values used were based upon published or calculated instrument
capabilities. During the fitting process, the observation files were read and
these errors were used to weight the observations.

Treating the "truth" model observations as real, PEP fit a spherical
harmonic model to these observations. Using first guesses for the fit model
coefficients and satellite initial osculating orbital elements, the equations of

motion and the equations for the partial derivatives of the motion with
respect to these quantities were numerically integrated. From the numerical
integrations, the theoretical observation values were determined.

Observation residuals, the difference between the "true" observations and the
theoretical values calculated, and the observation partial derivatives were
computed and written to an observation output file. This file was later used
to update the guess for the gravitational coefficients and orbital initial

conditions.

There was no measurement noise added to the "truth" model
observations in this thesis. WViite measurement noise could be added using a
random number generator, nuth any non-zero measurement biases estimated
byPEP.

Both "truth" model and theoretical observation values depend upon

the location of the observing site, the observation time (signal receive time),
the location of the observed body at reflection time, and any distortion factors.
PEP determines the receiving site's position or state at signal receive time in
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the inertial Cartesian coordinate frame based upon integration or n-body files.
For observation processing in cis-lunar space, position is determined relative
to the center of the earth. For extremely precise observations, PEP can
perform the light time iterations with the center of mass of the solar system
as the center of the inertial coordinate system.

The distance between the observed body at a guessed reflection,
transpond, or transmission time and the observing site at receive time is
converted to light time, and the reflection, transpond, or transmission time is
adjusted until the difference between the reflection, transpond, or
transmission time and receive time is sufficiently close to the distance
between the bodies converted to light seconds.

For two way observation signals, this process is performed twice. The
first iteration is used to determine the reflection time and state of the
observed body. The second step uses the reflection time (less any systemic
delays) and state of the observed body to compute the signal source's send
time and position. Bent pipe observations perform these light time iterations
as many times as necessary to recreate the path of the electromagnetic signals
from signal receive time back to its origin.

4.2 Observation Methods

Astronomical observations are collected using several different
methods. The most common observations are taken from earth sites. These
can be observations of celestial bodies or man-made spacecraft in earth, lunar,
or interplanetary orbits. Additionally, satellite based observations are made of
other satellites or of sites on the earth or lunar surface. Finally, bent pipe
observations are made in which a signal is passed among multiple satellites
and sites. PEP can simulate observations using each of these methods and can
also model physical effects which affect these observations.
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"4.2.1 Earth-Based Observations

PEP contains the coordinates of several earth based sites to process
astronomical observations. DSN sites are included in cylindrical coordinates
and most other locations are in spherical coordinates. Observation sites not
already included can be added to PEP. This will permit the creation of lunar
observation sites. If a lunar base or navigation site were established, PEP
could process lunar-based observations in the same manner used to process
earth-based observations, after some straightforward software modifications.

When an earth-based site is involved in an observation, the site's
inertial location with respect to the center of the earth must be determined to
calculate the theoretical value of the observations. Given an observation
receive or send time in UTC time (as disseminated by the U.S. Naval

Observatory Time Service Radio Station, WWV, and other time services),
PEP determines the coordinate time (CT), UT1 time, and earth wobble

coordinates from look-up tables. International Astronomical Union (IAU)
expressions for the sidereal time as a function of UT1 time and the earth
precession-nutation matrices as functions of CT time are then evaluated. PEP

transforms the observing site's earth fixed coordinates to the integration
frame coordinate system using the transformations described in Appendix
C.2. PEP can also calculate the partial derivatives of the observing site's
integration frame coordinates with respect to cylindrical or spherical
coordinates. This feature allows PEP to improve the estimate of the
observation site's location in earth fixed coordinates as part of the process. As
lunar sites are established, PEP can therefore survey the site's location by
processing satellite-, earth-, and lunar-based observations.

4.2.2 Satellite-Based Observations

PEP also allows observations when a satellite is the signal receiving
and/or sending site. In this case, PEP uses the satellite's integration file to
determine its state and the partial derivatives of the state at receive,
bounce/transpond, or send time. When using a lunar satellite for
observations, the satellite's state and partial derivatives are translated from
lunar- to earth-centered coordinates. The lunar satellite's state and any partial
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derivatives at receive, bounce/transpond, or send time are determined using

the interpolation methods described in Section 3.1.

"4.2.3 Bent Pipe Observations

PEP also processes observations in which signals pass among several
satellites and sites. This coding has been used to recreate two different
ranging observations [8]. In the first method, an earth site transmitted a
ranging signal to an earth satellite which then transponded the signal to a

second earth satellite. This second satellite then transponded the signal to an
earth receiving site. The second bent pipe method used the same signal path

from the originating earth site through the second satellite, but then the
signal was transponded back to the first satellite and then transponded to an
earth receiving site. In both cases the earth sending and receiving sites can be
the same or different sites. PEP-D can process these same bent pipe
observations methods for lunar orbiting spacecraft with earth-based sending
and receiving sites. Unfortunately these bent pipe methods currently only

process ranging observations (Section 4.3.6). To accommodate bent pipe range

rate measurements, PEP will have to be modified.

A bent pipe method using two two-way coherent links has been

proposed to observe satellite moton on the far side of the moon (Section 1.4).
For this method, an earth-based observation site sends a high frequency signal
to a lunar satellite. This Doppler shifted received irequency is used to

generate a medium frequency signal for a two-way coherent Doppler loop
between two lunar satellites. The returned Doppler shifted medium

frequency is then modulated onto the received high frequency signal and
transmitted to earth, completing a second coherent loop [40]. Since this
observation method was not available for range rate measurements, it was
simulated by using two separate, unrelated coherent Doppler loops. Since the

proposed method depends on a single frequency source, the simulated
method used a perfect, non-drifting frequency source for the satellite-to-
satellite loop. This method obtained range rate observables equivalent to the
proposed method.
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4.2.4 Observation Interruptions

All observations involve the transmission of an electromagnetic signal
(light or radio waves) between sending and receiving sites and satellites.
Observations therefore depend upon a clear line-of-sight between the sites
and satellites. Multiple signal path methods depend upon a clear line-of-sight
for each path. For earth observations of a lunar satellite, the line-of-sight can
be interrupted by either the earth or the moon. The first case occurs if the
line-of-sight passes below the horizon. In the second case, the moon occults
the line-of-sight when the lunar satellite passes behind the moon. PEP
models both of these observation interruptions and deletes observations from
dummy "truth" model observation series.

Given the radius of the occulting body, PEP determines whether the
satellite is occulted by its central body using vector descriptions of the
observing site, observed satellite, and central body locations. When the
observed body becomes occulted by its central body, observations cease until
the observed body returns to view. For the gravitational sensing methods
simulated, this feature was used with a lunar radius slightly larger than the
lunar radius to eliminate poor quality observations and account for satellite
acquisition difficulties at the edges.

Given a limiting elevation angle, as depicted in Figure 4.3.1-2, PEP
determines whether the line-of-sight has passed below the observing site's
horizon using vector descriptions of the line-of-sight and the vector normal
to the observing site. PEP discontinues observations while the line-of-sight is
below the required elevation angle. This feature was not used in the lunar
gravity model estimation simulations since there is at least one observing site
facing the moon at all times (these sites are spaced around the earth's
longitude). For this thesis, the simulations used a single observing site which
made observations through a "transparent" earth rather than using several
observing sites and simulating the handing off of observation responsibilities
from site to site.
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4.3 Observation Types

In the past, astronomical measurements were limited to optical
sightings of celestial bodies involving angular measurements and sighting
times. Angular sighting observation pairs include azimuth and elevation,
right ascension and declination, and meridian crossing and elevation angle.
More recent astronomical measurements involve electromagnetic waves
being transmitted through space. Electromagnetic signals may be reflected,
transponded, or transmitted by man-made bodies. In addition, natural bodies
are also used to reflect radar signals. These more recent observation
techniques can provide precise interferometric angular information as well as
accurate range and range rate measurements. Independently of the
observation method used, PEP determines the signal path from send to
receive time using the light time iterations described in Section 4.1. PEP
models any effects which could bend or distort this signal path based upon the
type of observation. The aberration of light, the Doppler shift in frequency,
atmospheric refraction, ionospheric distortions, general relativity, and
interplanetary plasma effects are all modeled in PEP to determine the proper
signal path. The adjusted signal path between sending and receiving sites, •,

is then used to recreate observations.

4.3.1 Azimuth-Elevation Observations

Early astronomical sightings measured the angles between the apparent
line-of-sight to the target body and a reference frame. Azimuth and elevation
angle observations at the observing site use the vector normal to the
observing site and the plane tangent to it to describe the location of the
observed body. The elevation angle is the angle between the line-of-sight and
its projection in the tangent plane. The azimuth angle is defined as the angle

in the tangent plane between north and the line-of-sight's projection. These
vectors and angles are depicted in Figures 4.3.1-1 and 4.3.1-2.

In earth-fixed Cartesian coordinates, the vector P is [0 0 1]T and the unit
normal, fi, is defined by the longitude 0 and geodetic latitude ý as
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[Cos 0Cos~
R=[sin~cosoJ (4.3.1-1)

PEP transforms these vectors to the inertial coordinate frame in which q is
calculated using the transformations of Appendix C.2.

p n

STangent Plane

Figure 43.1-1: Azimuth-Elevation Angle Vectors in the Meridian Plane

The vector Ai, which points along the meridian from the observation site
towards the north, serves as the north reference direction. This vector is
defined by the following equation:

m=unit[p- (p. nni (4.3.1-2)

North zm
azm • ... aelevation

In ~ ^- -PEast q

mxn

Figure 4.3.1-2: Azimuth-Elevation Angles and the Tangent Plane

The projection of the signal path, 4, in the observation site's tangent plane,
q,, is used to define the azimuth angle and is obtained by the equation
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4F= _(0) (4.3.1-3)

Additionally, Figure 4.3.1-1 shows the projection of the signal path in the
meridian plane, 4..

The following equations are used to calculate the observed azimuth

and elevation angles. Two-argument arctangent routines should be used for

improved accuracy and to distinguish the proper quadrants [8].

elevation = sin-i noq (4.3.1-4)

S= t (4.3.1-5)

4.3.2 Right Ascension-Declination Observations

When an object is observed against a star background, right ascension

and declination angles can be determined from the object's relationship to

catalogued stars. Right ascension and declination are angles referred to an

inertial Cartesian coordinate system centered within the observing body or
the true equinox and equator of date. If the line-of-sight vector q is given in

the relevant Cartesian coordinate system, [xq yq Zq]T, the right ascension and

declination angles are calculated from the following relations, where once

again two-argument arctangent routines should be used for improved

accuracy and quadrant determination [8].

declination = sin-'f ( J (4.3.2-1)

right ascension = tan-' (xi (4.3.2-2)
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XZ

y

Figure 4.32-1: Right Ascension and Declination Angles

4.3.3 Meridian Crossing-Elevation Angle Observations

Some of the earliest observations recorded the time and elevation of a

celestial body's passage across the earth's meridian. These observations were
performed by constraining the sighting instrument in the plane of the
meridian and measuring the elevation angle as the observed body crossed the
plane. Specifying the time of meridian crossing uses the rotating earth to

determine one of the angular components of the line-of-sight from the
observing body.

p n

Figure 4.3.3-1: Elevation Angle at Meridian Crossing

This method is similar to the azimuth-elevation observation with the

elevation angle constrained to the meridian plane. It is also related to the
right ascension-declination observation because the local sidereal time at
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meridian crossing, converted to radians, is the right ascension. Based upon
the observing body's orbit and rotation, meridian crossing time and elevation
angles are converted to right ascension and declination angles [8].

4.3.4 Satellite Look Angle Observations

When a satellite is the observing site, PEP defines the azimuth and
elevation angles in the satellite's pitch-roll-yaw coordinate system. The yaw
axis, ^, points from the satellite to the center of the body which it orbits. The
roll axis, f, lies in the orbital plane normal to the yaw axis, making an acute
angle with the satellite's velocity vector. The pitch axis, ^, is normal to the
orbital plane and completes the right hand coordinate system. This
coordinate frame is defined for a lunar satellite's position and velocity vectors
by the relations

= Ult~l, p=unit[9, X XbI] r- x - (4.3.4-1)

Figure 4.3.4-l: Sateilite-Based Look Angles

From this coordinate system, PEP's azimuth angle is defined as the

angle about the pitch axis and its elevation angle is the rotation angle from

this point to the line-of-sight. These angles are depicted in Figure 4.3.4-1 and

the formulas for PEP's azimuth and elevation angles are given below [8].

elevation = n q*(4.-2

Figure~ 4.A-:.3.4-2)asd ok nge
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azimth =(4.3.4-3)

4.3.5 Interferometry Observations

PEP can also determine angular measurements from interferometer
measurements. The angle between the incoming wave and the line
connecting the two observing sites can be determined when two sites receive
an electromagnetic signal and determine its arrival time difference.

q

Figure 4.-5-1: Long Baseline Interferometry Measurement Geometry

If the signal source (such as a radio star) is sufficiently far from two
receiving sites separated by a distance d, then the two signal paths are
considered parallel. If the signal arrives at site 2 at a time At after it reaches
site 1, then this signal has traveled the additional distance cAt, where c is the
speed of light. The angle V is then determined from the relationship

wr= Cos-(--•) (4.3.5-1)

The theoretical value of an interferometer measurement of a satellite
is the difference between the light times from the two observing sites at the
same receive time and the satellite at the signal transmission times.
Detecting smaller At's ., .. teasing the separation between the observing
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sites to even intercontinental distances increases the accuracy of

interferometric observations. The use of hydrogen maser atomic clocks
allows angular measurements with milli-arc second accuracy. Previously

discussed angular measurements are limited to approximately an arc second

of accuracy. PEP is coded to simulate and process these observations and

model the bias between the clocks at the two receiving sites [8].

4.3.6 Range Observations

The range between two bodies can be determined from the time delay

of a signal sent between the bodies. Range measurements depend upon a

precise knowledge of when the signal was sent and when the signal was
received. Since it is very difficult to synchronize two separated clocks, one-

way ranging measurements are not often used, except for multi-GPS satellite
observations where receiving site clock error is measured. A two-way signal
provides a more accurate single satellite range measurement since a single

clock is used to measure the time delay.

Two-way range observations can be obtained by sending a pulsed

electromagnetic signal between two bodies. The time it takes the pulse to
return to the sending site, less any known delays, reveals the range between

the bodies calculated rigorously from light time iterations. Since the
electromagnetic signal travels at the speed of light, the range is calculated
from the compensated time delay, At, as

R = --W (4.3.6-1)
2

This two-way range observation can also be obtained with the
transmission of a continuous sine wave signal by shifting the phase of the

sine wave 1800 at a certain repetition interval according to a coded pattern.

Since this phase shifting is preserved as the signal passes through space,

transponder electronics, or is reflected off of an observed body, the receiving
site can recreate the phase shifting coded pattern from the received signal. By

correlating the sent coded pattern with the received pattern over time, the

receiving site can determine the signal's round trip time delay. Using this
phase shift keying technique on a continuous sine wave signal allows the
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signal to be used for both range and range rate observations, as well as for
communications, if desired [45].

Figure 43•3-1: Simulated Two-Way Ranging Measurement

Two-way time delay measurements in PEP are obtained directly from
knowing the site and body positions at the appropriate times plus any
transponder delays. Transponder time delays can be determined prior to
launch or can be estimated from the measurements. Typically both methods
are used by separating the time delay into known (previously measured) and
unknown (to be estimated) parts.

4.3.7 Range Rate Observations

Range rate observations measure the rate at which the observation site
and observed body are approaching one another. These observations take
advantage of the Doppler effect upon electromagnetic signals. Since this
observation measures the change in frequency between send and receive
time, it has the same difficulty with one-way observations as range
measurements. Coherent two-way signal paths, however, provide very
accurate measurements of the range rate between two bodies.

The Doppler effect is a shift in the frequency of an electromagnetic

wave radiated, reflected or received by an object in motion. This frequency
shift is a result of the expansion or compression of electromagnetic waves
along the direction of a moving source [43]. This compression in the

direction of motion is visualized in Figure 4.3.7-1 below. For astronomical
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range rate measurements, the frequency of the signal sent from site I to site 2
is shifted due to the relative velocity of site 1 at send time and site 2 at receive
time along the line-of-sight. From the light time iteration process mentioned
in Section 4.1, PEP determines this relative velocity from the state of the two
sites at the two times in an inertial reference frame.

Figure 4.3.7-1: Waves Radiated from a Stationary and Moving Source

For a range rate of R, the one-way Doppler shift of a frequency source,
f., is given by the formula

Af--f R (4.3.7-1)
C

Ris positive when the bodies are moving apart and the signal's frequency is
decreasing due to the Doppler shift. This formula is used to determine the
frequency received or reflected at the observed body. For radio wave

transponder observations, the received frequency is multiplied by a rational
factor q, so that the body transponds a different frequency, f,2, from the signal
it receives.

f82 f.9(4.3.7-2)

Once again, after transmission, this frequency shifts due to the Doppler effect
by (4.3.7-1) where f, is the send frequency from (4.3.7-2) and the range rate
depends upon the new send and receive time positions and velocities.

For approximately instantaneous send and receive times with no
transponder frequency shifting (q = 1), the round trip Doppler shift is
approximated by the single expression [43]
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Af = -2fs R (4.3.7-3)
C

The NASA Deep Space Network (DSN) measures a coherent count of
the zero crossings of the Doppler signal, refered to as Integrated Doppler. A
DSN site sends a continuous sine wave signal towards a spacecraft at a
frequency controlled by an atomic frequency standard. The receiving DSN
station can be the same or different from the sending site because of the
network's precise synchronization. The receiving station pre-multiplies the
transmitted frequency by the spacecraft's transponder translation factor and
then subtracts this frequency from the received signal. Any system biases are
then added to this differenced frequency, if known, or they can be estimated
in the fitting process. A counter at the receiving site is incremented for every
positive traveling zero crossing of the differenced frequency. This counter is
read at uniform intervals, At, to determine the interval's Doppler frequency
shift in cycles per second (Hz). Additionally, a resolver is used to give
fractional cycle resolution of the zero crossings [36].

Within PEP, the theoretical value of this observable is the difference in
round trip phase delays at the count starting and ending receive times
multiplied by the sending frequency. PEP also accounts for any transponder
frequency translation when calculating the theoretical value of the
observation. The exact formula for the Doppler count observable is coded in
PEP [81 and is approximately equal to the instantaneous Doppler shift over the
count interval.

4.4 Partial Derivatives of Satellite Observations

The partial derivatives of the theoretical value of an observation are
required, along with the observation residuals, to estimate orbital initial
conditions and parameters. The theoretical value of an observation is a
function of the receiving site coordinates at signal receive time, the observed
body's coordinates at transpond time, the sending site's coordinates at send
time, and other parameters. If bent pipe observations are used, the theoretical
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value is also a function of any additional body's coordinates at the appropriate
times. For a given observation, r, this functional relationship is denoted by

r(t,) = f(., (t, ),Xs. ,(t4 ), X~ (t,),... ,1) (4.4-1)

where t, is the receive time, r.s. is the receiving site, ts. is the transponding or
reflection site, tt is the transpond or reflection time, s.s. is the sending site, and
t, is the send time. The ellipses denote that r may be a function of other
coordinates at other times, depending upon the observation method. # is the
vector of parameters besides motion which affect r.

As the theoretical observations are determined, their partial
derivatives with respect to the coordinates of interest can also be calculated.
Depending upon the type of observation, PEP also calculates the partial
derivatives of the observation with respect to the parameters, 0, which affect
the observation, such as measurement biases and transponder delays. The
partial derivative of the theoretical observation, r, with respect to a parameter
of interest, a, is then calculated by the chain rule.

a, drx.• "* drta. d, "x:". +* do (4.4-2)
dX, dcx dX*. dcx R dcxfid

The parameter a would be any parameter to be estimated, such as orbital
initial conditions, gravitational harmonic coefficients, observing site
coordinates or observation biases. The partial derivative of a satellite's
coordinates are determined by interpolation from the satellite's integration
file using the methods discussed in Section 3.1. The partial derivative of a
site coordinate is a function of the site's spherical or cylindrical coordinates.

Once calculated, these partial derivatives are written to an observation
output file for each receive time for each observation type in an observation
series. The theoretical observations, their partial derivatives, and the
observation residuals for each observation series on the output file can then
be used to calculate adjustments to the parameters 6.
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Chapter Five

Parameter Estimation
and

Prediction of Uncertainty

5. Parameter Estimation

Estimation is the process of extracting information from a collection of

observations (measurements) to develop a better understanding of the

observed behavior. For this thesis, the parameter estimation process attempts
to obtain the best set of lunar gravitational harmonic coefficients. The values

obtained in the estimation process are best in the sense that the estimated
model's generated observations provide the closest match with the "truth"
model simulated observations. This does not mean that a better fit could not

be realized with more or different "truth" model observations. It also does
not imply that a better fit could not be obtained with a better model of the

behavior. The estimation process additionally provides insight into the
uncertainty of the estimates' ability to model the behavior. This information

can be used to analyze and evaluate the estimated model.

5.1.1 Observation Vector as a Random Variable

Using the gravitational "truth" model, observations were generated for

several proposed sensing schemes. These observations are dependent on the

lunar gravitational field and orbital states of the satellites. Together these

observations form the N-dimensional vector , where N is the total number

of measurements.
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With initial guesses for 1) the lunar gravitational field coefficients,

2) satellite initial conditions (initial osculating orbital elements for each
satellite used in the sensing scheme), and 3) measurement biases, theoretical
values of the estimated model observations, the difference between the two
sets of observations, and the partial derivatives of the estimated model
observations are generated. The estimated model observations' theoretical
values are a function of the observation time, the estimated model
parameters, and other factors, such as the positions of the observing sites.

These other factors are treated as known quantities for the estimation process.
Let Cg be the vector of unknown gravitational parameters and 0 be the
vector of unknown measurement biases and any other unknown parameters.
For a sensing scheme with Nb iatellites, there are Nb vectors d. of unknown

orbital initial conditions. If d is the vector of all of these unknown system
parameters, then the theoretical observation at time t is a function of t and d.

= [J2  JN : ! 21 ... NIN 2 ... I T 5.1 1-1

= [ano e io i nO Oa)no Mno]T (5.1.12)

a= INb (5.1.1-3)

Due to imperfect knowledge of the gravitational field coefficients and
satellite initial conditions and the difference between the fit and truth
models, the theoretical observations do not perfectly recreate the "truth"
model observations. For each measurement time, t, there is a measurement

error, 0(t), between the "truth" model and theoretical observations. With the
"true" values for the parameters 6, the remaining measurement error, 0, is
assumed to be a zero-mean random variable (disregarding the difference
between the fit and truth models). Since 0 is the result of several
independent random causes, it will be assumed to be normally distributed by
the central limit theorem. The collection of N measurement errors over the
observation period is then 6.

From the previous definitions, it follows that the vector of

measurements is a random vector composed of a deterministic value, the
theoretical observation, and a random quantity, the measurement error.
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z2 (t2 ) 0 f 2(t; 2 ) + •21

ZN(tN) fN(tN;c) .ON-

or (5.1.1-4)
1=(t;d) +

Since the measurement error, 0, is assumed normally distributed, the
measurement vector is also normally distributed with the following statistics:

/ = E{li} = E{f(t;d)} + E{} = f(t;d) (5.1.1-5)

E{(i - p)(2 -A)')} = E{l6T} = 8 (5.1.1-6)

5.L2 Maximum Likelihood Estimation

The maximum likelihood estimate selects the parameters C such that
the probability of g, the likelihood function, is maximized. This method
estimates parameter values so that the "truth" model observations are the
most likely ones to have occurred. Since 2 is a normal random variable, its
probability density is the normal joint probability density:

I(~) ex[_ j( - (t; d)) T e (_1 1 (t; aX))] (5.1.2-1)ý(2 7)N lel

The maximum likelihood estimate maximizes the likelihood function
(5.1.2-1) and minimizes the negative log-likelihood function below:

'(2; X)= -ln[p(4; d)] '5.1.2-2)

•'(2; d) = [f In(2n) + I½•(lel)] + (2' _ pt; d))r e_, (2- pt; w))

(5.1.2-3)

The maximum likelihood estimate & therefore satisfies the equation
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cz =0 (5.1.2-4)

The maximum likelihood estimate & is obtained starting with an
initial guess of the parameters, 60. Based upon the theoretical observations
generated with do, adjustments, AM, to the guessed parameters are sought
such that

Ad=a-a0  (5.1.2-5)

Expanding Equation (5.1.2-4) in a Taylor series expansion about do yields

6=t a )T I':=' + ( TI &&:+o (C2(51-6

The parameter adjustments, Ad, are determined by taking the partial
derivatives of the negative log-likelihood function from Equation (5.1.2-3)
(assuming that the term in brackets does not depend on the parameters C)
and by neglecting the higher order terms in the Taylor series expansion. The
second derivative of the negative log-likelihood function with respect to & is
replaced with its expected value, which can be theoretically expressed as the
expected value of the dyadic product of first partial derivatives [421:

)TJ T CX=E ((5.1.2-7)
Assuming that 0 does not depend on d, Equations (5.1.2-3) and (5.1.2-7) imply

E -(jj-- )Tl=( _ d__ T -_1 r (5.1.2-8)

Replacing the Hessian of second partial derivatives in Equation (5.1.2-6) by its
expected value (the Fisher information approximation) leads to the linear
matrix equation, called the normal equations, for the adjustments to the
parameters. These equations are formed with the partial derivatives of the
theoretical observations with respect to the estimated parameters, the
observation residuals, and the measurement error statistics.
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AAd =b

or

f( T

(5.1.2-9)

5.1.3 Weighted Least Squares Estimation

Least squares estimation selects the parameters & so as to minimize the
sum of the squares of the deviations between the "truth" model and
theoretical measurements. For N observations, the least squares estimate
seeks to minimize the quantity

NQ= •(Z, _ f, (ti,;a))• 2 5.1.3-1
i=1

If the measurements are of varying quantities and units, and some
measurements are more reliable than others, the weighted cost function Q is
used. N -Z f, (ti; C)

Q =1( X)) 2  (5.1.3-2)

i=1 W

where Wi is a sequence of weighting values [21]. A sequence of observations
may involve a wide variety of pl-ysical quantities, i.e. distances, angles,
temperatures, frequencies. Typically the error weightings non-
dimensionalize these disparate measuements in the cost function.

The least squares or weighted least squares estimate is found by setting
the derivative of the cost function with respect to the estimation parameters

6 equal to zero.
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51.4 Choice of Estimation Method

The weighted least squares and maximum likelihood methods provide
the same estimates if the measurement residuals, &, are uncorrelated.

E{OiOjI=O V i~j (5.1.4-1)

By assuming that this measurement noise is uncorrelated, the covariance

matrix, 0 defined in Equation (5.1.1-6) becomes the diagonal matrix

2
"o 2 0 ... 0

E o 0 a2 (5.1.4-2)

2

0 0 ... CN

where a', is the variance and a. is the standard deviation of the nth

measurement. Inserting this diagonal matrix into Equation (5.1.2-1) and
(5.1.2-3) for the likelihood and negative log-likelihood functions results in the

following:
Se,,p - 4 (Z _ -i f(ti; C)

p )=(2r) 21 [ Xnt;))2 ] (5.1.4-3)

( )= [-JJ(2 r)+I( a , ... cTN)]+iX(Z -af,(tI)-

i(72A_ (5.1.4-4)

Both the maximum likelihood and weighted least squares estimates
are determined by setting the partial derivative of a cost function with respect
to de equal to zero. Since the maximum likelihood estimate assumes that the
constant part in brackets [ ] from (5.1.4-4) does not depend upon the
parameters d, the two methods (compare Equations (5.1.3-2) and (5.1.4-4))
provide identical estimates when uncorrelated measurement error variances,
a,2, are used to weight the measurement residuals. Since PEP's parameter

estimation routine assumes uncorrelated measurement errors, its estimation
technique is referred to as least squares maximum likelihood estimation.
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5.1.5 Incorporation of A Priori Information

Frequently, existing models provide a priori information about some
of the estimation parameters. The estimation process can be shortened or
simplified by including this a priori information in the normal equations.

Suppose a priori information has estimated the value of the parameter
cei as 6i with an uncertainty, or standard deviation, of &j. These a priori

parameter values are then grouped into the m-dimensional vector &, where
m. is the total number of parameters estimated. A zero value is assigned to
any parameters when no a priori knowledge is available. The variances of
the a priori estimates are collected into the m x m diagonal matrix 1. For any
parameters without a priori standard deviation information, their diagonal
element is infinity, although in practice some reasonably large value will
suffice. A full covariance matrix can be used for ± if correlations are
available for the a priori parameter estimates &.

With a priori information, instead of minimizing Equation (5.1.2-3),
the following functional is minimized [II].

Q = 2- (t; c))e0-'1 ( - it) + - a':- (5.1.5-1)

For parameters where no a priori standard deviation information is available,

the cost function remains the same as in (5.1.2-3).

Setting the partial derivative of this cost function with respect to the
parameters d equal to zero and making the same assumptions as in Section
5.1.2, yields the following linear matrix equations.

A- e(l d 0 (2; do) +eE_, (5.1.5-2)

=d(2; do E)-1 -(2 - f 2 o)-±(o - &) (5.1.5-3)

such that

A 5 (5.1.5-4)
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From studies of the earth's gravitational field, William Kaula proposed
an empirical relationship for the variance of the gravitational harmonic
coefficients [24]. Estimates of the lunar gravitational harmonic coefficients led
him to believe that the same relationship was valid. For the lunar
coefficients, Kaula adjusted the constant coefficient to account for the
gravitational field strength difference between the moon and earth [371. From
their studies of the lunar gravitational field, Bills and Ferrari chose a slightly
different semi-empirical formula for the covariance; one which had been
proposed by Vening-Meinesz. After having difficulty converging upon
gravitational harmonic coefficients, Bills and Ferrari included the Vening-
Meinesz a priori covariance information and developed a 16 x 16 lunar
spherical harmonic potential model with coefficient uncertainties [12].
Research scientists at JPL continue to use this method to develop 50 X 50, and
even 75 x 75 spherical potential models of the moon [271.

The method of incorporating a priori information into the normal
equations was not used for these simulations. This thesis evaluates
gravitational sensing schemes which may be employed to develop gravity
field models. As such, an arbitrary lunar gravitational "truth" model was
developed and there was no a priori information available regarding this
"truth" model. When a gravitational sensing method is selected and its
mission flown, a priori lunar gravitational field information can and should
be used in the development of new gravitational field models.

5.1.6 Solution to the Normal Equations

Since the normal equations [(5.1.2-9) or (5.1.5-4)] are linear, the
adjustments to the parameters can be solved by various numerical
techniques. PEP uses the Gauss-Jordan method to simultaneously solve the
normal equations and invert the coefficient matrix. This method uses
diagonal pivots without interchanging rows or columns, so that only the
lower diagonal half of the symmetric coefficient matrix A is stored in

memory.

Numerical problems can arise if the coefficient matrix is ill-
conditioned. This could happen if the vector of parameter adjustments Ad
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consisted of widely different sized quantities or quantities with widely
different units. To prevent these numerical difficulties, PEP scales the
normal equations prior to solving them. This process scales each row and
column of the symmetric coefficient matrix by the square root of the diagonal
element. To preserve the equality, each row of the right hand side vector is
also scaled by the same factor. After the adjustments to the parameters are
solved, PEP unscales its rows to provide the proper units and values to the
parameter adjustments [8].

This scaling process can be avoided by using the square root of the
normal equations [11]. This method takes advantage of the properties of the
symmetric coefficient matrix and, by using the square root of the normal
equations, lessens the effect of disparate units or scale factors. The JPL orbit
fitting software uses this method [271.

Since the -quation for Ad was obtained by neglecting second and
higher order terms in a Taylor series expansion, this adjustment will not
yield d exactly. An iterative technique must be used to approach a maximum
likelihood estimate for the parameters. Once the parameter adjustments are
determined, the initial parameter guesses are adjusted. The equations of
satellite motion are then re-integrated and the theoretical observations,
partial derivatives, and residuals are recalculated. The normal equations are
then reformed and a second set of parameter adjustments are determined.
These iterations continue until the process converges.

5.1.7 Other Estimation Techniques

For some applications, least squares maximum likelihood may not be
the optimum method for estimating the gravitational coefficients. If noise
were included in the satellite dynamics, Kalman filtering techniques would
be more appropriate. A linearized Kalman filter about a nominal satellite
trajectory or an extended Kalman filter for which the reference trajectory is
updated for each observation could be used [31, Chapter 9]. The Kalman filter
would then estimate the gravitational parameters as well as the satellite's
state by augmenting the state vector to include them as non-dynamic state

variables.
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Since Kalman filtering techniques become extremely cumbersome as
higher degree models are estimated, a more efficient technique may be
necessary. Maximum likelihood system identification combines the two
approaches by performing a Kalman filter on the satellite state, X9, and a
maximum likelihood estimate on the satellite's orbital initial conditions and
the gravitational harmonic coefficients [31, Chapter 10]. In this method, the
satellite's motion is propagated with a Kalman filter and then a maximum
likelihood adjustment is made to the initial conditions and parameters. The
process is then repeated until convergence.

Unmodeled forces such as radiation pressure, fuel tank leakage, and
higher order gravitational harmonic effects will cause noise in the satellite
dynamics. Because of this noise, one of these techniques should be used.
Least squares maximum likelihood estimation, however, was sufficient for

this thesis' evaluation of sensing methods.

5.2 Statistical Prediction of Uncertainty

Solving the normal equations produces information about the
uncertainty of the estimated parameters a as well as the values of the
parameters themselves. The parameter estimation covariance matrix
provides a measure of the uncertainty of the estimates. This additional
information can be used to evaluate the resulting estimated model of the

observed behavior.

The coefficient matrix A from (5.1.2-9) and (5.1.5-4) is the Fisher
information matrix and by the Cramer-Rao lower bound, the covariance of
any unbiased estimate is greater than or equal to its element in the inverse of
the Fisher information matrix [42, 46]. Additionally, maximum likelihood
estimates have the desirable property that they are asymptotically unbiased
with the Cramer-Rao lower bound obtained as the number of observations
approaches infinity [42]. This bound only applies if the nonlinear system has

been modeled correctly in (5.1.1-4).
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If the assumed standard deviation of the measurement errors, y,, are
correct and the modeling is correct for both the equations of motion and the

observations, the root mean square (rms) of the post-fit observation residuals

divided by the assumed measurement errors would be approximately one:

MS = - 1(t; C))T e1  - 1(t; 6)) (5.2-1)

Typically the number of observations is much greater than the number

of parameters, so the 1/(N-m) term is replaced by 1/N. When the above rms

differs greatly from one, the parameter covariance matrix produced by the
inverse of the coefficient matrix from the normal equations (A-1), by the
Cramer-Rao lower bound, should be multiplied by this rms to obtain a truer
estimate of the uncertainty in the parameter estimates. This adjustment

accounts for incorrect values of the measurement standard deviations, an in
0, but does not account for any modeling error effects on the uncertainty.

The parameter covariance matrix, 1, is then obtained as

1: = ms x A7' (5.2-2)

The standard deviation of parameter estimate &i is

(Ti = Xi (5.2-3)

and the correlation between parameter estimates &i and &i is

ij= (5.2-4)

PEP saves the matrix A-' and the rms of the observation residuals

divided by the assumed measurement errors resulting from an estimation
run so they can be used to predict the uncertainty of an orbit propagated with

the estimated parameters '.

Let 9: be the state of a lunar satellite at time to assumed to be known

perfectly, perhaps by determination from navigation satellite observations.
These satellite initial conditions are numerically integrated in time using the

estimated gravitational model. Partial derivatives of the satellite's motion
with respect to the parameters d are also numerically integrated. The state
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covariance matrix, E, for the uncertainty in the satellite state, can then be
calculated at any time t as

/ '- T
dX° (t dXt) (5.2-3)dd W ( dd )

The standard deviation of the uncertainty in any one coordinate
direction is the square root of that diagonal element. The root sum square
(rss) of the position and velocity uncertainties are then

rss(R) = 4f, + E22 + 233 (5.2-4)
rss(V) = + E + (5.-5)

Since the state covariance matrix E is based upon the augmented state
vector (3.3-1), it is partitioned as follows:

Often, the cross correlations between position and velocity =RV are neglected
and the covariance matrix for position ERR and velocity EVV are used

separately to evaluate the uncertainty of orbit prediction. The state
uncertainty analyses performed for the estimated lunar gravity fields in
Chapter Seven use these individual state covariance matrices rather than the
augmented state covariance matrix.

The inertial (xy,z) coordinate uncertainties thus obtained can also be
converted to a local vertical, local horizontal coordinate frame to provide
navigation uncertainty information. The local vertical, local horizontal
frame is defined by the vertical (VT), down range (DR), and cross track (CT)

directions. Their translations from inertial coordinates are obtained by

Qv (t) = unit[Xt] (5.2-7)

Uc (t) = uflit[X(t) X 9(t)] (5.2-8)

UDR (t) = UVT (t) X UC (t) (5.2-9)
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The transformation matrix from local vertical, local horizontal to

inertial coordinates is then
RI ()=U•.t)lUC.t) Us•R~ (5.2-10)

and this transformation can be used to obtain the covariance matrix for the
uncertainty in the satellite state in the LVLH frame.

""t= RL wta (t) R(J (5.2-11)

""L (=(t)t=R , It) (t)RRLt) (5.2-12)

The standard deviation of the uncertainty in any one LVLH coordinate
direction is the square root of that diagonal element. With these formulas,
the uncertainty of position and velocity in the vertical, cross track, and range
directions can be calculated at each time t due to uncertainties in the
estimated parameter &. These routines were coded in analytical software
separate from PEP and each estimated gravity model was evaluated in this
manner. This analysis was performed for both the PEP supplied covariance
matrix (A-1) and the covariance adjusted by the rms of the observation
residuals divided by the assumed measurement errors. These analyses
simulated the propagation of uncertainties onto the far side of the moon after
obtaining a navigation fix on the near side.

The previous statistical uncertainty prediction was performed using

the assumption that the lunar satellite initial state, Xo, was known perfectly.
If this is not the case, the same process for calculating the uncertainty of orbit
prediction would still apply. In general, the vector of estimated parameters a
would be augmented to include estimates of the satellite initial conditions
and the process repeated. Since this thesis is concerned with the uncertainty
due to a mismodeled lunar gravitational field, perfect knowledge of the
satellite's initial conditions was assumed.
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5.3 Prediction Uncertainty Due to Mismodeling

The statistical uncertainty analysis presented in the previous section is
based upon the assumption that the estimated gravitational model correctly
models the lunar gravity field. Due to the inclusion of mascons in the
"truth" model, the finite spherical harmonic estimation model could not
correctly model the observed behavior. In most real world cases there is no
way to account for or analyze the errors between modeled and true behavior
because the modeling errors cannot be separated from the other errors. For
this thesis, however, a direct comparison between the true and predicted
behavior can be made, since both the "truth" and fit models are available.

Given satellite initial conditions, X?, orbits for the truth and fit models

can be numerically integrated. At each point in time, the position and
velocity deviations between the two models can be calculated. These
modeling errors in position and velocity can then be transformed from
inertial coordinates to the local vertical, local horizontal frame using the
transformations (5.2-7), (5.2-8), and (5.2-9). The root sum square of the
position and velocity errors due to gravitational field mismodeling can also
be calculated. The impact mismodeling has upon navigation uncertainty
prediction is revealed by comparing the modeling errors with the statistical
uncertainty predictions.

Once again, using software separate from PEP, this analysis was
performed for orbits propagated from the lunar near side to the far side for
one orbital period. Additionally, the uncertainty due to mismodeling was
analyzed by comparing the "tiue" path of a lunar landing when the
maneuver was calculated based upon simulations using the estimated model
and then executed in the "true" lunar gravitational field. These landing
errors provide a feel for the impact lunar gravitational field mismodeling
will have upon the execution of future space missions.
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Orbit Fitting
and

Gravity Estimation

6.1 Methodology

Several different lunar gravitational sensing methods were evaluated
using the PEP orbit integration, observation generation, and parameter
estimation capabilities described in Chapters Three, Four and Five. For each
sensing scheme, the following procedures, depicted in Figure 6.1-1, were used
to generate "truth" model observations and estimate gravitational field
coefficients.

First, each sensing scheme was analyzed to determine the nature of the
satellite orbits employed, the type of observations generated, and the
observation accuracy and frequency. Using the "truth" model and these
descriptions of the observation method, PEP simulated the mission's orbits
and observations, including lunar occultations. Auxiliary software routines
converted the integration output to selenographic osculating orbital elements
(a,e,i,jm,M) as well as selenographic spherical coordinates (r,O,@) versus time.
This data was plotted to analyze the orbit's stability over the integration
period (14 to 28 days). For stable orbits, the "truth" model observation file was
then used to estimate the fit model lunar spherical harmonic coefficients and
satellite initial conditions.

For the estimation process, the gravitational harmonic coefficients and
satellite initial conditions were perturbed from the "true" values used to
generate the observations. The gravity field was altered to reflect the fit
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model's degree and order ("truth" model usually included mascons). From
the initial perturbed parameters, Co, the satellite orbits were propagated,

theoretical values of the observations were calculated, and the difference
between the "truth" model observations and these theoretical observation
values (observation residuals) were calculated. Partial derivatives of the

motion and partial derivatives of the theoretical observations were calculated
with respect to all parameters to be estimated. From the observation residuals

Truth Model & PEP ObTruth Orbit PEP Truth

Obsevaton

Satellite .C.s Itgn Integration Observation Observation
Input File Generation File

Field Estimation

PEP & Au'ary Model Analysis
Software ,

Figure 6.1-1: Flow Diagram for Gravity Sensing Mission Simulations

and partial derivatives, the parameter estimation module formed and solved

the normal equations to calculate the adjustments to the parameters, AF.

The size of the parameter adjustments and their uncertainties determined if
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the process had converged. If the process had not converged, the new
parameters were used to propagate the next iteration's orbit and the process
was repeated. The maximum likelihood parameter estimates and the
covariance matrix (A-1) were written to output files when the process finally
converged. These files were then used to analyze the estimated gravitational
model and its ability to predict future lunar missions.

Although this process is straight-forward, it is a very time and
computer memory intensive process. A typical 14 day orbit propagation for
an 8 x 8 spherical harmonic gravity field with partials calculated for 79
parameters typically took over eight hours on a Sun Sparcstation IPC. Also,
due to the high correlations between gravitational parameters, it was not
unusual for a run with different "truth" and fit models to require at least
fifteen iterations to converge upon a solution. The convergence criterion,
perhaps unnecessarily stringent, required the adjustments to be less than 1%
of the parameter uncertainties.

6.2 Fifth Degree Harmonic Truth and Fit Model Test Case

Since PEP was modified to include lunar mascons and expand the
degree and order spherical harmonic expansions allowable, several test cases
were run to ensure that PEP-D's modules were operating correctly. The first
set of tests involved the attempt to estimate a 5 x 5 spherical harmonic
expansion fit model for observations generated with a 5 X 5 spherical
harmonic expansion truth model. Since the degree and order of the
estimated fit and truth models were the same, this test was expected to be a
good warm-up exercise for future runs.

For these tests, a single lunar polar 200 km altitude near-circular
satellite orbit was numerically integrated for twenty-eight days. The initial
selenographic orbital elements are listed in Table 6.2-1, where elements in
parentheses are in PEP's internal units (angles referred to the mean equinox
and equator of the earth of 1950.0). A zero degree initial mean anomaly was
selected first, placing the satellite directly over the lunar north pole. Due to a
singularity in PEP's algorithm for the central body harmonic effects, it could

95



LUNAR GRAVITATIONAL FIEL ESTIMATIO0N AND SATELLITE ORBIT PREDIC'IMI

not propagate this orbit. Because of perturbation forces, it would be highly

unlikely that this condition would be repeated during the middle of an orbit
propagation The mean anomaly was adjusted one degree and the process
restarted with no further difficulties.

Table 6.2-1: Satellite Initial Conditions for 5 X 5 Spherical Harmonic Test Case

a0 1938 km (1.295472995 x 10-5 AU)

e0 0.05

io 900 (103.10484938493500)
-1 900 (304.19968053947210)

co 900 (72.23942697989870)

1io 10

The starting time for the orbit integration was 16 May 1968 or Julian

Date 2,440,001.5 0 hour Coordinate Time. This initial epoch was selected over
an epoch in 1996 or 1997, when a lunar gravitational sensing mission might
occur, because it is near the beginning of the n-body file supplied by the SAO.
This file is read and interpolated from during the integration and observation
modules, so computer time was saved by selecting an initial epoch near the
beginning of the file. Other than saving computer time, the choice of initial
epoch should not effect the simulations of this thesis.

The lunar satellite's orbit was propagated using the first five degree and

order coefficients from the 1980 Bills and Ferrari 16 x 16 lunar spherical
harmonic model [12]. These coefficients are given in Table 6.2-2. The central
body attraction of the moon and the perturbing attractions of the earth and
sun were included in the Adams-Moulton numerical integration with a step
size of 2-14 day. This allowed approximately 1,451 steps per 2.125504 hour
orbit. This was an extremely small step size to characterize fifth degree and
order harmonics and ensure numerical stability in the integration of motion.

The observation module then created Doppler observations of the

satellite from NASA DSN's Goldstone site every minute. Four different

observation scenarios were generated for this test case. Two involved range
and Doppler observations and two involved Doppler observations only. In
two cases observations were occulted by the moon and in the other two cases
the observations continued through a fictitious "transparent" moon.
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Table 6.2-2: 5 X 5 Spherical Harmonic Truth Model Coefficients

Harmnic X 10 I Harmonic x 10-6

J2 202.431
C 21  -0.07 921 -0.00
C22 34.49 S22 0.03

J3 8.8897
C31  21.% 3• 6.63

C32  14.14 S32 4.76
C 15.87 3 -2.45

J4 -11.73
C41  -4.82 S41 1.91
C42 -8.13 S42 -6.76
C43 0.48 S43 -14.43
C44 -3.50 $44 -0.55
is 2.388

C51 -9.66 s5 -1.53

C52  3.71 S52 -2.35
C -0.39 3 4.91

C54 0.56 S54 -6.58

I -6.69 S5 11.60

The initial test cases recreated the measurements of the Lunar Orbiter

missions (Section 1.3). The orbits were selected to simulate orbits proposed
for the Lunar Observer or Lunar Scout missions [16, 25, 39]. The observation
scheme, duplicating the processing of Lunar Orbiter data, used the DSN S-
band frequency (2.115 GHz) for collecting Doppler range rate observations for

sixty-second intervals. No transponder frequency translation was simulated.
These observations had a quoted accuracy of 1 mm/sec [291, which is the
accuracy achievable for integer Doppler counts over the sixty-second interval.
Range observations were also generated in the "truth" model observation

Mfie. When fitting to only Doppler observations, the range observations were
given negative error weights so that they would be ignored in the estimation
process. The two way range measurement was included on the same signal
used for the Doppler observable and had a three meter accuracy. This
accuracy is based upon the ability to detect a 20 nanosecond time delay for a

two-way phase shift keyed code.
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Over the twenty-eight day observation period, the satellite would orbit
over the entire lunar surface as the moon rotated under its orbital plane. Due
to the extremely conservative integration step size, the twenty-eight day
viewing period, and the calculation of partials, these initial test cases quickly
filled up the available disk space, resulting in a system crash. Reevaluating
the simulation requirements, the observation period was reduced to fourteen
days, which still provides complete lunar coverage in either an ascending or
descending pass.

After the "true" observations were generated, the satellite initial
conditions and thirty-two lunar harmonic coefficients were perturbed to
provide the first guess for the estimation process. Each gravitational
harmonic coefficient's absolute value was increased by 1.0 x 10-7. The orbital
initial conditions were altered by the values given in Table 6.2-3. The satellite
orbit was then numerically integrated along with partial derivatives.

Table 6.2-3: Perturbed Satellite Initial Conditions for Estimation Model

8a 149.6 km (1.0 x 10-11 AU)
Be 1.0 x lo-5

8i -1.0 x 10-4 0

&1 -1.0 x 10 -4 0

&50) -1.0 x 10-4 0

&~o 1.o x 1O- 4 0

These tests were run using saved partial derivatives of motion. Using
this feature, partial derivatives were calculated during the first iteration step
and these saved partials of motion were used to determine the partial
derivatives of observations on subsequent iterations. Computation time was
saved by not recalculating the partials on each iteration. This approach
worked well for test cases with the same "truth" and fit models, but was not
effective on other simulations. In general, this feature is very effective when
the process is close to convergence.

The fitting process revealed that all of the harmonic terms included in
the equations of motion have to be included in the partial derivative
calculations. By default, PEP was only calculating the second degree harmonic
effects upon the partials. This provides sufficient accuracy for earth satellites
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where the J2 effect dominates motion, but it was not sufficient for lunar
satellites. Additionally, the first scenario's slow convergence raised concerns

about the choice of initial osculating orbital elements. For a circular orbit, the
argument of perilune (o) is undefined. For the near-circular orbit, the
perilune position was very difficult to determine. The argument of perilune

and mean anomaly were difficult to estimate because of their high
correlation. PEP software does not currently use equinoctal orbital elements
[e sin(Q + cQ), e cos(il + ])], but it provides the option of replacing the KI, %, and
M orbital elements with the sum of the angle elements Q, Q + %, Q + W + M.
After the initial orbital elements were converted to this form, their
correlations were reduced and the parameter estimation routine had no
difficulty estimating these parameters.

After overcoming the previously mentioned difficulties, the
simulations converged in three iterations for all four scenarios. After these
test cases, a fifth scenario was run in which radar biases for the time delay and
Doppler shift observations were estimated along with the gravitational

parameters and satellite initial conditions. This scenario evaluated the
estimation procedure's ability to handle measurement bias estimates and also
converged in three iterations.

6.2.1 Scenario One: No Occultation, Range and Range Rate

The first scenario calculated a spherical harmonic fit model based on

20,156 time delay (range) and 20,156 Doppler shift (range rate) observations

over the fourteen day period. Observations were processed every sixty
seconds for the entire period since there were no horizon or occultation

restrictions. The thirty-two gravitational harmonic coefficients and six initial
conditions were all estimated within approximately ten digits of accuracy for
each parameter (six digits for angular initial conditions). The observation
residuals divided by the assumed measurement errors, referred to as the non-
dimensional "fit residuals", had a root mean square (rms) value of 7.45263 x
10"4, essentially zero. The theoretical rms for these cases is zero, as opposed to
the value of one mentioned in Section 5.2 because the "true" observations
were exact (without measurement noise) and the truth and fit models are of
the same degree and order. The run also calculated correlations as high as

99



LUNAR GRAVIATINAL FElaD ESTIMATION AND SATELITE ORBIT [PREDIM['ON

-0.998 between the Z33 and C53 coefficients and 932 and S52 coefficients.

Fifteen of the 703 correlations were greater in magnitude than 0.95. Initially,
these high parameter correlations seemed as if they were due to a resonance
in a particular harmonic frequency, but later fits to higher degree models also
demonstrated high correlations for the higher degree terms.

6.2.2 Scenario Two: No Occultation, Range Rate

This scenario excluded the 20,156 time delay (range) observations from
the previous run's fourteen day period in its estimation of the spherical
harmonic fit model. Once again the thirty-eight parameters were all
estimated with approximately ten digits of accuracy and the fit residuals were
essentially zero, with an rms value of 8.83418 x 10"4. The highest parameter
correlation was again -0.998 between C33 and C53. The 53553 and 532552

correlations were the second highest at -0.997. The $33 and S53 correlation
was up from -0.996 in the previous scenario. Once again fifteen of the 703
correlations were greater in magnitude than 0.95.

6.2.3 Scenario Three: Occultation, Range and Range Rate

After the previous scenarios were completed, the "truth" model
observations were recreated with lunar occultations. This third scenario then
calculated its fit model based upon 15,672 time delay (range) and 15,672
Doppler shift (range rate) observations over the fourteen day period. Lunar
occultations eliminated 3 days, 2 hours and 44 minutes of observations over
the fourteen day period. Again the thirty-eight parameters were estimated to
within ten digits accuracy of their "true" values. With the reduced

observability, fit residuals increased, having an rms value of 2.54901 x 10-3.
Although these residuals are larger, the fit model is still essentially exact. The
parameter correlations for this scenario essentially repeat those of the first

scenario with the C33iC53 and 932952 coefficients having the highest
correlation (-0.998). As in both previous cases, fifteen of the 703 correlations
were greater than 0.95.
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6.2.4 Scenario Four. Occultation, Range Rate

This scenario excluded the 15,672 time delay (range) observations from
the previous run in its estimation of the gravitational coefficients and orbital
initial conditions. The scenario's fit model agreed with the truth model to
about nine places. The fit residuals for this scenario were up from the
previous scenario with an rms value of 6.86066 x 10-3. The highest parameter
correlation was the s3Z correlation (-0.999). The 3252 and 933
correlations were once again dose behind (-0.998). As before, fifteen of the 703
correlations were greater than 0.95.

6.2.5 Scenario Five: Occultation, Range and Range Rate with Biases

This scenario used the 15,672 time delay (range) and 15,672 Doppler
shift (range rate) observations from the third scenario and attempted to
estimate the thirty-two gravitational harmonic coefficients and six orbital
initial conditions as well as measurement biases for the time delay and
Doppler shift observations. This scenario estimated the gravitational
coefficients and initial conditions with about nine places of accuracy.
Additionally it estimated a 1.43121 x I0"9 second time delay bias and a -4.37639
x 10.9 Hz Doppler shift bias. No biases were included in the observations an
this run essentially estimated zero biases. The fit residuals were lower than
the fourth scenario's with an rms value of 6.10319 x 10"3, also essentially zero.
The C33 and Zs3 coefficients once again had a -0.999 correlation with the

932952 and 9 parameters yielding the second highest correlations (-0.998).
Fifteen of the 780 correlations were greater than 0.95.

6.3 Earth-Based Doppler Observable Mascon Test Cases

The second set of tests included two small mascons in the truth model
and increased the degree of the spherical harmonic fit model. This test case
was run to determine whether PEP-D could estimate a spherical harmonic
model based on observations with a different truth model and to determine
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whether the sensing geometry affected the estimate's ability to model the

lunar gravitational field.

For the first scenario, the previous 5 x 5 spherical harmonic expansion

(Table 6.2-2) was augmented with two mascons of equal strength placed at the

limbs of the moon on the equator. For the second scenario, the 5 x 5 model

was augmented with mascons of equal strength placed on the front and back

faces of the moon, still at the equator. Mascons were included in pairs to

preserve the center of mass of the moon and avoid solving for first degree

harmonic ccefficients. The strongest surface disk estimated in the Wong

model [47] was selected for the strength of these mascons whose strengths and

locations are listed in Table 6.3-1.

Table 632-1: Masuon Test Case - Maso Placement

Mascon on Limb Mascon on Face
1 2 1 2

mi 7.212 x 10- 7.212 x 10-6 7.212 x 10-6 7.212 x 10.6

ri 1680 km 1680 km 1680 km 1680 km

0i 90.00 270.00 0.00 180.00

S0.00 0.00 0.00 0.00

The same lunar polar 200 km altitude near-circular satellite orbit was

numerically integrated for fourteen days over these two lunar gravitational

fields. For both cases, the orbit integration was once again started on 16 May

1968 and used the same satellite initial conditions as in the previous tests

(Table 6.2-1). The lunar polar satellite's motion was detected by the same

earth-based Doppler shifted observables used for the previous tests.

Observations were again interrupted by lunar occultations. To reduce the size

of the computer files generated in the simulation, the Doppler count interval

was changed from sixty seconds to one hundred and twenty seconds.

These tests were run to determine whether earth observations are

sufficient to estimate the lunar gravitational field despite the mascons'

location. Mascons cause radial disturbing accelerations as satellites pass over

them and Doppler observations sense relative velocity along the line-of-sight.

Doppler observations should therefore have an easier time sensing mascon

disturbances when the observing site, observed body, and mascon are all

aligned. These two lunar mascon scenarios present two geometrical extremes
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for Doppler sensing. In the first case, the disturbing acceleration due to
passage over a masoon on the limb is orthogonal to the Doppler line-of-sight.
In the second case, the disturbing acceleration and Doppler line-of-sight are

aligned as the orbiting satellite passes over the near face's mascon.

These test cses were initially run using the saved partials feature of

PEP mentioned in Section 6.2. For the first scenario full partials were
recalculated on the fifth iteration and the parameters converged on the ninth
iteration. The parameters from this solution were then run with full partials
and they required six more iterations to converge. For the second scenario,
the first five iterations were run using the saved partials feature since the
"semi-convergence" of the previous case had not been discovered. After the
fifth iteration, the saved partials feature was abandoned and this scenario also
required fifteen total iterations to converge.

The mascon test cases, requiring fifteen iterations to converge,
demonstrated the difficulty of estimating gravitational parameters when the
"truth" and fit models differed. Additionally, these scenarios revealed the
limitations of PEP's saved partials feature. Since it was not clear that saved
partials were helping the estimation process, the method was abandoned.
This significantly increased the amount of computer time and the size of the
memory files required for the simulation process.

6.3.1 Scenario One: Limb Mascons

As mentioned previously, this scenario converged in fifteen iterations
to a degree and order eight spherical harmonic model. Appendix E's Table E-1
lists the estimated harmonic coefficients for this fit model. Additionally this
run estimated the satellite osculating orbital initial conditions. Table 6.3.1-1
compares the true initial conditions with their estimated values.

The fit residuals (observation residuals divided by assumed
measurement noise) for this model have an rms of 7.36725. For the first time
this non-dimensional statistic, which measures how well the estimated
model agrees with the observed behavior, is greater than one. This shows
that this spherical harmonic model is inefficient at modeling a gravitational
field with mascon anomalies. An analysis of the parameter correlations
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reveals that four pairs of correlations have cross correlations greater than
-0.999: 966986, Zs6Za6, Z!5ZT7, and 55975. The 574 and 954S7 4

correlations also had an extremely high correlation of -0.989. Twenty-two of
the 3,403 correlations were greater in magnitude than 0.90 with nine of these
greater than 0.95. These correlations for the same 200 km lunar polar orbiter
provided an indication that the high parameter correlations discovered in
Section 6.2 were not due to the resonance of a particular harmonic frequency.

Table 6.3.1-1: Limb Mascon Orbital Initial Condition Estimates

"True" Fit A

ao 1938.0 km 1938.1106 km 110.6 meters

eo 0.05 0.050091 0.000091

i0 103.10480 103.10670 0.00190

S304.19970 304.19390 -0.00580

(Q+)o 1 16.43910 16.64680 0.20770

(fl+(O+M)O 17.43910 17.63890 0.19980

6.3.2 Scenario Two: Face Mascons

This scenario fit the observed behavior to an 8 x 8 spherical harmonic
expansion in fifteen iterations. Table E-2 in Appendix E lists the estimated
harmonic coefficients for this fit model. This run also estimated the satellite

orbital initial conditions for the observed lunar satellite. Table 6.3.2-1
compares the true initial conditions with the estimated initial conditions.

This case's non-dimensional fit residuals had a root mean square of
11.8025, once again an order of magnitude greater than desired for an
estimated model. The increase in the residuals' rms over the previous
scenario is most likely due to the lack of observations for the far-side mascon.
The Doppler observations in this scenario sense the radial accelerations due

to the mascon on the near face but cannot account for the lunar far-side
perturbations with the 8 X 8 spherical harmonic expansion. In the previous
case, since the mascon disturbing accelerations were orthogonal to the
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Doppler line-of-sight, the observations did not sense large disturbances and

had an easier time fitting the small disturbances to the fit model.

An analysis of the parameter correlations once again reveals that four
pairs of correlations are greater than -0.998: '66-s6, Z66Z86, CZ55• 5, and

955975. The C54C74 and "54974 correlations are again very highly correlated
at -0.989 and -0.988 respectively. Of the 3,403 correlations, nineteen were
greater in magnitude than 0.90 and nine of these were greater than 0.95.

Table 6.3.2-1: Face Mascon Orbital Initial Condition Estimates

"True" Fit A

ao 1938.0 km 1937.9781 km -21.9 meters

eo 0.05 0.049956 -0.000044

io 103.10470 103-10150 -0.00320

LID 304.19970 304.20220 0.00250

(Q+0w)o 16.43910 16.33110 -0.10800

( M)0 117.43910 17.36240 -0.07670

6.4 Truth Model Development

Since the true lunar gravitational field is not precisely known, a lunar
gravitational "truth" model was developed for this thesis. This truth model

was then used to evaluate various proposed lunar gravitational sensing

schemes. Previous lunar missions have discovered mascons on the near side
of the moon [351. There is no conclusive evidence regarding mascons on the
far side of the moon, since there are no observations of a satellite's motion

over the far side. For this thesis' truth model, mascons were placed on both

the near and far sides. These mascons augmented the previously used 5 x 5
spherical harmonic expansion (Table 6.2-2).

From their surface layer representation of the lunar gravitational field,

Wong et. al. identified major lunar mass anomalies with their selenographic
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features [47 Table 21. Wong's group modeled the lunar gravitational field
with 50 km radii surface disks distributed around the lunar surface (Section
2.3.2). Each surface feature was therefore represented by several disks
depending upon the size of the feature. The seven most influential mass
anomalies, requiring forty-nine surface disks, were selected for the truth
model's near-side mascons. Since PEP-D does not model mascons as surface
disks, these forty-nine disks were converted to point masses placed 58 km
below the lunar surface. The selenographic positions and strengths of the 600
surface disks [47 Figure 4 and Table 61 were then correlated with topographic
and gravitational maps depicting the major surface features [261 to determine

the forty-nine point masses required for the "truth" model.

Since all of the previously identified mascons are on the near side,

there was no scientific basis for establishing lunar far-side mascons. For this
thesis, far-side mascons were developed to meet two requirements. First, they
should be difficult to detect from earth-based observations, and secondly they
should not alter the lunar center of mass. Since a mascon placed on the back
face of the moon would be the most difficult to sense, the first far-side mascon
was centered at 1800 longitude and 0° latitude. Masses comparable to the
near-side mass anomalies were selected for these point masses. Since lines of
longitude are more widely spaced at the equator and nineteen point masses
were used, this mascon is the largest and strongest of any mass anomaly in
the truth model.

The translation of the lunar center of mass determined the placement

of the second far-side mascon. This balancing mascon was composed of seven
point masses centered on 214.50 longitude and -48.01 latitude. After these two
far-side mascons were added to the near-side mascons, the center of mass was
still askew, so an additional point mass added to the model. The entire
gravitational truth model is contained in Appendix D.

The lunar polar 200 km altitude orbit used in the two previous test

cases was then numerically integrated for twenty-eight days with this lunar
gravitational truth model. The satellite orbit was then converted to
selenographic orbital elements and plotted to determine whether the
mascons had drastically altered the lunar gravitational field. The plots
revealed that the mascons affected the satellite when it was in Lhe prime
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meridian plane, seven and twenty-one days into the orbit propagation. At this
point, the instantaneous semi-major axis increases noticeably. The lunar
altitude, however, never drops below 100 km over the integration period.
The lunar altitude for this orbiter oscillates between 100 - 300 km. When
numerically integrated without mascons, the satellite orbit exhibits the same
altitude oscillations, but the semi-major axis does not show the peaks
observed in the mascon case. The inclusion of mascons does not affect the
orbital inclination and has a limited effect on the variation of eccentricity
over the twenty-eight day period. This analysis showed that the addition of
mascons to the lunar gravitational field did not detrimentally affect the
satellite orbit.

Table 6.4-1: "Truth" Model Major Mass Anomalies

Mascon Strength Longitude Latitude # of
x 10-6 Point

Lunar Mass Masses

Sea of Rains 22.8 3280 -3500 280 - 480 11

Sea of Serenity 21.5 80 - 250 170 - 340 12

Sea of Crises 9.2 520 - 630 120- 230 7

Sea of Nectar 8.4 270 - 380 -170- -190 6

Seething Bay 4.2 3470 -3530 70 - 130 4

Sea of Moisture 6.0 3180 -3250 -290- -220 3

Smyth's Sea 3.1 820 - 930 -80 - 30 6

Subtotal 75.2 49

Difficult to Obs 40.025 1750 - 1850 -80 - 80 19

Balancing 27.157 2120 -2170 -510 - .450 7

Point Mass 1.114 217.60 -63.4 1

Subtotal 68.296 1 27
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6.5 Single Orbiter, Earth-Based Doppler Sensing Scheme

The first sensing scheme evaluated with the lunar gravitational truth
model was the earth-based Doppler observation of a single lunar orbiter. This
scheme was selected because it was used to obtain the current lunar gravity
field models. This scheme's ability or inability to estimate the "true" lunar
gravitational field may provide an idea of how well current models represent
the real lunar gravity field. The lunar orbiter was placed in a polar near-
circular orbit which would provide total lunar surface coverage over the

fourteen day observation period. This orbit attempted to recreate the "gravity
sensing" satellite's orbit in the Lunar Observer or Scout missions [16, 25, 39].

Since the acceleration due to gravity is larger for low altitude orbits, its
disturbances are easier to sense and the lowest possible orbital altitude was
desired for this mission. Unfortunately this desire conflicts with the desire to
observe undisturbed motion for at least one lunar period. Very low altitude

orbits typically require re-boosting to keep them at a safe distance above the
lunar surface. Re-boost maneuvers, however, disrupt the estimation

procedure by introducing new forces on the orbiting body which are difficult
to include in the estimation process. A 100 km altitude polar orbiter was

numerically integrated for twenty-eight days. Plots of its selenographic orbital
elements revealed that this orbiter barely remained above the lunar surface

for the twenty-eight day period. Since this orbiter would require re-boosting
during the twenty-eight days, the orbital altitude was increased by 100 km.
The 200 km altitude polar orbiter maintained an altitude of 100-300 km over
the twenty-eight day period. This satellite orbit was a compromise satisfying
both the low-altitude and no re-boost requirements.

6.5.1 Single Orbiter "Truth" Model Observations

The single polar 200 km altitude lunar orbiter motion was numerically
integrated for fourteen days from 16 May 1968 (JD 2,440,001.5) with the
satellite initial conditions given below. The orbit was propagated using the
Adams-Moulton numerical integration technique with a step size of 2-13 day.
The integration step size was relaxed from previous cases to save computer

disk space, especially when partial derivatives are calculated at each step.
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Relaxing the integration step size still provided over 725 steps per 2.125504
hour orbit, more than required for numerical stability and adequate for the
characterization of an eighth degree and order harmonic fit model.

Over this fourteen day period, Doppler observations of the lunar
orbiter were processed every sixty seconds, except during lunar occultations,
from the DSN Goldstone station using the S-Band frequency (2.115 GHz).
Transponder frequency translation was not simulated and no horizon
constraints were imposed. A 14 mHz accuracy was assumed for the Doppler
observations, roughly equivalent to the quoted 1 mm/sec range rate accuracy
for sixty second intervals [29]. The simulations of this mission produced
15,695 Doppler shift observations over the fourteen day period.

Table 6.5.1-1: Satellite Initial Conditions for "Truth" Model Observations

ao 1938 km (1.295472995 x 10 AU)

eo 0.05

io 900 (103.10484938493500)

O 900 (304.19968053947210)

900 (72.23942697989870)
M0 10

6.5.2 Eighth Degree and Order Fit

The first estimation run attempted to fit the observations to an 8 X 8
spherical harmonic expansion. The final iteration of the limb mascon test
case provided the initial guess of parameters and initial conditions for this
case's iterations. This saved computer time since both cases were based on
observations of the same polar orbiter and the limb mascon case had already
integrated the satellite's motion with partial derivatives.

Due to the significant difference between the model used to generate
the "true" observations and the fit model, this case required twenty-five
iterations to converge upon a solution. The estimated harmonic coefficients
for the fit model are listed in Table E-3 in Appendix E. The simulation also
estimated the satellite orbit's initial conditions and Table 6.5.2-1 compares the
true initial conditions with their estimated values.
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The observation residuals divided by the assumed measurement
errors, referred to as the non-dimensional "fit residuals", had a root mean
square value of 365.954 for this model. This is over thirty times larger than
the Face Mascon test case and is a further indication of the 8 x 8 spherical
harmonic expansion's inability to fit the observed satellite's motion. Eighteen

of the 3,403 parameter correlations were greater in magnitude than 0.90 and
nine of these were greater than 0.95. Four pairs of correlations (RSSZT5,

966986, Z!6686, and gssgTs) were greater than -0.998 and two pairs (954S74 and
!54Z74) were greater than -0.988.

Table 65.2-1: 8 X 8 Single Orbiter Initial Condition Estimates

"True" Fit A

ao 1938.0 km 1938.1154 km 115.4 meters

eo 0.05 0.047811 -0.002189

io 103.10480 103.09980 -0.00500

DO 304.19970 304"19570 0.00400

(1+-o)o 16.43910 15.96000 -0.47910

(Ql+w+M)o 17.43910 17.39120 -0.04790

6.5.3 Twelfth Degree and Order Fit

The estimated gravity model's fit residuals show that the 8 X 8 spherical

harmonic expansion was not a close fit to the observed behavior. Mascons in
the truth model result in very high frequency gravitational behavior in the
local area (Section 2.3). Since the spherical harmonic expansion requires

higher degree and order expansions to model this high frequency behavior, a

fit to a 12 X 12 spherical harmonic model was attempted.

For the initial parameter guesses, estimates from the 8 X 8 fit model

were used and all of the new coefficients (ninth through twelfth degrees)
were set to zero. The satellite initial condition estimates for the 8 X 8 fit, used
for the 12 X 12 fit's initial iteration, are listed in Table 6.5.3-1. The same
"truth" model observations used in the 8 x 8 fit were used for this fit.
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Since the fit model was increased to twelfth degree and order, the
numerical integration step size was reduced to 2-14 days. The step size was
changed to sample the higher degree harmonic effects more often with 1,451
steps per 2.125504 hour orbit. With the change in step size and dramatically
increased number of estimation parameters and parameter partials, the
numerical integration required approximately 23 hours to propagate the
satellite's motion and partial derivatives for fourteen days.

Table 6.5.3-1: 12 X 12 Fit Initial Guesses for Satellite Initial Conditions

ao 1.29555011876471 x 10-5 AU

eo 0.0478107828679364

io 103.0998311984430

Qo 304.1956509554350
(9 + o)0 15.95998876339310

(Q + w + M)o 17.39116441505880

On the fitting process' second iteration several of the parameter
adjustments were an order of magnitude larger than their previous estimate.
These estimates were used to propagate the next iteration's orbit, resulting in
increased residuals and even larger parameter adjustments. By the fifth
iteration, the normal equations could not be solved because 152 of the 171
diagonal elements in the coefficient matrix (A) were negative. Since the
normal equations could not be inverted, the fitting process was abandoned.

Table 6.5.3-2: 12 X 12 Spherical Harmonic Fit Progression

Pre-adjustment Predicted RMS
Iteration RMS Residual Residual

1 365.954 112.113

2 10,433.0 99.5596

3 42,590.9 192.212

4 106,490 1,999.54

5 760,314,000 16,484,700

Table 6.5.3-2 shows how the parameter adjustments kept leading the
process further and further from a solution. The fitting process started with

observation residuals divided by the assumed measurement errors with a

root mean square value of 366. After solving the normal equations, PEP
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predicted a non-dimensional rms residual of 112. The predicted residual is
the computed pre-adjustment residual less the sum of the observable partial
derivatives times the parameter adjustments. Instead of reducing the
residuals by a third, the new parameter estimates produced residuals with a
non-dimensional rms almost thirty times greater than in the previous
iteration! Unfortunately instead of making it easier to fit to the observed
lunar orbiter motion, increasing the degree and order of the spherical
harmonic model made it more difficult to solve the normal equations and

converge upon a fit solution. This may have occurred because of the limited
observability of lunar far-side motion and high parameter correlations.

6.6 Tenth Degree Harmonic Truth and Fit Model Test Case

After the previous convergence difficulties, a test was run to estimate a
10 X 10 spherical harmonic expansion for observations generated with the
same degree and order truth model. Since the previous case was the first
attempt to fit to harmonic expansions higher than eighth degree and order,

this test would verify whether or not the difficulties encountered were due to
the estimation program or the spherical harmonic expansion's ability to fit to
the observed behavior.

The same lunar polar 200 km altitude near-circular orbit used in
previous runs was used to generate Doppler "truth" observations with 1

mm/sec accuracy. This orbit, again integrated for fourteen days from 16 May
1968, used the orbital initial conditions listed in Table 6.2-1 and a 10 X 10

spherical harmonic lunar gravity truth model. This truth model used the
1980 Bills and Ferrari coefficients [12] for the initial five degrees (Table 6-2.2).
Gravitational coefficients developed at JPL by Alex Konopliv for his 50 X 50
spherical harmonic expansion were used for the sixth through tenth degree
harmonic coefficients [271, because the Bills and Ferrari coefficients [12] were

not manually entered into the PEP input stream. The coefficients used are

listed in Table E-4 in Appendix E.

After generating the "truth" model observations, the satellite initial
conditions and one hundred and seventeen lunar harmonic coefficients were
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perturbed to provide the first guess for the estimation process. As in the
previous fit to a pure harmonic truth test case, each gravitational harmonic
coefficient's absolute value was increased by 1.0 x 10-7 and the orbital initial
conditions were perturbed by the values given in Table 6.2-3. The satellite
orbit was then numerically integrated with partial derivatives.

In the first iteration the pre-adjustment observations residuals divided
by the assumed measurement error had a root mean square value of 715,121!

As a result, the calculated parameter adjustments were orders of magnitude
larger than the guessed parameters. After the first iteration, the lunar orbiter
eccentricity grew from 0.05001 to 0.24325 and the semi-major axis was
increased by 532 km. These initial conditions were then propagated to create
the next iteration's observations. In the second iteration, the normal

equations could not be solved because 51 of the 123 diagonal elements in the
coefficient matrix (A) were negative. Once again since the normal equations
could not be inverted, the estimation process was abandoned. Rather than
converging upon a solution, Table 6.6-1 demonstrates how quickly the process

diverged.

Table 6.6-1: 10 X 10 Spherical Harmonic Fit Progression

Pre-adjustment Predicted RMS
Iteration RMS Residual Residual

1 715,121 248,467

2 3.20623 x 1010  2.11726 x 107

Since the previous test case (Section 6.2) encountered difficulty when
an incomplete set of harmonic coefficients were used to generate partial
derivatives of the satellite motion, this cases' observation partial derivatives
were checked using a finite difference method (Section 3.4.4). This check
verified that the observation partials were correct.

Since the estimation software was operating properly, the gravitational
model's sensitivity to initial guesses seemed to cause tne convergence

difficulties. Apparently the initial guesses resulted in theoretical observation
values so different from the observed behavior that correct parameter
adjustments could not be determined. Since the estimation of higher degree
and order expansion fit models is extremely sensitive to the initial parameter
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guesses, fit models above eighth degree and order were not attempted for the
remainder of this thesis' simulations.

Smaller parameter adjustments from iteration to iteration could help
the process converge. Incorporating a priori estimates of the lunar
gravitational field and their uncertainties would reduce the size of the
parameter adjustments (see Section 5.1.4). Smaller parameter adjustments
could also be used by under-weighting the calculated adjustments, i.e. only
adjusting the initial guesses by 2/3 of the calculated adjustment on the first
iteration, etc. Convergence could also be aided by first estimating an 8 x 8,
then a 9 x 9, and then a 10 x 10 degree and order fit model to the observed
behavior, using the estimates from one model as initial guesses for the next
higher degree model.

6.7 Dual Orbiter, Bent Pipe Doppler Sensing Scheme

The next sensing scheme evaluated with the lunar gravitational
"truth" model featured two lunar satellites and the simulation of a bent pipe
Doppler sensing scheme between earth-based sites and the two satellites. This
sensing scheme was selected since it is one of the schemes being considered by
NASA for future lunar gravitational sensing missions.

This sensing scheme uses a low altitude circular polar "gravity
sensing" satellite. A coplanar elliptical "viewing" satellite makes lunar far-
side observations of the "gravity sensing" satellite's motion [16, 39, 40]. The
polar 200 km altitude near-circular lunar orbiter used in previous
simulations is once again the "gravity sensing" satellite for this dual orbiter
sensing scheme. The satellite initial conditions and numerical integration
parameters for this simulation were the same as for the single orbiter, earth-
based Doppler observation sensing scheme and are given in Section 6.5. The
"viewing" satellite was placed in a 450 km x 7,000 km altitude elliptical orbit
with a 10.06 hour period. This satellite was given the same initial inclination
(i) and longitude of the ascending node (12) as the circular satellite, placing
them in the same orbital plane, orbiting the moon in the same direction.
With this selection of ascending node, the far side of the moon rotates
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underneath the elliptical orbit's apolune during the first fourteen days of orbit
propagation. This maximizes the satellite's ability to view the low altitude
orbiter's far-side motion.

The argument of perilune was selected to skew the ellipse and bring
the orbit's apolune position out of the earth occultation zone (Figure 1.4-1).
Keeping the satellite's apolune passage out of the occultation zone increases
the time earth-based sites can view the elliptical satellite for bent-pipe
measurements as well as data transfers. The long term behavior of the
osculating orbital elements was studied to determine this skew direction.
Formulas for the doubly averaged effect of the earth upon a lunar orbit

revealed that if the initial argument of perilune, Co, is in the second or fourth
quadrants, the polar orbit's eccentricity will decrease and co will drift to the
first or third quadrant [9]. Based upon this analysis and the desire to keep the
apolune over the backside of the moon, a perilune angle in the fourth
quadrant was selected. The initial selenographic orbital elements for this
elliptical satellite are given in Table 6.7-1, with the angle values in
parentheses referred to the mean equinox and equator of the earth of 1950.0.
These initial conditions were numerically integrated for fourteen days from
16 May 1968 (JD 2,440,001.5) using the Nordsieck variable step size integration
technique (Section 3.1). Since the elliptical orbit was newly propagated, its
numerical integration file was converted to selenographic orbital elements.
Plots of these elements revealed that the orbit was stable and, as predicted,
the orbital eccentricity did decrease over the fourteen day period.

Table 6.7-1: ELliptical Satellite Initial Conditions for "Truth" Model Observations

ao 5463 km (3.651789462 x 10- AU)
e0 0.05994874611

i0 900 (103.10484938493500)
GO 900 (304.19968053947210)

Ob0 3150 (297.23942697989870)

M 11
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6.7.1 Dual Orbiter "Truth" Model Observations

The coherent bent pipe observation method (Section 4.2.3) was
simulated over the fourteen days the satellites' orbits were propagated. One
two-way coherent Doppler loop processed observations between the DSN
Goldstone site and the elliptical satellite. Simultaneously, the elliptical
satellite generated two-way coherent Doppler observations of the low-altitude
orbiter. Although the coherent bent pipe scheme would be interrupted if any
of the links were occulted, only the individual links in this simulation were
interrupted by lunar occultations. In addition to the bent pipe observation
simulation, the DSN Goldstone site generated Doppler observations of the
near-circular polar satellite during its near-side passes. All of these
observations were simulated using the 2.115 GHz S-band frequency with
approximately 1 mm/sec range rate accuracy (14 mHz) [29].

Simulating this sensing scheme produced 15,695 earth-based Doppler
observations of the circular satellite. Because the elliptical orbit was skewed,
19,699 Doppler observations were generated between it and the DSN station.
Over this same period, 10,680 Doppler observations were simulated between
the two satellites. Auxiliary software analyzed these observation series and
their occultation periods to evaluate the far-side lunar coverage. Over the
fourteen days, the low altitude polar orbiter passed behind the moon 114
times. For most of these occultations, the elliptical satellite viewed this far-
side passage. The moon blocked the line-of-sight between the two satellites
on 49 of these 114 occasions and this blockage usually only affected a portion
of the passage. There were only 15 cases in which the line-of-sight to the
elliptical satellite was blocked for the entire far-side passage. Since these gaps
in observation coverage did not occur for sequential far-side passes, the 46,074
observations should provide excellent visibility into the circular orbiter's
motion on the lunar far side.

6.7.2 Eighth Degree and Order Fit

These observations, generated with the lunar gravitational "truth"
model, were then fit to an 8 x 8 spherical harmonic expansion representing
the moon's gravitational field. The initial conditions for the two satellites
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were perturbed from their true values for the initial guess in the fitting
process. Table 6.2-3 lists the perturbations which were applied to both the
circular and elliptical orbits' initial conditions. The true values of the 5 x 5
spherical harmonic expansion used in the truth model were used as initial
guesses for the first five degrees of gravitational coefficients (Table 6.2-2).
Gravitational coefficients from Alex Konopliv's 50 x 50 spherical harmonic
model of the moon [27] were used for the sixth, seventh, and eighth degree
coefficient initial guesses. Table E-4 in Appendix E lists these coefficients.

The iteration fit did not converge upon a solution in its normal sense.
With the increased observability of lunar far-side motion, the parameter
estimation routine drove the non-dimensional residuals down to a root
mean square of 386.462 from an initial 23,763.6 in the first four iterations.
Because of the difference between the "truth" and fit models, the estimation
routine could not reduce the non-dimensional residual rms below 360 as

shown in Table 6.7.2-1. Once again, the predicted residual is the computed

pre-adjustment residual minus the sum of the observable partial derivatives

times the parameter adjustments.

Table 6.72-2: 8 x 8 Spherical Hanronic Fit Progression,

Pre-adjustment Predicted RMS

Iteration RMS Residual Residual

1 23,763.6 817.104

2 2,983.65 437.085

3 1,746.75 383.599

4 386.462 371.811

5 375.229 366.587
6 368.213 363.927

15 361.210 361.015

38 361.099 360.939

Although the estimation routine had minimized the fit residuals, its

convergence criteria is based on the ratio of the parameter adjustments to

their uncertainties with the assumed measurement errors, and these values

remained above the convergence limit of 0.01. Since the convergence
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criterion did not signal convergence, the estimation iterations continued ad
infinitum, slowly reducing the residual rms by hundredths and thousandths.

The process was stopped after thirty-eight iterations.

The estimated harmonic coefficients for the fit model are listed in

Table E-5 in Appendix E. The simulation also estimated the orbital initial
conditions for both of the satellites in the sensing scheme. Tables 6.7.2-2 and
6.7.2-3 compare the true initial conditions with their estimated values.

The estimated model's fit residuals had a root mean square value of
361.099 as listed in Table 6.7.2-1. This is smaller than the root mean square of
the residuals achieved with the fit to a single lunar polar orbiter (365.954).
The high fit residuals are an indication of the 8 x 8 spherical harmonic
expansion's inability to fit the observed motion due to the "true"
gravitational field. This dual satellite observation method has significantly
reduced some of the high parameter correlations, although the most
significant ones still remain. For this fit case fifteen of the 3,916 parameter
correlations were greater in magnitude than 0.90 and ten of these were greater
than 0.95. As with the previous 8 x 8 spherical harmonic fit, the four highest
correlations were among the Z s , s55975, s66986, and Z66Z86 pairs.
Although the correlations between the fifth degree, fifth order and seventh
degree, fifth order terms were still greater than -0.998, the other correlations
were now reduced to -0.995. The 954974 and Zs4Z74 pairs were again the next
highest correlated (-0.988).

Table 6.7.2-2: Circular Orbiter Initial Condition Estimates

"True" Fit A

ao 1938.0 km 1937.9401 km -59.9 meters

e0 0.05 0.049677 -0.000323

io 103.10480 103.10330 -0.00150

S304.19970 304.19940 -0.00030

(Q )0 16.43910 16.26490 -0.17420

(Q+0+M)0 117.43910 17.44690 0.00780
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Table 6.7.2-3: Elliptical Orbiter Initial Condition Estimates

"True" Fit A

ao 5463.0 km 5463.6291 km 629.1 m

eo 0.599487 0.599573 0.000086

io 103.1048* 103.10680 0.00200

Lk 304.1997? 304.1992° 0.00050

at 297.23940 297"25420 0.01480

Mo 1.00 0.99970 -0.00030
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Chapter Seven

Lunar Gravity Field
Estimation Analyses

7.1 Analysis Techniques

After converging upon a least squares maximum likelihood estimate
of gravitational coefficients, the estimated lunar gravity fields were analyzed
to compare their ability to estimate the "true" gravity field. Since spaceborne
navigation depends on accurately modeling the forces acting on a spacecraft,
these analyses focus on the effects of modeling errors on lunar navigation.

The root mean square of the observation residuals does not provide an
adequate analysis of the global lunar gravity errors due to mismodeling, since
it only considers the areas of the gravity field where observations were made.
This underweights the far side of the moon where fewer measurements are
taken. In Section 7.2 the global radial accelerations for the estimated fit lunar
gravity fields are compared to the "true" lunar radial accelerations. The limb
mascon and face mascon estimated fit models are analyzed and the two 8 x 8
spherical harmonic expansion fit models are compared to the lunar
gravitational "truth" model developed in Section 6.4.

Next, two different lunar spacecraft mission phases are simulated to
evaluate the two estimated fits to the lunar gravitational "truth" model.
These analyses show how state errors grow using the estimated gravity field
model and are intended to simulate the real-world consequences of planning
and executing lunar missions with a mismodeled gravity field.

In Section 7.3 the state uncertainties for a low inclination, low altitude
spacecraft orbit are predicted one orbit ahead using the covariance analysis
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described in Section 5.2. Stations tracking a lunar satellite would use this
analytical method during far-side passage to predict the spacecraft's state
uncertainties upon reemergence from the backside. Since this state
uncertainty prediction is based upon a mismodeled lunar gravity field, the
predicted uncertainties will not be exact. The "true" state is calculated by
numerically integrating the spacecraft orbit using the lunar gravity "truth"
model. The difference between the spacecraft's predicted and "true" states is
the error. Comparing the "true" state with the predicted states reveals the
accuracy of the estimated lunar gravity field.

A lunar landing deorbit maneuver is simulated in Section 7.4. In this
analysis the deorbit trajectory from a low inclination circular parking orbit
was determined from the estimated lunar gravity field models. The mission
was then propagated using the "true" lunar gravity field. Lunar gravity
mismodeling resulted in a spacecraft position error by the time the spacecraft
reached the lunar altitude for Powered Descent Initiation (PDI), typically
about 18 kilometers. In a real lunar mission, the spacecraft would be forced to
burn extra propellant in a suboptimal descent trajectory to recover from these
errors.

Finally, the high gravitational coefficient correlations encountered in
the estimation process are analyzed in Section 7.5. Three different
measurement types and orbital orientations are simulated to determine their
effect on the correlations. Reducing the coefficient correlations by
introducing new observations may permit the process to converge more
quickly and estimate a more accurate gravitational model. Additionally, the
highest correlations are studied in an attempt to find ways to allow them to be
estimated independently.

7.2 Global Lunar Radial Acceleration Analysis

Although the estimation process provides residual statistics, they only
provide an idea of how well the estimate fits the observations since the
observations are not available over the entire lunar surface. To analyze the
fit globally a software program was written to calculate the radial accelerations
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for a gravity field model everywhere on a sphere of constant radius. Only the
radial accelerations due to gravity harmonics and/or mascons are calculated
in this program. These radial accelerations were calculated for fit and truth
models for all of the cases estimated in Chapter Six at a lunar altitude of 100
km for grid points spaced every four degrees of selenographic latitude and

longitude. Unfortunately, since the commercial graphics package was
erroneously plotting lines of constant radial acceleration, contour plots
comparing the fit and "truth" models are not currently available.

Based on the calculated radial accelerations, the fit and "truth" models
were compared statistically. The radial acceleration errors between the
"truth" and fit models were calculated for each grid point. The root mean
square error between the two models was then calculated. Because of the
even spacing of grid points in selenographic latitude and longitude (chosen
for rectangular contour plots), this analysis weights radial acceleration errors
more heavily in the polar regions. For the mascon test case this bias does not
favor either scenario since the disturbing mascons were placed on the
equator. For the two 8 x 8 estimated fit models, the dual orbiter bent pipe
estimated fit might have an advantage since the "viewing" satellite observed
the "sensing" satellite as it passed over the lunar polar regions. Both models,
however, were trying to estimate the same lunar gravity "truth" model, so a
comparison of the rss radial acceleration errors is still valid.

7.2.1 Limb / Face Mascon Analysis

Based on the global lunar radial acceleration errors, the face mascon

case produced a slightly better estimated gravity field. This case had an rms
radial acceleration error at 100 km altitude of 64.7804 milligals. The estimated
fit to the limb mascon case had radial acceleration errors with an rms of
66.6636 milligals. This global analysis of the radial accelerations errors reveals

that a slightly better lunar gravity field was estimated when the disturbing
mascons were aligned with the sensing line-of-sight.

This test case attempted to determine whether the mascon's location

and the sensing geometry affected the estimated gravity field. The non-
dimensional fit residuals' rms contradicted the global radial acceleration
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analysis. The limb mascon fit model (7.37) resulted in a better fit than the face

mascon fit model (11.80). These statistics could be the result of the near-side

face mascon causing larger line-of-sight accelerations for the orbiting satellite

than the limb mascons produced. These statistics could also result from the

measurement's ability to sense the near-side mascon's disturbance or inability

to recognize any disturbance from the limb mascons. Unfortunately, this

analysis does not indicate which estimated field is better at modeling the

radial accelerations in the local vicinity of the mascons. Contour plots of

these radial accelerations will demonstrate the fit models' ability to locally

model these mascon disturbances.

7.2.2 Analysis of the Eighth Degree and Order Fits

Based on the global lunar radial accelerations errors, the dual orbiter

bent pipe sensing scheme produced the best estimated gravity field. This case

had an rms radial acceleration error at 100 km altitude of 263.015 milligals.

The estimated fit to the single orbiter, earth-based sensing scheme had radial

acceleration errors with an rms of 320.073 milligals. The disparity between

the two rms values provides a strong indication of the advantage of including

lunar far-side observations in the estimation process. These errors also give

an indication of how much more difficult it was to estimate a spherical

harmonic expansion in the presence of 79 point mass disturbances than it was

in the mascon test case with just two point masses.

7.3 Single Orbit State Uncertainty Prediction Analysis

For the next analysis, a low inclination, low altitude lunar satellite

orbit was used to analyze the position and velocity errors between the "true"

and estimated gravity fields. The lunar gravity field truth model developed

in Section 6.4 and the two 8 x 8 spherical harmonic expansion fit models

derived from the two different sensing schemes were used for this analysis.

A 150 inclination, 100 km lunar altitude satellite orbit was selected for this

analysis. The estimated 8 x 8 spherical harmonic fit models and their
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coefficient uncertainties were first used to predict the state uncertainties for
this orbit. This covariance analysis was performed with both the gravity
harmonic coefficient covariance matrix (A 1) and this matrix multiplied by
the fit residuals' rms (Z). Fit residuals, once again, are the observation
residuals divided by the assumed measurement errors. This evaluation orbit
was then numerically integrated using the "true" lunar gravity field. The
state errors between the "true" orbits and those predicted from the two 8 X 8
estimated spherical harmonic models provided a further measure of the two
sensing schemes' capabilities and limitations. Furthermore, the predicted
uncertainties were compared to the errors to understand the uncertainty

prediction accuracy with gravity field modeling errors.

The equations of motion and equations of the partial derivatives of
motion with respect to the gravity harmonic coefficients were numerically
integrated for one orbit (117.85 minutes) for the two estimated fit models
from 16 May 1968 (JD 2,440,001.5 Oh CT) with the satellite selenographic initial
osculating orbital elements listed in Table 7.3-1 (1950.0 angles in parentheses).
Based on these initial conditions, the lunar orbiter has emerged from behind
the far side of the moon and is in the middle of a near-side pass. In the

numerical integration of the "truth" model, partial derivatives were not
calculated. Auxiliary software programs then used the numerical integration
output files for the three cases as well as the covariance files for the two
estimated fit models to perform the error analysis.

Table 7.3-1: Low Indination, Low Altitude Evaluation Orbit
Satellite Initial Conditions

ao 1838 km (1.22862712 x 10-5 AU)

eo 0.01

io 150 (30.72850271751890)
DO 2100 (26.90294020848260)

COO 1800 (222.67505690079850)

Mo 3150
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7.3.1 State Uncertainty Prediction

The state uncertainty prediction based on PEP's gravity harmonic

coefficient covariance matrix (A-1) derived from the assumed measurement
errors was overly optimistic for-both cases since the fit residuals for the two
estimated runs were so high (365.954 and 361.099 rms). This method
predicted root sum squared (rss) state uncertainties less than 500 meters in

position and one half of a meter per second in velocity over the orbit for the
single orbiter estimated fit case. For the dual orbiter estimated fit model this
method predicted rss uncertainties of less than 250 meters in position and one
quarter of a meter per second in velocity over the same orbit. These
predictions are extremely optimistic, especially when compared to the orbital
errors presented in Section 7.3.2.

The prediction based on the estimated fit's covariance matrix I from
Equation (5.2-2) provided a more realistic assessment of the state
uncertainties. This method predicted rss state uncertainties as high as 4
kilometers in position and 4 meters per second in velocity for the single
orbiter estimated fit case. These predicted state uncertainties, transformed to
the local vertical, local horizontal coordinates, are plotted over time for this
lunar orbit in Figure 7.3.1-1. For the dual body estimated fit model, this

analysis predicted rss uncertainties of approximately 750 meters in position
and 0.6 meters per second in velocity. These local vertical, local horizontal
predicted state uncertainties are plotted over time in Figure 7.3.1-2. These
state uncertainty plots show that the largest position uncertainties are in the

range direction and the largest velocity uncertainties are in the vertical
direction as might be expected for the radial acceleration perturbations caused

by the mascons.

This state uncertainty prediction analysis demonstrates the importance

of including lunar far-side observations in the estimation process. The
uncertainties predicted for the gravity model estimated from the dual orbiter
sensing scheme were approximately one fourth of those estimated from the
single orbiter sensing scheme. The dual orbiter cases' uncertainties were also

very low while the lunar satellite passed across the lunar near side (first forty
minutes of numerical integration). For both cases, the uncertainties grow as

the orbiter passes behind the far side of the moon, reaching local maximums
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for velocity in the vertical direction and position in the down range direction
in the middle of the far-side pass. These uncertainties subside when the
spacecraft reemerges from the far side of the moon eighty-eight minutes into
the orbit. From this point the uncertainties increase during the final lunar
near-side pass.

7.3.2 State Errors Between "True' and Estimated Gravity Models

The errors between the "true" and estimated fit lunar gravity models
were determined from a direct comparison of the two numerical integration
files. These state errors were then transformed to local vertical, local
horizontal coordinates. The local vertical, local horizontal state errors
between the orbits generated for the single orbiter estimated lunar gravity
field and the "true" gravity field are plotted in Figure 7.3.2-1. The same errors
resulting from the difference between the dual orbiter estimated gravity field
and the "true" gravity field are plotted versus time in Figure 7.3.2-2.

The errors for the single orbiter estimated gravity field stay relatively
flat as the orbiter crosses the near side of the moon. Forty minutes into the
numerical integration the orbiter passes behind the moon. Midway through
the far-side pass there is a rapid growth of velocity errors. Shortly thereafter

these velocity errors manifest themselves as position errors as large as 15
kilometers in the range and 10 kilometers in the cross track directions. These
errors demonstrate this estimated fit model's inability to estimate the far-side

gravity field.

The errors for the dual orbiter estimated gravity field are much lower
than in the previous case. When plotted on the same scales as the errors in
the first case, the dual orbiter case's velocity errors stay in a narrow band
around zero meters per second. The dual orbiter position errors are also
much more reasonable for the cross track and vertical directions. The dual
orbiter estimated gravity model still results in large range errors over the
single lunar orbit. Since the dual orbiter estimated lunar gravity model is
based on observations over the entire lunar surface, the position and velocity
errors do not manifest themselves at a specific point in the lunar orbit as was
the previous case. In this case the cross track and vertical position errors and

127



Single Orbit Spacecraft State Uncertainty
Predicted State Uncertainty for Single Orbiter Sensing Fit
Inclination = 15 deg, Eccentricity = 0.01, Altitude 1 100km
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Figure 7.3.1-1: Single Orbiter Estimnated Gravity Field State Uncertainties
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Single Orbit Spacecraft State Uncertainty

Predicted State Uncertainty for Dual Orbiter Sensing Fit
Inclination = 15 deg, Eccentricity = 0.01, Altitude = 1OOkm
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Figure 7.3.1-2: Dual Orbiter Estimated Gravity Field State Uncertainties
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Single Orbit Spacecraft State Errors

Errors Between Single Orbiter Sensing Scheme Fit and Truth Model
Inclination = 15 deg, Eccentricity = 0.01, Altitude = 100km
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Figure 7.3.2.-1: Single Orbiter Estimated Gravity Field State Errors
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Single Orbit Spacecraft State Errors
Errors Between Dual Orbiter Sensing Scheme Fit and Truth Model

Inclination = 15 deg, Eccentricity =0.01, Altitude 1 100km
3

2 A Rangetil

0mgrx

0

o f. . . . . . . . . . .. . . .. . . .. . . .. . . . . . . . .

0 15 30 45 60 75 90 105 120

Time (min)

.5 .......... ure ........3.2 : ....ua .......... .rbt. ..im te Gravit FIe State .... rr.......rs......

0 1 ... ... . ... ... ... ... ... ... .... . ..... .. .... ... ....:.. .... ... ...3 1.. ..



LJUNAR GRAVIATIONAL FIELD ESTIMATION AND SATELLIT ORBIT PREDICTION

the range and cross track velocity errors oscillate about zero for the single
lunar orbit. The vertical velocity errors and resulting down range position
errors, however, grow without oscillating about zero for the single orbit
propagation.

For both cases the state uncertainty prediction was very optimistic,
even after including the rms of the fit residuals. This discrepancy results
from the difference between the structure of the two lunar gravity models

("truth" and fit). The rss of the predicted position uncertainty was an order of
magnitude less than the "true" position errors. The predicted uncertainty in
velocity was only slightly better. Additionally, the covariance analysis does
not successfully predict cross track position uncertainties. This is especially
apparent for the single orbiter estimated gravity field case. Figure 7.3.2-1
shows significant cross track state errors and no notable cross track
uncertainties are predicted in Figure 7.3.1-1.

When analyzing the proposed Lunar Observer mission with different
truth and fit models, Alex Konopliv also noted that a covariance uncertainty
analysis was unbelievable because it was "overly optimistic for all cases" [251.
This deficiency in the covariance analysis is an indication that the system
dynamic model needs to include some process noise to account for the gravity
field mismodeling. A Kalman filtering or maximum likelihood system
identification technique could include this process noise as it propagated the
satellite equations of motion.

7.4 Lunar Deorbit Maneuver Error Analysis

Finally, a satellite lunar landing from a low inclination circular orbit
was simulated for both estimated gravity fields. The deorbit burn for this
lunar maneuver was determined based on numerical orbit integrations using
the estimated lunar gravity fields. This maneuver was then executed in the
"true" lunar gravity field, and the position errors at PDI were used to evaluate
the two estimated gravity field models' ability to plan future lunar missions.
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This analysis assumed that the spacecraft was resupplying a lunar base
on the near side of the moon and had been inserted into a circular, low
inclination orbit. The transfer from this orbit to the lunar surface was
planned using a Hohmann transfer. The circular parking orbit was
numerically integrated from the near side of the moon to the middle of the
far side of the moon. At this point, a deorbit burn placed the spacecraft in an
elliptical transfer orbit. The spacecraft's pre-planned Powered Descent
Initiation (PDI) location coincided with the elliptical transfer orbits' perilune.
From this point, the spacecraft would begin its powered descent to the lunar
surface and rendezvous with the lunar base. The powered descent portion of
the landing mission was not simulated in this analysis.

200 km Altitude

Lunar
Base

Deorbit Bum" --- ---- 0 Earth

Elitical Transfer

Figure 7.4-1: Lunar Deorbit Mission

The mission simulation began by integrating the spacecraft's circular
orbit starting on 16 May 1968 (D 2,440,001.5 Oh) with the satellite selenographic
initial conditions listed in Table 7.4-1 (1950.0 angles in parentheses). Based on
the satellite's state at M=1800 in the parking orbit, an initial guess for the Av
was calculated for a Keplerian transfer orbit with the PDI perilune altitude,

the lunar surface for this analysis. The elliptical transfer orbit was then
numerically integrated and the guessed Av updated based upon the PDI
position error at perilune. These iterations were continued until acceptable

target PDI positions were obtained. Since this maneuver was planned for the
two different estimated lunar gravity fields, two different Av's were calculated
and subsequently executed.
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For the single body estimated gravity field case, the calculated deorbit

burn occurred over 0.06110 south latitude and 179.92150 west longitude
approximately 63.985 minutes into the numerical integration. The transfer
Av had a magnitude of 2.535 x 10-5 AU/day (PEP's units) with a projected PD1
at 0.0400 south latitude and 1.9510 west longitude. This burn was then
executed by the spacecraft in the "true" lunar gravity field. At 63.985 minutes
into the numerical orbit integration the previously calculated Av was

subtracted from the satellite's inertial velocity to simulate the deorbit burn.
The numerical integration then proceeded from this new state. This
maneuver resulted in a PD1 at 0.7660 south latitude and 9.9030 west longitude,

a 7.9520 error in longitude and 0.7250 error in latitude!

Table 7.4-1: Low Inclination, Lunar Landing Parking Orbit
Satellite Initial Conditions

a0  1938 km (1.295472995 x 10-5 AU)

eo 0.0005
io 50 (18.21292224405530)

S00 (349.16644970934930)
ft0 00 (226.50495073824790)

M0 00

The deorbit was then planned with the dual orbiter estimated lunar
gravity field. The deorbit burn was again scheduled for 63.985 minutes into

the orbit (from the satellite initial conditions in Table 7.4-1) at a selenographic
latitude of -0.03580 and longitude of -179.98510. The planned magnitude of

the Av was 2.5225 x 10-5 AU/day with a projected PDI of 0.43390 south latitude
and 5.86910 west longitude. This maneuver was then executed with the
"true" lunar gravity field. This simulation resulted in a PDI at 0.25030 south

latitude and 4.0080 west longitude. The PDI errors in this case were now
1.86130 in longitude and 0.18350 in latitude, a significant reduction in the PDI

position errors and further evidence of the importance of including lunar far-

side observations in lunar gravity field estimations.

On the lunar surface these errors in latitude and longitude would

result in a position error of 242 kilometers in the single orbiter estimated 8 X 8

field case and 56 kilometers for the dual orbiter estimated 8 x 8 field. If the

landing spacecraft began powered descent this far off target it should still be
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able to land close to the lunar base, as long as it is close enough to receive a

radio beacon signal. The suboptimal descent trajectory required to

compensate for these errors, especially in the first case, would seriously cut

into any propellant margins, perhaps jeopardizing future mission plans.

The magnitude of the navigation errors might be reduced if higher

than 8 X 8 spherical harmonic or other gravity model fits were estimated. For

higher degree and order fits, it would be interesting to note whether the

above factor of 4.3 improvement in navigation accuracy still held when far-

side satellite-to-satellite measurements were added to near-side earth-based

measurements.

7.5 Gravity Coefficient Parameter Correlation Analysis

Each of the estimation runs in Chapter Six produced extremely high

correlations for some of the gravitational coefficients. These high

correlations inhibited the estimation routine's ability to converge quickly and

provide an accurate estimate of the gravitational parameters. Different

measurement types and orbital orientations were analyzed to see if any of

these parameter correlations could be broken. For this analysis, "truth"

model observations were generated for the new observation methods. Based

on each new set of observations, the lunar gravity field was estimated for a

single iteration of the process outlined in Figure 6.1-1. The gravitational

parameter correlations were then obtained from the single iteration's

covariance matrix.

For the first correlation analysis, the elliptical "viewing" orbit in the

dual orbiter, bent pipe observation scheme was placed in an orthogonal,

rather than coplanar, orbit plane. The "sensing" orbit was left in its polar

orbit to provide full lunar surface coverage over the fourteen day observation

period, so the elliptical satellite was placed in an equatorial orbit. From this

orbital geometry, bent pipe observations identical to the coplanar case were

simulated for the estimation process. From this iteration, sixteen of the 3,926

correlations were greater in magnitude than 0.90. Fourteen of these were

greater than 0.95. The CssCms, S55S75 pairs had the highest correlation of
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-0.999. The Zs't, 954974 correlation pairs were the second highest at -0.996.
The Z 86 and '986 pairs also had correlations greater than -0.993

The second method investigated an interferometric observation
method to determine its impact on the high gravitational parameter
correlations. For this scenario, NASA DSN stations made milli-arc second
long baseline interferometer measurements of the near-circular 200 km
altitude lunar orbiter in addition to the 3 meter range and 1 mm/sec Doppler
observations. Because of difficulties encountered simulating PEP's internal
interferometry observations, these interferometer measurements were
simulated by azimuth and elevation angle observations for a single DSN site
(Goldstone) with the interferometric accuracy. Since the interferometer
observations only provide a planar angular measurement, the fitting process
was executed ignoring the elevation angle observations. The fitting process
was then repeated using both of the angle measurements to see what impact
precise earth-based three-dimensional angular observations combined with
range and Doppler observations would have on the gravitational parameter

coefficients.

For both of these fit cases (azimuth only/azimuth and elevation),
twenty two of the 3,403 correlations were greater in magnitude than 0.90 and
fifteen of these were greater than 0.95. The parameter correlations were
almost identical for the two cases, with the highest parameter correlations
differing only in the fourth or fifth decimal place. The 's5'9s and ZssZT7
pairs were the most highly correlated (-0.999). The Z65Z8,, S65985 , Z!5074,
954*74 parameter correlations were the second highest group. For the
interferometric case the 66, 86 correlations are still very high (> -0.990).

For the final case, the Goddard Space Flight Center's (GSFC) proposed
co-orbital laser ranging and Doppler lunar gravity field sensing scheme was
simulated (Figure 1.4-2). The main satellite was placed in the polar near-
circular 200 km altitude orbit which has proven so useful throughout this
thesis. The co-orbiting subsatellite was placed in the identical orbit but with
an initial mean anomaly nine degrees ahead of the main satellite. Laser
ranging and sixty second Doppler observations were processed for the entire

fourteen day orbit with 1 mm laser ranging and 1 mm/sec Doppler accuracies.
These accuracies were based on GSFC briefed capabilities [2]. Additionally this
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method used two-way coherent Doppler observations between the DSN

Goldstone site and the main satellite using the S-Band (2.115 GHz) frequency
with 1 mm/sec accuracy for sixty second count intervals.

For this case, the parameter correlations were different from all of the

previous iterations. The highest gravity coefficient correlations were now the

954974 and C!4C74 pairs (-0.998 and -0.996 respectively) with the two initial

osculating orbital eccentricities also highly correlated (-0.997). The 66, 86 and

55, 75 correlations in this case were smaller in magnitude than 0.850 except for

the "ss957 correlation which was -0.926.

Each parameter estimation run also determined the spread of the

parameter correlations. For each different measurement type and orbital

geometry investigated, this distribution was divided by the total number of

correlations. Figure 7.5-1 plots this normalized distribution for the parameter

correlations greater than 0.50. This graph shows how the single orbiter, earth-

based sensing scheme is characterized by very high parameter correlations. If

a subsatellite and laser ranging and Doppler instrumentation are added to this

scheme, the correlations are driven down significantly and lunar far-side

motion is observed. If these mission modifications are not feasible, then

augmenting the single orbiter earth-based sensing scheme with long baseline

interferometer measurements will also reduce the parameter correlations,

although several of the highest correlations still remain in both cases.

According to the graph, a better mission modification would be to

include an elliptical "viewing" satellite to observe the near-circular low

altitude polar "sensing" satellite. The chart suggests that if the "viewing"

satellite is placed in an orbital plane orthogonal to the "sensing" satellite's

orbital plane, the lowest parameter correlations are achieved. If both

spacecraft, however, are launched together and then separated after Lunar

Orbit Insertion (LOI), as was planned for the Lunar Observer mission [39],

then coplanar "viewing" and "sensing" satellites will still provide one of the

lowest sets of parameter correlations.

These attempts to break the parameter correlations demonstrate that

although some of the parameter correlations can be reduced, using a near-

circular polar 200 km altitude satellite as the "sensing" vehicle to estimate an

8 x 8 spherical harmonic expansion to model the lunar gravity field
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consistently results in extremely high gravitational parameter correlations
between the Zss & 959&6 66, and Z Z86 gravitational parameters.

Parameter Correlation Distribution
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Figure 7.5-1: Paraneter Correlation Distr'butions for Several Observation Methods

Because the highest parameter correlations are always for the n-2, n-2
and n, n-2 parameters and the n-3, n-3 and n-1, n-3 parameters, the spherical
harmonic expansion geometry should be investigated. Both sets of
correlations involve sectorial terms and a tesseral counterpart with the same
number of longitudinal slices. The n=m=6 sectorial and n=8, m=6 tesseral
terms zero lines are illustrated by the globes in Figure 7.5-2. The geometrical
relationship of these highly correlated gravitational parameters suggests that
they may result from estimating the lunar gravity field solely from
observations of a polar lunar satellite, since the satellite's ground track
repeatedly traverses the sectorial slices of the moon.

This analysis suggests that the best way to break the high gravity
coefficient correlations would be to use multiple inclination "sensing"
satellites. In his lunar harmonic gravity analysis, Alfred Ferrari noted that
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"...[Wlell conditioned estimates of the gravity harmonics are only achieved

when data from many different inclinations are used, ..."[19]. Multiple

inclination observations could be achieved by using new polar satellite data

along with existing Apollo-era near equatorial satellite data. A better scheme

is to place near-circular, low altitude "sensing" satellites in 900 and 450

inclination orbits and observe their lunar far-side motion with a single

elliptical "viewing" satellite. This data could also be combined with existing

Apollo-era Doppler tracking data when estimating the lunar gravity field.

Figure 7.5-2: Tesseral 8,6 and Sectoial 6,6 Zero Line Pattmms
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Chapter Eight

Conclusions

&8 Summary of Results

This thesis investigated the ability of spherical harmonic expansion
estimates of the lunar gravity field to predict low altitude lunar orbits
globally. These lunar spherical harmonic expansions were estimated from
simulated observations of a near-circular polar lunar satellite. Several
different observation geometries and measurement methods were
investigated; two were used to estimate the lunar gravity field.

Since most of the methods used to derive the lunar gravity field
employ Doppler observations, a test was performed to determine the impact
sensing geometry had on gravity field estimation. Since the Doppler
observations measure velocity along the line-of-sight, the geometrical
orientation between the Doppler line-of-sight and the vector between the
mascon and orbiting body will affect the observation's ability to detect the
mascon's presence. For the first scenario in this test, a pair of mascons were
placed on the lunar limbs and an eighth degree and order spherical harmonic
expansion was estimated. For the second scenario, two mascons were placed
on the lunar near- and far-side faces and the process was repeated.
Unfortunately, the test case was unable to conclusively establish the impact of
viewing geometry upon the ability to detect and model local mascon

disturbances.

A lunar gravity "truth" model was developed for this thesis which
combined a fifth degree and order spherical harmonic expansion and nine
major mass anomalies or mascons. The seven most significant lunar maria
mass anomalies, as identified by Wong et. al. [47], served as the lunar near-
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side mascons. The two significant far-side mascons were positioned to be
difficult to sense from earth-based observations and to balance the lunar
center of mass. This truth model, since it contained mascon disturbances, was
intended to be a difficult gravity field to model with a pure spherical
harmonic expansion.

Using the lunar gravitational "truth" model, the near-circular polar
lunar satellite gravity field "sensing" orbit was numerically integrated for
fourteen days, half of a lunar period, to provide complete lunar surface
coverage as the moon rotated under the orbital plane. Since this satellite does
not actually measure the lunar gravity field, different techniques were used to
observe this satellite's motion and estimate the gravity field. Estimates of the
coefficients in spherical harmonic expansions sought to match the
observations of the "sensing" satellite's motion. Based on the observation
residuals between the initial parameter guesses' theoretical observations and
the "truth" model observations, the initial conditions and harmonic
coefficients were adjusted and the process was iterated until the best fit to the
observations was obtained. Although different degree and order spherical
harmonic expansion fits were attempted, the iterative process failed to
converge for those above eighth degree and order, probably because of the
difference between the "truth" (spherical harmonics plus mascons) and fit
(spherical harmonic expansion only) models.

Estimated lunar gravity fields were obtained for two different sensing
schemes. The first scheme recreated the gravitatonal sensing method used
during the Apollo era with mostly near-equatorial satellites. Earth-based
Doppler observations of the near-circular polar lunar satellite were used to
estimate the lunar gravity field. The second sensing scheme employed a
second lunar satellite in an elliptical orbit, viewing the first satellite's motion.
Earth- and satellite-based Doppler observables simulated the coherent bent
pipe link between an earth tracking station, the elliptical "viewing" satellite,
and the circular "sensing" satellite proposed for the Lunar Observer mission

[16,39,40].

For the cases in which the estimation process converged upon a fit to
the observations, the fit model was analyzed to determine how well it
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modeled the "true" lunar gravity field. The model's fit to the observations as
well as its ability to model global radial accelerations were investigated.

The observation techniques which employed Doppler observations of
the lunar far-side motion provided a much better fit to the "true" gravity
field. Both estimation techniques employed an eighth degree and order
spherical harmonic expansion. In neither case, however, did the eighth
degree and order spherical harmonic expansion closely model the "true"
lunar gravity field.

Parameter covariance information determined in the estimation fitting
process was used to predict satellite state uncertainties ahead one lunar orbit.
A low altitude, low lunar inclination orbit was selected for this analysis.
Significantly lower state covariances were predicted for the estimated lunar
gravity field based on the dual orbiter sensing scheme. Observations of the
lunar polar satellite during far-side passes significantly reduced the predicted
uncertainties for the estimated fit model. In the best case, the eighth order
spherical harmonic expansion predicted uncertainties of close to three
quarters of a kilometer in position and one meter per second in velocity for
the orbit, hardly acceptable for future lunar missions.

Using the lunar gravity "truth" model, the satellite's "true" position
and velocity were numerically integrated ahead one orbit. The true spacecraft
state was then compared to the predicted state to reveal the state errors. These
errors were then compared to the covariance uncertainties. Once again, the
estimated fit model which included lunar far-side observations did a
significantly better job of predicting the correct satellite state, although it still
provided errors as large as 2.8 kilometers in position and 2.3 meters per
second in velocity. In neither case did the spherical harmonic expansion fit
model's covariance uncertainties come close to predicting the correct state
errors, further evidence of the eighth degree and order expansion's inability
to successfully predict lunar orbits for future lunar missions.

The estimated fit models were then used to plan a lunar landing

deorbit maneuver. Starting on the near side of the moon in a circular low
lunar inclination parking orbit, the satellite's orbit was numerically integrated
to the far side of the moon where a deorbit maneuver placed it in an elliptical
transfer orbit. When the spacecraft reached a specified lunar altitude, as
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detected by an on-board radar altimeter, it began its powered descent to the
lunar surface. After planning the deorbit maneuver to reach a specific
location for powered descent initiation (PDI), the deorbit maneuver was
executed in the "true" lunar gravity field.

The lunar deorbit maneuver planned with the single orbiter earth-
based Doppler sensing scheme estimated gravity field reached PDI altitude
eight degrees in selenographic longitude and three quarters of a degree in
latitude away from its target position, a surface error of over two hundred and
forty kilometers. The lunar deorbit maneuver planned for the dual orbiter
gravity field was only one and three quarters of a degree of longitude and one

fifth of a degree of latitude off target when it reached PDI altitude. This
scenario's lunar surface error was fifty-six kilometers, an error much easier to
recover from during powered descent. Both cases, however, indicate that
further navigation aides will be required during lunar operations, such as
radio beacons at a lunar base or a global lunar navigation system.

Extremely high parameter correlations were encountered when
estimating the gravity coefficients. Three different measurement schemes
were investigated to see if they could reduce these parameter correlations. In
the first case, the elliptical "viewing" satellite was placed in an orbital plane
orthogonal to the circular "sensing" satellite's orbital plane. In the second
case, earth-based interferometer measurements were added to the single
orbiter, earth-based Doppler sensing scheme. Both east-west and north-south
look angles were simulated in this search for a way to break the high
parameter correlations. The third case simulated the Goddard Space Flight
Center's proposed co-orbital laser ranging and Doppler sensing scheme [2].

The first method was able to reduce some of the high parameter
correlations from the dual orbiter co-planar sensing scheme, but several of
the highest parameter correlations remained. The second case significantly
reduced the high parameter correlations from the single satellite earth-based
Doppler-only sensing scheme, although once again the same highest
parameter correlations still remained. The third case produced some
different high parameter correlations. This method reduced the parameter
correlations significantly from the single orbiter, earth-based Doppler sensing
scheme. Although this case would reduce the parameter correlations from
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the single orbiter case, it does not reduce the correlations as much as the dual

orbiter coplanar and orthogonal cases.

Since none of these new observation techniques eliminated the highest
parameter correlations, the spherical harmonic expansion geometry was

investigated to determine why the same parameters were so highly
correlated. It seems that the extremely high correlations result from using a
single polar "sensing" orbit for all of the gravity field estimates. Polar ground

tracks made it difficult to separate the effects of some of the sectorial and
related tesseral terms. "Sensing" orbits at different orbital inclinations should

break the extremely high parameter correlations and aid the lunar gravity
field estimation process.

8.2 Recommendations for Future Research

The research for this thesis revealed several topics for further
investigation. First, a more efficient gravity field model based on a surface
layer representation should be investigated. A surface layer representation

would require roughly one third of the parameters than a spherical harmonic
expansion to model the lunar gravity field's high frequency behavior. The
surface layer representation should be able to constrain the total lunar mass
and lunar center of mass. Estimated fits with this gravity field model, if it is
programmed into the Planetary Ephemeris Program, can be compared to
those obtained with a spherical harmonic expansion gravity field model.

Additionally, this thesis only compared the estimated fit models for
two observation techniques. Because of its observability into the lunar far-
side motion, the dual orbiter scheme naturally provided a better fit to the

lunar gravity "truth" model. Estimated fit models should be developed for
the three different observation methods investigated to break the high
parameter correlations. Different Doppler observation methods, besides the

bent pipe method, can be investigated, including the satellite bounce and
satellite beacon methods proposed by JPL [40]. Straightforward software
changes in PEP should allow simulation of these observables, and further
modifications would allow the incorporation of lunar navigation aids (either
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lunar surface sites or navigation satellites). Additionally, two "sensing"
satellites in different inclinations should be studied to verify their ability to
break the high parameter correlations. Higher degree and order simulated fits
should also be attempted to determine the navigation improvements that can
be achieved with higher resolution spherical harmonic expansions.

For further studies, a less stringent lunar gravity "truth" model should
be used. The difficult to observe mascon on the lunar far side was too large,
in both surface area and total strength. The lunar center of mass should still
be constrained, but the far-side mascons should be roughly the same size and

strength as their near-side counterparts.

If lunar rotation moment of inertia partial derivatives in the Planetary
Ephemeris Program are changed to equivalent second harmonic partial
derivatives, PEP can include lunar laser corner reflector observations
simultaneously with satellite observations in the estimation of the lunar
gravity field. The lunar laser observations would provide very accurate

determinations of the lower degree harmonics (second and even third and
fourth degree [13]), while the lunar satellite observations would aid the

estimation of higher degree harmonics.

Finally, the most appropriate method to estimate the lunar gravity
field with real observations is to use maximum likelihood system
identiflcztion. This method runs a Kalman filter on the satellite motion with
noise in the dynamics due to unmodeled forces, and applies a maximum

likelihood estimator to gravity, initial condition, and other parameters [31
Chapter 10].

146



Apperdix A

Evaluation of Legendre Polynomials
and

Normalized Legendre Functions

A.1 Legendre Polynomials

The Legendre polynomials and their first and second derivatives are

required for the numerical integration of the equations for satellite motion
and for the partial derivatives of satellite motion. The Legendre polynomials
are used to determine the zonal harmonic gravity effects and are also used in

the recursive formulas for the Legendre functions. Unnormalized zonal

harmonic gravity coefficients are input to PEP since its algorithms use the

unnormalized form of the Legendre polynomials. These algorithms were left

unchanged, because the normalization factor in the equation

15. Wz = 42-n P. Wz A11

does not grow too rapidly with zonal harmonic degree n, and the normal

equation's automatic scaling feature works around any numerical problems
(Section 5.1.6). A switch to normalized zonal harmonic coefficients Cn0 from
J. would also involve a sign change in several PEP subroutines.

The recursive evaluation of Pn(z), PA(z), P(z) in subroutine LEGNDR

(and the new subroutine LEGNDS) uses the relations [1, 8]

nPn (Z) = (2n - 1)z P._1 (z) - (n - 1)P._2 (z) (A.1-2)

P" (z) = P,- 2 (z) + (2n - 1)Pn.1 (z) (A.1-3)

P."(z) = P."-2 (z) + (2n - I)P, 1 (z) (A.1-4)
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with the starting values

PO(z)= 1, P1(z)= z, P 2 (z)= Y(3z 2 -1), P3 (z)= Y2(5z 3 - 3z) (A.1-5)

P0'(z)=O, P'(z)=l, P2(z)=3z, P3(z=Y2(15z2-3) (A.1-6)

Po'(z=O , Pj'(z)=O , P2"(z)= 3, P•(z)=15z (A.1-7)

The evaluation of the above functions starts with n = 2, since the
spherical harmonic expansions in PEP start at the second degree (assuming
the center of mass of the central body coincides with the origin of
coordinates).

A.2 Normalized Legendre Functions

The Legendre functions and their first and second derivatives are
required for the numerical integration of the equations for satellite motion
and for the partial derivatives of satellite motion. Legendre functions are
used tc determine the tesseral harmonic gravity effects. The original version
of PEP converted normalized tesseral harmonic gravity coefficients R(nm,

gnm) from the input stream into unnormalized coefficients (Cnm, Snm) since
its internal algorithms computed the unnormalized versions of the Legendre
functions. The option was added to PEP (incorporated into the SAO version)
to use normalized Legendre functions in the numerical integration process.
This option was desirable since the norn-talization factors vary widely for high
degrees n, especially as m approaches n in the equation

P'm(z)= 12(2n-+1)(n-m)! PI,,(z) m n (A.2-1)
V (n+m)! ".A"

Define the precalculated coefficients for m = 1,...,n and n > 1

anm 1 (2n + 1)(n - m) (A.2-2)
a (n - 1)(n + m)
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bnm (2n)(2n + 1)bn=+1-)• m=1
(A.2-3)

n = O2n + 1)n + m - 1) 1<m<n

d,. = V(2n)(n+ 1)(n+), m+=
dnM -ý(2nQn -Wn 1) m=1 (A.2-4)

dm=ft(n+m)(n-m+l), 1<m<n

and the following expression from the recursive formulas for the
unnormalized Legendre functions

q = Z2 (A.2-5)

The recursive evaluation of Pnm(Z), P•.n(z), P"m(Z) is performed in the new

subroutine LEGNDS using the relations below [1, 81. The recursive formulas

for the normalized Legendre functions are

Wl(z = -v3 q , P521 (z) = 4-5 q z , P22 Wz = Y2 N1 q2 (A.2-6)

Pn, (z) = a., z P.,-,,, (z) + bn, q P.-, (z) , n > 2 (A.2-7)

P.Wm (z)a,m zPm (z) + bnm q !,n-1,m-1 (z), m = 2,..., n - I (A.2-8)

P,,n (z) = bn, q Pn,.-I1 (z) (A.2-9)

The recursive formulas for the first derivative of the Legendre functions with

respect to the argument z (using unnormalized Legendre polynomials) are

N•l(Z)=-2`1(W =-l15 (1 -2z 2 ), P2 (z)=-z41 (A.2-10)
q q

Fnl W = L2(z, 1 (z)- dn1 q P (z)) (A.2-11)

P•,m(Z)= -ýr(m z F,,,(z- d, q P.m=, (z4) 1 m = 2,..., n (A.2-12)

Lastly, the recursive formulas for the second derivative of the Legendre

functions with respect to the argument z (using unnormalized Legendre

polynomials) are
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q3 q3
(A.2-13)

15- ((-•2 2)nI(W)+ z 15.(,>W

Pj(Z) = [!-zq (A.2-14)q2 -d (P. (z) +q P.'(z))

+ Z2)pPnm( Z) +mz1%. (z)
151 Wz +2 qn(- ~I (z))J m=2,...,n

(A.2-15)

The recursive evaluation of the above functions starts with n = 2 for
the gravity harmonic force evaluation, since the spherical harmonic
expansions in PEP start at the second degree (assuming the center of mass of
the central body coincides with the origin of coordinates).
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List of Constants

Constant Description Value Units
[201

Ms Mass of the sun 1

SGaussian gravitational constant 0.01720209895 A U 3/ 2/day

CT Coordinate Tune A.1 + 32.155 day
TAI+32.184s

A.1, TAI Atomic Time Seconds 9,192,631,770 oscillations
of cesium

The A.1 and TAI atomic times are kept as the average of a number of cesium atomic
docks at the national time services (particularly at the U.S. Naval Observatory). UTC time
runs at the A.I and TAI rates, and presently differs from TAI by an integral number of seconds.
As required (approximately once a year), there is an increase of one second (a UTC leap second)
in TAI-UTC, to keep UTC within one second of UTI time, defined by a formula in terms of
sidereal time [231. Given a UTC observation time, CT is computed for interpolating from
ephemeris files, and UTI time and earth wobble are computed from tables published by the
International Earth Rotation Service (see Appendix C.2).
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Auxiliary
Constant Description Value Units

[231

AULTSC Astronomical Unit 499.004782 seconds/AU
in Light Seconds

c Speed of light 299,792.458 km/sec

ME sun/(earth + moon) mass ratio 328,900.1Me

-- c (earth + moon)/moon mass ratio 82.301
M,

GM1  Lunar gravitational constant 4,902.79375 km3/seC2

(PEP uses AU3/day 2)

PI Lunar mean equatorial radius 1,738 km
P, Lunar period 27322 days

gal Unit of Acceleration 1.0 cm/sec2
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Inertial Coordinate Transformations

C1 Transformation Between Moon Fixed and Inertial Frames

The transformation between moon-fixed (selenographic) coordinates
and the inertial integration frame coordinates (the mean equinox and equator
of 1950.0) is required to evalute gravity harmonic and mascon accelerations in
the numerical integration of a lunar satellite's motion. Auxiliary software
also uses this transformation to analyze integration output in the
selenographic frame and to prepare numerical integration input. In Equation
(3.2-2) for the transformation between coordinates fixed in the moon and the
integration frame coordinates, the rotation matrix R can be expressed as [6]

R UVP (C.1-1)

where

P Earth precession matrix transforming between integration
frame coordinates and coordinates referred to the mean

equinox and equator of date (50 arcseconds per year).

V - Transformation between coordinates referred to the mean
equinox and equator of date and coordinates referred to the
mean equinox and ecliptic of date (23.40 rotation).

U = Transformation between coordinates referred to the mean
equinox and ecliptic of date and coordinates fixed in the
moon along the nominal principal moment of inertia axes
(360O per 27.2 days).
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PEP uses a Taylor series expansion to calculate the earth precession
matrix (M) for speed during a numerical integration [7]. If eo is the standard
expression for the obliquity of the ecliptic [20, 23], the transformation matrix
between mean equatorial and ecliptic coordinates of date is

1=[ s 0  cs0 J
V = Cos 60  sin eo (C.1-2)

0 -sin e0 cos co j

Cassini's laws plus the physical libration of the moon determine the
transformation between the mean equinox and ecliptic of date and
selenographic coordinates (U). The following formulas are used within PEP
to calculate this transformation matrix.

Letting

M = Mean longitude of the moon measured in the ecliptic from
the mean equinox of date to the mean ascending node of
the lunar orbit and then along the orbit (27.20 day period).

Q = Longitude of the mean ascending node of the lunar orbit
on the ecliptic measured from the mean equinox of date
(18.6 year period).

I = Inclination of the lunar equator to the ecliptic (1.538890).

o, p, T = Physical librations in node, inclination, and longitude.

Standard polynomial expressions are used for the angles M and fQ, as well as
for the angles 1, 1', F, and D which are from Brown's lunar theory [23]. PEP
uses the following trigonometric series for the physical librations [281

= - 12.9" sin I - 0.3" sin 21 + 65.2" sin V' + 9.7" sin (2f - 21)
+ 1.4" sin (2F - 2D) +2.5" sin (D - 1) - 0.6" sin (2D - 21 + I')

- 7.3" sin (2D - 21) - 3.0" sin (2D - 1) - 0.4" sin 2D
+ 7.6" sin Q (C.1-3)

p = -106" cos, + 35" cos (2F- 1) - 11" cos 2F
- 3" cos (2F - 2D) - 2" cos (2D - 1) (C.1-4)
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I(0-a) - 108"sin I -35"sin(2F- 1) + 11"sin2F
+ 3" sin (2F - 2D) + 2" sin (2D - t) (C.1-5)

where I is measured in radians.

In terms of these angles, the Euler angles for the moon rotation are

0=I+p (C.1-6)

0 = 180 0+(M - (-)+(r- a)

The transformation matrix between selenographic coordinates fixed in the
moon and those referred to the mean equinox and ecliptic of date is then [61

U11 = -sin, cosO sin# - cosy cos#
U12 = cos cosO sin# + sin 11cos#

U13 - -sine sin.
U21 = -sin Vcos )cos# - cos #sin#
U22 = cosy cos cos* - sinl Vsin#
U23 = -sin cos
U31 = -sinv sine
U32 = cosy sine
U•3 = cos 0 (C.1-7)

To check these transformations, the earth and sun's selenographic
longitude and latitude were printed out for certain dates. These positions
were obtained by transforming the vectors pointing from the moon to these
objects with the transformation matrix Equation (C.1-1). This check verified
that PEP's values agreed with the published values in the Astronomical
Almanac, to the number of places published (0.0010 for the earth, 0.010 for the
sun).

Since this transformation's moon-fixed axes are not exactly along the
moon's principal moments of inertia axes, the C21, S21, and S22 spherical

harmonic coefficients cannot be assumed to be zero. If the rotation and orbit
of the moon were estimated by fitting to lunar laser corner reflector data,
these second degree harmonic coefficients could be set to zero.
Simultaneously processing lunar laser data with lunar orbiter data could

155



LUINAR GRAVITATIONAL FMM~ EST rAlON ADAI• rlEORBrT IPR-nIMON

provide the best estimate of the remaining second degree harmonic
coefficients, as well as third and perhaps fourth degree coefficients.

One auxiliary program (selenang), converts satellite osculating orbital
angles in the selenographic coordinate frame to angles in the integration
(1950.0) frame. These angles are input to PEP to specify a desired

selenographic orbital orientation for numerical integrations. Within PEP,
these initial osculating elliptic orbital elements are converted to Cartesian
position and velocity initial conditions for the numerical integrations.

Another auxiliary program (selenelm) converts the numerical
integration output to selenographic position and velocity and to
selenographic osculating elliptic orbital elements as functions of time. The
selenographic osculating elliptic orbital elements, the altitude above the lunar
surface, and the subsatellite selenographic longitude and latitude can then be
plotted over time.

C.2 Transformation Between Earth Fixed and Inertial Frames

Since earth-fixed observing sites need to be transformed to the inertial
frame to process observations, the transformation matrix between earth-fixed
coordinates and the inertial integration frame referred to the mean equinox
and equator of 1950.0 is also required. This rotation transformation matrix R
can be expressed as [81

R = WSNP (C.2-1)

where

P = Earth precession matrix transforming between integration

frame coordinates and coordinates referred to the mean

equinox and equator of date (50 arcseconds per year).

N = Earth nutation matrix transforming between coordinates
referred to the mean equinox and equator of date and
coordinates referred to the true equinox and equator of date
(20 arcseconds).
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S = Earth sidereal time matrix transforming between
coordinates referred to the true equinox and equator of date

and coordinates with z axis along the earth pole of rotation

and x axis in the meridian of Greenwich through the

rotation pole (3600 per 23h 56Tm 4.098).

W = Earth wobble matrix transforming between coordinates

with z axis along the earth pole of rotation and x axis in the

meridian of Greenwich and coordinates with z axis along

the conventional international pole and x axis in the

meridian of Greenwich through the conventional

international pole (0.3 arcseconds).

Since PEP uses the IAU value of the precession constant [231 in the

trigonometric angles for evaluating the precession matrix, P, numerical
integration results in the 1950.0 reference frame are transformations of

integration results in the IAU J2000.0 reference frame [23].

Since observations in PEP are a function of UTC time and there is a

mathematical formula relating sidereal time to UTI time [231, the

relationship between UTC and UTI time is needed to determine the sidereal

time transformation matrix, S. PEP determines this relationship from values
published by the International Earth Rotation Service (MERS) based on very

long baseline interferometry and lunar and satellite laser ranging

observations.

UT1 - UTC = (A.1 - L•C) - (A.1 - UTI) (C.2-2)

The MRS also publishes wobble angles based on the above-mentioned

observations which are used to compute the earth wobble transformation

matrix, W. Exact values of these quantities were not required for this thesis'

simulations.
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Appendix D

Lunar Gravitational "Truth" Model

Table D-1: 5 X 5 Spherical Harmonic Coeffident Portion of Truth Model 1121

Hanmonic X 10-6 Hannonic X 10-

J2  202.431

C21  -0.07 S21 -0.00

C22 34.49 $22 0.03

J3 8.8897

C31  21.96 31 6.63

C32 14.14 932 4.76

C 15.87 S33 -2.45

J4 -11.73
C41 -4.82 S 41  1.91
Z42 -8.13 942 -6.76

C 0.48 S43 -14.43

C 4  -3.50 S -0.55

is 2.388
Cs1  -9.66 S51 -1.53

C5 2  3.71 S52 -2.35

C -0.39 S53 4.91
Z4 0.56 S4 -6.58

C55 -6.69 S55 11.60
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Table D-2: Lunar Near-Side Mascons at 1638 km Radius 1471

Mass East North Mass East North
(1-6 Lunar Longitude Latitude (10-6 Lunar Lontude Latitude

Mass) I(derees) (degrees) Mass) (degrees) (degrees)
Sea of renity Sea of Rains

0.101 10.5 34.0 -0-597 342.0 48.0
2.437 17.5 34.0 0.467 328.5 40.5
2.453 10.5 28.0 5.329 337.5 40.5
3.316 17.5 28.0 5.218 346.5 40.5
3.774 24.5 28.0 1.252 328.5 34.0
0.371 8.25 22.5 1.628 335.5 34.0
2.628 13.75 22.5 3.586 342.5 34.0
3.628 19.25 22.5 1.752 349.5 34.0
1.681 24.75 22.5 -0.421 328.5 28.0
0.290 12.5 17.5 2.336 335.5 28.0
0.624 17.5 17.5 2.654 342.5 28.0
0.229 22.5 17.5 Seething Bay

Sea of Crises 0.328 347.5 12.5
0.230 52.25 22.5 1.934 352.5 12.5
1.520 57.75 22.5 0.531 1 347.5 7.5
0.992 52.5 17.5 1.522 352.5 7.5
2.837 57.75 17.5 Sea of Moisture
1.836 62.5 17.5 3.091 318.75 -22.5
1.183 57.5 17.5 2.726 325.25 -22.5
0.688 62.5 12.5 0.164 1 321.5 1 -28.0

Sea of Nectar Smyth's Sea
0.251 27.5 -12.5 0.622 87.5 2.5
1.394 32.5 -12.5 -0.172 82.5 -2.5
1.199 37.5 -12.5 0.873 87.5 -2.5
0.602 27.5 -17.5 0.739 92.5 -2.5
4.180 32.5 -17.5 0.352 87.5 -7.5
0.663 37.5 -17.5 0.691 92.5 -7.5
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Table D-3: Lunar Far-Side Mascons at 1638 km Radius

Mass East North Mass East North
(1(ALunmr Loýtude Latitude (106Lunar Longitude Latitude

Mass) [ (dges (degrees) Mass) (degees (degrees)
Difficult tOb e Mascon 0.829 182.5 8.0

1.836 177.5 -8.0 1.504 180.0 8.0
2.367 180.0 -8.0 1.254 177.5 8.0
1.726 182.5 -8.0 0.615 183.75 5.0
1.357 176.75 -5.0 1.391 181.25 5.0
2.929 178.75 -5.0 1.613 178.75 5.0
2.265 181.25 -5.0 0.825 176.25 5.0
0.935 183.75 -5.0 2.125 185.0 0.0
1.323 175.0 0.0 4.737 182.5 0.0
2.682 177.5 0.0 7.712 180.0 0.0

aancing Mascon 1.602 213.25 -50.5
4.151 212.0 -48.0 2.534 215.75 -50.5
7.212 214.5 -48.0 5.128 21325 -45.5
2.817 217.0 -48.0 3.713 215.75 -45.5

Final Point Masses 1.11385 217.6253 -63.00
4.85x10"6 214.93 -49.06 2.1x1011 203.77 -43.54
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Appendix E

Tables of Spherical
Harmonic Coefficients

On the following pages are the tables containing the spherical
harmonic coefficients for the models estimated in this thesis. Also included
are the spherical harmonic coefficients from degree six through ten from Alex
Konopliv's 50 x 50 spherical harmonic model estimated at the Jet Propulsion
Laboratory. These coefficients were used in the fit of a 10 x 10 model to
observations generated by a 10 x 10 truth model. The tesseral coefficients are
normalized and the zonal coefficients are unnormalized to follow the

convention used in PEP-D which was modified from the SAO's version to
use normalized Legendre polynomials, but not normalized Legendre

functions.
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Table E-1: Limb Mascon Fit Model Coefficients

Harmonic x 10' Harmonic x _ 0_ 6

J2 197.7368 J3 50.7687
J4 -31.9055 Js -69.3894
J6 1.7549 J7  43.035
J8 -10.1643 1

C21  -12.7475 S21 1.5079
C22  27.1059 S22 0.2444
C31 24.0662 S31 4.0278
C32 28.6630 S32 -1.0723
C33_I 14A920 S3 3  -3.2666

C41  23.9593 S41 -4.4657
C42 -8.9861 S42  4.9991
C- o12.4622 S43 -4046
C44 0.4030 S$ -1.5219
C51  -14.7946 S1 1.0878
C52  -23.7583 S52 10.2963
C63 4.8944 S53  4.2337
C54  10.1329 S54 -16.9327
CSS -7.8183 sss 13.3437
C61  -24.7054 S61 5.6856
C62  5.8578 S62 -2.0959
C63 18.9141 S63 -14.0732
C64 -6.4188 S64  1.8413
C65 -2.7320 S65 62106
C66 -0.1282 S66 -1 .7523
C71  1.2154 S71  0.7781
C72 14.2798 S72 -7.2171
C73 -4.8109 S73 3.4451
C74  -8.6970 S74 9.1036
C75 -8.6970 S75 9.1036
C76  02179 S76 -0.5194
C77  0.0208 S77 0.0303
Ci 7.8239 S81 -1.9813
C82 1.7894 S82  -0.5271
C83 -6.3293 S83  3.9422
S4.5862 S84 -1.1922
C-85 2.3076 S85 -5.2013
C86 -1.6316 S86 2.5572
C87 0.3903 S87 0.3041
C.88 0.7639 S88  0.0524

Note: All of the Cnm and Snm terms are Normalized. The Jn ternms are Unnormalized.
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Table E-2. Face Mascon Fit Model Coefficients

Harmonic x 106 Harmonic x 1076
J2  212.9685 J3  -18.2734
J4 -17.2629 Js 56.7533
J6 6.8783 J7 -33.1132
J8 1.9000 1

C2a 10.1197 S21  3.3802
C22 35.1938 S22 2.7565
C31  20.1172 S31 8.9737
C32  0.1584 S32 5.80m6
C33 1 19.8874 S33 ,-55137
C41  -25.7774 S41 3.4003
C42 -2.1818 S42  -11.9870
C4 143293 S43  -18.4118
C44  45549 S44 3.9231
C,1 -75438 S51  -0.8299
C52 24.1943 S52 -7.5913
C5 -8.1387 553 12.9983
C54 -11.5970 S54 -02905
C15 4.6557 555 7.4909
C61 176456 S61 -3.3481
C62 -0.9812 S62 1.0038
C63 -16.1761 S63 7.6098
C64  4.9624 S64  -93866
C65  6.4501 S65 -4.1229
C-66 -0.9473 S66 3.4506
C71  1.5589 S71 -3.8029
C72 -9.6129 S72 4.0109
C73 2.9190 S73 4.8617
C74  102397 S74 -4.9557
C75 -3.1597 S75 7.1339
C76 -0.5898 S76  1.1869
C77 0.1187 S77 0.0073
C8 -6.5178 S8 1  -0.4581
C42 -2.6772 S8 2  1.4211
C83  3.3579 S83 4.3328
C84 -0-5695 S84 4.2547
C85 -5.7318 S85 2.0067
C86 3.6244 S86 -5.2175
C87 -0.4581 S87 -0.4756
C88 1.5694 S88 0.0024

Note: All of the Cnm and Snm terms are Normalized. The Jn terms are Unnormalized.
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Table E-3: 8 X 8 Single Orbiter Earth-based Doppler Fit Model Coefficients

Harmonic x 1-r6 Harmonic x 10-6
J2 181.1456 59.8185
J4 -74.6007 Js -132.1220
J6  133.1974 J7 79.6217
JS -16.5125

C21  20.7M S21  48.2268
C22 98.9974 S22 63.8880

C31  52.1951 S31  20.30
C32 15.778 S32 -22.4302
C33 -52.7148 S3 3  -87.8210
C41  16.7472 S41  12.8355
C42 -101.0443 S42 -87.6400
C43 0.9710 S43  -53.3659
C44  79A372 S4 62.3998
C5, -80.3231 S51 112542
C82 -6.9808 S52 -67.9849
C13 37.9127 S53 118.1211
S18658 S54 61.9093
C -80.5845 SSS -35.9216
C61  -41.8646 S61  -56.2582
C62  76.5292 S62 -9.1320
C63 0.9371 S63 76.6052
C64 -140.8093 S64 -115.2748
C6s -10.4542 S6  -46.8469
C66 43.5262 S6 6  24.5186
C71  44.0845 S71  -26.6661
C72 152502 S72 72.1269
C73 -63.0660 S73 4.2952
C74  10A385 S74 -66.4744
C75 125.9903 S75  76.7319
C76  24.5612 S76 1.503
C77 -8.5265 S77 -0.5739
Cal 15.1214 S81 155307
C82 -3o.354 S82  28A645
C83 -6.4764 S83 -50.2189
C84 33.768 S84 422387
C85 -22.1201 S85 36.8057
C86 -68.3081 S86 -38.0350
C87 -5.5991 S87 3.3389
C88 20.2612 S88 -1.0150

Note: All of the Cnm and Snm terms are Normalized. The Jn terms are Unnornalized.
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Table E-4: Additional Coefficients for the 10 X 10 Spherical Harmonic Expansion [271

Harmonic x 10.6 Harmonic x __0.6

J6 4.2385 -6.239
J8 -2.5920 J9 -3.5975
ho 1.6589
C61  1.9850 S61 -3.1813
C62 4.0909 S62 -2.2826
C63 -2.8312 S63 -3.7963
C64  o.A618 S64 -3.5250
C6s 1.0906 S65 -10.6M99
C66 -5.3433 S66 6.3502

C71  7.2821 71 -0.2472
C72  -1.2317 S72 2.7566
C73 0.2624 S3 22896
C74 -1.4476 574 1.2214
C75 -0.6229 S75 -0.0130
C76  -0.8231 S76  1.3403
C77 -0.9763 S77 -0.5650

C8, -0.8685 S81 1.5051
C82 3.2189 S82 -2.0279
C3 -1.3720 S8 0.6560
C8 3.9047 S84  -0.7301
C85 -0.8683 S85 2.2454
S-0.8443 S86 -0.3390
C87 -1.5132 S87 3.1351
C88 -3.3194 s88 1.0685
C9, 1.6794 S91 -0.0034
C92 2.7144 S92 -1.5708
C93 -2.0677 S93 2.0466
C94 -2.35M5 S94 -1.3200
C95 -1.9722 Sgs -2.8712
C96 -2.1046 S96  -2.3382
C97 4.8133 S97 -2.6997
C98 -1.7042 S98  -2.1130
C99 -0.2704 599 -3.4853

C 0.3840 SIo,i -0.4607
CI0,2 -0.1513 SI0,2 0.0074
C1o,3  0.1089 S10,3 0.7679
C10,4 -3A765 S10,4 1.8562
C1o,5 13%547 S10,5 -0.1451
C10,6 0.0773 S10,6 -3.1297
CIo, 4.6092 SIo,7 -1.6688
C10,8 -2.5105 $10,8 -6.1743
C10,9  -3.9610 S10,9 0.0054

CO,1 O 0.6457 SlOjl 2.4016

Note: All of the Cnm and Snm terms are Normalized. The Jn terms are Unnormalized.
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Tab"e E-5: 8 X 8 Dual Oroter Bent Pi Doppler Fit Model Coefficients

Harmonic x 106 Harmonic x 10
J2 222.307 13 25.5174
S16.0116 J5 -26.9111
16 -3.5341 17 9.0723
J8 624M _

C21  20.9141 S21 4A952
C22 62.9024 22 113343
C3a 23.0231 S31 3.6164
C32 173213 S32 4.4o79
C33 5.0245 S33 -9.-M57
C41  -7.0910 S41 1.0255
C#2 -15.3037 S42 -12.3986
C43 7.7601 S43 -23.7569
C44 5.5738 S44 2-7198
C6, -16.6822 s51 -8.5788
Cs2  3.6949 S52 -9.5117
C3 134951 S53 -o0o.07
C64 7.6961 s54 -o.92
C65 -28.7475 %55 -335%1
C6I -. 4094 S61 8.9587
C62  6.5187 62 -4.8860
C63  3.4694 S63 8.8267
C64  -7.7898 q 1, -14.6763
C65 -4349 665 -142858
C_66 6.4123 S66 -22788
C71 6.2918 S71  5.7153
C72 -0.1180 S72 -1.3007
C7 .4.5694 S73 6.7590
C74 2.2257 S74 -13.5958
C75 30.7662 S75 22.8105
C76 5.6403 S76 -1.1883
C77 -5.6869 77 0.9170
Ca 3.4853 S81 -65550
C82 -2.9015 S82 11.7741
C83 -7.9046 S83  4.2567
C84 -0.2085 S84 16.0011
C85 -2.3673 S85 9.2307
C6 -9.0060 S1 1.2082
C87 -0.3801 S87 -1.1762
C88 1.0937 S88 -1.2396

Note: AD of the Cnm and Snm terms are Normalized. The Jn terns are Unnormalized.
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