
~of
AD7 zC" / r<< $,, -

= UAL'# D - --- A-

Subphonetic Acoustic Modeling
for Speaker-Independent

Continuous Speech Recognition

Mei-Yuh Hwang . . .
December 17, 1993

CMU-CS-93-230

;chool of Computer Science
Carrmcgic Mellon Univcsity

Pittsburgh. PA 15213

Submitted in parualfulfzllment of the requirements
for the degree of Doctor of Philosophy

Thesis Committee:
Raj Reddy. Chair

Xuedong Huang. Co-chair
Richard Stern
Tom Mitchell

Kai-Fu Lee. Apple Computer

@•993 Mei-Yuh Hwang

This research was sponsored by the Department of the Navy. Naval Resewch Labormory under Grant No.
N00014-93-1-2005.

The views and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the US. Government.

Keywords: Hidden Markov models, generalized tnphones, shared-distribution models,
senones, senonic baseforms, classification and regression trees, senonic decision trees.

~ egie School of Computer Science

DOCTORAL THESIS
in the field of

Computer Science

Subphonetic Acoustic Modeling for
Speaker-Independent Continuous Speech Recognition

MEI-YUH HWANG

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

ACCEPTED:

T 7IS COMM
IT, CH AR

DATE

THESIS cowi CHAlKt IATE

DEPARTMENT HEAD DATE

APPROVED:

DEAN tDT

Abstract

To model the acoustics of a large vocabulary well while staying within a reasonable memory
capacity, most speech recognition systems use phonetic models to share parameters across
different words in the vocabulary. This dissertation investigates the merits of modeling at the
subphonetic level. We demonstrate that sharing parameters at the subphonetic level provides
more accurate acoustic models than sharing at the phonetic level. The concept of subphonetic
parameter sharing can be applied to any class of parametric models. Since the first-order
hidden Markov model (HMM) has been overwhelmingly successful in speech recognition, this
dissertation bases all its studies and experiments on HMMs. The subphonetic unit we investigate
is the state of phonetic HMMs. We develop a system in which similar Markov states of phonetic
models share the same Markov parameters. The shared parameter (i.e., the output distribution)
associated with a cluster of similar states is called a senone because of its state dependency.
The phonetic models that share senones are shared-distribution models or SDMs. Experiments
show that SDMs offer more accurate acoustic models than the generalized-triphone model
presented by Lee.

Senones are next applied to offer accurate models for triphones not experienced in the
system training data. In this dissertation, two approaches for modeling unseen triphones are
studied - purely decision-tree based senones and a hybrid approach using the concept of
Markov state quantization. Both approaches indeed offer a significant error reduction over
the previously accepted approach of monophone model substitution. However, the purely
decision-tree based senone approach is preferred for its simplicity.

The concept of Markov state quantization can also be applied to the automatic determination
of a senonic baseform. A senonic baseform is a word HMM whose output distributions are
replaced by the closest senones, resulting in no increase in the the number of parameters in
the existing senonic system. Because it is acoustics driven, the senonic baseform is useful for
speaker adaptation and learning new words.

Finally, we explore relaxation of the mixture-tying constraint in semi-continuous HMMs.
We move from a system in which the VQ probability densities are tied across all the Markov
states in a system to one in which only similar states share the same densities. To reduce
computation in order to make experiments possible, phone-class dependent VQ codebooks are
studied.

A large suite of experimental results are presented to demonstrate the relative effectiveness
of each component of the thesis. After integrating the senonic decision tree with 8 phone-
class dependent VQ codebooks into SPHINX-II, we attained a word error rate of 6.7% on the
speaker-independent 5,000-word Wall Street Journal continuous-speech recognition task.

Acknowledgments

First and foremost, I would like to thank Raj Reddy, my thesis advisor, for his support,
encouragement and guidance. His ability to foresee the future and his unending quest for
excellence are the key leading to all the success of my thesis research. Without his generous
financial and intellectual support, I would not have been able to survive my graduate life with
a daughter and a long-distance husband. Xuedong Huang, my thesis co-advisor, has been
advising me closely for the last two years and has given me precious comments on my work.
Kai-Fu Lee opened the door to speech recognition for me. Inside Kai-Fu's SPHINX system,
I learned the heart of a highly-accurate speech recognizer. I am grateful to Richard Stem's
faithful answering of my questions on signal processing and Tom Mitchell's offering me a
valuable distinct perspective on Al.

I greatly appreciate the CMU speech group. Fil Alleva, now at Microsoft, was the decoding
engine. Without his decoder, I would not have been able to finish my experiments as quickly or
with as much success as we had. Ravishankar Mosur, Lin Chase and Roni Rosenfeld all helped
with the decoder in the final months. Hsiao-Wuen Hon, now at Apple, generously provided
suggestions on research ideas. Bob Weide never hesitated in offering me his linguistic clues;
Eric Thayer always helped me with machine setup; and all the other members of the group
tolerated my stealing machine cycles and disks everywhere. I owe a great deal to Lin. She
proofread my thesis faster than I could write it. Without her help, I would have had to struggle
another few months to finish the writing. She is not only a colleague, but also a great and
precious girl friend, in this tough engineering graduate school.

The School of Computer Science at CMU offers me the greatest learning environment I have
ever had - the computing environment, the brilliant faculty, the hard-working students, and
the chance to meet famous researchers all over the world. Among the friendly administrators,
I would like to especially thank Sharon Burks for her encouragement while I was blue and her
suggestions whenever I was puzzled. She is a great mother.

I am indebted to my parents and my parents-in-law who have been supportive and patient
throughout the years. Without my mother-in-law's looking after my daughter, I would not
have been able to spend twelve hours a day on my thesis. Last but not least, I appreciate my
husband's endurance of my bad temper while I was under stress, and his encouraging me to
have a successful career. No matter how many quarrels we have, he is always with me when I
am sick. The Chinese have a proverb that says

When there are too many people who you want to thank but you don't know how
to enumerate them, then thank God.

Yes, I thank God who brought me to the United States, which offers me an equal opportunity
to show my talent, no matter where I am from.

Contents

Abstract

Acknowledgements ii

1 Introduction 1

1.1 Selection of a Good Speech Unit 2

1.1.1 Word Models 2

1.1.2 Monophone Models 2

1.1.3 Multi-phone Models 4

1.1.4 Context-Dependent Phones - Biphone and Triphone Models 4

1.1.5 Subphonetic Models 5

1.2 Subphonetic Modeling Using Senones 6

1.2.1 Generalization at a Subphonetic Level 6

1.2.2 Decision-Tree Based Senones 7

1.2.3 Quantization of Markov States 8

1.2.4 Semi-continuous HMMs with Senone-Dependent VQ Codebooks . 11

1.3 Summary and Dissertation Outline 13

2 Related Work on Subphonetic Acoustic Modeling 15

2.1 Fenones 15

2.2 Phonetic Elements 17

2.3 Phonicles 17

2.4 The HMnet 19

2.5 Comparison of Subphonetic Modeling Techniques 20

2.6 Summary 21

3 Subphonetic Modeling on Markov States 23

iii

3.1 Clustering of Markov States - the Shared-Distribution Model 23

3.1.1 Parameter Reduction and Parameter Sharing 24

3.1.2 The Bottom-up State-Clustering Algorithm 28

3.1.3 Phone-Dependency and State-Dependency 32

3.1.4 Flexible Initialization for SDM Training and Interpolation 34

3.2 Decision-Tree Based Senones 37

3.2.1 Construction of the Senonic Decision Tree 39

3.2.2 Composite Questions 42

3.2.3 Cross Validation 45

3.2.4 The Senone Mapping Table Using Decision Trees 45

3.3 Quantization of Markov States 46

3.3.1 Predicting Unseen Triphones 46

3.3.2 The Senonic Baseform for Pronunciation Learning 49

3.3.3 Distance Measure for Markov State Quantization 52

3.4 Relationship Between CHMMs and SCHMMs with Senone-Dependent VQ
Codebooks 54

3.4.1 SCHMMs with Phone-Class Dependent VQ Densities 56

3.4.2 SCHMMs with Phone-Dependent, Reduced-VQ Densities 57

3.4.3 Reducing VQ-Computation During Baum-Welch Training 59

3.5 Summary 60

4 Experimental Environments 63

4.1 Tasks and Speech Corpora 63

4.1.1 Resource Management 64

4.1.2 Wall Street Journal 66

4.2 The SPHINX-II System 69

4.2.1 Signal Processing 70

4.2.2 The Phone Set and the Pronunciation Dictionary 73

4.2.3 Training Architecture 77

4.2.4 Recognition Architecture 81

4.3 Summary 84

5 Experiments and Discussions 86

5.1 The Shared-Distribution Model with Phone-Dependency 87

iv

5.1.1 The Generalized-Triphone Model 87

5.1.2 The Shared-Distribution Model 88

5.1.3 Behaviors of Triphone Clustering versus State Clustering 91

5.2 The Shared-Distribution Model with Phone-Dependency and State-Dependency
for Large Vocabulary Tasks 94

5.2.1 System Setup 94

5.2.2 Performance Evaluation 96

5.3 Decision-Tree Based Senones for Modeling Unseen Triphones 96

5.3.1 Bottom-Up versus Top-Down Clustering 99

5.3.2 Effects of Modeling Unseen Triphones 99

5.3.3 Tree Examples for Markov State Classification 100

5.4 State Quantization for Modeling Unseen Triphones 103

5.4.1 Hybrid vs. Purely Decision-Tree Based Senones 104

5.4.2 Four-codebook SCHMMs for State Clustering 104

5.5 State Quantization for Senonic Baseforms 107

5.5.1 Pronunciation Learning with Many Training Samples 107

5.5.2 Pronunciation Learning with Few Training Samples 109

5.6 Senonic SCHMMs with Phone-Dependent VQ Codebooks 113

5.6.1 SCHMMs with Eight Phone-Class VQ Codebooks 114

5.6.2 SCHMMs with a Reduced VQ Size 115

5.7 Summary 116

6 Conclusions 119

6.1 Conclusions on Subphonetic Acoustic Modeling 119

6.2 Contributions 121

6.3 Future Work on Acoustic Modeling 123

A Fundamentals of Hidden Markov Models 125

A.1 Definition of Hidden Markov Models 125

A.2 Null Transitions 126

A.3 Three Types of HMMs 128

A.3.1 Continuous HMMs 128

A.3.2 Discrete HMMs 128

A.3.3 Semi-Continuous HMMs 129

v

A.4 Application of HMMs to Speech Recognition 130

B Normalization of the Probability Density in SCHMMs 132

B. 1 Scaling of the Baum-Welch Computation 133

B. 1.1 The Forward Pass 133

B. 1.2 The Backward Pass 135

B.1.3 Re-estimation 136

B.2 Scaling and Density Normalization Simultaneously 137

B.2.1 The Forward Pass 138

B.2.2 The Backward Pass 139

B.2.3 Re-estimation 141

B.2.4 Conclusion 142

B.3 Beam Search ... 142

C Entropy and Cross Entropy 144

D Linguistic Questions for Constructing the Decision Tree 147

E A Complete Senonic Decision Tree 149

Bibliography 152

vi

List of Figures

1.1 The waveforms and spectrograms for the phoneme /T/ in four different con-
texts: partof/T R/, left of /IH/, part of /S T/,andpartof/S T R/. It
is clear that the realizations of /T/ are highly dependent on context and that a
context-independent /T/ model is inadequate to represent all of them..... 3

1.2 A decision tree for the classification of the beginning states of all K-triphone
models 9

1.3 The relationship of the DHMM, CHMM, SCHMM and its variants. As we
release the mixture-tying constraint in SCHMMs, they approach CHMMs. . . 12

2.1 The HMM structure of a fenone 16

2.2 An HMnet example. The shaded path shown in (a) corresponds to triphone
G (I, I). Figure (b) illustrates the path for both triphone G (I, A) and G (I,O). 19

3.1 The waveforms and spectrograms for the phoneme /IY/ following /R,/ and
/W/. Note that R and W have similar effects on IY 25

3.2 Illustration of the problem with generalized triphones. When the last states of
these two triphones are represented by their average, the average is no longer
an accurate representation for either of them. We call this the "mis-average"
problem 26

3.3 State-information sharing circumvents the "mis-average" problem of general-
ized triphones, and at the same time achieves parameter reduction 27

3.4 Hypothesizing the distance measure without weighting cross entropy by the
occurrent count. Both C2 and C3 are small clusters, while C, is a such a big
cluster that C, + C2 - C, 30

3.5 The algorithm for output-distribution (state) clustering 31

3.6 The algorithm for initializing the occurrence counts of senones in mapping
table M.I for triphone set A,, given the mapping table M 2 for triphone set A2. 3 6

3.7 The smoothing of the D senone shown in Table 3.1. It contains only state s,
and S2. Therefore it is interpolated with the s, and S2 output distributions of
the monophone model 37

3.8 The decision tree for classifying K-allophones. Triphone K (L, AX) is mapped
to the fourth K generalized-allophone 39

vii

3.9 An artificial example for the decision tree that classifies the first state of /K/
triphones. There are 6 senones in total for the first state of /K/-triphones. The
first state of the /K/-triphone in "welcome" is mapped to the second senone. 40

3.10 The algorithm for the top-down Markov state classification, using binary deci-
sion trees. Note both phone-dependency and state-dependency constraints are
used here 41

3.11 The construction of the best composite q;Lestion for a given node. A composite
question is represented as a tree of simple questions 43

3.12 A composite question, q tj2q4 + 'jpf3, for the root. qj is the best simple question

at each node. Black leaves satisfy the composite question. Shaded leaves do not. 44

3.13 A hybrid system of senone sharing for modeling unseen triphones. The bottom-
up distribution clustering and the top-down triphone classification are linked
through state quantization. Seen triphones share senones according to the
distribution clustering result. An unseen triphone traverses the decision-tree to
locate the generalized allophone it belongs to, then shares senones according
to the state quantization result 47

3.14 The concept of senone sharing across all hidden Markov models, such as
triphones, multi-phones, words, or even phrase models 50

3.15 The determination of the senonic baseform for a word, given multiple training
utterances 51

3.16 The relationship of the DHMM, CHMM, SCHMM and its variants. As we
relax the mixture-tying constraint in SCHMMs, they approach CHMMs, which
have no mixture tying 56

3.17 When phone-dependent VQ codebooks are used, the resolution in the cepstral
domain is increased and thus some codewords are under-trained (never observed
or observed a few times only), given a limited amount of training data. The
corresponding senone entry is either zero or almost zero 57

3.18 Automatic clustering of phones, using cross entropy of the output distribution
associated with phonetic HMMs as the distance measure. The number associ-
ated with each node indicates the reverse merging sequence. This figure shows
that the phone /IX/ and /AX/ are the most similar pair and thus are merged first. 58

3.19 Computation of the forward pass in Baum-Welch reestimation, with the phone
HMM topology shown in the upper part. Black states have non-zero at-,(.)
values. It illustrates that frame xt can be consumed inside phone UH or phone
KD. Therefore xt has to be quantized with both the UH VQ codebook and KD

codebook, but not others 60

4.1 Sample utterances in the RM official training database 65

4.2 Sample utterances in the WSJ training corpus. The first two utterances are nvp
sentences; the last three are vp 68

viii

4.3 The signal processing front-end in SPHINX-I11 72

4.4 Computing the mean and covariance matrix for each codeword in the power
codebook 73

4.5 The waveforms and spectrograms for we were and we yelled. It is clear that the
realization of phoneme / IY/ in we depends on the contexts across the word
boundary 75

4.6 The waveforms and spectrograms for that rock and theatrical. The realization
of triphone /T (AE, R) / is dependent on the word positions 76

4.7 The sentence connection for What's Mars' status? when between-word tri-
phones are modeled 78

4.8 Two stages of system training. When SPHINX-I is used, the connection at the
bottom of Figure (a) is switched to triphone clustering and the sex-dependent
SCHMMs in Figure (b) are replaced by sex-independent DHMMs 80

4.9 Part of the language network in Resource Management, with between-word
triphone connections 82

4.10 The block diagram of SPHINX-II 85

5.1 The phonetic HMM topology used in the generalized-triphone system..... .. 88

5.2 The new phonetic HMM topology used in the SDM. The labeling for the output
distribution of each transition is dependent on the source state 89

5.3 The steps to build the senonic decision-tree recognizer with unseen triphones
represented by senones 97

5.4 Error rate reduction using senones instead of monophones to represent unseen
triphones 100

5.5 A decision tree for classifying the last state of K-triphones. The 5th state of the
K-triphone in "welcome" is mapped to the first senone among all the senones
in this tree ... 101

5.6 A decision tree for classifying the second state of K-triphones 102

5.7 A decision tree for classifying the third state of K-triphones 102

5.8 A decision tree for classifying the fourth state of K-triphones 103

5.9 The steps required to build the hybrid system for modeling unseen triphones
with senones ... 105

A. I Two equivalent HMMs, one with a null transition (the dotted arc), the other
without. aij is the transition probability; bij(.) is the output distribution. The
parameters associated with those arcs without any mark in one HMM are the
same as those associated with the corresponding arcs in the other HMM 127

ix

A.2 Using null transitions to unify the initial states and to unify final states. r;
in the left HMM is the probability of being at state i initially; it becomes the
transition probability of the null arc in the right HMM 127

x

List of Tables

2.1 Word error rates on the 2000-word office correspondence speaker-dependent
isolated speech recognition task, without any language model 17

2.2 Representation of the triphone I (S, K) using phonicles. Phonicle level i is
used only if level i - 1 does not occur in the training data. * is a wild card, i.e.,
any phone context can be used 18

2.3 Word error rates on the 98-word Air Traffic Control speaker-dependent speech
recognition task, without any language model. 18

2.4 Speaker-dependent Japanese phrase recognition using the HMnet with contin-
uous output probability densities 20

3.1 Partial list of a senone mapping table. 35

3.2 Members of a D senone. There are 13 members from state location s, and 3
members from S2 in this cluste 36

3.3 Comparison of DHMMs, CHMMs, and SCHMMs 55

4.1 Perplexities for the eight WSJ language models 67

4.2 The phone set used in the SPHENX-11 system 74

4.3 Examples of the lexicon, spelled by position-dependent triphones. The question
mark will be instantiated by the last phone of the preceding word or the first
phone of the succeeding word in the utterance. 77

5.1 Word error rates of the 1100 generalized triphones on the 600 utterances con-
sisting of Feb89 and Oct89 evaluation sets 88

5.2 Word error rates of different systems on the 600 utterances consisting of Feb89
and Oct89 evaluation sets, using the word-pair grammar 89

5.3 Word error rates using generalized triphones with different topologies and using
shared distributions with the 5-state topology 90

5.4 Word error rates without any grammar 90

5.5 The numbers of triphones, generalized triphones, and senones for each phone,
when 1 100 generalized triphones and 4500 senones in total are determined.. 92

xi

5.6 The senone labeling of several triphones. Triphones in the same sub-table are
in the same generalized-triphone cluster. The notation P.i indicates the i-th
senone among all the senones for phone P 93

5.7 Word error rates on the Nov92 WSJ 5c-nvp test set and the Development set,
using bottom-up clustered SDMs with different numbers of senones. Unseen
triphones are modeled by context-independent phones 96

5.8 Word error rates on the WSJ 5c-nvp task, using 7000 senones. Unseen triphones
are represented by monophones in the bottom-up clustering approach, but are
represented by decision-tree based senones in the tree-classification approach. 98

5.9 Word error rates on the WSJ 5c-nvp task, using 7000 senones. Unseen triphones
are represented by monophones in both systems 99

5.10 Word error rates of the 7000 decision-tree senones on WSJ 5c-nvp, with unseen
triphones being represented by monophones and senones respectively..... .. 100

5.11 Word error rates on the WSJ 5c-nvp task, using 7000 senones. Unseen triphones
are represented by senones in both systems. Both the purely decision-tree based
senones and the hybrid approach yielded statistically the same performance. . 104

5.12 Word error rates on the WSJ 5c-nvp task, using respectively 1-codebook
DHMMs and 4-codebook SCHMMs for the clustering procedure 106

5.13 Word error rates on the spelling task, using phonetic baseforms and senonic
baseforms 108

5.14 RM-w - the selected new words in Resource Management 110

5.15 Word error rates of the speaker-dependent senonic baseforms 111

5.16 Word error rates of the senonic SCHMMs with 8 phone-class dependent VQ
codebooks on the WSJ 5c-nvp task. The baseline with one VQ codebook is the
hybrid system with the senone mapping table generated from the one-codebook
DHMMs in Table 5.12 115

xii

Chapter 1

Introduction

Stochastic modeling techniques have been useful and successful for many applications, includ-
ing speech recognition. Most of the state-of-the-art speech recognition systems are based on a
statistical technique - hidden Markov models or HMMs. In designing an automatic speech
recognition system, finding a good speech unit as the basic model is one of the most important
issues. Simply-structured units (e.g., phonemes) require minimal training data and result in
insufficiently detailed but robust models. To elaborate the structure of the stochastic model of
speech in order to obtain more detailed models, the complexity or dimensionality of the speech
unit usually needs to be increased (e.g., using word models); this leads to an increase in the
degree of freedom in the models. In consequence, more training data are needed to reliably
estimate the increased number of free parameters. For instance, training the 50 phone HMMs
for English usually requires only 1-2 hours of training data, while to sufficiently train syllable
models may require 50 hours of speech. Faced with a limited amount of training data, the
advantage of the improved structure of the stochastic model may not be realized. Because of
the tradeoff between detailed model structures and available training data, there is always a
compromise involved in choosing the speech unit.

Th;- thesis will present the merits of choosing subphonetic events as the basic modeling
unit, by 6oth presenting the modeling technique and experimental experiences. In this chapter,
we will first discuss the problem of selecting a good speech unit as the basic modeling element.
Next, we describe a solution based on subphonetic units called senones. Applications of senones
follow next. The last section summarizes the organization of the remainder of this thesis. Since
senones were developed on an HMM-based system (though the concept is easily extended to
other systems) and because most successful speech recognition systems rely on HMMs, it is
crucial to get acquainted with HMMs before reading this thesis. Appendix A contains a quick
review of the definition of an HMM, together with references to the fundamental theories and
algorithms.

1.1 Selection of a Good Speech Unit

The selection of a particular speech segment as the basic modeling unit for a recognizer is
an important design choice, as it determines the detail and robustness of the basic model.
To elaborate the structure of a stochastic model in order to obtain more detailed models, the
complexity or dimensionality of the model usually needs to be increased; this leads an increase
in the degree of freedom in the models. In consequence, more training data are needed to
reliably estimate the increased number of free parameters. Conversely, faced with a limited
amount of training data, the advantage of the improved structure of the stochastic model may
not be realized. Because of the tradeoff between detailed model structures and available training
data, there is always a compromise involved in choosing the speech unit.

1.1.1 Word Models

Word models are able to capture within-word phonological variations since the same phone is
assimilated by different models when it is realized differently in different words. For example,
the expected acoustic realization of phone /T/ in ten, the flapped /T/ in thir_, and the
deleted /T/ in twenty are modeled by different parameters within the respective word models.
Words are also the most natural units of speech because they are exactly what we want to
recognize. For small vocabulary tasks, word models may be suitable since it is not difficult
to collect enough utterance samples for each word. For large vocabulary speech recognition,
word modeling becomes difficult because many repetitions of each word are needed to obtain
reliable estimates. Moreover, acoustic examples of one word are exclusively used for training
that particular word; no other word can benefit from them. Furthermore, when a new word
is added to a system, there is no way to obtain a model for the new word without collecting
utterance samples for this word. Last but not least, it is difficult to model word-boundary
co-articulation effects, which are quite serious in spoken English.

1.1.2 Monophone Models

To achieve parameter sharing across different words, subword units like phonetic models are
often used because they are both trainable and sharable [6, 125, 89, 84, 104]. Since there are
only about 50 phones in English, phones can be sufficiently trained with just a few thousand
sentences. Hence, unlike word models, monophone models have no training problem. Word
models are formed by concatenating a sequence of phones [6, 125, 89], or networking a set of
alternative phonetic pronunciations [30]. Thus, different words that contain the same phone

2

share the same phone model and thus utterances of one word provide training data for parts

of the other words. A new word can be easily added to a system without collecting utterance
samples.

Despite these many advantages, monophone modeling assumes that a phone produced in
one context is equivalent to the same phone in any other context. This is far from the truth [1171.
Although we may try to say each word as a concatenated sequence of independent phones,
phones are not produced independently because our articulators cannot move instantaneously
from one position to another. Thus, the realization of a phone is strongly affected by its
surrounding phones. For example, Figure 1. 1 illustrates the waveforms and spectrograms of
phone /T/ in four different contexts. Actually, the T in trip is more similar to phoneme CH
and the T in stop is more similar to D. Pooling all the acoustic variants of the same phone into
one model produces inaccurate modeling for any particular variant.

3 = e& I "Ope-I f 1t III -"- A

SOEMM

61 I 1 I I I o'4 1.4 qII I • 1 I 13'

- a. g 66 - p.... mJ:,w. .. 01I

Figure 1. 1: The waveforms and spectrograms for the phoneme IT! in four different contexts:

part of /T R/, left of /IH/, part of IS T/, and part of IS T R/. It is clear that the
realizations of /IT / are highly dependent on context and that a context-independent /T/ model
is inadequate to represent all of them.

3

1.1.3 Multi-phone Models

One way to share parameters and at the same time keep detailed and consistent models is
to use multi-phone units. Examples of these include syllables [59], demisyllables [119], and
traditional diphones [124, 79]1. Each of these models cover a sequence of phones that contain
the most severe contextual effects. However, while the co-articulations in the middle portions
of these units are well modeled, the beginning and ending portions are still susceptible to some
contextual effects. Even when we define multiple-phone units by breaking word pronunciations
at points where contextual effects are as small as possible, we find that the cost of the information
we lose at these multiple-phone-unit boundaries is not recovered by the superior modeling of
the middle portions [60].

The large number of multi-phone models presents another considerable problem for large-
vocabulary tasks, as there are over 20,000 syllables in English. Although there are fewer
syllable models than word models in a very large vocabulary, reliable estimation of these
parameter values is still not possible with a typical amount of available data (e.g., 20,000
sentences). Moreover, as with word models, there is no parameter sharing between different
multi-phone models and thus adequate occurrences in the training data for every single unit
must be guaranteed to obtain reliable estimates.

1.1.4 Context-Dependent Phones - Biphone and Triphone Models

As illustrated in Figure 1.1, it is well known that a phone's immediate left and right neighboring
phonemes have the most significant impact on the realization of the central phone. Thus, when
modeling contexts, we typically try to capture only these relationships. A left-context biphone
is defined as aphone model with a particular phone as its left context. Similarly, a right-context
biphone is dependent on its right context. Although biphones are sharable across different
words and take into account half of the most important contextual effects (either the left or
right context, but not both), the remaining contextual effects go unmodeled. For example, in
Figure 1.1, the /T/ phones in trip and in stop have different left contexts and are thus well
modeled by two different left-context biphones. However, the /T/ biphone with left context
/S/ cannot distinguish the two /T/ phones in stop and string.

To take both contexts into consideration, triphones must be defined [125]. A triphone still
models only a single phone; yet the same phone surrounded by different left and right phones

1Don't confuse the traditional diphones with biphones which will be described in the following subsection.

Diphones span more than one phone, while biphones are still phone-sized models with either the left or right
contextual phone specified, but not both.

4

is captured using distinct models. For example, the /T/ in trip is modeled by the triphone
/T (#, R) / 2 where # denotes the word boundary, the / T / in stop is modeled by / T (S, AO) /
and the /T/ in string by /T (S, R) /. Each triphone model is used to represent a certain phone
surrounded by two particular phones. To model word-boundary co-articulation in continuous
speech, between-word triphones[62J can be defined using this exact scheme.

Although triphones are very desirable because they are able to capture the most important
acoustic variations, they are difficult to train due to the tremendous number of them (on the
order of 503 in English). With the finite amount of training data typically available, we must
either smooth model parameters or reduce the number of parameters, or both.

To smooth parameters, deleted interpolation [721 and heuristic interpolation [125, 123, 29]
have been successfully employed to combine less well-trained detailed models with relatively
well-trained, but less detailed ones. For example, triphone models can be interpolated with
biphone or context-independent phone models [125, 86]. To reduce the number of parameters,
one approach is to simply throw away infrequent triphones and train only the most frequent
triphones [82]. A missing triphone is then substituted with a biphone or monophone model. This
way we obtain sensitive modeling for frequent triphones and sacrifice less frequent contexts to
compensate for inadequate data. Another way to reduce the number of free parameters is through
sharing. Generalized-triphone models [86] share parameters by clustering similar triphones
together. That is, all triphones that have similar contexts, such as /T (EY, L) / in greatly
and /T (EY, M) / in statement, can be represented by the same generalized triphone model.
Generalized triphones were used successfully in the SPHINX system, which was the first system
to demonstrate that highly accurate, large vocabulary, speaker-independent continuous speech
recognition is possible with real-time performance [851. One of the important contributions
of this thesis is to provide an improvement over generalized triphones by sharing subphonetic
units, which will be described shortly.

1.1.5 Subphonetic Models

With regard to choosing a speech unit as the basic modeling unit, we have reviewed word

models, multi-phone models (including syllables), monophone and context-dependent phone
models. IBM [9] first proposed fenones as front-end based subphonetic units in 1987. In
1990, we started working on the shared-distribution model [571, which was later developed to
be senonic models [67]. Meanwhile, Dragon presented subphonetic segments [19] and PELs
(phonetic elements) [151 for constructing triphone or PIC (phoneme-in-context) model. Soon
after, GEC-Marconi presented phonicles, or phonetic particles [136]. In 1992 ATR Interpreting

21n this dissertation, a triphone is denoted by specifying the phone first, and then putting the left and right
contexts in a pair of parentheses.

5

Telephony Research Laboratories in Japan proposed the hidden Markov network (HMnet) con-
structed by the SSS (Successive State Splitting) algorithm [128], which conceptually resembles
our work but is very distinct in its implementation. Among the above work, fenones and
senones are probably most successful and well known. We will describe the senone and present

its achievements first. Details on the related work will be presented in the next chapter.

1.2 Subphonetic Modeling Using Senones

The main goal of this thesis is to demonstrate the superiority of modeling subphonetic units
over modeling phones. The subphonetic unit we investigate is the Markov state in phonetic
HMMs.

1.2.1 Generalization at a Subphonetic Level

The goal of generalized triphones - grouping acoustically similar triphones into a single model
- is to reduce the number of free parameters in the system's acoustic models. However, since
it clusters acoustic events at a relatively crude unit, an entire phoneme, it may render over-
generalized phonetic models. When two triphone HMMs are merged, all pairs of corresponding
Markov-state information (e.g. the output distributions) are averaged. Partial sharing is not
supported. This inflexibility can lead to inaccurate Markov states, as it is not necessarily the
case that every pair of states in two similar triphones is similar.

One solution, which is explored in this thesis, is to analyze each subphonetic event carefully
and group only at the subphonetic level in order to avoid over-generalization. We propose to
extract the information associated with Markov states of phonetic models (e.g., the output
distribution and/or the transition probabilities) and locate similar ones by either a bottom-up
or top-down clustering procedure. With this approach, it is possible for two triphones to share
only some common states. This flexibility results in accurate modeling at every state and at the
same time achieves the goal of parameter reduction.

Conceptually, this searching of Markov state prototypes is similar to VQ clustering, where
matches are sought among a set of prototype vectors. Implementationally, output distributions
and/or transition probabilities are probabilities rather than simple vectors. Therefore, their
distortion measures (which make the notion of "match" precise) need to be defined differently.
In Section 3.1, we will first present a bottom-up clustering algorithm which essentially considers

6

all possible configurations 3 and chooses the nearly optimal one, in a minimum entropy sense.
After clustering similar Markov states of triphone models, the original Markov states are labeled
by the cluster identification, according to the clustering result. The resulting clusters are named
senones, after fenones, because they are state-dependent and are analogous to fenones '. The
set of clusters becomes the contents of a "senone codebook". In SPHINX-II, which will be
described in Section 4.2, each state is identified by its associated output distribution (because
many researchers share the same experience that transition probabilities play a minor role in the
HMM methodology). Thus, a senone is essentially a representative of the output distributions
associated with the Markov states in the same cluster. States labeled by the same cluster share
the same senone (or interchangeably output distribution). The set of HMMs that share output
distributions through senones are called shared-distribution models (SDMs). When senones
are used, we have the luxury of using more states for each phonetic model to achieve more
detailed acoustic modeling. We rely on the clustering procedure to tie redundant states, if there
is any. Given the sharing structure, we then train the HMM parameters so that the likelihood
of generating the training data is maximized under the senone sharing constraint.

The shared distribution model has proved to be significantly better than generalized tri-
phones. For instance, on the 1000-word Resource Management speaker-independent contin-
uous speech recognition task (using the standard bigram language model), the senone-based
SDM outperformed generalized triphones by 19% in the word error rate. This experiment will
be addressed in Section 5. 1.

1.2.2 Decision-Tree Based Senones

Faced with limited amount of training data, a recognizer often needs to handle "unseen"
triphones - those needed for decoding but never encountered in the training data. When
unseen triphones occur, most systems simply substitute monophone or biphone models. As
mentioned earlier, both monophones and biphones are not as detailed as triphones, and thus
will typically not perform as well. The problem of unseen triphones becomes increasingly

serious as we scale up to larger tasks, where a growing number of triphones are needed but
commensurate growth in the training data is not possible.

For unseen triphone modeling, a top-down generalization approach based on decision trees
[27, 12, 88, 43] has been used to model allophones 5. Binary decision trees with linguistic

3Thus the computational complexity is an exponential function of the input size, the number of states to be
clustered.

4For a comparison between fenones and senones, see Section 2.4.
5Allophones mean phonemes with all possible contextual information. For example, it includes triphones and

phonemes with stresses, and so on.

7

questions are used to classify allophones. Moreover, to improve the quality of the classification,
composite questions formed by disjunction, conjunction and/or negation of simple linguistic
questions are used with each node in the classification tree. Both seen and unseen triphones
traverse the tree, starting from the root, by answering the associated composite question until
a leaf is reached. Leaves of the tree represent clusters of similar allophones. This way, both
seen and unseen triphones can be modeled by the generalized allophone model, in a unified
fashion. Researchers [43, 12] have demonstrated that modeling unseen triphones using the
decision-tree based generalized allophones could reduce the word error rate significantly when
vocabulary-independent acoustic models were applied to new tasks, in which unseen triphones
were more common than in vocabulary-dependent systems.

To incorporate the merits of both the shared distribution model and the decision-tree gen-
eralization for unseen triphones, we propose to replace the decision-tree based allophones
with decision-tree based senones. That is, we use decision trees to classify Markov states of

allphones, rather than classifying the entire phonetic HMM. This yields a decision tree whose
leaves represent clusters of similar Markov states. Each leaf corresponds to a senone. To find
the senone associated with a given Markov state of a given triphone, we traverse the related
tree until a leaf is reached. The Markov states of every triphone, either seen or unseen in the
training data, are all labeled by the senonic decision tree in exactly the same way. Figure 1.2
shows an example tree used to pick the senone to be associated with the first state of triphone
K (L, AX) , which could be seen or unseen in the training data. The highlighted path shows that
this state maps to the second senone.

As will be discussed in Chapter 5, modeling unseen triphones with senones reduced the
word error rate by 10% on various test sets of the 5,000-word Wall Street Journal task.

1.2.3 Quantization of Markov States

State Quantization for Unseen-Triphone Modeling

The advantage of the senonic decision tree is its capability of modeling unseen triphones with
detailed parameters. However, one of its disadvantages is that the senone labeling for seen
triphones is likely to be sub-optimal because tree growing is a greedy algorithm in which splits
cannot be undone. In contrast, the bottom-up state clustering procedure generates a near-optimal
clustering configuration because almost all possible configurations are considered. Therefore,
when there are not many unseen triphones in the material to be decoded, decision-tree based
senones may render sub-optimal results.

8

welcome

-• left phone sonorant or nasal?

lefet phone =back-L? l eft phone = S, Z, SH, ZH?
I I ! ~........... o.......... A.....................

I...o•,oo..... o°............

right phone = L, W or left phone = nasal? senone5 senone6
left phone = w-glide?

no

senone3 Senon4
senonel senone2

Figure 1.2: A decision tree for the classification of the beginning states of all K-triphone models.

One way to keep the best clustering configuration for seen triphones and still use senones
for unseen triphones is to adopt a hybrid approach. In this hybrid approach, seen triphones
are clustered using the bottom-up clustering procedure to produce the best configuration.
This is the shared-distribution model, introduced in Section 1.2.1, whose shared distributions
constitute the senone codebook. All seen triphones share parameters according to this clustering
configuration. To model unseen triphones, decision trees for classifying triphones are next
constructed [88, 431. Now we have two sets of parameters, one from senones that comprise the
shared-distribution model, and the other from the generalized allophones represented by the tree
leaves. To avoid duplication of parameters, the output distributions of the generalized allophone
models are replaced with the closest senone each. This process amounts to quantization of
the Markov states of the decision-tree based allophones. For each output distribution in the
generalized allophone models, we search for the most similar senone and replace the parameters
accordingly. To find the senones to be associated with an unseen triphone, the decision tree is
first traversed to find the corresponding generalized allophone. Then the sequence of senones
resulting from quantizing the Markov states of the generalized allophone is used as the final
model for this particular unseen triphone.

With the hybrid approach, seen triphones are guaranteed to have the best senone sharing
configuration, while unseen triphones also share the senones, but possibly have a less accurate

9

representation than the representation used in the purely decision-tree based senones, because

of possible state-quantization errors. Although this hybrid approach (Markov state clustering
and quantization) is not the best for unseen triphones, we expect it is better than simply using
monophone or biphone models.

By a series of experiments in Section 5.4, we will show that

" When unseen triphones are modeled by monophones, the SDM based on the bottom-up

clustering is indeed slightly better than the purely decision-tree based senones. However,
it is only marginally better, as explained by (2).

"* Although the clustering for seen triphones using decision trees is less flexible, we will
show that the loss for seen triphones can be minimized by (a) using composite (disjunction,

conjunction, and/or negation of) linguistic questions to allow the classification taking into
account many more configurations than a purely greedy tree-growing algorithm, and (b)
incorporating linguistic questions that are able to capture phenomena that the insufficient
statistics in HMMs have missed.

" The hybrid approach works as well as the purely decision-tree based senone, when both

seen and unseen triphones are modeled by senones. It does not dominate the purely
decision-tree senones, as the latter achieves better senone sharing for unseen triphones
since there is no state quantization error.

As a result of these experiments, our conclusions are

" The decision tree based senones are more appropriate for very large vocabulary tasks
and vocabulary-independent systems, in which unseen triphones are often encountered.

They are simpler to implement than than the hybrid approach, because only the senonic
decision tree needs to be constructed. In the hybrid approach, three major steps have
to be taken: (1) bottom-up clustering for Markov states, (2) top-down tree growing for
triphone models, and (3) state quantization.

" For small tasks where essentially all triphones needed for the decoding are covered by

the training set, the SDM created by the bottom-up clustering algorithm performs better
than the purely decision-tree based senones.

State Quantization for Pronunciation Learning

Foreign (non-English) words often cause a serious problem for acoustic modeling because
of distinct phoneme sets used in different languages. They constitute an even more difficult

10

problem when coupled with speaker variations. In this situation purely acoustic driven models
are the most useful since the phoneme notation of the home language is discarded. Senones can
be applied to construct purely acoustic driven models, using the technique of state quantization.

After the bottom-up clustering or top-down tree classification on the triphone Markov states
is finished, we obtain a senone codebook. The Markov states of triphone HMMs are labeled by
the senone codebook. Once the senone codebook is generated, it can be used to construct models
of all kinds of acoustic phenomena. To visualize this, consider that each senone describes a
very short distinct acoustic event (shorter than a phoneme) and that any acoustic event can be
described by a permutation of these subphonetic events. For example, when there are enough
utterance examples of a certain word, we can estimate a word HMM with a certain number of
states by the forward-backward algorithm in order to model all of the acoustic transitions inside
a word. After the word model is estimated, we then search for the closest senone for each
state of the word HMM. That is, the Markov states in the word HMM are then quantized with
the senone codebook. This quantized sequence of senones describes the sound for the given
word and is called the senonic baseform of the word. A benefit of constructing the senonic
baseform is that the number of parameters remains intact even after the word senonic baseform
is learned and added to the system. This allow us to obtain new detailed representations for
words, without increasing the system complexity.

The senonic baseform was applied to the Resource Management Spelling task, where the
vocabulary is the 26 letteis of the English alphabet. The lexicon of the 1000-word Resource
Management task is spelled in this task. We automatically learn two senonic baseforms for each
letter, according to the algorithm described above. Senonic baseforms outperformed phonetic
baseforms by 15% in word error rate. Follow on attempts to apply senonic baseforms to large
vocabulary tasks have not yet proven successful, due to insufficient training utterances and
the high acoustic confusibility among the large vocabulary. However, the approach did show
potential for applications to speakers with idiosyncratic pronunciations and thus may turn out
to be useful for speaker adaptation. We will describe the details of this experiment in Chapter
5.

1.2.4 Semi-continuous HMMs with Senone-Dependent VQ Codebooks

The disadvantage of discrete HMMs (DHMMs) is the inevitable quantization error during vector
quantization. On the other hand, although continuous HMMs (CHMMs) get rid of quantization
completely, they require the expensive computation of tens of probability densities for every
Markov state in the system. The philosophy behind semi-continuous HMMs (SCHMMs) (or
tied-mixture HMMs) is to relieve the quantization error in DHMMs by choosing the top few
codewords for each data frame instead of just the top one as with DHMMs, and at the same

11

time avoid the expensive computation in CHMMs by tying all the Markov states in a system to
the same small set of probability densities. SCHMMs have proved to offer significantly better
performance than DHMMs, with only a small increase in computation [44, 51, 22, 21, 771.

As the computer hardware becomes cheaper and faster (150 MHz clock on a DEC alpha
3000/500 in 1993), we may be able to calculate CHMMs in real time in less than one decade.
One way to approach the performance of CHMMs without actually going to CHMMs is to
reduce the amount of tying in SCHMMs. Traditionally, the VQ probability densities are
tied across all the Markov states in a system. When the tying constraints are completely
r moved, that is, when each state has its own set of VQ probability densities (i.e., mixtures in
CHMM terminology), a SCHMM becomes a CHMM. Any small amount of state tying should
in principle produce system performance in between the two extreme cases (SCHMMs and
CHMMs), as long as there is enough training data.

An example compromise between strict SCHMMs and CHMMs can be derived by training
SCHMMs with senone-dependent VQ densities. That is, only similar Markov states will share
the same set of VQ densities. Since there are often a large number of senones (4000 - 7000)
in a system, the senone-dependent VQ densities are likely to be under-trained if the amount
of training data is not increased accordingly. Faced with a limited amount of training data,
we may resort to a tighter constraint like phone-dependent VQ densities, [5, 84, 321, or even
phone-class-dependent VQ densities. Alternatively, the VQ size (i.e., the number of prototypes)
could be reduced in order to be able to train more densities with the fixed training corpus. If we
treat DHMMs and CHMMs as the two extreme cases, a spectrum between the SCHMM and its
variants can be illustrated as in Figure 1.3.

phone-class dependent senone-dependent

VQ densities VO densities

S_4_ I
DHMM SCHMM phone-dependent CHMM

VQ densities

Figure 1.3: The relationship of the DHMM, CHMM, SCHMM and its variants. As we release
the mixture-tying constraint in SCHMMs, they approach CHMMs.

We will show that with the fixed Wall Street Journal phase-zero training corpus (about
7000 utterances), the best performance is achieved by clustering the 50 phones for English
into 8 classes and training phone-class dependent VQ densities. Although the improvement is
marginal (8% in total), it is neverless stable across different test sets. Moreover, we believe the
improvement will become more appreciable when more training data is available and VQ size
is adjusted appropriately.

12

1.3 Summary and Dissertation Outline

Senones provide a subphonetic modeling based on subunits inside a phonetic HMM. This work
will show the superiority and flexibility of using subphonetic units by reference to a series
of intensive experiments on ARPA's common data corpora 6. Although all the subphonetic
modeling techniques were implemented for speaker-independent continuous speech recognition
in this thesis, they are equally well applicable to speaker-dependent speech recognition and
speaker adaptation, either on continuous or isolated speech.

Chapter 2 will review related work on subphonetic modeling for speech recognition. This
includes IBM's fenone, GEC-Marconi's phonicle in the U.K., and ATR's HMnet in Japan. The
last section will compare these subphonetic models with our work on senones.

Chapter 3 is the central chapter, where the philosophy and methodologies of creating and
using senones are elaborated. These include the state clustering for the shared-distribution
model, the construction of decision-tree based senones, various state quantization algorithms
for unseen triphone modeling and pronunciation learning, and the construction of SCHMMs
with phone-dependent VQ codebooks. Experimental results are presented sequentially in

Chapter 5. Readers interested in a particular technique can jump to the appropriate section in
Chapter 5 to find experimental results.

To put the experiments in context, Chapter 4 describes the experimental environment in
which this thesis work was produced. The first section describes the experimental tasks,
training corpora and testing conditions. The second section descri•es the overall structure of

the SPHINX-II system, including the signal-processing front end, and the HMM clustering,
training and decoding subsystems. The subphonetic modeling techniques presented in this
thesis are among the key components of SPHINX-II. All the experiments were carried out on
SPHINX-II.

Chapter 5 is a big chapter that contains all the experiments conducted in support of this
dissertation. This includes

* Applying the SDM to the Resource Management task.

* Applying the SDM to the Wall Street Journal task.

* Applying decision-tree based senones to the Wall Street Journal task.

e Applying state quantization to the Wall Street Journal task.
6ARPA = Advanced Research Projects Agency, Department of Defense.

13

" Applying state quantization to pronunciation learning in the Resource Management task

and the 26-letter Spelling task.

" Applying SCHMM senones with phone-class dependent VQ codebooks to the Wall Street
Journal task.

Discussions will be followed after each experiment.

Chapter 6 concludes and situates the experiments by analyzing the conditions under which
a particular subphonetic modeling technique is most useful. It also describes the contribution of
our work to the literature and some extensions that are being pursued by other people. Finally,
some promising future directions of acoustic modeling are discussed.

14

Chapter 2

Related Work on Subphonetic Acoustic
Modeling

In Chapter 1, we reviewed several options for the choice of the basic modeling unit, including
word models, multi-phone models (including syllables), monophone, and context-dependent
phone models. We also introduced one particular subphonetic modeling technique - senones.
Other subphonetic modeling research includes fenones, PELs, phonicles and the HMnet. Here
we review each one of these briefly and make a comparison with senones.

2.1 Fenones

IBM [9, 10] first proposed fenones as a subphonetic unit in 1987. The purpose of a fenone is
to model acoustic phenomena centered around a certain point in the cepstrum domain. These
central cepstrum points are the vector prototypes created by the VQ clustering procedure. In
other words, each fenone models one VQ codeword. The wordfenone comes from theftont-end
phone to replace the linguistic phone. The VQ level used at IBM is 200; therefore there are
200 fenonic HMMs. Each fenone is defined by a one-state discrete HMM, as Figure 2.1 shows,
where the dotted arc is a null trf,,sition.

Since each fenone has only one Markov state, it represents a very short acoustic interval
and thus provides a much finer level of detail than a phonetic model. To decide the fenonic
pronunciation (or fenonic baseform) for a word, utterance samples for the word have to be
collected first. When there is only one utterance example, the fenonic baseform is decided by
the sequence of fenones corresponding to the sequence of VQ codewords when the utterance

15

Figure 2.1: The HMM structure of a fenone.

is vector quantized. When there are multiple utterances (y(o), (2), y(()) for the given word,

the fenonic baseform is decoded by searching for the best sequence of fenones, assuming that
a set of fenonic models already exists. The best sequence of fenones, f, has the maximum joint
probability of generating the given utterances:

r - argmax Pr{y(l),y(2),...,y((n)if}
f EF*

n

argmax H Pr{y(i)Jf1 (2.1)
fEF* i~

where F is the fenone alphabet, F* is the transitive closure, and utterance samples y(')s are

assumed to be independent. Solving i is similar to stack decoding [7] a sentence over all

possible fenone strings, with F as the vocabulary, no language model (any fenone can be
followed by any fenone), and replacing the acoustic match probability with the product of the
acoustic match probabilities over all the utterance samples.

Fenones were tested on a 2000-word office correspondence task in a speaker-dependent

isolated-speech mode [9]. Both the training and testing data sets each contained one utterance

for each word in the vocabulary, from one speaker only. No language model was used. The
word error rate using monophone models is shown in the first row of Table 2.1. In the
second experiment, a third utterance (other than the training and testing utterances) was used to

obtain the fenonic baseform according to the sequence of VQ codewords. The learned fenonic
baseforms were trained by the training corpus which consists of one sample for each word in
the vocabulary. The third experiment used another 4 utterances for each word to obtain the

fenonic baseform according to (2.1). With the same training corpus, the fenonic baseform
learned from 4 separate utterances performed significantly better than monophone models.

16

Acoustic Model # utterances for Word Error Rate
Ilearning fenonic baseformsI

monophone 0 5.2%
fenone 1 7.4%

fenone 4 2.2%

Table 2.1: Word error rates on the 2000-word office correspondence speaker-dependent isolated

speech recognition task, without any language model.

2.2 Phonetic Elements

In 1990, Dragon Systems Inc. manually located about 2,000 subphonetic segments with the
help of an interactive program [19]. Each triphone or PIC (phoneme-in-context) was defined as

a sequence of these subphonetic segments. When they tried to build large vocabulary systems

in 1992, this manual process was replaced by a k-means clustering algorithm which clustered

the spectral frames of speech from the same phoneme [15]. These automatically identified

distinct frames were called the PELs (phonetic elements). Each PEL was modeled by one

Markov state with an output distribution and a Laplacian duration. A PIC model is thus a linear

sequence of PEL models.

PICs with PELs were tested on a 5,000-word Wall Street Journal task in the speaker-

independent, continuous speech mode. In this test run, 21,000 PELs were created. 12320 PICs
which occurred at least 10 times in the training corpus were selected. Most PICs consisted of 2

PELs; a small number of them consisted of only I PEL. PELs were not shared across different

PICs in this particular run. The reported word error rate was 14.1% [103] As we will see in

Chapter 5, SPHINX-fl with senones performed a word error rate of about 7% on the same test

set for the same task.

2.3 Phonicles

GEC-Marconi presented phonicles in 1991 [136]. Phonetic particles or phonicles, are two-state
HMMs that represent either the first half or last half of a phone. The philosophy is that the

behavior of the left part of a triphone should be similar to that of another triphone with the

same left contextual phoneme; analogously the right part with the right contextual phoneme.
Each triphone HMM is thus defined to be 4 states, composed of two phonicles. Furthermore,

phonicles are both left-context and right-context dependent. A top-down linguistic-knowledge

based clustering approach is used to reduce the number of phonicles from 6000 to 2000 and

17

Model Level Explanation Left Phonicle Right Phonicle

level I triphone I (S, K) 12 (S, K)

level 2 reduced triphone I (S,VELAR) I2 (ALVEOLAR, K)

level 3 biphone context II (S, *) 12 (*,K)

level 4 reduce biphone II (ALVEOLAR, *) 12 (* VEIJ"AR)

level 5 monophone context I (*, *,) 12(*, *)

Table 2.2: Representation of the triphone I (S, K) using phonicles. Phonicle level i is used
only if level i - I does not occur in the training data. * is a wild card, i.e., any phone context
can be used.

to capture unseen contexts. For example, the triphone I (S, K) is modeled by the five pairs
of phonicle models shown in Table 2.2, with phonicle level i being used only if phonicle level

i - I is not seen in the training data.

Phonicles were tested on a 98-word Air Traffic Control (ATC) task in a speaker-dependent
mode [136] over four male speakers. For isolated speech recognition, each subject spoke two
repetitions of the ATC words in isolation. For continuous speech recognition, each subject
spoke the same 100 continuous ATC sentences. Neither test used a grammar. The training data
consisted of 200 phonetically rich sentences spoken by the four speakers. The vocabulary of
the training data was not based on any application-specific domain.

Average word error rates over the 4 speakers are shown in Table 2.3. The results show
that triphones without generalization perform significantly worse than generalized phonicles,
because of insufficient training data. Advanced work on phonicles can be found in [41].

Acoustic Model Modeling of Isolated Speech Continuous Speech
Unseen Contexts Word Error Rate Word Error Rate

monophones monophones 29.9% 45.3%
triphones monophones 24.9% 42.7%

context-dependent top-down knowledge-
phonicles based clustering 13.8% 27.6%

Table 2.3: Word error rates on the 98-word Air Traffic Control speaker-dependent speech
recognition task, without any language model.

18

2.4 The HMnet

In 1992, ATR Interpreting Telephony Research Laboratories in Japan proposed the hidden
Markov network (HMnet) constructed by the SSS (Successive State Splitting) algorithm [128],
which conceptually resembles our Markov state sharing but is very distinct in implementation.

The rationale behind the hidden Markov network or HMnet [1281 is the same as with
senones, i.e., to share state information in order to reduce parameter redundancy. An HMnet
consists of a network of Markov states. Each state specifies the acceptable contextual class at
that particular state, in addition to the normal output distribution and transition probabilities.
There is only one HMnet for the entire given task. A triphone is defined by the sequence of
states that accepts the specified contexts. For example, the path consisting of the shaded states
in Figure 2.2(a) shows the component HMM for triphone G (I, I), and Figure 2.2(b) shows
the HMM for both G (I, A) and G (1, O).

(a) triphone GQ,1) (b) triphone G(I,A)
and G(1,O)

Figure 2.2: An HMnet example. The shaded path shown in (a) corresponds to triphone
G (I, I). Figure (b) illustrates the path for both triphone G (I, A) and G (I, O).

An HMnet is generated automatically by the SSS algorithm. Starting from a one-state
CHMM, the SSS algorithm successively splits the state which has the maximum value of the
output probability density, into two states. The split can be either horizontal in the temporal
domain or vertical in the contextual domain. To be able to handle triphones, the HMnet
is combined with a phoneme-context-dependent LR parser [101, 130] to predict the right
phoneme context so that a particular path in the HMnet can be selected and evaluated.

The HMnet was tested on a 1000-word speaker-dependent Japanese phrase recognition.
Here only a professional announcer was tested. The training data consisted of 5240 common
Japanese isolated words, plus 216 phonetically balanced words, plus some phrase utterances
to compensate for different speaking rates. The test data consisted of another 279 phrase
utterances. Performances using the HMnet with single Gaussian densities and using continuous
HMMs with Gaussian mixture densities are shown in Table 2.4.

19

Acoustic Model Phrase Error Rate

HMnet (single Gaussian) 4.7%
CHMM (mixture Gaussians) 6.8%

Table 2.4: Speaker-dependent Japanese phrase recognition using the HMnet with continuous
output probability densities.

2.5 Comparison of Subphonetic Modeling Techniques

Fenones are used to model the VQ prototypes. Hence, they are purely acoustic. No linguistic
information such as phonemic analysis is used. Therefore, the approach is as suitable in
automatic pronunciation learning and cross-language acoustic modeling as the senonic baseform
is. However, there are only 200 fenones, which may be too few to provide enough resolution
in the speech cepstrum space for large-vocabulary tasks. Increasing the number of fenones will
increase the number of parameters significantly since these one-state HMMs use discrete output
distributions. One way to increase the fenone resolution is to increase the number of fenones
without increasing the VQ level for the discrete output distributions. That is, two separate VQ
clusterings are needed, one for creating the central cepstrum points which fenones model, the
other for quantizing the training data while training the discrete output distributions.

Unlike fenones, senones have excellent resolution for modeling various acoustic phenom-
ena. The shared-distribution model is both phonetic and acoustic I in the sense that words are
still spelled by phones, but phones are defined by a sequence of senones, which are acoustically
similar events. We can also construct purely acoustic driven baseforms using the senonic base-
form. To determine a senonic baseform, the best sequence of senones to describe a word sound
is determined. This is similar to the fenonic baseform in which the best sequence of fenones
is searched. However, two dissimilarities are noted. First of all, senones are Markov-state
based, while fenones are time-frame based. Secondly, the senonic baseform is solved as a
word-HMM training and then state quantization problem, while the fenonic baseform is solved
as a decoding problem as Section 2.1 describes.

Another drawback of fenones is that there is no way to decide a word's baseform unless
utterance examples are given, although fenones are shared across different words. We cannot
build the senonic baseform for a word, either, when there is no utterance sample, but the phonetic
shared-distribution model for the word can be used together with the senonic baseforms for
other words, without an increase in the number of free parameters since both the senonic
baseform and the phonetic shared-distribution model share the same set of senones.

'The senonic baseform is purely acoustic.

20

PICs with PELs are not successful because parameter sharing is either not achieved, which
results in under-trained models, or the sharing structure is manually defined and thus subjec-
tive. Clustering on individual spectral frames instead of a wider range (which offers more
information) may also count for the inaccurate model.

A phonicle is similar to a senone except the size of the model is doubled and thus some
detailed modeling is disabled. For example, triphones that have the same left phonicle are
restricted to use the same two output distributions. That is, the first/last two states of two
similar triphones are always indistinguishable. Given their high error rates on the ATC task,
we believe that there is still plenty space on improving their clustering quality. Splitting the
clustered objects from two states to one state as senones do will help their system also.

The concept of state sharing in the HMnet is the same as senones. The implementation,
however, is quite distinct. To build senones, we start from the full phonetic HMM structure for
all triphones and then reduce the number of shared states to a trainable size. The HMnet, on the
other hand, starts from one single state and grows (splits) successively to form a final network
for the entire task. The HMnet is currently used for only phoneme and phrase recognitions.
Applying the HMnet to continuous sentence recognition requires the incorporation of language
models. More importantly, it is unclear if the SSS algorithm can be efficiently and accurately
applied to very large vocabularies. How to decide the size of the HMnet and how to optimize
the splitting algorithm so that the HMnet can represent all the enormous number of triphones
for large vocabulary tasks are the most difficult problems.

2.6 Summary

Related work on subphonetic acoustic modeling includes fenones, PELs, phonicles, and HMnet.
Among them, fenones are probably the best known. A fenone is a VQ-based one-state HMM.
It is purely acoustic driven and is most suitable for automatic pronunciation learning given
few training tokens. PELs are generated by a k-means clustering algorithm which clusters the
spectral frames. A phonicle models either the front or the back half of a phoneme. Two triphones
with the same left or right context are forced to share the same left or right phonicle. Shared
phonicles were demonstrated to be better than triphones without generalization. An HMnet is
a network of hidden Markov states, each of which is associated with acceptable contexts in
addition to the normal HMM parameters. The HMnet is constructed by the SSS algorithm and
an allophone is defined by a path in the HMnet. The HMnet with a single Gaussian output
density was demonstrated to perform better than CHMMs with Gaussian mixtures.

The shared distribution model described in Chapter 1 is both phonetic and acoustic. The

21

algorithm (either bottom-up clustering or the top-down decision-tree classification) used to
generate senones is based on the trained parameters of triphone HMMs, which contain acoustic
statistics about phonetic structures. After senones are generated, they are used to label the orig-
inal triphones and then senones are trained through the sharing structure across all triphones.
The phonetic structure is still maintained - words are spelled by the phonetic transcription.
Thus, the senonic modeling analyzed from the signal-cepstrum distribution is combined ele-
gantly with the phonetic transcription derived from informed linguistic analysis. The trained
senones can also be used to build purely acoustic driven senonic baseforms for speakers with
idiosyncratic pronunciations or for task-specific jargon.

22

Chapter 3

Subphonetic Modeling on Markov States

The goal of this chapter is to explain all the subphonetic modeling !echniques explored in this
thesis. This includes the clustering of Markov states to create state prototypes named senones
(the model that shares senones is called the shared-distribution model), the use of decision trees
to create senones for unseen-triphone modeling, the quantization of Markov states for alternative
unseen-triphone modeling and pronunciation learning, and the introduction of SCHMMs with
phone-dependent VQ codebooks for relaxing the mixture-tying constraint in SCHMMs without
an expensive computational cost as CHMMs.

Experimental results for these techniques on a standard set of tasks are presented in Chapter
5. These experiments were based on speaker-independent continuous speech recognition. The
same techniques, however, can be applied to speaker-dependent speech recognition and speaker
adaptation, either on continuous or isolated speech tasks. Interested readers can jump to the
appropriate section in Chapter 5 to get acquainted with the experimental performance of a
particular modeling technique, while reading the descriptions that follow.

3.1 Clustering of Markov States - the Shared-Distribution

Model

Parameter sharing plays an important role in statistical modeling since the amount of training
data is usually limited. On one hand, we would like to use models that are as detailed as
possible, such as triphones or even context-dependent multi-phone models. On the other hand,
with models that are too detailed, we quickly lose the ability to reliably estimate the growing
number of parameters. Faced with a limited amount of training data and a huge number of

23

free parameters, we must either smooth the parameters or share the parameters across different
models and very often do both. This section will present a novel technique, the shared-
distribution model (SDM), for parameter sharing. Parameter smoothing will be summarized in
the following paragraph. Interested readers are encouraged to browse the indicated references.

To smooth parameters, both deleted interpolation [72] and heuristic interpolation [125, 123,
291 have been successfully employed to smooth less well-trained detailed models with relatively
well-trained, but less detailed ones. For example, triphone models can be interpolated with
biphone or context-independent phone models [125, 86]. Semi-continuous HMMs (SCHMM)
[49] or tied-mixture HMMs [22, 21] achieve both parameter smoothing and sharing. For
smoothing, SCHMMs use the top few best-matched codewords instead of only the best one
to represent the input signal during vector quantization. Additionally, SCHMMs share the
parameters by tying all Markov states of all phonetic models to the same set of continuous
probability density functions (i.e., the VQ density functions).

To share the parameters, generalized-triphone models [861 group similar triphones together
when they are poorly trained or when they resemble each other. Generalized triphones were suc-
cessfully used in SPHINX and demonstrated the feasibility of highly-accurate large-vocabulary
speaker-independent continuous speech recognition. In the next subsection, we will describe
the inherent problem with generalized-triphone models and present as a substitute the shared
distribution model. The SDM reduces the number of free parameters and at the same time
maintains models that are as detailed and accurate as possible. A series of experiments will
be performed in Section 5.1 to demonstrate the superiority of the SDM over the generalized-
triphone model.

3.1.1 Parameter Reduction and Parameter Sharing

Triphones have been one of the most successful acoustic modeling units in the state-of-the-art
systems [66, 121, 82]. The simplest way, which is pursued by [821, to reduce the number of free
parameters is to eliminate infrequent triphones since it is unlikely that the trained models are
robust. The consequences of this are that part of the training data is wasted and the system loses
the capability of modeling these discarded triphones, which could be considerable in number.

When triphones are used, some parameters are redundant in the same sense that they
are so similar that they could have been represented by the same model and thus make the
model more trainable. The model which represents a cluster of similar triphones is called a
generalized triphone [86]. For example, the place of articulation has an important effect on the
right-neighboring vowel. Figure 3.1 illustrates that both /R/ and /W/ have similar effects on
the right-neighboring vowel / IY/; therefore, there is no reason to keep two separate / IY/

24

triphones for the / IY /phone in street and sweet.

f*getu L440 22a

W. 111 . - . 3.

I ? I VTI I •

Figure 3.1: The waveforms and spectrograms for the phoneme /IY/ following /R/ and /W/.

Note that R and W have similar effects on IY.

The Problem with Generalized Triphones

As a parameter-sharing technique, generalized triphones are intended to represent a cluster of
similar triphones with the same model. However, averaging a set of triphones completely can
result in blending dissimilar subphonetic units when only parts of the triphones are similar.

Figure 3.2 illustrates the problem with generalized triphones. The top model shows the output

distributions of triphone EY (L, S) in a word like place, and the middle model for triphone

EY (L, SH) in relation. It is reasonable that we see the strong similarity between the first

and second output distributions since they have the same left context. The first two output

distributions could be so similar that the overall distance between these two triphones is small

and thus the two triphones are merged into one generalized triphone. This results in inaccurate

representation for the last state when the last states of these two triphones have different
distributions. We call this the "mis-average" problem.

The Shared-Distribution Model

The mis-average problem associated with Generalized triphones can be avoided if shar-

ing/clustering is carried out at a sub-model level - the Markov state. State-information
sharing has been successfully employed for speaker-adaptive speech recognition where adap-

tive distributions are shared across different phonetic models [45]. Unlike model-level cluster-
ing, state-level clustering merges two states only if the associated output distributions exhibit

25

place

relation

II

Figure 3.2: Illustration of the problem with generalized triphones. When the last states of

these two triphones are represented by their average, the average is no longer an accurate

representation for either of them. We call this the "mis-average" problem.

26

acoustic similarity. Thus, as illustrated in Figure 3.3, the first two states of triphone EY (L, S)
share the same output distributions as the first two states of triphone EY (L, SH) . However, the
last states of both triphones are maintained with different output distributions in order to keep

the distinction.

II

Figure 3.3: State-information sharing circumvents the "mis-average" problem of generalized

triphones, and at the same time achieves parameter reduction.

This sharing also gives us the freedom to use a larger number of Markov states for each
phonetic model in order to achieve more detailed acoustic modeling. Although an increase in
the number of states will increase the total number of free parameters, with state-information
sharing we can "collapse" redundant states by tying them to the same output distribution, while
maintaining the more useful distinct states. As long as the number of states per HMM and the
total number of shared output distributions are properly determined as a function of the training

27

data, we can achieve both detailed and robust modeling of speech signals. The principle of
state-information sharing can be applied to either discrete, continuous, or semi-continuous
HMMs.

To build the SDM, an information-theoretic distortion measure is used to cluster state
information across different triphone models. The information we use to uniquely identify
states is the associated output distribution only, as transition probabilities have been shown to
be of negligible importance. In Section 5.1 we will demonstrate that the SDM indeed provides a

better representation than the generalized-triphone model. On the 997-word DARPA Resource
Management (RM), speaker-independent continuous speech recognition task [112], the word
error rate was reduced by 20% in comparison with generalized triphones.

3.1.2 The Bottom Ap State-Clustering Algorithm

Suppose a set of triphone names and their corresponding models are given and we want to locate
similar subphonetic units so that they can be shared across different triphones. Representing a

large number of triphones in terms of a sequence of a small number of subphonetic units reduces
the number of free parameters and thus each parameter can be better trained. The concept of

subphonetic sharing can be applied to any modeling technique that provides subphonetic units,

not just HMMs. We use HMMs as our platform because the HMM is the start-of-the-art speech

modeling technique. The individual Markov states inside phonetic HMMs are the subphonetic

units we investigate.

The goal is to search for similar Markov states so that their output distributions can

be averaged to form a senone, which is a general and still accurate representation
of the original component distributions of triphone models. The set of triphone
models that is built using senones is called the shared-distribution model (SDM).

Since similar Markov states of distinct triphone models are tied with the same senone as

their output distribution, the number of free parameters associated with the triphones is reduced.
Unlike generalized triphones' all-or-nothing principle which forces either all or none of the

Markov states of two triphones to be shared with each other, the state sharing allows partial

sharing between two triphones.

28

Distance Measure between Two Markov States

We assume that similarity between two states is determined solely by the associated output
distributions since the output distribution plays a much more important role than transition
probabilities in HMMs. There are many ways to measure the distance between two distri-
butions/HMMs. Examples include cross entropy [81, 75], output string/symbol probability

134], maximum mutual information [341, and the chi-square measure 11101. Both generalized
triphones [86] and the SDM use a variant of cross entropy as the distance measure. Because of
the key role of entropy and cross entropy (i.e, directed divergence), readers are encouraged to
review the definitions in Appendix C.

Entropy Increase as the Distortion Measure Since both SPHINX and SPHINX-II use
discrete output distributions, all the details about the distance measure described here are
defined for discrete probability distributions. It would not be difficult to modify our definition
for continuous probability densities. Suppose we want to compute the distance between
distribution A and distribution B. The occurrence counts for each entry in A and B are

denoted as a ,a2,...,at, and b1, b2, ... ,bL respectively, where L is the VQ level. Moreover, let

"• ai = A; Ei bi = B.

When we decide two distributions are similar and merge them into the same cluster, the
occurrence count for the resulting distribution/cluster (A + B) is the summation of the two
merged distribution counts. Therefore, the entropy for the resulting distribution is:

HA15ai + bi log(ai +t bi.

We define the distance measure between A and B as the entropy increase, weighted by counts,
due to merging A and B as:

f?(A,B) = (A + B)HA.+B - AHA - BHB

-i lo i+b logai

-i ~A ~og [(a+ b, og
11 A+B) BA~

= AX(A,A+B)+BX(B,A+B) (3.1)

29

where X(.,.) stands for the cross entropy. It turns out that (`A, B) is the summation of two
weighted directed divergences - one between A and A + B, the other between B and A + B.
As cross entropy is non-negative, Q(A, B) is also non-negative. It reaches its minimum (zero)
if and only if ai/A = bi/B, Vi (when the two probability distributions are exactly the same).
This entropy increase is what we use in SPHINX-II for measuring the distance between two
output distributions. The smaller the entropy increase is, the more similar the two distributions

are. In SPHINX, the distance between two triphones was defined as the summation of all the
entropy increases between pairwise Markov states of the involved triphone models.

Weighting entropy by the occurrence count can also lend information about how well each

distribution is trained. Distributions that appear infrequently will be merged before those
that are well trained. Thus infrequent distributions become more trainable after clustering.
Another advantage of weighting cross entropy by the occurrence count is that large clusters
are prevented from getting blindly bigger. To see this, suppose C, is a big cluster with many
elements, compared with a smaller C2, as shown in Figure 3.4. Because of the significant gap
between the occurrence counts of C, and C2, the count entries in C, + C2 are almost the same
as those in C1, resulting in X(Ci, C, + C2) ;, 0. Had the cross entropy not been weighted by the
occurrence count, C1 and C2 could have been merged before anther small cluster C3 got a chance
to be collapsed with C2, even when C2 and C3 are quite similar, since X (C2 , C2+C33) +,X (C3, C2+C3)
might be greater than X(C,C 1 C+ +C 2) + X(C 2 , C! + C 2) ; X(C2, C1).

X(Cl, C1+cý + X(C-2 ,C1+C) X(C2,C2+C 3)+X(GC'c2+q3)
",n X(Cl, C) + X(C2, C1

= X(C-2,

Figure 3.4: Hypothesizing the distance measure without weighting cross entropy by the occur-
rent count. Both C2 and C3 are small clusters, while C, is a such a big cluster that C, + C2 Z C1.

However, we should remember that weighting cross entropy by the occurrence frequency
has a risk of mis-representation when the frequency in the training data does not reflect the test
data and can be harmful under this situation.

30

The Bottom-Up Clustering Algorithm

Using the distance measure defined in (3.1), a bottom-up agglomerative state clustering algo-
rithm is summarized in Figure 3.5 [861. The output of the clustering is a table listing clusters
of similar Markov states. States in the same cluster use the same senone to represent their out-
put distributions. The set of triphone models whose Markov states share output distributions
according to the table is called the shared-distribution model.

1. Estimate all triphone HMMs (e.g., using the forward-backward algorithm[20,
7]).

2. Create a single-element cluster for every output distribution of every HMM.

3. Merge: Find the most similar pair of clusters, and combine them.

4. Shift: For each element in each cluster of the current configuration, move it
to another cluster if that results in an improvement. Repeat this shifting until
no improvement can be made.

5. Repeat: Go to step 3 unless some convergence criterion is met.

Figure 3.5: The algorithm for output-distribution (state) clustering.

Step 1 is necessary in order to obtain statistics for measuring the distance between Markov
states. Step 4 is a heuristic optimization that attempts to improve the cluster configuration by
allowing elements to be moved from one cluster to another. In consequence, this clustering
is not a simple bottom-up tree growing algorithm. Without Step 4, this would be a simple
greedy algorithm, where every merge would be permanent and tree-structured merges would

be formed in a bottom-up fashion.

At Step 4, a new configuration is considered to be an improvement if its grand weighted
entropy is less than the existing configuration's. The grand weighted entropy of a configuration
is the summation of the entropies (weighted by counts) of all the clusters in the configuration.
To reduce computation at Step 4, shifting can be terminated prematurely when the number of
movements exceeds a predefined threshold, or when a minimum improvement is not achieved.

During Step 4, after an element is moved to another cluster, recomputation of the entropies
for the two affected clusters is expensive. Therefore, unlikely movements should not be
considered and poorly trained distributions are not worthy of re-configuration. To detect poor
candidates for the shift, we, as a heuristic, utilize the entropy-increase matrix of all pairs of the

31

distributions in the input HMMs:

f0(A, B) = entropy increase when distribution A and B are merged,

- (3.1)

where A and B are any two distributions in the input HMMs. Note that fl(A, B) is computed

only once when Step 3 is activated the first time. While considering whether to move distribution

A from cluster C, to cluster C2, we first compare the average entropy-increases for A before

and after its moving to C2:

C

11 (A) = (. l-{If(A, *)/(size(CI) - 1)

W()= (Z II(A,*)) /size(C2)

Only if the ratio of IT'(A)/IZ(A) is less than a predefined threshold do we compute the grand

weighted entropy of the new configuration to see if moving A will lead to an improvement.

The convergence criterion in Step 5 could be the desired number of clusters remaining or a

maximum ratio of the new grand weighted entropy to the previous one.

The clustering algorithm provides an excellent compromise between trainability and sensi-

tivity. Given a fixed amount of training data, it is possible to find the largest number of trainable

distributions or the smallest number of sensitive distributions.

3.1.3 Phone-Dependency and State-Dependency

Phone-Dependency

While clustering the Markov states in Figure 3.5, we usually disallow cross clustering between

different phones as otherwise it can make minimal pairs, such as ten and tin, even harder to

32

distinguish. We call this constraint the phone-dependency constraint '. Notice that because of
the Shift action in Figure 3.5, the computation for the clustering algorithm is an exponential
function of the number of objects being clustered. With the phone-dependency constraint, the
input size is reduced by a constant factor and thus the clustering is speeded up. Moreover,
clusterings for different phones can be run in parallel. After all the clusterings for all phones
are finished, a final merge sort is run to take the most significant merge actions (with minimum
entropy increase) and shift actions (with maximum entropy reduction) to produce the desired
total number of clusters for the entire system 2

State Dependency

As we will see in our experiments in Section 5.1, a large percentage of the state members
in the same cluster are from the same state location. This suggests us to enforce the state

dependency constraint, prohibiting clustering across different state locations, for speeding the
process of clustering. As the vocabulary size grows, the number of triphones needed for each
phone increases accordingly, so is the total number of Markov states to be clustered. Suppose
that we represent spoken English using p phones (p ; 50 usually), and there are n triphones in
total across all phones for a certain task and each triphone has d Markov states. On average,
there are n/p triphones per phone. The combined phone dependency and state-dependency
constraints reduce the input size to the clustering algorithm from nd to n/p on average; but
pd independent runs of clustering have to be issued. That is, the computation cost drops from
exp(nd) to pd exp(n/p). Again a final merge sort has to be run to produce the desired total
number of clusters for the entire system. Experiments in Section 5.1 show that without the
state-dependency constraint, more than 90% of the elements in the same cluster are indeed
from the same state location in the model topology. Therefore, when we are faced with very
large vocabulary tasks, the state-dependency constraint is usually adopted.

Neighboring-State Information

When the state-dependency constraint is used, the clusterings for different state locations are
independent. To relate the clusterings across different state locations, we propose to incorporate
neighboring-state information while measuring the distance between two output distributions
at the same state location:

I It is also possible to merge distributions across different phonetic models, although experiments on speaker

adaptation indicated this did not make any significant difference [45].
2The best data structure to use is a heap, with one element for the list of actions of each phone.

33

triphone T,• .

triphone T2 !.i-1UzI

f2*((= (33wa,, EW (l(i),T2(i)) (3.2)

where Ti (s) represents the output distribution associated with the s-th state of triphone T,
and Q() is defined in (3.1). w,,i is a weighting function and is inversely proportional to the
topological distance between the state under consideration (s) and all other states (i). That is,
the closer a state i is to state s, the more important the information it provides to state s is. We
call the distance measure defined in (3.2) entropy increase with neighboring-state information.
To make the entropy increase comparable across different states of different phones without
bias, Ei w1,i = 1.0 for every state s. Note that in order to compute the distance measure with
neighboring-state information, all the output distributions inside a phonetic model have to be
available, not just the output distribution under consideration. This also implies that when the
two s-th states of two triphones are merged, the other pairs of states must also be merged in
order to compute future distances for further clustering actions on state s.

Section 5.2 presents the results (7% - 9% word error rate) of applying the SDM with both
the phone-dependency and state-dependency constraints to the 5,000-word Wall Street Journal
task.

3.1.4 Flexible Initialization for SDM Training and Interpolation

After the state-clustering procedure has terminated, we obtain a mapping table consisting
of clusters of similar Markov states. Each cluster is represented by a generalized output
distribution called a senone. States in the same cluster share the resulted senone as their output
distribution. Table 3.1 shows a partial list of a senone mapping table that is generated with
the phone-dependency constraint only. For example, the 1 -th and 12-th rows show that both
the first state (state 0) and the second state of triphone AA (B, Z) are mapped to the ninth AA
senone.

For each state s of each triphone model T, the mapping table M maps it to a senone
M (T, s). The set of triphone models that share senones as their output distributions is called

34

triphone state id senone id
AA(F, R) 0 1

AA(B, R) 0 1

AA(G, R) 0 2
AA(DD, R) b 0 2

AA(P,R) 2 8
AA(K, R) 2 8

AA(R,R)b 0 9

AA (AXR, R) b 0 9

AA(N, K) 1 9

AA(B, Z) 0 9

AA(B, Z) 1 9

AA(L,N) 1 9
AA(SIL,B)b 3 10
AA (AXR, B) b 1 10

AA(R,B) 3 10
AA(K,M) 3 10

Table 3.1: Partial list of a senone mapping table.

the shared-distribution model or the SDM. With this sharing in place, we can re-train the

triphone model so that the HMM parameters are optimized under the fixed sharing structure.

Initialization

Although we usually start triphone training from context-independent models, the training

re-estimation will converge faster if we start from existing context-dependent models. This

section will describe a flexible initialization that enables fast training from any model.

Suppose we would like to train the shared distribution model for the triphone set A 1 with a

senone mapping table M.I and we are given a set of initial models with a mapping table M.2,

possibly for another set of triphones A2. When A2 triphones are SDMs, M 2 is given. When

they are not SDMs, it is trivial to build the mapping table M 2 corresponding to the distribution

sharing configuration in A2. For example, the generalized-triphone model is a special case of

the shared-distribution model, where all the i-th states of all the triphones in the same cluster

share the same output distribution or senone. On the other hand, if A2 has no distribution

sharing at all, the M 2 simply maps each different Markov state to a distinct senone id. Finally,

when only context-independent phone models are given, both A2 and M 2 are just empty files.

35

To initialize the occurrence count of a senone in M 1, we add together the occurrence counts
of all the corresponding senones in M 2. When there is no corresponding triphone in A2,
the context-independent phone model is used (we assume that monophone models are always
available). This initialization algorithm is described in Figure 3.6.

Clear the occurrence counts for all senones in M 1 .
For each triphone T E AI

For each state s of T
set senone 0 +- M i(T, s)

if (T E A2) set senone ik +- M.2(T, S)

otherwise set senone ?k +- context-independent(T,s)
count(O) 4- count(O) + count(•,)

Figure 3.6: The algorithm for initializing the occurrence counts of senones in mapping table
M.1 for triphone set A1, given the mapping table M 2 for triphone set A2.

When the input models are context-independent phones, A2 is empty. From Figure 3.6,
we see that the initial value for senone s of phone p becomes the summation of all the output
distributions in monophone model p, with each output distribution weighted by the number of
component members. For example, Table 3.2 shows all the members of a particular senone
cluster for phone D. Since there are 13 members from state s I and 3 members from state S2, the
initial count of this senone is computed as

13 count(D, s1) + 3 count(D, S2)

according to the initialization algorithm in Figure 3.6. Finally, to get the probability entries for
a senone, we simply normalize the counts for the senone such that the individual entries sum
to 1.

triphone distribution triphone distribution triphone distribution
"D(S,AA) states1 D(CH,AA)b states1 D(S,AE) state si, S2
"D (S, AO) state si, s2 D (S, EH) state s i D (S, ER) b state s i
"D(S,EY) statesi D(S,IY) statesi D(S,IY)b statesi
"D(S,R)b states,, S2 D(TS,ER)b statesi D(Z,AX)b statesi

D(Z, EY) states _ 1___

Table 3.2: Members of a D senone. There are 13 members from state location sI and 3 members
from s2 in this cluster.

36

Interpolation

To improve the generalization capability, deleted interpolation [721 is used to smooth context-
dependent models. Here, we interpolate each senone with the uniform distribution and the
context-independent distribution(s) corresponding to the component state(s). For example,
the D senone shown in Table 3.2 is interpolated twice in parallel. One copy is interpolated
with the output distribution associated with state s, of monophone model D and the uniform
distribution, and the other copy is interpolated with state s 2 of monophone model D and the
uniform distribution. To get the final smoothed senone, these smoothed copies are averaged,
weighted by the state frequencies in the senone. Figure 3.7 explains the smoothing of the D
senone shown in Table 3.2.

trained senone

monophone D :AWl . •

sl s2

uniform distribution IIIIIIII !111111

* a

senones

final senone

Figure 3.7: The smoothing of the D senone shown in Table 3. 1. It contains only state s 1 and S2.-
Therefore it is interpolated with the s 1 and S2 output distributions of the monophone model.

3.2 Decision-Tree Based Senones

The number of triphones needed for a large vocabulary task is usually very large, especially

when position-dependent between-word triphones [62, 831 are considered. It's essentially

impossible to cover all the triphones needed even with a fairly large amount of training data.

37

Therefore, there are often many unseen triphones for large vocabulary tasks. Finding a good

representation for unseen triphones becomes increasingly important as we scale up to larger

tasks.

When unseen triphones occur, most systems simply use context-independent phone models

to represent unseen triphones. Due to the inaccuracy of blindly mixing all contexts in mono-

phone models, performance degrades as the number of unseen triphones grows. Biphones may

be used to replace monophone models in order to distinguish some contextual effects. However,

biphones still do not contain as much detailed information as triphone models. Moreover, the

number of parameters is increased slightly by introducing biphone models into the system. In

the bottom-up clustering algorithm (Figure 3.5) (either state clustering or triphone clustering),

it is not clear which clusters the states of a new triphone should belong to. Therefore, both
the generalized-triphone system and the SDM system use context-independent phone models

to represent unseen triphones.

Representing a triphone with either monophone or biphone model introduces the problem of

over-generalization. To alleviate the over-generalization problem, classification and regression

trees (CARTs) have been used in many research areas [24, 120, 11]. Some researchers [88,

43, 12] used decision-tree based generalized triphones to provide better models for unseen

triphones. In these systems, a decision tree was built to classify all the allophones derived from

the same phone. The root of a decision tree contained all of the allophones for a single base

phone. Each node in the tree had a binary question for the component triphones about their

contexts (e.g., "Is the right phoneme a back vowel?"). The binary question split the component

allophones into two classes, each corresponding to a child node. At the end, each leaf of the

tree represented an equivalence class (i.e., a generalized allophone) consisting of allophones in

similar contexts. To find the generalized allophone for any triphone, either seen or unseen in

the training data, the tree corresponding to the phone was traversed from the root, by answering

the question attached to each node until a leaf node was reached. The generalized allophone

represented by the leaf was then used to model the given allophone. For example, Figure 3.8

illustrates the classification tree for /K/ allophones 3 and highlights the path which triphone

K (L, AX) traverses. Here the phone-dependency constraint is applied. The question "Right

= back vowel?" asks if the right phone of the considered triphone a back vowel. It shows that

triphone K (L, AX) is mapped to the fourth K generalized-allophone, according to the linguistic

questions associated with the tree.

To incorporate the merits of both the SDM and the classification tree, we construct decision-

tree based senones. That is, we use decision trees to classify the Markov states of allophone

models instead of the entire allophone. The decision-tree based senone will inherit the merit

of the shared-distribution model where parameter sharing is carried out at a subphonetic level.

3Revised from [42].

38

welcome

"\.A

Right = back vowel?

Right = liguid? Ri ht = front vowel?

"L vowel?.

/K/ generalized triphones (gt)

Figure 3.8: The decision tree for classifying K-allophones. Triphone K (L, AX) is mapped to
the fourth K generalized-allophone.

In addition, it offers detailed parameters for unseen triphones. Unseen triphones, like seen
triphones, also traverse the trees to find appropriate senones as their output-distribution repre-
sentation. In the experiments in Section 5.3, we will show that by modeling unseen triphones
with decision-tree based senones, we can reduce the word error rates by 10 - 20% (depending
on the number of unseen triphones contained in each test utterance), compared with the situation
in which unseen triphones are represented by monophones.

Even for utterances that contain no unseen triphones, we believe the improved modeling
for unseen triphones helps the decoder prune those wrong paths in which unseen triphones are
needed.

3.2.1 Construction of the Senonic Decision Tree

To predict unseen triphones with senones, we extend the principle of distribution sharing to
decision trees [43]. The algorithm we present here is constrained by both the phone dependency
and state dependency described in Section 3.1.3. It is easy to modify the algorithm to relax
these two constraints.

39

We automatically build a decision tree for each Markov state of each phone. We use 50

phones in SPHINX-II for English. With each phonetic model relying on the 5-state Bakis
topology [131, 70, 18], the result is a set of 250 decision trees. A decision tree is a binary tree,
with a (possibly composite) linguistic question associated with each node, asking about the
category of the left- or right-phone context of a triphone. Triphones with similar contexts thus
follow the same traversing path and fall into the same leaf. Each leaf of the senonic decision
tree is a cluster of similar Markov states, whose average forms the senone at the leaf. To find
the senone to be associated with a certain state of a given triphone, either seen or unseen in
the training data, we traverse the corresponding tree until a leaf node is reached. The senone
associated with the located leaf is then used to represent the output distribution associated with
the given Markov state. Figure 3.9 illustrates an artificial example tree to classify the first state
of /K/-triphones. It also shows that the first state of triphone model K (L, AX) is associated
with the second senone among the senones for the first state of all K-triphones.

welcome

left phone =sonorant or nasal?

yes -...

S~............. .'...

left phone =back-L? left phone = S, Z, SH, ZH?
S.. ,Q.. °

right phone =L, W o left phone = nasal? senone5 senone6
left phone =w-glide?l=:'"..............

senone3 senone4
senonel senone2

Figure 3.9: An artificial example for the decision tree that classifies the first state of /K/-
triphones. There are 6 senones in total for the first state of /K/-triphones. The first state of till
/K/-triphone in "welcome" is mapped to the second senone.

Figure 3.10 summarizes the construction of the decision trees [42].

At Step 1, a linguist creates manually a set of categorical questions about a triphone's left

40

1. Locate a set of appropriate linguistic questions manually.

2. For each phoneme p,

" Estimate all p-triphone HMMs (e.g. using the forward-backward algo-
rithm).

" For each Markov state s in the model topology, classify all the s-th
Markov states in all p-triphones.

(a) Create a root consisting of all the s-th states of all p-triphones.

(b) Find (automatically) the best composite question for the root. (to
be explained in Figure 3.11.)

(c) Best-First Expansion: Select the node with the overall best ques-
tion among the current leaves, and split the node according to the
question associated with it.

(d) For each of the two newly created leaves at step (c), find (auto-
matically) the best composite question. (to be explained in Figure
3.11.)

(e) Go to step (c) unless some convergence criterion is met.

Figure 3.10: The algorithm for the top-down Markov state classification, using binary decision
trees. Note both phone-dependency and state-dependency constraints are used here.

41

or right context [1341. These questions are designed to capture linguistic classes of contextual

effects. For example the deletable stops { BD DD GD PD TD KD } are captured in one single
categorical question like "is the left/right context a deletable stop?". A complete list of the
linguistic questions we used in this dissertation is shown in Appendix D. It is the same as the
one used in [42].

The overall classification structure in Figure 3.10 is the same as for the tree-based gener-

alized allophone in [42]. However, two basic differences should be noted. First of all, the
classification is now on subphonetic units (i.e., the Markov state) rather than on the entire
HMM. One decision tree is built for each state of each phone. Secondly, the goodness of a

question at a node is defined as the entropy reduction with neighboring-state information as
(3.2) shows, with lj and T2 representing the child nodes. To re-phrase, suppose a tree for the

s-th state of a certain phone is under construction and suppose question Q splits the elements
of node (TI + T2) into node T, and T2:

TI(S) T2(s)

The goodness of question Q with respect to state s at node T, + T2 is defined to be a weighted
summation of the weighted cross entropies of all pair-wise states:

goodness(Q,s) = f1(T(s),T2(s))

= -wsAf(T,(i),T 2(i))

In other words, the more entropy reduction a question renders, the better the question is. Recall

that to utilize neighboring-state information, all the output distributions inside a triphone model
have to be available at the time of the entropy measuring computation. Because we need the
HMM statistics for measuring the goodness of a question, we need to obtain an estimate of the
triphone model at the beginning of Step 2 in Figure 3.10.

3.2.2 Composite Questions

One disadvantage of the tree-based top-down classification is that once a split is made, individ-
ual elements cannot be moved to new positions in the tree. This may result in a sub-optimal
clustering configuration. In particular, data fragmentation often occurs in which similar ele-
ments fall into different leaves. To alleviate the problem of data fragmentation, we have to

42

build either complex composite questions [43] or decision networks where two siblings and/or
siblings of ancestors can be merged [14]. Therefore, at Step 2(b) and 2(d) of Figure 3.10, we
build composite questions, formed by conjunctions, disjunctions and/or negations of the simple
linguistic questions, to alleviate the data fragmentation problem. Even with composite ques-

tions, the decision-tree clustering still has less freedom in re-configuration than the bottom-up
clustering for the SDM does. This will be evidenced in the experiments in Chapter 5.

Figure 3.11 shows the algorithm to find the best composite question for a given node. The
tree-growing step (Step 1) is similar to the one in Figure 3.10, with the exception that only
simple questions are considered.

I. Create a tree of "simple" questions under the given node.

(a) Create a root containing all the elements in the given node.

(b) Find the best question for the root, among the hand-crafted linguistic
questions created at Step 1 of Figure 3.10.

(c) Best-first expansion: Split the node with the overall best question
among the current leaves.

(d) For the two new leaves created at step (c), find the best question among
the hand-crafted linguistic questions created at Step I of Figure 3.10.

(e) Goto Step (c) until some convergence criterion is met.

2. For the final tree created by Step 1, cluster the leaves into two groups. Try all
possible combinations and choose the one with minimum total entropy.

3. Form the composite question for the given node as the disjunction of all the
paths to one of the groups in i,- configuration decided at Step 2. The question
for any path leading to a leaf is the conjunction of all the questions along the
path.

Figure 3.11: The construction of the best composite question for a given node. A composite

question is represented as a tree of simple questions.

At step 1 (b) and 1 (d), the number of simple questions that have to be considered is finite and
usually small. For example, using the question set in [42], only 89 questions are considered (43
categorical questions about the left or right context, plus 3 questions about a triphone's position
in a word). Figure 3.12 illustrates an example of forming the composite question, given a tree
of simple questions with clustered leaves. The composite question leading to the black leaves

43

qiq2

yes 0 ys n

ys no

Figure 3.12: A composite question, qi4244 + q4q3, for the root. qi is the best simple question at

each node. Black leaves satisfy the composite question. Shaded leaves do not.

is
q1q-2 q-4 + -il I3

where the plus sign stands for disjunction, concatenation for conjunction, and the bar sign for
negation.

The computation for grouping leaves into two clusters is an exponential function of the

number of leaves in the "simple" tree 4 . The number of leaves under a "simple" tree is much
smaller than the entire number of elements at the "composite" root, which the bottom-up
distribution clustering always considers at the shift step of Figure 3.5. Our empirical results
reflect this predicted cost savings, as the decision-tree clustering runs much faster than the
bottom-up agglomerative clustering.

Given a configuration created by the bottom-up agglomerative clustering, it is possible to

find a decision tree with each leaf equivalent to each cluster, as long as we allow the complexity
of the composite questions to be unlimited and as long as there are a sufficient number of
detailed simple questions (e.g., each categorical question contains only one phone). At that
extreme, the decision-tree clustering converges to the bottom-up agglomerative clustering and
there will not be any cost savings.

4We usually set the depth of the "simple" tree to be no greater than 3. Therefore, the computation of the
grouping is only a constant factor of at most 27.

44

3.2.3 Cross Validation

Cross validation, like deleted interpolation [72], is a technique to make an established system
(e.g., the decision trees) more robust against new testing conditions (e.g., a new task). The
basic idea is to divide the entire available data into two sets. For each data set, we train the set
of triphone HMMs represented in the data. We then use one set of trained HMMs to build the
decision trees, and the other to validate the trees. This validation keeps the tree structure and
the composite questions fixed, but replaces the entropy reduction (i.e., the goodness measure)
by applying the same question to the the second set of triphone HMMs. It may also eliminate
the splits that have insignificant entropy reduction computed by the second set of models. That
is, the second set of HMMs is used to validate the goodness of the questions computed by the
first set.

Cross validation is important to build a robust vocabulary-independent (VI) system [42]
because a vocabulary-independent training corpus usually does not cover a good percentage
(e.g., 95%) of the triphones needed for any specific task. The work in [42] used two thirds of the
VI training corpus to build the VI decision trees. The remaining third of the VI training corpus
served as the source of a new triphone set for a new task. The set of triphone models estimated
by the rest of the VI training data was used to validate the goodness measures computed by the
first two thirds of the data.

Cross validation becomes less important when a vocabulary-independent system is not
pursued or when almost all the tree leaves are kept for the final system (i.e., almost all splits are
preserved). Particularly in our experiments on the Wall Street Journal task using a vocabulary-
dependent training corpus, cross validation offered little advantage.

3.2.4 The Senone Mapping Table Using Decision Trees

After the decision trees for all the state locations of all phones are constructed 5, we can prune,
from leaves to the root, the worst splits (i.e., the nodes with least entropy reduction) to get the
desired total number of leaves (senones) 6. The desired total number of senones depends on
the available training data (and possibly memory capacity of the computer hardware). Given a
fixed amount of training data, it is possible to find the largest number of trainable senones or
the smallest number of sensitive senones.

Whenever a triphone (either seen or unseen in the training data) is needed, we traverse the

50r wait until the cross validation is finished.
6Again, a heap is the best data structure for this pruning.

45

corresponding pruned d trees to find the associated senones, assuming there are d states per
HMM. This way, both seen and unseen triphones are modeled by senones in a unified fashion.
As shown in Section 5.3, modeling unseen triphones with senones reduces the word error rate
by more than 10%, compared with the situation in which unseen triphones are represented by
monophones.

3.3 Quantization of Markov States

3.3.1 Predicting Unseen Triphones

The senonic decision-tree described in the previous section is ideal for unseen-triphone mod-
eling. However, the drawback of decision-tree based classification is the limited capability for
re-configuration. Once a node is split, the elements in a child stay in that subtree forever. Even
with the help of composite questions, the re-configuration capability is still not as powerful as
the shift step in the bottom-up clustering algorithm. Therefore, the decision-tree classification
often yields a sub-optimal configuration. The pros and cons of the bottom-up clustering versus
top-down classification can be summarized as follows:

state quality for quality for
clustering seen triphones unseen triphones

bottom-up nearly optimal monophones
top-down sub-optimal decision-tree based senones

classification

For seen triphones, we may want to use the best configuration the bottom-up clustering algorithm
generates. This suggests the use of a hybrid approach in which seen triphones obtain the best
sharing structure, while unseen triphones carry a sub-optimal sharing configuration (but still
better than context-independent phones).

The hybrid approach we propose here can be illustrated in Figure 3.13.

To elaborate,

46

Right = back vowel?

Right = liguid? Ri ht = front vowel?

generalized allophones
for unseen /K/-trphones

(3) state quantization..........................!.) . . .t . :ruz .o....

phone/1(/
senone codebook

()distribution clustering

9-" - 9--" known /K/-triphones

Figure 3.13: A hybrid system of senone sharing for modeling unseen triphones. The bottom-
up distribution clustering and the top-down triphone classification are linked through state
quantization. Seen triphones share senones according to the distribution clustering result. An
unseen triphone traverses the decision-tree to locate the generalized allophone it belongs to,
then shares senones according to the state quantization result.

47

1. Using the seen triphone models, run the bottom-up state clustering and then

train the shared-distribution model.

2. Using the seen triphone models, run the top-down triphone classification

using decision trees and then train the generalized allophone models.

3. To avoid doubling the number of system parameters, quantize the Markov

states of the generalized allophone model trained at step 2 with the senones
generated at step 1.

At Step 3, state quantization (SQ) means to search for the best-matched senone among the

senones shared by the SDM. Conceptually, this searching for the best-matched senone is similar

to vector quantization, in which we search for the best-matched vector prototype. This implies

that a distance measure has to be defined to measure the distance between a Markov state and

a senone. Section 3.3.3 describes three algorithms to compute this distance.

With the hybrid approach, seen triphones share senones according to the bottom-up cluster-

ing mapping table. To model an unseen triphone, we first traverse the corresponding tree until a

leaf is reached. Then the generalized allophone with quantized states (that is, every state refers

to a senone) is used as the model for the unseen triphone. In this fashion, seen triphones use

the best sharing structure achieved by the bottom-up clustering algorithm. Unseen triphones

share senones through the state quantization process. The sub-optimal configuration caused by

the generalized-allophone decision tree, together with possible state-quantization errors, may

degrade the modeling for unseen triphones. However, with the help of the linguistic questions
in the tree and a good state-quantization algorithm, we believe that the hybrid approach is able

to model unseen triphones better than context-independent phone models. This belief is borne

out in the experiments in Section 5.4.

To sum up, the advantages of the hybrid approach are:

"* Optimal distribution clustering is achieved for seen triphones, which are usually the most
frequently used parameters.

"* More detailed parameters than monophone models are obtained for unseen triphones.

"* The number of system parameters iF ' 'd. Only the senones constituting the SDM need

to be maintained.

As the experiments in Section 5.4 demonstrate, the hybrid approach performs as well as
the purely decision-tree based senones. Although the SDM indeed provides better models

48

for seen triphones, the mis-average problem associated with generalized allophones (Figure
3.2) and the state-quantization error for unseen triphones are unavoidable. On the other hand,
the senonic decision tree is able to improve its structure through composite questions and the
linguistic questions are able to capture phenomena that are missed by the HMM statistics due to
insufficient training data. The hybrid approach, which is a great deal more complex, performs
better than the senonic decision tree only when there are few or no unseen triphones in the test
set.

3.3.2 The Senonic Baseform for Pronunciation Learning

Phonetic pronunciation optimization has been considered by several researchers 196, 23, 13].
Most speech recognition systems use a fixed phonetic transcription for each word in the
vocabulary. If a word is transcribed improperly, it will be difficult for the system to recognize

it. More importantly, some words may be pronounced in several ways because of dialect
differences. For example, the word tomato could be pronounced either as /T AX M EY DX

Owl or /T AX M AA DX OWl. In this case, we may use multiple phonetic transcriptions

as alternatives. However, alternative phonetic pronunciations are not always possible. For

example, it is hard to define alternative phonetic pronunciations for the 26 English letters.

More importantly, an intelligent system should be able to learn alternative pronunciations

automatically.

The necessity of learning alternative pronunciations also arises for foreign words due to

the distinct phoneme sets used in different languages. Coupled with speaker variations this

constitutes an even more difficult problem. In this situation purely acoustic driven models

are most useful since the phoneme notation of the local language is discarded. Senones can

be applied to construct purely acoustic driven models for learning alternative pronunciations,

using the technique of state quantization.

Since the senones created by the distribution clustering procedure in Section 3.1.2 are

representative output distributions, we can treat senones as models for the state prototypes in

the Markov-state space, just as fenones are models for the VQ prototypes in the signal vector

space. In fenonic baseforms, words are spelled as a sequence of fenones. A word is treated

as a walk through the VQ prototypes. Similarly we can construct senonic word baseforms,

treating a word as a walk through the Markov state prototypes. Each senone describes a very

short distinct acoustic event (shorter than a phoneme). Each different permutation of senones

constitute the model for a different sound. Figure 3.14 shows the concept of senone sharing or

distribution sharing across all possible models (phones, multi-phones, words, etc.).

In this section, we will present the algorithm for finding the senonic baseform for a word,

49

trthone

word

senone codebook

Figure 3.14: The concept of senone sharing across all hidden Markov models, such as triphones,

multi-phones, words, or even phrase models.

given utterance examples. The senonic baseform we show here is purely acoustic driven,
and therefore is very suitable for speaker adaptation, specialized jargon, and acronyms (e.g.,
pc-store, pronounced as 'pee-see-store') [13].

Construction of the Senonic Baseform

Given multiple utterances of a particular word, we can estimate a word HMM by the forward-
backward algorithm. For each state in the estimated word HMM, a most similar senone is
identified to replace the estimated output distribution. This concept of state quantization is
the same as the one in the hybrid approach, except that the SQ distance measure may be
different. Figure 3.15 shows the algorithm for constructing the senonic baseform for a word,
given multiple utterances. Here we assume that a senone codebook has already been created.
The word model is allowed to be labeled by an arbitrary sequence of senones to provide the
maximum freedom for automatically learned pronunciations. Section 3.3.3 describes three
distance measures for the state quantization process at Step 4 of Figure 3.15.

The senonic baseform is applied to two tasks in Section 5.5. The vocabulary for the first
task contains only the 26 letters of the English alphabet. With a rich training corpus, each letter
has ample training data and thus two senonic baseforms per letter are automatically learned in
our experiments. With these purely acoustic-driven senonic baseforms, the word error rate is

50

1. Compute the average duration (number of time-frames) of the word,
based on the given multiple utterance samples.

2. Build a Bakis word HMM with the number of states equal to a portion
of the average duration.

3. Run several iterations of the forward-backward algorithm on the word
model, using the given utterance tokens.

4. [SQ step] Quantize each state of the estimated word model with the
senone codebook.

Figure 3.15: The determination of thte senonic baseform for a word, given multiple training
utterances.

reduced by 15% compared with the phonetic baseform [67].

The second task attempts to attack the problem of learning a good senonic baseform in large-
vocabulary tasks when there are few training tokens. Unfortunately, with few training tokens,
the proposed SQ algorithm in Section 3.3.3 does not yield a highly-accurate senonic baseform,
due to the high acoustic confusability implied in the vocabulary inventory. Interestingly, we
find that the senonic baseform is indeed able to adapt to speakers, even with very few training
samples. For example, the word arctic was transcribed as /AA R KD T IX KD/ in the lexicon
while a speaker pronounced it as /AA R T IX KD/. The missed /KD/ phoneme caused many
errors made by the phonetically based system, but the senonic baseform was able to recognize
the word easily.

Comparison with the Fenonic Baseform

In comparison with the 200 VQ-dependent fenones, the senone codebook has better acoustic
resolution, as there are usually a few thousand senones in a system. In addition, when training
examples are unavailable, phonetic baseforms can be used together with the senonic baseforms
for other words without any increase in the system complexity, since both phonetic and senonic
baseforms share the same set of senones. Each senonic word model, built by the algorithm
described in Figure 3.15, generally has more states than the traditional phone-concatenated
word model and hence is capable of modeling more acoustic details. Although it usually has
more states, the senonic word model never increases the number of free parameters in the
system.

51

To determine a senonic baseform, we search for the sequence of senones in the Markov
state space that best describes a word. This is similar to the fenonic baseform in which the best
sequence of fenones in the vector space is searched. However, two dissimilarities are noted.
First of all, senones are state based, while fenones are time-frame based. Secondly, the senonic
baseform is solved as a word-HMM training and then state quantization problem, while the
fenonic baseform is solved as a decoding problem (see Section 2.1).

Further work, such as incorporating spelling information, should be done to improve the
senonic baseform in order to take advantage of the adaptation capability hinted at in the arctic
example. Another improvement would be to incorporate senone bigram models or other higher-
level models in the state quantization procedure, or even to use a decoding scheme like the
fenonic baseform with multiple training samples.

3.3.3 Distance Measure for Markov State Quantization

Both the hybrid approach for modeling unseen triphones and the senonic baseform for learning
word pronunciations rely on the concept of Markov state quantization. The goal is to find the

best-matched senone, given the information associated with a Markov state of an estimated
model. The estimated model can be the generalized allophone model as in the hybrid approach,

or it can be any other model such as the estimated word HMM in the senonic baseform work.

What is a good distance measure between a Markov state and a senone? The problem of

state quantization is different from the problem of state clustering. State clustering not only
ties similar Markov states, but also merges infrequent states before merging frequent ones to
make each shared distribution more trainable. A re-training on the shared distribution model is
followed after the clustering procedure. For state quantization, no merge of two distributions
is involved. State quantization is simply a state labeling procedure, like the vector quantization
procedure. Once the given model is labeled by senones, the original senone values can be used
directly, or be re-adjusted by running another round of training.

Euclidean Distance

When there are ample training tokens, the output distribution of the trained model is robust
and thus can represent the state sufficiently. Therefore the problem of measuring the distance
between a Markov state and a senone becomes the problem of measuring the distance between
two probability distributions. The simplest distance measure between two given discrete

52

probability distributions, V and Q, is the Euclidean distance.

distance(P, Q) = / (pi - q1)2

where pi is the probability entry in distribution P'; similarly for Q. Other approaches like
Bhattacharyya distance [76] could also be used.

As mentioned earlier, there are ample training samples for each English letter in the spelling
task. Therefore, the Euclidean distance will be used in the state quantization process to learn
the senonic baseforms for the 26 English letters in Section 5.5.

Cross Entropy

A probability distribution is not a meaningless multi-dimensional vector. It measures the
uncertainty of the occurrence of an event. Therefore, cross entropy for measuring distribution
divergence is a good choice for the distance measure between two probability distributions.

distance(P, Q) = -x(P, P + Q) + 1. x(Q,1P + Q)
Pi log P + qjio

(p + log/ (p2 + qj)/ 2

Unlike (3.1), cross entropy need not be weighted by the occurrence count here, since the
problem of over-sized clusters illustrated in Figure 3.4 does not occur because distributions
are not merged. The goal is simply to quantize the target output distribution (in the estimated
model) with one of the source distributions (i.e., senones). No further merge is imposed. Note
that in this case the entry of P + Q is the average probability of the corresponding entries in P
and Q. That is, Ei pi = 1, Ei qi = I and each entry in P + Q is (pi + qj)/2.

As we will see in Section 5.4, this is the SQ measure we use for the hybrid approach for
modeling unseen triphones.

The Semi-Continuous Output Probability

The two distance measures mentioned above utilize the discrete output distribution exclusively.
The VQ probability density functions for modeling h.e cepstral codewords are ignored and thus
the advantages of the semi-continuous HMMs are not fully incorporated.

To take advantage of semi-continuous HMMs, we align the training utterances with the
estimated model by the Viterbi algorithm [132, 1231. This results in a set of data frames

53

associated with each state in the model. These frames describe what data that particular state is
likely to emit. Each state in the word model is quantized to the senone that has the maximum
probability of generating the aligned data frames. The probability of generating a set of data
frames X = { x }, given a state associated with senone S is computed as:

Pr(XIS) = 1J Pr(xlS) = [I ELfk(x)S(k)
XEX XEX k

where fk is the VQ density function for codeword k in SCHMMs, S(k) is the kth entry in the
given senone, and each data frame is assumed to be independent of each other.

This SQ approach is most suitable when the output distributions in the estimated model are
sparse due to limited training examples. We will see an example use of this distance measure in
Section 5.5. When there are sufficient training samples, using output distributions to represent
states is more compact and efficient.

3.4 Relationship Between CHMMs and SCHMMs with Senone-

Dependent VQ Codebooks

As indicated in Appendix A, there are three ways to compute the probability, Pr(xiij), of
outputting a data frame x, given a transition from state i to state j in an HMM, according to
different representations of the output distribution:

Pr(xlij) = bij(k) for DHMMs if VQ(x) = k

M

Pr(xlij) = 1 wm f,,(x) for CHMMs (3.3)
m=-

Pr(xlij) = I bij(k)f,(x) forSCHMMs (3.4)
kEn7

where 7 is the set of top few best-matched codewords for x

where the density function fk is usually assumed to be a Gaussian density with a mean lk and
a diagonal covariance matrix Ek. The dimensionality of Pk and rEk is the dimensionality of
the data frame x. Table 3.4 compares the pros and cons of these three types of HMMs, where
n is the number of triphones in a system and each triphone has d (typically 3 or 5) distinct
output distributions. In a 20,000-word task, n is on the order of 20,000. If infrequent triphones
(e.g. frequency < 20) are discarded, the number of triphones is still in the range of 1000 -

2000. When the shared distribution model is used, typical numbers of senones for the same
task range from 6,000 - 10,000. For M, the number of mixtures per state, common values are

54

10, 20, or 32. The VQ level, L, is often 256. Typical sizes for q range from 4 to 8. Since the

transition probability is not crucial in terms of recognition performance, we can simply set it to
be context-independent and thus maintain the number of parameters for transition probabilities
to be a constant. In view of this, Table 3.4 does not count the transition probability when the
number of free parameters is considered.

IDHMM CHMM SCHMM

number of parameters ndL nd(M + M + M) ndL + L + L
(Typical values) (2000 * 3 * 256 (2000 * 3 * (32 + 32 + 32) (1.5M)

= 1.5M) = 0.6M)

Pr(xiij) computation 0 ndM density-computation L density-computation
during decoding (memory + ndM multiplication + 1771 multiplication

_ access only) + nd(M - 1) addition + (I iI - 1) addition

VQ error inevitable no minor
distribution assumption no pre-assumed no

Table 3.3: Comparison of DHMMs, CHMMs, and SCHMMs.

Despite of the many advantages of DHMMs, the most serious problem with DHMMs is the
VQ error. SCHMMs relieve quantization errors by choosing the top few codewords for each
data frame instead of just the top one. On the other hand, CHMMs assume the parametric form
(e.g. the Gaussian form) of the output distribution in order to be able to estimate the parameters.
The problem about the parametric-form assumption becomes less serious as the model becomes
more detailed or the number of mixtures for each state becomes larger. However, another serious
problem associated with CHMMs is the heavy floating-point computation. SCHMMs avoid the
expensive computation in CHMMs by constraining all -the Markov states in a system to refer
to the same set of densities. From the viewpoint of CHMMs, the discrete output probability
bii(k) in (3.4) corresponds to the weighting coefficient w, in (3.3) [44, 51, 22].

One way to approach the performance of CHMMs without actually going to CHMMs is to
relax the tying condition in SCHMMs. Currently, the VQ probability densities are tied across
all the Markov states in a system. When the tying is completely relaxed, that is, when each state
has its own set of VQ probability densities (i.e., mixtures in CHMM terminology), the system

becomes a CHMM. Any other intermediate state-tying condition should in principle generate
a performance in between the two extreme cases (SCHMMs and CHMMs), as long as there is
enough training data.

As an example, consider SCHMMs with senone-dependent VQ densities. Within this
scheme, similar Markov states share the same set of densities to reduce the computation
required by CHMMs. However, since there are often a large number of senones in a system,
the senone-dependent VQ densities are likely to be under-trained, if the amount of training

55

data is not increased accordingly. Faced with limited training data, we may resort to a tighter
constraint such as phone-dependent VQ densities, or even phone-class-dependent VQ densities.
Phone-dependent VQ densities were considered by [5] and [84], where the CHMM density was
assumed to be a Laplacian-type or a Gaussian density. Alternatively, the VQ level L (i.e., the
number of mixtures M) should be reduced in order to be able to train the parameters with the
fixed speech corpus. If we treat DHMMs and CHMMs as the two extreme types of HMMs, the
relationship among the SCHMM and its variants can be illustrated in Figure 3.16.

phone-class dependent senone-dependent
VQ densities VQ densities

DH-{MM SCHMM phone-dependentM

VQ densities

Figure 3.16: The relationship of the DHMM, CHMM, SCHMM and its variants. As we relax
the mixture-tying constraint in SCHMMs, they approach CHMMs, which have no mixture
tying.

3.4.1 SCHMMs with Phone-Class Dependent VQ Densities

If we keep the VQ level L fixed at 256 and use phone-dependent VQ densities with SCHMMs,
we are essentially increasing the resolution in the cepstrum space, as Figure 3.17 shows. In
consequence, many codewords are never observed (or only observed a few times) when the
amount of training data is not increased accordingly. As a result, there will be entries with a
zero value in all senones corresponding to the phone which has at least one missing codeword.
In Figure 3.17, the X's indicate under-trained codewords, and accordingly the corresponding
entries in any senone for that phone become zero or some value close to zero.

Faced with a fixed training corpus, one way to avoid under-training is to cluster phones so
that similar phones can share the same VQ subspace. Since there are only about 50 phones
for English, clustering phones into classes can be easily achieved manually. Alternatively, the
phonetic HMMs can be clustered automatically using cross entropy as the distance measure
as in the bottom-up clustering algorithm described in Section 3.1.2. Specifically, we use the
automatic clustering algorithm without the shift action to generate a tree-structured clustering
for the 50 phones. Figure 3.18 shows the cluster structure produced by the automatic procedure.
The number associated with each node indicates the reverse merging sequence. For example,
it shows that phone /IX/ and /AX/ are the most similar pair and thus are merged first. This is
quite consistent with linguistic knowledge.

With a fixed training corpus and a fixed number of senones, the work in Section 5.6 will

56

any AA
senone x

cepstral space

Sany
TSXe " AA' senoneiI

0

Figure 3.17: When phone-dependent VQ codebooks are used, the resolution in the cepstral
domain is increased and thus some codewords are under-trained (never observed or observed
a few times only), given a limited amount of training data. The corresponding senone entry is
either zero or almost zero.

illustrate the effects of using different numbers of phone classes. We believe that with more
training data, we should be able to train more phone classes and achieve more appreciable error
reduction.

3.4.2 SCHMMs with Phone-Dependent, Reduced-VQ Densities

Another way to avoid under-training with a fixed training corpus is to reduce the VQ level (i.e.,
the number of mixtures in CHMM terminology). In Section 5.6, we will show our experience
with 128 VQ densities for each phone. The optimal VQ level and the number of phone classes
depend on the available training data (the amount and the content). Unfortunately, we don't
have an analytic way to define the tradeoff function. Similarly, we don't have an analytic
understanding of the optimal number of senones as a function of the training corpus. Neither
do other systems have a deterministic function for the optimal number of triphones that should
be kept, given a fixed training corpus.

57

4

61

16

15 31 A m c e o pn ut

a ix

8 3
32 4 13 v 7 2 35 " 2

c t S 7 1 41 2 4 1 2
c 7 3172 n 0 2 26

Figure 3.18." Automatic clustering of phones, using cross entropy of the output distribution
associated with phonetic HMMs as the distance measure. The number associated with each
node indicates the reverse merging sequence. This figure shows that the phone /IX/ and /AX/
are the most similar pair and thus are merged first.

58

3.4.3 Reducing VQ-Computation During Baum-Welch Training

When phone-dependent VQ codebooks are used, different sets of VQ densities are computed
according to the different phones a data frame is aligned to. During decoding, we have to do
all VQs with all phone codebooks for every time frame. That is, each time frame requires the
computation of 51,200 Gaussian densities (50 phones * 256 densities/phone * 4 codebooks)
in SPHINX-II. To save some of the expensive computation, we can use context-independent
models as a fast match to prune unnecessary phones and thus avoid the VQ computation for
the pruned phone classes. But this usually leads to some accuracy loss. For the purpose of our
experiments, we do not use this fast-match pruning.

Fortunately, the costs are not as high during training since the correct sentence transcription
is known. Recall the forward a computation of the Baum-Welch estimation of HMM parameters
from Appendix B. At each time frame t, we compute the VQ densities {f ()(xt) I k} for phone
p only if

3 state s E phonep, s.t. at-I(s) 54 0

That is, to compute VQ for time frame t, we examine the a cells at time t - 1 first. If at- (s)

is not zero, we check which phone (p) state s belongs to. At this point we must perform VQ
for frame t with phone p's VQ densities since at-, (s) has non-zero contribution to some at()
cells. Note that transitions at phone boundaries are null; therefore no VQ is necessary for null
transitions. Figure 3.19 illustrates non-zero at- I(.) cells with black states. It shows that that
data xt should be quantized with both the UH and KD codebooks. If we start the training from
a set of well-trained models, each time frame is usually aligned to only 3 or 4 phones. That is,
only 3 to 4 sets of VQs have to be computed for each time frame, instead of 50. This implies a
speed up by a factor of more than 10 for training.

As discussed in Appendix B, normalizing the density values can avoid floating-point excep-
tions and thus result in stable training runs. Appendix B makes clear that in order to maintain
the same re-estimation value as the Baum-Welch formula defines, the same normalization factor
has to be applied to all the VQ densities computed at different states for the same time frame.
In other words, a data frame xt may be aligned to a few phones 4P = {p}. To guarantee the
correctness of Baum-Welch re-estimation, we have to apply the same normalization factor to
all of the VQ density values computed for the same data frame, regardless of which phone this
frame is aligned to. Another important property of the normalization factor is that it has to be
sensitive to different data frames so that a stable range of normalized densities is guaranteed
to prevent floating-point exceptions. As Appendix B.2 discusses, when there was only one
universal codebook, the normalization factor we usually adopted was the summation of the
selected top few densities. That is, the normalized density was

Af(x)

EkEn fk(Xt)

59

8 -g g phone topolgy

/B/ /UH/ /KD/
b 00 k state

t-1
t tA 6'6oo

time

Figure 3.19: Computation of the forward pass in Baum-Welch reestimation, with the phone
HMM topology shown in the upper part. Black states have non-zero at- I (.) values. It illustrates
that frame xt can be consumed inside phone UH or phone KD. Therefore xt has to be quantized
with both the UH VQ codebook and KD codebook, but not others.

One good candidate for the normalization factor for phone-dependent VQ codebooks is to take
the average of the summations across the selected phone-dependent densities. In other words,
the normalized density becomes

fk'(P)(Xt)

{EPEj Eke, fkp)(Xt) / I}

This indeed gives us stable training in our experiments.

3.5 Summary

This chapter explains all the subphonetic modeling techniques explored in this thesis. The
most important concept examined in this dissertation is the analysis of acoustic behaviors at
the HMM state level so that fine distinctions can be made and accurate models can be built.

The first section introduces the clustering of Markov states to create state prototypes called
senones. Each senone is represented by a distribution, modeling the data observation at a
state. Clustering at the state level instead of the entire phonetic model avoids the "mis-

60

average" problem at dissimilar states. The set of models that shares senones is called the
shared-distribution model (SDM). The SDM approach reduced the word error rate by 20%, in
comparison with the generalized-triphone model, as is detailed in Section 5. 1.

To be able to model unseen triphones with detailed parameters and at the same time take
advantage of state sharing, we present the senonic decision tree. Binary decision trees with
linguistic questions are built automatically to classify Markov states. Each leaf is a cluster of
similar states and represents a senone. To find the senone associated with a Markov state of any
triphone, either seen or unseen, we traverse the corresponding tree until a leaf is reached. This
way, both seen and unseen triphones are modeled by senones in a unified fashion. Modeling
unseen triphones with senones reduces the word error rate by 10% - 20%, in comparison with
the situation in which context-independent phones are used for unseen triphones.

The disadvantage of decision trees is their limited re-configuration capability, even with
composite questions, compared with the essentially unrestricted re-shuffling supported in the
bottom-up clustering algorithm. Therefore, the decision-tree based sharing structure for seen
triphones may be sub-optimal. One way to keep the optimal sharing structure for seen triphones
and at the same time to model unseen triphones with senones is through a hybrid approach.
The SDM is built for modeling seen triphones with the optimal sharing structure. Next
decision-tree based generalized allophones are constructed for unseen triphones. To avoid
doubling the number of free parameters, the output distribution associated with the Markov
state of the generalized-allophone model is replaced by the best-matching senone. In other
words, the Markov states of the generalized-allophone models are quantized with the senone
codebook. Experimental results in Chapter 5 shows that the SDM indeed performs slightly
better than the purely decision-tree based senones when unseen triphones are modeled by
context-independent phones in both systems. When unseen triphones are modeled by senones
in both systems, the hybrid approach performs as well as the purely decision-tree based senone.
The hybrid system does not outperform the purely decision-tree based senone because the
unseen-triphone modeling is poorer (possibly due to both the mis-average problem associated
with the generalized allophone and state quantization errors).

The concept of state quantization can also be applied to pronunciation learning. Here the
senonic baseform of a word is defined to be a word-HMM training procedure followed by
state quantization. Like the fenonic baseform, the senonic baseform is purely acoustic driven.
Unlike fenones, senones have better resolution in the acoustic space and senonic baseforms
are not solved as a decoding problem, as are fenonic baseforms. The senonic baseform offers
15% word error reduction over the phonetic baseform on a small vocabulary task. Applying
the senonic baseform to large vocabulary tasks has not yet proven to be successful. However,
it does show promise for speaker adaptation and speaker-dependent applications. Possible
improvements on the senonic baseform (not yet implemented due to time constraints and other
interests) include the incorporation of the spelling information and a senone search strategy

61

similar to the one used in the fenonic baseform, with a senone bigram model or a even more
complex senone language model.

CHMMs remove VQ errors completely and have a fewer number of free parameters, com-
pared with DHMMs. Therefore, some systems are able to provide high recognition accuracy
using CHMMs 7. However, one of the most severe problems associated with CHMMs is the
heavy floating-point computation. To approach the performance of CHMMs without caus-
ing heavy computation, Section 4 introduces the SCHMMs with phone-class dependent VQ
codebooks in which all the Markov states for the same phone class share the same set of VQ
densities. This releases the tied-mixture constraint in SCHMMs where all the Markov states
for all phones are tied with the same set of mixtures (i.e., the universal VQ codebook). With
this higher resolution in the cepstral space and with the same training corpus, Chapter 5 shows
that using 8 phone-class VQ codebooks reduces the word error rate by 8%. We believe that
with more training data, this small increase in the number of free parameters will produce an
appreciable error reduction. Alternatively, when the VQ level is reduced, we may even be able
to train senone-dependent VQ codebooks. SCHMMs with senone-dependent VQ codebooks

are equivalent to CHMMs with a senone sharing-structure, where similar states share the same
set of mixtures.

This chapter concentrates on explaining the problems and suggested algorithms for solu-
tions. To find the experimental performance of a particular algorithm, readers can jump directly
to the appropriate section of Chapter 5.

7LIMSI in France, Philips in Germany, the HTK system of Cambridge University in England and Stanford
Research Institute in the United States all used continuous-density HMMs and were the top accurate systems in
the recent ARPA annual evaluation in November 1993, among otheik systems which used semi-continuous HMMs.
See reports from ARPA Human Language Technology Workshop, March, 1994.

62

Chapter 4

Experimental Environments

To evaluate the techniques proposed in Chapter 3, we run through a series of experiments on
ARPA's common speech corpora. This chapter will first describe the tasks, the training and
testing corpora used in evaluating the subphonetic techniques depicted in the previous chapter.
Next, since all experiments are based on the SPHINX-II speech recognition system [46, 66], we
will review the overall structure of SPHINX-II. All experiments are explained and discussed
in detail in Chapter 5.

SPHINX-II is an advance over the SPHINX system [90]. Both systems are software only

I, large-vocabulary, speaker-independent, continuous speech recognizers, based on HMMs.

SPHINX-U1 works on a larger scale of vocabulary (5,000 ,-, 20,000 and up) than SPHINX (1,000-
word vocabulary) and still provides real-time performance and high recognition-accuracy on
workstations, such as Alpha3000/500 and Hp735. On the 5,000-word ARPA Wall Street Journal
read speech, the word accuracy is above 95%. Section 4.2 will describe the new features that
make SPHINX-I successful.

4.1 Tasks and Speech Corpora

To evaluate the techniques proposed in this thesis, two official tasks are chosen for experiments
- the Resource Management (RM) task and the Wall Street Journal (WSJ) task. The 997-
word RM task was chosen because when we began work on this thesis, RM had been the
official DARPA (Defense Advanced Research Projects Agency of the Department of Defense)

'No special hardware except an A/D converter is required.

63

2 evaluation task since 1988. Development of SPHINX and SPHINX-I1 has been in large part

supported by the DARPA project. RM evaluations ended officially in September 1992.

Given the high-accuracy performance achieved at CMU and elsewhere on RM, DARPA
encouraged the speech recognition community to work on a more complex dictation task,
namely the WSJ task. A dry run was started in February 1992 and the first official evaluation on
a 5,000-word dictation took place in November 1992. Soon after, in December 1992, there was
another dry run on a 20,000-word open vocabulary task. The evaluation in 1992 demonstrated
that highly-accurate, real-time continuous speech recognition systems for speaker-independent,
very-large vocabulary tasks in the order of 20K are possible using HMM speech recognition
techniques and state-of-the-art workstations for computation.

Researchers are currently concentrating their efforts on improving the accuracy, mem-
ory capacity, and speed of their recognizers, particularly for very-large vocabulary, speaker-
independent continuous speech dictation. In this thesis, both RM and WSJ are tested in the
speaker-independent continuous-speech mode.

4.1.1 Resource Management

The Resource Management task was designed as an inquiry for naval resources [112], but
was general enough to cover database query tasks. It was created to evaluate the speech
recognition systems of recent DARPA projects. Officially, the RM program started in May
1988 and ended in September 1992. The purpose of this task was to look for techniques
that enable large-vocabulary, speaker-independent continuous speech recognition. When the
program ended, the word accuracy on the task had been brought up to 95% - 97% for different
test sets. The recognizer ran at real time on workstations such as the SUN-4 and DEC-5000
workstations with 16MB to 64MB of main memory. These achievements were made possible
through the technique of HMMs. Unlike pattern-matching techniques such as Dynamic Time
Warping, HMMs represent large vocabularies compactly through the concatenation of phonetic
models. Speaker-independence was achieved by pooling training data from many speakers .

Continuous speech is elegantly represented by the concatenation of word HMMs and decoding
is accomplished through the Viterbi beam search algorithm [132]. These same techniques have
been extended to very-large vocabulary tasks such as the 20,000-word vocabulary WSJ task.

2DARPA was renamed ARPA in late 1992.
3Some work normalized the speaker cepstra before pooling to provide more accurate acoustic modeling

[100,541.

64

What is Brooke's fuel level and fuel capacity?
When is Plunger changing fleets?
Are Wednesday's casreps worse than Monday's for Kiska?
Display a chart of Canada with DMDS switches set to their defaults.
Is Poughkeepsie's Mob area m-rating below Prairie's?
Was Monday's last HFDF sensor location for the Hawkbill in Mozambique Channel?
Find me USN ships deployed in eighty four.
Display the definition of south Bering sea alert.

Figure 4.1: Sample utterances in the RM official training database.

Lexicon and Grammar

Figure 4.1 lists some sample utterances in the RM official training corpus. At the lexical level,
the 997-word RM task is very difficult. There are many confusable pairs, such as what and
what's, the and a, four and fourth, any and many, and many others. Most of the proper nouns
can appear in singular, plural, and possessive forms, which creates still more confusable pairs
and ambiguous word boundaries. There are many function words (such as a, and, of, in, on, to,
the) that are articulated very poorly and are hard to recognize or even locate. Moreover, many
of these function words are optional according to the grammar. The entire vocabulary of this
task, along with the most likely pronunciation of each word can be found in [87].

At the grammatic level, RM is not very difficult because the sentences in this task are
generated from a set of 900 sentence templates which resemble realistic questions in a database
system. This task design reflects the philosophy that language modeling issues were to be
assumed away by providing a complete model of the parses that would be encountered in the
test set. Some examples of these 900 templates can be found in [871. Each template is a network
of tags (i.e. categories of words). Given these templates, the list of tags that can follow any
given tag can be easily determined. Based on this information and the list of words in each
tag, the list of words that can follow any given word can be generated. Among the 994,009
(997 * 997) possible word pairs, only 57,878 are legal, according to the tagged templates.
These legal word pairs constitute the official language model - the word-pair grammar. The
word-pair grammar specifies only the list of words that can legally follow any given word.
Uniform probabilities are used for all legal word pairs. That is, if there are k words that can
follow word w, then the probability that any of these k words occurs next given the current
word w, is I/k. This grammar has a test-set perplexity [71, 78] of about 60. The perplexity
of a grammar (or language model) roughly corresponds to the average number of words that
can follow a given word according to the grammar. Given that there are 57,878 legal word
pairs spawned from 997 words, we can estimate the perplexity of the word-pair grammar to be
57, 878/997 = 59, which is consistent with the test-set perplexity.

65

RM was also evaluated under the no-grammar condition, where any word can be followed
by any word with the uniform probability (I /n where n is the vocabulary size and equal to 997
for RM), resulting in a perplexity of 997.

Training and Testing Corpora

RM has an official common training set, the TIRM corpus, which consists of 3,990 read
sentences from 105 speakers (30 or 40 sentences for each speaker). The ratio of male to
female speakers is about two to one. These sentences were recorded at Texas Instruments (TI)
using a Sennheiser HMD-414-6 close-talking, noise-canceling, headset-boom microphone in a
sound-treated room [36, 37]. The speech was sampled at 20 kHz at TI, then down-sampled to
16 kHz at the National Bureau of Standards.

The test set used in this thesis consists of 300 sentences from the February- 1989 evaluation
set and another 300 sentences from the Oct-ber-1989 evaluation set. There are in total 20
speakers; none of them is covered by the training corpus. These testing sentences were also
recorded at TI under the same recording condition as used for the TIRM corpus.

4.1.2 Wall Street Journal

Given the promising results from RM, researchers have moved to a more ambitious goal
since 1992 - the Wall Street Journal task. The WSJ corpus consists of approximately 45
million words of text published by the Wall Street Journal between the years of 1987 and 1989.
This corpus was made available through the Association for Computation Linguistics/Data
Collection Initiative (ACL/DCI) [93].

Lexicon and Grammar

For the purposes of the February-1992 dry run, eight standard bigram language models were
provided by D. Paul at Lincoln Labs [109]. A bigram language model, like a word-pair
grammar, specifies legal word pairs. In addition, the word transition probabilities are trained
from a large text corpus, rather than set to be uniform. The WSJ language models were trained
only on the WSJ data that was not held out for acoustic training and testing. The language
models are characterized along three dimensions, lexicon size (N=5k or N=20k), closed or
open vocabulary (c or o), and verbalized or non-verbalized punctuations (vp or nvp). The
distinction between open and closed vocabulary is in the method used to choose the lexicon.

66

For the open vocabulary, the lexicon approximately consists of the N most common words
in the corpus. For the closed vocabulary, a set of N words were selected in a manner that
would allow the creation of a sub-corpus that would have 100% lexical coverage by this closed
vocabulary. The open-vocabulary condition is suitable for the research dealing with out-of-
vocabulary (OOV) words, which for large vocabulary is considered a very important problem

(and still an unsolved mystery) in speech recognition.

In the verbalized-punctuation condition, punctuations are pronounced verbally. For exam-
ple, if a sentence written on a Wall Street Journal looks like

A white house game of "chicken" with Germany and Japan,
played by talking down the dollar, hasn't helped either.

The speaker would have said,

A white house game of double-quote chicken double-quote
with Germany and Japan comma played by talking down the
dollar comma hasn't helped either period

As punctuations occur in every sentence and punctuations are acoustically easy words, we can
predict that the perplexity for the vp condition is lower than that for nvp and the recognition
accuracy for vp sentences is higher than that for nvp. Table 4.1 lists the development-set
perp. 'ties for the eight language models. As we predicted, the vp perplexities are indeed
lower than nvp perplexities. The word lists in close and open vocabularies are quite different,
since they are derived using different methods. Therefore, comparing the perplexity of close
and open vocabulary conditions is meaningless. For further details about the definition of the
WSJ task, see [109].

5k 20k
closed open closed open

vp 80 72 158 135
nvp 118 105 236 198

Table 4.1: Perplexities for the eight WSJ language models.

To be able to afford many experiments in limited time, only the 5k closed vocabulary, non-
verbalized punctuation condition (denoted as 5c-nvp thereafter) is tested in this dissertation.
As shown in Table 4.1, the development-set perplexity for 5c-nvp is 118.

67

Despite the decline in stock prices trading volume wasn't overwhelming
And the total allowance for credit losses remained unchanged at one point three
billion dollars
Clearly ,comma something is changing in Europe .period
A white house game of "double-quote chicken "double-quote with Germany and
Japan ,comma played by talking down the dollar ,comma hasn't helped either .period
But what exactly is its threat to life or health ?question-mark

Figure 4.2: Sample utterances in the WSJ training corpus. The first two utterances are nvp
sentences; the last three are vp.

Training and Testing Corpora

The official speaker-independent training corpus (si-trn) provided by the National Institute of
Standards and Technology (NIST) consists of 7240 utterances of read WSJ text, equally divided
among vp and nvp texts [106]. The texts chosen to train the system were quality filtered to
remove very long and very short sentences as well as to remove sentences containing words
not among the 64k most frequently occurring words in the WSJ corpus [109]. The data was
collected from 84 speakers 4 , equally divided among male and female. Data recording was
performed at three different locations, Massachusett Institute of Technology (MIT), Stanford
Research Institute (SRI) and Texas Instrument (TI). At all three locations the same close
speaking, noise canceling microphone was used. However environmental conditions vary
from a sound booth to a laboratory environment. Figure 4.2 lists examples of the training
utterances, where "double-quote represents the pronunciation of double-quote (similarly for
other punctuation words).

To test the 5c-nvp speaker-independent continuous speech recognition, two data sets are
used for performance comparison: si-dev5 and nov92. The development set, si-dev5, originally
consisted of 410 utterances from 10 speakers. However, it contains an outlier speaker (422)
who has a fast speaking rate and a high-pitched voice which cause significant performance
degradation for the entire set. To calibrate the performance across different test sets and to better
isolate the problems of general acoustic modeling (which are addressed in this dissertation)
and special techniques for handling outlier speakers (under investigation by BBN Systems and
Technologies and others [1211), the utterances from speaker 422 were removed from our test
set. In addition, the mis-transcribed utterance 053c100n were also removed. This results in
367 utterances from 9 speakers (4 female and 5 male) in the sidev5 set. The November-1992
evaluation set (nov92) consists of 330 utterances from 8 speakers (4 male and 4 female). None

4 One of the speakers in the training corpus was recorded twice but at different sites and so this person is
counted as two different speakers.

68

of these 18 speakers is covered by the training cor- -s.

4.2 The SPHINX-Il System

Since the subphonetic modeling experiments in this thesis were tested in the context of the
SPHINX-Il speech recognition system, this section will review the overall structure of SPHINX-
II. SPHINX-II, like its predecessor SPHINX, is a large-vocabulary, speaker-independent, con-

tinuous speech recognizers, based on HMMs.

SPHINX was first announced at CMU in 1988 [87, 891. Since then, it has undergone

significant improvements. Because of the dramatic error reduction in the intervening years, it
has been renamed SPHINX-II [46, 66] to distinguish it from the first announced version. The
additions include:

" Between-word triphones are incorporated [62] to model word-boundary co-articulation
in continuous speech.

" Mel-scale frequency coefficients (MFCs) with cepstral mean normalization (CMN) re-

placed the linear-predictive coefficients (LPCs) [31], as they offer consistently better
performance on a few well-known systems [105].

" Four independent sets of signal features are extracted instead of three [48, 57]. Specifi-
cally, second-order differenced cepstra and first-order long-term differenced cepstra are
added.

"* Sex-dependent semi-continuous HMMs [56] replace sex-independent discrete HMMs.

"* A three-pass search algorithm [31 replaces the one-pass Viterbi beam search [132, 95, 123]

to process very large vocabularies and long-distance language models efficiently.

" Subphonetic modeling techniques presented in this thesis [57,67, 64,68] are incorporated
to add accuracy and robustness to the acoustic nmodel.

This section will summarize the above components. Details about the the subphonetic
modeling techniques were already presented in the previous chapter. Experimental performance
of the subphonetic modeling techniques can be found in the next chapter.

69

4.2.1 Signal Processing

Speech signals are highly redundant because of their strong correlation between adjacent

segments. Therefore, speech recognition systems always use a parametric representation rather
than the speech waveform itself. Not only is useful information compactly extracted from

the waveform, but computation is saved for both training and decoding (as the speech is

compressed). The front-end of SPHINX-II is illustrated in Figure 4.3. The following steps are
taken:

1. The input speech waveform is sampled at 16 kHz.

2. The sampled waveform is blocked into frames. Each frame spans 25.6 msec (about 410

samples) and consecutive frames overlap by 10 msec. In other words, each 25.6-msec

speech segment is multiplied by a Hamming window. Then the window is shifted by 10
msec to compute the next frame.

3. A preemphasis filter H(z) = 1 - 0.97z-I is applied to get rid of the lip effect [981.

4. 12 mel-scale frequency coefficients are computed for each frame:

xt(k) 1 <k_< 12

where t is in the unit of frames, i.e., 10 msec.

5. For each time frame t, four sets of features are computed from the MFCs:

"* Cepstra normalized by the sentence-based mean:

,(k)= IExt(k) 1 < k < 12
T t

where T = number of frames of the input utterance
xt(k) -- xt(k) - y,(k) I < k < 12

"* 40-ms and 80-ms differenced MFCs. This constitutes a vector of 24 dimensions.

Axt(k) = xt+2 (k) - xt- 2 (k) I < k < 12

AXt(k) = xt+4 (k) - xt_ 4 (k) 1 < k < 12

"* second-order differenced MFCs.

AAxt(k) = Axt+ 1(k) - Axt_ .. (k) I < k < 12

70

e normalized power (log energy), differenced power, second-order differenced power.

Xt (0) Xt t(0)-- ; I • . -{ (0))

Axt(0) Xt+ 2 (0) - Xt- 2 (0)

AAxt(0) -- Axt+ 1(0) - Axt_- (0)

These four sets of features

AxtXt (0) 1
IXt 1 2 1 A , {II LXt} 12 , Axt(0)

242 2, AAx,(0) 3
are assumed to be independent for mathematic and implementation simplicity.

Vector Quantization

As we will see later, discrete HMMs are often used as the seed model to bootstrap the training
of semi-continuous HMMs. For discrete HMMs, each frame of the speech is represented by a
discrete number instead of the continuous vector xt. As mentioned earlier, vector quantization
(VQ) [39, 97] is the data reduction technique that maps a real vector onto a discrete symbol. A
vector quantizer is defined by a codebook, which is comprised of the prototype vectors, and a
distortion measure that estimates the proximity of two vectors.

In SPHINX and SPHINX-II, one codebook with 256 prototypes is created for each of the
signal features mentioned in the previous paragraph, using approximately I01 to 106 randomly
selected vectors. The result is four sets of codebooks, which are assumed to be independent.
The prototypes are estimated via a hierarchical clustering algorithm similar to the K-means
algorithm developed by Linde et al [94], which is an approximate maximum likelihood method.
A prototype is the mean of a cluster of similar vectors. In addition to the mean, the covariance
of each cluster is also computed to bootstrap the training of the SCHMM codebook ({fk}
in Formula (A.4)). Figure 4.4 illustrates the mean vector and the covariance matrix for one
codeword (k) in the power codebook. In SPHINX-H, each codeword is modeled by a Gaussian
with a diagonal covariance. The covariance is assumed to be diagonal (i.e., each dimension is
independent of one another) to reduce computation and enable the covariance to be well trained
given a limited amount of training data. These means and covariances will be used as the initial
values for training SCHMM codebooks.

For discrete HMMs, every input vector of every speech feature is symbolized by the closest
prototype using the Euclidean distance. That is, for DHMMs, each frame of speech data

71

Sampling at 16 kHz saping once per loins

XHamming: 4
0 25.6 mst

For discet-e freqenc

Figure 4.3: The signal processing front-end in SPHINX-II.

72

5 6
10 _ 10 samples

10 0

codeword 0

o codeword k
0

0

0

Gc0 0 0

Figure 4.4: Computing the mean and covariance matrix for each codeword in the power
codebook.

requires only four bytes of memory (one for each codebook) instead of 52 bytes (twelve 32-bit
floating-point MFCs and one power) for CHMMs or SCHMMs. Thus the space requirement
for storing the speech corpus for DHMMs is 1/13 of that for CHMMs or SCHMMs, at the
price of vector quantization errors. Context-independent phonetic DHMMs will be used as
the initial values for training context-dependent SCHMM parameters (transition and output
probabilities).

4.2.2 The Phone Set and the Pronunciation Dictionary

The Basic Phone Set

As discussed in Chapter 1, word models are not practical for large-vocabulary tasks because
the amount of training data and the storage required are intractable. Therefore, both SPHINX
and SPHINX-II are based on context-dependent phonetic models to allow parameter sharing
and detailed modeling. In SPHINX-II, in addition to the fifty English phones plus three silence
models for silences at the beginning, middle and ending parts of an utterance, we also add
ten noise models for non-speech voices like door bumps, tongue clicks, inhalations and so
on. The three silence models are motivated by the observation that for read speech inhalation

73

and breath noises often occur at the beginning and end of an utterance, while very seldom
in the middle of an utterance. However, making this fine silence separation does not offer
any improvement (nor does it hurt the system) empirically. The noise models are helpful
for spontaneous speech, where speakers sometimes hesitate or pause with non-speech voices.
The experiments conducted in this dissertation are only for read speech; the noise models are
therefore not used. Nevertheless, SPHINX-I1 and all the techniques described in this thesis are
applicable to spontaneous speech with little modification. The whole 63-phone set, together
with examples, is listed in Table 4.2. 5

Phone Example Phone Example Phone Example

IBUMP/ door bump /CLICK/ tongue click /EXHALE/ exhalation
/INHALE/ inhalation /NOISE/ office noises /POP/ pop noises
/RUSTLE/ paper rustle /SMACK/ tongue smack /SWALLOW/ saliva swallow

/UH/ uh, ah, em, er, etc..
/SIL/ (middle silence) /SILb/ (begin sil) /SILe/ (end sil)

/IY/ beat /R/ red IK/ kick
IIHw bit /Yl yet IBDI rob
/EHI bet /WI wet /DD/ bad
/AE/ bat /ER/ bird /GD/ dog
/IX/ roses /AXR/ diner /PD/ wrap
/AX/ the IMI mom /TD/ sit
/AH/ but IN/ non /KD/ sick
/UW/ boot INGI sing /TS/ cats

/UH/ book ICHI church IZ/ zoo
IAO/ bought /Jil judge /ZH/ measure
/AA/ cot IDHI they IV/ very
IEYI bait /BI bob /F/ brief

/AY/ bite IDI dad ITH/ thief
IOYI boy /DX/ butter IS/ six
/AW/ about IGI gag /SHI shoe
fOUl boat IPI pop IHHI hay
ILl led /T/ tot

Table 4.2: The phone set used in the SPHINX-II system.

5 For Resource Management Task described in Section 4.1.1, we did not have phones SILb, SILe, AXR, BD,
GD, and ZH , but instead we had EN.

74

Context-Dependent Phones

Since monophones are inadequate for modeling acoustic phenomena accurately, both SPHINX
and SPHINX-il are based on triphone models. Moreover, while modeling continuous speech,
we notice strong co-articulation at word boundaries. For example, the spectrograms in Figure

4.5 [61] show that the realization of the /IY/ phone in we is strongly affected by the next
phone in the utterance.

S...... L 6LLLL ...I'I ' " La LkLILLLLLLL L L t,, ,,, .. a .. .- . ., .k,.•

: .." . ;,

d,',1 " .•' *• " *-" ..*..

A .

lI " I -1 I v I "" I I v I £.y Il Ob . I I

I UU I uI I ,u-

Figure 4.5: The waveforms and spectrograms for we were and we yelled. It is clear that the
realization of phoneme / IY/ in we depends on the contexts across the word boundary.

To improve the stochastic modeling structure for continuous speech, between-word tri-
phones [63, 108, 135], which account for word-boundary co-articulation effects, are also
modeled. While considering between-word triphones, we also notice that the same triphone
has different acoustic realizations at different word positions. As illustrated in Figure 4.6, it is
obvious that the spectrum of triphone IT (AE, R) / at the end of a word (that) is very different
from that of the same triphone in the middle of a word (theatrical).

To take into account word-position effects, triphones are classified into four types; different
types constitute different triphone models [62, 831:

"* Within-word triphones. This is a triphone occurring within a word, like T (AE, R) in

theatrical.

"* Beginning-word triphones. This is a triphone occurring at the beginning position of a
word, like R (T, AO) b and R (SIL, AO) b in that rock6 . Note that this type of triphone

6We always allow an optional silence between two words. Therefore, that rock can be spoken as that-rock or
that-SIL-rock.

75

V •-

•,'.• "."" :'. " *

aAw l,

I a. I r I t I as I I t

MTAT THEA .HAThCAL

Figure 4.6: The waveforms and spectrograms for that rock and theatrical. The realization of

triphone /T (AE, R) / is dependent on the word positions.

is appended by the letter b in order to distinguish it from the same triphone at other word

positions. Note also that the left-context of the first triphone for a word depends on the

last phone of the preceding word. That is, when a word is referred to in isolation, we
can only specify the biphone for its first phone, e.g. R (?, AO) b for rock, if the word

consists of at least two phones.

e Ending-word triphones. This is a triphone occurring at the ending position of a word,
like T (AE, R) e and T (AE, SIL) e in that rock. Note that this type of triphone is

suffixed by the letter e to make it distinct with respect to word positions. In analogy with
beginning-word triphones, the right context of the last triphone for a word is dependent
on the first phone of the succeeding word. Thus, when a word is seen in isolation, we

can only specify the biphone for its final phone, e.g. T (AE, ?) e for that, if the word
consists of at least two phones.

* Single-phone triphones. These are triphones particularly for single-phone words, like
AX (Z,B) s, AX(Z, SIL) s, AX (SIL, B) s, and AX (SIL, SIL) s in This is a book.
Note that this type of triphone has a suffix of s. Without the contextual words, we can
only specify the monophone for single-phone words, e.g. AX (?. ?) s for a. Because the
acoustic evidence of a single-phone word is so short and highly co-articulated with the

neighboring words, it is hard to decide which of the above three types of triphones the
single phone should belong to. This is the motivation for the fourth type. Both left and
right contexts of a single-phone triphone are unspecified until the contextual words are
given.

76

Because of the huge number of triphones (maximum 513 * 4), triphones are actually not
used directly. Instead, a parameter-sharing technique called triphone generalization was used
in SPHINX and another one called distribution sharing is used in SPHINX-II (Section 3.1) to
reduce the number of parameters to be tractable and trainable. The performance comparison
between generalized triphones and the shared-distribution model is one of the key experiments
in the next chapter.

The Pronunciation Dictionary

The triphone transcription for each word is specified according to the above four types of
triphones. Table 4.2.2 shows the triphone pronunciations for some words. The question mark
represents an unspecified phone which will be instantiated by the last phone of the preceding
word or the first phone of the succeeding words once the contextual words are known.

A /AX(?,?)s/
THE /DH(?,AX)b AX(DH, ?)e/
SPHINX /S(?,F)b F(S,IH) IH(F,NG) NG(IH,KD) KD(NG,S) S(K,?)e/

Table 4.3: Examples of the lexicon, spelled by position-dependent triphones. The question
mark will be instantiated by the last phone of the preceding word or the first phone of the
succeeding word in the utterance.

4.2.3 Training Architecture

Sentence Representation Using Hidden Markov Models

Both SPHINX and SPHINX-II are triphone-HMM based speech recognition system. Word
models can be easily formed by concatenating component triphones or networking alternative

phonetic pronunciations [103]. Sentence models are in turn formed by concatenating a sequence
of word models, with an optional silence between two consecutive words 7. Transitions at phone
boundaries and word boundaries are all null arcs; i.e., they do not consume any data. This word
concatenation leads conceptually to a large network of legal HMM states. This structure is what
makes HMMs particularly suitable for continuous speech recognition. For example, Figure

7The other way is to locate silences first and then construct the sentence model with between-word silences
dictated by the location found [1211.

77

4.7 illustrates the sentence HMM for the utterance What's Mars' status?. For an extensive
discussion on constructing sentence HMMs considering between-word triphones, see [61, 62].

SIL--eW(SIL,AH)b -'- AH(W,TS)
-- SIL M(SIL M)b

STS(AH,M)e - .. M(TS,AA)b

- S(R,SIL)e so SIL-s-S(SIL,D)b (."-'AA(M,R) --• R(AA,S) j ,,Ie.--.•D(SAE) --

S(R,S)e - S(S,D)b

--s-AE(D,DX) --.. DX(AE,AX) -0-AX(DX,S) -- a-S(AX,SIL)e -0 SIL

Figure 4.7: The sentence connection for What's Mars' status? when between-word triphones
are modeled.

Techniques such as DTW, knowledge-engineering, traditional pattern recognition, and
neural networks face serious problems in training their models under continuous speech, because
word boundaries are not automatically detectable. Often, hand-marking is needed, which is
tedious, typically suboptimal and not feasible for automated systems. HMMs, on the other
hand, do not have this problem. To use continuous speech, sentence HMMs are constructed as
described above. Then the utterance is automatically aligned with the sentence HMM according
to the progressive topology in the HMM, by a maximum likelihood criterion. Training HMMs
on continuous speech is not much more difficult than training on isolated words.

Two-Stage Training in SPHINX-I and II

The training procedure involves optimizing HMM parameters given an ensemble of training
data. Because there is no known analytic method to obtain the optimal parameters in a maximum
likelihood (ML) model, an iterative procedure, the fcorward-backward algorithm, also known as
the Baum-Welch algorithm [20, 7], is generally used to estimate both the output and transition
probabilities. The goal of the forward-backward algorithm is to maximize the joint probability
of generating the training data given the model. Other parameter estimation approaches include
maximum mutual information estimation (MMIE) [25] and corrective training [8, 91]. MMIE
minimizes the average uncertainty of the training data given the model, instead of finding
true model parameters. Corrective training attempts to maximize the difference between the
probabilities of the correct word string and the incorrect one. Among these, SPHINX-II uses
the forward-backward ML estimation.

78

In either SPHINX-I or II, there are two stages for acoustic training, as shown in Figure
4.8. The first stage is to generate the generalized-triphone mapping table for SPHINX-I or
the senone mapping table for SPHINX-II. After the mapping table is obtained, the second
stage is to train the final models which share their parameters according to the mapping table.
For SPHINX-I, the final models are sex-independent DHMMs; for SPHINX-II, they are sex-
dependent SCHMMs.

First-Stage Training To construct the mapping table, a set of triphone models has to be
estimated first for computing the distance measure, as described in Figure 3.5 and Figure 3.10.
For the sake of simplicity, one-codebook discrete HMMs are usually used at this stage, where
the acoustic feature is packed from the cepstral coefficients, 40-msec differenced cepstrum,
power and 40-msec differenced power (i-e., a vector of dimension 26). The VQ level is 256.

As shown in Figure 4.8(a), to estimate the triphone DHMMs we bootstrap the training
from context-independent phone models, which are usually in turn trained from the uniform
distribution (i.e., every probability entry for the output distribution is 1/256; every transition
probability is 1/a3 , where as, is the number of transitions out of state s). Deleted interpolation
[72] is used to smooth the estimated monophone parameters with the uniform distribution, but
is not used for triphone models. Triphone models are not smoothed because before clustering,
they are very much under-trained due to insufficient training data. Interpolation would smooth
out triphone characteristics and make many triphones indistinguishable.

After the triphone models are estimated, the triphone clustering [86] procedure is applied for
SPHINX-I to generate the generalized-triphone mapping table. For SPHINX-II, the distribution
clustering procedure [64] is applied to generate the senone mapping table. For generalized
triphones, the goal is to cluster similar triphones so that these shared parameters can be well
trained. For example in Figure 4.8(a), both triphone EY (L, SH) (relation) and EY (L, S)
(place) are represented by the same generalized-triphone model in SPHINX-I. That is, they
are indistinguishable in the generalized-triphone system. Each entry of the mapping table in
SPHINX-I maps a triphone to a generalized one. For the shared-distribution model, the goal
is to cluster similar Markov states so that they can share the same output distribution. Each
entry of the mapping table in SPHINX-II maps a triphone to a sequence of senone labels. For
example, the mapping table illustrated in Figure 4.8(a) shows that EY (L, S) and EY (L, SH)
can be distinguished by the last Markov states since they are labeled with different senones.

Second-Stage Training After the number of parameters is reduced by the clustering pro-
cedure, we are now able to train the generalized triphones or senones reliably. The second
training stage is therefore to train the 4-codebook triphone HMMs (Figure 4.8(b)), using the
mapping table constructed at the first stage. Note that the mapping table is sex-independent. For

79

uniform distribution uniform distribution

I ft4
train one-codebook train four-codebook
context-independent context-independent
DHMMs DHMMs

train one-codebook train four-codebook train four-codebook
triphone DHMMs male triphone SCHMMs female triphone SCHMMs

triphone distribution
clustering clustering deleted interpolation deleted interpolationj

final HPAMs for final HMMs for
male voices female voices

EY(L,S) 1 EY(L,S) 1 2 3 4 5
EY(L,SH) 1 EY(L,SH) 1 2 34 6

generaliz -triphon lenon.mapping t 1. mapping table
for SPH• • for SPHEhM-II

(a) generate the (b) train generalized triphones
mapping table or the shared-distribution model

Figure 4.8: Two stages of system training. When SPHINX-I is used, the connection at the
bottom of Figure (a) is switched to triphone clustering and the sex-dependent SCHMMs in
Figure (b) are replaced by sex-independent DHMMs.

80

SPHINX-I, the mapping table is a generalized-triphone mapping table and the triphone models
are sex-independent DHMMs. For SPHINX-II, the mapping table is a senone mapping table
and the triphone models are sex-dependent SCHMMs. With SCHMMs' smoothing capability
(by choosing top few codewords with the density values as weights), we are able to train the
two sex-dependent models in order to separate the apparently distinct frequency responses of
male and female vocal tracts.

In SPHINX-II, SCHMMs replace DHMMs to reduce vector quantization errors. The
continuous densities for modeling the VQ codewords are assumed to be Gaussian densities
with diagonal covariances, and are initialized by the sex-independent means and covariances of
the VQ prototypes, as mentioned in Section 4.2.1. The output distributions (or senones) and the
transition probabilities in the triphone SCHMMs are usually initialized with those of context-
independent phonetic DHMMs, which are boosted from uniform probabilities. However, as
discussed in Section 3.1.4 we can easily start senonic triphone training from a set of existing
triphone models to speed up the convergence of the ML parameter estimation. Since transition
probabilities are known to be much less important than the output distributions, they are assumed
to be context-independent in SPHINX-Il. This also saves us some space. All the parameters
(the transition probabilities, output probabilities, and codebook densities) are jointly estimated
by the Baum-Welch algorithm [49].

4.2.4 Recognition Architecture

Static Language Networks for Small-Vocabulary Tasks

For a small task like RM, a language network is pre-compiled to represent the search space
during recognition to speed the decoding procedure. Word models are formed by concatenating
phonetic models. Connections between words are determined by the language model, if any.
The language model also decides the probability of the between-word connections. Figure
4.9 shows one part of the pre-compiled language network for Resource Management. It
illustrates the connections of what's -- a and what's --+ the. Connections through SIL (silence)
represent pauses between two words, while those such as TS (AH, DH) e -. DH (TS, DX) b,
TS (AH, AX) e --+ AX (TS, B) s, and TS (AH, AX) e --4 AX (TS, F) s attempt to capture the

strong between-word co-articulation in fluent speech.

For each input utterance, the sex is usually determined first, automatically based on average
VQ distortions [57, 126]. Suppose {fk(")}k are the codeword density functions for gender
sex. Given a segment of speech X, the likelihood of the speech produced by the given sex can

81

a

fUwhat's/.

Figure 4.9: Part of the language network in Resource Management, with between-word triphone
connections.

be approximated by
L(Xlsex) = 1- f1 ex)((4.1)

f• k' (x)
XEX kEn(X)

where x is one component frame of segment X and 71(x) contains the few codewords that best
match the acoustic frame x. If L(Xlmale) > L(Xlfemale), the input speech is assumed to be
produced by a male; otherwise, it is from a female speaker. Our experiences on RM show that
the accuracy of this sex determination algorithm is above 99% 8.

After the sex is determined, between the two gender-specific acoustic models only the
model of the determined sex is activated during recognition. Viterbi beam search is used to
find the highest scoring state sequence in the language network. The score of a particular word
sequence 0 evaluated by a given utterance X is a weighted summation of the acoustic score and
language score:

score(OIX) = log Pr(X-HMM(9)) + w log Pr(O) (4.2)

where the language weight w is an ad-hoc system parameter that balances the importance of
the two knowledge sources (the acoustic model and the language model) 9.

8Note that for sex determination, the density value shouldn't be normalized and background silences should

be excluded from X.
9The language weight is usually empirically tuned. Typical values for a bigram language model range from 3

to 10.

82

The Three-Pass Search Algorithm for Large-Vocabulary Tasks

Recent work on search algorithms for continuous speech recognition has focused on three
dimensions: large vocabularies, long distance language models and detailed acoustic modeling.
As large-vocabulary tasks like WSJ are concerned, pre-compiled language networks are no
longer practical because of the explosion in the number of between-word connections. Instead,
the decoder has to dynamically expand the connections during search. To use complex models
such as long-distance language models and between-word triphone acoustic models, several
systems have been proposed to use the N-best paradigm [127, 137, 122]. In this N-best
paradigm, Viterbi beam search is used as a fast match to generate the N-best hypotheses for
each test utterance, with a simple acoustic model (e.g., within-word triphones only) and a simple
language model (e.g., bigram). A multi-pass rescoring using more complex models (e.g., the
between-word triphone acoustic model and trigram language model) is subsequently applied to
these hypotheses to produce the final recognition output. One problem in this paradigm is that
decisions made by the initial phase are based on simplified models. This results in errors that the
rescoring cannot recover from if the correct hypothesis is not in the N-best list. For very-large
vocabularies and very long sentences, it will require an exponential number of hypotheses to be
generated in order to guarantee that the correct word sequence is in the list. Another problem
is that the rescoring procedure could be very expensive as many hypotheses may have to be
rescored. The challenge is to design a search strategy that makes the appropriate compromises
among memory bandwidth, memory size, and computational power.

To meet this challenge we incrementally apply all available acoustic and linguistic infor-
mation in three search passes [3] in SPHINX-II. Pass one, with a bigram language model,
is a standard time-synchronous left-to-right (forward) beam search which, as usual, produces
the best-matched word sequence. The most detailed acoustic model, including between-word
triphones, is used during the initial pass. This is made feasible by carefully handling the fan-in
and fan-out acoustic scores at word boundaries. Although this first pass is designed as part of a
three-pass decoder, it can be configured to run by itself when more complex language models
are not available. By applying the most detailed acoustic model early, we observed significant
error reduction over the N-best approach in which the detailed acoustic model is applied later
in the rescoring stage [3], with a negligible increase in computational complexity.

When a long-distance language model is available or when N-best hypotheses are desired

(e.g., as input for a natural-language parser), pass one, using a bigram (or word-pair) language
model, can also produce sets of word ending times and scores. In this configuration, two
additional passes are involved. Pass two, guided by the results from pass one, is a right-to-left
(backward) beam search which produces possible word beginning times and scores. Pass three
is an A* search that combines the word lattices from pass one and two to produce N-best
hypotheses. During the A* search, scores from the forward pass are used as the scores up to

83

a certain time frame; scores from the backward pass are used to estimate the scores for the

future paths. Then the partial hypotheses with the best estimated total score for the whole
utterance is chosen to be expanded next. SPHINX-I1 currently supports trigrams and long-
distance language models in the A* search. Applying these more detailed language models in
the decoder rather than as a rescoring scheme has been very profitable [26]. Since this thesis
works on acoustic modeling exclusively, only the first pass is activated for all the experiments
conducted in the next chapter.

Our goal of maximizing the recognition accuracy with a minimal increase in computational
complexity is satisfactorily met with this three-pass incremental search. Applying the most
detailed acoustic model in the forward/backward beam search gives us more accurate word
lattices. Delaying the long-distance language model until the A* search greatly simplifies the
decoding process when compared with applying it directly in the beam search. Moreover,
since long-distance language models are used during the A* search, we produce a significantly
better set of top N hypotheses than with simple language models. Compared with the N-best
rescoring paradigm, we don't restrict ourselves to the linear N-best hypotheses produced by a
simple language model, which may have pruned away the correct hypothesis. Our principle is
to incorporate as many knowledge sources as possible and apply them as early as possible so
that we don't produce errors that are never recoverable by later stages.

4.3 Summary

The 1000-word Resource Management task and the 5000-word closed-vocabulary Wall Street
Journal task with non-verbalized punctuations are the main tasks experimented on in Chapter 5.
With the standard word-pair grammar, RM's test-set perplexity is about 60. The development-
set perplexity for the 5c-nvp WSJ task is 118.

The SPHINX-II system is designed for very large vocabulary, speaker-independent con-
tinuous speech recognition. The front-end consists of four sets of acoustic features, including
first-order and second-order differenced mel-scale frequency cepstra. It is based on sex-
dependent semi-continuous hidden Markov models. Between-word co-articulation is modeled
by position-dependent between-word triphones. The senone techniques discussed in Chapter 3
are the key component of SPHINX-I1 explored in this thesis. Figure 4. 10 is a block diagram of
SPHINX-II [47). Among the three passes in the decoder, pass one is the standard forward beam
search with the most complex acoustic models applied. Pass two is a backward beam search
and is activated only if the third pass, the A* search, is activated. The A* search is activated
only if a long-distance language model is available or the N-best hypotheses are desired. Since
this thesis concentrates on acoustic modeling exclusively, only the first pass is activated in all

84

the experiments conducted in the next chapter. The unified stochastic engine (USE) is not used
in this dissertation. For a discussion on USE and the language-weight optimization, see [50].

Feature

Codebook

•/ ~Quanti£zati£on '

SSenone

V Senonic Semi-

Conti£nuous Mix

,.r44

Unified Stochastic
~Engine

Langu~age

Weight

Figure 4. 10: The block diagram of SPHINX-11.

85

Chapter 5

Experiments and Discussions

This chapter will study the performance of the subphonetic modeling techniques presented in
Chapter 3 by conducting a series of experiments on the ARPA speech corpora described in
Section 4.1. Specifically, these experiments include:

"* Applying the SDM with the phone-dependency constraint to Resource Management.

"* Applying the SDM with both the phone-dependency and state-dependency constraints to
Wall Street Journal.

"* Applying the decision-tree based senones to Wall Street Journal.

"* Applying the hybrid approach to unseen-triphone modeling to Wall Street Journal.

"* Applying the state quantization algorithm to pronunciation learning.

"* Applying senonic SCHMMs with phone-dependent VQ codebooks to Wall Street Journal.

When describing the experiments in each section, we will indicate the section in which
the concept or technique is elaborated in Chapter 3. Readers are encouraged to review the

appropriate section on a certain subphonetic modeling technique before reading the experiment.
All of the experiments reported here are conducted using SPHINX-H. For an overview of the
SPHINX-II speech recognition system, see Section 4.2. Each time an experimental result is
presented, a discussion follows. Some sections will compare the performance on the same data
set using different techniques. The last section of this chapter summarizes the discussions and
overall experimental performance.

86

5.1 The Shared-Distribution Model with Phone-Dependency

The motivation of both generalized triphones and SDMs is to share the system parameters
across different triphone models so that the number of free parameters is reduced, enabling the
parameters to be well trained with a limited amount of training data (Section 3.1). The first
experiment presented here demonstrates the "mis-average" problem associated with generalized
triphones, by providing a significant error reduction on the Resource Management task using
the shared-distribution model. RM (instead of WSJ) was chosen as the first experiment because
the WSJ task was not yet well defined and the WSJ speech corpora were not available when
we started the SDM work in 1991. RM consists of 997 words in the lexicon with 3990 training
utterances from 105 speakers and 600 testing utterances from another 20 speakers. There are
7549 triphones, including position-dependent between-word triphones, in the training corpus.

The senone mapping table for the SDM is generated in this case by the bottom-up state
clustering algorithm described in Figure 3.5. To provide a fair comparison, the generalized-
triphone clusters used in this experiment are also generated using the bottom-up clustering
algorithm, with the entire triphone model as the clustered object. Unseen triphones are modeled
by monophones in both systems '. The pre-compiled language network described in Section
4.2.4 is used during decoding. The gender decision algorithm (also described in Section 4.2.4)
is used to activate the appropriate set of models (choosing between male and female models).
The error measure used is the word error rate, which includes word insertions, deletions, and
substitutions. In addition to comparing the performance of generalized triphones versus shared-
distribution models, we will also examine the contents of several clusters generated by both
the triphone-clustering and state-clustering algorithms to show the differences between the two
clustering behaviors.

5.1.1 The Generalized-Triphone Model

The phonetic HMM topology used in the generalized-triphone system is shown in Figure
5.1. Although there are 7 states per model, there are only three distinct output distributions
associated with the transitions. The output distributions are labeled as beginning, middle, and
end as illustrated in the figure. The labeling of the lower five arcs are phone-dependent.

To obtain the generalized-triphone mapping table, the triphone clustering shown in Figure
4.8(a) is activated. For simplicity, the triphone models used for clustering are one-codebook

'Actually the testing utterances in RM contain no unseen triphones at all because the word pairs in RM test
sets are all covered by the training data. However, some incorrect word sequences during search may require
triphones which are not covered by the training data.

87

b m

initial •- final

Figure 5.1: The phonetic HMM topology used in the generalized-triphone system.

DHMMs. To speed the clustering procedure, the phone-dependency constraint described in
Section 3.1.3 is enforced; that is, clustering across different phones is prohibited.

After clustering, sex-dependent SCHMMs are trained separately from the male and female
training data, as depicted in Figure 4.8(b). Varying the number of generalized triphones and
tuning the language weight w in (4.2), the optimal performance is obtained by using 1100
generalized triphones for each sex. Table 5.1 shows the word error rates on the test set, using
the word-pair grammar (perplexity 60) and no grammar respectively.

language model word error rate
word-pair 4.7%

no grammar 19.5%

Table 5.1: Word error rates of the 1100 generalized triphones on the 600 utterances consisting
of Feb89 and Oct89 evaluation sets.

5.1.2 The Shared-Distribution Model

For the SDM, the triphone clustering in Figure 4.8(a) is replaced with the distribution clustering
which generates a senone mapping table. The generalized-triphone model has three output
distributions for each HMM. With distribution sharing, we have the luxury of increasing the
number of distributions for each model to five in order to have more detailed models. We
rely on the distribution clustering procedure to tie redundant states to the same senone. Figure
5.2 shows the 5-state Bakis topology we used for the shared-distribution model. The labeling
for the output distribution of each transition is dependent on the source state. The final state
depicted here, which has no outgoing arcs, is added to ease implementation.

The phone-dependency constraint and one-codebook triphone DHMMs are again used for
the distribution clustering. Varying the total number of shared distributions (or senones) from

88

Figure 5.2: The new phonetic HMM topology used in the SDM. The labeling for the output
distribution of each transition is dependent on the source state.

3500 to 5500, a series of experiments were conducted to compare with the generalized-triphone
models. Table 5.2 shows the word error rates on the test set, using the word-pair grammar. The
relative error reduction rates measured against the baseline system (generalized triphones) are
also computed.

system # of output
distributions/senones word error rate error reduction %

Generalized Triphone 3300 4.7%

SDM 3500 4.2% 11%
SDM 4500 3.8% 19%
SDM 5500 4.1% 13%

Table 5.2: Word error rates of different systems on the 600 utterances consisting of Feb89 and
Oct89 evaluation sets, using the word-pair grammar.

From these experiments, we can see that SDMs outperform generalized-triphone models.
When 1100 generalized-triphone models are used in the baseline system, there are 3300 output
distributions in total. With about the same number of parameters, the use of 3500 senones
reduces the error rate by 11%. This demonstrates that SDMs have more accurate representations
because the "mis-average" problem is avoided. When we increase the total number of senones
from 3500 to 4500, the error rate is reduced by about 20% in comparison with the baseline
system. As shown in Table 5.2, further increase in the total number of senones to 5500 does
not give us more improvement, perhaps because of insufficient training data.

Since the SDM has more states per HMM than the generalized triphone model, our im-
provements might not come from the distribution clustering, but from the increased number
of states within each triphone. To clarify, we also test the 1100 generalized triphone models,
each with the same 5-state Bakis topology. The results are shown in Table 5.3. The word error
rate is 4.6% for the same test set, which is essentially the same as the the baseline system. As
there are 5500 distributions in the 5-state generalized-triphone system, we include the SDM
with the same number of parameters in the table. Once again, the SDM outperforms the
generalized-triphone model. This demonstrates that distribution sharing does contribute to our

89

improvements.

system total distributions error rate

3-distribution generalized triphone 3300 4.7%
5-state generalized triphone 5500 4.6%

5-state SDM 5500 4.1%

Table 5.3: Word error rates using generalized triphones with different topologies and using
shared distributions with the 5-state topology.

Table 5.4 shows the performances of the 3-distribution generalized triphones and 5-state
SDMs without any grammar, where any word can be followed by any word with an equal
probability. In both systems, we model word durations by the same set of Gaussian distributions
(independent of HMM parameters) in order to enhance the performance. To obtain a word
duration, we compute phone durations first based on a set of well-trained models and Viterbi
alignment on the training corpus. Word durations are then defined as the summation of the
component phone durations.

We see that the error reduction is not as high as in the word-pair grammar case. This is
perhaps because the language perplexity is so high that without a very strong influence from
the acoustic model, it is hard to see a dramatic improvement. Another possible explanation
is that the phone durations we used in the experiment were estimated by using within-word
generalized triphone models, with the 3-distribution topology. Modeling senone-dependent
duration in the 5-state topology may enhance the SDM performance.

system word error rate error reduction %
1100 generalized triphones 19.5%
SDMs with 4500 senones 17.9% 8%

Table 5.4: Word error rates without any grammar.

In terms of parameter reduction, the generalized-triphone approach reduces the number

of models from 7549 to 1100. Since each model has 3 distributions, the reduction ratio in
the number of distributions is (7549 * 3)/(1 100 * 3) = 6.86. In the SDM, the number of
distributions drops from 7549 * 5 to 4500. Thus the reduction ratio is 7549 * 5/4500 = 8.39
in the SDM approach.

90

5.1.3 Behaviors of Triphone Clustering versus State Clustering

To understand the behaviors of triphone clustering versus distribution clustering, we examine
several clusters generated by both techniques. This section compares the optimal configurations
of both systems: the 1100 generalized-triphone models, each with 3 distinct output distributions,
and the 5-state shared distribution models with 4500 senones. Both systems combine similar
HMM output distributions together, but the shared-distribution model allows more flexibility
for sharing. Based on the RM training data, Table 5.5 shows the numbers of triphones,
generalized triphones, and shared distributions (senones) for each phone. Note that under the
phone-dependency constraint two distributions/triphones are merged only if they represent the
same phone. Note also that the silence model (SIL) is context-independent; therefore, it is not
clustered 2. Among the 50 phones listed in Table 4.2, AXR, BD, GD, and ZH are not used in RM
because there are few cases, if any, in which they are absolutely needed. In addition, the phone
EN is used in RM to represent AX N.

Table 5.6 lists several clusters generated by both clustering algorithms. Triphones in the
same sub-table are in the same generalized triphone cluster. The notation P.i in the table
indicates the i-th senone for phone P. For example, EY. 111 represents the 111 th EY senone.
The last column shows the number of distinct senones that particular triphone used.

In Table 5.6(a), it is reasonable to see that triphone EY (L, S) and EY (L, SH) are in the
same generalized-triphone cluster as they have the same left-context. Unfortunately, triphone
clustering must overlook the differences of right-contexts due to the fact that the front parts
of these two models are very similar. On the other hand, the distribution clustering approach
can keep these right-context differences despite the fact that similar parts are merged. This
clearly demonstrates that sharing at the subphonetic level provides more freedom and accuracy
in parameter sharing. Besides demonstrating that dissimilar states no longer share output
distributions, this example also shows that 5 distinct senones are needed for each of the two
triphone models. Examples like this are very common. Figure 5.6(b) shows another one.

There are cases when output distributions of two triphones are not shared at all, even when
they have similar contexts. For example, both the left and right contexts of the two triphones
in Table 5.6(c) are the same. The only difference is their locations - one of them appears
within a word like threat and the other appears at the beginning of a word like at in the
context things are at someplace 3. The fact that the distributions are not shared may be partly
due to dramatic acoustic transitions at the word boundary in continuous speech, and partly

2When non-speech models, like door bump, inhalation, etc., are used for spontaneous speech, they are also
context-independent and are not clustered. A phone surrounded by non-speech sounds is considered to have
silence contexts.

3We had by mistake transcribed at as /EH TD/ instead of/AE TD/ in our RM lexicon.

91

because of the fact that the word-boundary triphones do not occur as frequently as within-word
triphones. Actually when we analyze this case more carefully, we find a more encouraging
explanation. The word at is the only word in RM which begins with EH and then is followed
by TD. That is, triphone EH (?, TD) b (? means any phone) is trained exclusively by the word

at. Since we by mistake transcribed at as /EH TD/ instead of /AE TD/, triphone EH (R, TD) b
and EH (R, TD) should have been quite different models. The distribution clustering discovers
the difference and decides to keep them completely apart, while the triphone clustering fails to
find the difference.

From Table 5.6(c), we also observe that the first three states of EH (R, TD) all share the
same senone. This indicates that three distinct distributions are sufficient to model its acoustic
variations. Thus, the distribution clustering procedure is able to elegantly "squeeze" redundant
distributions inside an HMM by tying them to the same parameter.

phone EH AH AO EY OW L R W D Z
#oftriphones 211 52 67 178 161 327 251 124 179 385

of generalized triphones 57 17 16 35 29 48 50 16 22 32
#ofsenones 211 58 52 129 100 178 171 67 109 142

phone AE IH IY UH AX IX AA UW AW AY
#oftriphones 138 148 309 12 431 119 126 119 27 80

of generalized triphones 35 34 44 3 63 32 28 28 7 18
#ofsenones 127 133 162 13 247 144 108 102 31 58

phone OY Y EN ER M N NG CH JH B
#oftriphones 2 59 10 250 252 468 43 89 95 141

of generalized triphones 1 9 3 40 28 53 9 9 10 15
#ofsenones 6 35 12 147 125 250 43 44 35 74

phone DH G K P T F S SH TH V
#oftriphones 71 97 249 171 200 237 462 84 128 179

of generalized triphones 12 11 33 21 23 22 40 11 13 23
#ofsenones 60 54 126 82 108 91 188 45 1 54 1 110

phone HH DD PD TD KD DX TS SIL
of triphones 109 194 34 269 75 40 97 -

of generalized triphones 9 19 3 37 11 11 10 -

of senones 50 94 16 167 43 51 48 -

Table 5.5: The numbers of triphones, generalized triphones, and senones for each phone, when
1100 generalized triphones and 4500 senones in total are determined.

In Table 5.6(d), we see that the first four states of D (Z, EY) and D (S, EY) share the
same senones because they are preceded by similar fricatives. However, their last states map

92

to different senones because the D in Tuesday is in an unstressed syllable while the D in state
is in a stressed one. This shows that the greatest difference between these two phones is at
the transition from D -- EY. The last two rows of Table 5.6(d) show that for D (S, EY) and
D (S, AA) both distribution clustering and triphone clustering yield the same result. That is,
these two triphones resemble each other so much that one model is adequate to represent both.

triphone example b1 b2 m el e2 # distinct senones
EY (L, S) ,-,place EY.111 EY.112 EY.27 EY.109 EY.114 5

EY(L, SH) ,- lation EY.11 EY.112 EY.27 EY.68 EY.21 5

(a)

triphone example bm b2 m el e2 # distinct senones
AE(K,S) ,-castle AE.113 AE.16 AE.76 AE.105 AE.122 5

AE (K, Z) c4asrep - AE.113 AE.16 AE.76 AE.53 AE.52 5
(b)

triphone example bi b2 m el e2 # distinct senones
EH (R, TD) threat EH.65 EH.65 EH.65 EH.61 EH. 113 3

EH (R, TD) b are at EH.63 EH.185 EH.63 EH.64 EH.207 4

(c)

triphone example bJ b2 m el e2 I # distinct senones
D(Z,EY) Tuesday D.94 D.105 D.95 D.103 D.96 5
"D(S,EY) state D.94 D.105 D.95 D.103 D.87 5
"D(S,AA) start H D.94 D.105 D.95 D.103 D.87 5

(d)

Table 5.6: The senone labeling of several triphones. Triphones in the same sub-table are in
the same generalized-triphone cluster. The notation P.i indicates the i-th senone among all the
senones for phone P.

In addition to comparing the clustering behaviors, we also examine the contents of several
clusters. Table 3.2 in Section 3.1.4 and many other examples show that the k-th states of
different triphone models often share the same senone. In other words, the distributions that are
in the same cluster are mostly from the the same k-th states of different triphones. Interestingly,
the first two output distributions of an HMM are never merged with the last two distributions.
For the 4500-senone system, we observe that the average number of distinct senones a triphone
uses is 4.66. This shows that most of the triphone models keep 5 unique output distributions as
Table 5.6 demonstrates. As each triphone tends to keep more output distributions, the SPHINX

93

three-distribution topology must not have had sufficient details. Simply increasing the number
of states for each generalized-triphone model does not help as Table 5.3 shows, because the
"mis-average" problem becomes more serious. Therefore, in addition to increasing the model
complexity, we have to use distribution clustering for parameter reduction in order to achieve
both robust and accurate acoustic representation.

5.2 The Shared-Distribution Model with Phone-Dependency

and State-Dependency for Large Vocabulary Tasks

As we examined in the previous section, the k-th states of different triphone models often
share the same senone. This suggests us to use the state-dependency constraint to guide and
speed the clustering process. When we scale up to very large vocabulary tasks, the bottom-
up clustering algorithm becomes intolerable due to the exponential computational complexity
introduced by the shift step. To reduce the input size for the clustering algorithm, the state-
dependency constraint is introduced in Section 3.1.3. With both the phone-dependency and
state-dependency constraints, clusterings for different state locations of different phones are
independent and can be executed in parallel. To relate the clusterings across different state
locations for the same phone, we define the entropy increase with neighboring-state information
in Section 3.1.3

Q*-(TI (s), T2(S)) = w (QTi (i), T2 (i))

as the distance measure for comparing two distributions. In this section, we apply the bottom-
up distribution clustering with the above distortion measure and both phone-dependency and
state-dependency constraints to the 5000-word closed-vocabulary Wall Street Journal with non-
verbalized punctuations (WSJ 5c-nvp) task. Further experiments in later sections will be based
on the same system setup. Comparison between different techniques will be made as each new
experiment is explained.

5.2.1 System Setup

The weighting function w,,i of the distance measure in the distribution clustering procedure is
defined arbitrarily as

Is - il 0 1 2 3 4
wi ratio 1.00 0.30 0.15 0.10 0.01

94

As w,,i is basically inversely proportional to the topological distance between state s and state
i, w,,i thus emphasizes the importance of closer states. For example, for the middle state (S3)

of the 5-state Bakis model, the distortion measure is
0.15 0.3

W (I S3) 7 (S))= 0.15 9i(Ti(Si0T 2(S1)) + 0.306 O(TI (S2), T2 (S2))
1.00 0.30

1.90 19
0.15

+ 1.90

The training corpus of the WSJ task consists of 7200 utterances, distributed equally between
male and female speakers. There are more than 23,000 triphones, including position-dependent
between-word triphones, in the training corpus. Triphones that occur only once or twice are
discarded to avoid arbitrary and thus noisy clustering decisions. This leaves us 17,6 10 triphones,
whose one-codebook DHMMs are estimated for the state clustering in Figure 4.8(a). During
the following four-codebook SDM training, the discarded triphones are replaced by context-
independent phones. Transition probabilities are inherited from the context-independent phones
to save computation and memory. The 5-state Bakis topology is adopted.

For the WSJ 5c-nvp tasK, the lexicon consists of 4986 words whose pronunciations are
derived from the Dragon System dictionary 1. In addition, we put about 500 alternative
pronunciations in our dictionary s, such as the alternative pronunciations with parentheses in

NEW N UW

NEW(2) N Y UW

WHEN HH W EH N
WHEN(2) W EH N

The WSJ 5c-nvp task uses a backoff bigram language model with a perplexity of 118. In the
backoff model, a word pair which does not occur in the bigram training texts is assumed to have
a floor probability proportional to the unigram probability of the second word. Therefore for the
purpose of decoding, all possible within-word triphones and between-word triphones crossing
all word pairs are constructed in advance. This results in about 50,000 triphones. Among
them, only 17,610 triphones have a mapping in the bottom-up senone mapping table; the rest
are modeled by monophones. Among the three passes in the decoder (see Section 4.2.4), only
the first pass (the left-to-right Viterbi beam search) is activated since no long-distance language
model is used and thus A* search in unnecessary. Note that unlike the decoder for Resource

"4Dragon Systems Inc. is a company in Newton, MA. Most ARPA-supported systems derive the phonetic
pronunciations for the WSJ 5c-nvp lexicon from the same dictionary supplied by Dragon.

5However, experimental results show that these manually added alternative pronunciations do not affect the
recognition accuracy.

95

Management, where a language network is pre-compiled before search starts, the three-pass
decoder expands the network as search is progressing. This minimizes the memory requirement
for large vocabulary tasks, with a negligible increase in computation.

Two data sets are tested - the development set consists of 367 utterances and the November
1922 evaluation set has 330 utterances. For each utterance, the left-to-right Viterbi beam search
is run separately on male SCHMMs and female SCHMMs, each producing a best-matched word
sequence. The word sequence with the highest score is output as the recognized sentence.

5.2.2 Performance Evaluation

Based on the standard acoustic training corpus, we find the most robust and sensitive parameters
by tuning the number of senones to achieve the best performance on the Nov92 test set, as Table
5.7 shows. The error increase from 7000 senones to 8000 senones illustrates the maximum
number of parameters that the given training data can train. reliably. The 7000-senone system,
the best among the three configurations we experimented, performed with a word error rate of
7.5% on the development set.

of senones parameter reduction Nov92 Dev
6000 (17610 * 5) / 6000 = 14.68 9.1% -

7000 (17610 * 5) / 7000 = 12.58 8.2% 7.5%

8000 (17610 * 5) / 8000 = 11.01 8.8% -

Table 5.7: Word error rates on the Nov92 WSJ 5c-nvp test set and the Development set, using
bottom-up clustered SDMs with different numbers of senones. Unseen triphones are modeled
by context-independent phones.

5.3 Decision-Tree Based Senones for Modeling Unseen Tri-
phones

In the bottom-up clustering algorithm it is difficult, if not impossible, to find appropriate senones
to model unseen triphones. Therefore, in the experiments described in the previous section,
unseen triphones were modeled by monophones.

To be able to model unseen triphones with senones, this section presents the experiment
using the decision-tree based senones. The corresponding technique explanation is in Section

96

3.2. The experiment is based on the same system setup as the previous section. 7000 senones
are used since that is the best configuration from the previous experiments. Both seen (about
17,600 triphones) and unseen (about 33,000) triphones are modeled by senones in a unified
fashion. Although the number of unseen triphones is almost double the number of seen
triphones, a large portion of them are between-word triphones crossing word pairs with backoff
language probabilities. In fact, there are on average only 2.6 unseen triphones per utterance in
the November92 evaluation set. The development set has 2.2 unseen triphones per utterance
on average. The Nov92 set contains a few sentences that need more unseen triphones than
the remaining utterances. Figure 5.3 elaborates the steps to build the senonic decision-tree
recognizer with unseen triphones represented by senones.

1. Train one-codebook DHMMs for the 17,610 seen triphones, using the forward-
backward algorithm.

2. Generate the senone mapping table M,(T, s) by the top-down tree classification
algorithm, with both phone-dependency and state-dependency constraints, using the
one-codebook DHMMs generated at step 1. This table maps each state s of each seen
triphone T to a senone label.

3. Train four-codebook sex-dependent SCHMMs with M (T, s) for all of the triphones
T in the training data (except the discarded ones).

4. Find the appropriate senones for the remaining 33,000 unseen triphones by traversing
the trees created at step 2. This enlarges the mapping table M to be M' which
includes mappings for unseen triphones.

5. Use the enlarged mapping table M' and the trained SCHMMs for decoding.

Figure 5.3: The steps to build the senonic decision-tree recognizer with unseen triphones
represented by senones.

At Step 3 of Figure 5.3, the discarded infrequent triphones are replaced by monophones
during the SCHMM training. Alternatively, they can be mapped to senones by traversing the
decision trees to enable effective use of the training data. However, representing these discarded
triphones with senones during training did not affect our experimental performance because
the amount of data for these discarded triphones was very small. Table 5.8 shows the results
on the Nov92 and Dev sets using the 7000 decision-tree based senones. To make a comparison
with the bottom-up clustering approach, the baseline results presented in the previous section

using 7000 senones are also included in the same table.

The last column of Table 5.8 lists the number of unique senone sequences for all the

97

clustering # triphones unseen-triphone Nov92 Dev overall # unique senone
method used modeling set set sequences

bottom-up 17610 monophones 8.2% 7.5% 7.8% 14872
top-down tree 50000 senones 7.1% 7.5% 7.3% 13270

Table 5.8: Word error rates on the WSJ 5c-nvp task, using 7000 senones. Unseen triphones
are represented by monophones in the bottom-up clustering approach, but are represented by
decision-tree based senones in the tree-classification approach.

triphones used. This is equivalent to the true number of distinct triphone models in the
system because the same senone sequence in different triphones actually defines the same
model 6. For the sake of discussion, let's name the model defined by a senone sequence a
"sephone" model. The relationship between triphones and sephones is thus many-to-one, just
like the relationship between triphones and generalized triphones. It is obvious that with the
same number of parameters, the senonic system (with either bottom-up clustering or top-down
classification) is able to form many more sephones (and thus more detailed models to distinguish
any small dissimilarity between different triphones) than the number of generalized triphones.
For example, had 7000/5 decision-tree based allophone models been used, the system would
have still had 7000/5 allophone models even when unseen triphones were added. However, the
number of unique sephones affects the computation time during decoding. When evaluating the
scores for all the states of all surviving triphone models at each time frame, the decoder actually
evaluates all the states of all sephones first. To obtain the scores for any triphone model,
the corresponding sephone is accessed. Fortunately, the sephone (or generalized-triphone)
evaluation occupies only a small portion of the decoding time. Furthermore, the beam actually
becomes smaller when more accurate models are provided and thus decoding cost is only
increased negligibly.

With about the same number of sephones, the top-down tree classification performs slightly
better than the bottom-up clustering approach because of better modeling for unseen triphones.
It performs significantly better than the bottom-up clustering on the Nov92 set because Nov92
requires more unseen triphones for the correct word sequences. The following subsection
will make a fair comparison between the two clustering approaches by representing unseen

triphones with monophones in both approaches. Section 5.3.2 will elaborate the effect of
modeling unseen triphones with detailed parameters.

6 Recall that transition probabilities are context-independent.

98

5.3.1 Bottom-Up versus Top-Down Clustering

To support our belief that the bottom-up clustering algorithm is able to find a better configuration
for seen triphones than the top-down tree classification is, we compare the performance of both
approaches, by representing unseen triphones with monophones. Results on Nov92 and Dev
sets are shown in Table 5.9.

clustering unseen-triphone Nov92 Dev overall # unique
method modeling set set error rate senone sequences

bottom-up monophones 8.2% 7.5% 7.8% 14872
top-down tree monophones 8.4% 8.0% 8.2% 8921

Table 5.9: Word error rates on the WSJ 5c-nvp task, using 7000 senones. Unseen triphones are
represented by monophones in both systems.

As expected, the top-down classification not only performs slightly worse, but the num-
ber of unique sephones is much smaller than with the bottom-up clustering approach. This
demonstrates that the bottom-up clustering algorithm indeed provides greater freedom in re-
configuration in the hope of finding the optimal one. Although the tree classification does not
perform as well as the bottom-up clustering on seen triphones, it reduces the degradation to
a minimum. This is primarily accomplished through the help of linguistic questions which
provide human expert knowledge when the FIMM statistics are not reliable due to insuffi-
cient training data. As more complex composite questions are allowed (growing the "simple"
tree as deep as possible), the decision-tree classification gains more and more freedom in re-
configuration. More importantly, the binary linguistic questions generalize the classification so
that we are able to model new triphones easily, using the decision-tree based senones. The bet-
ter modeling on unseen triphones increases the performance of the decision-tree based senones
to be at least as good as that of the bottom-up clustering approach, as shown in the previous
subsection.

5.3.2 Effects of Modeling Unseen Triphones

The strength of the senonic decision tree resides in its ability to model unseen triphones using
detailed parameters. To understand the contribution of modeling unseen triphones with senones,
here we analyze the results from the 7000 decision-tree based senones with unseen triphones
being represented by monophones and senones respectively. Figure 5.4 illustrates the relative
error rate reduction, in terms of the number of unseen triphones contained in each utterance.
Table 5.10 shows the exact word error rates corresponding to the figure and the number of
qualified utterances among these 697 utterances (Nov92 + Dev). For the overall set, the error

99

rate reduction by modeling unseen triphones with senones is 11%. When there are at least 5
unseen triphones in each test utterance, we are able to reduce the error rate by more than 20%
7. Even for utterances that contain no unseen triphones, we believe the improved modeling
for unseen triphones helps the decoder prune those wrong paths in which unseen triphones are
needed.

-24
22 12'n

t018

LU16

276 Utt.
14-

555 utt.
12 697 utt.

10 >= 0 >= 1 >= 3 >= 5
Unseen Triphones

Figure 5.4: Error rate reduction using senones instead of monophones to represent unseen
triphones.

unseen # utter- unseen triphones unseen triphones error rate
triphones ances => monophones • senones reduction

> 0 697 8.2% 7.3% 11%
> 1 555 8.5% 7.5% 12%
> 3 276 9.9% 8.5% 14%
> 5 129 9.7% 7.6% 22%

Table 5.10: Word error rates of the 7000 decision-tree senones on WSJ 5c-nvp, with unseen
triphones being represented by monophones and senones respectively.

5.3.3 Tree Examples for Markov State Classification

After obtaining the encouraging results using decision-tree based senones, it is interesting to
see what questions are asked in the tree. Recall that in the algorithm to automatically generate
a decision tree in Figure 3.10, we manually locate a set of "basic" linguistic questions which
can be asked of the left-context or right-context phone of a triphone. The set of basic linguistic

7Actually the three-pass decoder prunes at the first phone ;f a word for easy implementation, rather than at the
second phone which is the correct pruning when between-word triphones are used. Since most unseen triphones
are between-word triphones, some additional error reduction made by modeling unseen triphones with detailed
parameters may be blocked due to this early pruning.

100

questions we used here is the same one as Hon used [421 and is listed in Appendix D for
convenience. The tree growing algorithm expands the tree by automatically finding the best
composite question for each node. In Chapter 3, we showed an example tree to classify the first
state of all K-triphones in Figure 3.9. Figure 5.5 shows another tree to classify the last state of
all K-triphones. It also highlights the path that triphone K (L, AX) goes through. Both trees
are modified from the decision trees in the above experiments, by cutting the deeper layers. As
expected by linguists, the left context is more important than the right context for the first state
of a triphone and the right context has stronger influence for the last state of a triphone. This
demonstrates that the entropy combining weights wo,; are able to select appropriate questions
according to different state locations.

welcome

ghhe=rRright phone =vowelr ivi?

eyes
.....

.....right phone L=frntoR? ri ght phone = fvicative?..
yes

• .~~..... °•.. °..........

1f.1
l~~ight~ ~ phnri-vwl ght phone = vowel? senone5 senone6

: • ,

senonel senone2 senone3 senone4

Figure 5.5: A decision tree for classifying the last state of K-triphones. The 5th state of the
K-triphone in "welcome" is mapped to the first senone among all the senones in this tree.

For a complete comparison, Figure 5.6, 5.7 and 5.8 are the decision trees for classifying

the second, third and fourth states of all K-triphones respectively. Again, the closer a state is to
the left side, the more questions about the left-context phone there are at the top levels of the

tree, and vice versa. We also observe that similar questions are asked for these middle states.

Appendix E shows a complete tree for classifying the first state of all AA-triphones.

101

gekomg
i-

right phone =bck-R? :Oleft phone = S. Z, Sf1, or ZH?

"*ýnoi

* right phone =voiced? sonoo Iooe6

senon•l Y7,

left phone = back-L? or
((left phone o nasal and <> Y-glide)
and (right phone = LAX-vowel)) ?

senone 2 senono3

Figure 5.6: A decision tree for classifying the second state of K-triphones.

n ght phone =Lor W? right phone = voiced?]

Hyes

- right phone = LAX-voe?

senonl senne 2o

.................. -.............. .. II

senoneLic edh?= sonorant or nasal? . *
ri senone5

senone3 senone4

Figure 5.7: A decision tree for classifying the third state of K-triphones.

102

............................... X-.•
right phone = L or W? right phone = voiced?....................-. •.....

F* * rhtphone= LAX-vowel?

senonel senone 2 /senone6

this triphone a beginning triphone?
or right phone <> SCHWA?U

osenone5

senone3 senone4

Figure 5.8: A decision tree for classifying the fourth state of K-triphones.

5.4 State Quantization for Modeling Unseen Triphones

The drawback of the top-down tree classification is the limited capability of re-configuration,
which often results in a sub-optimal classification, as the experimental results illustrate in
Table 5.9. Therefore, in Section 3.3.1 we proposed a hybrid approach in which seen triphones
share senones according to the bottom-up clustering configuration while unseen triphones share
senones through decision-tree based generalized allophone models whose states are "quantized"
with the senone codebook created by the seen triphones.

In this section, we will present the experimental performance of the hybrid approach and
make a comparison with the decision-tree based senones discussed in the previous subsection.
In an effort to obtain optimal performance, we also experimented with four-codebook triphone
SCHMMs for the clustering in order to provide more accurate models for computing the entropy
increase. Comparison between the one-codebook and four-codebook clusterings will be made
in Section 5.4.2.

103

5.4.1 Hybrid vs. Purely Decision-Tree Based Senones

Using the same system setup as Section 5.2.1 describes, the hybrid approach requires the
complex steps illustrated in Figure 5.9.

Comparing Figure 5.3 and 5.9, we notice the system complexity in the hybrid approach. In
our experiments, we first fixed the number of senones generated by the bottom-up clustering
procedure to be 7000. Then we tuned the number of generalized allophone models created by
the decision tree within the range of 2500 to 4000. By experimental result, the set of 3500
generalized allophone models was the best configuration for state quantization. Unfortunately,
this complex hybrid system does not perform better than the purely decision-tree based senones,
as shown in Table 5.11, especially when there are many unseen triphones in the test set (the
Nov92 set). This is partly because the "mis-average" problem introduced in the decision-tree
based generalized allophones is not recoverable. In addition, state quantization errors, which
are unavoidable as in all quantization processes, may be a dominant factor.

clustering unseen-triphone Nov92 Dev # unique
method modeling set set senone sequences

top-down tree senones 7.1% 7.5% 13270
hybrid senones 7.4% 7.3% 16300

Table 5.11: Word error rates on the WSJ 5c-nvp task, using 7000 senones. Unseen triphones
are represented by senones in both systems. Both the purely decision-tree based senones and
the hybrid approach yielded statistically the same performance.

5.4.2 Four-codebook SCHMMs for State Clustering

To offer more information for state clustering/classification in order to get the best performance,
we experiment with 4-codebook SCHMMs for generating the mapping table. To make feasible
the training of 17,610 four-codebook triphone SCHM s, we segment the training data into
phones using an existing set of HMMs and the Viterbi alignment algorithm. Then 50 phone-
based training runs are executed separately instead of one sentence-based training. Each of
these phone-based training runs train all the triphones representing the same phone.

Unfortunately, this 4-codebook mapping table did not yield a satisfactory improvement, as
shown in Table 5.12, where the the word error rates using the 1-codebook mapping table are
also included for a clear comparison. Perhaps the one-codebook DHMM has already offered
enough information in terms of the similarity measure for output distributions, even though it
is not as detailed as the 4-codebook SCHMM. We also notice that using 4-codebook SCHMMs

104

1. Train one-codebook DHMMs for the 17,610 seen triphones.

2. Generate the senone mapping table M by the bottom-up clustering algorithm, with
both phone-dependency and state-dependency constraints, using the one-codebook

DHMMs generated at step 1.

3. Generate decision trees for classifying allophones, with only the phone-dependency

constraint, using the same one-codebook DHMMs.

4. Train one-codebook DHMM shared-distribution models with M. This creates the
senone codebook to be used for state quantization (step 6).

5. Train one-codebook DHMM generalized allophone models with the generalized-
triphone mapping table created at step 3.

6. Quantize the Markov states of the generalized allophone models (step 5) with the

senones trained at step 4.

During decoding, the 33,000 unseen triphones first traverse the decision trees to
find appropriate generalized allophone models. Then the corresponding sequence of
senones resulting from state quantization is used to represent the unseen triphone.
This enlarges the mapping table M to be M' to include senone mappings for unseen

triphones.

To quantize the Markov state of the generalized allophone model, the associated
output distribution is used to represent the state since after tree classification we have
enough data for training each generalized allophone model. Then the cross entropy
measure described in Section 3.3.3 is used to compute the distance between the output
distribution at state s of generalized allophone T and a senone S. That is,

M'(T, S) = argmin { x('T(s), T(s) + S) + x(S, T(s) + S) }S E •p,s

where OP, is the set of senones for the s-th states of all the triphones which represent
the same phone as T.

7. Train four-codebook SCHMMs with M.

8. Use M' and the SCHMMs for decoding.

Figure 5.9: The steps required to build the hybrid system for modeling unseen triphones with
senones.

105

for the clustering in the hybrid approach yields more improvement than for the decision-tree
classification. This may inform us that we should have used more composite questions to
allow more configuration freedom to take full advantage of the more detailed acoustic model.
In theory, given any configuration created by the bottom-up agglomerative clustering, we can
always build an equivalent tree using an oracle, with each leaf corresponding to each cluster
generated by the bottom-up clustering algorithm, as long as we allow the complexity of the
composite questions to be unlimited and provide a sufficient number of detailed simple questions
(e.g., each categorical question contains only one phone). At that extreme, the decision-tree
clustering converges to the bottom-up agglomerative method. Since the performance of the
hybrid and the decision-tree approaches here are essentially the same, we conjecture that the
decision-tree based senones can be guaranteed to be no worse than the hybrid approach when
we allow more composite questions for the decision tree.

clustering unseen-triphone 1-codebook 4-codebook
method modeling Dev Nov92 Dev Nov92

bottom-up monophones 7.5% 8.2% 7.0% 8.0%
top-down tree monophones 8.0% 8.4% - -

hybrid senones 7.3% 7.4% 6.7% 7.0%
top-down tree senones 7.5% 7.1% 7.1% 7.0%

Table 5.12: Word error rates on the WSJ 5c-nvp task, using respectively 1-codebook DHMMs
and 4-codebook SCHMMs for the clustering procedure.

Interestingly, reading the above table we find that the November evaluation set favors
unseen-triphone modeling. We believe it is mostly likely because there are more unseen
triphones in certain utterances in the November set than in the development set.

Based on these intensive experiments, we conclude the following guidelines for parameter
sharing:

" Use purely decision-tree based senones for modeling both seen and unseen triphones. To
make the decision-tree based mapping table robust with seen triphones, more complex
composite questions are preferred.

" Use 4-codebook DHMMs for constructing the decision tree. Four feature codebooks
are favored since they offer more detailed models. DHMMs instead of SCHMMs are
used because training SCHMMs is much more expensive both in computation and disk
storage. To take full advantage of the more accurate models, again more complex
composite questions or finer categorical simple questions should be used.

" Although we found no performance difference when cross validation was used, Hon
showed that when a vocabulary-independent system is pursued (training on a general-

106

purpose speech corpus but testing on a specific task), cross validation is preferred to
make the decision tree robust [42].

5.5 State Quantization for Senonic Baseforms

As shown in Figure 3.14, senones can be shared not only across phonetic models, but also across
word models. In this section, we will present our experimental results which automatically learn
senonic baseforms for words, when word training utterances are available. For the description
of the senonic-baseform construction algorithm, see Section 3.3.2.

5.5.1 Pronunciation Learning with Many Training Samples

To start experiments for pronunciation learning, we used the speaker-independent Resource
Management spelling task, whose utterances spell the words in RM in the continuous speech
mode. That is, the vocabulary in this task contains only the 26 English letters. No language
grammar is used. There are 1132 training sentences from 100 speakers and 162 testing sentences
from 12 new speakers. In the decoder, the language network is pre-compiled as with RM since
this is a small task and a pre-compiled network can speed the search. To test an utterance, the
VQ-based distortion described in (4.1) is used to decide the gender first. Then the model with

the selected sex is activated for Viterbi decoding.

The Baseline System

For the baseline system, we train sex-dependent word-dependent phonetic SCHMMs. Word-
dependent phones [28] are a compromise between word modeling and phone modeling. Al-
though phone models are used, these phone models are word-dependent. In other words, a
phone model used for one word (e.g., the IY phone in word "b") has different parameters from
the model of the same phone in another word (e.g., the IY phone in word "c"). Like word
models, word-dependent phone models can model word-dependent phonological variations,
but require considerable training and storage. However, word-dependent phone modeling is
more robust than word modeling because when a word has not been observed frequently, its
parameters can be interpolated with that of context-independent phone models. For example,
although the IY phonemes in word "b", "c", "d", etc. are all represented by different models,
they can all be interpolated with the context-independent IY model.

107

Fifty-six (56) word-dependent phonetic models are used in total in the baseline system.
No between-word triphones are used because we find between-word coarticulation modeling
is not effective for a small task like this with short and stressed words only. This baseline
system achieved a word error rate of 11.3% (including insertion errors), as shown in the first
row of Table 5.13. This baseline system provides sex-dependent senones for learning senonic

baseforms.

system word error rate error reduction %
phonetic baseform 11.3% -

senonic baseform 9.6% 15%

Table 5.13: Word error rates on the spelling task, using phonetic baseforms and senonic
baseforms.

The Automatically Learned Senonic Baseform

To prepare for the learning of senonic baseforms, the 1132 training sentences are segmented
into words by a set of existing HMMs with the Viterbi alignment algorithm. For each word and
each gender, we split its sex-dependent training data into several groups by a DTW clustering
procedure according to their acoustic resemblance. Different groups represent different acoustic
realizations of the same word. For each word group, we estimate the word model by the Baum-
Welch formula and compute a senonic baseform as Figure 3.15 describes. The number of
states of a word model is arbitrarily decided to be equal to 75% of the average duration. The
simple Euclidean distance is used as the distortion measure in state quantization because we
believe each letter must have enough occurrences. Here we allow arbitrary senone sequences
for senonic baseforms in order to give the maximum freedom in the automatic learning process.
Note that all the male output distributions in the baseline system constitute the male senones;
female output distributions in the baseline system are the female senones.

Next we calculate the predicting ability of the senonic word model M•,,,, constructed from
the g-th training group of word w:

predict(Mw,2) = E log P(xIMw,g) I .Ix l
x,. 0 group g x. V group9

where x, is an utterance of word w.

For each word and each gender, we pick two senonic baseforms that have the best predicting
abilities. That is, each letter has four senonic baseforms in total; two for male, two for female.

108

The pronunciation of each word utterance in the training set is then labeled by:

pronunciation(x•) = argmax { P(xIM.,,)}
MAw9

After the training data are labeled in this way, we re-train the system parameters by using
exclusively the learned senonic baseforms for all 26 letters. During testing, each letter for each
gender is represented by two senonic baseforms in the search space. As shown in Table 5.13,
the word error rate is reduced by 15% with this automatically learned senonic baseform S. This
shows that when a sufficient number of training samples are available to estimate each word
model, the SQ algorithm does not cause quantization errors. Note that the number of system
parameters remains the same as that in the baseline system. No additional parameters are needed
for additional baseforms. A task of this sort cannot be improved by adding alternative phonetic
pronunciations, since there are none. However, it can be improved through the application of
automatically learned senonic baseforms, which in this case are purely acoustic-data driven.

This result indicates that senonic baseforms can capture detailed pronunciation variations
for speaker-independent speech recognition. It also illustrates one of the best applications
of senonic baseforms - tasks containing words that have ample training tokens and do not
have good alternative phonetic pronunciations. The above algorithm not only learns the
pronunciations automatically, it also labels the training data automatically so that re-training
can be done whenever necessary.

5.5.2 Pronunciation Learning with Few Training Samples

Dictation applications usually start with a speaker-independent system. However, new words
often appear during different users' usage. Therefore, new-word samples are often speaker-
dependent. A natural application of the senonic baseform is to generate speaker-dependent
word models for new words. New-word detection in large vocabulary systems is a difficult
problem and it alone could be another thesis, although reasonable solutions could be obtained
for limited categories in small tasks [4]. Therefore, this section assumes that possible new
words are already detected and a few utterances for the new word are given. When a new word
occurs, it is reasonable to ask the user to speak the same word a few times in order to enable
the system to learn its pronunciation. Therefore the goal here is to build speaker-dependent
acoustic models for new words without increasing the number of system parameters.

Due to their close relationship with acoustic data, senonic baseforms are particularly suitable
for jargon, acronyms such as IEEE (pronounced as I-Triple-E), CAT-2 (pronounced as cat-two)

'When no re-training was enforced, we still observed 12% error reduction.

109

aaw arctic asuw asw average
cI c2 c3 c4 c5
capable capacity casrep casreped casreps
casualty china fleet fleets formosa
indian japan latitude latitudes link- Il
longitude longitudes max maximum miw
mob mozambique ntds nuclear pacflt
pearl-harbor propulsion readiness solomon strait
thailand tonkin

Table 5.14: RM-w - the selected new words in Resource Management.

and non-English names whose phonetic transcriptions are difficult to obtain through simple
spelling-to-sound rules. These categories are all good candidates in which new words occur.

Experimental Speech Corpus

To verify the potential application of the senonic baseform to speaker-dependent new-word
learning, we carried the following experiment [65]. We chose RM as the experimental task as
it was the most popular common task we could access at the time of the experiments. Speaker-
independent (SI) sex-dependent SDMs, trained from the 3990 SI utterances, were used as
our baseline system for this study. The shared distributions constitute the senone codebook.
New-word training and testing data are speaker-dependent (SD). The four speakers from the
June-1990 test set supplied 2520 SD sentences each. Among the four speakers, bjw and jrm are
female; lpn and jls are male. The SD sentences were segmented into words using the Viterbi
alignment and treated as isolated speech in both the training and testing conditions.

From the RM lexicon we chose randomly 42 words, denoted as RM-w, that occurred
frequently in the SD speech corpus (so that we would have enough test data) as listed in Table
5.14. These 42 words are treated as new words 9. For each speaker and each of these words, 4
utterances in the SD data were used as training samples to learn the senonic baseform, and at
most 10 other SD utterances were used for testing as isolated speech (For words occurring fewer
than 14 times, we used whatever was left for testing). During recognition on these selected
new words, no grammar was used.

9Actually, they are not new words for the baseline SI system (i.e. the senone codebook) since they are covered
by the SI training sentences. On the other hand, the SD data used to construct and test senonic baseforms is
exclusive from the SI training corpus. Therefore, we consider the system configuration described here to be a
quick prototype to study the senonic baseform on the new-word problem.

110

The Baseline Shared-Distribution Model

Since the SD data is tested in the isolated-speech mode, it is not necessary to model between-
word co-articulation. Therefore, our baseline system used within-word triphone models only.
The baseline SDM system was trained from the entire SI training corpus, with sex-dependent
models. During testing, all the 997 words are represented by the phonetic SDM, without any
grammar. With the hand-written phonetic baseform, the average word error rate was 2.67%
for the four speakers, as shown in the first row of Table 5.15. Note that the SI training corpus
covers quite a few training samples for all the words in RM-w (on average 25 samples for each
word, each gender). Therefore, this result not only gives the upper bound for the performance
of phonetic baseforms, it is even better than a hand-written phonetic baseform without any
training sample.

Female Male
bjw jrm lpn jis overall

hand-written phonetic baseform 4.4% 3.1% 1.4% 1.7% 2.67%
pilot senonic baseform 7.0% 7.9% 4.7% 5.3% 6.23%
blind suffix senonic baseform 2.3% 4.2% 3.0% 5.0% 3.63%

total testing tokens 3851 355 1 363] 357 11 1460

Table 5.15: Word error rates of the speaker-dependent senonic baseforms.

The Senonic Baseform

For each speaker and each word in RM-w, we used 4 SD utterances to construct the speaker-
dependent senonic baseform. The number of states was set to be 0.8 of the average duration. The
SQ approach using semi-continuous output probabilities described in Section 3.3.3 was used
during the senonic-baseform construction. Again we allow arbitrary senone sequences for the
automatically learned senonic baseforms. The selected 42 words using senonic baseforms were
used together with the remaining 955 words using phonetic baseforms to make a vocabulary
size of 997. Vhc original set of senones constructed by the baseline system was used directly
with the learned :,'r.onic baseform; no re-training was imposed. The word error rate was 6.23%,
as shown in the second row of Table 5.15. Most of the errors came from the confusion among
word derivatives, like CASREP and CASREPED.

To understand how accurate the constructed senonic baseforms are without derivative
confusion, we concatenated the senonic baseform of the word origin with all the possible suffix
phones as the baseform for the derived words. For example, the baseform of fleets became

111

FLEET
<_ IX -Z

where the context-independent phone models ITSI, ISI, and the concatenated /IX-ZI were
appended in parallel with an equal probability after the senonic baseform of FLEET. In this way,
no training data were used to learn the pronunciations of the derivatives. This blind suffix senonic
approach significantly reduced the error rate to 3.63%, as the third row of Table 5.15 shows.
Still, some errors continued to occur, such as the misrecognition of casreped as casrep and max
as next. The max-next confusion reveals that the senonic-baseform construction algorithm was
not sufficiently accurate when only a few training tokens were available. Confusions of the
type of casreped for casrep could be due to improper segmentation during data preparation, in
conjunction with the confusion between the phones PD and PD-TD. We are not yet close to
reaching our goal of approaching the performance of hand-written phonetic pronunciations.

Interestingly we noticed that the suffix senonic baseforms for speaker bjw were significantly
better than the phonetic baseforms. When we analyzed the error reduction, we found it was
mainly due to the word arctic, which was transcribed as /AA R KD T IX KD I in the phonetic
baseform. The senonic baseform for bjw showed that there was none /KD/ senone in the middle
of the word, implying that the middle /KD/ was completely deleted by the speaker. The deletable
phone KD designed by linguists could not handle the complete deletion. This shows that senonic
baseforms are useful for adapting the system according to speaker idiosyncrasy 'o. A simple
way to take advantage of senonic baseforms is to choose whichever is better from the phonetic
and senonic baseforms, instead of always replacing the phonetic baseform. The goodness
of a baseform is decided by the joint probability of generating the given training utterances.
Although this yields a heterogeneous pronunciation system, both baseforms utilize the same
set of senones and thus almost no additional difficulty in the decoder is incurred. This way,
improper phonetic baseforms can be replaced by senonic baseforms automatically.

Possible Further Improvements

Since we cannot expect many training utterances for new words, the phonetic information
revealed from spelling is crucial [96, 13, 4]. Bahl [13] showed that given the spelling L of the
new word and utterance samples U, the phonetic baseform of the new word could be derived by

10Some systems, such as LIMSI's recognizer in France, apply phonological rules during decoding. For example,
arctic could bex pronounced as /AA R [K] T IX K/, where the brackets mean that the first K phone is optional.
However, the senonic baseform is still more flexible for capturing more complicated speaker idiosyncrasy.

112

decoding the phone sequence R which maximizes Pr(R IL, U), with decision trees determining
the spelling-to-sound rule, Pr(RIL). With four utterances only, the automatically determined
phonetic baseform performed as well as handwritten phonetic baseforms in a 20,000-word
speaker-dependent isolated speech recognition.

When there are few training samples, the forward-backward algorithm falls easily to the
local optimality closest to the initial model (therefore, uniform initial models are good in the
sense that they are unbiased). When the estimated word model is sub-optimal, the Viterbi
algorithm gives sub-optimal alignment for the training data, resulting in unrecoverable errors
for the SQ algorithm using the aligned data frames. To help decide the senonic baseform,
the phonetic transcription deduced from spelling may be used as the initial model, with the
hope that the senonic baseform can escape from errors made by the spelling-to-sound rules.
The advantage, in comparison with using the phonetic pronunciations directly, is the freedom
(based on the acoustic data) to escape from the possibly wrong phonetic transcription which is
derived purely from the word's spelling.

Other improvement possibilities for the senonic baseform include the use of state topological
locations and senone bigrams during state quantization, and a search algorithm similar to the

fenonic baseform defined by (2.1).

As shown in this study, the performance of new-word learning depends strongly on the
selected words and the confusability of the vocabulary. For example, if all the selected words
are long and acoustically easily distinguishable, it is easy for the automatically learned baseform
to approach the performance of the hand-written phonetic baseform. Therefore, to study new-
word learning, not only is spelling information important, a common and rich speech corpus of
careful design is also needed. Since no such public corpus was available at the time of these
experiments, our work on this problem was put on hold, where it remains.

5.6 Senonic SCHMMs with Phone-Dependent VQ Codebooks

To approach the performance of CHMMs without actually going to CHMMs, we relax the
mixture-tying condition in SCIBMMs from tying all the Markov states to the same set of
mixtures (the VQ codebook) to tying only the states which belong to the same phone class.
Phone classes can be easily determined manually since there are not many phones in English,
or they can be determined automatically as Section 3.4.1. Alternatively, faced with a fixed
training corpus, one way to reduce the number of parameters when the number of codebooks is
increased is to reduce the VQ level. In this section, we will present our early results with both
approaches.

113

5.6.1 SCHMMs with Eight Phone-Class VQ Codebooks

According to the phone-classification tree in Figure 3.19, we select the top 7 splits. This gives
us the eight most distinguishable phone classes. They are:

0 SIL SILb SILe noises
1 AA AE AH AO AWAY EH
2 AX EY IH IX OW OY UH
3 B D DH F G K P TH
4 BD DD GD KD PD TD V
5 CH JH SSH T TS Z ZH
6 DX HH L W
7 MN NG
8 ER AXR R Y IY UW

Note that silences and background noises form a separate class. Markov states of all the
triphones which represent the same phone class share the same set of mixture densities (the 256
VQ densities). For our experiments, the hybrid system with 7000 senones and one-codebook
DHMMs for clustering in Table 5.12 is used as our baseline. This baseline system had a
word error rate of 7.4% on the Nov92 set. To train these eight phone-class dependent VQ
codebooks and senones, we initialize them with the universal VQ codebook and senones of
the hybrid system. Then we run the forward-backward algorithm for two iterations to adjust
both the senones and phone-class dependent codebooks. As mentioned in Appendix B.2, we
normalize the density value fk(")(xk) for each phone class p by the average summation to force
the normalized density value into a stable range:

=Ep P Ek fk(p)(Xk)

-P I
AP= fkP) (xk)

where P denotes the set of phone classes and JPI is the number of phone classes. During
training, computation can be saved by computing only the necessary densities as Section 3.4.3
describes, where t is a subset of P.

Table 5.16 shows our results on the male and female subsets of the Nov92 evaluation set.

Further increase in the number of phone classes does not give us additional improvement.
In fact, when more phone classes were used, we found many codewords were not observed and
thus their densities were not re-estimated. For those codewords that did get re-estimated, some
of them possibly did not have sufficient training data, either. We thus hypothesize that with

114

system Nov92
male I female

1 phone class 6.1% 8.6%
8 phone classes 5.8% 7.6%

error reduction % 5% 11%

Table 5.16: Word error rates of the senonic SCHMMs with 8 phone-class dependent VQ
codebooks on the WSJ 5c-nvp task. The baseline with one VQ codebook is the hybrid system
with the senone mapping table generated from the one-codebook DHMMs in Table 5.12.

either more training data or a reduced VQ size, we should be able to get additional improvement.

5.6.2 SCHMMs with a Reduced VQ Size

The second experiment we tried is to reduce the VQ size from 256 to 128. Since the VQ size
was reduced (thus so was the number of parameters), we decided to move to 40 phone classes
directly instead of staying at the eight phone classes. These 40 phone classes are determined
partly by the phone classification tree in Figure 3.19 and partly by merging infrequent phones
(such as BD, GD, and ZH) into similar ones in order to guarantee enough training data. The 40
phone classes are:

0 SIL SILb SILe noises
1 AA AO 21 JH
2 AE 22 K
3 AH AW 23 L
4 AX 24 M N NG
5 AXR 25 OW
6 AY 26 OY
7 B 27 EY
8 BD PD 28 P
9 GD DD KD TD 29 R

10 CH 30 S
11 D 31 SH ZH
12 DX HH 32 DH
13 EH 33 T
14 ER 34 TS
15 F 35 UH
16 TH 36 UW

115

17 G 37 V
18 IH 38 W
19 IX 39 Y
20 IY 40 Z

When the mixture sharing constraint is relaxed from 8 phone classes to 40 classes, almost each
phone has the freedom to estimate its own VQ prototypes. We hoped to see a significantly
different behavior by the dramatic change in the number of phone classes.

The phone-class dependent VQ codebooks and context-independent DHMMs for VQ size
128 were initialized from the segmentation of the training data by Viterbi alignment using a

set of existing HMMs. Unfortunately, the performance with this reduced VQ size was similar
to the baseline which had only one VQ codebook; there was no improvement at all. Perhaps
using 128 prototypes for each of the 40 phone classes still results in too much resolution in the
cepstrum space under the 7000-utterance training data. To obtain substantial improvement, we
have to find the equilibrium between the number of phone classes and the VQ size. A more
complex approach is to have a variable VQ size for each different phone class. The VQ size
for a certain phone class can be decided by examining the entries in the output distributions
for that phone class (i.e., the weighting vectors in terms of CHMM terminology). Zero entries
mean that the corresponding codewords are redundant and should be removed.

Although the work on phone-class or phone dependent VQ codebooks is not successful yet
on speaker-independent speech recognition, it is useful for speaker adaptation and channel
normalization, where the codebook means are the best candidates for adaptation given a

small amount of adaptation data (e.g. speaker-dependent speech or secondary-microphone
speech). Speaker adaptation on the universal VQ codebook of the traditional SCHMM had
been successfully applied to the RM task [551. Adapting the phone-dependent codebooks
allows the system to learn the phone distribution in the cepstrum domain for a new speaker

or a new environment and hence should be more powerful than adapting only one universal
codebook. To limit the scope of the investigation, these further studies are left open.

5.7 Summary

In this chapter, we presented the experimental results for the subphonetic modeling techniques
described in Chapter 3.

For the SDM created by the bottom-up state clustering procedure, we achieved a 20%
error reduction over the generalized-triphone model. This demonstrates that the "mis-average"

116

problem does indeed occur in the generalized-triphone approach. The SDM avoids the "mis-
average" problem by clustering at a finer level.

To extend the SDM to very-large vocabulary tasks, we impose both phone-dependency and
state-dependency constraints to speed the clustering procedure. Our experiments show that the
bottom-up clustering procedure provides more freedom in re-configuration than the top-down
tree classification and thus provides a slightly better performance when both systems represent
unseen triphones with monophone models. The strength of decision-tree based senones resides
in its ability to model unseen triphones using detailed parameters. When unseen triphones were
modeled by the decision-tree based senones in the same way as seen triphones, the senonic
decision tree outperformed the hybrid approach in which unseen triphones were also modeled
by senones but with the state quantization technique. The hybrid approach failed to outperform
the purely decision-tree based senones because of the "mis-average" problem in the generalized
allophone models and because of possible state quantization errors. Modeling unseen triphones
with detailed parameters helps not only identify the correct path when the correct path contains
unseen triphones, but also helps prune those wrong paths in which unseen triphones are used.
The more unseen triphones the correct path contains, the more error reduction modeling unseen
triphones with senones provides. In our experiments, when there were at least 5 unseen
triphones in the correct path, the error reduction was above 20%.

The above experiments used one-codebook DHMMs for state clustering for the sake of
simplicity. We also tried using 4-codebook SCHMMs for state clustering, in the hope of
improving the recognition performance. However, this added model accuracy only offered
a small improvement, perhaps because the one-codebook DHMMs already provided a good
distance measure for state clustering.

Next we applied the senonic baseform for automatic pronunciation learning. When there
were ample training samples, the senonic baseform provided 15% error reduction over the hand-
written phonetic baseform, with the same number of parameters. When there were few training
samples in the new-word learning scenario, confusion among word derivatives was common.
To avoid the derivative confusion, we proposed the incorporation of spelling information, but
were not able to complete the line of work. One of the advantages of the senonic baseform is
that it shares senones with all the rest existing phonetic models and thus the number of system
parameters remains fixed. We can always choose the better model between the senonic and
phonetic baseforms for any word. The heterogeneous system does not impose any difficulty in
implementation because both baseforms share the same set of senones. In our experiments, we
also showed that the senonic baseform was able to adjust to speaker idiosyncrasy, showing the
potential application to speaker adaptation.

Finally, the senonic SCHMMs with phone-class dependent VQ codebooks are hopeful but
as yet unproven for further acoustic improvement in speaker-independent speech recognition.

117

Another advantage of multiple VQ codebooks is the potential application to speaker adaptation

and channel normalization, which will be our important work in acoustic modeling in the near

future.

118

Chapter 6

Conclusions

This thesis presents several subphonetic acoustic modeling techniques for speaker-independent
speech recognition. We will summarize our conclusions based on our experimental experiences
with these techniques. Contributions of this thesis are discussed, and finally future directions
in acoustic modeling based on this work are presented.

6.1 Conclusions on Subphonetic Acoustic Modeling

Here we summarize our conclusions for each of the subphonetic modeling techniques described
in Chapter 3, based on our experimental experiences. We also discuss conditions under which
each subphonetic modeling technique is most suitable.

"* Parameter sharing at a subphonetic level provides more accurate models than sharing
at the entire phonetic unit. Particularly, the shared-distribution model substantially
outperformed the generalized-triphone model.

"* The bottom-up state clustering algorithm to generate a senone mapping table is most
suitable for medial-sized tasks (e.g., 1,000 - 2,000 words) because (1) The bottom-up
clustering algorithm is able to find the optimal sharing structure for seen triphones, (2)
the computation is tolerable, (3) it is not difficult to design and collect a speech training
corpus which covers a high percentage of the triphones needed for a medial-sized task.

"* For medial-sized tasks, the state-dependency constraint for state clustering is not nec-
essary. For very large-vocabulary tasks, it can speed the the bottom-up clustering dra-
matically. The phone-dependency constraint is reasonable as long as there are not many

119

phones for a certain phoneme. For example, the phones T, TD, and DX all represent
the phoneme T. It is more desirable to allow parameter sharing across the phones which
represent the same phoneme.

" The strength of the senonic decision tree rests on its ability to model unseen triphones
with detailed parameters (i.e. senones). Therefore, it is the method of choice when large-
vocabulary dictation systems are built or when a backoff language model is employed.
In both conditions, we expect a large number of unseen triphones. Modeling unseen
Lriphones with senones helps not only in identifying the correct word sequence, but also
in pruning the incorrect paths in which unseen triphones art. needed.

" Cross validation is designed to enhance the robustness of decision trees, especially
when a vocabulary-independent system is pursued or complex composite questions are
constructed to grow the tree in which case the tree might become tailored too closely to
the training corpus. In our experiments, there was neither a cross-vocabulary condition
nor did we make the composite question complex. Therefore cross validation had no
effect on our performance.

" Because of the complex procedure involved in the training phase, the hybrid approach
for modeling unseen triphones by quantizing the Markov states of tree-based generalized
allophone models with senones was not worthwhile, although it did offer slightly better
performance than the purely decision-tree based senones when there were not many
unseen triphones in the test set (e.g., fewer than 2 unseen triphones per utterance).

" It is always better to provide more accurate and detailed models for the state clustering
algorithm, either in the bottom-up or top-down fashion, in order to provide a better
distance measure. However, training the four-codebook SCHMMs before clustering
is much more expensive than the training of one-codebook DHMMs. To reduce the
cost and at the same time provide as detailed models as possible, we suggest training
four-codebook DHMMs for the purpose of state clustering.

" An accurate senonic baseform can be automatically learned when there are many training
samples. Senonic baseforms can be used together with phonetic baseforms without an
increase in the number of system parameters because both baseforms share the same set
of senones. Therefore frequent words, phrases, and syllables may be better modeled by
the more detailed senonic baseforms than by phone-concatenated models.

" We have seen the potential application to speaker adaptation using senonic baseforms
in the arctic example in Section 5.5.2. However, the senonic baseform learned from
only a few training samples is not accurate enough for a large vocabulary task. Possible
improvements include the incorporation of spelling information and a search strategy
similar to the one used for determining a fenonic baseform, with a senone language
model.

120

9 The senonic SDM with phone-class dependent VQ codebooks offered small improve-
ment. To observe further improvement, it requires more work on finding the equilibrium
between the number of phone classes and the VQ size, based on a fixed training corpus.

6.2 Contributions

Senones

The most significant contribution of this thesis is the introduction of the subphonetic
unit - the senone. By tying parameters across similar Markov states so that the num-
ber of parameters can be reduced, we not only make the parameters well trained with
limited amount of training data, we also provide more accurate parameter sharing than
gener-lized-triphone models, which sometimes mis-average dissimilar states. A natu-
ral effect of parameter reduction is the reduction in the memory requirement, which is
important when useful application systems are built.

Given the strong results of this thesis, both BBN [111] and SRI [32] have recently
successfully incorporated senones and similar approaches into their systems.

The senonic baseform

We present the concept of treating senones as Markov-state prototypes. With senones in

the Markov-state space, any unit of model can be treated as a walk through or permutation
of the prototypes. The sequence of the walk through the senones defines the senonic
baseform for that unit of speech.

On the English spelling task, we demonstrated a promising result of using automatically-
learned senonic baseforms for detailed word modeling. When sufficient training data

for a word is available, accurate senonic baseforms can be determined automatically.
Compared with hand-written phonetic baseforms, the advantages of the senonic baseform
are

"* The senonic baseform is purely acoustic-driven and can be derived automatically.

"* The number of system parameters remains fixed, even though there are often more

states per word in the senonic baseform than the phone-concatenated word model.
More states usually imply the ability of accommodating more acoustic variabilities.

"* More than one senonic baseform can be learned for each word. The training data
can be re-labeled automatically with the senonic baseforms. The system parameters
(i.e. the senones) can be re-trained using the re-labeled senonic pronunciations so
that the senones can be optimized under the new sharing structure.

"* Since the senonic baseform is purely acoustic-driven, it is very suitable for speaker

adaptation.

121

Purely senonic decision trees ve sus Hybrid

The hybrid approach is motivated by better modeling for unseen triphones. However,
when the unseen-triphone problem is serious, it is better solved using the decision-tree
based senones. We show by experiments that the hybrid approach is unnecessary because
it did not offer meaningfully better performance while it required a very complex training
procedure.

5-state Bakis topology

With state sharing, we have the luxury of increasing the model complexity and relying
on the sharing algorithm to tie redundant states. Most speech recognition systems use
three-state phonetic HMMs as their basic models. We modified our phonetic models
to have the 5-state Bakis topology when we incorporated the shared-distribution model
into SPHINX. Recently BBN has confirmed that it is slightly helpful to increase the
number of states per model when senones are used for very large vocabulary tasks
[111]. Perhaps when the task scales up, the acoustic confusability is increased and thus
more detailed model topologies are needed to accommodate more acoustic variabilities.
However, had the complexity of the model topology been increased simple-mindedly
without proper parameter sharing, the increased system parameters would have been
either under-trained or "mis-averaged" somehow. Only when a proper parameter sharing
technique like senones is coupled with the increased topology complexity do we expect
a consistent improvement.

The phone-dependent VQ codebooks

We propose the senonic SDM with phone-dependent VQ codebooks with the hope of
approaching CHMM performance without actually going to CHMMs. A small improve-
ment was observed when eight phone-class dependent VQ codebooks were used.

Codebook adaptation has been studied for fast speaker adaptation by Huang and Lee
[55]. The most important advantage of multiple VQ codebooks is its potential impact
on speaker adaptation and channel normalization by adjusting the phone-dependent VQ
prototypes. When there is only one VQ codebook as in the traditional SCHMMs,
the effectiveness of adapting the codebook only becomes saturated after the number
of adaptation utterances reaches the order of 20. To be more effective with respect
to a modest amount of additional adaptation data, we can adjust the phone-dependent
codebooks.

122

6.3 Future Work on Acoustic Modeling

Despite the high accuracy (93% word accuracy) on the WSJ 5c-nvp task, the recognition rate
is still not satisfactory for real applications, especially when a task larger than 5000 words is
considered. In recent years, researchers have been frustrated in trying to make improvement
in speaker-independent acoustic modeling. The work in SCHMMs and senones have been the
most successful recent improvements.

Our work on the decision-tree based senones builds a paradigm for subphonetic acoustic
modeling. However, the state-dependency constraint is undesirable, even though we did observe
that states in the same cluster were mostly from the same topological location. It would be
better to allow the state clustering algorithm the full freedom to decide if tying some states in
the same model would yield a better configuration and result in an improvement. Moreover,
as discussed in Section 3.2.2, the tree growing algorithm runs much more efficiently than the
bottom-up clustering algorithm which has essentially an exponential computational complexity.
This violates the motivation for the state-dependency constraint, which is designed to speed the
clustering procedure. Therefore one possible improvement is to release the state-dependency
constraint in the tree growing algorithm. Questions like "is the state under consideration the
first state of a model?" and their composites may need to be added. Carefully re-designing
the set of basic linguistic questions and adding criteria to constrain or guide the composite
questions could also improve the system. When more complex composite questions are used,
we believe that cross validation will become more important lest the tree become tailored too
closely to the training data. Finally, to consider more contextual effects, we propose to cluster
allophones with longer contexts when more training data are available, as IBM [12] has been
using the left five and the right five neighboring phonemes.

When a vocabulary-independent system is desired, a rich training corpus covering a larger
number of triphones is needed. With the rich training corpus, vocabulary-independent senonic
decision trees can be built. When a particular task is chosen, the vocabulary-independent
senonic decision trees are used to generate a senone mapping table. Since the triphone set needed
for the target task is different from the triphone set formed by the vocabulary-independent
training corpus, some vocabulary adaptation techniques are helpful in getting the optimal
senone mapping table for the target task. For example, pruning subtrees which do not contain
any (or very few) triphone of the target task (these triphones are called relevant allophones in
[42]), re-constructing the decision trees using only relevant allophones, and so on.

The concept of senonic baseforms can be extended to any unit of speech, not just the word
model. It is well know that there is no data like more data [99]. However, acoustic modeling
cannot be improved by simply adding more data without increasing the parameter complexity.
For example, a few thousand utterances are enough to train monophone models well. If a few

123

million utterances are available and monophone models are still used, then we will not be able to
obtain increasingly accurate models or achieve higher recognition rates. To obtain significantly
better systems, we have to use triphones or even longer-distance context units. The problem
with long-context units or multi-phone units is the tremendous number of free parameters. To
maintain the number of parameters at a manageable level, the Markov states of the long-context
units could be clustered using the state clustering algorithm or they could be quantized with an
existing set of senones using the state quantization algorithm. The senonic baseform created
by state quantization works best when there are many training samples. Therefore, we can
represent frequent multi-phone units, syllables, or phrases using their automatically-learned
senonic baseforms without an increase in the number of parameters. The senonic baseforms
can be used together with other existing phonetic baseforms with almost no implementation
difficulty lince they share the same set of senones.

When there are few training samples, the senonic baseform may be improved by incorporat-

ing spelling information. A senone language model and a search strategy similar to the one used
to determine fenonic baseforms may also be incorporated to enhance the quality of the senonic
baseform. The senonic baseform has a great potential application for speaker adaptation, as
evidenced in our experiments in Chapter 5.

The strength of the senonic SDM with phone-dependent VQ codebooks relies on the quick
codebook adaptation for speaker adaptation and channel normalization, where phone-dependent
VQ prototypes can be tailored to the test speaker or recording environment by the Baum-Welch
re-estimation formula. Adjusting the phone-dependent VQ codebooks is more effective and
accurate than adjusting a single universal VQ codebook. It is well known that the performance
of a speaker-independent system performs with about triple the error of a speaker-dependent
system [35, 55, 80]. Speech recognition across different recording environments is even worse
[2, 74]. Therefore, speaker adaptation and environment normalization are two crucial and
probably related research issues for building useful, accurate and robust speech recognition
systems. All of these directions mentioned above are important work for improving acoustic
models in the near future.

124

Appendix A

Fundamentals of Hidden Markov Models

As a statistical modeling tool, hidden Markov models were first described in the classic pa-
per by Baum [20]. Shortly afterwards, they were applied to automatic speech recognition
independently at CMU [16] and IBM [18, 70]. Until recently, HMMs have become the pre-
dominant approach in speech recognition, subsuming dynamic time warping [70, 29, 85, 49]
and outperforming neural networks [133, 38, 129, 40] in most speech recognition tasks.

An HMM can be used to represent a specific unit of speech, such as a phoneme or a word.
Most speech recognition systems use phonetic HMMs. However, for small vocabulary tasks
in which data collection does not require heavy efforts, word HMMs can be used efficiently to
obtain high-accuracy [33] speech recognition systems.

This appendix is designed for readers who are not familiar with hidden Markov models. At
the end of this appendix is a list of references for further studies of applying HMMs to speech
recognition.

A.1 Definition of Hidden Markov Models

Formally, an HMM is defined as

A = < S,I,FA,B, >

where S is a set of states with transition arcs defined between the states. Associated with each
transition from state i to state j is an output distribution, bij(x) E B, which defines how likely

125

a certain event x in the observation space is going to happen when the transition is taken
That is, whenever a transition is taken, a piece of data is observed (or "output") with a certain
probability. In addition, a transition probability ai, E A is associated with each arc and specifies
the likelihood of transit to state j, given that we are currently at state i. I is the set of initial
states, F is the set of final states. Any sequence of observations is output by starting from one
of the initial states and ending with one of the final states. ri V i E I is the probability that we
start from state i. Since A, B, are all probabilities,

Z_ aij = 1 V i E S,
jES

Jf bij(x)dx = 1 for all transitions i to j if x is a continuous vector, (A. 1)

Z-bij(k) = I for all transitions i to j if x =k isadiscrete symbol, (A.2)
k

EZ-ri = I
iEI

Starting from a certain initial state (unknown or hidden), we observe a sequence of data. We
know these data are emitted (output) by the HMM and that the stochastic process ends at one
of the final states. The observed event is the sequence of data output by the HMM; the hidden
part is the sequence of states the observed data have gone through. In other words, we don't
know which sequence of transitions output the observed data.

A.2 Null Transitions

Some transitions may be null, meaning no data is output when the transition is taken. A null
transition has an associated transition probability, but no output distribution since no data is
output by the transition. Null transitions are a convenient notation that can be used to reduce
the topology complexity. For example, the two HMMs shown in Figure A. 1 are equivalent,
where the dotted arc is a null transition.

Null transitions can also be used to unify the initial states and/or unify the final states to
simplify implementation, as illustrated in Figure A.2.

' Output distributions may also be associated with states instead of arcs. The theory is exactly the same, with
only slight modification on notations.

126

a
33 b(.

b (.)(.33 a 4 1

ba
13 b(3 34

35
13 b(.)3 3

a13 a35 35

Figure A.I: Two equivalent HMMs, one with a null transition (the dotted arc), the other
without. ai3 is the transition probability; bj(.) is the output distribution. The parameters
associated with those arcs without any mark in one HMM are the same as those associated with
the corresponding arcs in the other HMM.

"r2 2 4 5Trr
5 1R.0

Figure A.2: Using null transitions to unify the initial states and to unify final states. 7r in the
left HMM is the probability of being at state i initially; it becomes the transition probability of
the null arc in the right HMM.

127

A.3 Three Types of HMMs

A.3.1 Continuous HMMs

When the observed data, x, are n-dimensional vectors in a continuous domain as the speech
cepstra are 2, the output distributions become probability density functions (pdfs), as Equation
A. 1 shows. HMMs of this type are hence called continuous HMMs or CHMMs.

To enable parametric estimation of the pdfs, these pdfs are often assumed to be Gaussian

(sometimes even with diagonal covariance matrices) for mathematical simplicity [107]. Other
forms that have been explored include the Gaussian mixture density [114], the Gaussian
autoregressive mixture density [73], the Richter mixture density [1181, and the Laplacian
mixture density [102]. For example, when the Gaussian mixture density is used, the probability
of generating data x given the transition from state i to state j, Pr(xlij), becomes

M

Pr(xlij) = t w!).A/i!)(x) (A.3)
m= I

where A(m) is the m-th Gaussian, w(m) is the mixture weight and m w(in) = I to make

fx Pr(xlij)dx = 1. Suppose there are n CHMMs in a system and each HMM has a arcs.
The number of parameters is then na for transition probabilities, plus naM for the densities,
assuming that there is one initial and one final state for all HMMs. In practice the number of
mixtures, M, is something between 10 to 30.

When the assumptions about the forms of the distributions (e.g. the diagonality) are
incorrect or when the distributions are not well behaved (e.g. a Gaussian model is used for
distributions that are bimodal), a better training algorithm on the HMM parameters will not
guarantee a better recognition accuracy during testing.

A.3.2 Discrete HMAMs

Vector quantization (VQ) [39, 97] is a data reduction technique that maps a continuous vector

onto a discrete symbol. To be able to perform VQ, a set of prototype vectors has to be created
first, by techniques such as K-means clustering [94, 39, 97], based on an inventory of data
vectors. A vector quantizer is defined by the prototype vectors together with a distortion
measure that estimates the proximity of two vectors. Any input vector is quantized to the

2Speech cepstra are n-dimensional vectors that characterize the frequency spectra 4f the input speech within a
short period of time, e.g. 10is [31).

128

closest prototype. Thus, instead of dealing with the raw n-dimensional domain directly, we

transform the data into finite symbols.

With the VQ technique, when the raw data x are n-dimensional vectors like speech cepstra,
we can quantize the continuous vectors into a finite number of symbols. When the data emitted
by an HMM are symbols from a finite set, the output distributions become real probability
values, as Equation A.2 shows. HMMs of this type are called discrete HMMs or DHMMs.

DHMMs do not make any assumption about the form of the output distribution. Therefore,
they can well represent all possible distributions. Moreover, computing the output probability
Pr(xliij) becomes only a table lookup, rather than the intensive multiplications and additions
required for CHMMs. That is,

Pr(xlij) = bij(k)

where k is the vector quantized symbol for x.

However, there are two disadvantages. First of all, many more parameters (and thus more
training data) are necessary for DHMMs than for CHMMs. With DHMMs, the number of
parameters is na plus naL, where n is the number of models in a system, a is the number arcs
per HMM, and L is the size of the VQ codebook. Normally L is about 256 versus M = 20 in
CHMMs. Secondly, VQ distortions are inevitable. A finite set of prototypes cannot represent
all possible continuous vectors with 100% precision.

A.3.3 Semi-Continuous HMMs

To relieve the VQ distortion in DHMMs, semi-continuous HMMs (SCHMMs) [53] or tied-
mixture HMMs [22, 2 11 were proposed independently by Huang and Bellegarda. When semi-
continuous HMMs are used, the discrete output distribution bij(k) is retained as the distribution
representation. In addition, each VQ codeword k is modeled by a density function fk(x),

which can be explained as the likelihood of vector x belonging to codeword k. The simple
table lookup bij(k) in DHMMs to find the probability of generating an acoustic vector x given
the transition from state i to state j is then replaced by

L

Pr(xlij) = E b,,(k)fk(x) (A.4)
k=|

where L is the VQ level, i.e., the size of the VQ codebook. To save computation, SPHINX-Il
usually uses only the top 4 best-matched VQ prototypes to represent the input vector, rather
than using all the L codewords. Each fk is assumed to be a single Gaussian with a diagonal

129

covariance in SPHINX-H. Moreover, we found that normalizing the fk(x)'s such that

E f (x)=l
kEtop 4

increased the stability of our training routines. This is because the density values can be ar-
bitrarily small or large, which may cause floating-point exceptions, especially when a double-
precision floating-point representation is not used. The floating-point exception problem be-
comes serious when multiple independent features are used [52]. Appendix B proves math-
ematically that normalizing the density is just a scaling factor and will not affect either the
Baum-Welch estimation [20] or the time-synchronous beam search [132].

When compared with DHMMs, SCHMMs can be viewed as reducing VQ errors by using
the top few codewords instead of only the top one. We can call this "fuzzy" VQ, with the fact
in mind that the codebook densities can be jointly optimized with the other parameters, rather
than always being fixed as with DHMMs. From the viewpoint of CHMMs, all transitions in
SCHMMs are tied with the same set of density functions {fk} to reduce the computation; i.e.,
{IA(m)}m in (A.3) = {fk}L in (A.4). Each transition has the discrete output probability as the
weighting in the mixture; that is, wi) in (A.3) = bij(k) in (A.4). It is the relationship with
CHMMs and DHMMs that prompts us the name of "semi-continuous" or "tied-mixture". In this
thesis, we use the name SCHMM, although the term "tied-mixture HMM" is interchangeable.

The number of free parameters in SCHMMs is na transition probabilities, plus naL output
probabilities, plus L densities. Thus, the total number of parameters is only L more than
DHMMs. With essentially no more parameters and modest additional computational costs than
DHMMs, SCHMMs have been shown to provide more accurate models for speech recognition
[441.

Compared with CHMMs which require the computation of naM densities for every piece
of data x, SCHMMs require only the computation of L densities since all transitions are tied
with the same mixtures. With much less computation, SCHMMs perform at least as well as
CHMMs in terms of recognition accuracy [103].

A.4 Application of HMMs to Speech Recognition

Because they provide a good model for time-series phenomena with stochastic influences,
HMMs are a natural representation for speech. Each short segment of speech (e.g, lOms) is
represented by an n-dimensional (e.g. 12) cepstrum vector that characterizes the frequency
spectra [31]. The n-dimensional cepstrum may be further qUantized to a discrete symbol

130

for DHMMs. The cepstrum or the discrete codeword is the data emitted by HMMs. The
outpl!t distribution models the distribution of speech events at each transition, and the transition

probability models the duration of these events. An HMM can be used to represent any unit of
speech, such as a phoneme or a word. Since there are strong temporal constraints in speech,
topologies that enforce left-to-right flow are usually used.

Given the definition of hidden Markov models, there are three problems of interest. Existing

algorithms are available to solve each of them:

The Evaluation Problem Given a model (A) and a sequence of observations (X), what is
the probability that the model generated the observations? That is, how to evaluate
Pr(X = XlX2...XTIA)?

Application - isolated-word speech recognition.

Solution - the forward algorithm [116].

The Decoding Problem Given a model (A) and a sequence of observations (X), what is the

most likely state sequence (Q) in the model that produced the observations? That is, how
do we find argmax Pr(X, QIA) ?

Q
Application - continuous speech recognition.

Solution - the Viterbi beam search algorithm [1321.

The Learning Problem Given a model (A) and a sequence of observations (X), what should
the model's parameters be so that it has a high (if not maximum) probability of generating
the observations? That is, how to find argmax, Pr(XIA)?

Application - training of the HMM parameters.

Solution - the iterative forward-backward algorithm or Baum-Welch reestimation [20,
7].

Interested readers are referred to [20, 17, 70, 7, 92, 116, 113, 85, 49] for full explanation
of all the above algorithms and more detailed treatments on HMMs for speech recognition.

Particularly, [116] is a good start for beginners.

131

Appendix B

Normalization of the Probability Density
in SCHMMs

According to (A.4), the probability of output data x given a transition from state i to state j is

L

Pr(xlij) = j b,(k)fk(x)
k=i

for SCHMMs, where symbols a,,, bj, and fk(.) are defined in Appendix A. Since fk are
density values instead of probabilities, values may range from an epsilon small value to a
gigantic number, especially when x is a high-dimensional vector. When multiple independent
data features (e.g., cepstrum, delta cepstrum, and the second-order differenced cepstrum) are

used, multiplication of multiple (A.4)'s could cause floating-point exceptions with underflow
or overflow. To prevent floating-point exceptions, we can normalize these densities before
multiplications take place. This appendix will prove that mathematically this affects neither
the Baum-Welch reestimation nor the time-synchronous beam search.

This normalization is similar to the scaling [92, 73, 115] of the a and P values during the
Baum-Welch computation. We will describe the scaling first before describing the normalization
of the density functions. To be able to distinguish the same term under different scaling
and/or normalization conditions, we will use superscript * to denote the real mathematic value.
Furthermore, to simplify the explanation, we assume that the first state (state 0) is the only
initial state and the last state (state n - 1) is the only final state in an HMM. Moreover, we
assume there is only one data feature. Null arcs will be noted only in Section B. 1.3 and B.2.3.
It is easy to extend the proof to more generally-structured HMMs with multiple data features.

132

B.1 Scaling of the Baum-Welch Computation

B.1.1 The Forward Pass

In the forward pass of the Baum-Welch reestimation, we compute the a* cells time-synchronously
from the first frame to the last frame:

ca*(s) = Pr(reach state s after xx2...xt are observed I X, A)

= _ a-,(j)ajPr(xtjjs)

*a(0) =1

ac(n - 1) = Pr(XIA)

assuming there are n states (from 0 to n - 1) and the input utterance is T frames long (recall
that the superscript * is to mean the true mathematical value).

Due to the assumption that data frames are independent, the a* values would underflow
the floating point representation of almost any digital computer after only a few tens of frames
have been processed. To prevent underflow, we can either use a logarithm representation for
all probabilities or re-scale the probabilities whenever necessary. Section B.3 will mention the
usage of the log representation. In this and the following sections, we will demonstrate in detail
the usage of scaling. The most popular method of scaling to prevent underflow is to divide all
the ca(.) cells by the summation of them after they are computed. To elaborate, let's start from
the initial condition and use -it to denote the scaling factor at time frame t, and a without the *
superscript to denote the scaled value. Because of

o (0) = 1

O(s 56 0) = 0

the initial values for -yo and ao are

=

a*(

G0(s) = •(•) = as(S) Vs
7o

Next for frame 1,

a1 (s) before scaling = Eao(j)ajPr(xjjjs)
j

133

= Ea;(j)ajoPr(x,[js) = a(s)

^/ = E{fa(s) before scaling}

a;S

"al(s) I(s)
a,(s) -- s)- ars

7l Eal (S)

Looking at one more frame, frame 2,

(2(8) before scaling = E a1(J)aj,.Pr(x21js)

= E 2i(jajPr(xfljs)

j 'I

72 = >{a2(s) before scaling}
a

a Ea(S) _Za;(S)

71 a~l(s)

a2() () -- (S)
f172 - *S

By induction it is easy to show that

7o =

ft = E a(s) 8 a*(s) fort = 1..T
"= 2..4(s- _ .a~ls)

Q,(S) = at(s - at(s) fort = .. T (B.1)'YI'Y2 ... ' ^it it (s)
T

Pr(XIA) = a(n - 1) =aT(n -1) Ilyi (B.2)
t=1

To sum up, the true a* value is the scaled a times the product of all the scaling factors from
the first time frame through the current time frame. Or equivalently, each at (s) is effectively
scaled by the sum over all states of at(s).

134

B.1.2 The Backward Pass

In the backward pass of the Baum-Welch reestimation, we compute the I* cells time-synchronously
from the last frame to the first frame:

Pt3 (s) = Pr(reach state s after Xt+lXt+2...XT are observed I X, A)

= •_ajPr(xt+,lsj)#3t+I(j)

/34("- 1) = I

/3;(0) - Pr(XIA) = a(n -1)

The same scaling factors -/ computed in the forward pass are used in the backward pass.

That is, the /3t cells are scaled by 7t after they are computed. Therefore, the initial condition
for computing 1 is

/#T(S) - L (s
^ITT

Next for frame T- 1,

/3T-i(s) before scaling = • asjPr(xTr ISj)ifl (j)

= Z_, asjPr(xTIsJ)1 (j)
j 7T

_ 13 I (S)

"^IT

OT-I(S) -fl3 I (S)

"^tT- I T

And for frame T-2,

fT-2(s) before scaling = .a8jPr(XTi Isj)#T-i (j)

= Z ajPr(XT-i sj) 1_ (s)
SY'T- 1YT

_ 3-2(s)

"7T- I ̂ IT

OT-2(s) fl-2(S)
"7T-2YT-l2YT

135

Once again, by induction it can be shown that

(S = 8*()(B.3)

T
Pr(XIA) = #0*(O)I=#(0) fl'yt

The true 3* value is the scaled #i times the product of all the scaling factors from the last time
frame back through the current time frame.

After scaling, flo(O) = CkT(n - I) just as #,*(O) = a4(n - 1). However, the true probability
that the given model generates the observed data sequence is

T T

flo(O) l yt or aT(n -1) 'yt
t=- t=-1

It is this value (Pr(XJA)) that is guaranteed to converge by the iterative Baum-Welch re-
estimation. However, since the true value c4(n - 1) is almost always out of the dynamic range
of the machine, practically its logarithm is computed instead:

T

logPr(XIA) = {log1aT(n-1)} + Elog-t
t=l

B.1.3 Re-estimation

Non-null Arcs

To compute the re-estimation for SCHMMs, we compute

•(i,j, k) = Pr(at time frame t, transition ij is taken, and xt is quantized to codeword k I X, A)
at*-, (i)aiifk(xt)bij(k)flt (j)

Pr(XIA)

for non-null arcs. According to the Baum-Welch re-estimation formula [20], all the re-
estimations related to the output distribution, the transition probability ant the VQ density
functions are summations of 4t7(i, j, k) across different dimensions. Therefore, if we can prove
that t (i, j, k) = C (i, j, k), we prove that scaling does not affect Baum-Welch re-estimation.

In the main memory at run time, we have the scaled a and 63 values instead of the true
mathematical values a* and P*. To compute & (i, j, k), we use (B.l), (B.2) and (B.3):

-t Q-,.k (i)aijfk(xt)bii(k))lt(j)•t(i,j,k) =k~l-1

ar(n - 1)

136

a•.i)/(-iy 2...'yt-i) aijfk(xt)bij(k) #3 ;(i)/(-yyt+I...7T)
a•.(n - 1/3,Y..

= t;(i,j,k)

We see that using the scaled a and/3, we are able to re-produce the same re-estimation as
originally defined.

Null Arcs

For null transitions, it is easy to see that (B.1) and (B.3) are still valid. When a transition is
null, no data is output and only the transition probability has to be re-estimated.

'(i,j) = Pr(at time frame t, transition ij is taken I X, A)
_ a((i)aij 3(j)

Pr(XIA)
tat(i)1-ly2...)yt aij .t(/) -yt"/t+j...T

aTr(n - 1) ")'1")2--.7yT
= yt at(i)ajif/t(j) =7 tij

aT(n - 1)
A

Thus for null arcs, we have to be careful that the constant -yt has to be multipled with • (i, j)
to obtain the correct re-estimation value.

B.2 Scaling and Density Normalization Simultaneously

The next issue is to normalize the density values fk(xt) to be fk(xt) so that the normalized
densities are stable. The normalized density for time frame t is

k Ct

The normalization factor ct at time frame t can be any constant as long as (1) it makes
fk stable and (2) the same constant (qj) applies to the same data frame (xt) aligned with any
Markov state. Since fk can range from very small to very large, the normalization constant
should be carefully designed. One way to choose a stable ct is to set

c= E fk(xt)
k

137

to make 0 < fk(xt) • 1. For SCHMMs with phone-class dependent VQ codebooks presented
in Section 3.4, a stable normalization factor is the average of the summations of densities over
all phone classes. Condition (2) is important to guarantee the same re-estimation value as
the Baum-Welch re-estimation formula defines. This will be clear later when we derive the
relationship.

To prove that normalization does not affect Baum-Welch re-estimation, we assume the
scaling procedure described in Section B. I is still adopted since scaling is crucial to prevent
floating-point exceptions. It is easy to derive a similar proof without the scaling assumption.
Since the density is normalized, the new scaling factor for each time frame will be different.
We distinguish the new a, 3, and -y by adding a superscript'.

B.2.1 The Forward Pass

The initial values for -0 and ao are

Yo' = I

a4o(s) =
tyo

= - (S) = ao(s) Vs

For frame 1,

a'(s) before scaling = ao'(j)aj, Ej fk(xi)bj,(k)
k

= Za(j)aaa kxtbk
j k Cl

Cl

"= {a(s) before scaling}
3

E. al(s) 7
Cl Cl

a,(s) - ai(L) _ 4(s)
I 2

c4(s) as(s)

7 1

138

For frame 2,

a'2(s) before scaling = >j>4(j)ajpf, (x2)b..(k)
j k

al W aT(E) fkn2bi(k)
C1 k C2

2*(S)

-CIC27,

f2 = '{a'(s) before scaling}
2

ac(S) 2((S)
CIC 2 11i C27yI

72

C2

c4(S) =2 a(S)a2
I IC IC27 1372

- (L) = ' 22(8)

7172

By mathematic induction, the following relationship is derived:
7 3t

-y; = I Vt=O..Twithco=l (B.4)ct
't• a;(s)

at(S) =4(8I I
Cl C2... Ct"Y71'2 ...""t

_ a;(S) = at(s) (B.5)

'YI 72 ... 37t
T

P.,XIA) = - 1) = aj(n - 1)1f{cit} (B.6)
t=!

It is actually easy to understand that at(s) = at(s) since the ratio of these at(.) cells is
fixed and scaling simply enforces them to sum to 1. The new scaling factor is the old scaling
factor divided by the normalization factor at that time frame.

B.2.2 The Backward Pass

According to the scaling algorithm, the same scaling factors -" computed in the forward pass
are used in the backward pass. Therefore, by (B.4) initially we have

13M!S)

7139

-T;S CT'fI2(3)

'YT

For frame T- 1,

/3.(s) before scaling = Za,j AZf(XT)ba,(k)}#fi(j)

= a5 3 fk(XT) b (k)} I3l{i)
j k CT T72

(S
I

CT...11T- (I _Y

W- I ^ITIT~.4

For frame T-2,

4-2~(s) before scaling = Fa~ {f~(r.,b 5 ()fk;~ 1 j
j k

j k CT- I Cvy7T.I.^IT'

CT-lCT-2 ' 1 -IT

13r-2(S) = l-()1 -
CT I CT16T27T- I IfT

CT-2I3ý..2(S) = T2T(S

7T-2 7'-! 17T

By mathematic induction,

(S I
Ct+ I Ct+2... CT~tt't+ I' -**T'

- tpt*i.s.7 = C W(B.7)

Pr(XIA) P= 1(0)

- 1(O) fficcyt'}
t= I

The new Pt cell is the old one Pt (.) times the normalization factor at time t.

140

Therefore, after simultaneous scaling and normalization, f0(0) = aT(n- 1) just as /3;(0) =
o4.(n - 1). However, the true probability that the given model generates the observed data
sequence is

T T

/3'o(0) 1l{ct '} or a'T(n- l)l{ct-y}
t=1 t=I

It is this value (Pr(XfA)) that is guaranteed to converge by the iterative Baum-Welch re-
estimation.

B.2.3 Re-estimation

As in the previous case, in memory at run time, we have only a', fl' and -y' available, instead
of the true values.

Non-null Arcs

To compute (i, j, k), we will use (B.5), (B.7) and (B.6):

, .. a' ~~~i'k(xt)bij(k)#t'(j)
;(i,,j,k) = a .(n - 1)

a•t,(i)/(-y,-2...,-,t_) a,•-•,ft bAk) ct/t*(j)l(-j,•,+,...-yT)

4(n- l)/(yy...'r)
= 6(i,j,k) = 4*(i,j,k)

Null Arcs

For null transitions, it is easy to see that (B.5) and (B.7) are still valid. To update the transition

count of a null arc, we compute

C*(i,j) = Pr(at time frame t, transition ij is taken I X, A)
at (i)aij /t*(j)

Pr(XI A)
ClC2 ... Ct If t2... t(i)aij/3t'(j)Ct+,Ct+2 ... CT%+1,...T

CiC2...cT I' 2 ... YT-aT(n - 1)
I I • .

f, a(i)ai,/3,(j) I-= t Yt j),

ceT(n - 1) (

141

-, IJ oS * o

Note that for null arcs, the constant -' has to be multipled with t;(i,j) to obtain the correct
re-estimation value.

B.2.4 Conclusion

The relationships among true values, the scaled values, and the normalized and scaled values

can be summarized as

at(8) = a'(s)) e(S)
7172 ... oYt

oft =
71112...-7t-I

, 7t

Ct

i•t(s) = r+I*T

ot(s) = ctft(s)

With the above relationship, the re-estimation value t(ij, k) can be computed using either

the scaled or normalized and scaled cells. That is,

t;(i~j,k) = tt(i~jlk) = t'(i~j,k)

The probability that the given model generates the training data is

Pr(XIA) = aý(n- 1)
T

= QT(n-l) fly

T

aT(n -) flje-yc
t-=I

B.3 Beam Search

During beam search, most systems use log-scale integer representation instead of the floating-

point probabilities. All probability multiplications become additions in the log domain. When

representing probability P with logb P, we set b to be close to one in order to get maximal

precision 1. Scaling is unnecessary since after taking the logarithm, underfiow becomes unlikely.

'SPHINX uses b = 1.0001 [871.

142

It is easy to show that normalizing the VQ density value will not affect the rank of hypotheses
during the time-synchronous beam search.

To see this, recall that in Section 4.2.4 we define the total score for a path up to the current
frame to be

total score = log(acoustic probability) + w log(language probability)

where w is the language weight used to combine the two knowledge sources. When the acoustic
probability for every time frame t is normalized by ct, the normalized total score becomes

t

normalized total score = log(acoustic probability) + w log(language probability) - 3 log c4

Since the same constant (- i log ci) is applied to all the states at the same time frame t and
the search is time-synchronous, the relative rank of all hypotheses remains unchanged.

143

Appendix C

Entropy and Cross Entropy

Assume that a source generator emits the observed data with a probability distribution P. Then
the entropy of the source is defined as [11

L

H(P) A - p log b PA when the observed data are among a finite set of L symbols, or
i=lI

H(P) • -/jP(X) lOg b P(X)dx when the observed data are continuous vectors.

When a logarithm to the base 2 is used, the resulting unit of entropy is called the binary unit
or bit. Entropy measures the expected uncertainty of the source that generates the possible
events. The more uncertainty is present, the bigger the entropy. Entropy is also the amount
of information we can expect when we observe a piece of data emitted from the source. For
example, when P is discrete and pk = 1, pjok = 0, then there is no surprise that we will
definitely observe the symbol k (i.e., H(P) = 0). On the other hand, when P is uniform,
H(P) reaches its maximum, log2 L. This means that any symbol emitted gives us the maximal
information since we are not sure in advance which symbol is coming out next. Entropy is also
the minimum number of bits required per symbol to encode any sequence of the symbols into
a uniquely decodable binary code [58].

Cross entropy is known to be a good measure in determining the distance between two
probability distributions [69, 81, 76, 75]. The cross entropy (directed divergence) [81] between
two distributions, P and Q, is defined as

X(7PQ) A•0 plog2 - , or •C.1)S qj

X (p, Q) xP(X) log, PXdx (C.2)

q(x)

144

Mathematically, p has to be zero whenever q is in order to make (C. 1) and (C.2) converge.
Practically, we can always use an arbitrarily small value to represent zero probability.

Cross entropy is always non-negative. The proof is as follows: Note that In(z) _x - I
for non-negative x, 3

2

-3

In other words, In(l/x) > 1 - x and thus

X(PI.Q) = 1p0log2 -iqi

- in 2 i inp In-
in qi

> I •- (- q1)

In iIA
I -(pi - qj)

1n2,
=0 (C.3)

since Ei = -i qi = 1. The same derivation applies in the continuous case, where the
summation is replaced by an integral. Therefore, cross entropy is always non-negative. The
greater the cross entropy is, the more divergent these two distributions are.

According to its definition, cross entropy is apparently not symmetric (and is thus directed).
To make the distance measure symmetric, we can take the average of both directions:

X- Q),= Q) + x(Q,'P)
2

To understand the meaning of cross entropy, consider the probability of generating event i
for pi times independently, given discrete distribution Q:

Pr(pi occurrences of data i I distribution Q) = qi"

145

In other words,

Pr(data P j distribution Q) = i qiP'

log Pr(data P distribution Q) = •plogq, •< pi logp, by (C.3)
I i

with equality being true when distribution Q mimics data P 's distribution, i.e. when P = Q.

The cross entropy of Q with respect to data P thus measures how well distribution Q resembles
distribution P.

146

Appendix D

Linguistic Questions for Constructing the
Decision Tree

beginning-word triphone
ending-word triphone
single-phone triphone
silence si,
aspiration HH
dental DH TH

LW LW
S/SH S SH
S/Z/SH/ZH S Z SH ZH
affricate CH TS JH

nasal M 1, NG
schwa AX IX AXR
voiced-fric DH Z ZH V
voiceless-fric TH S SH F

fricative DH TH S SH Z ZH V F
liquid L R
lqgl-back L R W
liquid-glide L R W Y

w-glide UW AW OW W

y-glide IY AY EY OY Y

diphthong UW AW AY EY IY OW OY

round-vocalic UH AO UW OW OY W AXR ER

147

labial W M B P V F

palatl Y CH JH SH ZH

alvelr N D T S Z DX TS

alveolar-stop D T

velar NG G K

velar-stop G K

labial-stop B P

delete-stop PD TD KD BD DD GD

oral-stopI B D G P T K CH TS JH BD DD GD PD TD KD

oral-stop2 P T K PD TD KD

oral-stop3 B D G BD DD GD

front-r AE EH IH IX IY EY AH AX YAW

back-r UH AO UW OW AA ER AXR OY L R W AY

back-I UH AO UW OW AA ER AXR L R W AW

front-1 AE EH IH IX IY EY AH AX Y OY AY
retro-flex R ER AXR

retro-vowel ER AXR

high-vowel IH IX IY UH UW Y

lax-vowel EH IH IX UH AH AX

low-vowel AE AA AO AW AY OY

tense-vowel IY EY AE UW OW AA AO AY OY AW
vowel AE EH IH IX IY UH AH AX AA AO UW AWAY EY OW OY ER AXR
sonorant AE EH IH IX IY EY AH AX OY AY UH AO UW OW AA ER AXR

AWL RWY
voiced AE EH IH IX IY UH AH AX AA AO UW AWAY EY OW OY L R

W Y ER AXR M N NG JH B D DH G V Z ZH DX

148

Appendix E

A Complete Senonic Decision Tree

This appendix shows a complete decision tree in one of our experimental runs to classify the
first state of all AA-triphones. There were 99 AA-triphones used to construct this decision tree.
Note the amount of entropy reduction is weighted by counts as (3.1) defines. The question
associated with each node is a compound question of the basic ones listed in the previous
appendix. As there are 48 splits in the tree, there are 49 leaves or senones. These leaves are
underlined in the table.

entropy reduction node left right question
(bits) id child child

4909.84882 0 1 2 Is the left-phone voiced?
2543.01673 I 3 4 Is the left-phone a back-I or a labial?
1178.99827 3 5 6 Is the left-phone a back-l?
1052.33468 2 7 8 Is the left-phone an oral-stop 1?
959.88344 5 9 10 Is the !eft-phone a retro-flex?
660.57011 8 11 12 Is the left-phone S/SH or not voiceless-fric?
556.69071 4 1 ? 14 Is the left-phone voiced-fric?
494.29429 7 15 16 Is the right-phone a liguid?
487.93191 6 17 18 Is this triphone a beginning-word triphone?
437.52164 11 19 20 Is the left-phone S/SH?
382.88286 10 21 22 Is the left-phone a w-glide?

149

entropy reduction node left right question
(bits) id child child

320.12406 14 23 24 Is the left-phone a front-1 or a nasal?
318.95499 20 25 26 Is this triphone a beginning-word triphone

or is the right-phone LW?
284.42239 15 27 28 Is this triphone a beginning-word triphone

or is the left-phone not an oral-stop2?
205.68148 23 29 30 Is the left-phone a nasal?
193.61281 25 31 32 Is the left-phone aspiration

or the right-phone not a liquid?
174.15782 9 33 34 Is the right-phone a liquid?
171.41922 21 35 36 Is this triphone a beginning-word triphone?
156.20514 27 37 38 Is this triphone a beginning-word triphone?
152.50721 22 39 40 Is the right-phone a lqgl-back?
139.39036 16 41 42 Is the right-phone a nasal?
129.00981 18 43 44 Is the right-phone a liguid?
111.16402 30 45 46 Is this triphone a beginning-word triphone?
107.06924 42 47 48 Is the right-phone a velar-stop?
102.41503 37 49 50 Is the left-phone a delete-stop?
90.45528 34 51 52 Is this triphone a beginning-word triphone

or the right-phone a alvelr?
88.21653 45 53 54 Is the left-phone a y-glide?
86.80684 40 55 56 Is this triphone an ending-word triphone?
85.40782 46 57 58 Is the right-phone a nasal?
82.00750 48 59 60 Is the right-phone S/Z/SH/ZH?
73.31391 39 61 62 Is this triphone a beginning-word triphone?
70.06145 36 63 64 Is the right-phone a liquid?
66.88791 31 65 66 Is this triphone a beginning-word triphone?
66.87074 29 67 68 Is this triphone a beginning-word triphone?
63.73759 33 62 7 Is this triphone a beginning-word triphone?
63.50981 19 71 72 Is this triphone a beginning-word triphone?
60.64476 51 73 74 Is this triphone a beginning-word triphone

or the right-phone a nasal?
57.39469 49 75 76 Is the left-phone an oral-stop2?

150

• . . . , i i I I I I I I I II

entropy reduction node left right question
(bits) id child child

48.44302 13 77 78 Is this triphone a beginning-word triphone?
42.40140 44 79 80 Is the right-phone an affricate?
39.36533 64 81 82 Is the right-phone a nasal?
36.84698 56 83 84 Is the right-phone a voiceless-fric?
36.32877 24 85 86 Is the right-phone a liquid?
22.97764 73 87 88 Is this triphone a beginning-word triphone?
21.86084 66 89 90 Is this triphone an ending-word triphone?
19.80240 60 91 92 Is this triphone a beginning-word triphone?
17.12642 55 93 94 Is the right-phone silence?
13.61258 82 95 96 Is this triphone an ending-word triphone?

151

Bibliography

[1] Abramson, N. Information Theory and Coding. McGraw-Hill, New York, 1963,
11-16 pp.

[2] Acero, A. and Stem, R. Robust Speech Recognition by Normalization ofAcoustic Space.
in: IEEE International Conference on Acoustics, Speech, and Signal Processing.
1990, pp. 849-852.

[31 Alleva, F., Huang, X., and Hwang, M. An Improved Search Algorithm for Continuous
Speech Recognition. in: IEEE International Conference on Acoustics, Speech, and
Signal Processing. 1993.

[4] Asadi, A., Schwatrz, R., and Makhoul, J. Automatic Modeling ForAdding New Words To
A Large-Vocabulary Continuous Speech Recognition System. in: IEEE International
Conference on Acoustics, Speech, and Signal Processing. 1991, pp. 305-308.

[5] Aubert, X., Ney, H., and Haeb-Umbach, R. Philips Research System for Continuous-
Speech Recognition Overview and Evaluation on the DARPA RM Task. in: DARPA
Continuous Speech Recognition Workshop. DARPA Microelectronics Technology
Office, Stanford, CA, 1992.

[6] Bahl, L. R., Bakis, R., Cohen, P. S., Cole, A. G., Jelinek, F., Lewis, B. L., and Mercer,
R. L. Further Results on the Recognition of a Continuously Read Natural Corpus. in:
IEEE International Conference on Acoustics, Speech, and Signal Processing. 1980.

[7] Bahl, L. R., Jelinek, F., and Mercer, R. A Maximum Likelihood Approach to Con-
tinuous Speech Recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. PAMI-5 (1983), pp. 179-190.

[8] Bahl, L., Brown, P., De Souza, P., and Mercer, R. A New Algorithm for the Estimation of
Hidden Markov Model Parameters. in: IEEE International Conference on Acoustics,
Speech, and Signal Processing. 1988.

[9] Bahl, L., Brown, P., de Souza, P., Mercer, R., and Picheny, M. A Method for the
Construction of Acoustic Markov Models for Words. no. RC 13099 (#58580), IBM
Thomas J. Watson Research Center, September 1987.

152

[101 Bahl, L., Brown, P., de Souza, P., Mercer, R., and Picheny, M. A Method for the
Construction of Acoustic Markov Models for Words. IEEE Transactions on Speech
and Audio Processing, vol. 1 (1993), pp. 443-452.

[11] Bahl, L., Brown, P., de Souze, P., and Mercer, R. A Tree-Based Statistical Language
Model for Natural Language Speech Recognition. IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. ASSP-37 (1989), pp. 1001-1008.

[121 Bahl, L., de Souza, P., Gopalakrishnan, P., Nahamoo, D., and Picheny, M. Decision Trees
for Phonological Rules in Continuous Speech. in: IEEE International Conference on
Acoustics, Speech, and Signal Processing. 1991, pp. 185-188.

[13] Bahl, L. and et. al. Automatic Phonetic Baseform Determination. in: IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing. 1991, pp. 173-176.

[14] Bahl, L., Souza, P., Gopalakrishnan, P., and Picheny, M. Context Dependent Vector
Quantization For Continuous Speech Recognition. in: IEEE International Conference
on Acoustics, Speech, and Signal Processing. 1993, pp. 632-635.

[15] Baker, J. and etc.. Large Vocabulary Recognition of Wall Street Journal Sentences at
Dragon Systems. in: DARPA Speech and Language Workshop. 1992.

[16] Baker, J. K. The DRAGON System - An Overview. IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. ASSP-23 (1975), pp. 24-29.

[17] Baker, J. K. Stochastic Modeling as a Means ofAutomatic Speech Recognition. Computer
Science Department, Carnegie Mellon University, April 1975.

[18] Bakis, R. Continuous Speech Recognition via Centisecond Acoustic States. in: 91st
Meeting of the Acoustical Society of America. 1976.

[19] Bamberg, P. and Gillick, L. Phoneme-in-Context Modeling for Dragon's Continuous
Speech Recognizer. in: DARPA Speech and Language Workshop. 1990.

[20] Baum, L. E. An Inequality and Associated Maximization Technique in Statistical Es-
timation of Probabilistic Functions of Markov Processes. Inequalities, vol. 3 (1972),
pp. 1-8.

[21] Bellegarda, J. and Nahamoo, D. Tied Mixture Continuous Parameter Modeling for
Speech Recognition,. IEEE Transactions on Acoustics, Speech, and Signal Process-
ing, vol. ASSP-38 (1990), pp. 2033-2045.

[22] Bellegarda, J. and Nahamoo, D. Tied Mixture Continuous Parameter Models for Large
Vocabulary Isolated Speech Recognition. in: IEEE International Conference on
Acoustics, Speech, and Signal Processing. 1989, pp. 13-16.

[23] Bernstein, J., Cohen, M., Murveit, H., and Weintraub, M. Linguistic Constraints in
Hidden Markov Model Based Speech Recognition. in: IEEE International Conference
on Acoustics, Speech, and Signal Processing. 1989.

153

[241 Breiman, L., Friedman, J., Oishen, R., and Stone, C. Classification and Regression
Trees. Wadsworth, Inc., Belmont, CA., 1984.

(25] Brown, P. The Acoustic-Modeling Problem in Automatic Speech Recognition. Computer

Science Department, Carnegie Mellon University, May 1987.

(261 Chase, L. Personal Communication. unpublished, 1993.

[271 Chen, F. and Shrager, J. Automatic Discovery of Contextual Factors Describing Phono-
logical variation, in: DARPA Speech and Language Workshop. 1989.

[28] Chow, Y. L., Schwartz, R., Roucos, S., Kimball, 0., Price, P., Kubala, F., Dunham, M.,
Krasner, M., and Makhoul, J. The Role of Word-Dependent Coarticulatory Effects in a
Phoneme-Based Speech Recognition System. in: IEEE International Conference on
Acoustics, Speech, and Signal Processing. 1986.

[291 Chow, Y. and et. al. BYBLOS: The BBN Continuous Speech Recognition System. in:
IEEE International Conference on Acoustics, Speech, and Signal Processing. 1987,
pp. 89-92.

[301 Cohen, M.,, Murveit, H., Bernstein, J., P., P., and Weintraub, M. The DECIPHER Speech
Recognition System. in: IEEE International Conference on Acoustics, Speech, and
Signal Processing. 1990.

[311 Davis, S. and Mermelstein, P. Comparison of Parametric Representations of Mono-
syllabic Word Recognition in Continuously Spoken Sentences,. IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. ASSP-28 (1980), pp. 357-366.

[32] Digalakis, V. and Murveit, H. An Algorithm for Optimizing the Degree of Mixture-
Tying in a Large-Vocabulary HMM-Based Speech Recognizer. in: IEEE International
Conference on Acoustics, Speech, and Signal Processing. 1994.

[331 Doddington, G. Phonetically Sensitive Discriminantsfor Improved Speech Recognition.
in: IEEE International Conference on Acoustics, Speech, and Signal Processing.
1989, pp. 556-559.

[34] D'Orta, P., Ferretti, M., and Scarci, S. Phoneme Classification for Real Tune Speech
Recognition ofltalian. in: IEEE International Conference on Acoustics, Speech, and
Signal Processing. 1987, pp. 81-84.

[35] Feng, M., Kubala, F., and Schwartz, R. Improved Speaker Adaptation Using Text
Dependent Mappings. in: IEEE International Conference on Acoustics, Speech, and
Signal Processing. 1988, pp. 131-134.

[36] Fisher, W., Doddington, G., and Goudie-Marshall, K. The DARPA Speech Recogni-
tion Research Database: Specifications and Status. in: DARPA Speech Recognition
Workshop. 1986.

[37] Fisher, W., Zue, V., Bernstein, J., and Pallett, D. An Acoustic-Phonetic Data Base. in:
113th Meet " -. Acoustical Society of America. 1987.

154

[38] Franzini, M., Lee, K., and Waibel, A. Connectionist Viterbi Training for Continuous
Speech Recognition. in: IEEE International Conference on Acoustics, Speech, and
Signal Processing. 1990.

[391 Gray, R. Vector Quantization. IEEE ASSP Magazine, vol. 1 (1984), pp. 4-29.

[40] Hild, H. and Waibel, A. Multi-Speaker/Speaker-IndependentArchitectures FortheMulti-
State Time Delay Neural Network. in: IEEE International Conference on Acoustics,
Speech, and Signal Processing. vol. II, 1993, pp. 255-258.

[411 Holmes, W., Wood, L., and Pearce, D. Allophone Modeling For Vocabulary-Independent
HMM Recognition. in: IEEE International Conference on Acoustics, Speech, and
Signal Processing. vol. II, 1993, pp. 487-490.

[42] Hon, H. Vocabulary-Independent Speech Recognition: : The VOCIND System. School
of Computer Science, Carnegie Mellon University, February 1992.

[43] Hon, H. and Lee, K. CMU Robust Vocabulary-Independent Speech Recognition System.
in: IEEE International Conference on Acoustics, Speech, and Signal Processing.
Toronto, Ontario, CANADA, 1991, pp. 889-892.

[44] Huang, X. Phoneme Classification Using Semicontinuous Hidden Markov Models.
IEEE T1ransactions on Signal Processing, vol. 40 (1992), pp. 1062-1067.

[45] Huang, X. A Study on Speaker-Adaptive Speech Recognition. in: DARPA Speech and
Language Workshop. Morgan Kaufmann Publishers, San Mateo, CA, 1991.

[46] Huang, X., Alleva, F., Hon, H., Hwang, M., Lee, K., and Rosenfeld, R. The SPHINX-lI
Speech Recognition System: An Overview. Computer Speech and Language, vol. 2
(1993), pp. 137-148.

[47] Huang. X., Alleva, F, Hwang, M., and Rosenfeld, R. An Overview of the SPHINX-Il
Speech Recognition System. in: ARPA Human Language Technology Workshop.
1993.

[48] Huang, X., Alleva, F., Hayamizu, S., Hon, H., Hwang, M., and Lee, K. Improved
Hidden Markov Modeling for Speaker-Independent Continuous Speech Recognition. in:
DARPA Speech and Language Workshop. Morgan Kaufmann Publishers, Hidden
Valley, PA, 1990, pp. 327-331.

[491 Huang, X., Ariki, Y., and Jack, M. Hidden Markov Models for Speech Recognition.
Edinburgh University Press, Edinburgh, U.K., 1990.

[50] Huang, X., Belin, M., Alleva, F., and Hwang, M. Unified Stochastic Engine (USE)for
Speech Recognition. in: IEEE International Conference on Acoustics, Speech, and
Signal Processing. 1993.

[51] Huang, X., Hon, H., Hwang, M., and Lee, K. A Comparative Study of Discrete,
Semicontinuous, and Continuous Hidden Markov Models. Computer Speech and
Language, in press, 1993.

155

[52] Huang, X., Hon, H., and Lee, K. Multiple Codebook Semi-Continuous Hidden Markov
Models for Speaker-Independent Continuous Speech Recognition. Technical Report, no.
CMU-CS-89-136, School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA, May 1989.

[53] Huang, X. and Jack, M. Semi-Continuous Hidden Markov Models with Maximum
Likelihood Vector Quantization. in: IEEE Workshop on Speech Recognition. 1988.

[541 Huang, X., Lee, K., and Waibel, A. Connectionist speaker normalization and its appli-
cations to speech recognition. in: IEEE Workshop on Neural Networks for Signal
Processing. 1991.

[55] Huang, X. and Lee, K. On Speaker-Independent, Speaker-Dependent, and Speaker-
Adaptive Speech Recognition. in: IEEE International Conference on Acoustics,
Speech, and Signal Processing. 1991, pp. 877-880.

[56] Huang, X., Lee, K., and Hon, H. On Semi-Continuous Hidden Markov Modeling.
in: IEEE International Conference on Acoustics, Speech, and Signal Processing.
Albuquerque, NM, 1990, pp. 689-692.

[57] Huang, X., Lee, K., Hon, H., and Hwang, M. Improved Acoustic Modeling for the
SPHINX Speech Recognition System. in: IEEE International Conference on Acous-
tics, Speech, and Signal Processing. Toronto, Ontario, CANADA, 1991, pp. 345-348.

[581 Huffman, D. A Method for the Construction of Minimum Redundancy Codes. Proc.
IRE, vol. 40 (1952), pp. 1098-1101.

[59] Hunt, M. J., Lennig, M., and Mermelstein, P. Experiments in Syllable-Based Recognition
of Continuous Speech. in: IEEE International Conference on Acoustics, Speech, and
Signal Processing. 1980, pp. 880-883.

[60] Hwang, M. Personal Experience. unpublished, 1990.

[61] Hwang, M., Hon, H., and Lee, K. Between-Word Coarticulation Modeling for Continu-
ous Speech Recognition. Technical Report, no. CMU-CS-89-141R, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, April 1989.

[62] Hwang, M., Hon, H., and Lee, K. Modeling Between- Word Coarticulation in Continuous
Speech Recognition. in: Proceedings of Eurospeech. Paris, FRANCE, 1989, pp. 5-8.

[63] Hwang, M., Hon, H., and Lee, K. Modeling Inter-Word Coarticulation Using Gen-
eralized Triphones. in: The 117th Meeting of the Acoustical Society of America.
Syracuse, NY, 1989.

[64] Hwang, M. and Huang, X. Shared-Distribution Hidden Markov Models for Speech
Recognition. IEEE Transactions on Speech and Audio Processing, vol. 1 (1993),
pp. 414-420.

156

[651 Hwang, M. and Huang, X. Subphonetic Modeling for Speech Recognition. in: DARPA
Speech and Language Workshop. Morgan Kaufmann Publishers, San Mateo, CA,
1992.

[661 Hwang, M., Huang, X., and F., A. Senones, Multi-Pass Search, and Unified Stochastic
Modeling in SPHINX-Il. in: Proceedings of Eurospeech. 1993.

[67] Hwang, M. and Huang, X. Subphonetic Modeling with Markov States - Senone. in:
IEEE International Conference on Acoustics, Speech, and Signal Processing. 1992.

[68] Hwang, M., Huang, X., and Alleva, F. Predicting Unseen Triphones with Senones. in:
IEEE International Conference on Acoustics, Speech, and Signal Processing. 1993.

[69] Jeffreys, H. Theory of Probability. Oxford University Press, 1948.

[70] Jelinek, F. Continuous Speech Recognition by Statistical Methods. Proceedings of the
IEEE, vol. 64 (1976), pp. 532-556.

[71] Jelinek, F. Self-Organized Language Modeling for Speech Recognition. unpublished,
1987.

[72] Jelinek, F. and Mercer, R. Interpolated Estimation of Markov Source Parameters from
Sparse Data. in: Pattern Recognition in Practice, edited by E. Gelsema and L. Kanal.
North-Holland Publishing Company, Amsterdam, the Netherlands, 1980, pp. 381-397.

[731 Juang, B. H. and Rabiner, L. R. Mixture Autoregressive Hidden Markov Models for
Speech Signals. IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. ASSP-33 (1985), pp. 1404-13.

[74] Juang, B. Speech Recognition in Adverse Environments. vol. 5, 1991, pp. 275-294.

[75] Juang, B. and Rabiner, L. A Probabilistic Distance Measure for Hidden Markov Models.
The Bell System Technical Journal, vol. 64 (1985), pp. 391-408.

[76] Kailath, T. The Divergence and Bhattacharyya Distance Measures in Signal Selection.
IEEE Transactions on Communication Technology, vol. COM-15 (1967), pp. 52-60.

[77] Kimball, 0. and Ostendorf, M. On the Use of Tied-Mixture Distributions. in: ARPA
Human Language Technology Workshop. 1993.

[78] Kimball, 0., Price, P., Roucos, S., Schwartz, R., Kubala, F., Chow, Y.-L., Haas, A.,
Krasner, M., and Makhoul, J. Recognition Performance and Grammatical Constraints.
in: DARPA Speech and Language Workshop, edited by L. S. Baumann. 1986,
pp. 53-59.

[79] Klatt, D. Problem of Variability in Speech Recognition and in Models of Speech Percep-
tion. in: Variability and Invariance in Speech Processes, edited by J. Perkell and D.
Klatt. Lawrence Erlbaum Assoc, Hillsdale, N.J., 1986, pp. 300-320.

157

[80] Kubala, F and Schwartz, R. A New Paradigm for Speaker-Independent Training and
SpeakerAdaptation. in: DARPA Speech and Language Workshop. Morgan Kaufmann
Publishers, San Mateo, CA, 1990.

[81] Kullback, S. Information Theory and Statistics. Dover, New York, 1959.

[821 Lamel, L. and Gauvain, J. Cross-Lingual Experiments with Phone Recognition. in:
IEEE International Conference on Acoustics, Speech, and Signal Processing. 1993.

[83] Lee, C., Giachin, E., Rabiner, R., L. P., and Rosenberg, A. Improved Acoustic Modeling
for Continuous Speech Recognition. in: DARPA Speech and Language Workshop.
Morgan Kaufmann Publishers, San Mateo, CA, 1990.

[84] Lee, C., Rabiner, L., Pieraccini, R., and Wilpon, J. Acoustic Modeling for Large
Vocabulary Speech Recognition. Computer Speech and Language, vol. 4 (1990),
pp. 127-165.

[85] Lee, K. Automatic Speech Recognition: The Development of the SPHINX System.
Kluwer Academic Publishers, Boston, 1989.

[86] Lee, K. Context-Dependent Phonetic Hidden Markov Models for Continuous Speech
Recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, April
1990, pp. 599-609.

[871 Lee, K. Large- Vocabulary Speaker-Independent Continuous Speech Recognition: The
SPHINX System. Computer Science Department, Carnegie Mellon University, April
1988.

[881 Lee, K., Hayamizu, S., Hon, H., Huang, C., Swartz, J., and Weide, R. Allophone
Clustering for Continuous Speech Recognition. in: IEEE International Conference
on Acoustics, Speech, and Signal Processing. Albuquerque, NM, 1990, pp. 749-752.

[89] Lee, K. and Hon, H. Large-Vocabulary Speaker-Independent Continuous Speech Recog-
nition. in: IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing. New York, NY, 1988.

[90] Lee, K., Hon, H., and Reddy, R. An Overview of the SPHINX Speech Recognition
System. IEEE Transactions on Acoustics, Speech, and Signal Processing, January
1990, pp. 35-45.

[91] Lee, K. and Mahajan, S. Corrective and Reinforcement Learning for Speaker-
Independent Continuous Speech Recognition. Technical Report, no. CMU-CS-89-100,
Carnegie Mellon University, January 1989.

[92] Levinson, S. E., Rabiner, L. R., and Sondhi, M. M. An Intmduction to the Application
of the Theory of Probabilistic Functions on a Markov Process to Automatic Speech
Recognition. The Bell System Technical Journal, vol. 62 (1983).

[93] Liberman, M. Text on Tap: the ACIJDCI. in: DARPA Speech and Natural Language
Workshop. 1989, pp. 173-188.

158

[94] Linde, Y., Buzo, A., and Gray, R. An Algorithm for Vector Quantizer Design. IEEE
Transactions on Communication, vol. COM-28 (1980), pp. 84-95.

[95] Lowerre, B. and Reddy, D. The Harpy Speech Understanding System. in: The Harpy
Speech Understanding System, by B. Lowerre and D. Reddy, edited by W. Lee.
Prentice-Hall, Englewood Cliffs, NJ, 1980.

[961 Lucassen, J. and Mercer, R. An Infonnation Theoretic Approach to the Automatic Deter-
mination of Phonemic Baseforms. in: IEEE International Conference on Acoustics,
Speech, and Signal Processing. 1984.

[97] Makhoul, J., Roucos, S., and Gish, H. Vector Quantization in Speech Coding. Proceed-
ings of the IEEE, vol. 73 (1985), pp. 1551-1588.

[98] Markel, J. D. and Gray, A. H. Linear Prediction of Speech. Springer-Verlag, Berlin,
1976.

[99] Mercer, R. L. Language Modeling for Speech Recognition. in: IEEE Workshop on
Speech Recognition. 1988.

[100] Nadas, A., Nahamoo, D., and Picheny, M. A. Adaptive Labeling: Normalization of
Speech by Adaptive Transformations based on Vector Quantization. in: IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing. 1988.

[101] Nagai, A., S., S., and Kita, K. Phoneme-context-dependent LR parsing algorithms for
HMM-based continuous speech recognition. in: Proceedings of Eurospeech. 1991,
pp. 1397-1400.

[102] Ney, H. and Noll, A. Phoneme Modelling Using Continuous Mixture Densities. in:
IEEE International Conference on Acoustics, Speech, and Signal Processing. 1988,
pp. 437-440.

[103] NIST. Nov92 WSJ Evaluation. in: DARPA Spoken Language System Technology
Workshop. 1993.

[104] Noll, H., A. N. Training of Phoneme Models in a Sentence Recognition System. in:
IEEE International Conference on Acoustics, Speech, and Signal Processing. 1987,
pp. 1277-80.

[105] Office, A. M. T. Continuous Speech Recognition Workshop. 1991.

[106] Pallet, D. WSJ Pilot Corpus. National Institute of Standards and Technology, Limited
distribution CD-ROM, 1991.

[107] Paul, D. B., Lippmann, R. P., Chen, Y., and Weinstein, C. Robust HMM-Based Techniques
for Recognition of Speech Produced under Stress and in Noise. in: Proceedings of the
Speech Technology Conference. 1986.

[108] Paul, D. The Lincoln Robust Continuous Speech Recognizer. in: IEEE International
Conference on Acoustics, Speech, and Signal Processing. 1989, pp. 449 - 452.

159

[109] Paul, D. and Baker, J. The Design for the Wall Street Journal-based CSR Corpus. in:
DARPA Speech and Language Workshop. Morgan Kaufmann Publishers, San Mateo,
CA, 1992.

[1101 Paul, D. and Martin, E. Speaker Stress-Resistant Continuous Speech Recognition. in:
IEEE International Conference on Acoustics, Speech, and Signal Processing. 1988.

[111] Placeway, P. and Schwartz, R. Personal Communication. unpublished, 1993.

[112] Price, P., Fisher, W., Bernstein, J., and Pallett, D. A Database for Continuous Speech
Recognition in a 1000-Word Domain. in: IEEE International Conference on Acous-
tics, Speech, and Signal Processing. 1988, pp. 651-654.

[113] Rabiner, L. R. A Tutorial on Hidden Markov Models and Selected Applications Speech
Recognition. IEEE Proceedings, 1988.

[114] Rabiner, L. R., Juang, B. H., Levinson, S. E., and Sondhi, M. M. Recognition of
Isolated Digits Using Hidden Markov Models With Continuous Mixture Densities. AT&T
Technical Journal, vol. 64 (1985), pp. 1211-33.

[115] Rabiner, L. and Juang, B. Fundamentals of Speech Recognition. Prentice-Hall, 1993.

[1161 Rabiner, L. and Juang, B. An Introduction to Hidden Markov Models. IEEE ASSP
Magazine, vol. 3 (1986), pp. 4-16.

[117] Reddy, D. and Zue, V. Recognizing Continuous Speech Remains an Illusive Goal. IEEE
Spectrum, November 1983, pp. 84-87.

[118] Richter, A. Modeling of Continuous Speech Observations. in: Advances in Speech
Processing Conference, IBM Europe Institute. 1986.

[119] Rosenberg, A. E., Rabiner, L. R., Wilpon, J., and Kahn, D. Demisyllable-Based Isolated
Word Recognition System. IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. ASSP-31 (1983), pp. 713-726.

[120] Sagayama, S. Phoneme Environment Clustering for Speech Recognition. in: IEEE
International Conference on Acoustics, Speech, and Signal Processing. 1989.

[121] Schwartz, e., R. Comparative Experiments on Large Vocabulary Speech Recognition.
in: ARPA Human Language Technology Workshop. 1993.

[122] Schwartz, R., Austin, S., Kubala, F., and Makhoul, J. New Uses for the N-Best Sentence
Hypotheses Within the Byblos Speech Recognition System. in: IEEE International
Conference on Acoustics, Speech, and Signal Processing. 1992, pp. 1-4.

[123] Schwartz, R., Chow, Y, Kimball, 0., Roucos, S., Krasner, M., and Makhoul, J. Context-
Dependent Modeling for Acoustic-Phonetic Recognition of Continuous Speech. in:
IEEE International Conference on Acoustics, Speech, and Signal Processing. 1985,
pp. 1205-1208.

160

[1241 Schwartz, R., Klovstad, J., Makhoul, J., and Sorensen, J. A Preliminary Design of a
Phonetic Vocoder Based on a Diphone Model. in: IEEE International Conference on
Acoustics, Speech, and Signal Processing. 1980, pp. 32-35.

[125] Schwartz, R. M., Chow, Y. L., Roucos, S., Krasner, M., and Makhoul, J. Improved
Hidden Markov Modeling of Phonemes for Continuous Speech Recognition. in: IEEE
International Conference on Acoustics, Speech, and Signal Processing. 1984.

[126] Soong, F., Rosenberg, A., Rabiner, L., and Juang, B. A Vector Quantization Approach to
Speaker Recognition. in: IEEE International Conference on Acoustics, Speech, and
Signal Processing. 1985, pp. 387-390.

[127] Soong, F. and Huang, E. A Tree-Trellis Based Fast Search for Finding the N-Best
Sentence Hypothesis. in: DARPA Speech and Language Workshop. 1990.

[128] Takami, J. and Sagayama, S. A Successive State Splitting Algorithm For Efficient
Allophone Modeling. in: IEEE International Conference on Acoustics, Speech, and
Signal Processing. 1992, pp. 1573-1576.

[129] Tebelskis, J. Performance Through Consistency: Connectionist Large Vocabulary
Continuous Speech Recognition. in: IEEE International Conference on Acoustics,
Speech, and Signal Processing. vol. II, 1993, pp. 259-262.

[130] Tomita, M. Efficient Parsing for Natural Language. Kluwer Academic Publishers,
Boston, 1986.

[131] Vintsyuk, T. Element-wise recognition of continuous speech composed of words from a
specified dictionary. Kibernetika, vol. 7 (1971), pp. 133-143.

[132] Viterbi, A. J. Error Bounds for Convolutional Codes and an Asymptotically Optimum
Decoding Algorithm. IEEE Transactions on Information Theory, vol. IT- 13 (1967),
pp. 260-269.

[133] Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and Lang, K. Phoneme Recognition
Using Time-Delay Neural Networks. no. TR-1-0006, ATR International, Osaka, Japan,
October 1987.

[134] Weide, R. Personal Communication. unpublished, 1989.

[135] Weintraub, M., Murveit, H., Cohen, M., Price, P., Bernstein, J., Baldwin, G., and Bell, D.
Linguistic Constraints in Hidden Markov Model Based Speech Recognition. in: IEEE
International Conference on Acoustics, Speech, and Signal Processing. 1989.

[136] Wood, L., Pearce, D., and Novello, F. Improved Vocabulary-Independent Sub-Word
HMM Modeling. in: IEEE International Conference on Acoustics, Speech, and
Signal Processing. 1991, pp. 181-184.

[137] Zue, V., Glass, M., Goodine, Leung, McCandless, Philips, M., Polifroni, and Seneff, S.
Recent Progress on the Voyager System. in: DARPA Speech and Language Workshop.
1990.

161

