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scattering process with much less of the sidelobe effect normally experienced with
large TW signals.
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Chapter 1

Introduction

1.1 Motivation

Much effort has been devoted to the problem of estimating the structure

of underwater acoustic communication channels and scattering phenomena in the

ocean medium. These channels are often modeled as linear, time-variant, space-

variant, random filters [3]. Transmitted acoustic signals often experience spreading

in both time and frequency as they pass through the channel. Time delay spread

is induced by the motion of the source and/or receiver, the ocean boundaries (mul-

tipath), and various other acoustic scatterers throughout the medium. Frequency

spreading is introduced by the motion of scatterers in the medium and by motion

of the volume and surface [4]. Underwater acoustic systems have the added prob-

lem of interference from reverberation backscattered from the bottom, surface, and

ocean volume.

In many electromagnetic and acoustic applications, the scattering func-

tion can be used to represent the average distribution of scattered energy in the

delay-Doppler (phase) plane. A scattering function may be estimated using active

interrogation and conventional (narrowband) matched filter processing if the en-

ergy in each resolution cell at the output of the receiver is averaged over multiple
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interrogations. The average distribution may, under wide sense stationary and un-

correlated spreading (WSSUS) conditions, be considered as a convolution of the

signal ambiguity function and the scattering function [5, 6]. The accuracy of the

estimate is increased when the ambiguity function approaches a two-dimensional

Dirac delta or "thumbtack" function. Although much effort has gone into the design

of waveforms which approximate this ideal form, limits are imposed on mainlobe

resolution and sidelobe flatness by the ambiguity function's volume conservation

property. Since volume is conserved in the ambiguity function, most of the phase

plane energy is the result of the convolution of the pedestal and base portions

with the scattering function, which has the potential to obscure the high resolution

mainlobe contribution especially in the presence of dense scattering.

Mehta and Titlebaum [1, 2] have proposed a new twin processor receiver

structure which does not have the limitations of the traditional matched filter re-

ceiver. This new method involves passing two waveforms through the channel sep-

arately and processing each with its own correlation receiver. The complex outputs

of each of these receivers are then multiplied (with one channel first conjugated)

to form a statistic for estimation of the underlying scattering process. As with the

matched filter, the expected value of this receiver is also written as a convolution,

with the scattering function as the kernel. However, in this case, the convolution

is with the product of the two waveform auto-uncertainty functions which we will

refer to as the uncertainty product function (UPF)1 . The UPF does not have the

'Because of this convolution property, for the remainder of this thesis we shall refer to the
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volume conservation constraints of the ambiguity function, implying that the twin

processor (or uncertainty product) receiver is capable of producing better estimates

of the scattering process in the presence of additive noise.

This thesis presents a detailed discussion of the uncertainty product re-

ceiver and derives an expression for the rate of the convergence of the receiver to

its expected value. In addition, several properties of the uncertainty product func-

tion are derived and used to characterize receiver performance and motivate signal

design criteria. Both simulated and in-water data are used to measure convergence

rates and to demonstrate improved performance as compared to the matched filter

receiver.

1.2 Thesis Outline

In Chapter 2, the acoustic channel is modeled as a linear, time-varying,

random filter with additive noise. In this model, the spreading function is used to

describe the time and frequency spreading characteristics of the channel. Under

WSSUS assumptions, the expected output of the narrowband matched filter is

shown to be equal to the convolution of the channel scattering function and the

signal ambiguity function. Properties of the ambiguity function are presented to

explain the performance limits of the matched filter receiver and to provide a com-

parison with the properties of the UPF in the following chapter.

Chapter 3 presents the uncertainty product receiver whose twin processor

twin processor structure as the uncertainty product (UP) receiver.
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structure was originally proposed by Mehta and Titlebaum [1]. The uncertainty

product function (UPF) is then defined, and the expected output of the UP receiver

is shown to be equal to the convolution of the UPF with the system scattering

function. Several properties of the UPF are derived, ihcluding the UPF's lack

of conservation of volume and relationship to the two waveforms' cross-ambiguity

function. These properties are compared to those of the ambiguity function to

illustrate the improved performance of the UP receiver over that of the traditional

narrowband matched filter.

Several problems arise when two waveforms are used to interrogate the

channel during a single transmission cycle. Interaction of the UP receiver's con-

stituent waveforms is discussed in Chapter 4. Requirements for time and frequency

separation of the two waveforms are developed which ensure that each signal inter-

rogates the same realization of the scattering process, while minimizing the adverse

effects introduced by their cross-ambiguity function. Also, the problem of "virtual

scattering" is described. "Virtual scatterers" are spurious peaks which occur in

the range-Doppler plane due to the interaction of the two uncertainty functions in

the presence of two or more point scatterers. These peaks are shown to disappear

as the expected value of the UP receiver is reached. A theoretical prediction of

the rate of decay is derived for the virtual scattering process and confirmed using

computer simulation.

Chapter 5 presents an overview of various waveform constructions and their

associated ambiguity functions. Waveforms discussed include CWs, LFMs, and fre-



quency hop codes of commonly used algebraic constructions. Next, the hit array

[7] is introduced as a geometric tool for measuring mainlobe and sidelobe structure

in waveform auto- and cross-ambiguity functions of frequency hop codes. In addi-

tion, it is shown that the product of the two waveform atlto-hit arrays can, under

certain conditions, be used to approximate the UPF structure. Recommendations

are given for selecting maximally resolvent and minimally interfering waveforms.

Chapter 6 presents the results of using the UP receiver to measure the ocean

direct path and surface scattering mechanisms. The experiment, conducted off the

coast of California, employed a bistatic sonar to measure direct-path and surface

reflected-path propagation. The average output of the UP receiver is shown to

produce lower sidelobe levels than those of the narrowband matched filter formed

using one of the waveforms alone. In addition, a physical interpretatioL of the

channel scattering function estimate is given.



Chapter 2

Matched Filter and Ambiguity Theory

2.1 The Channel Model

As previously mentioned, it is often desirable to model the underwater

acoustic channel as a time-varying, linear, random filter. Using this model, linear

system theory methods may be used to predict the average response of the channel

due to any input signal. The relationship between the output of the channel,

r(t), due to an arbitrary input signal, x(t), is given by the time-varying impulse

response, h(r, t), which describes the response of the filter at time t due to the

application of unit impulse at time (t - r). In general, h(r, t) is modeled as a

random function to account for the variations in the ocean medium which may

be considered stochastic in nature. As in this case, all other system functions

developed here will be considered to be random functions and their expected values

will be used to describe the output of the channel.

If the waveform transmitted into the acoustic medium is given by x(t) and

the channel output is given by r(t), the channel may be described by the linear

filter shown in Figure 2.1. The standard I/O relationship for this linear system is

given by [81

r(t) = E, + (t - -)h(7,tOdT + n(t), (2.1)
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x(t)"1 h30.t A -yt)

n(t)

Figure 2.1: The Linear, Time-varying, Random Channel Model

where E., is the energy contained in the transmitted signal and n(t) represents the

additive noise present in the channel. This noise term will temporarily be dropped

in order to study the effects of the impulse response, h(r, t), alone.

In [3] it is shown that the channel characteristics may also be described

in the frequency domain using the time-varying channel transfer function H(f, t)

which is defined as as the Fourier transform of h(r, t) w. r. t. r, and is given by [8]

_+00If(f, t) =] h(r, L)e-J2lf'dr (2.2)

where H(f, t) is a function of both time and the input frequencies, f, in Hertz. The

relationship in the frequency domain can be shown to be

r(t) = FE-0 X(f)H(f, t)e321f1df (2.3)

which implies that H(f, t) describes the amplitude scaling and phase shift which
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the input signal spectrum undergoes over time.

Following a similar development, Ziomek [3] describes the frequency domain

response of the system using the spreading function S(r, 4) and the bi-frequency,

function B(f, 4) which are defined as the Fourier transforms of h(r, t) and H(f, t)

with respect to the time variable t,

S(r,0) - h(r, t)e-j 2rzt dt (2.4)

and

B(f, 4) = +L 0 H(f, )ej 2 tdt. (2.5)

Fourier transform relationships can be established between any of these four system

functions and used to show that each of these functions provides an equivalent

description of the channel time and frequency spreading characteristics. As per

common practice (9], we shall use the system spreading function S(r, 4) to describe

the channel and determine the expected output of the system.

From (2.4), h(r, t) may be written as

h(r,t) -F;'{S(r, )} (2.6)

where F 1 {.} denotes the inverse Fourier transform of the function w. r. t. the

frequency variable 4. Using (2.1) and (2.6), the output of the filter may be written
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in terms of the spreading function as

r(t) = FJ.12j x(t - r)2'O'S(T, 4)drdO + n(t). (2.7)

Equation (2.7) states that the channel output, r(t), can be represented by the

sum of time and frequency shifted replicas of the transmit signal weighted by the

spreading function, plus additive noise. Thus, the spreading function is shown to

be a description of the time and frequency spreading characteristics of the channel

for one realization of the filter.

Ziomek [31 introduces the auto-correlation functions Rh(r, 71 , t, t'), RH(f, f', t, t'),

Rs(r, 7T, , 4), and R&(f, f', 0, 0') to describe the characteristics of the four system

functions over time. As with the system functions, Fourier transform relationships

can be developed between the four auto-correlation functions. These relationships

may then be used to show that wide sense stationarity in time is equivalent to

uncorrelated spreading in frequency and that wide sense stationarity in frequency

is equivalent to uncorrelated spreading in time. When both of the situations occur,

the acoustic channel is said to be Wide Sense Stationary Uncorrelated Spread-

ing (WSSUS) and the system auto-correlation functions may each be reduced to

functions of two variables.

The auto-correlation function of the system spreading function may be used

to describe the average properties of the stochastic channel over time. In general
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this function is given by

Rs(-r, r', 4, 0') = E{S(r, 4,)S'(r', 0')}. (2.8)

If a WSSUS channel is assumed, i. e. the spreading function is uncorrelated for all

r#r' and 00#0', then the auto-correlation function becomes

Rs(r,'r',4,,') = E{j S(r,4) 126(r - T')6(4-') (2.9)

_ Rs(, 4•),(,T - r')(o - 0'). (2.10)

The term Rs(r, ,) is referred to as the system scattering function and is a measure

of how the medium redistributes the transmitted signal energy, E=, in range delay,

r, and Doppler shift, 4, [9]. The scattering function is the most commonly used

narrowband characterization of the underwater communications channel and may

be used to optimize performance of active echo location systems [10].

2.2 The Matched Filter Receiver

The matched filter is the optimum receiver for a slowly fluctuating point

reflector in the presence of white Gaussian noise[6]. The structure of the receiver

is shown in Figure 2.2 and is given by [3]

S= 1_J r(i)X(t _f- e2*1dtt12 (2.11)
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x(t _ ^)e-j2yrot

Figure 2.2: The Matched Filter Receiver

where ÷ is the hypothesized range delay, 4 is the hypothesized frequency shift, r(t)

is the received signal as given by (2.1), and z(t) is the transmitted waveform.

If we temporarily disregard the noise term, n(t), and express the channel

output r(t) in terms of the spreading function of (2.4), the output of the receiver

may be written as

I'(,,,•)1L- L//_+ " s(•S(-T, O4'),2-1 .(,, A4,)drd4 '1 (2.12)

where

•r =--r- ÷(2.13)

and

(2.14)

In Equation (2.12), xAz(OT, A4) represents the transmit signal auto-uncertainty
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function[11]

X.+(00, A4)) =] z(t - r -)x'(t - r + A-r)e-i 2 &#9dt. (2.15)

One stochastic realization of the matched filter is given by I 1(f, 4) 12. The expected

output of the matched filter provides a probabilistic description of the fluctuating

channel. If a WSSUS communication channel is assumed, the expected output of

the matched filter is given by [11]

= E{I 1(÷,) 12)

= L+_' L0 s(r,, ))X,xdAr, AO) 12 d.dO + No (2.16)

where Rs(7r, 4) is the system scattering function of Equation (2.10) (arising from

the assumption of uncorrelated spreading), I X./(Ar, AO) 12 is referred to as the

transmit signal auto-ambiguity function and is the magnitude-squared of the auto-

uncertainty function of (2.15), and No is the noise spectral density. The matched

filter output m (f, ý) is generally computed over a region of hypothesized time delays

f and frequency shifts ý corresponding to the region of support of the scattering

function in the phase plane.

Equation (2.16) shows that the expected output of the matched filter is

the two-dimensional convolution of the system scattering function with the signal

ambiguity function. If the objective is to estimate the scattering function, the ideal

choice for a transmit waveform would be one which has an ambiguity function of
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the form

I Xzz(A,-, t,) 12= 6CA.,.)6A,) (2.17)

which describes a two-dimensional Dirac delta function, or "spike", with support

only at the origin, where r = + and 0 = q. This would produce the matched filter

output

m(!', E.Rs(+,4,) + N0  (2.18)

yielding a perfect measurement of the scattering function, except for the addition

of corruptive noise. Unfortunately, this idealized result is not exactly obtainable

due to ambiguity function properties.

2.3 Ambiguity Function Properties and Signal Resolution

Considerable effort has gone into the design of waveforms yielding ambigu-

ity surfaces which approximate the ideal form described in (2.17). Properties of the

ambiguity function will be introduced, and bounds on resolution may be derived

which influence the matched filter scattering function estimate.

Using the auto-uncertainty function in Equation (2.15), the signal auto-

ambiguity function is given by

SXz.(Ar", AO) 12= jJ z(t)z'(t - A)e-i2 #tdtI2 . (2.19)

Using this equation, several properties may be described [11]:
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1. Maximum value. The Schwarz inequality can be used to show that

I x(Ar', A) 12< If +_ Ix(t) 12 dt12 =1 x(OO) 12. (2.20)

We can normalize the signal x(t) so that

I X(O0G) 12= 1. (2.21)

2. Symmetry about the origin.

I X.(-Ar, -_6) 12 = I X..(Ar, A) 12. (2.22)

3. Self Transform. The ambiguity function is identical to its two-dimensional

Fourier transform

f+00 +00

I Xzz(r, 0) 12 eJ2 r(-,r& )dOd4d I XX=(,', u) 12 (2.23)

4. Volume invariance. The total volume contained under the ambiguity

function is constant regardless of the normalized signal, i. e.

I x (r,( ) 12 drd4 =I X(0 ,0 ) 12. (2.24)

This property, which is known as the radar uncertainty principle, is
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probably the most important property of the ambiguity function. Clearly,

if a signal is designed such that its ambiguity function mainlobe ap-

proaches a delta function, then (2.24) demands that the volume removed

from the mainlobe will appear elsewhere in the r-4. plane, affecting re-

ceiver performance. A more detailed discussion of the effects of this result

will be given shortly.

Throughout this discussion, T will denote the transmit signal duration in

seconds and W will denote the signal bandwidth in Hertz. In general, the signal

resolution (defined by the 3 dB contour on the ambiguity function mainlobe) is

proportional to 11W in delay and 11T in Doppler[111. A signal often used in

scattering function identification is the CW (or pure tone) whose abiguity function

is shown in Figure 2.3. The CW has the property that its bandwidth is equal to

the inverse of its duration, so that TW = T(1/T) = 1, implying that this type of

signal may be resolvent in Doppler (as in Figure 2.3) or in range depending on the

pulse length, but not both.

As a result of the radar uncertainty principle, any realizable ambiguity

function will consist of a centralized "spike" or mainlobe and a distributed volume

"pedestal" or sidelobe region about the mainlobe. The ideal ambiguity function is

one with a very narrow mainlobe and completely flat sidelobes, which is commonly

referred to as the "thumbtack" ambiguity function[Ill."

In the past, a great deal of work has gone into the design of waveforms which

approximate the "thumbtack" form. More recently, the majority of this work has
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1.0

0.6

Fm.4

0.2-

Figure 2.3: CW Ambiguity Function
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been directed toward the study of time-frequency hop (hop code) signals. These

signals, which are also referred to as frequency shift keyed (FSK) signals, consist

of a set of CW subpulses concatenated in time, each at a separate frequency.

A class of FSK codes originally introduced by Costas [121 has the desirable

properties of a delta-like mainlobe and a relatively flat sidelobe region. Such signals

may be designed with an arbitrarily large duration and bandwidth, yielding high

resolution in both delay and Doppler. However, increasing the code TW product

tends to decrease the volume of the mainlobe. Because ambiguity volume is con-

served, volume removed from the main lobe is distributed to the sidelobe region

where it contributes to "self-clutter". Self-clutter arises when multiple, dense scat-

tering exists, causing the receiver response at a particular delay-Doppler hypothesis

to contain contributions from scattering sites throughout the plane. These spurious

contributions represent energy integrated by the sidelobe pedestal and base regions

which surround the main lobe as illustrated by the idealized ambiguity function

shown in Figure 2.4. In the figure, a unit energy code of order N subpulses with

a total duration of T seconds and bandwidth W is assumed. The bandwidth is

related to N and T through the assumption that the subpulses are separated in

frequency by their spectral width NIT [13]. The base of the ambiguity function is a

result of interpulse ambiguity interaction and is of height 1IN2 since Costas codes

by design can only generate "single hit" subpulse correlations [141. The pedestal

region surrounding the main lobe is dominated by the incoherent addition of the

subpulse spectral sidelobes and has a average height of 1/N.
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/ 1N - no. of subpulses

/ Doppler T - total duration
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Figure 2.4: Generic Costas Ambiguity Function
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It has been shown that when a conventional matched filter is used, the

resulting distribution of energy in the delay-Doppler phase plane is the result of

the convolution of the ambiguity function and the underlying scattering function.

Since volume is conserved in an ambiguity function, when the main lobe is narrow,

most of the phase plane energy is the result of the convolution of the pedestal

and base portions with the scattering function, which can obscure the main lobe

contribution in the presence of dense scattering and additive noise. An example

of this phenomenon is shown in Figure 2.5. In this case, the transmit waveform

used is a Costas code of Lempel construction with 27 "chips" or subpulses and a

time-bandwidth product of 90. The underlying scattering function is comprised

of a cluster of eight point scatterers with no additive noise. Even in this case

of relatively sparse scattering and no noise, the sidelobe self-clutter significantly

obscures the individual point scatterers.
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1.0

0.0

0.6

0 .4

F.2t

Figure 2.5: Sample Matched Filter Output



Chapter 3

The Uncertainty Product (UP)- Receiver

3.1 UP Receiver Structure

Chapter 2 illustrated that the radar uncertainty principle leads to a trade-

off between ambiguity mainlobe resolution and sidelobe self-clutter interference in

matched filter SF estimation. Mehta and Titlebaum [1, 2] have proposed a new

approach for the measurement of scattering functions, which appears to be effective

in reducing self-clutter in the phase plane. The basic premise involves passing two

signals through the channel and processing each with its own correlation receiver.

These outputs are multiplied together to produce a joint statistic 1:

I = If .*l/No (3.1)

where

1f = f+0 rf (t)y=(t fe-- 2id 32
= - *)e-i2,t dt

and

I =-+0 r,(t)g(t -d.

The terms rf(t) and r,(t) represent the noise corrupted received time series resulting

from interrogations by the transmit signals f(t) and g(t) with received energies
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Ef and E9, respectively. The basic structure of the receiver given by (3.1-3.3) is

shown in Figure 3.1, where ÷ and 4 represent the hypothesized delay and Doppler

coordinates in the phase plane. Generally, the output of the UP receiver will be

complex; however, if f(t) = g(t), the receiver reverts to the classic narrowband

matched filter which will have a non-negative real output.

rf Q) X Idt

rg< t) (•r]6 d

Figure 3.1: The UP Receiver

If the scattering channel is WSSUS, and the noise is uncorrelated between

channels, the e"-z-cted value of the output may be expressed in terms of a scattering

function R.(r, 4) as,

= E{l}
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No _00~i _7 R.(T, #k)Tfg(AT, AO)d-rdo. (3.4)

The term Tf9 in (3.4) is formed by the product of the two signal auto-uncertainty

functions

Tfg(Ar, AO) = X!f(A~r, Af)x;,(Ar, AO), (3.5)

which we shall refer to as the uncertainty product function (UPF). The auto-

uncertainty functions xf! and Xgg were defined in (2.15), i. e.

= f(t)f(t -(t )e- 2 I"tdt (3o6)

and likewise for g(t). Again, we note that if f(t) = g(t), (3.4) reduces to the

convolution of the scattering and ambiguity functions given in Equation (2.16),

since

T!f(AT, AO) =1 Xi( f 'r, A 0) 12 (3.7)

T1 , is not the cross-ambiguity function (CAF) §1g which results from transmitting

one waveform and processing with another resulting in

xf,(ALr, AO) = J f(t)(t - Ar)e-*2', t dt. (3.8)

I 'A4) = I X!,(A-, AO) 12 (3.9)

where Xi. is called the cross-uncertainty function. Generally, a CAF does not
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have the auto-ambiguity function structure of a central main lobe surrounded by

a lower sidelobe region, but may be considered to consist completely of sidelobes

in the sense that its surface may be distributed throughout the phase plane [101.

A simple illustration of this property is shown in Figure 3.2, which is the CAF

between an up chirp and a down chirp. Cross-ambiguity functions do, however,

possess the volume conservation property of auto-ambiguity functions [I I] where

V. = 1 0(6, AO)dArdAO

= E1Eq. (3.10)

The UPF on the other hand, has support only where the supports of the

constituent uncertainty functions coincide; thus, for example, the combination of

up and down chirp waveforms will result in UPF support only at the origin, as

illustrated in Figure 3.3. Clearly, a UPF such as the one in Figure 3.3 can pos-

sess the "delta-like" structure which was desired for the ambiguity function of the

matched filter receiver. This property is also desirable for the UP receiver due to

its similar convolution property. However, because (3.4) is an expected value, it is

necessary to study the UPF in greater detail to describe the output of the receiver

for a single interrogation and to determine the rate of convergence to its expected

value.
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Figure 3.2: Sample Cross-Ambiguity Function
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Figure 3.3: Sample Uncertainty Product Function
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3.2 UPF Properties

Several basic properties of the uncertainty product function will be derived

and contrasted with those of the ambiguity function presented in Chapter 2. In sub-

sequent chapters, these properties will be used to describe UP receiver performance

and to compare the rate of convergence to that of the matched filter.

3.2.1 Relationship to the Cross-Ambiguity Function

Titlebaum [15] has extended the self transform property of ambiguity func-

tions to relate the cross-ambiguity functions of four signals, XI(t), X2(t), z3(t), x 4(t),

as

. 0 Xz,,(T, O,)X:",.(T,• 4)eJ0(1-t)d'rd4 =X X1 3(t , f)x12 1(t , f). (3.11)

If we let z1 (t) = X3 (t) = f(t) and z 2(t) = X4(t) = 9(t), (3.11) may be written as

Xfi(t, f)x'(t, f) = J' f 00 X k(')x' (r, )e'2"((t -)drdO. (3.12)

Note that the product XfiXý. in the integral is the cross-ambiguity function as

defined in (3.9). Thus using (3.5) and (3.12) we see that T1 , and Ofg are a Fourier

transform pair such that

Tfg(t, f) = Oj,(r, O)ej2-(f1-)dtdrdOb (3.13)
_00O
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and

*j,(0, 4) =- Tjg(t, f)e-j 21(f,-#t )dtdf. (3.14)

Substituting (3.13) into (3.4), the expected UP output may be written as

fE• foo .

(3.15)

The bracketed term integrated with respect to r and 0 is the the Fourier trans-

form of the scattering function, which is defined as the time-frequency correlation

function RH(f, t) [31 and consequently

+00 +00

N0  . RHU~, t)$1 9 (t, f)e j 2 1r(ff t)didf.(.6Pr i No _ 0f(-6

This implies that compact scattering in (r, 4)) translates into broad support in (t, f)

so that the highest resolution would be obtained from a signal pair with a broad

and relatively fiat cross-ambiguity profile. The combination of up and down chirp

waveforms mentioned earlier is an example of such a pair.

3.2.2 UPF Volume

As mentioned previously, the UPF only has support in the phase plane

where the support regions of the constituent uncertainty functions coincide. As

illustrated in the up/down chirp example, this implies that, unlike the ambiguity

function, the UPF does not conserve volume. In fact, the UPF volume may be
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computed by substituting (3.6) into (3.5) and integrating over (A-r, AO) resulting

in

VT = .- 1-ATA )dor

= + f(t)g-(t)dt 12. (3.17)

Clearly, volume is not conserved and in fact may be zero for orthogonal signals.

3.2.3 Maximum Value

Using (3.13) and (3.10) a consequence of the Fourier relationship between

the UPF, T1 2 , and the CAF, Of., is that

Tf 9(0,0) = V4

= E1 Eq (3.18)

and conversely, using (3.14) and (3.17)

O 1•(0,0) = V-r. (3.19)

Since the volume of the CAF is a positive quantity (Eq. (3.10)), the peak of the

UPF at the origin will be a real constant, which depends upon the signal energies.

However, unlike ambiguity functions, the UPF sidelobes are in general, complex.

The combination of these two facts is the key to the convergence of the UP receiver,
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which is shown in Chapter 4.



Chapter 4

Implementation Issues

The convolution of Equation (3.4) and the delta-like uncertainty product

function of Figure 3.3 suggest that the UP receiver is capable of producing accu-

rate estimates of scattering structures without the self-clutter often present in the

matched filter receiver. However, these results may only be reached in expectation

over many realizations. Also, the performance of the UP receiver will be affected

by interaction between the two transmit waveforms. Several issues critical to the

proper implementation of the UP receiver are discussed below.

4.1 Disjoint Waveform Support

The UP concept requires that the echos from the two constituent waveforms

f(t) and g(t) be realizations from the same scattering process. This implies that the

waveforms must be transmitted simultaneously or in very close temporal proximity

so that the echo r(t) is the result of interrogation by the sum of the constituent

waveforms, x(t) = f(t) + g(t), such that

r(t) = F/o f X(t - r)S(T, k)e•J 2 1"dt + n(t) (4.1)

j.-oo
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where E0 is the combined energy of the composite signal, S(r, 0) represents the

spreading function of the scattering process, as defined in (2.4), and n(t) is additive

noise.

The UP receiver structure shown in Figure 3.1 and given by Equations (3.1-

3.3) assumes that the return signal has been separated, by filtering or other means,

into two waveforms, rj(t) and r,(t), which represent the response of the channel

to the transmit waveforms f(t) and g(t), respectively. This separation may not be

obtainable; •herefore, it is useful to study the test statistics If and l, formed using

(3.2,3.3), but with the total echo r(t).

Under the WSSUS assumption, the auto-correlation of the time series (4.1)

may be expressed in terms of the scattering function as

E{r(t)r*(u)} = Eo L. L0 x(t - r)x*(u - r)R,(Tr, )eJ 21(-u)drd + Nob(t - u)

(4.2)

where Ro(r, o) is the scattering function as defined in (2.10) and the noise is as-

sumed to be white. The statistic 1 given by (3.1), assuming r(t), may be formed as

indicated in Figure 3.1 and the expectation p,(f, ý) may be written using (3.1-3.3,

4.2) with rj(t) = rT(t) = r(t) as

_( E:j 0  Jo/ooR.(,r, 4V) L X(t - 7)f-(t - fei21rtdt

N1+? - 7-g(U -) ewAU drdo
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_Eo[+00 +oo

0 I R.(-r, 4') f ("AT, AO) + x~f (A'r, 4

[1Xf(Ar, AO) + X.,,(Ar, A')]'drdo. (4.3)

Clearly, this may be expressed in terms of the UPF and cross terms involving auto-

and cross-uncertainty functions where

P,(÷L•) +J'C f+R0 .(r, 4)Tf,(L7T, AO)drd4
+ [ L Lo 1?.(-, 4){,_x , A~,/4,)x.Z,(Ar,( )A(4( )

+
+ X,(AT•, A4')x;,(AT, A4')

+ Xgf(AT, A4')X;,(A", A4)}dd'ddO]. (4.4)

Cross- ambiguity and uncertainty functions have T, 4' plane support equivalent to

the support of the convolution of their constituent time-frequency patterns [1, 18].

Consequently, the cross-uncertainty functions XI, and XJ have the potential to pro-

duce severe self-clutter interference. To minimize these effects, the cross-uncertainty

functions of the constituent codes should be negligible in comparison to the uncer-

tainty product in a neighborhood of the origin commensurate in size with the sup-

port of the underlying scattering function. As the constituent waveform code orders

increase, and the codes become more dense, the cross-ambiguity surface becomes

a "mesa" as was shown for the combination of up and down chirps in Figure 3.2.

If the waveforms are transmitted simultaneously with the same frequency support,

the cross-ambiguity surface will be centered at the origin which would maximize the
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undesirable cross-uncertainty effect. A solution to this problem is to use disjoint

waveforms which occupy different areas of the time-frequency plane.

Consider two waveforms f(t) and g(t) which occupy bounded, but disjoint,

areas in the time-frequency plane as illustrated in Figure 4.1. The support regions

for f(t) and g(t) do not overlap and are separated by a time-frequency interval

such that a cross-ambiguity clear area of dimension Are, AO, will be formed a'cout

the origin. If this clear area is made larger than the support of the underlying

scattering distribution, there will be no cross-ambiguity effects. Generally, some

prior information concerning the support of the scattering function will be necessary

in order to center the clear area in the time-frequency plane. For example, if the

scattering support is known to have range extent L, the echos corresponding to the

signals f(t) and g(t) will be distinct if

A r, >_ 2L/c. (4.5)

Likewise, the echos will be spectrally distinct if

A 0.: _ (20. + .5(B! + B9)) (4.6)

where 0. is the scattering Doppler support and B! and B, are the signal band-

widths. A candidate waveform pair may be generated by separating a V-chirp

waveform into disjoint up and down chirps as shown in Figure 4.2. The cross-

ambiguity functions generated from this pair will have no support at the origin
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Figure 4.1: Disjoint Waveform Support
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Figure 4.2: The Disjoint V-chirp Waveform
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and will consist of two diamond shaped mesas (one in each branch of the receiver)

centered at

(Ar, A,) = -(Ar,/2 + T, AO, + B) (4.7)

each of height 1/2BT where B and T are the bandwidth and duration of the

individual chirps [10]. A plot of the output from the lower branch of the receiver,

If, is shown in Figure 4.3. Note that the correlation of the replica for the lower

branch, f(t), with the composite waveform, x(t), produces two regions of support in

the range-Doppler plane. The surface centered at the origin is the auto-ambiguity

function for f(t) while the diamond-shaped mesa in the upper-right quadrant is the

cross-ambiguity function of the two waveforms. A similar output is obtained for the

upper branch of the receiver, 1/, with the auto-ambiguity function of the down chirp,

g(t), centered at the origin and a cross-ambiguity mesa in the lower-left quadrant.

Recall that the uncertainty product function only has volume where both branches

of the receiver have support. Thus, in addition to being outside the clear area, the

cross-ambiguity effects from each branch will be suppressed by the lack of volume

in the same region of the opposing branch, placing the majority of UPF volume at

the origin where the up and down chirp auto-ambiguity functions coincide. Effects

of the suppressed cross-ambiguity contributions will only become noticeable when

the clear area is not large enough to encompass the scattering process and when

dense scattering causes many suppressed CAF contributions to overlap. With this

in mind, it should also be noted that is desirable to keep the clear area as small as

possible since the basic assumptions underlying UP processing are that the WSSUS
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Figure 4.3: Disjoint V-chirp Output for 1.
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conditions hold and that the scattering process realization interrogated by each of

the signals is the same.

4.2 Simultaneous Observability

If the signals are disjoint, as indicated in Figures (4.1, 4.2), it is necessary

that the scattering process be observable by both branches of the UP processor

shown in Figure 3.1 for the same hypothesis (f, 4). In other words, when a scat-

terer is hypothesized at a position (f, 4) by the first signal transmitted, f(t), the

mainlobe of the uncertainty function of the second, g(t), must have sufficient range

delay support (-r.) so that the scatterer is observable or,

2_vId< (4.8)
C

where

Td = (AT, + .5(Tf + T,)) (4.9)

is the effective delay between the signals, T1, T,, are the signal durations, and v is

the scatterer Doppler velocity.

Since v is estimated by the Doppler hypothesis 4 via

2v = -- (4.10)
c To
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where fo is the frequency centroid, the bound for r, may be expressed as

4,Td < (4.11)

fo

Moreover, the range delay resolution of a waveform with envelope bandwidth B9 is

T,= k/B 9  (4.12)

where k is a constant which depends upon the chosen definition of resolution (e. g. 3

dB down). Consequently, (4.6) may be formulated as a bound on scatterer Doppler

k Lf (4.13)
BTd

which must not be exceeded unless the delay hypothesis of the second signal is

Doppler compensated. An approach suggested in [11 when a high resolution Costas

type waveform is used for the first signal, is to use a CW for the second signal g(t)

which has range resolution equivalent to its duration.

A more elegant solution which avoids the need to bound 4 and allows

for the use of high resolution codes for both f(t) and g(t), is to compensate the

delay hypothesis of the second signal based upon the overall Doppler hypothesis.

Consider a particular phase plane cell corresponding to the hypothesis (i, ý). The

upper branch of the processor shown in Figure 3.1, which is a matched filter for the

first signal f(t), uses the parameters (f, •) to form the filter. Assuming that the
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time base origin for both signals coincides with the transmit leading edge of f(t),

the lower branch, which corresponds to the second or lagging signal 9 (t), must use

a delay hypothesis f. = f + Td in order to bring it into coincidence with the first

signal echo. If however, 4 is not zero, the delay between the signals will be dilated

by the factor

/ = 1+ 2v/c

= 1 + ,/fo. (4.14)

Thus, in order to compensate the delay hypothesis *g, it is necessary to use

f9 +Td (4.15)

0 *3

Analogously, it is also necessary to use a slightly different Doppler hypothesis for

the second signal to compensate for Doppler change occurring over the total signal

duration. This effect is not directly measurable unless a quadratic (acceleration)

parameter is included in the matched filter [16]. This is not done in the structure

proposed herein and thus both branches of the UP processor use the same Doppler

hypothesis. Spectral dilation due to high Doppler can be compensated by using a

wide band matched filter rather than the narrowband version presented here.

In practice, a straightforward solution to the compensation problem exists

which avoids the need to bound ý by automatically compensating the delay hypoth-

esis of the second signal based upon the overall Doppler hypothesis. This method
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involves a modification to the two replicas for f(t) and g(t) in the two branches of

the receiver in Figure 3.1. The transmit waveform and the two UP receiver repli-

cas are shown graphically in Figure 4.4. The first, z(t), is the composite transmit

waveform with duration T., = T! + A-r, + T., where T!,Tg,and A",, are the dura-

tions of the original waveforms and the clear area, respectively. The second and

third waveforms, f(t) and g(t), are the waveforms to be used for replica formation

in the two branches of the UP receiver. The difference in the receiver occurs in

the specification of the waveform g(t). Note that this signal is defined as having

a leading "dead time" of duration Tf + Arc. By adjusting the time base of g(t)

to account for the delay between the two receiver branches, the replica formation

for the hypothesized Dopplers, ý, automatically incorporates any time compression

caused by the scattering function's motion.

4.3 Virtual Scattering

It is important to understand that the UP receiver output given by the

convolution of Equation (3.4) is an" expected value. However, it is instructive to

demonstrate the receiver output for one realization of a deterministic scattering

process. Consider a scattering function consisting of two ,t scatterers separated

by 25 meters, both at zero Doppler, ensonified using the disjoint V-chirp waveform

shown in Figure 4.2. The waveforms chosen for this example each have a duration

of 200 milliseconds and a bandwidth of 450 Hz. The clear area for this waveform

pair is Ar, = 400 milliseconds in range delay and Aoc = 200 Hz in Doppler, which
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Figure 4.4: UP Receiver Waveforms
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is sufficient to provide an unambiguous scatterer image. One realization of the UP

receiver is shown as a phase plane plot with axes r (delay) and 0 (Doppler shift) in

Figure 4.5. The magnitude of the receiver output is displayed so that the energy

units of the UP receiver output will agree with those of the matched filter.

Although the UPF of the chirp waveforms does approach a "thumbtack"

(see Fig. 3.3) with support only at the origin, one realization does not produce

an accurate estimate of the underlying scattering process. The two returns at zero

Doppler are from the point scatterers; however, the two returns at non-zero Doppler

are caused by the interaction of the two waveforms' auto-uncertainty functions

for each scatterer, and may be termed "virtual scatterers." This phenomenon is

depicted in Figure 4.6, where the outputs of the two branches of the receiver (if, Ig)

and their product are displayed.

A scattering process may be described as a continuous or discrete scattering

distribution in delay and Doppler. Each point within this distribution can be

described in terms of a complex, random, and time-varying impulse response, which

in turn can be modeled as a Gaussian process with Rayleigh magnitude and uniform

phase [3, 61. A discrete scattering process S(r, 4) can be modeled as a collection

of point scatterers at positions (ri, 0),) in the phase plane with complex reflectivity

Ui, given by

ui = Zi + jyi (4.16)

where the xi's and yi's are uncorrelated Gaussian random variables with zero mean

and a standard deviation of one. Since the expected value of the receiver output
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is given by (3.4), the response at (r, 40) corresponding to the true scatterer posi-

tions will be real and proportional to T,,(0,0), which from (3.18) is equivalent to

the volume of the cross-ambiguity function Ofg. Also, under WSSUS conditions,

scatterers at different points in the phase plane are uncorrelated. Therefore, the

"virtual scatterers" that appear at the processor output represent complex random

contributions of separate scattering sites, which will tend to cancel out when a

number of realizations are averaged.

The expected rate of decay of the sidelobe structure of the UP receiver

may be studied by examining the decay of one phase plane bin within a "virtual

scatterer." The ensemble average of any one of these phase plane points may be

represented by the sum

1 N
sij = KiKjN - uiUj,& (4.17)

k=1

where N represents the number of realizations and uik and ujk represent the reflec-

tivity of the two scatterers for the kt" realization. Here, Ki and Ki are constants

which scale the scatterers' reflectivities uik and ujk by the two uncertainty func-

tions' magnitude at the given phase plane point. Because these reflectivities are

uncorrelated random variables, we may determine the rate of convergenne via the

Central Limit Theorem [17].



48

Theorem 4.3.1 Central Limit Theorem: Let f(.) be a probability density func-

tion with mean p and finite variance o2. Let XN be the sample mean from a random

sample of size N from f(.). Let the random variable ZN be defined by

ZN = X/-varI[XNI - p (4.18)

Then, the distribution of ZN approaches the standard normal distribution as N

approaches infinity.

Equation (4.18) says that the mean from N random samples XN taken from any

distribution with mean y and finite variance a 2 approaches a normal random vari-

able with mean p and variance a 2 /N as N --- oo. Therefore, the average sij, i. e.

the virtual scatterer level, will tend to zero (the mean) as 0(').

The disjoint V-chirp waveform and a fluctuating version of the two-point

scattering function discussed above will be used to demonstrate the convergence

of the UP receiver. Since WSSUS conditions are necessary, we will assume that

our reflectivities, ui, remain fixed for one realization only. The ensemble averaged

output of N realizations of the UP receiver is shown in Figures 4.7 (a)-(d) for

various values of N. Figure 4.7 (a) displays the magnitude of the output from

the first realization showing the two point scatterers and the two "virtual scatter-

ers" expected for this scattering function. In Figures 4.7 (b)-(d) we see that the

purely real mainlobes of our true scatterers reinforce each other while the "virtual

scatterers" decay as predicted:
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Figure 4.7: UP Receiver Output for N Realizations: (a) N =1, (b) N 10,
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For comparison, the same scattering function as above was interrogated

using a Costas coded waveform with a main lobe resolution comparable to that

of the UPF for the disjoint V-chirp waveform. Results are shown in Figures 4.8

(a)-(d). Figure 4.9 shows the average background, N., for each of the receivers as

a function of the number of iterations N. The background level decreases steadily

for the UP while the background level of the matched filter is relatively constant, in

this noise-free case, due to the sidelobe clutter which is predicted by the ambiguity

function's conservation of volume.
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(c) N = 100, (d) N = 300
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Chapter 5

Waveform Design Considerations

Thus far, the response of the UP receiver has only been demonstrated for

the combination of up and down linear FM (or chirp) waveforms. In fact, many

pairs of waveforms may be combined to produce a UPF capable of resolving fine

scattering function structure. If such resolution exists and a sufficient clear area

may be defined, then the expected output of the receiver will converge to an un-

ambiguous estimate of the scattering process. In Chapter 4 the concept of virtual

scattering was introduced to describe the effects that the interaction of the two

waveforms' auto-uncertainty functions have on resolution. In some cases, such as

the up/down chirp combination, distinct virtual scatterers will be formed with am-

plitudes commensurate with those of the true point scatterer responses. However,

when two frequency hop waveforms are used, the virtual scattering effects can be

more subtle and less predictable due to the interaction between the pedestals of the

two waveforms. A priori information about the basic structure of the scattering

process can, in some instances, aid proper waveform selection to reduce the effects

of virtual scattering on a single interrogation, and thus improve receiver perfor-

mance. Therefore, it is useful to review basic waveform constructions and their

associated auto-ambiguity functions in order to predict the UPF characteristics of

any given pair.
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In the following sections various waveform constructions will be presented

along with sample auto-ambiguity functions. Also, the hit array (7] will be in-

troduced as a tool to describe auto- and cross-ambiguity sidelobe structure for

hop-coded waveforms, and the product of hit arrays [18] will be used to predict

UPF composition. Code density, i.e., the number of chips for a given signal du-

ration and bandwidth, will be discussed in terms of the validity of hit array use

and the differing UPF implications between sparse and dense hop codes. Finally,

waveform pair selection will be discussed in particular cases where some degree of

information about the scattering function is known.

5.1 Component Waveforms

For many years waveforms have been designed for use in radar and sonar

applications. Although some of the traditionally used waveforms, such as CWs or

linear FMs, are not capable of simultaneous resolution in both time and frequency,

the UPF of two such waveforms may be. In addition, time-frequency hopped (hop-

coded) waveforms, which often achieve simultaneous range and Doppler resolution,

can benefit from reduced sidelobes when used in the UP receiver.

5.1.1 The CW

The CW, which is the simplest of waveforms commonly used in matched

filter processing, is given by

x(t) = A(i)ej 2 rfO ,< t < T (.51)
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where f, is the transmit center frequency and T is the total signal duration. In

addition, the term A(t) represents the amplitude shading or "window" applied

over the duration of the pulse. Amplitude shading of the pulse with any of the

commonly used windows (Taylor, Hamming, Hanning, etc. ) will result in more

rapidly decaying ambiguity sidelobes than when a unit amplitude window is used

[19). Figure 5.1 is an illustration of this process. In the figure, the auto-ambiguity

function is displayed for a CW of the same duration as the CW in Figure 2.3,

where a Hamming window has now been applied to the pulse. The quickly decaying

sidelobes evident in the figure are desirable when a CW is used as a UP waveform

since the amount of energy coincident with the opposing branch of the receiver is

lessened for both the UPF and the CAF contributions. As previously mentioned, a

CW pulse has a time-bandwidth product TW = 1 implying a symmetric ambiguity

mainlobe with high resolution possible in either range or Doppler, but not both.

5.1.2 The Linear FM

The linear frequency modulated (LFM), another waveform traditionally

used in matched filter processing, is defined by the function

x(t) = A(t)e- 2 T(f+ ) 0 <t :5 T (5.2)

where A(t), .,, and T are _:fined above and W is the signal frequency excursion.

An example of a LFM signal with T = 0.2 seconds and W = 450 Hertz is shown

in Figure 5.2. In this case, a unit amplitude (rectangular) window was used for
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Figure 5.1: Hamming Windowed CW Pulse
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the duration of the pulse, as is often the case when using LFM waveforms. Note

that with the LFM there is a strong coupling between range resolution and Doppler

resolution. For this reason, the LFM by itself is generally not useful for scattering

function identification.

Although LFM waveforms are often used without amplitude shading, proper

windowing can provide a significant reduction in UPF and CAF effects when us-

ing such waveforms in the UP receiver. In Figure 3.3 the UPF for an up and

down chirp combination was shown where Hamming windows were applied to the

LFMs. This windowing had the effect of suppressing both the cross-ambiguity ef-

fects and the contribution of the coincident auto-ambiguity effects within the clear

area. As a counter example, consider the UPF for the same two waveforms where

unit amplitude windows are used, as shown in Figure 5.3. In the presence of mul-

tiple scatterers, the two sidelobe "arms" present in this UPF will tend to produce

stronger virtual scatterers and more self-clutter once the receiver converges to its

expected value.

5.1.3 Frequency Hop-Coded Waveforms

In recent years, a significant amount of signal design work has been directed

toward the study of time-frequency hopped (hop code) signals in attempts obtain

waveforms wrhich are highly resolvent in both range and Doppler witL relatively flat

sidelobe pedestals [12, 14, 20, 21, 22]. The general form of a hop-coded waveform
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of N subpulses is given by

N
x(t) = E Ai(t)e)l1[(f0+f*)f+0t], (5.3)

k=1

where f, is the center frequency, fk is the frequency offset of the k-th pulse or

"chip" from the center frequency, and Oi is a constant phase shift that is intro-

duced to assure continuity of the waveform at pulse-to-pulse transitions in the time

domain. The waveform description given by Equation (5.3) can be used to describe

a wide variety of waveforms in discrete terms. For example, the CW pulse given

by Equation (5.1) can be formulated discretely with a code of order N = 1 with

f-0.

Discrete waveforms may be designed with chips of unequal length and fre-

quency spacing. Often this formulation is used to approximate a continuous wave-

form such as an exponential or parabolic frequency allocated code. For this discus-

sion we shall assume that the frequency modulation fk operates on an equi-spaced

grid where each cell is of size T, seconds in duration and the distance between adja-

cent cell centers in frequency is Af Hertz. Figure 5.4 shows a simple time-frequency

pattern on such a grid for a code with five subpulses. Note that for each time in-

dex, k, there is a unique frequency slot, 1(k). Waveform codes which exhibit this

property are referred to as full co-'s. Codes where all of the time and frequency

slots are not used are termed non-full codes. If the desired subpulse duration, T.,

and subpulse frequency spacing, A f, of a code are known, then the time-frequency
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Figure 5.4: Sample Time-Frequency Pattern

pattern of the waveform can be described completely by a discrete function I(k)

for k = ... , N, which is often referred to as the placement operator. As shown

in Figure 5.4, the integer I(k) gives the vertical (or frequency) slot placement for

the pulse occupying the k-th horizontal (or time) slot. For example, the placement

operator for the pattern in Figure 5.4 would be {I(k), k = 1,...,5} = {5, 3, 2, 4, 1}.

Once a placement operator is formed, a hop-coded time-frequency pattern may be

generated by Equation (5.3) where the individual pulse frequencies are given by

rk f/k N+ 1]
Ik -N+]; k = 1,...-,N. (5.4)

As before, N is the number of subpulses and Af is the frequency separation be-

tween adjacent frequency slots. This method is generally referred to as the linear
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frequency allocation algorithm and is commonly used for the relatively narrowband

waveforms which will be discussed here. An alternate algorithm which uses log-

arithmically allocated frequencies is discussed in [23] and is recommended when

wideband processing is being used.

Recall from Equation (2.19) that the auto-ambiguity function is a correla-

tion of the transmit waveform with time and frequency shifted versions of itself.

Consequently, it is possible (with some restrictions) to estimate the gross ambigu-

ity sidelobe structure of a waveform by studying the auto-correlation properties of

its time-frequency pattern. Taking the time-frequency pattern of Figure 5.4 and

correlating it with itself, we obtain the pattern of Figure 5.5. In the figure, integers

-4 1

-3 1 1

-2 1 1 1
-1 1 1 1 1

0 5
1 1 11 1

2 1 1 1

3 11

4 1

-4 -3 -2 -1 0 1 2 3 4

Figure 5.5: Time-Frequency Auto-correlation Pattern

are used to indicate the number of coincident chips for a given time and frequency
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shift of the pattern with respect to itself. Note that in the center of the pattern

there is a 5 where all chips coincide. This is the case of no shift which corresponds

to the mainlobe of the auto-ambiguity surface. Also note, that for any other time

and frequency shift there is a maximum coincidence or "hit" of 1. This "minimal

intersection" property is highly desirable because it implies that ambiguity volume

will be spread so that sidelobe height is minimized. Figure 5.6 shows the ambiguity

function resulting from a waveform with the time-frequency pattern of Figure 5.4

where each chip has a duration T. = 0.1 seconds and the chip spacing is Af = 100

Hertz. The ambiguity surface is displayed in terms of contours at 3, 6, 10, and 20

dB down from the peak of the map to show that all sidelobes are of equal height

with positions corresponding to those predicted by the pattern correlation of Fig-

ure 5.5. The usefulness of a minimally intersecting array was first noted by Costas

[12]; therefore, such arrays are often referred to as Costas arrays.

Several algebraic constructions have been developed using modulo arith-

metic on finite fields to produce time-frequency arrays. Some of the more commonly

used constructions are:

1. Welch Construction [14]. Let a be a primitive element in the finite field

GF(q) where q is a prime number. For a (q - 1) x (q - 1) array, place a pulse

in the position (i,j) = (i, ai mod q) for i =1,..., (q - 1).

2. Golomb Construction [14]. Let a and f be primitive elements in the finite

field GF(qn) where q is a prime number and n is an integer greater than or

equal to 1. For a (,qn - 1) x (q" - 1) array, place a pulse in the position (i,j)
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if a' + #- = 1 where i, j = 1,... (q" - 2). If a = I3, then the construction is

referred to as the Lempel construction.

3. The Linear Congruence (LC) Code [24]. Let q be a prime number. For a

q x q array, place a pulse in the position (ij) = (i, (ai) mod q) for i = 1,...q

and 1 < a < q.

4. The Quadratic Congruence (QC) Code [21]. Let q be a prime number.

For a q x q array, place a pulse in the position (ij) = (i, (i(i + 1)/2) mod q)

fori = 1,...,q.

5. The Hyperbolic Congruence (HC) Code [22]. Let q be a prime number.

For a q x q array, place a pulse in the position (i,j) = (i, (a/i) mod q) for

i=1,...,q and l <a <q.

In the code constructions above, the subpulse index, k, and the placement operator,

1(k), have been replaced by time and frequency indices i and j, respectively. Fig-

ure 5.7 shows some examples of time.-frequency patterns produced by a few of these

constructions. Of the constructions listed above, only the Welch and the Golomb

produce Costas arrays by the strict definition. The Quadratic Congruence construc-

tion produces a modulo description of a parabola on the finite field GF(q) as seen

in Figure 5.7(d). Although the QC codes are not full codes-two subpulses often

occupy the same frequency slot while others are left empty-their time-frequency

patterns are minimally intersecting. The Hyperbolic Congruence construction pro-

duces full codes as dens the T.;ear Congruence construction (provided q is not
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Figure 5.7: Sample Time-Frequency Patterns of Various Constructions
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divisible by a); however, neither of these codes are minimally intersecting and thus,

do not produce nearly ideal "thumbtack" ambiguity surfaces. LC codes can be

thought of as a hop code description of a discrete LFM waveform of slope a on a

finite field GF(q) and as such, may be applicable where the LFM would be. HC

codes, although less than ideal for auto-ambiguity surfaces do produce desirable

cross-ambiguity surfaces, making them useful when UP cross-uncertainty effects

are a particular concern.

5.2 The Product of Hit Arrays

As it has been previously shown, it is possible to determine the rough

ambiguity structure of a hop-coded waveform by counting the number of subpulse

hits occurring in the auto-correlation of its time-frequency pattern. Often this

correlation is referred to as an "auto-hit array." A complete discussion of the

validity of using hit arrays may be found in (7]. For the present discussion it is

sufficient to state that a waveform's auto-hit array represents a discrete version of

the auto-ambiguity function provided

N 2 < TW (5.5)

where N is the number of subpulses, and T and W are the total signal duration

and bandwidth, respectively. In other words, each subpulse must be temporally

and spectrally distinct. Likewise, the cross-correlation or "cross-hit array" between

two waveforms accurately describes their cross-ambiguity surface if Equation (5.5)
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holds for both.

When hit array use is valid, the basic structure of the uncertainty product

function of two waveforms may be determined by taking an element-by-element

product of their two auto-hit arrays [181. Recall that thie expected output of the

UP receiver of Equation (4.4) involved both auto-uncertainty and cross-uncertainty

function terms. Therefore, it is also necessary to study the structure of the cross-hit

array to estimate the usefulness of any pair of codes.

Ideally, one would like to have a minimum number of hits in both the

product of auto-hit arrays and the cross-hit array to optimize receiver performance.

However, as the previous section demonstrated, generally a waveform does not

have both desirable auto- and cross-ambiguity properties. A reasonable approach

is to study the problems of auto-uncertainty product minimization and cross term

minimization separately. If a sufficient clear area may be established, it is preferable

to use two waveforms which have good a minimum hit array product. When this

is not possible, two signals with a good cross-hit array may be more desirable.

The simplest minimal product code is a discretized version of the up/down

chirp combination used previously. For example, Figure 5.8 shows the hit array

analysis for the combination of up and down 5-chip stepped LFMs. Note that the

hit array product is optimal, even though this combination can produce severe vir-

tual scattering effects in the presence of two or more point scatterers, as was shown

for the continuous case in Section 4.3. Clearly, the best choice of waveforms to min-

imize uncertainty-function product effects would be two waveforms with minimally
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Figure 5.8: Hit Array Analysis for Up/Down Stepped LFMs
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intersecting auto-hit arrays and minimal hit array products. Unfortunately, these

two goals are difficult to achieve simultaneously. To illustrate this fact, Tables 5.1-

5.3 list constructions for pairs of Welch, HC, and Golomb codes which produce

minimal hit array products. Note that the hyperbolic codes of Table 5.2 [181 tend

to have fewer product hits than the Welch codes of Table 5.1 [25] or the Golomb

codes of Table 5.3. Unfortunately, since HC codes are not Costas arrays, hit array

products may have magnitudes greater than 1, whereas Welch and Golomb codes

are assured to have products of maximum height 1.

The consideration of cross-uncertainty effects may be equally influential

in the selection of UP waveforms if a sufficient clear area is not achievable. As

mentioned above, these effects may be studied by considering the cross-hit array of

the two receiver waveforms. In this regard, linear congruence codes seem optimal

in that their cross-hit arrays have a maximum of 1 hit as illustrated in Figure 5.9

for the up/down chirp combination which contains LC codes of order one.

Slightly less desirable are the QC and HC codes which have a maximum of 2 cross-

uncertainty hits. The least desirable codes in this regard are the Costas codes

which produce a maximum of (N - 1)/2 hits.

5.3 Code Density

In the previous section, hit array methods were introduced as a tool to

analyze the performance of hop-coded waveform pairs, with the assumption that

each subpulse was temporally and spectrally distinct. If the code density, i. e. the
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Table 5.1: Welch Construction Minimum Hit Array Pairs

Prime N Welch Pairs (r1 ,a2 ) # Hits

5 4 (2,3) 6

7 6 (3,5) 14

11 10 (2,8), (6,7) 34

13 12 (2,7),(6,11) 62

17 16 (3,6), (3,12), (5,7) 114
(10,12), (11,12), (11,14)

19 18 (3,15) 134

23 22 (7,15) 188

29 28 (3,21) 320

31 30 (21,24) 386

Table 5.2: HC Construction Minimum Hit Array Pairs

Prime Hyperbolic Pairs (a1 ,a2) # Hits

7 (1,4), (2,4), (3,5), (3,6) 0

11 (1,5), (2,8), (3,9), (6,10) 7

17 (1,9), (8,16) 25

19 (6,11),(8,13) 38
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Table 5.3: Golomb Construction Minimum Hit Array Pairs

Prime N Golomb Pairs (a1 ,f1)x(a2 ,j2) # Hits

11 9 (2,7)x(2,8), (2,7)x(6,7), (2,8)x(6,8), 24
(6,7)X(6,8), (7,2)X(7,6), (7,2)X(8,2),
(7,6)X(8,6), (8,2)X(8,6)

13 11 (2,6)x(2,11), (2,6)x(7,6), (2,11)x(7,11) 36
(6,2)x(6,7), (6,2)x(1 1,2), (6,7)x(1 1,7),
(7,6)x(7,11), (11,2)x(1 1,7)

17 15 (3,5)x(3,7), (3,5)x(6,5), (3,7)x(6,7), 72
(5,3)x(5,6), (5,3)x(7,3), (5,6)x(7,6),
(6,5)x(6,7), (7,3)x(7,6)

19 17 (2,3)x(13,10), (3,2)x(10,13) 98

23 21 (7,15)x(11,21), (10,20)x(11,21), 154
(1 5,7)x(21,11), (20,1 0)x(21.11)

29 27 (8,11)x(14,26), (8,11)x(19,27), 270
(8,1 1)x(26,14), (8,1 1)x(27,19),
(11,8)x(1 4,26), (11,8)x(1 9,27),
(1 1,8)x(26,14), (11,8)x(27,19)
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Figure 5.9: Hit Array Analysis for Up/Down Stepped LFMs
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number of subpulses per the total duration and bandwidth, is increased, individual

subpulses are no longer distinguishable, making hit array analysis invalid. In other

words, this occurs when

N 2 >>TW. (5.6)

This situation does not automatically imply poor auto-ambiguity surfaces with

undesirable uncertainty product effects. If one chooses Costas codes with auto-

hit arrays which have hits distributed evenly throughout the array, the resulting

ambiguity functions will possess fairly level pedestals with no dominant sidelobes.

Figure 5.10 is a illustration of .his effect where the ambiguity function of a Golomb

code is displayed where the finite field GF(29) was used witi primative elements

a = 8 and # = 11 allocated over a total duration of T = 0.5 seconds and a band-

width of W = 400 Hertz. The reasoning behind this is that if two waveforms with

flat pedestals are combined, the resulting UPF will also have a flat pedestal which

is of a higher average level than the UPF sidelobes of the constructions previously

discussed. The use of such a pair of codes is suggested when it's especially im-

portant to lessen the probability of obtaining strong virtual scatterers on any one

realization.

A final method for selecting two hop codes again involves the use of two

Costas codes. Although all of the code constructions listed in Table 5.1 and Ta-

ble 5.3 produce Costas arrays, a study of all the hit arrays for a given code order

reveals that the auto-hit arrays of certain codes will tend to have hits more densely

distributed along either the horizontal axis, the vertical axis, or either of the di-
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agonals of the array. For example, Figure 5.11 displays the pattern for a code of

Golomb construction on GF(17) with a = 3 and 0 = 6 along with its corresponding

auto-hit array where the majority of the hits are aligned along the diagonal of the

array. A code such as this will tend to have a pedestal with more sidelobe volume

distributed along the diagonal axis. In this instance we would like to generate a

second waveform whose pedestal is oriented perpendicular to the first. This may

be accomplished by taking the original code's time-frequency pattern and rotating

it 90 degrees. The resulting pattern is of course still a Costas array-in this case

on GF(17) with a = 3 and P3 = 3 (i.e. , a Lempel code)-and has an auto-hit

array which is a 90 degree rotation of that of the original code. Even though a hit

array analysis is not valid because of the high code density, the hit arrays of the

two codes do give an indication that these perpendicular codes will have pedestals

oriented in opposing directions, implying lower UPF sidelobes.

5.4 Application Specific Design

Proper choice of UP receivei waveforms depends primarily on the expected

structure of the scattering function to be interrogated. In particular, the problems

associated with using a bistatic sonar UP receiver for channel identification will be

considered here. Factors which play key roles in waveform selection are the number

and density of the individual point scatterers and the degree of stationarity of the

scattering process.

Clearly, in the trivial case where the scattering function consists of only the
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direct path response from the source to the receiver with no multipath receptions,

nearly any pair of codes would be sufficient provided that their UPF exhibits the

desired mainlobe resolution. In this case, either the combination of up and down

LFMs or long and short CWs would provide a completely unambiguous estimate

of the scattering process with effectively no sidelobe interference.

Direct path transmission in a benign medium is an ideal situation of very

little interest. More likely are the cases where at least one (and possibly several)

multipaths are present at the receiver. Multipath receptions occur when multiple

propagation paths exist between the source and the receiver. Commonly, multipath

is evident when propagation is bounded within a surface or deep water duct or in

shallow water where multiple reflections from the bottom and/or surface are often

present [26]. These multiple reflections generally exhibit a limited spread in both

range-delay and Doppler shift so that a sufficiently large clear area may be estab-

lished about the scattering process. As mentioned previously, multiple returns can

cause virtual scattering effects. These effects may be manifested as distinct peaks

in the receiver output when combinations of CWs or FMs are used, but will de-

cay as convergence is achieved, leaving an accurate channel measurement. Proper

receiver convergence is most readily obtained when both the transmitter and re-

ceiver platforms are fixed and the multipath mechanisms remain relatively constant

for an extended period of time. In such situations CW or LFM combinations are

recomended to obtain a clutter-free scattering function estimate.

Unfortunately, it usually impossible to obtain the ideal measurement condi-
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tions described above. When obtaining open ocean measurements it is very difficult

to maintain stationary platforms for an extended period of time. In these cases, it

is preferable to use a Costas minimal hit array product waveform pair which pro-

vides better channel estimates on a single interrogation than do the CW or LFM

pairs. Furthermore, when the path lengths of the multipath echos are very close

to that of the direct path, signal range-delay resolution may be maintained with

sufficient signal bandwidth. This is not the case with the LFMs where the close

temporal proximity of two returns will result in virtual scatterers which are nearly

at the same Doppler as the true returns (refer to Figure 4.6).

Usually, channel measurements will consist of only the direct path and a

few multipaths. In cases of dense scattering where a large number of multipaths are

present (or for a large quantity of reflections in the monostatic case), any pair of

waveforms will have difficulties. In these instances, the CW and LFM combinations

will produce virtual scatterers which fill the range-Doppler plane. For hop code

pairs, initially self-clutter produced by the UPF sidelobes can mask the returns,

much as is the case in matched filter processing. However, it should be noted that if

stationarity is maintained, the UPF will converge to an accurate scattering function

estimate, while the matched filter will remain masked by self-clutter.



Chapter 6

Open Ocean Surface Scattering Function Estimation

A series of open ocean, high-frequency, surface scattering experiments were

conducted by the Applied Physics Laboratory, University of Washington (APL/UW)

during January-February 1992 off the coast of California. The tests involved the

use of the Marine Physical Laboratory's (MPL) Floating Instrumentation Platform

(FLIP) as a stable base for conducting forward and backward acoustic surface scat-

tering experiments. These measurements were performed using waveforms specified

by both APL/UW and the Applied Research Laboratory of the Pennsylvania State

University (ARL/PSU). Included in the ARL/PSU waveforms was a signal designed

for UP receiver measurement of forward surface scattering. This chapter presents

an overview of the UP experiment, discusses UP waveform selection criteria, and

presents results from both UP and matched filter (one channel) processing of the

data.

6.1 Experiment Overview

The forward scattering experiment involved the transmission of two time

concatenated hop-coded waveforms through a 1 km channel. The planned geometry

for this experiment is shown in Figure 6.1. A goal of this experiment was to obtain

an estimate of range and Doppler spread occuring in both the direct path and
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Figure 6.1: FLIP Forward Scattering Geometry

surface multipath as they pass through the channel. Transmission originated from

a spherical source suspended from a buoy at a depth of 60 meters, with reception

occurring on a small planar array mounted to the hull of the FLIP at a depth of

66 meters. Because other experiments were being conducted simultaneously, the

receive array was tilted up at an angle of 20 degrees above horizontal. An analysis

of the geometry using the method of images [27] predicts that the expected direct

path length between the source and the receiver is 1000.02 meters, and that the

surface bounce path length is 1007.9 meters. The angles of arrival for the direct

and surface paths would be 0.34 degrees and 7.18 degrees above the horizontal,

respectively. The vertical receive beam pattern for the array is shown in Figure 6.2.

A 20 degree upward tilt of the array would cause the direct and surface paths to
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arrive at 340.3 and 347.2 degrees w. r. t. the MRA of the array, yielding attenuations

approximately 23 dB and 9 dB down, respectively.

6.2 Waveform Selection

In Chapter 5, many factors were discussed for choosing apropriate UP wave-

forms, with scattering function density being a key consideration in this process.

In the FLIP forward scattering experiment, a relatively simple scattering process

was expected consisting of a direct path and a single surface bounce path. No

bottom reflections would be observed due to the depth of the ocean at the test site.

Recall that the expected path lengths of the two receptions were calculated to be

1000.02 m and 1007.9 m, implying a delay difference of only 5.25 msec. In addition,

good resolution in both range and Doppler were required to measure any subtle

time and frequency spreading caused by the channel. These requirements dictated

the use of waveforms with appreciable duration and bandwidth. Accordingly, the

duration and bandwidth of each waveform were chosen to be 200 msec and 450 Hz,

respectively, yielding a mainlobe resolution of 2.95 m in range (1.96 msec) and 4.43

Hz in Doppler shift.

Because the expected support of the scattering function was so small, it

was determined that a clear area 100 msec in range-delay and 100 Hz in Doppler

would be sufficient to eliminate cross-uncertainty effects. Two Costas codes of 27

subpulses each were chosen in an attempt to obtain a highly resolvent UPF. Both

codes were of the Golomb construction, with the second being a 90 degree rotation
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of the first. In particular, the first code was formed on GF(29) with a = 8 and

03 = 11 and the second on GF(29) with a = 14 and 13 = 26. The time-frequency

patterns for the codes are shown in Figure 6.3. Recall from Table 5.3 that these

codes form a minimal auto-hit array pair, making them good choices for minimizing

UPF sidelobes. The auto-ambiguity function of the first waveform and the LJPF of

the two codes are displayedi in Figures 6.4 (a) and (b), respectively.

6.3 Forward Scattering Function Estimation

Using the test configuration shown in Figure 6.1, a total of 24 acoustic

transmissions (or pings) of the UP waveform were recorded for subsequent process-

ing. Data was recorded for 600 msec during each cycle and there were 4 seconds

between transmissions.

6.3.1 Receiver Modifications

Figure 6.5 displays the received time series for Ping 1 and its corresponding

spectrum. Unfortunately, one can see by comparing the envelope of the first wave-

form to that of the second that the first waveform is considerably shorter. This

was caused by improper range gating of the received signal.

As shown in Figure 6.1, a positively buoyant power line connected the buoy

and the FLIP. This cable assured that the maximum distance between the source

and the receiver would be 1 km. However, ocean currents sometimes caused the

buoy and the FLIP to drift closer together than the prescribed 1 km. Data recording

at the receiver commenced 500 milliseconds after the beginning of transmit. This
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delay allowed the source and receiver to be as close as 750 meters apart and still

capture the entire waveform. Returning to the time series of Figure 6.5, we see that

the leading edge of the second hop code arrives at approximately 0.753 seconds after

transmit. This delay corresponds to a delay of 0.453 seconds for the first pulse,

yielding a range of 680 meters. Recalculation of the expected surface path length

using this range resulted ;n a path difference of 11.5 meters. Angles of incidence

on the receive array face for the direct and surface bounce paths were recalculated

as 0.5 degrees and 10.5 degrees, respectively.

Approximately the first eight subpulses of the first waveform were not

recorded due to improper gating. In order to form accurate replicas for matched

filtering in the first waveform's branch of the receiver, it was determined that only

subpulses 9-27 should be used. Although this shorter waveform results in a Doppler

resolution of 6.3 Hz, much of the resolution is regained when the product of the

matched filter outputs is taken in the UPF. These effects are illustrated with the

auto-ambiguity function of the truncated first channel waveform and the resulting

UPF in Figures 6.6 (a) and (b). It should also be noted that the "dead time"

appended to the front of the second waveform must also reflect the difference in

the first signal's length to assure proper range and Doppler alignment of the two

channels.
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6.3.2 Phase Plane Motion

Initially, each of the received pings was matched filtered using each wave-

form replica separately. Figure 6.7 shows the result of match filtering the modified

first waveform against the received time series of Ping 1 (Figure 6.5). The two dis-

tinct peaks are returns from the direct path and surface bounce path, which were

seen in all pings for each of the matched filter channels. However, the level and

position of the two peaks changed somewhat from ping to ping. Figure 6.8 shows

the range of the direct path return using the first waveform. Note the periodic

variation in the direct path length. Similar measurements of the Doppler centroid

for each ping exhibit the same pattern and period, but 90 degrees out of phase with

the range measurements.

The exact cause of the motion in the direct path transmission is not known,

but it is hypothesized that the motion may be due to motion of the FLIP, on which

the receiver was mounted. Figure 6.8 shows that the average excursion of the

motion is approximately 0.75 meters with a period of about 5 pings (or 20 seconds.)

Discussions with Peter Dahl of APL/UW revealed that swell would normally cause

the FLIP to pitch toward and away from the buoy with a period between 20 and

25 seconds [28]. Because the horizontal range between the source and the receiver

is much larger than their offset in depth, only motion in the horizontal direction

could produce the range variation shown in Figure 6.8.

The underlying goal of the experiment was to measure range and/or Doppler

spread in the direct path and surface bounce arrivals. The ensemble average formed
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by averaging the uncertainty product receiver outputs indicates range and Doppler

spread for both the direct path and the surface bounce path, as illustrated by com-

paring Figures 6.9 and 6.10. Figure 6.9 is a plot of the UPF showing contours at

-3, -6, and -10 dB down from the peak. Figure 6.10 shows the 24 ping average

of the UP receiver outputs. Range and Doppler spread are clearly evident when

Figure 6.10 is compared to the UPF of Figure 6.9. However, this spreading is due,

primarily, to motion of the receiver and/or transmitter between pings.

Range and Doppler spread associated with propagation scattering prop-

erties of the medium are of interest. To investigate the medium induced spread,

one must correct for the receiver's motion prior to averaging UP outputs. In the

absence of ground truth position data, this may be accomplished by aligning each

UP output so that the centroids of the direct path returns for all pings coincide.

We are also interested in spreading of the surface bounce path. In this case, each

UP output must be aligned so that the surface returns coincide. The aligning of

UP receiver outputs prior to averaging will be referred to as reregistration, and is

designed to correct for motion between the source and the receiver and Doppler

shift induced by the surface wave motion.

6.3.3 Uncertainty Product Receiver Processing

The 24 ping ensemble average of reregistered direct path returns is shown

in Figure 6.11. Only the contours down from the peak in the direct path return are

shown. The mean square spread of the direct path return was estimated for both
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range and Doppler using the N points, p,(ri, $j,), above the -10 dB contour as

N. h.---(n - (6.1)
M Wi

and

= _ p,)2W (6.2)
Fýx wi

where

Wi -= Pr(ri, 00) (6.3)

and the mean values are calculated as

P E•= rIwi (6.4)

and

/4 EL, OW, (6.5)
f -Wi

The mean square spreads were also calculated for the UPF of Figure 6.9. The rms

spread in the direct path arrival relative to the UPF resolution, aIe, was obtained

by taking the square root of the difference between the direct path and UPF mean

square measurements, i. e.

a,_ , 7,2- , ,..F (6.6)" -- a?-UPF
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and

'-r-dp GT2 Ut1UPF (6.7)

The relative rms range and Doppler spread of the direct path were found to be 0.23

meters and 0.52 Hz. , respectively. These values indicate that very little spread

occurred in the direct path, which agrees with a visual comparison of Figures 6.9

and 6.11.

The surface bounce path spread may also be obtained by reregistering UP

outputs relative to the surface path centroids. Figure 6.12 contains the 24 ping

ensemble average of the reregistered surface bounce path arrivals, with the same

contour levels as before. Clearly, a greater degree of spread is evident in the surface

bounce path than in the direct path return. The rms spread in the surface bounce

path relative to the UPF resolution was 1.97 meters in range and 9.98 Hz. in

Doppler. At the time these measurements were made, the wind speed was 3.5

m/s, which corresponds to a sea state condition 2 [29]. This sea state would yield a

rough surface, which could cause spreading in the surface reflections. The measured

frequency spread is consistent with that predicted by the APL/UW model for this

wind speed.

6.3.4 Receiver Performance

As shown in Chapter 4, the UP receiver is predicted to converge to its ex-

pected value at a rate of 1/vr'N. Therefore, the convergence seen over 24 pings will

not be as dramatic as that demonstrated in Chapter 4. However, if we compare the
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ensemble output of one of the matched filter receivers to that of the UP receiver, a

distinct difference in background level should be seen. To form a proper compar-

ison, matched filter outputs were reregistered relative to the direct path centroids

prior to averaging. Figures 6.13 (a),(b) display the direct path reregistered en-

semble outputs for the first waveform matched filter receiver and the UP receiver,

respectively, as greyscale contours 3,6,10, and 16 dB down from the peak. Note the

increased amount of self-clutter at the 10 and 16 dB levels for the matched filter in

Figure 6.13 (a). The peak-to-background level for both matched filter ensembles

of each channel and the UP ensemble are plotted as a function of the number of

ensembles taken, in Figure 6.14. It appears from Figure 6.14 that, after 24 realiza-

tions of the scattering process, the UP receiver is converging to its expected value

while the matched filter output has reached a steady state. The higher background

level in the first channel matched filter output was caused by the higher sidelobes

present in the truncated first waveform. Even though both receivers performed

well due to the very high signal-to-noise ratio of the data, a significant advantage

could be gained when using the UP receiver in situations where dense scattering

induced self-clutter would normally mask the scattering function in the matched

filter receiver.
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Chapter 7

Summary and Conclusions

This thesis has presented the uncertainty product receiver as a method of

estimating the structure of scattering phenomena in underwater communication

channels. These channels were modeled as linear, time-variant, space-variant, ran-

dom filters, and the time and frequency spreading of the channel was described in

terms of this model. Next, the matched filter receiver was introduced and shown

to be limited in the presencc f dense scattering by self-clutter caused by its auto-

ambiguity function pedestal.

The twin processor (or uncertainty product), as first proposed by Mehta

and Titlebaum [1, 2], was introduced as a receiver structure which overcomes some

of the limitations of the traditional matched filter receiver. Next, the uncertainty

product function (UPF) was defined and used for determining UP receiver res-

olution and self-clutter suppression ability. Several properties of the UPF were

developed, including the Fourier transform relationship between the UPF and the

CAF. It was also noted that the expected value of the receiver can be written as the

convolution of the scattering function with the UPF. This fact, and the property

that the UPF does not have the volume conservation constraints of the ambigu-

ity function, implies that the UP receiver is not subject to the limiting effects of

self-clutter present in the matched filter and thus, is capable of producing better
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estimates of the scattering process.

Although superior performance is expected with UP processing, several

problems arise when two waveforms are used to interrogate the channel. These

problems were illustrated using computer simulations and specifications for the

clear area were developed to ensure that each signal interrogates the same realiza-

tion of the scattering process, while minimizing the cross-ambiguity effects between

the waveforms. The term "virtual scattering" was introduced to indentify the in-

teraction of the two uncertainty functions in the presence of two or more point

scatterers. The rate of decay for the virtual scattering process was theoretically

predicted and demonstrated via computer simulation.

Proper waveform selection was shown to be an essential issue in obtaining

UP receiver performance. Waveform design techniques were reviewed and methods

of selecting maximally resolvent and minimally interfering waveforms were pre-

sented. The hit array was shown to be a useful tool for determining both the

UPF structure and the cross-ambiguity effects associated with hop code waveform

pairs. The density of the scattering function being interrogated was shown to be

the determining factor in waveform selection.

Finally, the results of using the UP receiver to measure open ocean channel

scattering were presented. Forward surface scattering data was taken in the Pacific

Ocean utilizing a dual hop code UP waveform to determine the performance of the

UP receiver. Results from a 24 ping average matched filter and uncertainty product

analysis of the data showed that the UP receiver is superior to the matched filter
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at reducing self-clutter.

An extension of this work could include a study of the effects that slowly

moving scattering processes have on the receiver. Additional work could involve

the study of non-full hop codes or other waveform constructions not presented in

this thesis. Also, methods of transmitting both waveforms simultaneously could

be studied in order to reduce the effects of scatterer motion during the ping cycle.

Finally, more in-water tests should be performed to obtain a larger data set for

evaluating UP receiver performance. Ideally, these tests would involve both bistatic

and monostatic geometries, where both the source and receiver are fixed or where

ground truth position data is available for reregistration in the phase plane.
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