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ABSTRACT

An under-actuated robot manipulator is one that has fewer

number of joint actuators than the number of degrees of

freedom of the manipulator. Such manipulators are studied

with the objective of developing "smarter" mechanical systems;

ones that can provide low-cost automation, and enable design

simplification. While in space these manipulators can afford

to have any kind of mechanical structure, on earth they need

to be strictly planar to be feasible. In this paper, we

develop a control scheme for a three link planar robot

manipulator with two actuators such that it can reach any

joint configuration from any other. We assume that the first

joint of the robot is passiv.-, and is provided with a brake

and a rotary dashpot. We show that our control is robust to

the variations in certain parameters and unmodelled dynamics

like stiction.
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I ITMMODUCTION

Robot manipulators with passive joints have been studied

by a few researchers for terrestrial and space applications

(1], (2], (3], [4]. In space, such manipulators can have any

kinematic configuration because of the absence of gravity but

on earth the concept of under-actuation can only be promoted

among planar kinematic configurations. The purpose of this

research is to look into the possibility of successfully using

under-actuated manipulators on earth. Arai and Tachi [1]

surmised that it would be difficult to control both the

passive and active joints simultaneously to reach the desired

position precisely while the passive joints are free. They

maintained that control is easier using a brakes-on period

while the actuated links are providing momentum to the

unactuated link followed by a brakes-off period which will

allow the unactuated joint to converge to its final position.

The mechanism would then apply brakes and allow the actuated

joints to converge to its final position. Simulations were

demonstrated using a two degree of freedom manipulator. We

will consider the point to point control of a three-link

planar manipulator with two actuators and a passive first

joint. We will provide a surge velocity in order to allow the

unactuated joint to converge to its desired position.
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Robot manipulators with passive joints are unconventional

but there is a great potential for using such systems. On

earth, under-actuated manipulators will enable design

simplification and provide low-cost automation. The most

significant part of the design of a robot manipulator lies in

the selection of its actuators, the design task will be

simplified to a great extent. Also, the actuators along with

the drive accounts for a significant part of the cost of a

robotic system. With fewer actuators, an under-actuated

manipulator will be cheaper than a conventional manipulator.

However, the power consumption of an under-actuated

manipulator may not be less than that of a completely actuated

system. The concept of under-actuation can also be applied to

a completely actuated system with actuator failures. This is

particularly useful for space applications where repair or

replacement may not be an easy task.

Jain and Rodriguez (2] developed the kinematics and the

dynamics of under-actuated manipulators. They used the

techniques from the spatial operator algebra to develop

expression for the generalized Jacobian, the mass matrix and

an efficient inverse dynamics algorithm. The spatial operator

is a robot modeling and analysis framework which is used to

provide a compact description of the robot model and to derive

efficient recursive algorithms for robotics computations.

This algorithm is a hybrid combinations of well known inverse

2



and forward dynamics algorithms for fully-actuated

manipulators.

In this paper, we consider the control problem of a three-

link planar under-actuated manipulator using the Lagrangian

approach to develop the equations of motion. We assume the

passive joint to be equipped with a brake that will be used

for tasks like force control, and for the switching of control

inputs. Additionally, the passive joint will have a rotary

dashpot for greater control, and a position sensor feedback.

Clearly, we are considering a completely different class of

mechanical systems where some of the actuators are replaced by

viscous dampers. These systems will be cheaper and will be

easier to design but will not necessarily provide solutions to

systems with actuator failures. The simulations of the three-

link planar under-actuated manipulator will be studied in the

following manner:

1. The damping at the unactuated joint is constant and
there are no parmetric uncertainties or unmodelled
dynamics.

2. The damping at the unactuated joint is not constant and
varies randomly with time.

3. The damping at the unactuated joint varies randomly in
time and there is also stiction at the first joint.

3



II DYNAMICS OF A PLANAR THREE-LINK UNDER-ACTUATED

MANIPULATOR

The equations of mction for the manipulator will be

derived considering the way in which torque cause motion. We

adopt the Lagrangian approach to solve this problem. The

Lagrangian dynamics approach is an energy based approach to

dynamics. In this section we develop the equation of motion

of the three link under actuated manipulator. The Lagrangian

is defined as

L=T-V (2.1)

where, T and V are the kinetic energy and potential energy of

the system. The kinetic energy is a function of both the

joint position and velocities. The potential energy for the

system is equal to zero due to the absence of gravity in

space. While considering Figure 1, we compute the position

vectors as

11 +11
r,=- cosO2i 1- sinO1j

12 12ros( 1 + 2 ) ]i+[l4sine1 +--sin(0 1 +02 )]j

4



r3= [1 1cose 1 +12cos (01+02) +-cos (01+02+03)]
2

+ [llsin81+sin (e1-+2 )•+sin (01 +e,+e3 ), ] j

(2.2)

\ /

.Actuated Joint

Horizontal Plane

.Acreated Joint

Unac:uated Joint
Rotary Dashpot

Figure 1: A three link planar under-actuated
manipulator is shown whose first joint is
passive. The passive joint has a brake
and a rotary dashpot.
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From Eq. (2.2) we compute the linear velocities of each link as

S2=- 1 sine8+1- cos018 1j

t2 - -1,sine181- -sin (01 +e2) (01+02)11
2

÷[11cos0 1 81 _Lcos ( 1 +• 2 ) (÷1+62)]j

t3=- [lsin0e +l÷12sin (el0e2) (61+•2) +- sin (el• 2+e3) (0,102+e3)1 i2

+ [11cos018 1 +1 2cos (e01+0 2) (e1+02) + _3COS (01+02+03) (61 +6 2+63)1

(2.3)

from which we can compute the total kinetic energy. The total

kinetic energy is equal to

2 1. m ±2+lm2 2+2m3 2+lA6+I (61+0 2) 2 3(1+.2+63

(2.4)

where I is defined as the inertia. The expanded version of

the kinetic energy is

_2 1I2 2e2+2 +K. E. =1• m1 1-4- _L (0 24 11 0+2cs
2 4 2 214 2 212

1-2 [1 2 (e1e•)•+ (0 1 +e2 + 3 ) 2+21 112 61 (61+0 2 ) cos82
24
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+1113 810(8 1+82 +83) cos (02 +03) +1213 (81+62) (0 1 +82+6
3 ) cos0 3

+11182++112 (83+02 ) 2 +_ J (81+62+83 )2

(2.5)

The Kinetic energy in matrix form is

,'AllA12A1311*

K.E2=-(010203)' A21A22A23 1121
eA31A32A33)163J

(2.6)

where,

_L2 12

+ml1113 cos (02+03) +m312 1 3cos+M3 + 1 +I 2+I 3
4 1 42 4 2m112 o0

+im3 11 13 cos (92+03) + m3 12 13cose3 + I1 2 +13
13 =iL 1 zn~m11cose2+31 M 3+312O0+

A13 =m3 11-- 3 + ()m3 21 1 3cos (+ 3 ) 2m3213o3+I3

A21 ý A12
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A22 =M2 2 +M43122 +M3 -L3M 3 12 13cos03 +12 +13

A 2 3 =M3 L3.. +1 m 3 1 2 1 3 cos 3 +I 3

A 3 3 =m3-L +13

A31 =A13

A32 =A23

(2.7)

From Eq.(2.6), the Lagrangian is computed as

e e2 e238)
L=0.5(All 1+2A 12e 182+2A13e 163+A22 2+2A23e 2e 3+A33 3

(2.8)

The equation of motion for our three degree of freedom

manipulator can be written as

_d (aL/ai) -aL/aO=Tj, (1=1-3)

dt

(2.9)

where we assume the first joint of our manipulator of be

passive. The second term of Eq. (2.9), .3L/ael, equals zero

because L is not a function of eI . The third term of

Eq. (2.9), r1 , is also equal to zero since no torque is applied

8



applied at the first joint (in the case where there are no

external generalized forces corresponding to e1).

9



III CONTROL OF AN UNDER-ACTUATED MANIPULATOR IN JOINT SPACE

A. DYNAMICS OF A PLANAR MANIPULATOR W1OSE FIRST LINK IS NOT

ACTUATED

In this section we consider the dynamics of a three-link

planar under-actuated robot manipulator with revolute joints.

The manipulator is assumed to be planar primarily because we

would like to investigate the possibility of using such

manipulators on earth. In the past under-actuated space

manipulators have been considered [3]. We consider the

manipulator to have three links because a minimum of three

degrees of freedom is required to perform tasks with

dexterity. Our current research is aimed at studying the

feasibility of a three-link manipulator where the first joint

of the manipulator does not have an actuator. The passive

joint is however provided with a brake and a rotary dashpot.

The brake is essential if the manipulator has to perform tasks

like force control and for switching of control inputs. The

dashpot provides us with improved control over the system.

The passive joint is also equipped with a position sensor.

The joints of the robotic system are designated as e1, e2,

and e 3 where, e0 is the only unactuated joint. The choice of

the location of the unactuated joint is motivated by two

factors: (a) The first motor of the robot is design to be the

10



most powerful actuator and its elimination will save the

maximum cost. (b) The first joint of the robot is a cyclic

coordinate, that allows us to partially integrate the

corresponding differential equation when there are no

generalized forces acting at the first joint. If the

Lagrangian of the system is L, the equation of motion for the

first joint can be written as

d (al),( =0

"dt

(3.1)

When there are no external generalized forces acting at the

first joint, Equation (3.1) can be simplified to the form

A11e1+A1202+A1383=k

(3.2)

where k is a constant that depends upon the initial

conditions. A,,, A. 2 , and A13 elements of the mass matrix of

the system were found from Eq.(2.7).

We now include passive damping at the unactuated joint of

the robot using a rotary dashpot. If the damping constant of

the rotary dashpot is assumed to be C, then Eq(3.2) would be

modified to the form

A1181+A1202+A1363+C01=K

(3.3)

The above equation acts as a scleronomic constraint on the

motion of the system. From this equation it is clear that if

i1



the constant K is zero, then the first joint behaves as a

first order system whenever the actuated joints e 2 and 03 have

zero velocity. This means that if the actuated joints stop,

the first joint exponentially converges to the configuration

01=0 with a convergence rate of C/A,1 . We note here that A1 1

is a constant whenever the actuated joints are held fixed. If

the initial conditions of the system are such that K is equal

to Celd then the first joint will exponentially converge to

the configuration eld after the actuated joints have stopped

moving.

B. CONTROLLING ALL TNZ JOINTO OF TIE MANIPULATOR

In this section we develop a control law that will enable

us to converge all the joints of the manipulator from an

initial configuration to its desired configuration. In this

section we assume that there are no parametric uncertainties

and the dynamics of the system given by Eq.(3.3) is an

accurate model.

From our discussion in the previous section, we have seen

that if the constant K is chosen appropriately, the first

joint can be made to exponentially converge to any desired

configuration by simply setting the actuated joints to zero

velocity. Therefore, if all the joints of the manipulator

need to be converged, we can converge the actuated joints

first and then hold them fixed at their desired configuration.

The unactuated joint will then converge to its desired

12



configuration eld. This raises two questions: (a) How can we

choose K to converge the actuated joint to its desired

configuration ? (b) What will be the time constant of the

exponential convergence of the first joint once the actuated

joints stop moving ?

We answer the second question first. The term An1

represents the total inertia of the planar manipulator about

the first joint. The magnitude of the damping constant C will

be small as compared to the magnitude of All for all practical

purposes. Therefore, the time constant for the exponential

convergence of the first joint, given by A2 1 /C, will be quite

large. Due to the large value of the time constant, the

approach discussed above for the convergence of all the joints

of the manipulator becomes impractical.

Before we modify our approach for the convergence of all

the joints of the manipulator, we answer the question

pertaining to the correct choice of the constant K. Let us

suppose that the initial configuration of the unactuated joint

is eli, and let us assume that all the joints of the

manipulator have zero velocity at the initial point of time.

Then from Eq.(3.4) the value of the constant K is going to be

COli. For setting up the initial conditions such that the

constant K is equal to Ce1 d, we can adopt the following

approach. We apply the brake at the unactuated joint to keep

its configuration fixed at eli" We also use the actuator at

the third joint to keep the configuration of the third joint

13



fixed. We can actuate the second joint of the manipulator to

achieve a velocity of e 2 such that

A1202=C(O6d-e 1i)

(3.4)

This velocity will not be a constant velocity because A12 is

a function of e2 itself. Once Eq.(3.5) is satisfied, we will

free the unactuated joint. This will now set the value of the

constant in Eq. (3.3) as K=Celd, and we will have the dynamical

equation

A18 ,+A1202 +A13• 3 +c (01 -e, ) =0

(3.5)

The initial velocity of one of the actuated joints that

provide us with the necessary initial condition will be termed

as the "surge" velocity.

To converge all the joins of the manipulator to their

desired configuration with a satisfactory rate of convergence,

we define the Lyapunov function VI in the following way

V1=o. (P5A÷+P2AO&e2÷3 3AO•) A.1A(id-e.O) , i=1, 2,3

(3.6)

where, P11 02, P3 are positive constants, and eid and Gi are

the desired and the current configurations of the i-th joint

of the manipulator. The derivative of the Lyapunov function

can be computed using Eq.(3.3) as

(3.7)

14



v1=-02 (P 2 •Ae-l. A12A &el) -o3 (P3AeO-p A1 A 1 ), -Op1 -S ,1
A11  1 All All

where A1 1 is not equal to zero because the mass matrix is

positive definite. In the above equation, if we choose the

joint velocities of the actuated joints as our inputs, then

the choice

02=(P 2AO2-P•-Ae)A ,83=(P3'3 A 01A3&e)

(3.8)

can be shown to result in the globally asymptotically stable

control that will drive the system to its desired

configuration. The joint torques T2 and T3 that produce the

desired joint velocities 0 2 and 9 3 given in Eq. (3.8) can be

obtained by simply performing the invetse dynamics

computation, or better yet by redefining the Lyapunov function

in the following way

V2 = V +H

(3.9)

where H is the Hamiltonian of the system and is equal to the

total kinetic energy of the under-actuated manipulator system.

By knowing that

1 22 2

15



the derivative of V2 can be shown to be negative definite when

the control inputs T2 and T3 are chosen as

T 2= ( - 282 + 2A 2 P- 'A8 1 ) , 3= (-63 3 +03A 3-P 1 --AA

1All All

(3.10)

where a2 and a3 are some arbitrary constants.

It is important to make one comment at this point.

Equations (3.8) and (3.10) can both be used to plan the motion

of the system. Equation (3.8) plans the motion at a kinematic

level and Eq.(3.10) plans the motion at the dynamic level.

While Eq.(3.10) is more complete in a sense, it neglects the

presence of friction at the actuated joints. On the other

hand, Eq.(3.8) can be used to provide the actuators with a

reference trajectory. The actuators can then accurately track

these trajectories using a PID control scheme. Then friction

can be simply considered as external disturbances to the

system.

C. PARAMETRIC UNCERTAINTIES AND UNMODELLED DYNAMICS

In this section we take into consideration the fact that

the unactuated joint will have stiction and the damping

parameter C of the rotary dashpot will not be a constant. The

unactuated joint will use roller bearings and therefore we

assume that the magnitude of stiction, which is unknown, is

quite low. Furthermore, we assume that the nominal value of

16



the damping parameter is C and the true damping in the system

is of the form

C(t) =C•.(t)

(3.11)

where we have assumed the damping in the system to be an

implicit function of time. In reality the damping parameter

will be an explicit function of the unactuated joint position,

the temperature of the silicone fluid in the dashpot, etc.

We begin by stating that the generalized momentum

corresponding to the first joint of the system is defined as

P, (aL/8I)=A11 61 +A1 20 2 +A1303

(3.12)

and is a constant of the motion in the absence of external

generalized forces. In our case there is stiction and viscous

damping in the system that requires us to modify Eq.(3.1) of

the form

dp1 -=_C(t) 1-fssgn(81 )
dt

(3.13)

where f. is the magnitude of the stiction that opposes

torque and need not be assumed constant. From the above

equation, we can write

dp1=-C(t) d@1-fssgn (01) dt

(3.14)

17



where the left hand side of Eq.(3.14) represents a change in

the generalized momentum p,, and the right hand side

represents the impulse of the non-conservative friction

forces. We note here that dp1 can be easily computed from the

measured values of p1 in successive sampling intervals. The

expression for P, is given in Eq. (3.12) and can be computed at

any instant from the measured values of the joint angles of

the actuated joints and all the joint velocities.

We return to Eq.(3.13) and rewrite the system dynamics as

d (A6 el+Al2o2+Al363)÷O0 1 =-e(t)O,-fsgn(8I)
dt

(3.15)

which can be simplified to

(A116 1 +A120 2 +A138 3 +cu1 ) t-(AI1 8I+AZ 2 +A•1A 3 +C) to=) •fd 1 +dpI

(3.16)

by adopting the same method as in the last section, we provide

the second joint with a "surge" velocity at the initial point

of time such that Eq.(3.4) is satisfied while the first and

the third joint are held fixed. Then we obtain from Eq. (3.16)

A11O 1+A1282 +A13 6 3 -AO 1 =f' ta 1+dp1

(3.17)

We redefine the Lyapunov function V2 in Eq.(3.9) as V 3 ,

where we now treat e2d as a variable. We allow e2d to vary in

18



order to cancel the effect of any uncertainties and unmodelled

dynamics that are present in the system. The derivative of

the Lyapunov function is computed as

•3=2 (T2-P2&(2+Pl ý &el)+e3 (- 3-P 3AO3 +P 1 ±-A 1 )

+ [(3.18)

1 A j0 (edo1+dpl)

Our choice of the control torques T2 and T3 as in Eq.(3.10)

along with the choice of e 2 d as

2d (p3A 1/P A) 2A, 11 ) f t (eci 1 +dpl)

(3.19)

results in the derivative of V3 in Eq.(3.18) as negative

definite and leads to the convergence of the unactuated joint

and third joint to their desired values. Additionally, the

second joint is converged to its desired configuration which

is different from the initially specified value. The desired

configuration of the second joint was not a constant but was

made to follow a trajectory to compensate for the unmodelled

friction forces. If the magnitude of the unmodelled stiction

force and the uncertainty in the damping factor are small, the

second joint will be converged to a value e2 d at (t=tf) which

will be quite close to the initial desired value of e 2 , i.e.

02d at (t=0).Therefore after the convergence of the Lyapunov

function, the brake can be applied at the first joint and the
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third joint can be held fixed at its desired configuration

while the second joint is takes from its configuration e2d at

(t-tf) to e 2d at (t=O).
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IV RESULTS AND DISCUSSION

A. CONTROLLING OF JOINTS IN THE ABSENCE OF UNCERTAINTIES

We assume the three-link planar under-actuated

manipulator, as shown in Fig.l, to have the following

kinematic and dynamic parameters in S.I. units

Kinematic and Dynamic parameters

Mass Inertia Length

link-i 2.06 0.042917 11=0.5

link-2 2.06 0.042917 12=0.5

link-3 2.06 0.042917 13=0.5

All three links of the manipulator were assume to have a

uniform mass distribution. In the first simulation, the

initial and desired configuration of the system were assumed

to be

(01, 02, 03) (0 .0, 45. 0,0. 0)

(01, 02,03)E(20.0,0.0,45.0)

(4.1)

and in the second simulation, the initial and the desired

configurations were assumed to be

21



(O1,e2,e3) N(10.0,45.0,5.0)

(81,e2., 3) m(22.5,15.0, -25.0)

(4.2)

where the units were in degrees.

In both cases the damping constant was assumed to be 0.2

8.1. units and the criterion for the convergence of the

lyapunov function was set at 5.0x10- 5 . The evolution of the

joint variables for the two simulations are shown in Figs.(2)

and Fig. (3) respectively. In the first simulation convergence

is achieved in only 11.5 seconds whereas the time taken for

the second simulation is 12.0 seconds. In both cases, we see

that the transition from initial position to final position is

a smooth evolution. This is due to the absence of

uncertainties in the system. We also notice that link 2

provides a surge velocity prior to the release of links 1 and

3. This surge velocity provides link 1 with the initial

momentum needed to proceed in the proper direction for

convergence. The surge velocity coupled with the motion of

link two provides the control needed to bring link 1 to its

final destination.
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B. CONTROLLING OF JOINTS WITS UNCZRTAINTINS

The simulations are for the case in which parametric

uncertainties and unmodelled dynamics exist. In this section,

we shorten links 2 and 3 in order to further test the system.

Smaller links will now be expected to control a larger link in

addition to overcoming uncertainties that may be in the

system. We assume the three link planar under-actuated

manipulator to have the following kinematic and dynamic

parameter in S.I. units.

Kinematic and Dynamic parameters

Mass Inertia length

link-1 2.06 0.043878 11=0.5

link-2 1.86 0.031881 12=0.45

link-3 1.65 0.022495 13=0.4

1. Variation of damping without stiction

As a next step, we simulate the case given by Eq. (4.1)

but included timewise variation of damping at the unactuated

joint. The variation of damping of the form

e(t)=.O2sint+.O15cost-.O25sin4t

(4.3)

was imposed on the system. This is a slowly varying wave

which varies within 25% of the nominal value, 0.2. We also
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simulated the system for the case given by Eq. (4.1) with a

damping whose variation is more abrupt at the unactuated

joint. This variation of damping is of the form

e(t) =O.1C(sin5t+0.33sin15t)

(4.4)

The two terms on the right hand side of Eq. (4.4) are the first

two terms of the fourier expansion of a square wave with a

time period of 0.2 seconds and an amplitude equal to 10% of

the magnitude of the nominal value of damping. The variation

of damping of Eq.(4.3) and Eq.(4.4) is shown in Fig. (4a) and

Fig. (4b).

1).:25.

0.24-

0.23-

0.22-

0.21-

B 0.2-

0.19-

0.18-

0.17-

0.16-

0.15 0 2 3 4 5 6 7 8 9 10

time(seconds)
Figure 4a: Damping of the form descr-led by Eq.(4.3)
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Figure 4b: Damping of the form described by Eq.(4.4)

The trajectory of the joint variables and e2d under the

damping influence given by Eq.(4.3) is shown in Figs.(5a-5b).

The time required for the simulation was only 8.3 seconds.

All joints converged to its desired positions. The

transitions of the links to their final positions were

relatively smooth. The trajectories of the joint variables

and e 2d under the damping influence described by Eq.(4.4) are

plotted in Figs. (6a-6b). The time required for the simulation

was 11.3 seconds. The trajectory of the links are rather

smooth. A shift from a negative slope to a positive slope is

experienced by e 2 d. This shift is needed in order to bring

link 1 to its final position. After eI and G3 converge, a

brake is applied and e2 is allowed to exponentially converge

to its initial desired position.
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2. Variation of damping with stiction

a. Variation of damping given by Eq.(4.3)

As a next step, we simulate the same two cases given

by Eq.(4.1) and Eq.(4.2) with the timewise variation in the

coefficient of damping given by Eq.(4.3). We also include a

stiction value of 0.001 Newton-meters. The trajectory of the

joint variables and e 2 d is given in Figs. (7a-7b) for the case

given by Eq.(4.1). The time for convergence was 15.2 seconds.

The transition from the initial to final positions were smooth

and uneventful, however, abrupt shifts was needed by e2d

towards the end of the simulation in order for link 1 to

converge. The trajectories for the second case are given in

Figs.(8a-8b). The time for convergence was 24.5 seconds. It

is evident that the trajectory given by Eq.(4.2) is more

difficult to achieve than the one given by Eq. (4.1). There is

more interaction between link 2 and link 1. It appears that

92d went to 15 degrees but after time it became evident that

in order for link 1 to converge to its desired position 82

must decline. Sudden shifts of link 2 was needed to control

link 1. Link 2 went below 10 degrees before it finally was

allowed to exponentially converge at its desired position.
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b. Variation of damping given by Eq.(4.4)

In this section we simulate the same two cases given

by Eqs. (4.1) and (4.2). The ratio of length of actuated links

to the unactuated link was increased in order for the actuated

links to have an increased influence. The timewise variation

of damping given by Eq.(4.4) and an increased stiction value

of 0.005 is applied to the unactuated joint. For the first

case link 1 is decreased to 0.3 while link 2 and link 3 are

increased to 0.8. The trajectories are given in Figs. (9a-9b).

The time for convergence was 35.3 seconds. Small variations

of link 2 at the end of the simulation was needed to bring

link 1 to its desired position. A satisfactory simulation,

however, the time for convergence was excessive. For the

second case link 2 and link 3 was decreased to 0.6. The

trajectories are given in Figs.(lOa-lOb). The time for

convergence was 42.8 seconds. In both cases we find that the

trajectory is not as abrupt as the results from the previous

section, even though, the damping is more abrupt and the

stiction is increased by a factor of five. This is due to the

increase in length of the actuated links which gives them more

control of the unactuated link. An attempt to simulate

Eqs(4.1) and (4.2) under the damping given by Eq.(4.4) without

changing the lengths of the links provided unsatisfactory

results.
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V CONCLUSIONS AND RRCOMBMEDATIONS

Here we summarize our findings and we recommend future

research directions as follows:

-From the simulation results it is quite clear that even in

the presence of unmodelled dynamics and parametric

uncertainties, it is possible to converge all the joints of

the manipulator from their initial configuration to their

desired configuration.

-It is apparent that the value of stiction can impair the

ability of link 1 to converge to its desired value.

-It is obvious that increasing the ratio of length of the

actuated links to link 1 will offset the stiction that is

experienced by link 1.

-It is recommended that research be done with the increase in

the mass ratio of the actuated links to link 1.

-It is recommended that a prototype of a three-link planar

under-actuated manipulator be constructed so that a more

accurate model can be simulated.

-It is recommended that further research be conducted with

joint 2 or joint 3 unactuated and compared the model examined

in this paper.

-In some of the simulations, e1 overshot its intended target

prior to settling on e1d. It is recommended that a

simulation be performed that will stop link 1 instead of
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allowing it to pass its target. A comparison of this model

with the results presented in this paper should performed.
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