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Abstract

We consider a standard ARMA process of the form ®(B)X; = 6(B)Z,, where the
eeee innovations Z; belong to the domain of attraction of a stable law, so that neither
the Z; nor the X, have a finite variance. Qur aim is to estimate the coefficients of
® and ©. Since maximum likelihood estimation is not a viable possibility (due to
the unknown form of the marginal density of the innovation sequence) we adopt the
so-called “Whittle estimator”, based on the sample periodogram of the X sequence.
Despite the fact that the periodogram does not, @ priori, seem like a logical object
to study in this non-L£? situation, we show that our estimators are consistent, obtain
their asymptotic distributions, and show that they converge to the true values faster

than in the usual £2? case.
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1. Introduction

This paper considers two closely related, but distinct, subjects. We commence
with the discrete moving average process

o0
Xe= Y ¥iZi;, teZ, (1.1)
j==—00

where (Z;),¢ z is a noise sequence of iid random variables (r.v.’s) having not nec-
essarily a finite variance. Two preceding papers by Kliippelberg and Mikosch
(1991), (1992), studied the asymptotic behaviour of periodogram-type estima-
tors for the process (X:),., under the condition that Z, is in the domain of
normal attraction of an a-stable law for some a € (0,2]. In Klippelberg and
Mikosch (1992) it was shown that the normalized periodogram

n
Z Xq e-t’M
t=1
converges in distribution to

WP o?(A) +82())
V2 o

2 n
Soxt, -x<agr,

t=1

Lx(\) =

. . oo
where $()) = Y72 _, ¥ ¢™** is the transfer function, ¥? = 3 ¢, and the

j=-o00

vector (@()),8(),7?) has a mixed stable distribution such that (a(A), 5(A))
are jointly o-stable and y? is positive a/2-stable. Furthermore, the vector
of different periodogram ordinates (f,.,x (A;)) - converges weakly, and
the components of the limit vector have exponentially fast decreasing tails and
are uncorrelated. Smoothed versions of the normalized periodogram were also
studied, and their weak convergence to the normalized power transfer function
J¥(A)2/¢? established.

In this paper we weaken the above assumptions on Z; considerably: we only

7

require that E|Z;|° < oo for some d > 0 and that (2 Z,’) satisfies some
t=1 n>1

tightness condition. Under such general conditions one cannot expect to de-

rive distributional limits for 7,, x(2); but we prove weak convergence for the
smoothed normalized periodogram to |3())|?/ ¥? for a large class of smooth-
ing filters (Section 3). In Section 4 we obtain under the same mild condi-

»
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tions on the noise variables weak convergence of the sample autocorrelations
n n oo
Ext+hxt Z:I.X?to E ¢j+,,¢,-/¢’forhe.'\/.
t=1 t= j=—00
In Section 5 we turn to the second and main subject of this paper: parameter
estimation for an ARMA(p, ¢)-process of the form

X:—(P]X¢_1-...—(p,,x:_,=Zg+01Zg-1+...+a'Zg_’

for fixed, known values of p and q. Adapting an idea of Whittle (1953) we con-
struct a weakly consistent estimator §, of the parameter vector 8 = (¢1,...,¢p,
8,... _9,)7'. Moreover, if Z; belongs to the domain of normal attraction of an
a-stable law, a € (0,2), the rate of convergence is (n/log n)” ?. The proofs of
the results of Sections 3-5 are given in Sections 6-9. In the concluding Section 10
we discuss how to use our estimator in practice, and give the results of a small
simulation study which indicate that the estimator seems to perform, in prac-
tice, as good as the well known MLE estimators in the corresponding model
with Gaussian innovations.

2. Assumptions and notation

We consider the moving average process (X;),. ; defined by (1.1). To formulate
the conditions on the noise (Z;),., we introduce the following functions for
z>0

G(z) P(z}>7z)
K(z) = z"2EZ}1(22<12)

Q(z) = G@=)+K(z)=E [1 A(z™? Zl’)z] .
Since Q is strictly decreasing and continuous on (0,00) the identity
Q(a,’,):%, neN, (2.1)

defines a sequence of positive numbers a,, such that a, 1 00 as n — co. Fur-
thermore, define
n
7,3,,:::,7’223, neN. (2:2)

=1
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For the moving average process as in (1.1) we introduce the following assump-
tions: There exists some d > 0 such that
(A1) E|Z:i|* < oo;

o0

(A2) Y lil Wil <o for 6=1Ad;
j=-~o0
(A3) n/fa?®* =0, n— oo, for §=1Ad;

(A4) lim limsup P(y2 z <z) =0.
20 p.co '

Remarks. 1) (A1) and (A2) imply absolute a.s. convergence of the series (1.1)
for every t € Z. This is a consequence of the three-series theorem.

2) (A2) is obviously satisfied for every ARMA(p, q)-process. In this case the y;
decrease exponentially.

3) The conditions E Z? < oo, (A3) and (A4) cannot hold together, since (A3)
and the SLLN imply that 93 ; *3 0 contradicting (A4).

4) (A4) is a stochastic compactness condition on 7,’,‘ z- A necessary and sufficient
condition for 73, z to be stochastically compact is

liminf K(z)/G(z) > 0.

{e.g. Maller (1981)]). Furthermore, if 7,":,2 is stochastically compact, then there
exists some constant ¢ > 0 such that foralln e N

P(riz<z)<ecz, 220,

[Griffin (1983)] which implies (A4).

A natural class of noise variables to satisfy conditions (A1), (A3) and (A4)
is the domain of attraction of an a-stable random variable, which we denote
by DA(a). For the definition and properties of a-stable r.v.’s, their domain of
attraction and regularly and slowly varying functions see e.g. Feller (1971) or
Bingham, Goldie and Teugels (1987).

Now if Z; € DA(a) for some a € (0,2), then Z} € DA(a/2) and

Jim G(z)/K(z) = (4 - a)/a.

Then G is a regularly varying function and the norming constants in (2.2) can
be chosen as
a2 =G (n7!) =inf {z;G(z) < n~'};
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i.. G™ is the generalized inverse of G. This implies that a2 = n?*L(n) where L
is a slowly varying function and 43 ; 2, 42 for some positive a/2-stable r.v. 72.
Furthermore, £ |2, I < oo for d < a. In the following lemma we summarize
these relations.

Lemma 2.1. Suppose Z, € DA(a) for some a € (0,2), then (Al), (A3} and
(A4) hold for some d > 0 and a2 = n?/*L(n) where L is a slowly varying func-
tivn. O

The following notation will be used throughout the paper: For any sequence of
r.v.’s (Ar),cz and a sequence of positive constants (a,), ¢, We introduce

a;’z":Af,

t=1

n
ZA‘ e-iM
=1

n 1/2
A = a7t At/'Yn,A:At/(zAZ) )

=1

Zn: ;‘ e—tAt

t=1

2
7n,A
2

Ia() = a7 v A€(-m,7],

2

1}

In.4QA) L)/ Y a= A€ (—x 7).

3. Consistency of the smoothed normalized pe-
riodogram

Klippelberg and Mikosch (1991) considered Z, in the domain of normal attrac-
tion of an a-stable r.v. (Z; € DN A(a)), a € (0,2); this means that Z; € DA(a)
with norming constants a2 = n?/. In that case both the periodogram I, x(})
and the normalized periodogram fn, x(A) converge in distribution for every
A € (—x, ). A common technique to obtain consistency is to apply some smooth-
ing operation, and for T..,x(l) this provides a consistent estimator for the nor-
malized power transfer function |¢())|?/¢3.
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Now we shall show consistency of the smoothed normalized periodogram
Tax(A) = Y Walk) Inx (W)
IH<m

under less restrictive conditions. Here W, (k) are nonnegative weights at points
A = A+ k/n, {k| < m, n € N, satisfying

m = my,-—00, my/n—0, n—oo0, (3.1a)

Walk) = Wa(-k), Jk|<m, (3.1b)

S owak) = 1, (3.1¢)
Ik <m

Y Wik) = o(l), n—oo. (3.1d)
Ikj<m

If \e = A+ k/n ¢ (—x,%)] the term I, x (A:) in Ty x(A) will be evaluated by
defining I, x to have period 2x. The same convention will be used to define
'ﬁ(A), A ¢ (_171]'

Theorem 3.1. Suppose (Xi),¢z satisfies (A1)-(A4) and (3.1) holds. Then

Tax()) = WP/, n—o. O

4. Consistency of the sample autocorrelation
function

For h € Z define

Fax(B) = vn.x(h)/73 x
Fh) = Ah)/4?
where
n={A|
Tax(h) = a3? 37 Xi X
t=1
(k) = Z ¥ Yi4in) -

je-—0
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Obviously, if E 2} < 0o, 34, x(h) is a consistent estimator of the autocorrelation
function 5(h) of (Xi)cz- One of the results of Davis and Resnick (1986) is the
following: For 2, € DN A(a), a € (0,2), Z; symmetric

((n/1087)"/® Gu x () ~ F(A))) 4

A=1,...m

- . 41
(Z (50 + B) = 7 - b) - 55G) 5() ;’:g) ,
j=1 A=l m

where Y,Y1,Y3, ... are independent r.v.’s, Y is positive a/2-stable and (Y; )’. N
are iid standard a-stable. (4.1) implies that ¥, x(h) is weakly consistent with
limit 7(h) and the rate of convergence is faster than in the finite variance case.
Under our more general conditions (A1)-(A4) a precise result as (4.1) cannot
be expected but we prove weak consistency.

Proposition 4.1. Suppose (X;),cz satisfies (A1)-(A4), then
Fax(h) 5 F(h), hEN, n—oo. D

As shown in the appendix by replacing conditions (A3) and (A4) by a slightly
more restrictive condition it is possible to obtain a.s. convergence of 7, x(h) to
5(h) along some known subsequence. In particular, this condition is satisfied
for Z, € DA(a), a €(0,2). Moreover, we give an example to show that a.s.
convergence need not hold in general under (A1)-(A4).

5. Parameter estimation for ARMA(p,q)

processes

We consider a causal invertible ARMA(p, g) process (Xi),.; satisfying for ev-
ery t the ARMA equations

X —¢1 Xpey — ...—¢,X¢-, =Z,+0‘Z,_l+...+0,Z,-'
for iid (Z;),¢ z. Denote

p(z) = l-prz~—...—pp2®
0(z) 146;z4+...40,2'
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and

B= (1, -1¢p, 01,...,0,) .
Then in the infinite moving average representaion of our process we have that
Y(2) = p(e=)/6(e=").

We introduce the parameter set
C = {ﬂ € RPY 0, #0,8, # 0,9(z) and 8(z) have no common zeros,
e(2)0(z) #0 for |z| < 1} .

Denote by g(A, ) the power transfer function corresponding to § € C; i.e.
2

(=) 2
A =l——m—m| = A,
o0 = | ZEs| = vl
and define
2 " hx(}) ] 27 o Lnx()y)
= =X 2=y XA
M Tow) =3 2]: 90253 P)
where the sum is taken over all Fourier frequencies

2xj
Aj = "€ (—=, ).
Clearly, as n — oo, the sum and the integral should converge to the same limit.
Suppose Gy € C is the true, but unknown parameter vector. Then two natural
estimators of B are given by

Bn = argmin ¢2(8),  fBa = argmin 53(8).
secC peC

Given the assumption that o3(8) ~ &2(f), it seems reasonable to assume,
as is in fact the case, that B, ~ Bn, and that therefore the two estimators are
asymptotically equivalent. It is clear that, in practice, B, is the only applicable
estimator, since the integral defining 03(8) will always have to be evaluated
by an approximating sum. Nevertheless, throughout this paper we shall give
proofs of convergence for the estimator based on ¢2(8), since here the notation
is much lighter.

The choice of these estimators is motivated by the fact that the function

¥ g(l\,ﬂo)
L. op 2
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has its absolute minimum at # = fo in C. {cf. Brockwell and Davis (1991),
Proposition 10.8.1). Moreover, by Theorem 3.1., T,.,x(/\) can be applied to
estimate g (), 89)/ ¥? (80), where ¥? (B,) is the quantity ¥? corresponding to ;.

For Gaussian (X1),¢ ; the estimator B, is closely related to least squares and
maximum likelihood estimators and it is a standard estimator for ARMA pro-
cesses with finite variance. The idea goes back to Whittle (1953), see also Dzha-
paridze (1986), Fox and Taqqu (1986) and Dahlhaus (1989). It is well-known
that in the classical case 5, is consistent and asymptotically normal [cf. Brock-
well and Davis (1991)]. We show that 8, is also for ARMA processes with
infinite variance a weakly consistent estimator for the true parameter vector Sq.

Theorem 5.1. Suppose (X¢),cz is a causal invertible ARMA(p,q) process and
conditions (A1)-(A4) hold. Then

Ba £ Bo and a2 (B,) £ 2y~ (By), n—oo.
Furthermore, the same limit relationships hold also for f, and 2. O

As shown in the Appendix, it is possible to obtain a.s. convergence along
some specified subsequence under more restrictive conditions which hold e.g.
for Z, € DA(a), a € (0,2).

For ARMA(p,q) processes with finite variance g, is asymptotically normal
with rate of convergence of order n=Y/2. An analogous result gives in our case

Y ie. the convergence is considerably

a rate of convergence of order (n/logn)”
faster (since a < 2).
To obtain a representation of the limit vector we restrict ourselves to sym-

metric Z; € DN A(a) for a € (0,2) such that

n
nV/eyz, 4 v (5.1)
t=1
where Y is a-stable.
Recall that a random variable Y is said to have a stable distribution (Y £
Sao(c, B, p)) if there are parameters 0 < a <2, ¢ >0, -1 < <1, and p real
such that its characteristic function has the form:

By = | @ {-0°ll" (1 - iB(signb)tan 52) +ipf}  if a1,
()= exp{~olti (1 + Z(sign®)lnf6]) +iu6}  ifa=1
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If B = p = 0 then Y is symmetric and we say that Y has a “symmetric o stable”
distribution, denoted by Y £ Sas.
For later use, let C, be the constant defined by

2 ifa=1

c,,={ ) [OF! (52)

Theorem 5.2. Suppose (X;),cz 18 an ARMA(p,q) process and (2;),¢ z ore i1d
symmetric such that (5.1) holds. Then

n 1/a ‘ B ] &
(losn) (Bn—Bo) — 4rx W~ (o) ?(; ?z:lyk be | (5-3)

where Yy,Y1,Ya,... are independent r.v.’s, Yo 4 Salg(C;/2,’°.1,0) is positive
a/2-stable, (Y;)enr, are iid SaS with scale parameter o = e W1 (o) is

the inverse of the matriz

. [alng(x,ﬂo) [alng("’ﬂ")]r dx,

wien= [ |53 -

-
and, for k € N, by is the vector

L[ g SO
bh_%/_'e g80) g an,

Furthermore, (5.8) holds also with B, replaced by B, O

The limit vector in (5.3) is the ratio of an a-stable (p + g)-dimensional vector
over a positive a/2-stable r.v. It is not difficult to see that for AR(p) processes
B is just the formal analogue of the Yule-Walker estimates. Their weak limit
behaviour was derived by Davis and Resnick (1986) using time domain methods.

In closing we note that “more rapid than Gaussian” rates of convergence for
estimators in heavy tailed problems seems to be the norm rather than the excep-
tion. For example, Feigin and Resnick (1992, 1993) study parameter estimation
for autoregressive processes with positive, heavy tailed innovations, and obtain
rates of convergence for their estimator of the same order as ours, but with-
out the logarithmic term. Their estimators, however, are different to ours both
in spirit and detail, and involve the numerical solution of a non-trivial linear

programming problem.
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6. Auxiliary results

We shall frequently make use of the following decomposition of the periodogram.
Its proof is given in Proposition 2.1 of Kliippelberg and Mikosch (1991).

Proposition 6.1. Suppose (X:),¢, is @ moving average process as in (1.1) and
(A.1), (A.2) are satisfied. Then

Lix(A) = WA I z(A)+ Ra()), -x<A<x
where

Ra(2) = $(0) Ja(A) Ya(=2) + ¥(=2) Jn(=2) Ya(d) + Y (W)

n

Jn(A) = a7t Ziem™

=1

)
Yo()) = a;l Z ¥j et Unj('\)
j=-o0
n-j ) n .
Uni(d) = Y Zye™ -3z, D

t=1-j =1

The following Lemma is similar to Davis and Resnick (1986), p. 549, see also
Lemma 5.1 of Kliippelberg and Mikosch (1992).

Lemma 6.2. Suppose (Xi),., satisfies (A1)-(A4), then

Tax =¥* 73 2(1+0p(1)), n—oo.

Proof.

n o n
ax = e’y Y izl +a72 )" i v Zii 2o
t=] jz=—00 t=1 igj
= WV+V,.
Then the triangle inequality gives

EWyl’ a3 n Y (Iwillsl)’ ElZ1 22 —~ 0
i#j
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and

§/2
n

Ela;? 3 w2 Y (22, -2}

j=~00 t=1

8/2
EIVl’sz:,z !

A

o0
2. S Wil ilEl1Z2 -0, o

j=-oc

IA

Lemma 6.3. Let (Z;),., be a sequence of iid r.v.’s. Then the following rela-

tions hold for n — oo:

(a)
EZ2Z}=0(n"?). (6.1a)

(8) If (A1), (AS) and (A4) hold, then

EZZ, = o(n7}), (6.1b)
EZf 2,7y = o(n7?), (6.1¢)
EZ 2,237, = o(n?). (6.1d)

(c) If (A1) and (AS) hold, then

n-h
a;QZZgZH.;. L 0, heAMNg.
t=1

Proof.
(=)
n n 2
Mn-DERH=EY Z,’Z}gE(ZZ,’) -1,
i;-:'x t=1
()
n-h $
E|az*Y 2 Zun| Saz*(n=h) E|Z1 22" D0
=1
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(b) By Holder’s inequality, lel, n € N, thus the sequence

n=-1_ _
21 2y Zi4
=

n-1 . .
(}: Z; Z,+1) is uniformly integrable.
t=1 neN

Part (c) and (A4) imply that

n-l~ - n-1 P
ZZ; yATS =‘7:I2z a;’EZ, Zi4y — 0.

=1 =1

Hence
n—

1
E Zg§g+1=(ﬂ—l)E2122—‘0.
t=1

This proves (6.1b). The proofs of (6.1c) and (6.1d) are similar; we only prove
(6.1d):

(In/2] - 1)(n — (/2] - 1) |E % 2 2 24|

[n/2]-1 n—1 [n/2} n 2
E { Y ZZwm Y z.z.“}/{}:z.u 3 zf}
t=1

s=(n/2]+1 =1 =[n/2]+1
[n/2}-1 n-1
Z 2y 2y Z 2t 21
=1 t=(n/2]+1 P
= YE) = - °
>z >z
t=1 t=[n/2]+1
by (6.1¢). O

7. Proof of Theorem 3.1.

As a structural part of f‘,,, x(A) we define

ctai= Y Walk)cos At~ s)

{kjsm

and prove some asymptotic relations for n — oo.

Lemma 7.1.
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(s)
n
Cty = 0(1) ]
ts=1
(b)
n n
Z ¢, =o(n?) = Z e,
ta=1 1,0m1
tde
(c)
n n n
Z Cte Ctr = O(n) ' z Cty Ctr = O (n2) s E CaCry =0 (n’) .
har=l wiar nira.
Proof. (a)
Slew = 3 Walk) D cosAu(t—s)
t,s lh'Sm t,8

3 Wak) { (z‘:cosht)z + (Esm A,,t)z} =0(1).

1k]gm
(b) ¢ = T ¢, +n, and the result follows from equation (6.2) of Kliippelberg
t,3 t#£s
and Mikosch (1992).

(¢) Using trigonometric sum formulas we obtain

E Cts Ctr

tsr

Z cos Ag, (t — 5) cos Ag,(t —7)

1,81

< Y Walk) Walka)

{Eafl&al€m

< Y Walk) W, (kz){

Jka),)kal<m

Z cos Ak,tcos/\k,tz cos z\hsz £0S Mg, "
t s r

+

Z €08 A, 18in A t z cos8 ,\k,sZsin /\;,,r!
t s r

+

S sing tsin At Y sinde,s Y sind,r
t 3 r
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}

+

Zsin Ag, tcos At Esin A,,,JZ co8 Ag,r
t L r

< ( Y Walk) w..(kz)) don = O(n)
lE1)kat<m

for some constant dy > 0. Furthermore, there exist constants d;, dz, ds
such that by (a) and (b)

Z Cia Ctr = Z €5 Cir + dy E Cfg +d; Z Ctt i + d3 ch.
t,r t,9

tfskr t,ar t
= Zcuctr+d1"+dzzctr+d3203,
t,8,r 1,r t,s

= o(nz) .

That thesum Y ¢y, ¢y = O (n?) follows similarly. O
t#sF#r#v

We apply Proposition 6.1. and Lemma 6.2. to i.,x and obtain

Tox(d) = Y Walk) Tox (M)
k<
= {v2 & Wa® WO Tz (M) (1.1)
|t gm
+972 2% 3 Walk) Ra (M) } (14+0p(1))
fél<m

Since lrkrlxg.x {Ax — A — 0 as n — oo and [$())|? is uniformly continuous,
<m
2 - 2 — — .
max [l ()P = WP =0, n—oo
Thus we conclude that

S Wa® WO Lz() = 1+ WAE Y Walk) Iz (M)

{k<m 1kl<m

(1+ o) WP (1+Ea(0) ,

(7.2)
where

@V = Y Wa(k) 2": cos\i(t—9) Z Z,.

|k|<m t, 0l
- 13k
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Lemma 7.2. Qa(}) £0,n—c0.

~ 2
Proof. We prove E (Q,.(A)) ~— 0 as n — 0o0: There exist constants d;, dz, d3
such that
6;‘;()) = d; Zc,’, ‘Z-.z §f+ dy Z Cts Cer 2,2 Z, Z,
1#s t#sgr
+ds3 z Cta Cry 21 Z, Er 50 )
tfsdrdv
and the result follows from Lemmas 6.3. and 7.1. D
In view of (7.1), (7.2) and Lemma 7.2. it remains to prove that
Y22 Y Walk) Ra (M) 50.
ki<m

By the decomposition of Proposition 6.1. and by Hélder’s inequality, we have

for some constant ¢ > 0

D Walk) Ra (M)

[kIgm

1/2 1/2
Se (E Wa(k)|Jn (Am’) (E Wa(k)|Ya (A.)l’) + D Wa(B)IYa (M)

xigm Ikigm Iklgm

By (7.2) and Lemma 7.2.,
Yag 3 WaB)lIn Q)P = 3 Walk) I,z (M) = 0p(1),
k|<m jEl<m
hence it suffices to show that
122 Y Walk)[Ya ) 0. (1.3)
k| <m
By the decompaosition of Proposition 6.1. we have
Ya (M)1? < 2(Are + Azi)
where

2

A = a7?

S e Uni (M)

fti>n
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. 2
An = a;? Z Ve M UL ()] .
lt<n

Lemma 7.3. 7;.22 E Wa(k) A LA 0.
lkl<m

Proof. We have for some ¢ < oo

Z Wa(k) Aix € c(Vi +V2)

Ik{<m
where
n-t 2
Vl = a;z z Wn(h) E wt e—i’*.' Z Zr e-iAlf
Ilern "‘>" r=1-t
2
V; = az? D WalB)[D wees™| Lz(n).
jki<m iti>n
Note that

i>n [kI<m

2
7;,22 Va < (E |¢¢|) z Wa(k) f,.,z (M) = op(1).

By (A4), it remains to show that \} £, 0. We restrict ourselves to prove that

n-¢ 2
Vii = a;? E W,.(k) Z,w‘ o=t E 2, e—ihr
|kj<m t>n r=i-t
2
-1 ) n-t .

= a7 Z Wa(k) Z Z, emiMt 2 v eminrl B

{k|<m t=-oco r=(n+1)A(1-1)

We have for some positive ¢

216/2

-1 n-t
Eval'? < oa*E| Y w..(k)(}_‘, lz Y hm)

|kj<m t=~o00 r=(n41)A(1-t)
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&
n-t

-1
= a'E[ Y Izl Y Il

= -00 rs(n+1)A(1-1)

ca..‘): Y wd

t==00 r=(n+1)A(1-t)

IA

< caf Z el’ 1t =0

t=—00
and an application of Markov's inequality proves Vj, £o o

Lemma 7.4. 73 3 Wa(k) Az = 0.
|kj<m

Proof. In view of (A4) it suffices to show that E Wa(k) Az £ 0. We restrict
|klgm
ourselves to show that

n 2
a;z 2 Wa(k) Zsb, e=thnt Unt (Al)'
=1

fk|<m

Va

£ 0.

n 2
a;z E w"(k) Z'b e-u\.l Z Z, el _ z Z, e-iA.t)

|E]€m =1-t t=n-t4l

We have for some positive ¢
s
E\sf'* < a7'E

(,i Zd+ 3 |z¢|)

=1-—t i=n-t41

t=1

(- -]
caz 3 twl' -0,
t==-00
Markov’s inequality proves V5 Lo o
Finally we combine Lemmas 7.3. and 7.4. which gives (7.3); this proves The-

orem3.1. O
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8. Proof of Proposition 4.1.

We mimic the proof of Davis and Resnick (1986), pp. 548-550. For any h € N

we have

Yo Xe Xean =W Y X2 =3 bi (Vien — F(h) ¥5) Zumi 2o
t=1 t=1 t=1 i35 (81)
+ Y i (Yin = TR ) (2L - 2] = Vi + Vi
t=1 s

where we used the fact that Z i (Yiea — 7(h) ¥i) = 0. By (A1)-(A3) we obtain

for some ¢; > 0, i = 1,2,3,4.

Ela;? Vi’ € ernaz® Y i (¥54n - (0 o)l
i#)
< egna;¥® = 0,

and

Ela? Vo|'? < esaz® 3 1o (vien ~ 5(h) )l 1

< c«a, L
By Markov’s inequality this implies

a?(vi+va) 5 0. (8:2)
Furthermore, by Lemma 6.2.

rax=1v"7z(1+0p(1).

This, (8.1), (8.2) and (A4) imply that

f:x. Xesn —7(h)2":x,’ Y XX

7ﬁ,x (h) - 7(’)) = =1 t=1 - =n=-A41

Yo x? 3o x?

=1 t=1




Estimation for infinite variance ARMA models 19

X Xean
W+ Vs _ tsn-htl

T Tk sx

t=1 t=1

= op(1). (8.3)

In the latter relation we also used (A4) together with the fact that
n

a;? Y XiXunSoforeveyh DO
t=n=A$l

9. Proofs of the results in Section 5

The proofs in this section are modelled on those in the finite variance case, due
initially to Hannan (1973). [cf. the treatment in Brockwell and Davis (1991),
Section 10.8, which we follow closely]. The technical differences in the infinite
variance case are, however, substantial.

Throughout this section we shall treat only the estimator §,, based on min-
imising an integral of the integrated periodogram. The estimator S,, based on
the summed periodogram, can be treated similarly. Unfortunately, as in the
Gaussian case, there seems to be no easy way to exploit the “obvious” asymp-
totic equivalence of B, and f,, 80 as to obtain the consistency and asymptotic
distribution of one directly from the other. Since a full proof of this equivalence
involves treating the differences between the higher order terms in the Taylor
expansions of ¢2(8, — Bo) and &2(Bn — Bo), and this is no easier than deriving
the results for B, directly, we refer the reader to the thesis Gadrich (1993),
where essentially the same arguments used below for 3, are applied to f,.

We start with some auxiliary results.

Lemma 9.1. Suppose (X;),c2 is a causal invertible ARMA(p,q) process and
conditions (A1)-(A4) hold. Then for every B € C

2B S v (k) _2";(("7',%‘1)2:1,\ ©.1)
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and for every § > 0

o 9(2. o)
sup |7a.s(6) ¥ "’°’/ oW il I

Lo (9.2)

where 0 (e=t 1,
9:s(2,8) = J—(?—.)'!—.;"
ke (e=)|
and

n, X (A)
dA
7.8 = /,, o)
Proof. We restrict ourselves to prove that (9.2) is satisfied. The proof of (9.1) is

analogous. We adopt the proof of Proposition 10.8.2 in Brockwell, Davis (1991).
We define

m-1

m(rB) = -'1; E z by e~ = E (1 - "_kn!) by e~

J=0 [¥|<) (ki<m

where
1 T
bg = 5-; C'A. g‘-l(/\,ﬁ) di.

-

Fix € > 0. Then there exists some m € N such that

lam(A. B) = 951 (A, B)| < ¢/(47)

for all (A, 8) € [—-n x] x C. Hence

2B - [ Tox(®) 4m(3,8) ‘“l <& [ Txar=ee, vseT.
Hence for fixed ¢

gm0

" - * 9(2, 8o) €
P (:‘:% . In,X(A)QM(Arﬁ)dA-i’ 2(ﬂ(!) e N ;)d'\l 5)

IA

- [h| - " 902, Bo)
= P (,,,p 2 Y Fax(h) (1-;) b — ¥ %(5o) L aop2

J

peC| |agm
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< Plsup
134

\ ;)
- I -2 * 9(), Bo)
+P | sup 2¢ (k) (1 ~ = )b -v" (k) ——rdAl >
(pe?f |M§m m - g‘(A ﬁ)
The first summand on the rhs converges to zero in view of Proposition 4.1.
and because the b, are uniformly bounded for 8 € C and m fixed. The second

summand is zero provided m is chosen sufficiently large ( see p.379 in Brockwell,
Davis (1991)). O

2 ¥ Gnxth) -3 (1- 2)

|Aj€m

Proof of Theorem 5.1. We adapt the proof of Theorem 10.8.1 in Brockwell and
Davis (1991). We suppose that 8, does not converge in probability to S,. We
have by Lemma 9.1. that

P(03(Bn) < 1) 2 P(07(o) < t) — P(2xy~%(Bo) < 1). (9.3)

for every t. By the Helly-Bray theorem and the compactness of C there exists a
non-random subsequence n; such that §,, converges in distribution to a random
variable 8 which is different from By on a set of positive probability. The
functional F(f,z) = f(z) mapping C(C) x C to R is continuous where C(C) is
the space of continuous functions on C equipped with the supnorm. According
to Lemma 9.1.,62 ;(-) converges in probability to $~2(6o) f_, "‘\ 2ld). Hence
a3 5 is tight. Since fp, 2, B the sequence By, is tight as well. Thus (03, 5:8n2)
is tight in C(C) x C and there exists a further subsequence (we use n; for the ease
of notation) such that (a?,..,,ﬂ,, ) converges in distribution. By the continuous

mapping theorem we conclude that

a(«\ Bo)

wo B

F(03,68m) = 2, 4(Bn) = ¥72(80) |

Thus we have

P(03,(Bn) S 1) < P07, 5(Bn,) < 1)
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- -2 9( 9(2, Bo)
_ - 9( ﬂo)
= P(y~*(8o) _,g(;\ﬁ)<tﬁ Bo) +
-2 9(2, Bo) 9(2, Bo)
+POT ) DB S W[ >t
-3 9(4\ Bo) 9(}, Bo)
+pe7on [ GBS0 <o )

Choosing § close to zero the last summand can be made arbitrarily small. Thus

we conclude that

limsup P(o2,(Ba,) S 1)

PO B0)27 < 1,6 = fo) + PW~(0) [ ‘(’; f;)).u <t.5# fo)

P(¥=%(Bo)27 < 1,8 = o) + P(¥~*(Bo)2x < t,8 # fo) (9.4)

Now choose t = 2xy~2(8;). We obtain from (9.3) and (9.4) that

IA

IA

1= P(y~2(Bo)2x < t) < P(¥~2(Bo)2x < 1,8 = Bo)

which yields a contradiction since the event {8 # fo} has positive probability.
a

Lemma 9.2. Suppose the assumptlions of Theorem 5.2. hold. Furthermore, let
n be a continuous function on [—x,x] such that
n 1/a ,x -
() [ 150080 Tz 1= 0,01), n—oo.
Then

(nT:E)m f_ (Ta.x(3) = 972 (B0) 9(\,00) Ta.z)) 72) dr 20

Proof. Set z, = (n/log n)‘/" and note that a, = cn!/® for some constant ¢ > 0.
By the decomposition of Proposition 6.1. and Lemma 6.2. we get

A x()n()dr = ¥ (fo) (1+0p(2)) 7; z In,x(3) n(2) dA
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= ¥ +or) [ " Ta2(3) 9.(A Bo) m(2)dA

+972(Bo) (1 +0p(1) 773 | Ra(A)n(A)dA.
By the assumptions it suffices to show that

zs ’ Rn(A) n(A)dA = 0p(1).

-

We apply Holder’s inequality and obtain for some ¢ > 0

<ef " |Ra()] dA

" Ra(3) n(X) dr

< c{( _: In,z(A) dl\)!/2 (/_: [Ya (MNP d,\)1n+/-: [Ya( M) d,\} :

Thus it remains to show that

22 / Yo dr & o.
-

We have
x - | N nej . 2
/ [Ya(A)]? dA < en~%e ] Z'l’i e—iN E Zeem ™| da
- ¥ [i>n t=1~j
2 2
r e . z]n L .
+/ Z%- emiM EZ, emiM dA+/ Z“’i e~ E Zem™| da
~¥ [i>n t=1 -* |j=1 Rerud

2
Z":vﬁ,- e”M N Zie™M dr

i=1 tan—j+1

®
+

-1

= e~ (V+Va+Vs+ V).
It suffices to show that the V; are stochastically bounded. We will show this for
V. The other estimates are similar. Note that V} = f:, IQ()t)I2 d) where

nej

-1
QW) = 3,z ), e

j=-00  t=(n+1)A(1-j)
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Let B, and B; be two independent Brownian motions on [-x, x] and suppose

that they are independent of (Z;). Then

o ( J . Re(@O)dBi(M)+ [ lm(o(x))asz(x))

. (E (e.-f (£, Ret@EMBLN4 [, 1m(@0A 4B

)

1/2 /3
il ([T (Re@?ar ) Nt ( [T (Im(Q(A))er n,)
E|E|e (( ) ( )

)

Here N;, N; are i.i.d. standard Gaussian r.v.’s independent of (Z,).

(24)

1/3
‘ ( c (e-'r( [ (Re@)) +am@)ar) Ny

= Ee-FJl1e0pPa

2
= Ee~T%,

In order to show stochastic boundedness of V; it thus suffices to prove that the
real and the imaginary parts of f:' Q(A)dB; () are stochastically bounded. We
restrict ourselves to the real part.

We introduce the gauge function A, for any r.v. A by

/e
Aa(A) = (sup t* P(|A] > t)) .
t>0
Then for any sequence (a;),¢ 4~ of real numbers we have for some constant ¢, > 0
n n
Ag (Z a; Zi) <ca Y lail® AS(2Z0)
=1 i=1

[see e.g. Kliippelberg and Mikosch (1991), Lemma 3.4]. Then for fixed ¢ > 0
L 4
Re(Q(2))dBy(3)

P ( > e)
-
< €°E (E (sup s°P (
>0

-

j=—00  t=(n+1)A(1-])

Sz ¥ ow [ Re (e as )

:

’)
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-1 n—j x :
cahi(Z0) ) E % /_ Rz(e"’*““’)) dBi(})

j=-o00

IA

t=(n+1)A(1-5)

- nej al2
= cahd(Z0) ¥ ElN,-l"( 3 lw.l’)

j=-~00 t=(n+1)A(1-5)
-1
< ey Wli<eo
Jj==o00
Here (N;) is a sequence of identically distributed (but dependent) Gaussian
r.v.’s and c i3 a positive constant. In the last step we made use of condition

(A2). This proves the stochastic boundedness of ;. D

Lemma 9.3. Suppose the assumptions of Theorem 5.2. hold. Furthermore, let

n be an odd continuous function on [—x, x] and the Fourier coefficients fi,
o0

ke Z, ofn(A) g(X,Bo) satisfy Y, |fel” < oo for some u € (0,1Aa). Then

k=—o00

n 1/a . _ d 2 had YE
— A)n(A)dr — - —_
(2) [ Bxa AN Y
where ¥5,Y1,Yz,... are independent r.v.’s, Yy is positive a/2-stable and (Y;),¢ o
are iid symmetric a-stable with ch.f. E e’V = ¢=Caltl® 1 R.

Proof. We adapt the proof of Proposition 10.8.6 of Brockwell and Davis (1991).

In view of Lemma 9.2. it suffices to show that
T _ oo Yk
2 [ s 1 = 4T
where z, = (n/logn)'/. Set

x(2) = n(2) g (A, fo)

and

hm:}:hﬂ*mhﬁ=%/emumu.

Ik <m -
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The assumptions on (f3) imply that uniformly in A

xm() = x(N= Y fiett, m-co.

k=-00

Moreover, fo = 0. We show that for alle > 0

i T 2(3) (X(3) = xm(2)) dA

Forne N and h € Z we set

> e) =0. (9.5)

lim limsup P (z,.
M—00 poo

n-|A| n
Fnz(h) =Faz(h) = Y 2 Zuiw [ 3 22

t=1 t=1

1/a

and y, = (nlogn) '® . Then for n > m there exists some ¢; > 0

Vi = za [ Toz() () - xm(¥) d2

-x

. /r (Z :_7_"‘2(,') e...',\h Z fk eixk) d\

~* \ihj<n {k{>m

= z,27 Z 7n,2(h)fh

m<lhi<n

n-1 n-h
= ‘Y;:"z v { Z In ZZ; Zt+h}

h=m+1 t=1

n-m~1 n-t
= avzv Z Z; Z In Zign
=1 =m+1
n-m-1 n
= anz¥h X % Y i
=1 h=m+t41

-2
= G 7';,2 VZ .

Since 2 , ~ 2 for some positive a/2-stable r.v. y2 for (9.5) it suffices to show

that for every € > 0

"!‘x_r‘rgo li:rls:p P(lVal >€)=0.
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An application of Theorem 3.1 of Rosinski and Woyczynski (1987) yields for

some ¢z > 0

n-m-1
P(lVQl)E)(Cg— E Z 'fh ll (l+log lf I)

1=l h=m4t+l

z° (1 + log*’ -i-) <z¢

where p € (0,1 A a). Hence for constants ¢z, c3 > 0

Note that for z € (0,1),

n-m-]

P(Vs]>¢) < Cz )y Z [faeel

t=1 h=m+t4l

}: (n=8) fel" <es 2 |fel*

t=m+1 t=m41
and, by the assumptions, the rhs converges to 0 as m — oo. This proves (9.5).
Now it remains to show [cf. Proposition 6.3.9 in Brockwell and Davis ( 1991)]
that
"= d Ye
-z, /_ REOPROL IS IS (9.6)

{kjgm

For n > m we have

Va

Zn /: (E Fnz(h) e Z fe em) dA

ihl<n jkj<m

= za 27 ) Taz(h) fi

IA[Sm

n-|A}
2 7nz Z Ia (!Jn E Z, Zt+|h|)

|hl€m

Theorem 3.3 of Davis and Resnick (1986) gives for A > 0

n-h

n-1
(‘7,“:.2, y,TlZZ: FATEPI Ty Zzt Zt+h) L (Yo Yi,....Ya).
t=1

t=1
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The specific scaling constants in the statement of the lemma, and in Theorem
5.2, then follow from the representation of the Y; given in Davis and Resnick
(1986) and the results of Le Page (1980).

This together with the continuous mapping theorem proves (9.6). O

Proof of Theorem 5.2. We adapt the proof of Theorem 10.8.2 of Brockwell and
Davis (1991). A Taylor expansion gives

803 (Bo) _ 0ok (Bn) 8%a2 ()
8a2 (B)
= - (- 2200
for some B with |85 — Ball € ||Bn — Bo|l where |} - || denotes the Euclidean
norm. Now - 2
3a2B) _ [+ g~ (A, B;)
5 =), Inx(A) - d
and since G}, L Bo similar arguments as in the proof of Lemmas 9.1. yield that
8202 (87) - i 87971 (A, 50)
-—576(,— L v%(Bo) _'Q(A,ﬂo) —-Tﬁa'—q- dx.

Following the lines of the proof in Brockwell and Davis (1991) after (10.8.39)
the same arguments lead to

A

e V2 (B0) W (B0) .

Hence it suffices to show that

302 (Bs) 4 _2 = Y
z, o5 - 4ny (ﬁo)g:l Y be

where b; is defined in Theorem 5.2., or, equivalently, by the Cramér-Wold device
that for all vectors ¢ € RP1Y

r 803 (Bo) 4 VAN SR
2" =55 4xy (ﬁo)k; Yo by .
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We have
93(Bo) _ » [T+ 891 (A, Bo)
& 5 = /. In x () Tu
= I x(A) n(2) dx
where
39~ (X, Bo)
- T g9__\hEe)
7(A) = 6

is an odd continuous function. Furthermore, it is not difficult to see that the
Fourier coefficients of n())g(A,By) satisfy the conditions of Lemma 9.3. An
application of this lemma implies that
2 [ Txadr 4 4 w-’(ﬁo)z v f
-

where fi are the Fourier coefficients of n(2) g (A, Bo); i.e.
fk - 21‘"/ —ikA T ag (A ﬂO) (A ﬁ ) dr.

0B
Thus
da? 80n(Bo) 4 - =Y 1 - 8971 (), Bo)
Py o, 2 ik - ik T ’
e g L ey g B = o PSP
for all ¢ € RP+9. This implies that

803 (Bo) -
zn-—aBL S o 4ry 2(ﬂo)i: _'bk

where b; is the vector

x -1
51;/ c—iAk ag a(;rﬁo) g(A,ﬂo) d). a)

10. An application to simulated data

To get some idea of how the Whittle estimator behaves in the heavy tailed
situation, we ran a small simulation study. Before describing the results, we

make some comments about the application of the estimator.




Estimation for infinite variance ARMA models 30

As noted earlier, in application it is the estimator B, based on the summed
periodogram, that is used. In fact, whereas until now we worked with the self-
normalized sample periodogram 7,.‘ X, in practice it makes more sense to work
with the regular periodogram I x()) defined by

n
n-t E X e~
1=1

In this case, it is immediate from the definition of B, that it could have also

2

Inx(2) = , —r<A<

been defined as the minimiser of

&2(8) = Zﬁ (10.1)

where the sum, as before, is taken over all Fourier frequencies. (The difference
between 43 and 3 lies in factors of n and the normalisation 3 X7, neither of
which affect the minimisation.)

It should be emphasised that minimisation of (10.1) requires knowledge of
neither the stability parameter « nor the scale parameter o of the data. (This,
of course, is not true if one wants to determine the convergence rate of the
estimator.) This fact has two important consequences. The first is that although
there exist methods for estimating stable exponents [e.g. Dzhaparidze (1986),
Hahn and Weiner (1991), Hsing (1991) and Koutrouvelis (1980)] none of these
have very good small sample behaviour, and so it extremely comforting to have
an estimator that is a independent.

The second consequence is that since it is well known that the Whittle esti-
mator is asymptotically equivalent to the MLE in the Gaussian case, the fact
that in the stable case the Whittle estimator is an identical function of the data
implies a robustness property for both the Whittle and maximum likelihood
estimators in the Gaussian case as well.

The following table includes the result of a small scale simulation study. We

generated 100 observations from each of the models

1. Xg -04 X‘-l = Zg
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2. Xg = Zg + 0.8 Z(_l
3. Xi-04X(.1=2,+08 Z,_;

where the innovations sequence {Z;} was either iid a-stable with a = 1.5 and
scale parameter equal to 2.0, or, for comparison purposes, N(0,2). (In the
stable case we relied on the algorithm given by Chambers, Mallows and Stuck
(1976) for generation of the innovation process.) We ran 1,000 such simulations
for each model. In the stable example we estimated the ARMA parameters via
the estimator §,, and in the Gaussian case via the usual MLE estimator. The

results were as follows:

Model True Whittle estimate | Maximum-likelihood
No. values | mean | st. dev. | mean st. dev.
1 p=0410.384 0.093 0.394 0.102

2 6=08|0.782 0.097 0.831 0.099

3 ¢=04| 0397 0.100 0.385 0.106
6=0810.736 0.124 0.815 0.082

Table 10.1: Estimating the parameters of stable and normal ARMA

processes via Whittle and MLE estimates.

We shall not attempt to interpret these results for the reader, but merely
point out that the accuracy of the Whittle estimator in the stable case seems
indistinguishable from that of the MLE in the Gaussian case.

Finally, a comment about estimating p, ¢, a and the scale parameter of the
stable innovations. We have assumed throughout, including in the simulation
above, that p and q are known. When this is not that case, Bhansali (1984,

1988) has proposed a technique for estimating p and ¢ that seems to work well
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in practice. Estimation of o can be done either from the raw data, or from
the residuals calculated after parameter estimation. Limited experience with
simulations indicates that it is best done on the (supposedly iid) residuals.

Appendix

In Theorem 5.1. we proved weak convergence of the estimated coefficient vec-
tor 8, to its true value §y. In the finite variance case this holds even almost
surely. In the infinite variance case (which is e.g. satisfied for Z, € DA(a),
a € (0,2)) we obtain a.s. convergence under a more restrictive condition if we
take the limit along a well-specified sequence in A'. We introduce the following

condition:

(AS5) There exists a sequence of positive numbers e, such that

liminf c,,’ZZ2 =1 as. (AP.1)

n—x
t=1

where the norming constants e, satisfy the following conditions: There ex-

ist somed > 0and v € N such thatforn, = k*, k € N, E(me;f‘+c 4) < oo,

=1
for § = 1 Ad, and (e,/ey,,) is bounded away from 0 and oo uniformly for
n € [ny,neqr] forallk e N,

A survey of results of type (AP.1) can be found in Pruitt (1990, p. 1149).
Fristedt and Pruitt (1971) proved under the restriction E |2, |¢ < oo for some
d > 0 that (AP.1) holds with

el = n—«:—%‘:—:m (AP2)
for some constant £ > 1 where 7(-) = (— logEe”z?)-

If Z, € DA(a) for « € (0,2) we deduce from (AP.2) the following Lemma.
Lemma 1 Suppose F € DA(a), a €(0,2). Then (A5} is satisfied ford < a
and e2 = n?/® [(n) for some slowly varying function L. The number v in (A5)
can be chosen to satisfy v > «/(26 — a) V (a/6) provided § > af2. O
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The following result complements Proposition 4.1.
Proposition 2 Ssppose (X1),.; satisfies (A1), (A2) and (A5). Then
Frx(h) %3 F(h), heN, n—oo.

Proof. We use the decomposition of (8.1) and obtain
a4l

max Vil € )0 Y i (W54en = TR )| 120 Zecj] -

ne{ny,nay) =1 igj

By (Al), (A2) and (A5) we obtain for alle > 0

- -] o0
ZP( max |V,|>ee3,_) < a) . eaE max %/
k=1

= LYY n€lna.naq)

- -
< 6226;.“ Ny < 00
k=1

for some ¢;, ¢ > 0. A Borel-Cantelli argument yields

lim max |Wle;2=0 as.
k=00 ngine nass)

Now to estimate V; set
Ji = vi(Yian —F(R) %) .

Then
Vi = SAEY(Z-Z)+Y 6 Y (2 -2
>0 t=1 <0 t=1

= Va+ .

We restrict ourselves to show that tlim e;f Vs = 0 a.s., the proof for ;2V, is
e 0O

similar. We have

n—i

b Y E S -TAS R+ T AT R-T 8 S 2

i>n  t=l-i i>n t=1 1€i<n t=1-i 1€i<n  t=n-i+l

= i-Ve+Vr-Va.
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We restrict ourselves to show that .lilg €22 Vy = 0 a.s., the proof for Vg, Vs and
Vs is analogous. Again by (A1), (A2) and (A5) we have

o0 o0
‘ - .
S Eleat v ey et I i< oo
k=1 k=1 >0
and a Borel-Cantelli argument yields the desired result. Similar arguments show

that n .
e;_’zx,’ =e;} 4"22,’ +0o(1) as.
t=1 t=x1l
So we obtain as in (8.3) that
Fnux(h)—=7(h) — 0 as. a]

A result similar to Proposition 2 for Z; € DA(p) was obtained by Bhansali
(1988). The following example shows that Proposition 2 is in general not valid
if the subsequence (n;) is replaced by (n).
Ezample. Consider the M A(1) process

Xe=2,+62,_,, teN, |0l<1,

for a symmetric 2, € DN A(a) for some o € (0,2). Then as mentioned in Sec-
tion 2 (A1)-(A4) and (A5) are satisfied where (e,) can be chosen as

en = n¥/° (loglogn)}=2/2/e

Now consider

n-1
Y (2+02-1)(Zes1 +62)
?ﬂ.x(l) = = n
Z (Z:+6 Zt-l)2
t=1
n-1 n-1 n-1 n-1
ZZ‘Z"'X +GZZ(_1 ZH" +OZZ‘2+82223_1 Z,
t=1 t=1 t=1 t=1

f:z.’ + a’f:z,’_, +202":z.-, z,

t=1 t=1 t=1
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Rosinski and Woyczynski (1987) have shown that for some ¢ > 0
P(Z12y>z)<cz (1 +log* z7!) .

Similar arguments as in the proof of Heyde’s SLLN [see Stout (1974)] and the
fact that

o0
S P(21Z:>€}) <o

A=l
imply that
n-1
e;? Z (2¢ Ze4r + 22,2, +02,_1Zi41)
lim t=1 - =0 as.
=00 n—-
ea) 2}
t=1
Thus
~ 0+ 01
Fax{1) = °,f-1 as. (AP.3)
2+1+22 [ 3 22 +01)
t=
We shall show that
n-1
limsup Z2 / Y 2= as (AP .4)
=00 ‘:l

Define -
An :={Z,’,>enz/°}, B, = {ZZ,’(n’/"},
t=1

then for every € > 0

n-1
P (z} S 2> i.o.) > P(A,NB,io).

t=1

Note that E P(A,)=ocand Imuan(B..) > 0. Since A, and {By, By, ..., Bn}
are mdependent for each n > 1, an application of a standard Borel-Cantelli
lemma [e.g. Petrov (1975), Lemma 5, Section IX.2] yields P(An N B, i.0.) > 0,

hence
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P(AnN B, i.0.) = 1 which implies (AP.4). From (AP.3) and (AP.4) we con-
clude that for almost every w there exists a subsequence n’ = n’(w) such that
n'-1
Jim 73, 2 Z} =oco.

Hence 0 is an a.s. limit point of ¥, x(l). ]

We apply the above Proposition 2 to give an analogous result for 03(8) and
finally for 8, and 02 (8n).
Lemma 3 Suppose (X:),cz satisfies (A1), (A2) and (A5). Then for every fized
§>0, uniformly for B€C and for§ =0and f€C

as. - ¥ 9('\ ﬁ)
o s(B) = v (B) ey ;) dA

where g5 and o2, , are defined as in Lemma 9.1.

Proaf. It follows by an adaption of the proof of Proposition 10.8.2 in Brockwell
and Davis (1991) and in view of Proposition 2. O

This lemma and an adaption of the proof of Theorem 10.8.1 of Brockwell and
Davis (1991) imply the following result.

Theorem 4 Suppose (Xi),cz is a causal invertible ARMA(p,q) process and
conditions (A1), (A2) and (A5) hold. Then

Bon = Bo end  oi(Ba) = ¥(B). O

Acknowledgement

TM and CK take pleasure to thank Prof. H.R. Kiinsch for his everyday readiness

to discuss time series problems with us.

References

BHANSALI, R.J. (1984). Order determination for processes with infinite vari-

ance, Robust and Nonlinear Time Series Analysis, (eds. J. Franke, W




Estimation for infinite variance ARMA models 37
Hardle and D. Martin), pp. 17-25, New—York: Springer.

BHANsaLI, R.J. (1988). Consistent order determination for processes with
infinite variance. J. Roy. Statist. Soc. Series B 50, 46-60.

BingHaM, N.H., GoLDIE, C.M. aND TEUGELS, J.L (1987). Regular Varia-

tion. Cambridge University Press.

BROCKWELL, P.J. AND Davis, R.A. (1991). Time Series: Theory and Meth-
ods, 2nd ed., Springer, Berlin.

CHAMBERS, J.M. MaLLows, C.L. aND Stuck, B.W. (1976). A method for
simulating stable random variables, Journal of the American Statistical
Assoctation, 71, 340-344.

DaHLHAUS, R. (1989). Efficient parameter estimation for self-similar pro-
cesses. Ann. Statist. 17, 1749-1766.

Davis, R.A. AND REsNICK, S.I. (1986). Limit theory for the sample co-
variance and correlation functions of moving averages. Ann. Statist. 14,
$33-558.

DzHAPARIDZE, K. (1986). Parameter Estimation and Hypothesis Testing in

Spectral Analysis of Stationay Time Series. Springer, New York.

FELLER, W. (1971). An Introduction to Probability Theory and Its Applica-
tions. Vol. I1, 2nd ed., Wiley, New York.

FEIGIN, P. AND RESNICK, S. (1992). Estimation for autoregressive processes
with positive innovations. Stochastic Models 8, 479-498.

FEIGIN, P. AND RESNICK, S. (1993). Limit distributions for linear program-

ming time series estimators. Preprint.

Fox, R. AND TaqqQu, M.S. (1986). Large sample properties of parameter
estimates for strongly dependent stationary Gaussian time series. Ann.

Statist. 14, 517-532.




Estimation for infinite variance ARMA models 38

FrIsTEDT, B.E. AND PRuUITT, W.E. (1971). Lower functions for increasing
random walks and subordinators. Z. Wahrsch. verw. Gebiete 18, 167-182.

GabricH, T. (1993). Parameter Estimation for ARMA Processes with Sym-
metric Stable Innovations, D.Sc. Thesis, Technion. (In Hebrew)

GRIFFIN, P.S. (1983). Probability estimates for the small deviations of d-di-
mensional random walk. Ann. Probab. 11, 939-952.

HANNAN, E.J. (1973). The asymptotic theory of linear time-series models, J.
Appl. Prob., 10, 130-145.

HAHN, M.G. AND WEINER, D.C. (1991). On joint estimation of an exponent
of regular variation and an asymmetry parameter for tail distributions,
in Sums, trimmed sums and eztremes. M.G. Hahn, D.M. Mason, D.C.
Weiner (Eds.) Progress in Probability, 23, Birkhauser.

HsiNG, T. (1991). On tail index estimation using dependent data, Ann.
Statist., 19, 1547-1569.

KouTRoUVELIS, 1.A. (1980). Regression-type estimation of the parameters of
stable laws J. Amer. Stat. Assoc. 75, 918-928.

KLUPPELBERG, C. AND MiKkoscH, T. (1991). Spectral estimates and stable

processes. Stoch. Proc. Appl. (to appear).

KLUPPELBERG, C. AND MikoscH, T. (1992). Some limit theory for the
normalized periodogram of p-stable moving average processes. Technical

Report, Departement Mathematik, ETH Ziirich.

LE PacE, R. (1980). Multidimensional infinitely divisible variables and pro-

cesses. Part I: Stable case. Preprint.

MALLER, R.A. (1981). Some properties of stochastic compactness. J. Austrul.
Math. Soc. (Series A) 30, 264-277.




Estimation for infinite variance ARMA models 39

PETROV, V.V. (1975). Sums of Independent Random Variables. Springer,
New York.

PruitT, W.E. (1990). The rate of escape of random walk. Ann. Probab. 18,
1417-1461.

RosINsKI, J. AND WovyczyNskl, W.A. (1987). Multilinear forms in Pareto-
like random variables and product random measures. Colloqguium Mathe-
maticum, Vol. 51, 303-313.

StouT (1974). Almost Sure Convergence. Academic Press, New York.

WHITTLE, P. (1953). Estimation and information in stationary time series.
Ark. Mat. 2, 423-434.

Claudia Klippelberg Thomas Mikosch

Departement Mathematik Institute of Statistics and Operations Research
ETH Zirich Victoria University

CH - 8092 Ziirich Wellington

SWITZERLAND NEW ZEALAND

Tamar Gadrich and Robert J. Adler

Faculty of Industrial Engineering & Management
Technion - Israel Institute of Technology

Haifa, 32000

ISRAEL

.‘




