NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

QUADRUPLET EXPANSION OF THE ACOUSTIC PRESSURE FIELD IN A WEDGE SHAPED OCEAN

by

Michael D. Joyce

September, 1993

Thesis Advisor:

A.B. Coopens

Approved for public release; distribution is unlimited

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0188
ablic reporting burden for this collection of athering and maintaining the data needed. A slection of information, including suggestio was highway, Suite 1204, Arington, VA. 222	information is estimated to average 1 ho and completing and reviewing the collect ns for reducing this burden to Washingt 02-4302, and to the Office of Manageme	our per response, including the time for ion of information. Send comments ri on Headquarters Services, Directorate int and Budget. Paperwork Reduction	previewing instructions, searching existing data source egarding this burden estimate or any other aspect of th for information Operations and Reports, 1215 Jefferso Project (0704-0188), Washington, DC 20503
AGENCY USE ONLY (Leave bla	nk) 2. REPORT DATE	3. REPORT TYPE	AND DATES COVERED
TITLE AND SUBTITLE			5. FUNDING NUMBERS
QUADRUPLET EXPANS IN A WEDGE SHAPED	ION OF THE ACOUSTIC OCEAN	PRESSURE FIELD	
AUTHOR(S)			
JUICE, MICHAEL D.			
PERFORMING ORGANIZATION	NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
NAVAL POSTGRADUAT MONTEREY, CA 9394	E SCHOOL 3-5000		
SPONSORING / MONITORING A	SENCY NAME(S) AND ADDRES	55(E5)	10. SPONSORING/MONITORING AGENCY REPORT NUMBER
. SUPPLEMENTARY NOTES			
THE VIEWS EXPRESS THE OFFICIAL POLI	ED IN THIS THESIS A CY OR POSITION OF T	RE THOSE OF THE AU HE DEPARTMENT OF I	JTHOR, AND DO NOT REFLECT DEFENSE OR THE US GOVERNME
a. DISTRIBUTION / AVAILABILITY	STATEMENT		12b. DISTRIBUTION CODE
a. DISTRIBUTION / AVAILABILITY Approved for publ distribution is u	STATEMENT ic release; nlimited.		125. DISTRIBUTION CODE
Approved for publ distribution is u ABSTRACT (Maximum 200 wor develop an analyt work develops aco reflection image to sum the dipole let expansion. A created to verify	STATEMENT ic release; nlimited.	d ocean, the metho of the acoustic pr a combination of theory. The meth is matches dipole sing the derived q paring them with t	12b. DISTRIBUTION CODE od of images is used to ressure field. Contemporation the source and surface and of images is then used pairs to achieve a quadrup uadruplet equation is then the "URTEXT" program.
Approved for publ distribution is u ABSTRACT (Maximum 200 wor develop an analyt work develops aco reflection image to sum the dipole let expansion. A created to verify SUBJECT TERMS METHOD OF IMAGES QUADRUPLET EXPANS	STATEMENT ic release; nlimited. (ds) In a wedge shape ical approximation ustic doublets from using simple dipole images. This thes computer program u the results by com ION 18. SECURITY CLASSIFICATION OF THIS PAGE UNCI A SETED	d ocean, the metho of the acoustic pr a combination of theory. The meth is matches dipole sing the derived q paring them with t	12b. DISTRIBUTION CODE od of images is used to ressure field. Contempora: the source and surface nod of images is then used pairs to achieve a quadrup quadruplet equation is then the "URTEXT" program. 15. NUMBER OF PAGES 40 16. PRICE CODE FICATION 20. LIMITATION OF ABSTRA

VAR

Approved for public release; distribution is unlimited.

Quadruplet Expansion of the Acoustic Pressure Field in a Wedge Shaped Ocean

by

Michael D. Joyce Lieutenant . United States Navy B.S., California State Polytechnic University, Pomona

> Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN APPLIED PHYSICS

from the

NAVAL POSTGRADUATE SCHOOL September,1993

nichael D. Louce Author: Michael D. Joyce Approved by: Prof. A.B. Coppens. Thesis Advisor anders Prof. J.V. Sanders, Second Reader W.B_____

Prof. W.B. Colson, Chairman Physics Department

ABSTRACT

In a wedge shaped ocean, the method of images is used to develop an analytical approximation of the acoustic pressure field. Contemporary work develops acoustic doublets from a combination of the source and surface reflection image using simple dipole theory. The method of images is then used to sum the dipole images. This thesis matches dipole pairs to achieve a quadruplet expansion. A computer program using the derived quadruplet equation is then created to verify the results by comparing them with the "URTEXT" program.

DTIC QUALITY INSPECTED 8

Acces	ion For)
NTIS DTIC Unant Justif	CRASH TAE ISTALLUS ISTALLUS	
By Distrib	etion/	
٨	vailabili	t) Cours
Dist	Avair (Spe	audjor cial
A-1		

TABLE OF CONTENTS

Ι.	INTRODUCTION
II.	WAVE NUMBERS AND SCALING4
III.	ACOUSTIC DOUBLET FORMATION
IV.	QUADRUPLET EXPANSION
v.	REFLECTION COEFFICIENTS FOR A SLOW BOTTOM11
VI.	RESULTS16
APPEN	NDIX A
BIBLI	[OGRAPHY
INIT	AL DISTRIBUTION LIST

I. INTRODUCTION

This thesis is a continuation in the examination or the acoustic pressure field in a wedge shaped ocean. As the focus of naval operations shifts to the littoral regions, more attention is being paid to the problem of A.S.W. in acoustically shallow water, i.e. regions where the sound paths have multiple interactions with the surface and bottom. To date, the simplest propagation model has been the method of images.

In its present form, this model assumes isospeed water, a pressure release upper surface, and a lossy, penetrable bottom. For parallel surfaces, the source and its images form a vertical array with the actual source at the center. Furthermore, if the source is near the surface it can be combined with its negative (180° out of phase) surface reflection image to form a dipole source. The column of images can then be considered a column of doublet images.

The equations used in this thesis are the far field approximations of the acoustic doublet. An unbalanced doublet is defined as having two sources of nearly equal amplitude but opposite phase separated by a distance d. If the amplitudes differ greatly, or if the phase difference is not 180°; then the doublet approximation is not valid.

When the method of images is used in a wedge shaped ocean, the vertical column of doublet images becomes a circle

1

centered on the apex. In previous work the upper and lower image doublets were summed individually with great success. This thesis attempts to group upper and lower doublets into double doublets or guadruplets.

This method can only be used for extremely small wedge angles. With larger angles the sound paths from the upper and lower doublet images will be to dissimilar, and the quadruplet approximation will be invalid. Since typical slopes for most of the worlds continental shelves are about 3°, a good analogy would be that of using a ship mounted active sonar searching for a diesel submarine in the shelt region.

2

II. WAVE NUMBERS AND SCALING

Sound propagation in a shallow channel with a pressure release surface parallel to a rigid bottom has a propagation wave number for each mode defined by the following equation

$$K_n = (n - \frac{1}{2}) \frac{\pi}{H} \frac{1}{f(\boldsymbol{\theta})} \tag{1}$$

Where H is the depth of the channel. For a fast bottom, θ is the critical angle found from

$$\sin\theta_c = \frac{C_1}{C_2} \tag{2}$$

An analogous reference angle $\boldsymbol{\theta}_s$ for a slow bottom is

$$\tan\theta_{g} = \frac{C_{2}}{C_{1}}$$
(3)

If the depth H is replaced by the scaling distance,

$$R_{s} = \frac{R}{x} \tag{4}$$

and the bottom is tilted at angle β ; then eq.1 for the cutoff value of the lowest mode with a fast bottom becomes

$$Kx = \frac{\pi}{2\sin\theta\tan\beta}$$
(5)

and for a slow bottom

$$Kx = \frac{\pi}{2\tan\theta\tan\beta}$$
(6)

III. ACOUSTIC DOUBLET FORMATION

The sound propagation for spherical spreading of a point source is

$$P = \frac{A_o}{r} e^{j(\omega t - kr)}$$
(7)

When two point sources of opposite phase are combined to form a doublet, equation 7 can be expanded,

$$P = \frac{A_{\star}}{r_{\star}} e^{j(\omega t - kr_{\star})} - \frac{A_{\star}}{r_{\star}} e^{j(\omega t - kr_{\star})}$$
(8)

Where the "+" and "-" subscripts reter to the upper and lower sources respectively. These values can be expanded

$$\begin{aligned} r_{+} = r + \Delta r & A_{+} = A_{o} + \Delta A \\ r_{-} = r \cdot \Delta r & A_{-} = A_{o} - \Delta A \end{aligned}$$
(9)

Where the delta values indicate the incremental difference for each source compared to a theoretical point source located exactly between them. The pressure equation can then be rearranged to yield

$$P = \frac{A_o}{r} e^{j(\omega t - kx)} \left[\left(\frac{1 + \frac{\Delta A}{A_o}}{1 - \frac{\Delta r}{r}} \right) e^{jk\Delta x} - \left(\frac{1 - \frac{\Delta A}{A_o}}{1 + \frac{\Delta r}{r}} \right) e^{jk\Delta x} \right]$$
(10)

An acoustic source located near the surface has a surface reflection image of equal amplitude and opposite phase. In the far field the image pair is treated as a single doublet source. For a balanced source, the pressure equation can be approximated by

$$P = \frac{A}{r} e^{j\omega t} \left[e^{-jk(r-\Delta x)} - e^{-jk(r+\Delta x)} \right]$$
(11)

As seen in fig. 2, Δr is

$$\Delta r = \frac{d}{2} \sin \theta$$
 (12)

or

combining eqs. 11 and 13, yields the pressure

$$P=2j\frac{A}{r}\sin(kr_{1}\sin\gamma\sin\theta)e^{j(\omega t-kr)} \qquad (14)$$

To develop an equation for the unbalanced doublet, the amplitude relationships expressed in eq. 9 must be rewritten as

$$A_o = \frac{A_+ + A_-}{2} \qquad \Delta A = \frac{A_+ - A_-}{2} \tag{10}$$

So that for an unbalanced doublet

$$P=2\frac{jA_o}{r}\left[\sin\left(kr_1\sin\theta\right) - j\Delta\frac{A}{A_o}\cos\left(kr_1\sin\theta\right)\right]c^{j(\omega t-kr)} \quad (16)$$

The distance from the center of the doublet to the receiver can be calculated using the law of cosines.

$$r^{4} = r_{1}^{2} + r_{2}^{2} - 2r_{1}r_{2}\cos(2n\beta \pm \delta)$$
 (17)

Where the ranges r_1 and r_2 are measured from the apex to the source, and from the apex to the receiver respectively. The angle δ is measured from the surface down to the receiver. The range from each successive doublet in a wedge of angle β is

$$r_{n} = \sqrt{r_{1}^{2} + r_{2}^{2} - 2r_{1}r_{2}\cos(2n\beta \pm \delta)}$$
(18)

Where the angle in the cosine term refers to the angle of each reflected image; those with a "+" are the upper images, and those with a "-" are the lower images. This equation can be rearranged to yield

$$r_{n} = (r_{1} - r_{2}) \sqrt{1 + \frac{2r_{1}r_{2}}{r_{1} - r_{2}^{2}} (1 - \cos(2n\beta \pm \delta))}$$
(19)

The first order Taylor's series expansion can then be used to simplify eq. 19

$$r_{n} = (r_{1} - r_{2}) \{ 1 + \frac{r_{1}r_{2}}{r_{1} - r_{2}^{2}} [1 - \cos(2n\beta \pm \delta)] \}$$
(20)

IV. QUADRUPLET EXPANSION

The upper and lower image doublets can be combined to form a quadruplet. The complimentary doublets are 180° out of phase, and the pressure of the new quadruplet is

$$p_{n} = \frac{2jA_{n}}{r} \{ \sin[kr_{1}\gamma\sin(2n\beta+\delta)] e^{-jk\Delta r},$$

$$-\sin[kr_{1}\gamma\sin(2n\beta-\delta)] e^{-jk\Delta r} \} e^{j(\omega t - kr)}$$
(21)

In this case, both of the interior exponents involving Δr are negative. The Δr terms are derived from a comparison to the range from the primary doublet, thereby ensuring that all phase angles are calculated with respect to a common reference point. To find the Δr values used in eq. 21, an approximation of eq. 20 gives

$$\Delta r_{-}^{+} = r_{-}^{+} - (r_{2} - r_{1}) = \frac{L_{1}L_{2}}{r_{2} - r_{1}} \left[1 - \cos(2n\beta \pm \delta) \right]$$
(22)

The cosine term can be expanded and approximated for small values of δ .

$$\cos(2n\beta \pm \delta) = \cos(2n\beta) \pm \delta \sin(2n\beta)$$
(23)

Equation 21 can now be expanded into the unbalanced quadruplet equation.

$$p_{n} = \frac{2jA_{n}}{r} e^{j(\omega t - kr)} e^{-jk \frac{r_{1}r_{2}}{r_{2} - r_{1}} (1 - \cos(2n\beta))}$$

$$(\sin[kr_{1}\gamma \sin(2n\beta + \delta)] e^{-jk \frac{r_{1}r_{2}}{r_{2} - r_{1}} \delta \sin(2n\beta)}$$

$$(24)$$

$$-\sin[kr_{1}\gamma \sin(2n\beta - \delta)] e^{jk \frac{r_{1}r_{2}}{r_{2} - r_{1}} \delta \sin(2n\beta)}$$

It is convenient to define

So that eq. 24 becomes

$$p_{n} = \frac{2j}{r_{d}} e^{j(\Theta t - kr)} e^{-j\Phi}$$

$$\{A_{n} \{ \sin \{kr_{1}\gamma \sin (2n\beta + \delta) \} - j \frac{\Delta A}{A} \cos \{kr_{1}\gamma \sin (2n\beta + \delta) \} \} e^{-j\mu d} \quad (26)$$

$$-B_{n} \{ \sin [kr_{1}\gamma \sin (2n\beta - \delta) \} - j \frac{\Delta B}{B} \cos [kr_{1}\gamma \sin (2n\beta - \delta)] \} e^{-j\mu d}$$

The values for $\triangle A$ and $\triangle B$ must be determined from the reflection coefficients.

V. REFLECTION COEFFICIENTS FOR A SLOW BOTTOM

The reflection coefficients used in this thesis are derived from the Rayleigh reflection coefficient

$$R = \frac{bc - \sin\theta_t / \sin\theta_i}{bc + \sin\theta_t / \sin\theta_i}$$
(27)

Where

$$b = \frac{\rho_2}{\rho_1} \qquad C = \frac{C_2}{C_1} \tag{28}$$

The angles are the grazing angle θ_1 and angle or transmission θ_t . Therefore, θ_c is defined as

$$\frac{c_1}{c_2} - \arccos \theta_c \tag{29}$$

Using trigonometric relationships, eq. 27 can be rewritten.

$$R = \frac{bc - \sqrt{1 - c^2 \cos^2 \theta_i / \sin \theta_i}}{bc + \sqrt{1 - c^2 \cos^2 \theta_i / \sin \theta_i}}$$
(30)

In addition, the term under the radical can be rewritten.

$$\sqrt{1 - C^2 \cos^2 \theta_i} = C \sqrt{\sin^2 \theta_i - \sin^2 \theta_c}$$
(31)

Combining eqs. 30 and 31, and rearranging yields

$$R = \frac{b - \sqrt{1 - [\sin \theta_c / \sin \theta_i]^2}}{b + \sqrt{1 - [\sin \theta_c / \sin \theta_i]^2}} = \frac{b - \sqrt{1 - 1/x^2}}{b + \sqrt{1 - 1/x^2}}$$
(32)

Where x is

$$x = \frac{\sin \theta_i}{\sin \theta_i} \tag{33}$$

For a slow bottom with a very small angle, eq. 32 can be approximated by

$$R=\Theta^{\frac{2bc}{\sqrt{1-c^2}}\theta_1} \tag{34}$$

The argument of the exponential is

$$\alpha = \frac{2bc}{\sqrt{1-c^2}} = \frac{2\rho_2/\rho_1}{\sqrt{(c_2/c_1)^2 - 1}}$$
(35)

So that this approximation of the Rayleigh reflection coefficient can be written in a more concise form

$$R=e^{\alpha\theta_2} \qquad (3b)$$

Since each ray intersects the bottom and surrace multiple times, a product of reflection coefficients along each individual path is required. This cumulative coefficient will take the form

$$\boldsymbol{\mathcal{R}}_{n} = \prod_{m=1,3,\ldots}^{2n-1} R\left[\boldsymbol{\theta}_{i} - (2n-m)\boldsymbol{\beta}\right]$$
(3/)

and the product yields

$$\mathfrak{R}_{n} = e^{-n \alpha \vartheta_{i}} e^{-n^{2} \alpha \beta} \qquad (38)$$

For very small angles, this can be approximated by

$$\mathbf{\mathfrak{R}}_{n} = \mathbf{e}^{-a^{2} \mathbf{e} \mathbf{\beta}} \tag{39}$$

The angles of incidence are needed to calculate the product. The angles for the bottom images are

$$\theta_{o}=2(n-1)\beta \tag{40}$$

Using the law of sines, the angle at the receiver is defined

$$\epsilon = (r_1/r_0)\sin(2n\beta + \delta)$$
(41)

The angle of incidence of the ray from the center of the doublet image to the receiver intersecting the apparent bottom is

$$\theta = 2 (n-1) \beta + \delta + \epsilon \qquad (42)$$

However, the upper and lower images in each doublet have slightly different angles of incidence with the apparent bottom

$$\boldsymbol{\theta}_{\star} = (2\mu - 1) \boldsymbol{\beta} + \boldsymbol{\delta} + \boldsymbol{\varepsilon}_{\star} \tag{43}$$

The upper and lower angles at the receiver for each doublet are

$$\epsilon_{\pm} = \epsilon_{\pm} \left(r_{1} / r_{o} \right) \gamma \cos \left(2n\beta + \delta \right)$$
(44)

The individual angles of incidence are

$$\theta_{\pm} = \theta_{o} + \delta \left(1 + (r_{1}/r_{o}) \cos \left(2n\beta + \delta \right) \right) \pm (r_{1}/r_{o}) \gamma \cos \left(2n\beta \right)$$
(45)

If the following variables are used in the coefficients as approximations of the sine of the angles of incidence

$$a_{n}=1+\frac{L_{1}}{r_{o}}\cos 2n\beta$$

$$b_{n}=\frac{L_{1}}{r_{o}}\cos 2n\beta$$
(4b)

then eq. 38 becomes

$$\mathbf{\mathfrak{R}}_{n} = \mathbf{\mathfrak{R}}_{n} e^{-n\delta \boldsymbol{e}_{n}\mathbf{k}} e^{\pi n \gamma \boldsymbol{b}_{n}\mathbf{k}} \tag{47}$$

For each doublet image there is an upper and lower image. The upper doublet is defined by A_0 with the upper image A_1 and the lower image A_1 . Likewise, the lower doublet B_0 has the upper image B_1 and the lower image B_1 .

$$A_{-} = \mathfrak{R}_{n} e^{-n a_{n} \delta a} e^{-n b_{n} \gamma a} \qquad B_{-} = \mathfrak{R}_{n} e^{-n a_{n} \delta a} e^{-n b_{n} \gamma a} \qquad (48)$$
$$A_{+} = \mathfrak{R}_{n} e^{-n a_{n} \delta a} e^{-n b_{n} \gamma a} \qquad B_{+} = \mathfrak{R}_{n} e^{-n b_{n} \gamma a}$$

 A_{n} and ΔA defined by eq. 15 can be combined with eq. 48

$$A_n = \mathfrak{R}_n \cosh(nb_n \gamma \alpha) e^{-na_n \delta \alpha} \qquad B_n = \mathfrak{R}_n \cosh(nb_n \gamma \alpha) e^{-na_n \delta \alpha} \qquad (49)$$
$$AA = \mathfrak{R}_n \sinh(nb_n \gamma \alpha) e^{-na_n \delta \alpha} \qquad \Delta B = \mathfrak{R}_n \sinh(nb_n \gamma \alpha) e^{-na_n \delta \alpha} \qquad (49)$$

When combined, they yield

$$\frac{\Delta A}{A_n} = \tanh(nb_n\gamma\alpha) \qquad \frac{\Delta B}{B_n} = \tanh(nb_n\gamma\alpha) \qquad (50)$$

The result is the full quadruplet equation

$$P=p_{1}+\sum_{n=1}^{N}\frac{2j}{r}\mathfrak{B}_{n}coshb\ e^{j(\omega t-kr)}e^{-j\phi}$$

$$[e^{-a-j\mu d}sin(kr_{1}\gamma sin(2n\beta+\delta))-jtanhb\ cos(kr_{1}\gamma sin(2n\beta+\delta))$$

$$-e^{a+j\mu d}sin(kr_{1}\gamma sin(2n\beta-\delta))-jtanhb\ cos(kr_{1}\gamma sin(2n\beta-\delta))]$$

VI. RESULTS

Three runs at different ranges were made to compare the output of the quadruplet model with that of the "UKIEXT" program. For each run, the source angle is 1^6 , and the weage angle is 3^6 . The ratio of the sound speed in seawater to that of the bottom is 1.01695, and the ratio of the density of seawater to that of the bottom is 0.7. This is equivalent to a slow bottom consisting of a combination of clay and ooze; conditions very common in continental shelf regions. The runs are tabulated at 0.30^6 increments of receiver angle from the surface downwards. The results are snown in tables 1 through 3. At a receiver angle of zero all three runs result in an amplitude of zero, as they should.

At the shortest range, Run 3, the results of the quadruplet model differ significantly from those of "URTEXT". The percentage difference in amplitude is consistently above 10%. With the exception of the 3^0 receiver angle, the average percentage difference in amplitude for the other two runs is well below 10%. The far field doublet approximation improves at longer ranges, and the approximations for Ar values become more accurate. Also, the difference in phase angle is much greater at the shortest range; half the phase angles in Run 3 differ by greater than $\pi/4$, but in the other two runs, only the phase angle at a 3^0 receiver angle difference by more than that amount.

Тp

Each of these data sets is accompanied by sample plots of the quadruplet pressure amplitude and the reflection coefficient for each quadruplet. In each case, the plots were taken with a receiver angle of 0.90°. The magnitude of the complex quadruplet pressure drops off very quickly with the quadruplet number. It is negligible by the 5th quadruplet. This is a result of the effect of the rapid (exponential) decay of the Rayleigh reflection coefficient with increased angle of incidence of the higher number of quadruplet.

In practical terms, this means that the quadruplet expansion becomes less accurate with larger receiver and wedge angles. As these angles increase, the difference in the angles of incidence between the upper doublet sound path and the lower doublet sound path will increase proportionately. When these differences are raised to the exponential power in the reflection coefficients, the differences in amplitude between upper and lower doublets at the receiver will be quite large. However, the fundamental assumption in the quadruplet expansion is that the upper and lower doublet images are equivalent in amplitude, but opposite in phase. Therefore, the quadruplet expansion is only valid for very small angles and long ranges.

17

TABLE 1

BETA=3, GAMMA=1, R1=1, R2=100, DENSITY RATIO=.9, SPEED RATIO=1.01695

DELTA	URTEXT AMP.	QUAD AMP.	Аъ Амр.	URTEXT Phase	QUAD Phase	A ^C PHASE
0.30	0.00010	0.000092	8.4	17.6	-23.9	41.5
0.60	0.00018	0.000175	2.8	18.8	-23.5	42.1
0.90	0.00024	0.000243	1.25	19.2	-22.3	41.5
1.20	0.00032	0.000288	10.0	18.3	-20.8	32'T
1.50	0.00032	0.000306	4.4	17.5	-18.6	36.1
1.80	0.00030	U.000295	1.7	10.2	1-12.4	1 1 1 1 1 1
2.10	0.00029	0.000255	1 [12.Ŭ	16 0	-1Ú.0	1 20.6
2.40	0.00020	0.000190	1 1 5.Ú	15.1	-2.1	∎ ⊥/.2 µ
2.70	0.00013	0.000112	113.9	18.2	1 19.4	
3.00	0.00002	0.000079	295.0	26.9	88.5	61.6

anesari talqurbaup io abutangaM

Jnaioi 1 1ao)

TABLE 2

BETA=3, GAMMA=1, R1=1, R2=50, DENSITY KATIO=. 9, SPEED KATIO=1.01090

DELTA	URTEXT AMP.	QUAD AMP.	Δ% Amp.	URTEXT Phase	QUAD Phase	۵ ⁴ Phase
0.30	0.00018	0.000194	7.8	1.93	-22.9	24.8
0.60	0.00038	0.000369	2.9	2.75	-22.1	24.9
0.90	0.00052	0.000511	1.7	3.04	-20.7	23.1
1.20	0.00063	0.000606	3.8	3.95	-18.5	22.5
1.50	0.00065	0.000644	0.92	2.91	-15.3	τα. <u>ν</u> ι
1.80	0.00069	0.000620	10.1	4.12	-10.5	15.3
2.10	0.00059	0.000539	1	1 1.93	 -2./±	4.04
2.40	0.00047	0.000416	11.5	2.59	111.5	I 8.У
2.70	0.00031	0.000303	1 2.3	4.85	42.3	31.5
3.00	0.00010	0.000321	221.0	18.1	-89.6	107.7

Jnaijillao)

Magnatude of Quadruplet Pressure

TABLE 3

DELTA	URTEXT Amp.	QUAD AMP.	∆% Amp.	URTEXT Phase	QUAD Phase	I A ⁰ I Phase
0.30	0.0013	0.0015	15.4	-47.2	-27.5	19.7
0.60	0.0024	0.0028	16.7	-47.Ú	-25.4	11 11 21.6
0.90	0.0034	0.0039	14.7	-40.6	-21.4	∰ 25.2
1.20	0.0041	0.0046	12.2	-40.1	-15.1	∦ ∦ 31.∪
1.50	0.0044	0.0050	13.6	-45.1	-5.58	1 39.5
1.80	0.0044	0.0051	15.9	-43.5	8.04	П рт'й И
2.10	0.0040	0.0053	32.5	-40.2	28.33	11 11 68.5
2.40	0.0033	0.0061	84.8	-34.1	51.15	1∎ ∦ 85.∠
2.70	0.0024	0.0076	216.7	-20.1	71.85	₩ ₩ 92.0
3.00	0.0018	0.0098	444.4	13.5	87.68	11

BETA=3, GAMMA=1, RI=1, R2=10, DENSITY RATIO=.9, SPEED RATIO=1.01695

Jnaijillao)

APPENDIX A

B=input('wedge angle in degrees='); G=input('source angle from surface in degrees='); D=input('receiver angle from surface in degrees='); rho=input('water to bottom density ratio='); cc=input('water to bottom sound speed ratio='); rl=input('range of source from apex='); r2=input('range of receiver from apex=');

Nl=fix(90/B); B=B*pi/180; G=G*pi/180; D=D*pi/180;

SCALCULATE SCALING FACTOR


```
tb=tan(B);
```

```
if cc<l,
```

tl=acos(cc);

t2=sin(t1);

else

tl=acos(l/cc);

t2=tan(tl);

end

kl=2*t2*tb;

k=p1/k1;

SCALCULATE CONSTANTS AND PRIMARY DOUBLET

```
al=2*(1/rho)/(sgrt(cc<sup>2</sup>-1));
r=sgrt(rl<sup>2</sup>+r2<sup>2</sup>-2*rl*r2*cos(D));
r3=abs(r2-rl);
r4=rl*r2/r3<sup>2</sup>;
mu=r2/abs(r2-rl);
g=k*rl*G*D;
pl=(2/r)*sin(g);
```

f=0;

SQUADRUPLET SUMMATION

for n=1:1:N1,

```
s(n)=n;
th(n)=2*n*B;
d(n)=k*rl*D*sin(th(n));
ph1(n)=k*rl*mu*(1-cos(th(n)));
```

```
ru(n)=sqrt(rl 2+r2 2-2*rl*r2*cos(th(n)+D));
rl(n)=sqrt(rl 2+r2^2-2*rl*r2*cos(th(n)-D));
r5(n)=rl/ru(n);
r6(n)=rl/rl(n);
ai(n)=i+r5(n)*cos(th(n));
bl(n)=r6(n)*cos(th(n));
rr(n)=-B*ai*(n 2);
R(n)=-exp(rr(n));
a(n)=n*al*D*al(n);
b(n)=n*al*G*bl(n);
```

***PRESSURE**

ul(n)=cosh(b(n)); u2(n)=exp(-j*ph1(n)); u3(n)=(-2/r)*R(n)*ul(n)*u2(n);

&UPPER IMAGE

```
******************
```

vl(n)=sin(th(n)+D); v2(n)=k*rl*G*vl(n); v3(n)=sin(v2(n)); v4(n)=cos(v2(n)); v5(n)=-a(n)-j*mu*d(n); v5(n)=exp(v5(n)); v6(n)=exp(v5(n)); v7(n)=tanh(b(n)); v8(n)=v6(n)*(v3(n)-j*v7(n)*v4(n));

SLOWER IMAGE

```
wl(n)=sin(th(n)-D);
w2(n)=k*rl*G*wl(n);
```

```
w3(n)=sin(w2(n));
w4(n)=cos(w2(n));
w5(n)=a(n)+j*mu*d(n);
w6(n)=exp(w5(n));
w7(n)=w6(n)*(w3(n)-j*v7(n)*w4(n));
```

```
SUMMATION
```

```
********************
```

```
p(n)=u3(n)*(v8(n)-w7(n));
t=t+p(n);
pr(n)=real(p(n));
pim(n)=imag(p(n));
pz(n)=sqrt(pr(n) 2+pim(n) 2);
rm(n)=-1*R(n);
```

end

```
plot(s,pz);grid;
```

```
xlabel('Quadruplet Number');
```

ylabel('Magnatude of Quadruplet Pressure');

title('Quadruplet Pressure');

pause;

plot(s,rm);grid;

title('Rayleigh Reflection Coefficient');

xiabel('Quadruplet Number');

yiapei(Coefficient');

```
pause;
ps=pi+t;
ph=imag(ps)/real(ps);
phl=atan(ph);
phase=180*phl/pi
f=f;
pl=pl;
ps=ps;
P=sqrt(real(ps) 2+imag(ps) 2)
end;
```

```
32
```

BIBLIOGRAPHY

Back , C.; The Acoustic Pressure in a Wedge Shaped Water Layer Overlying a Fast Fluid Bottom; Master's Thesis, Navai Postgraduate School, Monterey, CA, March 1984

Bradshaw, N.; Propagation of Sound in a Fast Bottom Underlying a Wedge Shaped Medium; Master's Thesis, Navai Postgraduate School, Monterey, CA, Sept. 1980

Buckingham, M.J.; "The Theory of Three-dimensional Acoustic Fropagation in a Wedgelike Ocean with a Penetrable Bottom;" J. Acoust. Soc. Am., 82(1), July 1987

Coppens, A.B., Humphries, M., Sanders, J.V.; "Propagation of Sound out of a Fluid Wedge into an Underlying Fluid Substrate of Greater Sound Speed;" J. Acoustic. Soc. Am., 76(5), November 1984

Coppens, A.B., Frey, A.K., KINSIER, L.E., Sanders, J.V.; Fundamentals of Acoustics, Third Edition; John Wiley, and Sons, Inc.; Monterey, CA. 1980

Coppens, A.B., Sanders, J.V., Ioannou, G.I., Kamawamura, M.; Two Computer Programs for the Evaluation of the Acoustic Pressure Amplitude at the Bottom of a Wedge Shaped Fiuld Layer Overlying a Fast, Fluid Haif-Space; Technical Report #NPS-61-79-002, Naval Postgraduate School, Monterey, CA, Dec. 1978

Jensen, F.B., Kuperman, W.A.; "Sound Propagation in a wedge Shaped Ocean with a Penetrable Bottom;" J. Acoustic. Soc. Am., 67(5), May 1980

Jensen, F.B., Tindle, C.T.; "Numerical Modeling Results for Mode Propagation in a Wedge;" J. Acoustic. Soc. Am., 82(1), July 1987

Kaswandı, C.; A Computerized investigation Using the Method of Images to Predict the Sound Field in a Fluid Wedge Overlying a Slow Half-space; Master's Thesis, Navai Postgraduate School, Monterey, CA, Dec. 1987

Kim Jong Rok; Comparison for Sound Pressure in a Weage Shaped Ocean as Predicted by an Image Method and a PE Model; Master's Thesis, Naval Postgraduate School, Monterey, CA, Dec.1990 Livingood, D.M.; Extension of the Analytical Approximation to the Transmission of Sound in Shallow Water Using the Image Model; Master's Thesis, Naval Postgraduate School, Monterey, CA, Sept. 1992

Math Works, inc.; The Student Eastion of MATLAB; Prentice Hall, Inc., Englewood Clirrs, New Jersey, 07362

Nassopoulis, G.; Study of Sound Propagation in a weage Snaped Ocean and Comparison with other Methods; Master's Thesis, Naval Poastgraduate School, Monterey, CA, June 1992

Paliatsos, D.; Computer Studies of Sound Propagation in a Wedge Shaped Ocean with Penetrable Bottom; Master's Thesis, Naval Postgraduate School, Monterey, CA, March 1989

Personal Communications with A.B. Coppens and J.V. Sanders Naval Postgraduate School, Monterey, CA, June-Sept. 1993

DISTRIBUTION LIST

2

2

2

- 1. Defense Technical Information Center Cameron Station Alexandria, VA, 22304-6145
- 2. Library, Code 0142 Naval Postgraduate School Monterey, CA, 93943-5002
- Dr. A.B. Coppens, Code PH/CZ Department of Physics Navai Postgraduate School Monterey, CA, 93943-5002
- 4. Lt Michaei D. Joyce ASWOC Sigonelia PSC 812, BOX 3270 FPO AE 09627-3270