
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A2 7 5 117\ll|lUUUU

DTIC~
R• A S llE L EC T E -D

DISSERTATION

AUTOMATED CARTOGRAPHY BY AN
AUTONOMOUS MOBILE ROBOT

USING ULTRASONIC RANGE FINDERS

by

David Leonard MacPherson, Jr.

September 1993

Dissertation Supervisor: Yutaka Kanayama

Approved for public release; distribution is unlimited.

94-02570
94 1 26 04.2 1IIIIIIIU/IiIEIIti/Eiluuf111

UNCLASSIFIED
rECURTY C.SICATICN OF THIS PAGE

REPORT DOCUMENTATION PAGE
le. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
21. SECURI TY CLASIFICATION AUTHORITY 3. UISTRIBUTION/AVAILABIUTY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release; distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATIONI (f applic~able)
Naval Postgraduate School CS Naval Postgraduate School

6c. ADDRESS (City. State, and ZIP Code) 7b. ADDRESS (City, Stato, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. .FICE' SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION t'applicable)

8c. ADDRESS (City, Siate, andZIP Code) 10. SOURCE CF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification) AUTOMATED CARTOGRAPHY B Y AN AUTONOMOUS MOBILE

ROBOT USING ULTRASONIC RANGE FINDERS (U)
12. PERSONAL AUTHOR(S)

MacPherson, David Leonard, Jr.
13a. TYPE OF REPORT 13b. TIME COVER)14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Ph.D. Dissertation From 9/91 To 9/93 September 1993 386
16. SUPPLEMENTARY NOTATION

The views expressed in this dissertation ar(those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Goveminent.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP ' aut,mnomous vehicles, autonomous me'-ile robots, software architectures

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
The problem solved was for an autonomous mobile robot to generate a precise map of its orthogonal, indoor environment. The maps gen-

erated by the robot's sensors must be perfect so they can be used in subsequent navigation tasks using the same sensors.
Our approach performed map-making incrementa ly with a partial world data structure describing incomplete polygons. A striking feature

of the partial world data structure was they consist o. "real" and "inferred" edges. Basztcally, in each learning step, the robot's sensors scan an
unexplored region to obtain new "real" and "inferred" edges by eliminating at least (we "inferred" edge. The process continues until no "in-
ferred" edges remain in the partial world. In order to make this algorithm possible, linear fittinR of sensor input, smooth vehicle motion control,
dead reckoning error correction, and a mapping algorithm were developed. This algorithm was implemented on the autonomous mobile robot
Yamabico-l1.

The results of this experiment using Yamabico-I1 were threefold. (1) A smooth path tracking algorithm resulted in motion error of less than
2% in all experiments. (2) Dead reckoning error concction experiments revealed small, consistent vehicle odometry errors. The maximum
observed error was 1.93 centimeters and 1.040 over a 9.14 meter course. (3) Precise mipping was demonstrated with a map accuracy in the
worst case of 25 centimeters and 20 of hand measur.-d maps. The ability to explore an indoor world space while correcting dead reckoning
error is a significant improvement over previous woik ILeonard 91] [Crowley 86] [Cox 91].

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT _ 21. ABSTRACT SECURITY CLASSIFICATION

j] UNCLASSIFIED/UNLIMITED [] SAME AS RPT. C] DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Yutaka Kanayama (408) 656-2095 Code CS/Ka
DD FORM 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Approved for public release; distribut~nhi is unlimited

AUTOMATED CARTOG.RAPHY BY AN AUTONOMOUS MOBILE ROBOT
USING ULTRASONIC RANGE FINDERS

David Leonard MacPherson, Jr.
lieutenant Commander, United States Navy
B.S., Rensselaer Polytechnic Institute, 1981

M.S., Naval Postgraduate School, 1986

Submitted in partial fulfillment of the

rzquirements for the degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

from the

NA'V,•'L POSTGRADUATE SCHOOL

September 1993

Author: /4*74d 44X*4i(~
David Leonard MacPherson, Jr.

Approved By:

Yutaka Kanyri
Professor of Computer St ience

Dissertatio.nSSupervisor Michaeloiir'yde•
SProfessor of Compu cience

Associate Professor of Matmematics
STinm60J. Shimeall

Assistwat Professor of Computer Science
Antl~ny J. Heale)/

Professor of Mechanical E,(/n

Approved by:
Professor Ted wis, Chairm Dkartment of Computer Science

Approved by:
Richard S. Elster, Dean of Instruction

ii

ABSTRACT

The problem solved was for an autonomous mobile robot to generate a precise map of its

orthogonal, indoor environment. The maps generated by the robot's sensors must be perfect so they

can be used in subsequent navigation tasks using the same sensors.

Our approach performed map-making incrementally with a partial world data structure

describing incomplete polygons. A striking feature of the partial world data structure was they

consist of "real" and "inferred" edges. Basically, in each learning step, the robot's sensors scan an

unexplored region to obtain new ",eal" and "inferred" edges by eliminating at least one "inferred"

edge. The process continues until ao "inferred" edges remain -n the partial world. In order to make

this algorithm possible, linear fitting of sensor input, smooth vehicle motion control, dead

reckoning error correction, and a mapping algorithm were developed. This algorithm was

implemented on the autonomous !:obile robot Yamabico-ll.

The results of this experiment using Yamabico-li were threefold. (1) A smooth path tracking

algorithm resulted in motion error of less than 2% in all exp,-riments. (2) Dead reckoning error

correction experiments revealed small, consistent vehicle odometry errors. The maximum

observed error was 1.93 centimeters and 1.04' over a 9.14 meer course. (3) Precise mapping was

demonstrated with a map accuracy in the worst case of 25 centimeters and 20 of hand measured

maps. The ability to explore an qdoor world space while correcting dead reckoning error is a

significant improvement over pre, ious work [Leonard 91] [Crowley 86] [Cox 91].

DTISOO qJAL1T INSPECTED 5

UTis UW.I (e'
DTICTo 05
Vuemnouncod 0

SPis•ritutiop/ 1
Availability ooee"

)iAtiA and/or
Mat 1Special

~ijI v_

TABLE OF CONTENTS

INTRODUCTION ... 1

A. SCOPE OF DISSERTATION ... 4

B. THE AUTOMATED CARTOGRAPHY PROBLEM 4

1. Problem Statement ... 4

2. Example of a Typical Automated Cartography Experiment 5

3. Assumptions ... 5

C. ORGANIZATION OF DISSERTATION ... 6

II. AUTOMATED CARTOGRAPHY: MAJOR CHALLENGES AND ISSUES 8

A. METHODS FOR MAP REPRESENTATIONS .. 9

1. Grid Representation .. 9

2. Cell Tree Representation ... 11

3. Polyhedral Representation ... 11

4. Constructive Solid Geometry Representation ... 12

5. Topological Map Representation ... 12

B. APPROACHES TO ROBOT MOTION PLANNING 13

1. Skeleton .. 14

2. Cell Decomposition ... 14

3. Potential Field .. 15

4. Mathematical Programming ... 16

iv

C. SOFTWARE ARCHITECTURE ... 16

1. Monolithic Control ... 16

2. Hierarchical (Deliberative) Control ... 17

3. Behavior-Based (Reactive) Control .. 17

4. Hybrid Systems ... 20

5. Distributed Control (Blackboard Paradigm) ... 21

6. Machine Learning Systems .. 21

D. ROBOT SENSING .. 22

1. Laser and Light Range Finders ... 23

2. Infrared Range Finders .. 25

3. Contact Sensing .. 26

4. Video Camera .. 27

5. Ultrasonic Range Finders ... 28

E. ROBOT LOCALIZATION AND NAVIGATION METHODS 32

F. ROBOT EXPLORATION AND CARTOGRAPHY 34

1. Undirected Exploration ... 34

2. Directed Exploration .. 34

G. SUMMARY .. 35

Ill. THE YAMABICO-I1 MOBILE ROBOT .. 37

A. THE NAVAL POSTGRADUATE SCHOOL YAMABICO-11 37

1. Hardware Description ... 37

v

2. Sensor Characteristics .. 38

B. YAMABICO-11 ROBOT SIMULATOR ... 45

1. Design Goals of the Yamabico Simulator System 46

2. Simulator Top Level .. 46

3. Utility of a Robot Simulator .. 47

4. Simulator Sonar M odel ... 49

5. Simulator Fidelity .. 51

C. SUM M ARY .. 51

IV. YAMABICO SOFTWARE ARCHITECTURE ... 53

A. TASK SCHEDULING .. 53

B. GEOM ETRIC M ODULE .. 55

1. Definition Functions ... 55

2. Functions ... 56

C. MOTION CONTROL SUBSYSTEM .. 56

1. Odometry Capability .. 57

2. Path Tracking .. 57

D. SONAR SUBSYSTEM .. 65

1. Hardware Control ... 65

2. Calculation of Global Sonar Return .. 65

3. Least Squares Linear Fitting .. 66

4. Data Logging ... 70

vi

E. INPUT OUTPUT SUBSYSTEM ... 71

1. On Board User Interface .. 71

2. Facilities to Download Executable Programs ... 71

3. Retrieval of Data Collected by Yamabico .. 72

F. SUMMARY .. 72

V. THEORETICAL BASIS OF VEHICLE ODOMETRY CORRECTION 74

A. THE TRANSFORMATION GROUP .. 75

B. FUNDAMENTAL CONCEPTS .. 81

C. EVALUATION OF ROBOT ODOMETRY ERROR 84

D. MODEL-SENSOR-BASED ERROR DETECTION 87

E. RELATIONSHIP TO OTHER TRANSFORMATION GROUPS 90

F. SUMMARY .. 94

VI. REPRESENTATION OF THE WORLD .. 96

A. REPRESENTATION OF A POLYGON ... 96

1. Example Polygons ... 96

2. Definitions ... 96

B. REPRESENTATION OF A WORLD .. 101

1. Example W orlds ... 101

2. D efinitions .. 101

C. SUMMARY .. 104

VII. THEORY OF AUTOMATED CARTOGRAPHY .. 105

vii

A. ALGORITHM FOR IDEALIZED SENSOR S, ... 106

1. Characteristics of the S1 Sensor ... 106

2. Example of Behavior .. 108

3. Algorithm ... 116

4. Proof of Correctness and Termination ... 122

B. ALGORITHM FOR IDEALIZED SENSOR S2 125

1. Assumptions for the S2 Algorithm ... 125

2. Example of Behavior .. 126

3. Algorithm ... 128

4. Proof of Correctness and Termination ... 132

C. ALGORITHM FOR IDEALIZED SENSOR S3 134

1. Assumptions for the S3 Algorithm ... 134

2. Example of Behavior .. 135

3. Algorithm ... 137

4. Proof of Correctness and Termination ... 142

D. SUM M ARY .. 143

VIII. AUTOMATED CARTOGRAPHY BY YAMABICO-1 145

A. REPRESENTATION OF THE W ORLD ... 146

1. Real W orld Issues .. 148

2. Definitions .. 150

viii

B. THE ALGORITHM .. 150

1. Assumptions ... 150

2. Example of Behavior .. 151

3. Algorithm ... 154

C. SUM M ARY .. 160

IX. EXPERIMENTAL RESULTS AND CONCLUSIONS ... 162

A. M OTION CONTROL EXAM PLES ... 162

1. Observation Plan .. 162

2. Observation Results ... 163

B. ODOMETRY EXPERIMENTAL RESULTS .. 171

1. Experimental Plan .. 171

2. Experimental Results ... 171

C. AUTOMATED CARTOGRAPHY EXPERIMENTAL RESULTS 177

1. Experimental Plan .. 177

2. Experimental Results ... 178

D. SUM M ARY .. 182

X. CONCLUSIONS ... 186

A. SUM M ARY OF CONCLUSIONS ... 186

B. CONTRIBUTIONS TO MOBILE ROBOTICS ... 188

C. SUGGESTIONS FOR FUTURE RESEARCH .. 189

APPENDIX A. YAMABICO USER'S MANUAL ... 192

ix

APPENDIX B. LOCOMOTION SOURCE CODE .. 261

APPENDIX C. SONAR SOURCE CODE .. 299

APPENDIX D. ODOMETRY CORRECTION SOURCE CODE 324

APPENDIX E. CARTOGRAPHY SOURCE CODE .. 332

LIST OF REFERENCES ... 360

INITIAL DISTRIBUTION LIST .. 372

X

ACKNOWLEDGMENTS

First and foremost, I must acknowledge the unfailing love, dedication, and uncondi-

tional support I have received through it all from my wife and best friend, Sally, without

which this work could never have been completed. Her positive attitude and understanding

while handling this incredibly stressful period were remarkable. She proofread every single

page of this manuscript at least a dozen times. Her valuable comments helped me to better

appreciate her wisdom. This experience has brought us closer together.

I also wish to express my deepest gratitude to Professor Yutaka Kanayama whose sup-

port, guidance, and enthusiasm have been a constant inspiration to me. His door was always

open for me and for any other student needing help. His patience and positive attitude were

invaluable to this research.

I am deeply indebted to my committee for their patience and wisdom. Professor

Michael Zyda provided valuable comments on the overall layout of this dissertation. Pro-

fessor Tony Healey made insightful suggestions regarding the sonar experiments necessary

to improve my understanding of Yamabico's sonar system. Professor Tim Shimeall's com-

ments regarding my writing and scientific approach were exceptionally helpful. Professor

Craig Rasmussen generously provided me with badly needed mathematicai guidance as

well as proofreading the manuscript numerous times. I would also like to thank Professor

Robert McGhee for his support and encourage in the early stages of my program.

I appreciate the continuous encouragement and support of the members of the Yam-

abico research group. Their enthuciasm for my work helped me to apply constant, steady

pressure during my research phase.

xi

L INTRODUCTION

Recent advances in computer processing speed have encouraged the development of

increasingly capable mobile robot platforms. The popular trend in current military applica-

tions is to accomplish the required mission with a minimum loss of life. Consequently,

many government-sponsored efforts are underway for building systems for fighting fires,

handling ammunition, transporting material, conducting underwater search and inspection

operations, and other dangerous tasks now performed by humans [Everett 92]. One useful

naval application would be a robot for inspecting tanks, voids and other dangerous spaces

on board a military ship. This kind of robotic vehicle must first be physically robust to cope

with the harsh ship-board environment. Additionally, this robot must have the proper sen-

sors, mobility, and intelligence to perform a variety of tasks. This interdisciplinary set of

problems is part of the robotics field. The capability to explore an unknown environment

and record data about this environment is a critical capability of this robotic vehicle. This

capability is part of a larger problem called cognition. Cognition is composed of "all pro-

cesses by which sensory input is transformed, reduced, elaborated, stored, recovered, and

used" [Nachtigall 86]. Automated cartography is one step towards robot cognition.

In civilian robotics applications, robots must be able to adapt to changing circumstanc-

es in their environment. Ideally, a useful robot should be sufficiently adaptable to function

in a totally unfamiliar environment. A highly desirable robotic domestic application is a ro-

bot vacuum cleaner that plugs itself into a wall socket and cleans the floors of a residence.

This is an annoying and time consuming task for humans, and ceuld instead be accom-

plished by a robot. A robotic vacuum cleaner would be capable of entering a totally unfa-

miliar indoor environment to clean an entire floor space with no prior knowledge of the

floor plan. Additionally, the robot must be capable of adapting to unexpected changes in

the house. For instance, the resident may want to rearrange the furniture for a party or add

a new piece of furniture. The vacuum robot must be adaptable to changes in its environment

and clean the house with no human intervention. In order to be marketed successfully, this device

needs to be able to distinguish between a diamond earring and a crumb of food on all floor surfaces

in the household. Why is it that such a product does not yet exist on the market? Obviously, the cost

of such a device is prohibitively high. Additionally, the robotic technology required to perform the

navigation and cartography tasks does not yet exist. Indoor robot navigation and cartography are the

central issues of this dissertation.

A robotic vehicle's capability to explore and map an unknown work space is called automated

cartography. There are two other tasks related to automated cartography: navigation and map repre-

sentation. The automated cartography problem has a circular interdependence among the robot tasks,

MAP REPRESENTATION

CARTOGRAPHY NAVIGATION

("is required for"

Figure 1. 1 - Cartography-Map-Navigation Dependency

since navigation is required to perform cartography, cartography is the method of building maps, and

the maps produced by cartography are used for navigation. Figure 1.1 illustrates this concept; each

of the three arrows means "is required for" in this diagram. Obviously, some sort of bootstrapping

process is required when starting without a map. In the research conducted for this dissertation, an

autonomous mobile robot performs automated cartography starting with no map.

The robot environment is called the world space [Hwang 92]. The robot's internal view of the

world space consists of some map representation. Guidance is defined as the process of controlling

the motion of a robotic vehicle. Navigation is the process of directing the safe movement of a vehicle

from one point to another [Dutton 78]. A robot navigation system provides commands to the guid-

ance system for vehicle control. The guidance system uses a set of guidance rules to issue the proper

2

vehicle control instructions. The three basic problems of navigation are: 1) how to deter-

mine position (x, y) 2) how to determine direction (0), and 3) how to determine distance

traveled (s), [Bowditch 84] [Dutton 78]. The dead reckoning processing is a common

means of keeping track of these four parameters. Dead reckoning refers to the projection of

a present position or anticipated future position from a previous position using known di-

rections and distances [Dutton 78]. The term localization refers to the process of determin-

ing a robot's position using information from external sensors [Leonard 91]. Dead reckon-

ing errors are normally corrected based upon localization information. Odometry is defined

as the process of integrating the robot's wheel motion in order to maintain an estimate of a

robot's current configuration.

A configuration is a four element data structure used to describe a robot position, the

error in a robot's position, the position of some object and some types of path elements. The

four elements are x, y, 0, and K. When used to describe a robot's position, (x,y) is the robot's

location in the Cartesian plane, 0 is the robot's orientation with respect to the global x axis,

and Kc is the robot's instantaneous path curvature. Odometry estimate error is defined as the

algebraic difference betweei. a vehicle's estimated configuration and its actual configura-

tion. Odometry is a purely internal means of estimating a vehicle's position. Normally,

wheel rotations are integrated by reading some type of wheel encoder. Odometry error

tends to increase linearly as a function of the total distance traveled and is primarily asso-

ciated with slip between the robot wheels and the ground. Automated odometry error cor-

rection is defined as the process whereby an autonomous vehicle reduces its odometry es-

timate error by determining its position with respect to some external feature in the world

space. Features suitable for odometry correction by a given sensor are called landmarks. In

this dissertation, only naturally occurring landmarks are used for navigation. This means

that no artificially placed landmarks are installed in the robot's world space to facilitate nav-

igation.

Map representation is the other important part of automated cartography. A map is a

symbolic representation of some finite space; a detailed map of a small portion of the world

3

may contain a large volume of information. In order to ensure that the cartography problem re-

mains tractable, only the salient features of the world that apply to the map's intended application

should be represented on the map. The maps considered in this dissertation are designed specifi-

cally for autonomous mobile robot navigation.

A. SCOPE OF DISSERTATION

This dissertation presents a novel software system for the automated cartography of an

unknown world space by an autonomous mobile robot. The automated cartography algorithm

developed in this dissertation is an efficient means for an autonomous mobile robot to effectively

explore an unknown world space while building a spatially consistent map of the space. The FSM

problem domain has three major aspects: automated workspace navigation and exploration, path

tracking as the method of vehicle control, and automated landmark recognition with odormetry

error correction. Previously, no approach has successfully integrated the solutions of these three

component problems into a single software system.

How is the automated cartography algorithm different and better than the rest? As already

explained, the map representation, the vehicle navigation and the cartography requirements are

intimately related. This algorithm allows the robot to use a partially built map to decide which areas

of the world space require exploration. The algorithm uses office-building heuristics to take

advantage of features found in most office buildings. An example of this heuristic is that an indoor

hallway is assumed to have straight walls broken by doorways. Basically, a scan model derived

from a single robot motion is merged with the robot's partial world model (PW) and the state of the

new PW is used to guide the search for unexplored portions of the world space. The path tracking

vehicle control sub-system provides smooth vehicle control and the necessary vehicle motion for

odometry error determination and correction while the vehicle is moving.

B. THE AUTOMATED CARTOGRAPHY PROBLEM

1. Problem Statement

The automated cartography problem involves the incremental modeling of an unknown,

indoor world space. Automated cartography involves a robot system R mapping a planar, static,

4

people-free, indoor world space W. All objects in the environment are represented as rigid,

convex polygons in the robot's world space. All areas mapped lie in the same Cartesian

plane. This enables R to map, for example, a single floor of an office building. R builds a

large scale, spatially-consistent, metrically-accurate map PW after being placed in any

arbitrary configuration Co in the world space W. The robot sensors S are 12 fixed ultrasonic

range finders. R starts with no prior knowledge of W and it must navigate in a manner

required to explore the entire accessible portions of W using its partially built map PW and

sensors S. Spatial consistency of PW is maintained by the robot's capability to update its

dead reckoning configuration C using naturally occurring landmarks LI in the work space.

2. Example of a Typical Automated Cartography Experiment

The enclosed-space experiment illustrates the problem best: an uncluttered,

enclosed, indoor space in a typical office building is selected as the robot's world space.

The automated cartography software is loaded onto the robot and the robot is placed in any

arbitrary starting configuration with no map of the workspace loaded into its memory. The

program is started and the robot is left in the enclosed space. The robot spends about one

hour exploring the entire enclosed space, building and refining a precise map of all

accessible regions in this enclosed space. Upon map completion, the robot returns to its

starting position ready to execute commanded trajectories using its learned map for

accurate position determination at arbitrary locations in the environment [Leonard 92].

3. Assumptions

The 2D assumption - The world space is a flat planar world with obstacles. The

floor is the x, y plane. All obstacles faces are perpendicular to the x, y plane and have a

constant size along the positive z-axis. This assumption is required to assure a good sensor

return from all objects.

Orthogonal Wall Assumption - Walls in the robot's world space are always

rectilinear, as are found in most office buildings.

5

Rigid Body Assumption - The vehicle and all objects in the robot's world space are

rigid. The surface of any object in the world space may be represented by a single configuration.

Static World Assumption - All objects in the world space are immobile both in a relative

and an absolute sense.

C. ORGANIZATION OF DISSERTATION

Chapter II reviews the major challenges and issues currently faced in the field of mobile robot

cartography. The issues discussed represent the major hurdles that must be overcome for automat-

ed cartography. This chapter also describes research work in the field of mobile robot navigation.

The significant contributions in the field are reviewed.

Chapter II gives a detailed description of the Naval Postgraduate School autonomous mobile

robot Yamabico-1 1 vehicle and the simulator used to develop the robot software used in this dis-

sertation. The limitations of ultrasonic sonar sensors for robotic applications are described. This

simulator description provides an introduction to the Model-based Mobile robot Language (MML)

programming environment. The simulator proves to be an important software development tool

since some debugging is tedious or even impossible on the robot. Efforts to improve software ef-

ficiency, organization, and functionality are tried in simulation first before testing begins on the

robot.

Chapter TV presents the software architecture for the vehicle control for Yamabico-1 1, the ro-

bot test-bed for this dissertation. The software scheduling system, a geometry module, the sonar

subsystem, and the input/output subsystem are described in detail.

Chapter V presents the theory of robot odometry correction. An algebraic approach is taken

to describe a robot configuration, the error in the robot's configuration as well as the configuration

of landmarks in the robot's world space. A detailed explanation of the method of real-time, on-line

odometry correction is provided.

Chapter VI provides the basic data structures for world representation. Chapter VII describes

a theory for robot automated cartography using an idealized sensor. This provides the theoretical

6

foundations for robot cartography using real sensors. The limitations of the real sensors im-

pose the modifications required to the ideal algorithm presented in Chapter VII.

Chapter VIII describes the theory of real automated robot cartography using the auto-

mated cartography algorithm. Each aspect of this algorithm is explained using examples.

The means for on board map representation, robot exploration and map refinement are de-

scribed.

Chapter IX gives the details of the experiments performed and the results obtained.

Experimental results are plotted to help the user better review the results. Chapter X of the

dissertation finishes with a summary of the conclusions drawn from the theory and the ex-

perimental results and recommendations for further research.

Appendix A is a comprehensive robot user's manual. Appendix B provides MML lo-

comotion source code. Appendix C gives the sonar functions used for feature extraction.

Appendix D lists the odometry correction source code and appendix E gives the real robot

cartography source code.

7

IL AUTOMATED CARTOGRAPHY: MAJOR CHALLENGES AND ISSUES

This chapter is designed to provide the reader with background on the major challeng-

es and issues in robot cartography. Automated cartography represents a significant research

undertaking in the development of an intelligent autonomous robot capable of exploring its

environment. This chapter addresses the major challenges and issues that were addressed

in the development of the Yamabico- 11 automated cartography system. They are presented

briefly in this chapter to lay a firm foundation for understanding and to provide an overview

of the design decisions that went into Yamabico's software. This chapter cites significant

robotics projects from the literature to illustrate each issue.

Map representation is a critical issue because the world is rich with features and a ro-

bot's memory is typically of limited size. Therefore, only the important features should be

stored since the map must contain the necessary information for robot navigation but can-

not be too large. Robot motion planning is an important challenge since a robot must plan

a purposeful route through the world space in order to map the space. Software architecture

of the entire control system is important since this factor determines the software's efficien-

cy and modifiability to a large extent. Some software architectures lend themselves to car-

tography more readily than others. Robot sensing is a critical issue with regard to cartogra-

phy because a robot must sense its world in order to build a map of it. Robot localization

and navigation are important challenges because the robot must navigate effectively to ex-

plore its environment. Dead reckoning errors must be corrected by means of localization in

order for a robot to build a spatially consistent map. Robot exploration is necessary in order

for the robot to move its sensors to all reachable portions of the world space. These issues

are not limited to Yamabico; they span the fields of robotics, navigation, computer science

and mathematics.

8

A. METHODS FOR MAP REPRESENTATIONS

A robot must have a model of objects in its environment before it can plan a collision-

free path through its world space. The robot may have an a priori map of its environment

or it may use sensors to acquire knowledge about its surroundings. Sensors are typically

used to build a depth map of the surrounding environment. A depth map is a statical repre-

sentation of many range finder returns. This information is normally converted into a some

compact representation to save memory space and to speed up computations. Once infor-

mation about shapes and configurations of objects is acquired, it can be represented in sev-

eral ways. The trade-offs between simplicity, resolution, and computational efficiency must

be carefully considered when choosing the best means of representation for a specific ap-

plication. The remainder of this section reviews the commonly used map representation

techniques.

1. Grid Representation

The grid representation method divides the robot's environment into an array of

identical cells. These cells are typically rectilinear. The robot's environment is represented

by marking the individual cells as either one if it is occupied by an object or as a zero for

unoccupied. The simplicity of this method has many computational advantages, especially

on a massively parallel computer. The cell size governs the overall resolution in the robot's

environment; smaller cells give higher resolution but incur a penalty in terms of on board

storage requirements and computational efficiency. Elfes called this factor the resolution

axis [Elfes 87]. Moravec used certainty grids for mobile robot map representation

[Moravec 87]. Borenstein and Koren used a grid-type representation called a vector field

histogram on the robot Carmel at thz University of Michigan [Borenstein 92]. Beckerman

and Oblow [Beckerman 90], Everett [Everett 89], Noborio et. al. [Noborio 90] and Zelinsky

[Zelinsky 88] have also used various grid-based representations to build maps from sonar

data.

9

Elfes implemented an autonomous mobile robot navigation system called Dolphin on

the Neptune (indoor) and Terregator (outdoor) mobile robots. This system used sonar range

data to build a multilevel description of the robot's surroundings using a grid-based map

representation called occupancy grids [Elfes 87]. Elfes used a multilevel description of the

robot's operating environment. Several dimensions of the representation were defined: the

abstraction axis, the geographical axis, and the resolution axis. The system was completely

autonomous in that it had no a priori model or knowledge of its surroundings [Elfes 871.

Range measurements from multiple points of view were combined into a sonar map while

accounting for uncertainties and errors in the data. By combining the evidence from many

readings as the robot moved in its environment, the area known to be empty was expanded

[Elfes 87]. Elfes used 24 ultrasonic range finding transducers arranged in a circular array

to build dense two dimensional maps based upon empty and occupied volumes in a cone in

front of the sensor.

Elfes's research involved grid-based mapping, whereas this dissertation focuses on

feature-based mapping. The reason the feature-based approach was chosen is that the com-

putational complexity of this approach is lower than the O(n4) complexity of Elfes's work

where n is the number of grid squares in the map. In the Dolphin system, all map compu-

tation was done off-line on a VAX- 11/780. Yamabico's mapping system does all mapping

computation using the on board processor. On board processing eliminates communication

delays between the processor and the robot, and allows Yamabico full autonomy. The Dol-

phin system used Polaroid laboratory grade ultrasonic range transducers with a 30 degree

beam width. The 3 dB beam width was approximately 15 degrees. Yamabico uses a colli-

mated beam sonar sensor with separate emitter and receiver.

Grid-based approaches to mapping make weaker assumptions about the environ-

ment than the polyhedral approach since grid type representations do not explicitly repre-

sent surface boundaries in the robot's world space [Leonard 91]. Thus arbitrary inaccura-

cies and uncertainties are always present in grid-based approaches.

10

2. Cell Tree Representation

The cell tree representation is also called quadtree for two dimensional (2D) rep-

resentations or octree for three dimensional (3D) representations. This method was devel-

oped to improve the overall efficiency of the grid method when representing a large object

or a large open space. The cell tree representation divides the robot's world space into a

small number of large cells. The cells are not necessarily all the same size. Cells completely

inside or outside of the objects are marked either occupied or empty. Cells partially occu-

pied are further divided. This process is repeated until the cell size reaches an arbitrary res-

olution limit. This method represents a significant reduction in storage space requirements

at the expense of additional complexity. Several researchers have used cell trees for map

representation [Fryxell 88] [Airey 90]. The cell tree approach is a stronger approach to

mapping than the grid-based approach, but still does not explicitly represent object surface

boundaries as does the polyhedral approach. Cell tree representation straddles the represen-

tation spectrum midway between grid-based and polyhedral representations since the divi-

sion of space is defined to some extent by the objects being represented.

3. Polyhedral Representation

A polyhedron is a solid figure having many faces. Objects in the robot's environ-

ment may be approximated by the unions of polyhedra. This is an efficient means for rep-

resenting a robot's world space since much less storage space is used than for the grid-

based method. Only the boundaries between open space and objects are represented, in-

stead of every grid-square in the world space. Curved surfaces must be approximated as

planar surfaces to maintain the polyhedral representation. Efficient (O(nlogn)) algorithms

exist for computing the intersection of and the distance between tv,,o polyhedra [Hwang

92]. A robot's world space was first represented by polygonal objects by Lozano-Perez in

his influential Configuration Space (C-Space) [Lozano-Perez 79].

11

4. Constructive Solid Geometry Representation

The Constructive Solid Geometry (CGS) method of free space representation is

used in solid modelers. The CGS represents objects as unions, intersections, and set differ-

ences of primitive shapes including spheres. This method has the advantage that curved sur-

faces can be represented with a small number of parameters specifying the curve. This

method is often used in conjunction with computer aided design (CAD) systems for envi-

ronment mapping [Hwang 92].

5. Topological Map Representation

The topological map representation approach uses a graph-theory approach to

represent robot free space. A graph G = (VE) is a finite non empty set V of elements called

vertices, together with a set E of two-element subsets of V called edges [Gould 88]. Vertices

represent places the robot may visit and edges represent pathways used to travel between

nodes. The robot Huey at Brown University also used a topological graph to represent the

map in the 1992 AAAI robot contest [Davis 93].

Mataric used a topological map representation with the robot Toto [Mataric 92].

Toto navigated using ultrasonic range finders and a flux-gate compass. The experiment in-

cluded automated building of simple topological maps of the robot's world space. Land-

marks were represented as a tuple <T, C, L, P> where T was the landmark type, C was the

average compass bearing, L was the landmark's length and P = (x, y) was a course position

estimate. Whenever a landmark was detected, it was matched to all known landmarks that

were stored in a graph structure. Either a unique match or no match occurred. Localization

was a simple process of comparing the stored landmark descriptor <t, c, 1, p> with the robot

current sensory information <(' ,c'>,I p>. The map structure consisted of a graph with each

node representing a robot-detected landmark. Edges defined the connections between the

landmarks.

The work described in this dissertation is different in several ways. No flux gate

compass is used for determination of Yamabico's orientation. In both cases, landmarks are

12

automatically recognized and used for odometry correction. In Yamabico's case, the posi-

tion as well as the orientation of individual landmarks is used to correct the robot's orien-

tation. This was not true for Mataric's work. Mataric's algorithm recognized landmarks

based upon their length and position whereas the automated cartography algorithm recog-

nizes landmarks by their precise position and orientation. Finally, Mataric's algorithm was

essentially a modified wall follower behavior; it did not adapt well to open spaces. The au-

tomated cartography on the other hand greedily acquires and maps the open space available

and is not restricted to modified wall following.

Topological representations provide a compact method of storing a map with many

features. However, topological maps do not explicitly record the metric distance between

vertices. This renders topological maps less useful for robot navigation than maps with dis-

tances explicitly represented.

B. APPROACHES TO ROBOT MOTION PLANNING

Robot motion planning is the process whereby a robot's path is planned based upon

the robot's current configuration and the representation of the robot's environment. Plan-

ners use a world model as an input to plan a safe, efficient path from one configuration to

another. Not all robotic systems plan the robot's motion in a deliberative fashion. In fact,

there exists a broad spectrum of motion planners, from no plan/no model to a flexible plan

to a rigid, unalterable plan. Many different methods have been developed for robot motion

planning. Some methods are widely applicable, whereas others solve only a narrow range

of motion planning problems.

The motion planning problem is defined as follows. Let R be a robot system having k

degrees of freedom, and suppose that R is free to move in a two or three dimensional space

V amidst a collection of non-moving obstacles whose geometry is known to the robot sys-

tem. The motion planning problem for R is: given an initial position Z1 and a desired final

position Z2, determine whether there exist a continuous obstacle-avoiding motion of R from

Z1 to Z2 and if so plan such a motion [Schwartz 88]. The general motion planning problem

13

can be solved in polynomial time in the number n of algebraic constraints defining FP

where FP denotes the space of free positions [Schwartz 83].

Motion planning methods fall into four general categories: skeleton, cell decomposi-

tion, potential field, and mathematical programming [Hwang 921. Most motion planning

problems can be approached by one of these four methods. Hybrid combinations of these

approaches are often used in developing new motion planners.

1. Skeleton

In the skeleton approach to motion planning, the set of all feasible motions is

mapped onto a network of one dimensional lines [Hwang 92]. These lines represent safe

pathways for robot motion in the free space. This approach has also been called the retrac-

tion, roadmap, or highway approach. The advantage of this method is that the search for a

solution is limited to the skeleton. Using this approach, motion planning is accomplished

by first moving the robot from its starting position to a point on the skeleton. Next, the robot

is moved from the goal configuration to a point on the skeleton. Finally, the two points on

the skeleton are connected using lines in the skeleton. Two well-known skeletons are the

visibility graph and the Voronoi diagram [Canny 88]. One advantage of this method is that

skeletons for a large area can be preprocessed using a known world model as input. Brooks

represented free space as a union of possibly overlapping generalized cones. A generalized

cone has an axis of a certain length and a boundary on each side of the axis. He used gen-

eralized cones to represent free space in a 2D world and the robot traveled on spines of the

generalized cones [Brooks 83]. An improved quality path was obtained by representing free

space as a union of generalized cones and convex polygons [Kuan 85].

2. Cell Decomposition

In the cell decomposition approach, the free configuration space is first decom-

posed into a set of simple cells and then adjacency relationships between the cells are com-

puted. To find a collision free path, the cells containing the start and goal configurations are

connected with a sequence of empty, adjacent cells. In this method cell boundaries can be

14

object dependent or independent. With an object dependent decomposition, boundaries of

obstacles are used to generate cell boundaries. The free space is the union of the free cells.

With this method the number of cells is small but the complexity of the decomposition is

high.

With object-independent decomposition, the configuration space is partitioned

into cells of a simple shape, then each cell is tested for occupancy. Since the cell shape and

location are independent of the object shape and location, the cell boundaries do not tightly

enclose the object [Hwang 92]. Increasing the number of cells can make the representation

error arbitrarily small. Examples of object-independent cell decompositions are grid and

quadtree.

3. Potential Field

The potential field approach treats the robot as a particle under the influence of an

artificial potential field whose local variations are expected to reflect the "structure" of the

free space [Latombe 91].This approach has been compared to a sticky marble rolling down-

hill on the interior surface of a bowl [Arkin 891. The goal point for the robot is the lowest

point in the bowl and obstacles are represented by inward dents in the bowl. This approach

constructs a scalar function called the potential that has a minimum when the robot is at the

goal configuration, and a high value on obstacles in the configuration space. At all other

locations in the configuration space the function is sloping downward toward the goal con-

figuration. The robot moves toward the goal by following the negative gradient of the po-

tential to the minimum.

To use this approach, an obstacle potential is constructed. This field has a high

value on the obstacles and decreases monotonically as the distance from the obstacles in-

creases. Superimposed onto the obstacle potential is a goal potential that has a large nega-

tive value at the goal and increases monotonically as the distance from the goal increases.

This approach has the advantage of being simple but there are usually several lo-

cal minima other than the goal. These minima can trap the robot. Another disadvantage is

15

the potential field expression becomes very complex when there are many concave obsta-

cles in the configuration space. The potential field approach is best used as a local motion

planning algorithm in conjuction with some other global motion planning algorithm

[Hwang 92]. Most planning methods based on the potential field approach have empirical

connections. They usually do not guarantee that a path will be found even when one exists.

They are, however, particularly fast in a wide range of situations. Potential field planners

are increasing popular because an efficient and reliable motion planner can be constructed

using this paradigm [Latombe 91].

4. Mathematical Programming

In this approach, motion planning is formulated as a mathematical optimization

problem that finds a path between the start and the goal configuration by minimizing some

scalar quantity. Mathematical programming has difficulties with non-unique solutions, sin-

gular matrices, and non-static environments.

C. SOFTWARE ARCHITECTURE

The software architecture is the structure of the control system for a robotic platform.

Typically, a robotic vehicle and its associated control software have been developed in tan-

dem [Busnel 79]. The robot's morphology and its software architecture are closely related

since software and hardware are both designed to solve some particular problem [Brooks

93]. The various approaches to system architecture for autonomous vehicle control have

been grouped into six categories [Arkin 89]. These classes are monolithic control, hierar-

chical (deliberative) control, behavior-based control, hybrid systems, distributed control,

and machine learning systems.

1. Monolithic Control

Monolithic control systems are limited capability systems typically used on a fac-

tory floor. These systems tend to be sensor dependent and employ a teaching pendant ap-

proach to motion control. The robot's environment is engineered so that the robot uses ar-

16

tificial landmarks for localization and navigation. These systems are inflexible and not gen-

eralizable. However they are advantageous since they are easy to develop.

2. Hierarchical (Deliberative) Control

Hierarchical systems typically have a top-down control structure. The complexity

of the system is managed by abstracting complex vehicle behavior into successively less

complex functional levels in the same manner as structured computer programming. Typ-

ically, the high level planner is at the top of the hierarchy and the low level servo control is

at the bottom. These systems normally maintain a symbolic world model to support sensory

processing. The world model contains the robot's current state and the current state of the

robot's environment.

Commands are passed from the top level symbolic planner down the hierarchy.

Sensory information is passed up the hierarchy. The update rate of a given level tends to

increase as one moves down the hierarchy. The planning horizon for each level tends to

grow longer as one moves up the hierarchy. The state space reasoning tends to occur at a

high level and tends to be purely symbolic in nature. These systems are characterized by a

slow response time to sensor input. This can be a significant disadvantage in a rapidly

changing environment. The symbolic reasoning gives the advantage of a high-level, global

intelligence due to deliberative reasoning. These system.- are also characterized by a vari-

able latency due to the running time of different deliberative portions of the system. The

Hughes control system for the Autonomous Land Vehicle (ALV) is a classic example of a

hierarchical control system [Daily 88].

3. Behavior-Based (Reactive) Control

Autonomous vehicle control using the behavior-based control architecture tends

to focus on reaction to input stimuli rather than deliberative planning. These systems are

typically built in layers of successively more complex behaviors. The lowest level of be-

havioral competence for the robot is designed, built, and tested first. Progressively higher

17

level layers of behavioral competence are then added. These layers all run independently

[Brooks 86a].

This control method employs no centralized intelligence. Instead the intelligence

is distributed among the layers of competencies. Each layer processes sensory data and out-

puts a specific behavior. These behaviors compete through a network of surpression nodes.

The vehicle's overall behavior is said to "emerge" from the interaction of multiple, com-

peting, unintelligent layers.

Reactive control is characterized by no central world model since the world pro-

vides its own model [Brooks 911. Therefore these systems tend to be representation-free.

Since the individual layers have short sensor-effector arcs, these systems have the advan-

tage of real-time response to input stimuli. No central intelligence system is operating,

therefore these systems tend to have low-level overall intelligence when compared to de-

liberative systems. The layers are typically simple, consequently, these systems tend to ex-

ecute only simple computations. Brooks at MIT coined the term subsumption to mean high-

er level robot behaviors subsume lower level behaviors when appropriate. He rejected tra-

ditional Artificial Intelligence (AI) as dogma and ridiculed precise robot navigation

research. He emphasized robotics systems with an ongoing physical interaction with the en-

vironment [Brooks 90]. He believed the world provided the robot with the best model.

Based on evidence from evolution, he believed robot mobility, acute vision and the ability

to carry out survival related tasks in a dynamic environment provided the basis for the de-

velopment of intelligence [Brooks 91]. Further, he argued that issues of representation

stalled artificial intelligence research. More surprisingly, he claimed that traditional repre-

sentation was unnecessary. His robotic systems architecture was decomposed into indepen-

dent and parallel producers that interfaced directly with the world through perception and

action. Brooks adopted a layered architecture approach and built completely autonomous

mobile agents that coexisted in the world with humans and called them Creatures [Brooks

91]. These Creatures were expected to cope with changes in their world. They were robust

18

and adaptable to changes in the enviroament, maintained multiple goals, and were able to

capitalize on opportunities presented by the environment.

Brooks argued that no central symbolic information processor was necessary to

build the Creatures. Instead, the robot's software was built incrementally by the use of be-

havioral layers. Each of these layers added an additional behavioral competence. Brooks

called the approach subsumption architecture since the layers acted independently and in

parallel with other existing layers. The system had no centralized control, and no central-

ized repository for sensor information. Further, Brooks claimed that intelligent robot be-

havior emerged even though the robot stored no internal representation of the physical

world. Maintaining no internal representation of the world has some significant limitations.

For instance, a robot tasked with repeatedly traversing the same obstacle field would great-

ly benefit from an internal representation since a path could be planned around a previously

encountered obstacle. Instead a robot with no memory of obstacle location is doomed to

repeat the same obstacle avoidance behavior each trip. One researcher expressed his skep-

ticism by saying "subsumption architecture is better suited to building thermostats than in-

telligent agents" [Wallich 91]. This means that researchers who do agree with Brook's ap-

proach do not believe that useful, intelligent behavior will ever emerge from a collection of

primitive reflexes.

As one of Brook's students, Connell demonstrated a subsumption program for

gathering soda cans in an office building environment using the robot Herbert. The robot

built no maps of its surroundings, but managed to wander about, find and pick up a soda

can and return to its starting position [Brooks 93]. This experiment required careful place-

ment of the robot and the soda can since the robot followed only one path in response to

external stimuli. Brook's philosophy represented the opposite end of the representation

spectrum with respect to the Yamabico project. Yamabico's software system relies heavily

on centralized control; .xplicit goals, and an internal representation of the world. Brook's

software was composed i)f individual, competing behaviors to produce emergent intelligent

19

behavior. Brooks has rejected any sort of centralized representation on the external envi-

ronment whereas Yamabico builds a detailed map of its world.

4. Hybrid Systems

Hybrid vehicle control architectures lie on the continuum between the hierarchi-

cal and behaviorist extremes [Byrnes 93]. Hybrid architectures attempt to combine the best

characteristics of both hierarchical and behavorist architectures. The explicit global intelli-

gence advantage of hierarchical systems is typically combined with the quick-reacting, re-

flexive behavior of the behavior-based models. Plan formulation in hybrid systems tends to

borrow from hierarchical systems in order to gain deliberative intelligence. Plan execution,

however, is similar to reactive control.

The Autonomous Land Vehicle (ALV) was designed and developed by Martin

Marietta Aerospace as a test bed for research in autonomous mobility systems [Turk 88].

Its dimensions were 2.7 meters wide, 4.2 meters long, and 3.1 meters high, and provided

the capacity to carry all power, sensors, and computer systems necessary to support auton-

omous operations. The ALV weighed approximately 16,000 pounds fully loaded yet was

capable of traveling both on and off road. The vehicle had an eight-wheel drive, was diesel

powered, and driven by hydrostatic transmission. A wide range of sensors was employed,

and included a video camera, a laser range finder, and wheel-mounted odometers.

A control software architecture was developed for the ALV by Hughes Artificial

Intelligence Center [Daily 88]. The hybrid architecture was organized into four levels and

each level contained planning and perception functions. At the highest level, the mission

planner was used to define mission goals and constraints. These were passed to the next lev-

el, which maintained the world model and developed plans based on stored maps. The re-

sulting route plan was then passed to the third level containing the local planner. The local

planning module selected and monitored reflexive behaviors at the lowest level. It was at

that level that reflexive behaviors were used as real-time operating primitives [Payton 90].

Reflexive behaviors were independent of each other and executed concurrently, however,

20

it was the responsibility of the local planner to partition the appropriate behaviors depend-

ing on the current environment. The ALV architecture was field tested and was the first sys-

tem to demonstrate obstacle avoidance in natural terrain [Olin 91].

5. Distributed Control (Blackboard Paradigm)

The term blackboard has been applied to any globally-accessible data structure to

which multiple processes may communicate by posting messages. The blackboard method

of vehicle control is characterized by one or more global data structures called blackboards.

These blackboards constitute the working memory (or global database) for the control sys-

tem. Separate knowledge sources read from and write to the blackboards. These knowledge

sources reason about information obtained from the blackboard and write their conclusions

back to the blackboard. These systems are typically synchronous and cooperative in oper-

ation. The Task Control Architecture deployed on the Ambler walking robot at Carnegie-

Mellon University (CMU) is a distributed control system [Simmons 91] [Simmons 92].

6. Machine Learning Systems

Artificial neural nets are computer programs designed to imitate the brain's abil-

ity to learn from experience. A common type is the feed-forward neural net. Machine learn-

ing is accomplished by encoding information in the net's simulated synaptic connections.

Neural nets have been used as an architectural approach for robot control [Nehmezow 92]

[Thrun 92].

The CMU robot Odysseus placed fourth in the American Association for Artifi-

cial Intelligence (AAAI) robot competition in 1992 [Davis 93]. Odysseus used ultrasonic

sonar data to build environmental maps off-line at CMU Artificial Intelligence (AI) Lab.

While at CMU, Thrun developed a system to explore and model an office building envi-

ronment efficiently [Thrun 93]. He used the robot Columbus, a modified Heathkit robot.

This was an autonomous, wheeled robot with bumper sensors, a rotating sonar sensor, and

a motion sensor for odometry. The exploration system used an instance-based learning

technique for developing the map. Two artificial neural networks were used to encode the

21

characteristics of the robot's sensors and the characteristics of a typical indoor environment

[Thrun 93]. One neural network encoded sensor interpretation and the other encoded con-

fidence assessment. Exploration was achieved by navigating the robot to regions with little

sonar data [Thrun 92]. The world model was represented using a grid-based mapping tech-

nique with four inch grid squares.

Neural network training allowed the network to encode the specific characteris-

tics of the sensors as well as those of typical environments of a mobile robot; it captured

knowledge independent of any particular environment the robot might face. An instance-

based approximation technique was employed for modeling the environment. Exploration

was guided by an anytime planner based upon dynamic programming for planning low-cost

paths to poorly explored areas [Thrun 93]. The approach to model building and position

control was successfully used as part of the CMU entry Odysseus in the AAAI robot com-

petition in 1992 [Thrun 93][Davis 93].

A neural network approach to automated cartography was demonstrated by Neh-

mzow [Nehmezow 92]. The robot Alder used a self-organizing network to construct inter-

nal representations of the world it experienced as it moved around. The resulting neural net-

work was a map, but a map in motor-sensory space rather than the physical space [Nehm-

ezow 92]. In this way robot behavior and sensing were well coupled to the environment and

the task of map building.

Neural networks are limited for robot cartography applications because they are

typically not portable among robot platforms. Neural network programs tend to be opaque

with respect to human understanding and do not scale well to larger software systems. Ad-

ditionally, the long training time for a neural network system is a distinct disadvantage in

robot navigation applications.

D. ROBOT SENSING

Although sensor interpretation and world modeling are fundamental for robots to op-

erate in the real world, robotic perception is still one of the weakest components of current

22

robotic systems [Iyengar 91]. The advantages and disadvantages of the most commonly

used types of robot sensors are presented to help the reader understand sensor interpretation

issues, sensor integration and the recovery of the world model from the robot's spatial per-

ception. The main problems in robotics perception are interpretation of noisy sensor data,

computational overhead required to process sensor input, and sensor integration.

1. Laser and Light Range Finders

There are two basic laser range finder designs dependent upon the round trip time

of flight to objects in the environment The first kind measures phase shift in a continuous

wave modulated laser beam that leaves the source and returns to the detector coaxially. The

second measures the time a laser pulse takes to go from the source, bounce off a target point

and return coaxially to a detector. Since light travels at approximately one foot per nano-

second, the supporting instrumentation must be capable of 50 picosecond time resolution

for a range accuracy of plus or minus one quarter inch [Jarvis 93].

The ALV used a laser range scanner for navigation during off-road operation. The

laser range scanner was an effective sensor in this type of environment. In a structured, in-

door environment a smaller, more maneuverable robot is required to perform the mapping

task. One important indoor limitation is doorway width. The large size of the laser range

finder used on the ALV prohibited its use for indoor applications. Also, since most indoor

spaces have flat floors, a 3D terrain mapping system is unnecessary.

Laser range finders provide 3D data directly by active sensing. At CMU, the Au-

tonomous Land Vehicle and Planetary Exploration projects focused on perception of out-

door terrain for path planning and object recognition [Hubert 88]. Perception techniques for

mobile robots have been validated by using real robots in real environments. 3D vision

techniques have been implemented on three mobile robots developed by the Field Robotics

Center at CMU: the Terregator, the NavLab, and the Ambler.

The Terregator was a six-wheeled vehicle designed for rugged terrain. The Nav-

lab, with all computing equipment on board, was a converted van designed for navigation

23

on roads or on mild terrains. The Ambler was a hexapod walking robot designed for study-

ing robotic exploration of Mars and was capable of traversing steep slopes, rocks, and wide

gullies.

The active exploration of other planets by mobile robots demands that they be ful-

ly autonomous. A manned mission, even to Mars, is highly unlikely in the foreseeable fu-

ture. In addition, conventional teleoperation of robots appears to be impractical due to the

long time delays in signal transmission (up to 30 minutes) over the extreme distances in-

volved. An alternative solution would involve an autonomous mobile robot capable of safe-

ly navigating extremely rugged terrain while intelligently gathering materials and telemetry

readings and returning them to earth for analysis. The National Aeronautics and Space Ad-

ministration Jet Propulsion Laboratory (NASA/JPL) Mars Rover uses four laser sensors for

object recognition.

CMU used a time-of-flight laser range finder developed by the Environmental

Research Institute of Michigan (ERIM). This was a phase difference type device. A two-

mirror scanning system allowed the beam to he directed anywhere within a 30 degree by

80 degree field of view. The ERIM sensor gave 64 by 256 range images coded on eight bits

from zero to 64 feet with a range resolution of three inches.

The ALV used a laser range scanner to measure the distance along the line of sight

to the nearest object. A phase-shift laser scanner was used with a maximum range of 64 feet

and a range resolution of 1% (3 inches). A Cartesian Elevation Map (CEM) was built to

represent laser range data. The CEM was a downward-looking terrain representation that

was used for autonomous navigation [Olin 91]. Multiple CEMs were fused together to build

traversibility maps that were based upon artificially moving a model of the ALV over the

a model of the sensed terrain. A map-based planner used digital terrain data to determine

the vehicle's route which was represented as a set of subgoal point locations.

The HILARE multi-sensory system included an array of 14 ultrasonic emitter-re-

ceivers with a maximum range of two meters. A camera and laser range finder mounted on

a pan and tilt platform provided the robot with 3D data about the environment. HILARE

24

also had an infrared triangulation system used in areas where fixed navigational beacons

were installed. Robot localization was performed by reference to fixed infrared beacons

when available. Sonar and laser fixed obstacle edge referencing were used when no bea-

cons were available. HILARE explored its environment and performed automated cartog-

raphy by a space structuring method that divided the known world into simple polygonal

shapes. HILARE then moved in a fashion that expanded its known world and built a map

using laser range finder data.

Using active sensing such as a laser range finder has the advantage of eliminating

the calibration problems and computational cost inherent in passive techniques such as ste-

reo vision [Hubert 88]. A second advantage is the lack of sensitivity to outside illumination

conditions, which considerably simplifies the image analysis problem. This is particularly

important for outdoor navigation since scene illumination varies widely. Other advantages

of laser methods include high data rate, accuracy, and long range.

Current disadvantages include expensive equipment cost for laser sensors. Addi-

tionally, in some cases lasers are color dependent, such that shiny surfaces give either no

range due to poor reflectance or false range values.

2. Infrared Range Finders

Infrared sensors are active emitters sensors that work on a send/receive format.

Infrared range finders use light with a frequency just below the visible spectrum. The sen-

sor emits an infrared light from one source and measures the amount of reflected light with

one or more light detectors. Since these devices measure light attenuation, they are highly

biased by the environment. Object color, object orientation, and ambient light all contribute

to erroneous readings. Since the transmission signal is light instead of sound, these sensors

can have a high sampling rate. Due to noise factors, infrared range measurements are only

useful for short distances [Crowley 89]. Infrared sensors are frequently used to provide

range data inside the minimum sonar range (typically 17 inches) for Polaroid sensors.

25

Infrared sensors have the advantage of being small and low cost. The KheperaTW

miniature robot at the Laboratorie de Microinformatique in Switzerland is the size of a soda

can but has 37 infrared range finders as its primary sensor [Modada 93]. Therefore, they are

employed on many smaller robotic platforms. Infrared sensors have the disadvantage that

their output is not proportional to the target range since they are adversely affected by am-

bient light conditions and by the color and texture of the target's surface. Infrared sensors

have a relatively short maximum range, normally about 20 centimeters. This limits the sen-

sor to certain "close-in" applications.

3. Contact Sensing

Contact sensing includes force and tactile sensing methods. Force sensing mea-

sures the resultant mechanical effects of contact, while tactile sensing involves the detec-

tion of a wide range of local parameters (physical and chemical) affected by contact [Dario

86]. Contact sensing limits a robot's ability to quickly gather data about its environment

since some part of the robot must physically contact the environment. Contact sensing also

has limited resolution and is limited by the robot's range of motion.

Tactile sensing has been ignored historically in favor of other types of sensing,

particularly vision. Tactile sensing is important for short range recognition tasks, assembly

and parts-fitting work and inspection tasks. Robotic tasks that call for close tolerances or

low absolute error can benefit from tactile sensor input.

Some examples of contact sensors on mobile robots are bumpers, whiskers, and

feelers. These are simple force sensors that employ some type of contact switch that shuts

when contact is made. More complex tactile sensors measure feedback force and are often

found on robotic arms, hands, or fingers. The GenghisTM robot designed by Brooks at MIT

uses force feedback on its leg servos to step over obstacles while it is walking on rough ter-

rain [Brooks 93].

26

4. Video Camera

Video input has been used as a robot sensor since the first robots were built in the

1970's [Meystel 91]. Video camera technology has the advantage of an extremely high

sampling rate. A robot can detect and recognize objects at long range using video images.

Modem video cameras now are available in extremely small packages with low power con-

sumption. This supports small robots operating for extended periods in a harsh environ-

ment.

One of the primary disadvantages of video sensors is the computational expense

required to process the video image. For this reason many robotic systems with video sen-

sors process their video images on a separate ground computer. Video sensors are also sus-

ceptible to variations in ambient light. This is a particularly difficult problem outdoors since

scene lighting is highly variable. At night, most video systems are useless in the dark. Many

modem systems currently use video sensors. The NASA/JPL Mars rover Rocky-V uses

five video cameras for perception. The FINALE vision-guided mobile robot system con-

trolled an indoor mobile robot at speeds of approximately 10 meters per minute in the pres-

ence of obstacles [Kosaka 93]. This model-based system matched landmarks in the scene

with features extracted from the images to perform self-localization. Odometry errors were

corrected retroactively once the vision calculation was completed. This system was limited

to stop and start motion since the robot had to be motionless to obtain an accurate video

image. Additionally, the robot had to be provided with an accurate feature map of the world

space. This system was computationally slow, since approximately 27 seconds were re-

quired for one cycle of the localization process using a 16 million instructions per second

(MIPS) computer [Kosaka 93].

From 1973 to 1981, Hans Moravec at the Stanford University Artificial Intelli-

gence Laboratory developed a remote-controlled, TV-camera-equipped robot called Cart

[Moravec 81]. The camera was remotely linked to a DEC KL-10 computer and the com-

puter functioned as both the vehicle controller and as an image processor. The robot used

stereo imaging to locate objects and to deduce its own motion. Distinctive features extract-

27

ed from the video images were used to perform a 3D analysis of the scene in front of the

robot. The Cart robot represented obstacles with a map that was an ordered list of line seg-

ments and empty areas. The empty areas were represented as convex polygon cells which

included obstacle line segments. The system used this map to plan optimum paths that min-

imized costs in terms of distance and energy requirements [Meystel 91].

The Cart robot was different from the Yamabico project in several important

ways. The Cart's principle sensor was a video camera, while Yamab'co sensor system uses

12 sonars. Off-board computer processing was required for the Cart, whereas Yamabico is

fully self-sufficient with regard to computing resources. Yamabico has the capability to

recognize and utilize naturally occurring landmarks for odometry correction.

5. Ultrasonic Range Finders

Ultrasonic sensors have the advantage that they are low cost and readily available.

Additionally, many examples exist in nature to demonstrate the effective use of high fre-

quency sound waves for navigation. Bats, for instance, hunt their insect prey using ultra-

sonics. Their sonar processing is far more sophisticated than any robot's. Their main sonar

energies used are in the 30 to 60 KHZ range. They can vary the time between sonar ranging

pings to vary their range gate [Nachtigall 86]. Long ping intervals are used primarily for

search and shorter intervals are utiliti;ed for the terminal homing phase. Dolphins and other

marine mammals use self-generated sound for echolocation of their prey underwater. There

is evidence that the returned sounds are used for some kind of pattern recognition [Nacht-

igall 86].

For mobile robot operating in air, ultrasonic range-finders do, however, have lim-

itations. The speed of sound in air varies with ambient temperature, humidity, and baromet-

ric pressure. Since ultrasonic range finders rely on time-of-flight, the variations in ambient

conditions can affect range values. An ultrasonic pulse is transmitted by an acoustical trans-

ducer and reflected back to the ultrasonic receiver by the nearest obstacle. Any factor that

28

affects the speed of sound in air, will affect the time of flight of the sound pulse. The speed

of sound in fluids can be calculated by the Equation 2.1 [Kinsler 82],

C= fFI° 2.1

where 03 is the bulk modulus of the fluid, c is the speed of sound in air, and po is the fluid

density.

The ideal robot sensor is a pencil-thin, collimated beam that returns an accurate

range to target regardless of the sensor beam's angle of incidence. A collimated beam is a

focused, parallel beam of transmitted energy. The wavelength of sound is long relative to

light, consequently most target surfaces appear to be acoustic mirrors. Accordingly, surfac-

es not nearly orthogonal to the direction of propagation reflect the signal energy away from

the source and the surface is not detectable [Brown 85]. This is the biggest limitation of ul-

trasonic sensors in mobile robotic.

The piston source emitter commonly used for robotic range sensors tends to emit

a wide sound beam. The sound pressure and sound intensity as a function of radial source

distance R and angle 0 with the acoustic axis can be calculated using the farfield expres-

sions [Dario 86]. The directivity of the piston source may be expressed numerically by their

3, 6 and 10 dB beam widths which are the angles 0 at which the intensity has dropped 3, 6,

and 10 dB relative to the intensity on the acoustic axis. The sonar beam directivity is de-

pendent upon the geometrical shape of the sound source and the frequency of the sound

used. The range value returned by the sensor is the distance to the closest target anywhere

within the emitter's sonar beam that returns an echo with sufficient intensity to exceed the

threshold of the receiver. A close, strong sound reflector may provide reasonable returns 10

to 15 degrees off of the acoustic axis of the sonar beam. This results in poor overall direc-

tionality since the sensor returns only a range value and no precise measure of the direction

of the target is available. The position of the target reflector is calculated assuming that it

29

is centered on the acoustic axis. This results in position errors that, in some cases, exceed

10 centimeters at a range of two meters [Leonard 92].

The target's ability to reflect the incident sound wave is of crucial importance.

Soft, sound-absorbing surfaces are poor reflectors. The target's ability to reflect incident

sound energy per unit area is called the target strength. A good example of a low target

strength object is drapery on a window. Conversely, cardboard boxes have a high target

strength. The experimentally determined target strength of various materials is given in

Chapter H.

Due to the finite amount of time required to transmit the sonar pulse, ultrasonic

range finders have a minimum detectable range. This is due to the fact that the receiver can-

not make a range measurement while the transmitter is transmitting. Sonar pulses are typ-

ically one millisecond, which causes the minimum sonar range to be greater than 10 centi-

meters [Dario 86]. Minimum range performance and cross-talk problems can be improved

considerably when a separate emitter and receiver are used. Polaroid range finders have a

single element that is both the emitter and the receiver. They are the most commonly used

sonar system in robotics.

Difficulties during the manufacturing stage may result in a large variation in pulse

echo response of two commercial sensors purchased at the same time and said to be nomi-

nally identical [Dario 86]. Slight differences in the sound pulse amplitude, pulse length, and

pulse shape all contribute to differences between individual emitters. Differences in elec-

trical connections, housing and material defects can also cause detectable difference in re-

ceiver performance.

Ultrasonic range finders are large with respect to some of the smaller robots in ex-

istence today. For example, the KheperaTM miniature mobile robot at the Laboratorie de

Microinformatique in Switzerland is 6.0 cm in diameter and 3.0 cm high [Modada 93]. In

contrast, the emitter and receiver package for an ultrasonic sensor typically occupy a vol-

ume of about 100 cm 3. Size is not an issue on large military-style robots such as the ALV.

30

Many smaller research robots use infrared range-finders which are significantly smaller,

but have a shorter range. The IS RoboticsTM R2 [Brooks 93] robot has five small infrared

proximity detectors instead of sonars.

The University of Michigan robot Carmel placed first among ten contestants in

the 1992 AAAI Robot Competition. Carmel was a Cybermotion KA2 mobile platform with

a ring of 24 sonar sensors. Object detection was performed using a color camera. Carmel

used an error-eliminating rapid ultrasonic firing to accomplish fast obstacle avoidance

while it navigated [AAAI 92a][Borenstein 92]. For mapping during the contest, Carmel

used a global Cartesian system that stored only the location of the poles and the current po-

sition of the robot.

While at Oxford University, Leonard performed extensive research on model-

based localization and map building using only ultrasonic range finders [Leonard 91]. The

research involved the development of a specular sonar model for a rotating sonar sensor.

The model predicted that clusters of strong sonar returns formed regions of constant depth

(RCD). A RCD was a connected set of sensor returns with range differences less than some

predefined range difference threshold. The RCD data was gathered by performing station-

ary 3600 scans at fixed intervals as the robot moved about the world space. No robot explo-

ration was involved since the vehicle moved in a preprogrammed "seed spreader" pattern

to gather the sensor data. Leonard used the Robuter robot and the SKIDS robot for his ex-

periments. Ultrasonic range data was then processed off-line. In Leonard's experiments,

the aim was for a robot to maintain continuous map contact, "grabbing hold" of corners,

planes and cylinders in the environment and then use them as handrails to guide the navi-

gation process [Leonard 91]. Robot motion planning was accomplished off-line using a

Voronoi diagram trajectory planner.

Leonard's robots used Polaroid sensors that had a significantly different beam

pattern than Yamabico's sensors. Yamabico uses collimated ultrasonic sonar detected with

a separate emitter and receiver. Yamabico's sonars tend to have a far narrower beam width

and are therefore less prone to directionality problems. Also, Yamabico's sensors have a

31

collimated receiver that tends to pick up less secondary specular reflections than the Po-

laroid sensors. Leonard's robot used RCD data to build its map while Yamabico analyzes

line segment data derived from sensor data. This results in a lower computational complex-

ity for Yamabico's cartography algorithms. Typically, Leonard's algorithm analyzed over

1000 individual sonar returns [Leonard 91] to build a small map, whereas Yamabico pro-

cesses about 15 extracted line segments (automatically derived from 1000 individual sonar

returns) to perform the equivalent task.

E. ROBOT LOCALIZATION AND NAVIGATION METHODS

For a mobile robot moving in an unstructured environment, maintaining exact position

informatic poses a major problem. Over long distances, dead reckoning estimates are not

sufficiently reliable, consequently, motion solving methods that use landmark tracking or

map matching are usually applied to reduce registration imprecision due to motion [Elfes

87]. There are three basic types of localization dependent upon the map representation:

model-based, grid-based, and local composite model [Leonard 91]. In the model-based lo-

calization, correspondence is achieved directly between individual observations and the

geometric model. For grid-based localization, an intermediate representation is built up

from sensor range input and then correlated with the global grid-based map. The local com-

pcsite model is similar since an intermediate representation is also built from sensor data

and matched to the geometric world model.

Elfes performed robot localization using an Approximate Transformation (AT) frame-

work for robot localization with sonar data [Elfes 87] [Elfes 90]. A robot motion M is rep-

resented as M = (M', E), where M is the estimated (nominal) configuration and E is the

associated covariance matrix that captures the position uncertainty. E is applied periodical-

ly to correct odometry errors.

The Stanford Research Institute's (SRI) robot Flakey placed second among ten contes-

tants in the 1992 AAAI Robot Competition. Flakey was a custom built, octagonal robot

with a circular array of 12 Polaroid ultrasonic sensors, an infrared laser and a charged cou-

32

pled device camera (CCD) [AAAI 92a]. Flakey used a tolerant global map that contained

local Cartesian patches related by approximate metric information [Davis 93]. Each of

these patches contained a landmark or feature the robot used for localization. During the

contest, the walls of the arena were used as landmarks and the approximate length and rel-

ative orientation of the walls were given to Flakey as prior knowledge [Davis 93].

Flakey's system was different from the one used in Yamabico since Flakey used toler-

ant maps. With Flakey, large dead reckoning errors accumulated over just four or five

meters of motion, especially when turning was involved. Yamabico has more accurate dead

reckoning so its mapping is less error prone. Flakey stored patches of detailed grid-based

landmark information linked together by tolerant metric data. These stored patches could

be called features. In a way, Flakey used a hybrid map representation method that was grid-

based near landmarks and feature-based with respect to landmark locations in the world

space. Yamabico maintains a precise global map of the entire known world. Flakey used

Polaroid sonars, while Yamabico uses Nippon Ceramic sensors. Finally, Flakey required

some knowledge of the world space landmarks, whereas Yamabico does not require a pri-

ori landmark knowledge to navigate in an unknown environment.

Crowley performed localization by extracting straight line segments from sonar data

and matching them to previously stored global line segment data [Crowley 86]. Cox imple-

mented a continuous localization system using the robot Blanche [Cox 91]. Blanche used

was an optical range finder sensor. Odometry updates were provided at eight second inter-

vals with this system. Hinkel also implemented a localization system using a laser range

finder sensor [Hinkel 88]. Sugihara [Sugihara 87] and Krotkov [Krotkov 89] performed vi-

sual position estimation using vertical line segments as features. Using sonar data and grid-

based map representations, localization has been performed by matching local occupancy

grids with a globally referenced occupancy grid [Elfes 87] [Moravec 87]. Everett used spe-

cial side-scanning ultrasonic range finders to detect walls and other obstacles in the robot's

environment for localization [Everett 931. Curran used sonar and infrared range finder data

to match expected and actual range values for localization [Crowley 89].

33

F. ROBOT EXPLORATION AND CARTOGRAPHY

If the geometry of the environment is not fully known to the robot system, one must

employ an "exploratory" approach in which plan generation is tightly updated to gather

data on the environment and to dynamically update the world model [Schwartz 88]. Robot

exploration is the process in which a robot incrementally acquires and stores knowledge

about the world space through intelligent motion and sensor input. In this section it is nec-

essary to distinguish between two families of exploration schemes: undirected and directed

exploration. Undirected exploration techniques explore the environment through random-

ness. Directed exploration differs from undirected exploration in that the former utilizes

some exploration specific knowledge for guiding the exploration decisions [Thrun 92], and

actions are chosen based upon the maximum expected knowledge gain.

1. Undirected Exploration

Undirected exploration is an uninformed, random exploration technique. When

selecting the next exploration action, no attempt is made to pick the action with the best

expected outcome. The cost of the search or the reward associated with finding new, unex-

plored space is not considered. Actions are selected stochastically based upon a uniform

probability distribution for pure undirected exploration resdting in enhanced probability

distribution for action selection such that the better the action, the higher the probability.

Actions are still selected randomly. Undirected exploration is usually inefficient and the an-

ticipated exploration time normally scales exponentially with the size of the space to be ex-

plored. However, undirected exploration has been demonstrated as effective for some ap-

plications. The robot Scarecrow used a random walk exploration technique to place third

in the AAAI robot contest in 1992 [Dean 93].

2. Directed Exploration

Directed exploration involves robot guidance based upon some specific knowl-

edge or rules for searching. An exploration rule is used to determine the next action that

best explores the environment. Directed exploration rules are heuristics since the robot is

34

exploring an unknown environment. Directed exploration techniques are usually more ef-

ficient than undirected techniques in terms of time and energy to explore a given space.

There are three general types of directed exploration; counter-based exploration,

recency-based exploration, and error-based exploration. In counter-based exploration, the

robot is driven to explore the least visited neighboring state next. Recency-based explora-

tion favors the state which occurred least recently. Error-based exploration schemes make

the assumption that states or regions in the state space with large error are little explored

and demand further explanation [Thrun 92].

While at CMU, Thrun developed a system to explore and model an office building

environment efficiently [Thrun 93]. He used the robot Columbus, a modified Heathdkit ro-

bot. This was an autonomous, wheeled robot with bumper sensors, a rotating sonar sensor,

and wheel encoders for odometry. The exploration system used an instance-based learning

technique for developing the map. Two artificial neural networks were used to encode the

characteristics of the robot's sensors and the characteristics of a typical indoor environment

[Thrun 93]. One neural network encoded sensor interpretation and the other encoded con-

fidence assessment. Exploration was achieved by navigating the robot to regions with little

sonar data [Thrun 92]. The world model was represented using a grid-based mapping tech-

nique with four inch grid squares.

G. SUMMARY

This chapter has provided an overview of the major challenges and issues with regard

to mobile robot cartography. Map representation methods are primarily methods for a robot

to store the world model information gained through sensor perception or prior knowledge.

The size of the world model is a major factor since robot memory is a limited resource and

restricts the size or resolution of the world the robot can understand. Additional world mod-

el considerations are complexity and resolution. Robot motion planning issues are ad-

dressed since a robot must move intelligently about in its environment to acquire sensor

data to build a map. Motion planning is essentially a process that takes the current world

35

model as an input and gives a robot motion plan as an output. Software architectures for

robotic vehicle control are tied to the robot's morphology, mission, and map representation

techniques. Hierarchical control gives a robot intelligence through centralized deliberation.

These systems, however, are characterized by slow response to environment stimuli. Be-

havior-based control gives a robot rapid, reflexive response to environmental stimuli, but

limited intelligence. Hybrid control architectures represent an effort to combine the most

desirable features of hierarchical and behavior-based control.

The issues regarding robotic perception are reviewed by sensor type. Laser and light-

type active emitter range finders have high data rate and give data relatively independent

of ambient light levels. Contact sensing is limited by a robot's ability to physically reach

out and touch the environment. Video camera techniques have a high sampling rate, but are

limited by the computational overhead required to process video images. Ultrasonic range

finders are extremely popular with mobile robotic projects due to their low cost and avail-

ability. The primary limitations are low sampling rate due to the speed of sound in air and

the limited target incidence angle problem.

Robot localization periodically corrects robot dead reckoning errors. The primary

method of localization in mobile robotics is triangulation. Basically, sensor input is

matched against some internal world model. The difference between expected sensor input

and actual sensor input is used to derive the dead reckoning error. Robot exploration is nec-

essary to transport the robot to all reachable portions of its world space for cartography.

This is essentially a special purpose motion planning problem. The two basic methods are

undirected exploration and directed exploration. This chapter reviewed the important issues

and challenges of robot cartography to set the stage for the research that follows in the fol-

lowing chapters.

36

HIL. THE YAMABICO-I1 MOBILE ROBOT

Yamabico- 11 is an experimental, wheeled, autonomous mobile robot located at the

Department of Computer Science, Naval Postgraduate School. Yamabico provides a test

bed for robotic experiments and control theory development. This chapter describes the ro-

bot hardware, and programming environment. A graphic-based mobile robot simulator de-

veloped as a part of this research is also described. The simulator has been used extensively

for prototyping new control algorithms and as a teaching tool for the Advanced Robotics

course at the Naval Postgraduate School.

Future robots are expected to possess advanced capabilities of sensing, planning, and

control enabling them to gather knowledge about their environment. This knowledge will

be stored as a model for planning and carrying out tasks sent to them in high level style by

an applications programmer [Schwartz 88]. Yamabico represents this spirit of robotic sys-

tem development.

A. THE NAVAL POSTGRADUATE SCHOOL YAMABICO-II

1. Hardware Description

Yamabico- 11 is an autonomous mobile robot powered by two 12-volt batteries

and is driven on two main wheels by separate 35 watt DC motors. Yamabico is pictured in

Figure 3.1. These motors drive and steer the main wheels while four shock absorbing caster

wheels balance the robot. A VME card cage holds up to eight 6U-type Euroboard VME

cards for on board computing hardware. The VME cage has a fan to dissipate heat from the

computing boards. An Apple Macintosh Powerbook 145 notebook computer with an Artic-

ulate Systems Voice Navigator voice interface is provided for user communications with

the robot.

An Ironics Sun3 single-board computer is the main processing unit. The master

processor is an MC68020 32-bit microprocessor accompanied by an MC68881 floating

37

Figure 3.1 Yamabico 11

point unit on a Mizar VME7 120 board. This processor has one megabyte of main memory
and runs with a clock speed of 16MHz. The processor has a bug monitor in ROM supplied

by the manufacturer for basic programming and debugging.

2. Sensor Characteristics

The Yamabico sonar system consists of a sonar ranging board and a sonar array

consisting of twelve Nippon Ceramic T40-16/R40-16 ultrasonic range finder emitter/re-

ceiver pairs arranged around the robot's perimeter. The ranging board is an Omnibyte

OB68K VME 110 board that is controlled by an 8748 microcontroller. The sonar board is

a separate input/output controller that makes the overall sensor process more efficient since

the main central processing unit (CPU) does no sonar processing. This device has software

programmable interrupts. This board takes the distance measurements from twelve sonar

38

0 3
11 V 10l

Front

81 A A

1 2

Figure 3.2 Yamabico- 11 Sonar Array

sensors and presents the data to the CPU on the Yamabico robot. The sonar hardware de-

sign gives a range gate of 409 centimeters and a range resolution of I millimeter.

The Yamabico sonar array is illustrated by a top view of the sensor's positions in

Figure 3.2. The sonar sensors are arranged in three logical groups, with four sensors in each

group. Group 0 consists of sonars 0, 2, 5, and 7; group 1 consists of sonars 1, 3, 4, and 6;

group 2 consists of sonars 8, 9, 10, and 11; and group 3 is a virtual group which consists of

four fixed test values [Sherfey 91]. Ranging is done on a group basis to prevent mutual in-

terference. All four sensors in a given group range at the same time. Ranging takes place

independent of the VME bus CPU. The sonar system completes its measurement of a given

group then generates a VME bus interrupt. The VME bus CPU reads the data from the four

sensors in the group from registers on the sonar board. After the CPU reads the sonar data,

the sonar system begins ranging measurements on the next group. The VME CPU selects

which sensor group is active by writing to a command register on the sonar board. The so-

nar board individually controls the sonar ranging among the three sonar groups in the sonar

array.

The sonar transducers operate at a constant frequency of 40 kilohertz. Assuming

that sound travels in air at 340 meters per second, the time for sound to travel one millimeter

39

is 1 millimeter /(340000 millimeter/second) = 2.94 microseconds. Since the time for round

trip travel is measured, each millimeter of range gives a 5.88 microsecond delay. The

counter used to generate a one millimeter count must have a frequency of 1/5.88 microsec-

onds = 170 kHz.

A sonar ping is a 40 kHz burst lasting 500 microseconds that is emitted by all four

sonar emitters in an active group. Starting at the leading edge of the sonar ping, the ranging

counter starts counting using a 166.7 kHz clock signal. Each clock cycle, the counter value

is written to four 16 bit registers. Each register corresponds to one of the four sonars in the

active group. After each counter is incremented, each sonar receiver is checked to see if a

signal has returned. When a signal is detected, the memory address for that sonar is locked

out to prevent any further writes to the counter. This effectively records the range in milli-

meters to the first return exceeding the receiver threshold. After 4096 counts, the counter

halts. Each memory location contains an integer representing the sonar return in millime-

ters. If no return is detected, the most significant bit is set in the memory on the 4096 count

signaling an overrange condition. The end of the counting generates an interrupt on the

VME bus CPU. The VME bus CPU performs a serial I/O transfer by reading the four mem-

ory addresses containing the four range values. After the last address is read, the sonar sys-

tem begins ranging on the next selected group. Each reading cycle takes approximately 24

milliseconds.

Ultrasonic range-finders have limitations. Since ultrasonic range finders rely on

sound time-of-flight, the variations in ambient conditions of air can affect the reliability of

range values. The speed of sound in air varies with ambient temperature, humidity, and

barometric pressure. Therefore, the range value returned by the range finder can vary con-

siderably based upon ambient conditions.

Acoustic sound waves are limited by the speed of sound in air. The speed of sound

in air is only 343 meters per second at 200 C at sea level [Kinsler 82]. Air temperature, pres-

sure, and humidity affect this value. The time required for sound to travel a round trip from

the emitter to the target and back determines how often the sensor can obtain range data.

40

Since Yamabico's programmed maximum range gate is 409 cm, the frequency of the emit-

ter's ping can be determined by using 8.18 meters as the maximum round trip distance and

the speed of sound in air at 20 degrees C. The robot's ping interval for a single sonar can

be computed using this round trip distance as follows:

8.18 meters * 343 meters/seconds = 0.0238 seconds - 24 milliseconds.

Given this range gate, a single sensor can receive 1/0.0238 seconds = 41.67 range

readings per second. Obviously, the choice of a shorter range gate allows for a higher data

rate. Consequently, sound based sensors have a data rate limited by the speed of sound in

air when a fixed sensor range is desired.

The ideal robot sensor is a pencil-thin, collimated beam that returns an accurate

range to any object it is pointed at regardless of the angle of incidence. A collimated beam

is a focused, parallel beam of sound energy. The acoustic wavelength is long relative to

light, consequently, most target surfaces act as acoustic mirrors. Since most surfaces act as

acoustic mirrors, some of the incident sonar energy is reflected away from the sonar receiv-

N6 AXII.II INCflEME AiGLE VERUSS:*ACE-
4

40"35 °.. •......... •......... o. °..

0i I . i . .

0 so 100 150 200 250 300 350 400
Sonar Range (cm)

Figure 3.3 Sonar Incidence Angle versus Range

41

no Him - g0 ,0Su

Is . I

0 so 1900 3 0105

mm mp.bl (in)m,

wrnIMG (M)

Figure 3.4 Yamabico Sonar Beam Width

er by the target. This effect become worse with increasing range and increasing angle from

the normal to the target surface. In Figure 3.3 the sonar beam maximum incidence angle for

a valid reflection versus target range is plotted. Sonar is a non-ideal sensor since the sonar's

beam must be nearly normal to the target's surface in order to obtain a valid range return.

Accordingly, surfaces not orthogonal to the direction of propagation reflect the signal en-

ergy away from the source and the surface is not detectable [Brown 85]. This is the biggest

limitation of ultrasonic sensors on mobile robots. On Yamabico- 11, target surface must be

within approximately 15 degrees of normal to the incident sonar beam in order for sonar to

return a range to the target.

Yamabico's sonar transmitters have beam collimators to focus the sound beam.

This results in good directionality but imposes limitations on specular returns. The Yamab-

ico sonar beam is much narrower than the Polaroid sensors. Figure 3.4 shows experimen-

42

tally derived sonar beam width data from one of Yamabico's sonar sensors. Notice that the

sonar beam is widest between 100 and 250 centimeters due to spreading losses.

The target's ability to reflect the incident sound wave is of crucial importance.

The target's ability to reflect incident sound energy per unit area is called the target

strength. Soft, sound-absorbing materials have poor reflectance. A good example of a low

target strength target is drapery on a window. In contrast, cardboard boxes have a high tar-

get strength.

400

y axis cardboard box chair right side sonar -

(cm, wall .i left side sonar

300
I sonar

beam

250

2W robot's path

150

door
wall

50 I

100 150 200 250 300 350 400 450 500 550 G00
x axis (cm)

Figure 3.5 Yamabico Sonar Scan Data

Figure 3.5 illustrates Yamabico's sensor data extracted from four meters of robot

motion. The robot moved down the center of a hallway while scanning objects on both sides

with its range finders. Objects found in a typical office environment were placed along the

left hand wall. The targets included a cardboard box and a wooden chair. Notice that only

43

line segment data is extracted from the sonar scan. Yamnabico does, however, have the abil-

ity to return global position data from the individual sonar returns [Sherfey 91].

TARGET MATERIAL

round trash can (steel)

human leg

cloth partition

wood (prticle board)

wooden door

concrete wall

cardboard box

steel plate (1/4")

0% 25% 50% 75% 100%

Relative Target Strength @ 2.3 meters range
with a 90 degree sonar beam incidence angle

Figure 3.6 - Relative Material Target Strength

Figure 3.6 shows a bar chart of experimentally determined target strength data for

steel, wood, concrete, cardboard, and other objects using Yamabico's ultrasonic range find-

ers. The amplitude of the return from each object was measured using an oscilloscope con-

nected to one of Yamabico's sonar receivers. The maximum return at the receiver was three

volts. The target strength was expressed as a percent of the maximum return at the receiver.

Polaroid sensors do not have separate emitter and receiver units. Yamabico- 11

uses a separate emitter and receiver. The pulse length is 500 milliseconds and the minimum

range is 9.3 centimeters. This feature is important for precise navigation through cluttered

indoor areas.

44

B. YAMABICO-1I ROBOT SIMULATOR

The purpose of the Yamabico simulator is to allow for robot software development and

testing without programming the robot. At the AAAI 1992 Fall Symposium Series the

consensus of the group focusing on Al and mobile robotics bears out the importance of this

approach.

For robot navigation in an office environment.., simulation to perform a large number
of experiments economically and physical robots to verify that the simulated results
hold up in reality is the best approach [AAAI 92].

The simulator provides an X Windows graphics display to the computer screen to al-

low the software developer to determine if robot motion is correct. The simulator is written

in a portable language to facilitate transfer to other host computers. The system runs on a

variety of computers with MIT X-Windows [Johnson 92] and a 'C' compiler. The time ex-

pended in building this simulator was well compensated by the time saved in software de-

velopment. The simulator runs in faster than real time. This allows for simulating long ro-

bot experiments more quickly than the actual robot run time. Simulations run on an inde-

pendent workstation, so the software developer is not subjected to a number of limitations

including battery life (currently Yamabico- 11 lasts about six hour on a battery charge), ma-

neuvering space (lab space is tight), availability (Yamabico is a one-of-a-kind robot with a

dozen software developers involved in programming), and convenience (the developer can

test new algorithms anywhere an appropriately configured workstation is located). Exper-

iments can run overnight or over a weekend. The results can be quickly evaluated without

a human operator having to physically watch the robot. A 2D graphics display is sufficient

to allow the software developer to evaluate the robot's behavior. This simulator was devel-

oped on a Sun workstation since these are less expensive and are generally more available

than special purpose graphic workstations.

The simulator has also served as a teaching tool in the Advanced Robotics course of-

fered at the Naval Postgraduate School. Students learn more efficiently when they can first

practice their programs on the workstation before trying them on the actual robot. The de-

45

mand for experimental time on the robot is greatly reduced since most application devel-

opment time is spent testing robot code on the simulator.

1. Design Goals of the Yamabico Simulator System

The Yamabico simulator's primary goal is to faithfully execute all commands that

the robot executes. This is to include all sonar returns that would be received by the real

robot and specifically it should accurately model the ultrasonic sensors. Also the robot's

multi-tasking system must be faithfully modeled in simulation; this alone is a challenging

goal in a hard real-time system.

The simulator uses the same "user.c" file that could be compiled and run on the

robot hardware with no modifications. Additionally, the same code should be used for the

robot and the simulator where possible. Compiler flags are used to switch between simula-

tor and robot code when necessary.

Robot motion should be shown on the workstation screen frequently during the

test run so the developer can see the path the robot is taking. This allows developers to

quickly test new software and watch a five sided robot symbol move about in the simulated

world space. The above goals were adhered to as closely as possible during the simulator's

development.

2. Simulator Top Level

The top level of the Yamabico simulator is the main menu display that is shown

in Figure 3.7. It is a graphic screen device that allows the simulator user to select the next

simulator function. This graphic main menu device was developed using NASA's graphical

user interface toolkit TAE 5.1 [TAE 90]. The CMPL button is the compile button. When

any portion of the software is changed, this button can be used to compile and link the soft-

ware. This button invokes an UNIX makefile which recompiles all modified code files. The

EDIT button invokes the "vi" editor in the current directory for the file user.c. This allows

the user to edit the "user.c" command file and quickly recompile the code.

46

* . *. *.... . *..... *. °...o..=°Q IIII
.

Figure 3.7 Yamabico Simulator Menu

The RUN button is used to run the simulator. This starts the program which dis-

plays a graphic of the robot's world space. The robot's configuration is plotted symbolical-

ly five times per second. The real-time plot of robot motion is more fully described in the

next section and an example appears in Figure 3.8. The elapsed time and the robot's con-

figuration are displayed numerically on the screen.

The PLOT button allows the user to see a complete plot of the most recent robot

mission. This button invokes the "gnuplot" program [Williams 92] which plots the robot's

entire trajectory and any sonar data obtained during the robot's last mission.

The INFO button displays a help file that gives instructions for new users. The

EXIT button allows the user to quit from the simulator. An additional screen display pro-

vides the contents of the instruction buffer for the user. This is particularly useful for de-

bugging Yamabico system code.

3. Utility of a Robot Simulator

The simulator motion 'ot is show in Figure 3.8. This is an X Windows applica-

tion program design for rapid prototyping and analysis of robot control algorithms. This

plot displays the robot's trajectory as it executes the user's command file. The robot's cur-

rent configuration is displayed in the upper left hand comer of the display. An outline of

the robot's world space is provided to allow the user to determine the robot's current loca-

tion in the world space. The world space can be easily reconfigured by changing a world

input specification file. The robot is plotted as a five sided icon every 20 vehicle control

cycles. This is equivalent to five times per second. Depending on the speed of the host com-

47

I c -11 Ud~

V .t 0.7111

Figure 3.8 - Simulator Motion Plot

puter for the simulator, the robot executes the motion commands much faster than the ac-

tual robot. Many MML programs have been developed for Yamabico using the simulator

to test the robot trajectory first.

The instruction stack for a typically "user.c" command file is shown in Figure 3.9.

The robot's commands appear in the first column. Then the following columns show the

commanded geometry for the command. For path elements this geometry specifies the con-

figuration of each path element. The path element tracking is more fully explained in Chap-

ter IV and Appendix A.

Practically all robotic projects have some kind of simulator to provide an environ-

ment for software development, thus allowing software developers to develop and test new

software modules without physically testing them on the robot. Students in the advanced

robotics course have conducted simple simulation experiments in order to learn the MML

system. The simulator also allowed researchers in the MML design group to develop ad-

48

vanced robot control systems in simulation. One example is the CLIPS Yamnabico simulator

designed by Fish for obstacle avoidance [Fish 93]. Another examiples involves the simple

automated cartography experiments used to build a symbolic map of the robot's world

space in simulation.

......

-UM :*W 040 0 0 001'.1.9 * * 0...

FA~tDO~l9~ 09 0i 0t 10

Lý 0.OG. 0.009 1 SIA 0.100 U11 .9.
fiR..s i0o.6 266,o0 3.14 .400 io.00.:'00 171*17 1 4
Mn. 100o0 100.00 0.00 0.01 .433,75....0......

Total Ukuber of IustrwUm on9

ZLINC.
;lapsd Time: C . se.uond

XLapsed Time:.10.52.aseooDa

Elapsd Time: 14.39 seconds

El1aped Time: 17.6 emaods
SLUE
2lapsed Time: 22.57 seconds

Elapsed lime: 60. 00 weon&s

Figure 3.9 Robot Instruction Stack From Instruction Buffer

4. Simulator Sonar Model

The simulator's sonar model is shown in Figure 3. 10. A simple ray tracing type

algorithm that simulates the expected range finder returns from Yamabico's ultrasonic so-

nars is used. The sonar model consists of 12 virtual sonar beams represented as line seg-

ments. Each beam starts at the global position of the corresponding sensor and ends 4.1

meters from the sensor on the sonar beam's main axis. This distance corresponds to the

maximum range of the real sonar sensors. The robot's world is modeled as a doubly linked

49

list of line segments that represent the boundaries of the robot's world. This world is a sin-

gle polygon in which the robot operates. No collision modeling is included since it is un-

necessary to support automated cartography experiments.

0 3

11

10

4d
4 line7

9
8

1 2

Figure 3.10 Yamabico Sonar Model

The ultrasonic sonar beam is a simple line segment. The algorithm does a simple

segment crossing test and returns the sonar range to the intersection of the sonar beam and

world space surface. An incidence angle of ±150 from a normal to reflecting surface is re-

quired for a valid range return. As the simulator moves throughout the simulated world

space, the sonar beam line segments from the enabled sonars are tested to check if they

cross any portion of the world model. If a beam segment and a world segment cross, then

50

the distance from the robot's sensor to the crossing point is determined. The sonar beam

incidence angle is computed then a range value is returned only if the sonar beam's inci-

dence angle is between 75 and 105 degrees. Sonars ping in groups just as the real robot so-

nar. When one or more sonars are enabled, the simulator pings a group of sonars every three

vehicle control cycles. This correctly simulates the actual vehicle sonar cycle of 24 milli-

seconds.

5. Simulator Fidelity

Vehicle motion is modeled accurately by the vehicle simulator. There is, howev-

er, no vehicle dynamic model so a simple kinematic model is used. Ultrasonic sonar is mod-

eled in a simple fashion and accurately produces the same messages to the laptop computer

interface as the robot software.

The multi-tasking system that is interrupt driven on the real robot is not faithfully

modeled in the simulator. As a result, some temporal ordering is improper. Specular reflec-

tions are also not modeled, and only the range to the primary reflection from the closest vir-

tual surface is returned. The true shape of the sonar beam is approximated by a straight line

ray. This is a relatively good approximation based upon Figure 3.4. Researchers have done

extensive study on the physical nature of the ultrasonic sonar beam [Kuc 87] but no good

specular model exists in the literature.

C. SUMMARY

The Naval Postgraduate School robot, Yamabico- 11, is introduced in this chapter to

provide a basis for comparison. The hardware characteristics are introduced to provide the

reader with sufficient background for the next chapter. This robot is the test bed odometry

correction theory in Chapter V and the automated cartography studies developed in Chap-

ters VII and VIII. All experimental results are reported in Chapter IX.

The Yamabico simulator is an important tool for robot software development in the

MML project. A simple, but valid, sonar model is included to develop model-based mobile

robot navigation algorithms and automated cartography. It has also be used as a teaching

51

tool in the Advanced Robotics course at the Naval Postgraduate School This simulator was

first used to refine the path tracking algorithms for Yamabico. The simulator allows the

software developer to quickly test modifications to the MML language without operating

the robot. A plot of the robot's current location is displayed on the workstation screen at

regular time intervals. A final full trajectory plot is displayed at the end of the simulation

run.

52

IV. YAMABICO SOFTWARE ARCHITECTURE

This chapter describes Yamabico's software architecture that was developed in part to

facilitate automated cartography. Specifically, this architecture provides facilities for task

scheduling, resource allocation, spatial reasoning, vehicle motion control, sonar control

and input/output functions. The geometric module provides spatial reasoning utility func-

tions that support higher level robot behavior such as path tracking and dead reckoning er-

ror correction. The intended path of Yamabico is specified by a series of path elements. The

motion control subsystem provides a user interface for controlling vehicle locomotion by

tracking geometric path elements. The sonar subsystem controls Yamabico's sensor hard-

ware through a library of 'C' functions. Sonar data collection and processing are accom-

plished in real time using these functions. The input/output subsystem is crucial for mobile

robot troubleshooting and analysis. This subsystem provides functions for robot two-way

data transfer between Yamabico and either a host computer or an on board laptop computer.

A. TASK SCHEDULING

As Yamabico's control system, MML is a multitasking operating system that provides

robot motion and sensor functions, allocates processing resources, and performs odometry

functions. The various required tasks are assigned an appropriate priority depending upon

their relative importance. Higher priority tasks will interrupt one or more running lower pri-

ority tasks when required. This system is an effective implementation of a "round-robin pri-

ority queue." An explanation of the operating system task scheduling is necessary. The Mo-

torola 68020 CPU has eight interrupt levels [Motorola 85]. Some of these interrupts are

used to run vehicle tasks at various priority levels in the single CPU, multi-tasking system.

Table 4.1 illustrates these vehicle tasks. The higher the interrupt level, the higher the prior-

ity of the associated task. At the highest level is Yamabico's reset button. This tasks over-

53

rides all other tasks, stops the robot and resets the CPU. Interrupt levels five and six are cur-

rently not used.

Interrupt level four is the highest-priority task that runs during robot operations. This

important task is responsible for steering the vehicle. Every 10 milliseconds, the locomo-

tion task interrupts all other lower priority running tasks and runs for approximately 2500

microseconds. This task first reads the shaft encoders and computes Yamabico's odometry

configuration estimate. This is a dead reckoning technique since only internal devices are

read. All path tracking computations are performed at this level. Next, the most recent

odometry configuration is used to calculate the proper curvature (c) and velocity (v) for the

vehicle. These parameters are used to determine the desired vehicle rotational velocity (w).

A kinematic function calculates the desired left (vL) and right (vR) wheel velocities. This

information is used to determine the necessary pulse width modulation commands for con-

trolling the left and right wheel drive motors.

Table 4.1 MML SYSTEM TASK PRIORITY

Interrupt Interrupt Source Function Interrupt Type Vector Duration
Level (niS)

7 stop button reset asynchronous

6 not used

5 not used - -

4 Serial Board 1 locomotion synchronous 64 2500

3 Serial Board 0 teletype asynchronous 65 variable

2 Sonar Board sonar synchronous 66 240

1 Serial Board 0 debugger synchronous 67 -

0 user's instruc none - -

The vehicle's notebook computer interface input/output task runs at interrupt level

three. This task is responsible for printing information to the vehicle's on board monitor

54

and reading input from the user entered on the laptop computer's keyboard. Also, file trans-

fer from the robot back to the host computer is controlled by this task.

The vehicle sensor functions run at interrupt level two. This interrupt is triggered by

range information that is placed in the sonar board register. When one or more vehicle so-

nars are enabled, this transfers data from the sonar board back to the main CPU at 24 mil-

lisecond intervals. When none of the robot's twelve sonars are enabled, this task is disabled.

Interrupt level 1 provides a debugger task which may be enabled to print status information

to the on board computer when a change occurs.

Interrupt level 0 is the lowest priority task. All other tasks can interrupt this task. This

task reads the user's functions from an input file user.c and fills the command buffer based

on the user's sequential commands and modifies system parameters based upon immediate

commands. These commands are explained in greater detail in Appendix A. The sonar sen-

sors are enabled and disabled at this level. Additionally, all of Yamabico's navigation func-

tions run at this level.

B. GEOMETRIC MODULE

Yamabico's geometric module provides mathematical support for many required spa-

tial reasoning tasks. There are three important components in this subsystem; assignment

functions for specifying geometric variables, math utility functions for manipulating the

geometric variables and path tracking geometric support functions for reasoning about path

elements.

1. Definition Functions

The definition functions are a collection of 'C' functions used to specify geomet-

ric variables. These variables are essentially records containing several floating point pa-

rameters. The definition functions specify vehicle configuration variables as well as path

element variables. A configuration variable represents an object's configuration in the glo-

bal coordinate system using a four element record. Path elements are represented using ei-

55

ther a four parameter configuration variable or a five parameter parabola variable. Appen-

dix A provi,;es additional details and examples of each definition function.

2. Functions

The path utility functions provide a library of routines for the algebraic manipu-

lation of geometric variables. For example, the composition function is used to perform 2D

transformations and the inverse function determines the algebraic inverse of a given con-

figuration. These functions support algebraic manipulations for automatic dead reckoning

error correction as described in Chapter V. Also provided are an assortment of utility func-

tions for spatial reasoning math on board Yamabico. Examples include three types of nor-

malize functions and a ceiling function. All of these utilities support path tracking vehicle

control.

The path tracking geometric support functions serve to connect individual path el-

ements for smooth vehicle motion. This subsystem is composed of two types of functions

which are related. The intersection point functions determine the crossing point of two se-

quential path elements. These functions have also been adapted to handle the transitions be-

tween non-intersecting path elements. The leaving point function calculates a proper depar-

ture point for Yamabico from one sequential path element to the next [Alexander 93].

These functions are explained in more detail in section C of this chapter and in Appendix A.

C. MOTION CONTROL SUBSYSTEM

Precise motion control using the path tracking method of vehicle guidance is essential

for accomplishing automated robot cartography. Yamabico maintains a record of it current

location using distance information provided by its optical wheel encoders. A current

odometry configuration is crucial for path tracking and automated cartography. Precise ro-

bot motion control is accomplished. The path tracking method of robot vehicle control is a

part of the Model-Based Mobile Robot Language (MML) developed principally by

Kanayama [Kanayama 91a]. Basically, this method allows Yamabico to move by tracking

straight lines, circular arcs, parabolas, and cubic spirals. This control method smoothly

56

guides Yamabico during real-time, dead reckoning error corrections. Corrections result in

smoother motion when Yamabico tracks a reference path element instead of a reference

configuration [Kanayama 93].

1. Odometry Capability

Yamabico's software system maintains an estimate of its current configuration in

a configuration variable qo which is called its odometry estimate. The odometry estimate is

updated each vehicle control cycle using information obtained from Yamabico's optical

wheel encoders. A small set of user functions are provided for three purposes; (1) set Yam-

abico's initial configuration at the start of a user.c program, (2) read the current value of

Yamabico's odometry estimate and, (3) update the current odometry estimate. These func-

tions provide automatic vehicle odometry correction capability for Yamabico. The theoret-

ical details appear in Chapter V. The functions that accomplish these tasks are more fully

explained in Appendix A.

2. Path Tracking

Path tracking means that Yamabico's intended path is specified by a series of geo-

metric path elements. Yamabico software control system is extremely convenient for the

user since MML automatically calculates the appropriate transitions between sequential

path elements. This frees the robot programmer to focus on higher level robot tasks such as

path planning and strategic motion control. To reduce the overall complexity of the system,

only certain geometries and path sequences are allowed.

Previously, MML used a reference configuration model to steer the vehicle. Early

experimental work for this dissertation on robot odometry correction revealed problems

with this control model. Odometry resets that resulted in large changes in the current con-

figuration caused non-smooth, jerky motion. These corrections sometimes resulted in a

temporary direction reversal by Yamabico. This problem was particularly severe when the

new odometry position fell behind the robot. A dead reckoning reset to a position behind

the vehicle caused the vehicle to back up to regain the correct configuration on the Carte-

57

sian plane (Kanayama 931. Yamabico also was programmed to accelerate to a higher speed

than the current operating speed in cases where the reset configuration was ahead of the

current configuration. These types of corrections required Yamabico to "catch up" to the

correction configuration. This acceleration together with poor control of Yamabico's in-

stantaneous path curvature caused unacceptable wheel slippage that resulted in increased

odometry error. This non-smooth motion control was unacceptable for automated cartog-

raphy.

A better way to specify robot motion is through a series of planar path elements

that serve to define Yamabico's intended path. Automatic transitions between path ele-

ments provides smooth vehicle motion along the intended path. The available path ele-

ments include straight lines, arcs (constant curvature portions of a circle), cubic spirals, or

parabolic line segments. One advantage of path tracking is the vehicle odometry reset are

performed with respect to a reference path element instead of a reference configuration.

This method smoothly guides Yamabico along the specified path when the odometry esti-

mate is reset. No change in speed is required to catch up to a reference configuration. Yam-

abico corrects its tracking with respect to a linear reference path. This allows it to maintain

constant velocity as it follows the intended path. The overall wheel slippage is reduced

since the vehicle can maintain a constant velocity after an odometry reset.

Smooth path tracking is accomplished using the steering function - which con-

trols Yamabico's instantaneous path curvature. Since Yamabico's configuration is repre-

sented in terms of x, y, 0, and K. The steering function is given by Equation 4.1.

dKd = f (xy, 0, 0)
4.1

A signed distance value y* is used to represent the shortest distance between

Yamabico's current configuration and the reference path. The sign of y* depends on Yam-

abico's position relative to the reference path. When y* > 0, Yamabico is to the left of the

reference path and y* < 0 means it is to the right. Yamabico's configuration projected onto

58

the reference path is called the image. Yamabico's steering function can now be represent-

edas

dK
T = f O, Ko) 4.2

The differences in the current curvature and orientation is given as

AK = do - K.image 4.3

AO = 0 odo -- Oimage 4.4

where Oodo is Yamabico's current odometry orientation and ic0oo is the current

odometry instantaneous path curvature. The proposed steering function is

dK (aAic + bA0 + cy*) 4.5

where a, b and c are positive constants. Equation 4.5 is equivalent to

dK- + aA +bAO+cy* = 0 4.6

In order to find the critical damping conditions required for non-oscillatory vehi-

cle motion, a special path is considered. Assume thatPref is equivalent to the positively ori-

ented x-axis of the global Cartesian coordinate system, i.e. y = 0. In this case, the image

orientation and curvature are always equal to zero. Thus

K image 0 image = 0 4.7

and

Y* 4.8

59

Assume that -x < 0< - then Yamabico's path can be represented as

y = y (x) 4.9

then solving for the steering function in terms of y.

0= atan(y') = +'-Y+Y-,.. 4.10
3 5

y,
2 1 4.112

(+ y,2)3

d I Y
dK dx 2

dK - - 1 + y, = y'A(l +y' 2)- 2 -3y'y" 2 (I +y,2)-3 4.12
ds ds +,

then assume

y 1 4.13

and

yy,"2 * y,,, 4.14

Equation 4.12 becomes the ordinary differential equation

60

y'" + ay" + by'+ cy = 0 4.15

which when put into differential form is

(D 3 +aD2 +bD+c)y = 0 4.16

Since Equation 4.15 is a third order linear differential equation with constant co-

efficients, it must have at least one real root. A non-oscillatory decaying solution to Equa-

tion 4.15 is desired, therefore there must be three negative roots of D. A critical damping

solution of Equation 4.15 must have a triple root, call this root -k where k > 0. Thus

(D 3 +aD2 +bD+c)y = (D+k)3 = D 3 +3kD 2 +3k 2D+k 3 4.17

where

a =3k 4.18

b =3k2 4.19

c = k3 4.20

Under these conditions, there is only one degree of freedom in choosing the coef-

ficients a, b and c. Equation 4.15 becomes

(D+k)3y = 0 4.21

and its general solution is

y = (Ax2 +Bx+C)e-k 4.22

where A, B and C are integral constants. A size constant, so may be defined as

61

so =4.23

then so has the dimension of distance. The size constant determines the distance

Yamabico moves along the reference path before it reaches the path. A smaller size con-

stant makes the transition distance smaller, therefore so controls the sharpness of Yamabi-

co's trajectory.

Figure 4.1 illustrates the method of path tracking control. Each vehicle control cy-

cle Yamabico reads its wheel encoders and calculates its current odometry configuration

qo. This configuration is geometrically projected onto a current reference path element. The

configuration projected onto the reference path is called the image. The signed distance y*

of qo from the path elements is also determined. Each vehicle control cycle the image and

y* are used to determine Yamabico's instantaneous path curvature ic.

O im

• imnage

Figure 4.1 Yamabico Path Tracking Control

62

Figure 4.2 shows Yamabico following a path specified by a single straight line.

The path element Pi = (xi, yl, 01, Kcl) defines the intended path. The path element pi rep-

resents a directed half-line. The (x1 , yl) components of p1 define the origin of the line, 01

gives the orientation with respect to the x-axis and icK represents the path element's curva-

ture. Each vehicle control cycle, Yamabico's control program performs the odometry func-

tion by reading its optical wheel encoders. The vehicle's odometry configuration is calcu-

lated using the distance traveled by the left and right wheels. This configuration is projected

onto p, to give the vehicle's image. The tracking algorithm then determines the necessary

path curvature and wheel velocity to move the vehicle onto the path element pl. The size

constant so determines how rapidly the vehicle converges onto the current path.

so controls the curvature

vehicle

k.,-image

Pi = (x, Y1, (), Ke1)

Figure 4.2 Yamabico Tracking a Straight Line

Figure 4.3 shows Yamnabico following a path specified by two straight line path

elements. These path elements are specified by the configurations p, and P2- Yamabico

tracks along initially using Pi as the reference path. The geometric module computes the

point of path intersection while Yamabico is in motion and tracking path p1 . Next the leav-

63

3, contols the curmau•e

vehicle intaeto

pI, leaving point .. ý /

P2

Figure 4.3 Path Tracking Line to Line

ing point on p, is determined based upon the intersection and the size constant so. This so

parameter determines the maximum robot path curvature during the transition between p,

and P2. Yamabico follows the line p, until the image reaches the leaving point. Then it

switches to tracking path element p2. In this manner the vehicle automatically determines

the optimum transition point between any two path elements. This technique results in

smooth line-to-line path tracking with no overshoot. The motion control subsystem sup-

ports all vehicle motion required to explore an orthogonal world space for cartography. Cu-

bic spirals and parabolic path elements have been implemented but are not used for auto-

mated cartography algorithm. Vehicle kinematic theory, all MML locomotion functions,

and the rules for path element transitions appear in the Yamabico User's Manual provided

in Appendix A. Appendix B provides all of the motion control source code.

64

D. SONAR SUBSYSTEM

The sonar subsystem controls Yamnabico's sonar hardware, sonar data processing, and

data storage. The sonar subsystem was developed principally by Sherfy and Kanayama

[Sherfey 91]. Several improvements were made to support the research described in this

dissertation.

1. Hardware Control

Yamabico's sonar hardware is extremely efficient because three dedicated sonar

boards control the sonar sensors [Sherfey 91]. Yamabico's main central processing unit is

interrupted only when data becomes available from the sonar array. The sonar system pro-

vides user interface functions that control Yamabico's array of sonar range finders. At any

point within a user's program, any of the 12 sonars may be enabled or disabled. This allows

the user to operate a given sonar only when necessary for a particular application. The latest

range value for a given sonar may also be provided by a range function. A user's program

can also be forced to "busy wait" until some sonar-based condition is satisfied. This feature

is particularly valuable for obstacles avoidance. For example, a user's program could be

written to wait until the forward looking sonar's range is less than distance d, then stop.

2. Calculation of Global Sonar Return

The global position of the sonar target providing a sonar return to a given sonar

may be automatically calculated in real time. This calculation is necessary for linear fitting

which provides the input for the edge extraction portion of automated cartography. This

portion of the system uses Yamabico's current odometry configuration, the range value re-

turned from a given sonar and the configuration of the sonar sensor with respect to Yam-

abico's configuration to perform this calculation. A sonar target's location (xg, y8) in the

global reference frame is calculated by this portion of the module. This feature is illustrated

in Figure 4.4 and described in greater detail by Sherfey [Sherfey 91]. Using Yamabico's

current odometry configuration estimate q0 , the position of the sonar receiver (x,, y.)

mounted on Yamabico is calculated by Equations 4.24 and 4.25.

65

xs = x0 + offset (sin (phi + 00)) 4.24

YS = Yo + offset (cos (phi + 0)) 4.25

The sonar range value d is used to calculate the global location of the sonar target

using Equations 4.26 and 4.27.

xs = xs + d (cos (axis + 00)) 4.26

Yg = YS + d (sin (axis+ 00)) 4.27

3. Least Squares Linear Fitting

Linear fitting of global sonar data for a given sonar is performed in order to extract

line segments representing sonar reflecting surfaces in Yamabico's world space. The linear

fitting algorithm examines each individual global sonar return and determines if it can be

fitted to the current line segment. When ten or more global returns fall onto a straight line

(with a user's selected tolerance), the linear fitting algorithm builds a line segment for a par-

ticular sonar. Linear fitting continues as long as sonar returns fall onto the line segment un-

der construction. Linear fitting is terminated when one global sonar return fails to fall onto

the projected line segment being constructed. Line segment data can also be manipulated

during line segment construction as well as after the segment has been completed. The line

segment data may be manipulated using pointers to the individual line segment data struc-

tures. This is an important feature for automated cartography because sonar line segment

data must be efficiently manipulated in order to build a partial world from sonar data.

66

y

son .4(Xs, YS)

dd

00 Yamabico

(Xgt Yg)

x

Figure 4.4 Global Sonar Return

Suppose n consecutive valid data points have been collected in a local coordinate

system, (P],..., p.), where pi = (xi, yi) for i 1-..., n. The moments mjk of the set of points

using are obtained Equation 4.28.

mjk = (O: <j, k! 2, and j + k:5 2) 4.28
i= 1

Notice that moo = n. The centroid C is given by

(i 10 in 0 1C • 4.29

67

The secondary moments around the centroid are given by

M2,AM (xi-pI) 2 = m2o- (! °J2

Mo 1 4.30

M =M mIO0mol 4.31MI-=•(Xi - II) (Yi - Ay) = 1 ml ,MOO

o i, (Yi - g 4.32
i=1

The parametric representation (r, a) of a line with constants r and a is adopted.

If a point p = (x, y) satisfies Equation 4.33,

r = xcosa+ysina (-ir/2<a5x/2) 4.33

then the point p is on a line L whose normal has an orientation a and whose distance from

the origin is r as shown in Figure 4.5. This method has an advantage in expressing lines that

are perpendicular to the x-axis. The point-slope method, where y = mx + b, is incapable of

representing such a case (m = o, b is undefined).

L
y

p = (xi, Y)

residual

Origin x

Figure 4.5 Representation of a line L using r and a

The residual of point pi = (xi, y1) and the line L = (r, a) is xicosOa + yisinc -r.

Therefore, the sum of the squares of all residuals is given by Equation 4.34.

68

n
S = • (r-xicosa-yisina) 2 4.34

i= 1

The line which best fits the set of points is supposed to minimize S. Thus the op-

timum line (r, a) must satisfy

dS dS 435ýi = Ta = O .3

Figure 4.6 provides an illustration of Yamabico performing least squares linear

fitting of global sonar data. Individual global sonar returns are used to fit a line segment

representing the surface providing the sonar returns. At least three global sonar returns are

required to start linear fitting. The line segment under construction is geometrically project-

ed forward. Global sonar returns must fall within a certain residual distance of this project-

ed line. If any global return falls outside this zone, linear fitting for the current line segment

Line Segment Individual global sonar returns
Built by Linear Fitting

Projected line segment

Global sonar returns
that fall in this zone
are added to the line

0 cn segment.

Yamabico

Figure 4.6 Linear Fitting

69

is terminated and all moments get reset. Figure 4.7 provides an illustration of actual global

sonar data fitted to a line segment.
-140 ,,

"segment7.5August93.data"

-145

-150

global sonar returns
-155

linear fitted
fine segments

-160

-165 I
200 250 300 350 400 450 500 550 600 650

Figure 4.7 Linear Fitting Applied to Global Soriar Data

4. Data Logging

The sonar subsystem also provides facilities for sonar data storage and retrieval.

Sonar data may be logged in three forms; raw range data, global target position data, and

line segment data. An interval function controls how often sonar data is logged. Raw sonar

range data consists of the individual range values for a particular sonar for each sonar ping.

Range values are stored as the range from the sonar detector to the target in centimeters.

Global sonar data consists of the (xg, yg) position of every sonar return received while data

logging is enabled. The position of each global return is stored as a pair of floating point

numbers representing the x and y locations of the sonar target in Yamabico's global refer-

ence frame. The segment data from linear fitting may be logged as a series of line segments

extracted by a given sonar. The endpoints, length, and orientation of each line segment are

logged. This is a compact method of sonar data storage since an individual line segment can

70

represent hundreds or thousands of global sonar position values. Logged sonar line segment

data is used as input information for some automated cartography functions. All of the 'C'

code for the sonar functions is listed in Appendix C. The individual sonar functions for glo-

bal data position determination are explained in the Yamabico User's Manual in Appendix

A.

E. INPUT OUTPUT SUBSYSTEM

Yamabico's input/output subsystem provides three important functions; screen input/

output via the on board laptop computer, facilities for downloading executable programs to

Yamabico's main memory, and functions for retrieval of sonar data collected by Yamabico.

Currently all data transfers are via two 9600 baud RS232 serial ports on Yamabico as de-

scribed in Chapter III.

1. On Board User Interface

Yamabico is a self-contained autonomous mobile robot A textual user's interface

is provided in the form of a MacintoshTM Powerbook notebook computer installed on board

Yamabico. The screen input/output portion of this subsystem provides functions for read-

; - information from and writing information to Yamabico's on board computer. Floating

point numbers, text, characters, and integers can be written to the laptop's screen to provide

the user with current diagnostic information while Yamabico operating. This feature is an

extremely valuable tool for troubleshooting bugs in the robot's code. Similarly, functions

are available that read user input from the laptop's keyboard. A "user.c" program can be

written that periodically requests keyboard input from a human user. A good example of

this is an application that allows a user to choose among several programs loaded in Yam-

abico's memory.

2. Facilities to Download Executable Programs

Functions that download robot programs from the host computer are also included

in this subsystem. Executable robot code on the host computer is downloaded via a 9600

71

baud RS232 serial line. The entire robot kernel (MML system) or just an user's application

program (a compiled "user.c" file) may be transferred to Yamabico's main memory using

these functions. Two Unix file transfer programs provide the necessary data transfer proto-

cols. Detailed operating procedures for downloading code onto Yamabico are provided in

Appendix A.

3. Retrieval of Data Collected by Yamabico

Several functions provide the user with the ability to transfer data collected by

Yamabico back to the host computer for analysis. These functions fall into three categories;

location trace data, logged sonar data, and cartography maps. Yamabico's odometry con-

figuration and other guidance parameters may be stored in main memory during robot op-

erations. The input/output subsystem provides a function for transferring this data back to

the host computer. In the same fashion, sonar data and cartography data may also be trans-

ferred back to the host via a serial link. The input/output subsystem provides the essential

link between the mobile robot platform and the researcher. Post mission analysis of the data

collected by Yamabico is important for analyzing the success of a mission.

F. SUMMARY

The task scheduling module provides multitasking scheduling for Yamabico software

system. System resources are efficiently managed by this scheduler. The geometric module

provides geometric spatial reasoning functions for path tracking and low level vehicle mo-

tion planning functions. This module supports the motion control subsystem.

Path tracking automatically computes the proper leaving point to facilitate a smooth

transition between successive path elements. This frees the user from the tedious task of

specifying Yamabico's motion between paths. This also allows Yamabico's software to

calculate a path to the goal by a series of abstract path element segments which are easily

turned into motion commands. Path tracking reduces odometry reset error due to wheel

slippage. This is especially important at higher robot velocities. An odometry reset with re-

72

spect to a path element is far smoother than an odometry reset with respect to a simple con-

figuration. Yamabico's odometry correction theory appears in Chapter V.

The sonar subsystem provides a user interface for controlling of Yamabico's sensor

array. Functions are provided to process and store sonar data in real time. The input/output

subsystem provides the essential interface between Yamabico and the user. Functions are

provided to send data to and receive data from Yamabico's main memory. This data may

be transferred to a Unix host computer or Yamabico's on board laptop computer.

73

V. THEORETICAL BASIS OF VEHICLE ODOMETRY CORRECTION

The vehicle odometry estimate correction method used to support robot cartography

is explained in this chapter. This discussion is preceded by an introduction to several related

odometry correction methods and a discussion of fundamental concepts relevant to this

work. This algebra provides a useful abstraction since the vehicle's configuration, odome-

try error, and vehicle landmari, s can now be manipulated by simple algebraic equations.

The 3D homogeneous tra, sformation groups and qut rrnions are widely used in anal-

ysis and design of robot man'pulators [Paul 84] [Lozano-Perez 83] [Fu 87] [Rolfe 86].

Likewise, a 2D transformation group to represent positioning of rigid body vehicles placed

in a plane is needed. However, the formulation given here is not merely the 2D version of

existing transformation groups. The expression of a robot's orientation 0 is designed to ex-

plicitly maintain complete vehicle orientation information oeyond the range of [-ipi]. This

allows the vehicle's orientation to store the vehicle's motion history. This formulation has

the same advantage as a 3D lomogeneous transformation, i.e. translation and rotation are

described in a single mathen.,,tical structure, the configuration. This algebraic system is a

variation of the 3D homoger.--ous transformation group. However, the system does not

have a point of singularity, which was one of the drawbacks of the homogeneous transfor-

mation.

This chapter introduces a configuration algebra based upon group theory. It is used to

calculate Yamabico's positio,, and motion in the 2D p';me. This algebra provides the re-

quired coordinate transform,.tLon calculations for dead reckoning error detection and cor-

rection. This computationally efficient method allows odametry error determination and

correction in real-time. 2D plantar transformations are not a new concept, but this technique

makes odometry corrections r iore amenable to human understanding. Therefore, it is easier

to write and debug computer (xde to perform these transformations. Group theory provides

a well known algebraic framework for 2D transformation calculations [Bloch 87].

74

Odomnetry correction is p -rformed using only three elementary components.

(1) q-1 - configuration inv -Irse (the mathematical inverse of a given configuration),

(2) e = (0, 0, -7 the ide itity configuration, and

(3) the composition funcoon (a function for combinirng two configurations).

Group theory provides a simple abstract algebra that m~akes calculus related to vehicle

motion design and control transparent and easy, including the analysis of dead reckoning

errors. This algebraic system is implemented in the high level mobile robot language, MML

for the autonomous mobile robot Yamabico- 11 [Kanayama 8 81 [Kanayama 9 1a]. All the

definitions and the basic functions (composition, inverse, symmetric property, and so forth)

provide a powerful and simpL-~ user interface.

A. THE TRANSFORMA': ION GROUP

This section introduces th.- 2D coordinate transformation algebra. Let 9t denote the set

of all real numbers. A transfoi 'nation q is

q -XwhereY, y, 0e 9t. 5.1

The set of all transformations is denoted by T (= 913). For instance, q, = (2, 1, n6Tand

q2= (2, 4, n4Tare examples oftransformations (MT me ins the transposition of a matrix

Ml). Obviously, a transformati.)n q is interpreted as a 2D coordinate transformation from the

global Cartesian coordinate s: stem F0 to another coordinate system F as shown in Figure

5.1.

Let q, = (x,,y 1,,61Y and q? (x.,,y.,, 0,)r The composition ql 0 q2 of

these two configurations is defined in Equation 5.2.

75

S2 X1 +x 2cosI -y 2 sinu1

2j 02 81+0 2

The equation ql = q2 is true if and only if x, = x2 , y1 = y2 and there exists an integer n such

that 01 = 02 + 2nic. The interpretation of q, *q2 in the domain of 2D coordinate transfor-

mation is the composition of the coordinate transforma~ions q, and q2 . The following is

one of immediate results from the definition above.

YO • composition of q1 and q2

q, 0q,

2 = (x2.Y2, t2)
q2 configuration

F q, configuration Xo

Fo global coordinate configuraaion

Figure 5.1 Composition

76

Corollary 5.1 For any I = (xyO) T T,

= 0 0 5.3

Therefore, a transformation (x, y, O)T can always be decomposed into a translation (x,

y, O)T and a rotation (0, 0, 07. Notice, however, that in general q * (0, 0, 0)T o (x, y, 0)T,

since the composition function is not commutative. The composition of the example trans-

formations stated above is giw.nr by Equation 5.4.

1,4= [2 + 2/1 5.4

In order to use the compose function for transformation algebra, it is necessary to char-

acterize its properties in terms of familiar algebraic properties. In order to use the compose

function in the transformatior space T, it is important to prove that the set of all transfor-

mations form a group with re.-pect to the compose function. The following lemmas are re-

quired to prove this fact.

LEMMA 5.1(Closure Propel ty) For any q1 , q2 r T,

q1°q2 E T 5.5

Proof: Each component of q1 °q 2 in Equation 5.2 is a real number. 0

The closure property mcans that the composition of any two configurations gives a

valid configuration in the trarsformation space T.

77

LEMMA 5.2(Associative Property) For any ql, q2, q3 e T

(ql 0 q2)0 q3 =ql 0 (q 2
0 q3) 5.6

Proof:

(q0 2) 0 q3 = xso ycslY

+x~si A, sin20 +02)1 5.8

L ~ os 1 +X0o 2 +0 3 ysn 0

[xl + (x2 +x 3 coO3(2 -y 3 si (Y cosol - (Y2 +x~sinO2 +Y3 cOs0)2) sinoli

= y1 + (X2 +X3 cO;O 2 -y 3 sinO2) sinG1 + (y2 +X3 sin0 2 +Y3 cos 02) co 0 1 5.

L 01 +(0 2+0 3)j

Fxi1FX2+x3c~sO2 -Y3sinO2 5.10

LiLY2+x3sinO2 'Y3cOsO21= q1
0 (q 2 Oq 3

78

LEMMA 5.3(Identity) For all q c T,

qO[ij = 0 jOq =q 5.11

Proof. If q= (x, y, O)T.

X
5.12F) = [J=[JL

Therefore, (0, 0, 0)7 = e is the unique identity element in T. 0

The following Lemma demonstrates the presence of the left and right inverse transfor-

mations for each q = T.

LEMMA 5.4(Right and Left Inverse) Let q a (x, y, 9) T be given. The left and right in-
verse of q are given by the following equations.

(1) The solution to an quation qlftq = e is

-xcosO - ysino
qleft = sin0-ycos0 5.13

-0

(2) The solution to an equation q~qright - e is

79

-xCOSO - ysM0 5.14
q righ,-- [xsineOycoso

Proof. (1) Equation qtej, 0q = e becomes,

Xleft +Xco.;OIeft-ysinfOef1 = 0 5.15

Yle/ft+xsinO,,ft - ycos lef =0 5.16

0left+0 = 0 5.17

By Equation 5.17, 0tejt = -0 . By substituting in 0teft Equations 5.15 and 5.16,

Equation 5.13 is obtained.

(2) Equation q0qright = e becomes,

X+XrightCOS - YrightsinO = 0 5.18

Y+XrightsinO-YrightCoSO = 0 5.19

0.+ Oright = 0 5.20

Simultaneous solution of Equitions 5.15 through 5.17 yield xleft = Xright, Yleft = Y right, and

Oteft = Oright. Since the left inverse ql and right inverse q2 are equal, there exists a unique

inverse q-1 for each qre T. 0

LEMMA 5.5(Existence of a Unique Inverse) For any transformation q a (x, y, 0) T,

there exists a unique inverse

80

-xcos0 - y sinO] 5.21
q-l= xsin0 -ycosO J

Proof. The configurations q, and q2 in Equations 5.13 and 5.14 each represent the

inverse of q and they arc equivalent. 0

As an example, the in, erse of a transformation (4, 2, 7E/6)T is

it-4 -1 -4coso - 2sm_ I

2 4 sin 7r -2Cos = 2- 3 0.268 5.22
6 6 E

Theorem 5.1 (Transformation Group) - The set T of transformation is a group with re-

spect to the composition operation (o), denoted by <T,0 >.

Proof. The algebraic structure < T,' > satisfies the closure property by LEMMA 5.1,

the associative law by LEMMA 5.2, the existence of the identity by LEMMA 5.3, and the

existence of an inverse by LEMMA 5.4. Therefore < T,° > is a group. C

Group theory together wi' h its associated properties provides a well-defined algebraic

structure for 2D coordinate transformation calculations. The closure property gives an as-

surance that the results of the ,-omposition operation give:, an answer that lies with the 2D

transformation space. The in% orse property provides the ability to undo any algebraic op-

eration. The inverse property ,implifies dead reckoning error analysis.

B. FUNDAMENTAL CONCEPTS

A vehicle is placed in a 2D plane %•2 with a global Carnesian coordinate system F0.The

vehicle has a body-fixed Cartesian coordinate system F. The x-axis of F, points out of the

81

front of the vehicle and the y-axis of F, points out of the left side of the vehicle. Since the

vehicle moves, F. is a function of time. The vehicle's position in this plane is described by

a configuration q = (x, y, 0)T, where (x, y) is the position of the origin of F. and 0 the ori-

entation of F in the global coordinate system [Lozano-Perez 791. A vehicle configuration

(x, y, 0)T can be interpreted as a transformation (x, y, 0)T which transforms F0 into Fv. In

other words, the vehicle's confguration is a transformation from the global coordinate sys-

tem F 0 to the vehicle's local coordinate system F. Under this interpretation, group theory

can be used for the control and analysis of vehicle motion. There is a method for describing

a vehicle's motion by a sequence of configurations [Kanayama 91a]. A set of configura-

tions is selected so that any path segment which is obtained by the smooth path planner

passes through the constraints specified [Kanayama 88]. For instance, a path shown in Fig-

ure 5.2 is described by a sequt nce of eight configurations, which are also shown in the Fig-

ure 5.2.

(q 0 ,qlq 2 ,q 3 ,q 4 , q 5 ,q 6 ,q 7) 0 H] j [] 52=C 7C 0 5.23

These configurations an- constraints to the path and should be selected so that each

path segment obtained by the smooth path planner will not have a conflict with the envi-

ronment [Kanayama 88]. In o(der to specify the next configuration relative to the current

vehicle configuration, it may be easier calculate a relative configuration rather than a global

configuration. For instance, when the current vehicle's configuration is qo, a relative con-

figuration r is given so that the next configuration qI is given by the composition operation:

ql = q Or 5.24

82

q7s
q6 q5

r6

//

qr3

q2

qo q,

Figure 5.2 'mnooth Path Generated by Configurations

In the previous exampe, each (absolute) configuration qi is calculated by Equation

5.25,

qj - q1 Ior 5.25

83

using a sequence of rcihtive configurations:

(r1, r 2 , r 3 , r4,r, r6, r 7) = 2 5.26

These relative configu;Itions are also shown in Figure 5.2.

C. EVALUATION OF ROBOT ODOMETRY ERROR

One unavoidable probleiV in controlling autonomou bile robots i the accumula-

tion of dead reckoning errors cver time. If dead reckoning error becomes excessive, the ve-

hicle may become lost. The vehicle configuration q0 estimated by the on board odometry

function is called the odometry configuration. Consider a situation in which the vehicle's

odometry configuration is q0 and its actual configuration is qa" If there is no odoietry er-

ror, qo- qa" Otherwise, there is a difference between the vehicle's dead reckoning estimate

and its actual configuration as shown in Figure 5.3. An error configuration E is defined

such that 5.27

t°qo 0 = q a

This relationship is illusu ated in Figure 5.3. In this figure the error coordinate system

is displaced from the global coordinate system by E. By 11e same token, the vehicle's odom-

etry configuration is displac.Xd from its actual configuration by E-1. That is, this vehicle's

best estimate of its configuration qo is correct only in the "erroneous frame" C. When there

is no dead reckoning error, the error configuration c is eqval to the identity e. If q0 and qa

are known, the error configuration s can be calculated by Equation 5.28.

84

SOq- 1 5.28

For instance, if qo=(2,1, 0)T and qa=(4,3,i/6)T,

a1 = 1 = (2.768, 1.134, 5.29

i.e., the vehicle's odometry configuration qo=(2,1,0)T is correct if it is interpreted as a local

configuration in e. The compose operator is omitted from this point until the end of this

chapter such that qlq 2 - qq 2 .

An analysis of an error that is caused by a sequence of vehicle motion follows: a ve-

hicle has traveled through a series of two configurations q0 1 and qo2 in this order. These

are estimated by odometry. Let qo be their composition as given in Equation 5.30. Also, let

the vehicle's actual movemer t as measured by an outside observer be qal and qa2, where

qa is their composition.

= 5.30

qa = qalqa2 5.31

Then, by substituting into Equations 5.27, the equations for the errors e, el, and £2 are

determined by te following equations.

]= 5.32

85

y

SI lvehicle
configurato

I~ ._,error coordinate4 qo
system

0 er ehice

!configuration

global coordinate - x
"system

Figure 5.3 Odometry Error Anaiysis

qa2 == l2qo2

5.34qa = e'qo

Therefore, if each odometry motion estimate and error are known, the total error is

-1 *5.35
q= qo (qalqa2) (qolqo2)'

C -1 -1 -1 5.36
Slq 2o2 qoq 2qq = -1qo1 C2qo1

86

The involvement of in this equation makes the error analysis complicated. Similar-

ly, the total error equation for n consecutive motions is as follows:

~~ I . - I -- 1" o 5 .3 7
e lqol 01l._1q on- I 1 n qon qonq°'n- 1 *q

E = Elq E n- e q-1 1 5.38

Assume a special case in which qo=... = qo,n- I = e; i.e., after each component motion

qoi' the vehicle is commandec. to come back to the initial configuration. In this case, the

error configuration becomes simply the composition of d!l the individual errors as shown

in Equation 5.39:

5.39
S= e 1e 2.. Cn

This feature is particularly useful for a robot application that requires repeated motion

though the same configuration. This allows the robot's dead reckoning error for one circuit

of motion to be corrected whtn the robot returns to the starting point.

D. MODEL-SENSOR-BA,;ED ERROR DETECTION

An algebraic configuratioi is useful for describing t.-, position of a vehicle. A config-

uration is also useful to describe the position of any object in the environment. For instance,

Object A in Figure 5.4 may bc assigned a body-fixed, lxoal coordinate system FA and its

position in this world is described using this local frame. Furthermore, consider a situation

in which an ideal sensor mounted on the vehicle senses the configuration of an object in the

87

yo

(\0 A\FA
B

bject B
c coordinate

object A coordinate system
system sensing

vehicle coordinate
Fo system

global coordinate 0

system

Figure 5.4 Object Configuration

environment. That is, the vehicle is able to sense the relative configuration of an object with

respect to its own odometry configuration qo with complete precision. Therefore, the vehi-

cle's odometry error is effectively super-imposed upon the sensed object configuration.

A method for determining vehicle odometry error by using an external landmark as a

point of reference is required for odometry correction. In Figure 5.5, qa is the vehicle's ac-

tual configuration, which is urknown, and Pa is the actual configuration of an object A in

the environment, which is obt-.ined from an environmental model. The odometry configu-

ration qo is known, but contains an error e. The configuration po is the observed configu-

ration of the object A, and may have some error, becau,.e, this observation is made by the

ideal sensor on board using the odometry configuration q0 as a point of reference. As dis-

cussed in Section B, a possible difference between Pa and po is due to the error e in odom-

etry.

88

Yo A
actual configuration

Pa of object A

odometry
object A r
configuration >""'PO actua,

o o

odometry
vehicle N
configuration ' Io

F0

Xo

Figure 5.5 Vehicle Odometry Error Detection

The vehicle actually senses the object A atPa, but since the odometry estimate is at qo"

it believes A is at po. The error configuration e, is introduced as the algebraic difference

between both po andPa and between qo and qa as shown in Equations 5.40 and 5.41.

5.40
eq0 = qa

5.41
ePo0 = Pa

From Equation 5.41, ti-e error configuration is

89

= -l 5.42

Since both Pa and po are known, E also becomes known. Therefore, by substituting the

right hand side of Equation 5.42 for e in Equation 5.40, the vehicle's actual configuration

may be calculated algebraically from known values as shown in Equation 5.43.

qa := Eq0 = PaPol q0 5.43

Since Pa is obtained by th1t model andpo is obtained by the sensor, Equation 5.43 for-

malizes the principle of the m,.xlel/sensor based odometry error detection. This principle is

applied in Chapters VIII for localization during automated cartography. The results ob-

tained from odometry estimate correction experiments appear in Chapter IX.

The use of algebraic constructs for representation of a robot's configuration, a sensed

objects configuration, and a ro~bot's dead reckoning error significantly simplifies 2D mo-

tion analysis. This algebra is important since three simple constructs provide all of the nec-

essary tools for dead reckoning error detection from sensor data. The expected configura-

tion of an object and the configuration of the object calculated from sensor input are used

to allow the vehicle to rapidly calculate its dead reckoning -,rror. This error is applied to the

robot's current dead reckonin!i configuration and the error is corrected.

E. RELATIONSHIP TO O)THER TRANSFORMATION GROUPS

The use of the three-dimn-sional homogeneous transformation group is common in

the robotics field [Paul 84]. VI e general form of a homogeneous transformation is shown

in Equation 5.44.

90

R11 R12 R13 X
T R21 R22 R23 Y5.44

R3 1 R32 R33 z
0 0 0 I

where the left-top 3 x 3 submatrix represents rotation and the right-top 3 x 1 matrix repre-

sents a translation. Its two-dimensional version is

R 1 R1 FXcose -sine x AT2 = [R 21R2Y = sine cosy

L0 01- 0 0

This transformation matrix T2 may be used to represent vehicle's configuration as de-

scribed in Section C. In ordei to obtain 0 itself from T2 , Equation 5.46 is used.

0 = atan2 (R2 1, R1 1) 5.46

where the range of the function atan2 is assumed [-nt, n]. However, this method has a draw-

back. If the vehicle's accumul ited rotation is beyond the range of [-7c, x], a part of the ve-

hicle's orientation information is lost. For instance, if the vehicle rotates 2n counterclock-

wise, 0 becomes 0 instead of 2,r if Equation 5.46 is used. In order to avoid this information

loss, an explicit 0 term should be added to T2 obtaining T- as shown in Equation 5.47.

Fcos0 -sine x 0l

T-_o0 OSy0 1 5.4

91

The set T' of all 4 x 4 mattrices of the form in Equation 5.47 under matrix multiplica-

tion is a subgroup of the group of all invertible 4 x 4 matrices. The symbol (X) means matrix

multiplication. Therefore < T', x> is a group.

Groups may be modified but not really but not really changed. When two groups look

different but are essentially the same mathematically they are said to be isomorphic. The

concept of isomorphism is defined as follows:

Definition: Let <(3, #> and <H, $> be groups. G is isomorphic to H provided that there

exists a function 0: G -+ H such that

1. Ois 1-1.

2. 0 is onto H.

3. 0 preserves the operation; that is (a # b) 0 (aO) $ (bO) for all a, b e G.

Proposition 5.1 < T, 0> is isomorphic to < T, x>, the subgroup of the multiplicative group

10 0o]
of 4 x 4 invertible matrices consisting of all matrices of the form L cosO -sine 0j

ysin0 cos 0
00 0 l

Proof: The transformation group < T, 0> is isomorphic to a subset of the 4 x 4 invert-

ible matrices under standard matrix multiplication. Letf(o) be a function that maps each

q=(x, y, 6)T 6 < T, 0> to the matrix in Equation 5.48.

[i 0 00
xcos6 -sin60e 5.48
Fsin0 cosO 0

0 0 0 i

Clearly, f(q) is a 1-1 function that maps onto everN 4 x 4 matrix of the form above

where x, y, 0 e R. In addition,f(q, 0 q2) =f(q,) xJ(q2), where is x the usual matrix

92

multiplication. Thereforef preserves the operation and is a homomorphism. Sincef is 1-1

and onto, < T, 0> is isomorphic to the subset of 4 x 4 invertible matrices of the form

[10 0 0
a cose -sinO0 , where a, b, O0 R. 5.49

b sine cos 0
0 0 0 i

To show thatf is a homomorphism, let q1 = (xI, Y1, 0 1)T and q2 = (x2 , Y2, 0 2)T be ele-

ments of < T, 0. It follows that

2 = I 2+x 2 sin0 1 y2C°S0l 5.50

L 11 5.50 _

Therefore

1 0 0 0

x1 +x 2 C°S0 1 -y 2 sin01 cos (0 1+002) -sin (01 +02) 0 5.51
f(qloq2) = Yl+x 2 sino1 +y 2coso 1 sin (01 +0 2) cos (01 + 02) 0

O1 +02 0 0 1

It follows that

1i 0 0 0'1 0 0 0
i I Cos1 -sine 0 x2 cos02-sin02 0 5.52

f(ql)×f(q2)=- sine 1 cos0 1 0 y,, sin0 2 cos0 2 0

: 0 0 0 1 o 0 0 1

93

1 0 0 0
x1 +x 2 cosO1 -y 2 sinO1 cos (01 +02) -sin (1 +02) 0 5.53

Y, +x 2 sin0 1 ty 2Co°S 1 sin (01 + 02) cos (0 1 + 02) 0

01 +02 0 0 1

using the trigometric identities for the sum of two angles. 0

Although the groups < T, 0> and < T', X> are.isomiorphic, operations in the transfor-

mation group < T, 0> are simpter to represent and are computationally more efficient than

the matrix multiplication in < r', x>. This computational efficiency is essential for trans-

formation calculations performed by an autonomous robotic platform. Obviously, this

transformation system does nnt have any singularity.

F. SUMMARY

Dead reckoning error correction is essential to automated cartography since significant

robot motion is required to map a world space. All accumulated vehicle error must be rec-

onciled during automated cartography motion or the resulting map will be useless. A 2D

configurational algebra based upon group theory provides a solution to the accumulated ve-

hicle error problem. The group theory in this chapter provides an elegant algebraic structure

that makes robot motion calculations more transparent. Motion analysis and robot dead

reckoning error determination are made possible using this algebra. This system is com-

plete in the sense that for every possible situation, the robot's configuration and its dead

reckoning error can be represcmited. These properties aris,.. trom group theory which implies

all configurations have a uniqlie inverse and there is no singularity on any configuration.

One of the open problems related to this theory is whether there exists a similar theory

in three dimensional transformations. i.e., how can the "composition" and "inverse" for

transformations q = (x, y, z, 0, 0, W)T be defined. Here, 0, 0 and AV are Euler angles [Paul

84]. The periodic detection ard reduction of odometry errors allow an autonomous mobile

94

robot to work for a sustained piuriod with great precision. This theory has been experimen-

tally validated using Yarabico-l I and the results are described in Chapter IX.

95

VI. REPRESENTATION OF THE WORLD

The automated cartography algorithm employs a polygonal map representation. This

has also been called abstract mapping since the computational complexity is related to the

number of features in the robot's world space instead of the number of grid squares. Le-

onard .alled this type of map a feature-based map [Leonard 91]. The relatively low com-

putational complexity required to build an abstract map enables a robot to perform the au-

tomated cartography in real time using on board computing resources. Cartography using

only on board computers is more efficient since there is no communication delay associated

with communications to another computer and there are no inherent range restrictions. In

this chapter, the abstract data structure for the world representation is defined.

A. REPRESENTATION OF A POLYGON

1. Example Polygons

Polygons are used as the means of representing free space for this dissertation.

Polygons are the basic building blocks for the world representation. A polygon is a collec-

tion of vertices connected by edges that divide the Cartesian plane into two regions. In Fig-

ure 6.1, several example polygons are shown. The simplest polygon is a triangle, since a

polygon must have three or more edges. All polygons in this dissertation are simple, to dis-

tinguish them from polygons that cross themselves. A polygon with n vertices is called an

n-gon.

2. Definitions

A vertex is defined as a point in the Cartesian plane such that v = (x, y). An edge

is a directed line segment designated by e = (v, v', type) which represents an ordered pair

of vertices (v, v') and a type ("real" or "inferred"). An example of an edge is

96

el
Pb

e2ij
e3

(b) n= 4

Pd

(d) n =10

(e) n =6

Figure 6.1 - Example Polygons

e2= (v2 ,v3 , "real") in Figure 6.1 (c). The edge e2 = {v2 , v3 , "real") consists of a vertex pair

(v2 , v3) and a type = "rear'.

A polygon P = {E, e, next) is a tuple containing a set of at least three edges E =

(e1, e2, ... , e) , a first edge e, and a next function. The edges and the next function are se-

lected such that no pair of nonconsecutive edges share a point [O'Rourke 87]. The next

97

function defines two types of polygons based upon the order of the edges in the polygon;

hole-type and boundary-type. For hole polygons the edges are directed in counterclockwise

order and for boundary polygons the edges are directed in clockwise order. For example,

in Figure 6.1 (b), polygon Pb = { {el, e2 , e3 , e4), el, next) is a hole type polygon with four

edges that are directed counterclockwise. In Figure 6.1 (c), polygon Pc = I {e1 , e2 , e3 , e4},

el, next) is a boundary type polygon with four edges directed clockwise. The domain of the

next function is closed with respect to the polygon's edge list. The vertices of any sequential

edges are coincident such that if next(vi, v2) = (vl", v2
1) then v2 = vl". The next function is

an one-to-one function such that every edge has a predecessor. A polygon with n edges is

a closed, directed cycle such that (Ve) next" (e) = e.

The orientation of an edge is defined as the angle a directed edge makes with the

x-axis as illustrated in Figure 6.2. The orientation of a given edge e = I v1 , v2 , type I is given

by the function I(e). The external angle y of a given edge is the angle formed by the ex-

V2

1.. (v .v2type)

............. ooo°.°°

V1

Figure 6.2 - The Orientation of an Edge

tension of a given edge and the next edge of a polygon. Expressed mathematically, the ex-

ternal angle is; 'yj = 4j(next(ei)) - A4(ei). The external angle concept is illustrated in Figure

6.3. Kanayama proved that the sum of the external angles of all the edges in a polygon is

98

next(ei)

ej

Figure 6.3 - The External Angle

equal to ±21C in accordance with the equation Xyi = ±27C [Kanayama 91]. For hole-type

polygons Myi = +27C and for boundary-type polygons £yj = -27.

The collection of edges and vertices is referred to as the boundary of P, denoted

by aP. The inside of a polygon is defined as the infinite set of points such that a non-oscu-

lating, directed half line drawn from any point intersects the boundary of the polygon an

odd number of times [Kanayama 91]. This concept is illustrated in Figure 6.4. The point p,

is inside the polygon P since the directed half-line L, intersects the polygon P three times.

Another directed half-line (L2), also drawn from point Pl, intersects the polygon P once.

The point p3 is not inside (it is outside) of P since its directed half-line (L3) intersects the

boundary of P an even number of times.

The free area of a given polygon is the planar region defined by the boundary of

that polygon. For a hole-type polygon the free area is the planar region to the right of any

given edge and therefore outside of the region enclosed by the polygon. The region inside

any hole polygon is defined as filled and the region outside is the free area. For example in

Figure 6.1 (b), the filled side of the hole polygon Pb is the shaded region inside of Pb and

the free area is the white region outside of Pb. For a boundary-type polygon the free area is

also the planar region to the right of any given edge and inside the planar region enclosed

99

P3
S~P

.Lo

Figure 6.4 - Region Inside a Polygon

by the polygon. The free area of a boundary polygon P is the region inside)P and the filled

area is the region outside aP. This concept is illustrated in Figure 6.1 (a). The free area of

boundary polygon Pa is the white region inside aPa and the filled area is the shaded region

outside aPa. The function free(P) gives the free region for any given polygon P and the

functionfihled(P) gives the filled region of any polygon P.

An orthogonal polygon P is defined as a polygon whose edges are all aligned with

a pair of orthogonal coordinate axes, which without loss of generality are taken to be hori-

zontal and vertical [O'Rourke 87]. The polygons Pd and Pf in Figure 6.1 are examples of

orthogonal polygons since their edges are all orthogonal to a pair of orthogonal coordinate

axes. In Figure 6.1 (d) polygon Pd is an orthogonal hole polygon and Pf is an orthogonal

boundary polygon.

The edge type designation is used for recording robot sensor input. "Real" edges

are derived when the sensor observes some visible edge of its world space W by direct sen-

100

sor scan. "Infered" edges are constructed edges that serve to bound unexplored or occluded

portions of the world space.

B. REPRESENTATION OF A WORLD

Chapter VII describes the development of a series of three idealized robot cartography

algorithms. These algorithm provide a firm theoretical basis for the real automated robot

cartography algorithm that follows in Chapter VIII. Polygonal regions are used to represent

the free space mapped by the automated cartography algorithm. This section gives some

examples of world representations and defines the basic terms used in the algorithms.

Worlds are compound polygons with the hole polygons used to represent obstacles in the

world and with a single boundary polygon used to represent the exterior boundary of the

known world space.

1. Example Worlds

In Figure 6.5, three example polygonal worlds are shown. The shaded area repre-

sents the free space bounded by each world. Wa is a world consisting of a boundary polygon

with six edges and no holes. Wb is a world with one hole H1 . Wc is a world with two inferred

edges and no holes. Notice in Wb that the edges of the boundary polygon P0 are directed in

clockwise order. Further notice that Wb's hole polygon H, has edges directed in counter-

clockwise order.

2. Definitions

A world W is defined by the pair W = [P0 , H) such that P0 is an exterior boundary

polygon with a sequence of zero or more simple polygonal holes H = IH 1, ... , Hh). The

free aaea of the worldfree(W) is a multiply connected free space with h holes: it is the re-

gion of the plane inside of P0, but outside of H1, ... , Hh. The polygon P0 is a boundary-

type polygon with edges directed clockwise. The hole polygons H1, ... , Hh edges are or-

dered such that the edge number increases clockwise around each polygon as shown in Fig-

101

Wb = P0. (H1)) e

Wa=(PO, 0}
e

1022

ure 6.5 (c). In this manner, the edges are directed line segments such that the left side of any

given edge is the filled area of W and the right side of any edge is the free area of W as

shown by the directed edges in Figure 6.5.

Let the area of the Cartesian plane bounded by a polygon P be represented by El

and let IPId n IP 21 mean the intersecting planar area of polygons P1 and P2 . Let free(W)

represent the intersection of the free areas of all component polygons in the world W. The

area bounded by a world W is the intersection of the area bounded by the world's boundary

polygon Po and all h of the world's hole polygons HI, H 2,...Hh as given by Equation 6.1.

free (W) = free (Po) nfree (H 1) n ... nfree (Hh) 6.1

Equations 6.2 and 6.3 define the required conditions for a world. Equation 6.2

means that no hole polygon may intersect the boundary polygon. Equation 6.3 means that

no two hole polygons may intersect.

(Vi) (filled (Po) nrfree (Hi) = 0) 6.2

Vi, j[(i * j) =ý (filled (Hi) C•filled (H.) 6.3

An orthogonal world W = (Po, H) is defined as a world with all edges aligned to

the same pair of coordinate axes. In Figure 6.5, Wb = (Po, H) is an o, Jiogonal world, where

H = {H1) is the polygon hole list containing one polygon H1 and Po is the boundary poly-

gon.

A partial world PW(W) of the world W is a polygon with holes such that PW(W)

represents some region inside of W such thatfree(PW) rfree(W). For the purpose of these

definitions, inside is defined as any point in the planar region within the free space of the

103

boundary polygon and not within a hole polygon as given in Equation 6.1. The edges of

PW(W) may be either "real" or "inferred". The "real" edges are the edges shared by W and

PW(W). The "inferred" edges are edges whose vertices both lie on edges of W and separate

a region enclosed by both W and PW(W) from a region enclosed exclusively by W. Thus,

the boundary of the partial world aPW(W) must lie entirely within W. The null partial map

PW(W) = 0 of the world W is a partial world such that it has no holes (h=O) and the number

of vertices in Po is zero. A completed partial world is a partial world such that PW(W) = W.

PW is said to be a correct partial world of W if and only if free (PW) Qfree (W).

C. SUMMARY

This chapter develops a method for world representation suitable for automated robot

cartography. A polygon is the basic structure for representing a free space. A world is a

complex polygon with one exterior boundary polygon and zero or more non-intersecting

hole polygons all inside of the boundary polygon. The polygonal method of world repre-

sentation is used for storing the current world model during cartography.

104

VIL THEORY OF AUTOMATED CARTOGRAPHY

Mobile robots that function autonomously in the real world have been a major objec-

tive within the Artificial Intelligence community since the first days of work on intelligent

systems. The ultimate goal has been a robot that would navigate through an environment,

managing to both learn the layout and to perform assigned tasks [Moravec 81]. To develop

a firm basis for robot automated cartography this chapter examines robot cartography using

a point robot with an idealized sensor. This theoretical examination is initially unencum-

bered by robot motion error or the sensor limitations described in Chapter II. This problem

abstraction allows a theoretical examination of the proper representation for the robot's par-

tial map and the proper robot motion planning to support automated cartography.

For automated cartography, the issue of how to sense the geometrical relations of the

world is the central theme. In this chapter, three progressively less idealized sensors S1 , S2,

and S3 are introduced and a cartography algorithm for the idealized robot using each ideal-

ized sensor is presented. In each algorithm, one additional characteristic of the real ultra-

sonic range finder's sensor is added. S, is an idealized, infinite range sensor that returns in-

formation regardless of target incidence angle. The S2 sensor has infinite range capability

but edge detection is limited by sensor beam incident angle. Finally, the S3 sensor has both

finite range and limited sensor beam incident angle capability. Each case study provides an

algorithm and a proof of correctness. The progressively less idealized sensor algorithms

serve to clarify the logical structure of the complex algorithm for the real robot. The ideal-

ized robot R used for this theory has perfect motion control precision so that the algorithms

stated above give a map with a precision determined by the range sensors.

105

A. ALGORITHM FOR IDEALIZED SENSOR S1

The idealized robot R is initially placed at an arbitrary location inside of W. R may

move freely to any point inside of W with no dead reckoning error. This implies that R al-

ways has perfect knowledge of its position in the global coordinate system regardless of the

distance it has traveled since its initial placement in the world. A robot R is defined as a

point robot. The only constraint on R is that it must remain within free(W).

1. Characteristics of the S1 Sensor

Idealized Sensor S1 - The sensor S1 moves about in free(W) attached to R. This

perfect sensor S, is a ray-tracing range finder [Leonard 91] with infinite range. S, returns

the edges of any portion of W's edges regardless of the sensor beam incidence angle as long

as the edge is visible from R. At any point x in W, S1 is swept through an arc and extracts a

list of edges Q from W.

R has a single idealized sensor Sx that is, fundamentally, an edge detector. All edg-

es both visible from R and detectable by Sx are said to be illuminated or detected by Sx. Sx

operates either by sweeping a circular arc from R's current position or by scanning left and

right perpendicular to R's path while R is in motion. R may remain stationary or move while

Sx is operating. Sx has an edge-extracting capability such that any edge or portion of an edge

of W that is illuminated by Sx will be returned to R as a "real" edge.

In Figure 7.1, R sweeps the Sx sensor about a 3600 arc at point C1 . All edges vis-

ible from R are extracted. A boundary polygon for the first partial world PW is formed from

the edges extracted from the C1 sweep. Notice that edges ea and eb are not visible from

point C1 . An "inferred" edge e3 is constructed to connect the discontinuity between e2 and

e4 . R moves to point C2 and performs a second sweep which reveals edges ea and eb. The

"inferred" edge e3 may be removed since the region beyond it has now been scanned.

In the special case, an "inferred" edge may turn out to represent a real boundary

surface as shown in Figure 7.2. In this figure, edge ej happens to be one of W's edges. In

106

el

e6 R

C1
C2 e4

l e5

Figure 7.1 Idealized Robot Cartography Sweep

el

e6 R e
R0

C2 e4

e5

Figure 7.2 Idealized Robot Cartography Sweep Special Case

Figure 7.2, R obtains a partial world PW1 at position C1. The partial world boundary poly-

gon PW.I ,o has five "real" edges el, e2 , e4 , e5 , e6 and one "inferred" edge e3 since Sx de-

tects a discontinuity between edges e2 and e4 .R moves to C2 and performs a second sensor

sweep. This sweep does not reveal any additional free region beyond edge e3 . The sweep

does, however, reveal that edge e3 is in fact a "real" edge and therefore part of W. This fact

107

was impossible to verify from the position C1 since C1 happened to lie on a line extended

from e3 to the left. Therefore, as long as "inferred" edges remain in R's partial world, R

needs to move to obtain additional sensor data from another viewpoint. The necessary mo-

tion to optimize R's view of an occluded region is a fundamental component of intelligent

robot exploration.

The algorithms for the idealized sensors are now described. The S1 sensor is a per-

fect robot sensor with infinite range for target detection. S also extracts edges regardless

of sensor beam incidence angle. The S2 sensor also has infinite range capability, but ex-

tracts edges within a limited sensor beam incidence angle. The S3 sensor is further limited

by both finite range and limited sensor beam incidence angle. Further abstract sensors are

unnecessary since the important non-ideal sensor limitations are addressed by S1 through

S3.

The full sweep and arcsweep functions control S1 as described in the S1 algo-

rithm later in this section. It is assumed that a full 3600 sweep of S1 from any point x inside

of W yields a correct partial world PW. It is also assumed, that given that PWn is a correct

partial world, an S sweep of any "inferred" edge from a point x inside of PWn gives an

edge list Q such that when Q is merged with PWn a correct partial world PWn+1 is derived.

World W - The world W is a world as defined in Chapter VI. The world W has a

finite number of holes and the boundary polygon Po of W has a finite number of edges. All

holes H 1, ... , Hh have a finite number of edges. All edges of W have finite length. An ar-

bitrary parameter a exists such that no hole polygons are closer than 2a to the boundary

polygon Po or to any other hole polygon.

2. Example of Behavior

To explain how the idealized automated cartography algorithm works, two exam-

ples are presented. In the first example, R performs cartography by detecting the boundaries

of a planar, closed polygonal world W. R is placed at any arbitrary point C inside of W, with

108

no knowledge of the configuration space geometry. R first sweeps sensor S1 about a full

circle. This is essentially an idealized visibility sweep that extracts a partial world PW

[O'Rourke 87]. From the 3600 edge data, R derives an edge list Q. In Figure 7.3(a), the

shaded area is the sensor's sweep volume.

The partial world PW1 has a boundary-type polygon P0 and no hole polygons. P0

has an edge list El, a first edge el, and a next function that determines the edge order as

shown by Equations 7.1 and 7.2.

PWI = (Pol) 7.1

Po = ({e,, e 2, e3, e4, e5, e6, e7, e8, e9, e1o}, el, next) 7.2

In PWI in Figure 7.3 (b), each of the consecutive pair of edges in El = { el, e2 , e3 , e4 , e5 ,

e6 , e7, e8 , e9 , e1o) share a common vertex and the polygon forms a closed cycle such that

the first (el) and last edges (el0) share a common vertex. In the polygon PWI *P0 , the edges

are classified as "real" or "inferred" based upon how they are derived from sensor input.

"Real" edges represent the visible edges of W from C1 . "Inferred" edges are derived from

discontinuity between the "real" edges. In the boundary polygon of the partial world

PWI*Po in Figure 7.3 (b), edges e3 and e8 are "inferred" and the rest of the edges are "real".

Therefore, an "inferred" edge represents S's inability to sense beyond some obstructing

portion of its environment. To perform the next step, R must chose a new optimum config-

uration (or viewpoint) inside of PWI to perform the second sensor sweep. A depth first

search (DFS) type algorithm selects the next "inferred" edge for investigation. In this case

the "inferred" edge e8 is chosen to be investigated next. R moves to position C2 near the

center of edge e8 and inside of PW with no dead reckoning error (idealized robot motion).

Figure 7.3 (c) illustrates R's choice for the second sweep configuration.

109

el
eae2

ek ea eb lJ,1e

e9e
eje

(a) Initial Sweep from 0 to 21C (b) First.Partial.Mar, of W. PWI

PWj =(Po, 0),
Q, (ea, eb, ec, ed, ef, eg, eh, ej, ej, ek) Po = (El, el, next),

El (el, 02, e3, e4, e5, e6, e7, -e8, e9-e1O

el

e9 ?

ea V1 (d) Second Partial Map of W.- PW2

(c) Second Sweep at edge e8from v, to v2 PW42 =(Po. 0),ý

Q2 l ea, ebi PO --(E2 , el, next),

E2 (el, e2, e3, e4, e5., e6, e7. e8, e9, e1)

[zz]Region swept by the sensor free(PW)

Figure 7.3 - S, Sensor Idealized Robot Cartography Example

110

W

e•" ee

e9

(a) Third Sweep at edge e3 from v2 toy 2 (b) Final Partial Map ofW: PW3

Q3= {ea,, eb, eo, edj) PW3 =(Po, 0),

Po, =(E3, e1, next)
E= eeI e 2, e3, e4 , e5 , e6, ee e 2, e1, e 11, e12)

IZI Region swept by the sensor [Region inside of the partial world

Figure 7.4 - S1 Sensor Idealized Robot Cartog:aphy Example

For the second sensor sweep R moves to a point normal to the center point of the

"inferred" edge e8. This point is called C2. R sweeps the sensor S1 clockwise from vertex

v1 to vertex v2 on edge e8 in Figure 7.3 (c). The edge list for the partial world PW1 is rep-

resented by P W1OPo.E 1. Then the derived "real" edge list Q2 = {ea, eb} replaces the "in-

ferred" edge e8 in accordance with the Equation 7.3. Edges e7 and ea are collinear and are

therefore combined into one new boundary polygon edge e7. The new edge eb gets renum-

bered as e8 and all of the edges in the boundary polygon get renumbered in consecutive

fashion.

11 1

PW2 ePo*E 2 = PW OPo *E1 -{e 8} u {e.,eb} 7.3

This process is accomplished by a "merge" algorithm.

The second partial world PW2 is illustrated in Figure 7.3 (d). The only remaining

"inferred" edge in PW2 is e3 . This edge is investigated next. R moves from point C2 to C3

in Figure 7.4 (a). Again point C3 is inside of PW2 , normal to the center of "inferred" edge

e3 and a distance a inside of PW2 .R performs the next sensor sweep clockwise from vertex

v, to v2 on edge e3 in Figure 7.4 (a). The extracted edge list is Q3 = {ea, eb, ec, ed). The

final partial world PW3 is derived by a merge function as shown by the Equation 7.4.

PW 3 e P, * E 3 = PW 2 9 Po * E 2- {e 3} U {e., eb, ec, ed} 7.4

The remaining occluded edges of the world are revealed and the S1 cartography

is completed. Notice that the final world has twelve edges all "real". When all edges in WP,

are "real", the algorithm returns the completed partial world PWn = W as shown in Figure

7.4 (b).

A second automated cartography example serves to explain S1 cartography on a

world with holes W = (Po, H). In Figure 7.5 (a), R is placed at point C1. R sweeps sensor

S1 in a full circle and extracts the edge list Q1 = Iea, eb, ec, ed, ep eg, eh, e1). The first partial

world PW1 = (Po, 0) is constructed in accordance with Equation 7.5.

PWI 0 P • E1 = Q, 7.5

H = 0 since no hole yet exist in PWloPo as illustrated in Figure 7.5 (b). The al-

gorithm selects the closest "inferred" edge in PW1 for DFS. R next moves to point C2 and

performs a second sweep on "inferred" edge e6 of PW1 , as illustrated in Figure 7.6 (c). The

112

Region swept by the sensor

eg eb

ehI

ed.

(a) Initial Sweep 0 to 27C e

W Region inside of the partial world

Figure 7.5 - S, Sensor Idealized Robot Cartography

113

Region swept by the sensor

C 2

(a) Second Sweep at edge e6 : vj to v2

Q2 = (ea, eb, ec, ed)

R 0 C2 e6 e5

e7 e4

W Region inside of the partial world

Figure 7.6 - S1 Sensor Idealized Robot Cartography Example

114

Region swept by the sensor

e 8 eb

(a) Third Sweep at edge e7: VI to V2

Q3= [ea., eb, ec, ed)

L~] Region inside of the partial world

Figure 7.7 - S, Sensor Idea][ized Robot Cartography Example

115

extracted edge list Q2 = lea, eb, ec, ed) is merged with PW1 in accordance with Equation

7.6.

PW2 0 PO 9 E2 = PW 1 PO E- {et} 4u {ea, eb, ec, ed) 7.6

The second partial world is PW2 = {Po, 0). Notice that there are still no holes in

PW2 so H = 0 as illustrated in Figure 7.6 (b). There are two "inferred" edges e4 and e7. In

Figure 7.7 (a) the algorithm continues depth first search "inferred" edge e7 in PW2 . R

moves to point C3 for the next sensor sweep. R sweeps the sensor S1 from vertex v, to v2

on "inferred" edge e7. This sweep extracts four new edges; ea, eb, ec, and ed. Notice that

the "inferred" edges e4 and e7 are included inside of the region sweep by S1. Therefore,

these edges are removed. Further, the edges e5 , e6 , and ea bound a closed interior region.

This region becomes a hole polygon as shown in Figure 7.7 (b) such that H1 = I Ie 6. e7.

e8), e6, next). The edge eb is "inferred" and included inside of PW2 , therefore it is discard-

ed. In Figure 7.7 (a), edges ec and e2 from PW2 are coincident so ec is discarded. Edges ed,

e8 , and e3 in Figure 7.7 (a) are also collinear and are combined to form the new boundary

edge e3 . Therefore, a new boundary polygon for PW3 is derived by the Equation 7.7.

PW 3 e Po * E3 = PW 2 * Po 0 E2 - {e 6 } u {ea, eb, ec, ed} 7.7

The final partial world PW3 is PW3 = (Po, I } H)) as illustrated in Figure 7.7 (b).

Notice that the edges for the boundary polygon Po are directed clockwise and the edges of

the hole polygon H1 are directed counterclockwise.

3. Algorithm

This algorithm for idealized automated cartography is listed in Figure 7.8. At the

top level, this algorithm is relatively straightforward. Initialization of variables occurs, an

116

SI automated_cartographyO)

World PW = (0, 0);
Real a;
Path list PL = 0;
Edge List Q = 0;
Point C = (0, o);
Edge e;
Vertex vo, v1 ;

Q =fidl.sweep(C);
PW.Po.E = Q;

while (not complete(PW))
(

e = DFS edge(PW, C);
vo = first_vertex(e);

vI = secondvertex(e);

C = next position(vo, v1, a)

move_,3(C, PL, PW);
4o = '(C, vo);

V, = T'(C, v1);

Q = arc sweep(C, Wo, VI);
PW = mergeedges(e, Q, PW);

}1* end while */
return PW;

Figure 7.8 - The S1 Idealized Robot Cartography Algorithm

initial full sweep from the starting position is made and then a "while loop" is executed each

step of the world space exploration until the world PW is evaluated as complete. There are

ten basic functions; full.sweep, arc sweep, DFS~edge, IF, first.vertex, secondvertex,

nextposition, moveto, mergeedges, and complete.

117

full sweep(C)
Point C;
(

EdgeList Q;
Edge efirst. ewt, e;

Sweep sensor S1 in an arc clockwise 360';

Q = edge list derived from S1;

efirst = first edge(Q);

elt= last edge(Q);

e = merge(efwst, etas);

Q = Q - efirst - elast U e;

return Q;
11* end full sweep *1

Figure 7.9 - The full sweep algorithm

The full sweep(C) function takes R's position C as input and returns an edge list

Q of all edges of W visible from C. The full sweep algorithm is listed in Figure 7.9. The

first and last edges from the 3600 sweep are merged together if necessary.

The full sweep function constructs a point visibility polygon [O'Rourke 87]. In

Figure 7.10 (b), R performs a S1 full sweep from 0 to 27C at point C1. Edge list Q = {e1 , e2 ,

e3, e4 , e5 , e6) is extracted. Then edges el and e6 are merged to form e1 .R moves to the cen-

terpoint of edge e3 and performs an arc sweep on edge e3 clockwise from v, to v2 . Sensor

S1 detects five new edges beyond edge e3 . The edges Q = (ea, eb, ec, ed, ef, eg) replace

edge e3 in PW2 9Po.

The arcsweep(C, Vo, VI) function sweeps the S1 sensor clockwise at point C

from the orientation Vo to V, and returns an edge list Q. The algorithm for this function is

listed in Figure 7.11. Q is a list of the newly found edges. The function returns an output of

Q which has "real" edges derived from the visible portions of W's edges, and "inferred"

118

C1

C,

Figure 7. 10 - Example of S1 Sensor Sweep Operation

edges that serve to bound occluded regions of W. The "inferred" edges are special edges

that are constructed to connect the discontinuity between "real" edges.

The DFS edge(PW, C) function takes the current partial world PW and R's cur-

rent position C as input and returns the nearest edge suitable for sensor exploration. The

function evaluates each existing "inferred" edge in PW and selects the best edge based upon

minimizing the overall distance R must travel to complete the entire search. A depth first

119

arc.sweep(C, 'Vo, VI)
Point C;
Orientation Vo, 4VI;

EdgeList Q;

Align S1 sensor with orientation 'io;

Sweep sensor S1 in an arc clockwise from orientation Vo to V I;

Q = edge list derivedfrom S1;

return Q;
) 1* end arc sweep *1

Figure 7.11 - The arcsweep Algorithm

search strategy is used to guide exploration of complex worlds [Manber 89]. In other words,

each branch of the world is investigated until an end is found to the branch or a hole is dis-

covered.

The T' function returns the orientation between any two input points from the first

point to the second point. Thefirst.vertex(e) function returns the first vertex in the edge e's

ordered pair of vertices. For example, for v = firstvertex(vo, v1, type) such that v = vo.

Likewise, the secondvertex(e) function returns the second vertex of the edge e from its or-

dered pair of vertices. For example, for v = secondvertex(vo, v1, type) such that v = v1.

These functions are used to determine the vertices of any particular edge.

The next.position(vo, v1, a) function returns a point suitable for sensor investiga-

tion of the edge represented by the pair of vertices (vo, vi). The a parameter is a constant

that represents an arbitrary standoff distance for R to investigate the edge. A standoff dis-

tance is necessary for S1 to sweep the entire "inferred" edge with a non-zero sensor beam

incidence angle. The point C is selected on a line constructed on the perpendicular bisector

at a distance a from the edge. This concept is illustrated in Figure 7.12.

120

o C
VI

00

vo

Figure 7.12 - The ne••posidion function

The moveto function moves R to the new configuration in preparation for the

next sensor sweep. This function plans a collision free path for R from the current position

C. to the new position Cn+1 using the partial world model PWn and PL. Then the function

moves R to the new position using a series of one or more straight line path elements. R's

motion falls into two categories; (1" rovement to a visible "inferred" edge for an arc_-

sweep or, (2) backing tracking u, the DFS tree to seek unexplored portions of the world

space behind some "inferred" edge. This is a robot motion planning problem which has

been well studied in the literature [Latombe 91] [Hwang 92].

The merge edge function combines an edge list Q from an arc_sweep with the

existing partial world PW. The algorithm for this function is listed in Figure 7.13. There are

three input parameters; the "inferred" edge e under investigation, the derived edge list Q

from the S1 sweep, and the current partial world PW. This function combines the new edge

list with the existing partial world PWn and returns a new partial world PWn+1 . This func-

tion checks the edge list Q for indications of new hole formation. This is indicated when

one of PW*Po "inferred" edges is within the region swept by the arc sweep function.

The complete function examines the existing partial world PWn for "inferred"

edges. If PWn has no "inferred" edges, then complete returns TRUE; otherwise if PWn has

121

mergeedges(e, Q, PW)
Edge e;
Edge List Q;
Partial World PW;

Edge-List H;

if (new holedetected(PW, Q))
r
H = extracthole(PW, Q);
PW.Po.E = PW.Po.E - H;
PW.H = makehole(H, e);
)

else
PW.Po.E = PW.Po.E - e U Q;

return PW;
) 1* end merge-edges */

Figure 7.13 - The mergeedges Algorithm

one or more "inferred" edges, then complete returns FALSE. A returned value of FALSE

causes the overall algorithm to continue to run since all "inferred" edges must be resolved.

When the complete function returns TRUE, this represents the terminating condition for the

overall algorithm.

4. Proof of Correctness and Termination

The algorithm's proof requires that the idealized robot R can map any arbitrary

world with holes in a finite number of moves with R starting at any point C inside of W.

The proof is by induction. The algorithm terminates after a finite number of steps since the

W has a finite total edge length and each iteration of the algorithm reveals at least minimum

length of new edges of W.

122

PROPOSITION 7.1: Let PWn be a partial world obtained by the nth sweep in the

world W of the idealized cartography algorithm listed in Figure 7.8. Then PW, is a correct

partial world derived from W.

Proof.*

Basis: For sensor sweep number n=], and PW1 is a correct partial world of W by

the assumption that a full S1 sweep from any point inside of W yields a correct partial world.

Inductive Hypothesis: Assume that for sweep n=m the proposition is correct.

Inductive Step: Then at n=m+1, R has a partial world PWm+i. By the inductive

hypothesis, the partial world PWm is correct. By assumption, the partial world PWm+i is

also a correct partial world derived from W since PWm+1 is derived by merging PWm with

an arc sweep of some "inferred" edge in PWm. 0

LEMMA 7.1 : Given any world W there exists a minimum "inferred" edge length

1o >_ 0 such that the length I of any "inferred" edge in a partial world PWn for some n gen-

erated by the S, algorithm in Figure 7.8 is greater than or equal to 1o (1 > l).

!C

Figure 7.14 - Minimum Inferred Edge Length

For instance in Figure 7.14, in the world W the minimum length "inferred" edge

1o is shown. All other possible "inferred" edges have a length I longer than or equal to 4o.

123

Proof. An "inferred" edge U generated by the S1 algorithm in Figure 7.11 has

the following properties:

(a) A is a vertex in W,

(b) There is an edge e in W such that B is on e,

(c) Vertex A is not a point on edge e,

(d) A and B are visible from each other.

A sensor position C is assumed as in Figure 7.14. Consider the minimum length

"inferred" edge A[E. This is an "inferred" edge with one vertex fixed at A and the other ver-

tex B on some edge of W. A minimum length IAo exists for any A (this is from the definition

of polygons and a world in Chapter VI) and IAo >_ 0. Therefore if we let 10 = min AE W (WAo)

then 1o is a positive constant for any given world W. Therefore, for all "inferred" edges in

PW, the length is greater than or equal to 10o. 0

.LEMMA 7.2 Given any sweep on an "inferred" edge e' by the S, algorithm in

Figure 7.8 the total length of the "real" edges derived from the sweep is greater than or

equal to the length of edge e'.

,•... . .., .e e?

/ •seepfrom•

this point

Figure 7.15 - An arcsweep on "inferred" edge e'

Proof. Let the function length(e) represent the length of a given edge e. Then a

portion Ae of a "real" edge projected onto W corresponds to Ae' in the "inferred" edge e',

124

where Ae _> Ae'. This concept is illustrated in Figure 7.15. By integrating both sides of the

equation Ae _Ž Ae' over the length of e' it is determined that length(e) >_ length(e').

01

PROPOSITION 7.2: The execution of the S1 cartography algorithm listed in Fig-

ure 7.8 terminates.

Proof. The total length lw of the edges in the world W is finite. In the nth arc

sweep, at least part of the "real" edges of W with a total length of 1n is found where 1, ! o10.

Since 1, is a positive constant by LEMMA 7.2, the execution of the S1 cartography algo-

rithm terminates with at most iterations. 0

Conclusion: Since any PWm+i produced by the m+J step of the algorithm is a

correct partial world of W and since the algorithm terminates after a finite number of itera-

tions, the idealized sensor S1 cartography algorithm gives a correct complete world derived

from W.

B. ALGORITHM FOR IDEALIZED SENSOR S2

The S2 sensor algorithm has one more non-ideal constraint placed upon it. This con-

straint concerns the sensor beam incidence angle. S2 's ability to extract edges from the

world is limited by the incidence angle of its beam with respect to the incident edge of W.

The S2 cartography algorithm works only on orthogonal worlds because of the sensor beam

incidence angle limitation.

1. Assumptions for the S2 Algorithm

Idealized Sensor S2 - The sensor S2 moves about in W attached to the center point

of R. This sensor S2 is a modified, ray-tracing sensor with infinite range. S2 differs from S]

in that S2 returns only the portion of an edge that is both visible and within the incident an-

gle limits of ±a of normal to the target surface as illustrated in Figure 7.16. For this reason,

125

SWo-ld Free part of WFiUkd pat E&g e
ofW afw •S2 Beam

"real'

R

Figure 7.16 - S2 Sensor Limited Incidence Angle Capability

R performs S2 cartography primarily by translational scanning. As with the S1 algorithm,

S2 connects the discontinuities between edges on W by connecting the "inferred" edges.

These "inferred" edges bound the occluded regions inside of W that are not visible from R.

Suppose R is placed at any point inside of W, then assume any a translational scan

orthogonal to world W that stops at a distance a from any edge of W yields a correct partial

world PW of W. Also assume given a translational scan entirely inside of a partial world

PWn derived from W yields a correct partial world PW,+1. These assumptions are charac-

teristic of the idealized sensor S2.

World W - The world W = {Po, H} is an orthogonal world with holes as defined

in Chapter VI. The world W has a finite number of holes h and the boundary polygon Po of

W has a finite number of edges. All holes H = H1, ... , Hh have a finite number of edges.

All edges of W have finite length. The world is restricted to an orthogonal world due to the

limited incidence angle capability of S2. The minimum distance between the boundary

polygon Po and any hole polygon Hi e H must be greater than a.

2. Example of Behavior

An example of sensor S2 cartography is presented starting in Figure 7.17. In Fig-

ure 7.17 (a), R is placed at any arbitrary starting point C. R sweeps the S2 about a full circle

and extracts the edge list Q consisting of the four edges; ea, eb, ec, and ed. In any given

126

- el

Cd C1 es, C

e8

et

(a) Initial Sensor Sweep (b) Fiart Translational Scan
Q=ea, eb, ec, Ed) PWp(= P0 .01

P = [El, elnext]
El = fel. e2, e3, e4, e5, e6, e7, e8)

e13 el .. e

L121 ell elo e2 e7

I1 e

_ _ _ _ _ _ _ _ _ _ _e 6 e
e8 e s el

(c) Second Translational Scan (d) Third Transainal Scan

Pw 2 =(P 0 01PW3~ fPO, H1

PO= (E2, ej, next)' P = [E3, elnext)
E2 fel.e 2, E3,e3 = fej, e2. e2, ej, e4, e5, e6, e7M~

H, = fE1, e8, next)
E, fe8 , ep, el1 , ell)

Figure 7.17 - S2 Sensor Idealized Robot Cartography

127

world at least four edges are extracted by this full sweep. More than four edges are possible.

These edges must meet the incidence angle criteria of ±ac to be visible as described above.

The orientation of R's first translational scan is based upon the edge list Q such that R

moves orthogonal with the world W. The position of the edges derived from the initial ro-

tational sensor scan are used to determine the path for the first translational scan. The algo-

rithm selects the edge furthest away in edge list Q to move toward for the first translational

scan. In this case edge eb is the furthest C1. Then R moves from C1 to C2 using a straight

line path. The first translational scan is shown in Figure 7.17 (b). Notice that a hole polygon

H1 was initially undetected by the S2 sensor sweep due to the incidence angle limitations.

Also notice that ,e partial world PW1 extracted by the first translational scan is an orthog-

onal world.

The S2 algorithm uses the resulting partial world to determine the path for the next

translational scan. Since the right hand side of the first partial world is a long "inferred"

edge e2 in Figure 7.17 (b), R performs the second translational scan from configuration C2

to C3. The second translational scan reveals the right hand side of the boundary polygon of

the world and the right hand side of the hole polygon H1. Using the same reasoning process,

R contizues with the third translational scan from C3 to C4. More of the boundary and hole

polygon edges are revealed. In Figure 7.17 (a), the final translational scan from C4 to C5

completes the map of the world. Notice that "inferred" edges near the four comers of the

boundary polygon are incorporated in the "real" edges. The "inferred" edges in the interior

corners of Po are connected so that R maintains a standoff distance a from any "real" edge

in W.

3. Algorithm

The algorithm for the S2 sensor cartography is listed in Figure 7.19. At the top lev-

el the algorithm first initializes all variables. Then a rotational sweep is performed to deter-

mine the visible edges of W The algorithm then enters a "while loop" and iterates until the

128

e5 e5

04e 6 Qe 8 e2e6 Q e8 e.

(a)FouthTranslational Scan ()fa~pf

PO B = X(Ze 5.P [S el, next)
Es = (es,:02, e3' e4) E5 (Cj, e2, e3. e4)
HI = (E,:, e,8 next) H1 (El, eg, nex)

EI= (eS, e6. e7t ed E fe~j. e6, e7. £8)

Figure 7.18 - S2 Sensor Idealized Robot Cartography

partial map PW is evaluated as completed. There are six basic functions; fldlsweep, findL-

orthogonal-orientation, translational-scan, merge, nextjposition, and complete.

The full sweep function sweeps R 's S2 sensor clockwise from 0 to 27C and extracts

an edge list E. This edge list represents all "real", detectable edges from R's position. In the

example, the "real" extracted edge list in Figure 7.17 (a) is Q = I ea, eb, ec, ed). This func-

tion always extracts at least four "real" edges since S2 has infinite range and W is an orthog-

onal world. More than four edges are also possible depending on R's initial position and the

geometry of the world.

The fi nd orthogonal orientation function aligns R's internal coordinate system

such that it is orthogonal to the edges in the input list Q. This function examfines each edge

in the edge list Q and returns a point C such that R moves orthogonal to the edges in Q when

it moves on its first translational scan. This concept is illustrated in Figure 7.20. Edge eb is

the furthest edge, but R cannot move to eb, on a single straight line path orthogonal to the

129

S2_automated_.cartography(O
(

World PW = (0, 0);
Edge list Q = 0;
Configuration C = (0, 0, 0);

Q =filLsweep(C);
C = findorthogonalorientation(Q);
while (not complete(PW))
(

Q = translational scan(C, PW);
merge(Q, PW);
C = nextconfiguration(PW, C)

)/* end while *1
return PW;

Figure 7.19 - S2 Sensor Idealized Robot Cartography Algorithm

edges in W. Therefore, the function picks the next furthest edge ea and calculates a point C

at a distance a from ea as shown in Figure 7.20.

The translationalscan is an analog of the S, move-to function except that S2 op-

erates while R moves translationally. The reduced capability of the S2 sensor requires R to

use a translational scanning technique to find edges in W. The translationscan function

moves R on a straight line path from its current position to the Cn position. The path chosen

is always orthogonal to W and runs parallel to one or more of W's edges. The translation_-

scan function operates while R is moving translationally along a straight line path element.

During the translational scan, the S2 sensor scans perpendicular to R's direction of travel

on both the left and right sides. The translationalscan function returns an edge list Q.

130

ea
C

first scan path element

ec

ed

Figure 7.20 - Thefindorthogonal.orientation function

The merge function combines an edge list Q extracted from a single translational

scan with the existing partial world PW, to form PWn+1. The merge function must recog-

nize and adapt to holes found in the world. In the example in Figure 7.17 (d), the merge

function recognizes a hole polygon during the translational scan from C3 to C4 . The "real"

edges e5, e6, e7, and e8 and the next function for the polygon are modified to change the

directionality of the hole edges such that H1 = I Ie5, e6 , e7, e8), e5 , next).

The next_position function takes the existing partial world PW and R's position

Cn as input parameters and returns the next point Cn+1 for R to move to for translational

scanning. This function examines all imaginary edges in the current partial world and se-

lects the imaginary edge closest to R's current position. Then R calculates a point inside of

PW, such that R will move parallel to this imaginary edge an inside of PWn. If there are no

imaginary edges left in PWn, then the next..position function returns R's current position.

The complete function evaluates PWn. If any "inferred" edges longer than a re-

main in PW, then PW is evaluated as incomplete and FALSE is returned. If PW = (0, 0),

131

then PW is also evaluated as incomplete and FALSE is returned. Otherwise, if all "inferred"

edges in PW are shorter than o, then PW is evaluated as completed and TRUE is returned.

4. Proof of Correctness and Termination

PROPOSITION 7.3: Let PW, be a partial world obtained by the nth translational
0

scan of the world W of the S2 idealized cartography algorithm listed in Figure 7.19. Then

PWn is a correct partial world derived from W.

Proof:

Basis: For translational scan number n=], PW1 is a correct partial world of W by

the assumption that any translational scan in W yields a correct partial world.

Inductive Hypothesis: Assume for translational scan n=m the proposition is cor-

rect.

Inductive Step: Then at n=m+1, R has a partial world PWm+i. By the inductive

hypothesis, the partial world PWm is correct. Since PWm+i is derived by merging the edges

from a translational scan inside of PWm, the partial world PWm+i is a correct partial world

derived from W. 0

Given an arbitrary orthogonal world aligned in general position list the x-coordi-

nates of all the vertical edges listed in ascending order is x1, x2 , ... , xp and the y-coordinates

of all of the horizontal edges listed in ascending order is Y1, Y2, Yq. The minimum length

translational scan length is defined by Equation 7.8.

11 simin (minlji•gp+ I (xi+ ,l-x,)'.minl,,jq+ I (Yj+ 1-Yj)) 7.8

LEMMA 7.3 : Given any orthogonal world W there exists a minimum translation-

al scan length l1 >_ 0 such that the length I of any translational scan in the world W for some

n generated by the S2 algorithm in Figure 7.19 is greater than or equal to 1 (1 > 11).

132

Figure 7.21 - A Minimum Length Translational Scan 11

Proof. Since translational scans are either horizontal or vertical and since 11 is the

minimum distance between any two successive edges perpendicular to R's path, the mini-

mum length scan is 11 as illustrated in Figure 7.21. 0

LEMMA 7.4 : For any translational scan by the S2 algorithm in Figure 7.19 the

total areas swept by the translational scan is greater than or equal to 11

Proof. The minimum length of any translational scan in a world W is 11 by LEM-

MA 7.3. By the same token the minimum width of the area scanned is I1. Therefore the min-

imum region swept by any translational scan must be greater than or equal to 12. 0

PROPOSITION 7.4: The execution of the S2 idealized automated cartography al-

gorithm listed in Figure 7.19 terminates.

Proof: Let A represent the finite total area of the region enclosed by a world W.

By LEMMA 7.2 the minimum area swept by any S2 translational scan is 112. Therefore the

execution of the S2 cartography algorithm terminates with at most (AJ itera-

tions. 0

133

Conclusion: Since any PW,+! produced by the m+1 step of the algorithm is a

correct partial world of W by Proposition 7.3 and since the algorithm terminates after a fi-

nite number of iterations by Proposition 7.4, the idealized sensor S2 cartography algorithm

returns a complete correct partial world derived from W.

C. ALGORITHM FOR IDEALIZED SENSOR S3

The S3 sensor is an idealized sensor with capabilities that are less ideal than S or S2.

For this sensor, the range is limited to arbitrary value P. As with the S2 algorithm this algo-

rithm operates only on orthogonal worlds because S3 has the same incidence angle limita-

tion as S2.

1. Assumptions for the S3 Algorithm

Idealized Sensor S3 - The sensor S3 moves about in W attached to R. This perfect

sensor S3 is a modified, ray-tracing sensor with finite range. S3 differs from S1 in that S3

returns only the portions of an edge that are incident ±x with the sensor's ray. S3 differs

from S1 and S2 in that it is capable of limited range P3. Therefore, S3 operates primarily by

translational scanning. Further, S3 connects the discontinuities between edges on W by "in-

ferred" edges and uses "inferred" edges to bound a region out of sensor range. These "in-

ferred" edges bound the occluded regions inside of W that are not visible from the scan po-

sition. During translational scanning, S3 scans both sides of R's path perpendicular to R's

direction of travel. S3 also monitors forward range to any obstacle. In Figure 7.22, R per-

forms a translational scan from C1 to C2 . The sensor S3 has a side scanning beam on either

side of R. In Figure 7.22, the object on R's right hand side is extracted as a "real" edge since

its range is within the maximum range I0 from R. The left hand side object is beyond S3 's

range, so S3 constructs an "inferred" edge parallel to R's translational scan path. R stops at

the point C2 at a distance a from the obstruction. The imaginary edges on either side of R

are extended to include this barrier. The distance ; is an arbitrary, small standoff distance.

134

C C2

Figure 7.22 - - S3 Translational Scanning

Suppose R is placed at any point inside of W, then assume any a translational scan

orthogonal to world W that stops at a distance cm from W yields a correct partial world PW

of W. Also assume given that a partial world PWn is a correct partial world derived from W,

a translational scan that moves R parallel to any existing "inferred" edge yields a correct

partial world PWn+,1 . These assumptions are characteristic of the idealized sensor S3.

World W - The world W = {Po, H) is an orthogonal world as defined in Chapter

VI. The world W has a finite number of holes and the boundary polygon Po of W has a finite

number of edges. All holes H = H1, ... , Hh have a finite number of edges. All edges of W

have finite length.

2. Example of Behavior

The S3 algorithm behavior is illustrated in Figure 7.23. R is initially placed at

point C1. An initial sensor sweep extracts an edge list Q with two edges, ea and eb, from

the world. Notice that less information is obtained by a sensor sweep due to S3 's limited

range and incidence angle capability as shown in Figure 7.23 (a). Based upon these two ini-

135

el

PW2 c2

PW3 P e2

c3 eC4 -4

• 5 PW5
PW7

C6

Figure 7.23 - The S3 Cartography Example

136

tial edges, R moves parallel to ea from point C, to C2 . This is the first translational scan

represented by the white area in Figure 7.23 (b). Notice that the hole polygon H1 is out of

range of sensor S3. The direction for the second translational scan is chosen based upon S3 "s

sensor input to R at point C2 . R detects an obstruction forward and to the left. Therefore, it

turns right 900 for the second scan. The second translational scan moves R from point C2

to C3 as illustrated in Figure 7.23 (c). R stops moving when a barrier is sensed forward at a

distance a. The partial world PW3 is now composed of two "real" edges and several "in-

ferred" edges. These "inferred" edges require resolution by translational scan. R continues

translational scanning by moving from C3 to C4 as illustrated in Figure 7.23 (d). Two "real"

edges are extracted by this scan, one from the boundary polygon (e3) and one on the hole

polygon H1 (e7). R next moves from C4 to C5 for the fourth translational scan. This motion

is determined by the proximity of the closest inferred edge. Once C5 is reached, several in-

ferred edges remain inside of the boundary polygon. R moves from C5 to C6 to C7 to com-

plete the map as illustrated in Figure 7.23 (f).

3. Algorithm

The algorithm for the S3 sensor cartography is listed in Figure 7.24. At the top lev-

el the algorithm first initializes all variables. Then a rotational sweep is performed to deter-

mine the visible edges of W. The algorithm then enters a "while loop" and iterates until the

partial map PWn is evaluated as completed. There are six basic functions; fuUlsweep, fin-

d_orthogonal-orientation, next-orientation, merge, translationscan, and complete.

The full sweep function sweeps R's S3 sensor through 3600 for one circular scan

and returns an edge list Q. All portions of W's "real" edges in sensor range that are visible,

within range 03 and that have the correct incidence angle a are extracted. R's internal coor-

dinate system is aligned to the visible edge of Q. In this way R aligns its coordinate system

orthogonal to W

137

S3_automatedcartography()
(

World PW = (0, 0);
Edge list Q = 0;
Point C = (0, 0);

Orientation y,*

Q = fullsweep(C);

^ = findorthogonal..orientation(Q);
while (not complete(PW))
(

Q = translational .scan(y, PW);

merge(Q, PW);

Y = nextorientation(PW)

)/* end while */
return PW;

Figure 7.24 - S3 Sensor Idealized Robot Cartography Algorithm

Thefindorthogonal orientation function takes the edge list Q as an input and ro-

tates R to an orientation suitable for translational scanning. This function determines which

of the visible edges in the edge list is best for guiding R's first translational scan. Thefin-

d-orthogonalorientation function is somewhat complicated by all of the possible config-

urations of edges extracted by the sweep function. The algorithm for thefind orthogonal-

orientation function is shown in Figure 7.25. There are six important cases as illustrated in

Figure 7.26. If the input edge list Q is NULL, then there were no visible edges after R's first

stationary, circular sweep. In this case R performs a series of circle searches to locate any

edges that may be nearby as shown in Figure 7.26 (a). The circles used for the edge search

start out small and then grow progressively larger until an edge is located. The first edge

138

findorthogonal orientation(Q)
edge_list Q;
(

if Q = 0 then
While (Q = 0)

Q = circlejfor edgesO;
y = rotate_parallel_to_oneedge(Q);

else if (num_edges(Q) = 1)
= rotateparalleltoone edge(Q);

else if (num edges(Q) = 2 and edges_parallel(Q))
y = rotate parallel_to_twoedges(Q);

else if (numedges(Q) = 2 and edgesfperpendicular(Q))
[= rotateto_point out_of corner(Q);

else if (numnedges(Q) = 3)
S= rotate towardsopenspace(Q)

else if (numedges(Q) = 4)
y = rotatetowardjurthestedge(Q);

return "

Figure 7.25 Thefind_orthogonal orientation algorithm

found is used to determine the path element for the first translational scan using the ro-

tate.parallel _to one_edge function.

The numedges function processes the edge list Q and determines how many sep-

arate edges are visible. This function does not count repeat edges, i.e. edges with the same

orientation and position twice. When the function nunedges returns one, meaning that

only one edge is visible and in range, R simply uses this single edge to guide the first trans-

lational scan as shown in Figure 7.26 (b). R rotates to align itself parallel to the edge's ori-

entation and uses the extracted edge's position to calculate a suitable path element for the

first translational scan.

139

(a) No segments - circle (b) One segment - rotate to align
parallel

(c) Two parallel segments - rotate to (d) Two perpendicular edges -
align parallel rotate to leave the corner

(e) Three edges - rotate to point (t) Four edges - rotate towards the
towards open space furthest edge

Figure 7.26 Thefindorthogonal_orientation cases

140

The edges parallel function examines the edge list Q and returns TRUE if all of

the included edges are parallel and FALSE otherwise. If the num edges function returns

two and the edges parallel function returns TRUE, then R rotates parallel to the edges in

Q and uses the geometry of these edges to determine the best path element for the next

translational scan. This case is as shown in Figure 7.26 (c). This behavior is appropriate for

when R is starts in a hallway that is less than 2P wide.

In Figure 7.26 (d), R uses the position of the two perpendicular edges to rotate to-

wards open space. This is appropriate when R starts near a corner in its world space. In Fig-

ure 7.26 (e) R uses the three edges to rotate towards open space and determine the best first

scan path element for translational scanning. In Figure 7.26 (f), four edges are detected, in

this case R simply rotates to point towards the edge that is furthest away. This behavior al-

lows the first translational scan to map as much open space as possible.

The translationalscan function takes an orientation Y' as an input and moves R

along a path element with this orientation. Only four values of the input angle are possible

0, nt/2, xt, or -x/2. The reduced capability of the S3 sensor requires R to use a translational

scanning technique to find edges in W. The translationscan function moves R on a straight

line path from its current position Cn to the Cn+1 position. The path chosen is always or-

thogonal to W based upon sensor input and therefore runs parallel to one or more of W's

edges.

The merge function merges the extracted edge list Q with the current partial world

PWn to obtain a new partial world PWn+,. The function recognizes hole emergence in

PWn+1 by examining the existing edges in PWn.

The nextorientation function takes the existing partial world PW as input and de-

termines the path required to reach the next appropriate translational scan. This algorithm

steers R parallel to the appropriate "inferred" edge in PW using a depth first search strategy.

The complete function evaluates the partial world PW. If PW = (0, 0) or PW con-

tains at least one "inferred" edge longer than a, the complete function returns FALSE. If all

141

"inferred" edges in PW are shorter than a, then complete returns TRUE. If PWsPo is com-

plete and fully scanned and PW*H = 0 then PW is evaluated as complete.

4. Proof of Correctness and Termination

PROPOSITION 7.5: Let PW, be a partial world obtained by the nth translational

scan of the world W of the S3 idealized cartography algorithm listed in Figure 7.24. Then

PWn is a correct partial world derived from W.

Proof.

Basis: For sensor sweep number n=], PW1 is a correct partial world of W by the

S3 assumption that any translational scan yields a correct partial world.

Inductive Hypothesis: Assume for translational scan n=m the proposition is cor-

rect.

Inductive Step: Then at n=m+l, R has a partial world PWm+1. By the inductive

hypothesis, the partial world PWm is correct. By the S3 assumptions, the partial world

PWm+1 is a correct partial world derived from W. 0

There exists a minimum width (12 > 0) for any translational scan. The value of 12

is a positive constant less than 23 for any given world W. Given an arbitrary orthogonal

world in general position, the x coordinates of all of the vertical edges in ascending order

is x, x2, ... , xp and list the y-coordinates of all of the horizontal edges in ascending order

Yl, Y2, ... , yq. The minimum width of a translational scan (12) is defined by Equation 7.9.

12- min(minl5i<P+I(xi+l-x -2mo)'min, :j!;q+1(Yj+I--YJ-2mo)) 7.9

where (xi+1 - xi - 2m13) > 0 and (yi+,l -yi - 2mp) > 0 for non-negative integer values

of m.

LEMMA 7.5 : The minimum area swept by an S3 translational scan is lpxl2 .

142

Proof. Since LEMMA 7.2 states that the minimum length of a translational scan

is 1 for a given world W and since the minimum width of an S3 translational scan is defined

as 12, the minimum areas swept by a single translational scan is 1/x12. 0

PROPOSITION 7.6: The execution of the idealized automated cartography algo-

rithm listed in Figure 7.24 terminates.

Proof. Let A represent the finite total area of the region enclosed by the world W.

By LEMMA 7.5 the minimum area swept by any translational scan is lx12 . The execution
A

of the S3 cartography algorithm in Figure 7.24 terminates with at most () transla-
11 X 12

tional scans. 0

Conclusion: Since any PWm+1 produced by the m+1 step of the S3 algorithm is

a correct partial map of W and since the algorithm terminates after a finite number of iter-

ations, the idealized sensor S3 cartography algorithm gives a correct complete world de-

rived from W.

D. SUMMARY

A series of three algorithms for automated cartography for an idealized robot with pro-

gressively less idealized sensors are presented. Examples provide an illustration of the idea

behind each of the algorithms. The S1 sensor is capable of cartography of non-orthogonal

worlds since this sensor can extract infnrmation from the world regardless of incident an-

gle. The S2 sensor is an infinite range sensor but with limited incidence angle capability.

This limited incidence angle capability restricts the S2 sensor to cartography of only orthog-

onal worlds. The S3 has both limited range and limited incidence angle capability. This sen-

sor is most like the "real" sensors on Yamabico. Therefore, the S3 algorithm provides the

basis for the "real" cartography algorithm developed in Chapter VIII.

All component parts of the three algorithms are explained. The algorithms are each

proven by induction on the number of iterations. The total number of "real" edges in the

143

partial world grows with each iteration of the algorithm until the world W is completely

mapped. The odometry error incurred by robot motion and the "real" robot's non-holonom-

ic motion are the non-idealized constraints imposed by R. Finite sensor range, sensor noise,

and sensor return limited by sensor beam incidence angle impose "real" constraints on the

idealized sensor. These "real" world constraints are investigated in Chapter VIII.

144

VHI. AUTOMATED CARTOGRAPHY BY YAMABICO-11

In Chapter II, numerous approaches to robot navigation and automated cartography

were presented. None of these systems achieved simultaneous robot localization and car-

tography. Both localization and cartography must be performed at the same time for a robot

to build an accurate, spatially-consistent map of an interior space. This system supports si-

multaneous robot cartography and localization since Yamabico can perform dead reckon-

ing error corrections during translational scans orthogonal to the robot's world space.

In Chapter VII a series of algorithms for idealized automated cartography are present-

ed. These algorithms have no practical utility in the real world since physical principles pre-

clude their implementation. Idealized robot cartography provides a theoretical springboard

for the development of the real sensor automated cartography on Yamabico- 11. This chap-

ter describes the physical characteristics of a real robot and a real sensor that cause the de-

viation from the idealized case. The real sensor cartography algorithm is explained in detail

in this chapter. The experimental results of real sensor cartography appear in Chapter IX.

Important differences exist between the idealized robot-idealized sensor pair and the

real robot with an array of real sensors. In Chapter VII, the idealized robot R moves about

in the world space without incurring any dead reckoning error. Therefore, R always has per-

fect knowledge of its current configuration. Yamabico, on the other hand, cannot move an

appreciable distance without accumulating some dead reckoning error. The reasons for this

fact are explained in Chapter V. Yamabico's dead reckoning error increases as a function of

the total distance traveled since the last odometry reset. Other factors affect the rate of dead

reckoning error buildup per unit distance traveled; they are floor smoothness (related to in-

tegrated distance traveled), amount of turning the robot does per unit distance (related to

wheel slip), and the robot's speed.

Concerning sensor capabilities, the idealized sensors in Chapter VII have progressive-

ly more real limitations. The practical range of a real active sensor is limited by spreading

145

losses and by sampling rate as discussed in Chapter I1. For Yamabico's ultrasonic range

finders, the practical limit on the range is about four meters for target detection and about

two meters for reliable edge extraction. As discussed in Chapter II, there is a trade-off be-

tween sonar range gate and the data rate for range returns.

The S1 sensor extracted edges from the world space regardless of sensor beam inci-

dence angle. In practice, an active emitter sensor has a limit on incidence angle for range

returns. Yamabico's ultrasonic range finders have a incidence angle limitation that varies

with the target distance and target material. For a close, strongly reflective target sonar is

most like the idealized sensor S1.

All idealized sensors presented in Chapter VII give returns independent of target ma-

terial and range. None of the idealized sensors in Chapter VII suffered from specular reflec-

tions. With idealized sensors, only the primary sensor beam was reflected by the target sur-

face. For the real sensor, secondary or so-called "specular" reflections further complicate

the analysis of the sonar data [Leonard 91]. The first reflection of the sensor beam is not

always the range returned by a real sonar. This is particularly true when the sonar is aimed

into a concave corner. The cartography algorithm presented in this chapter works within the

physical limitations of the real robot and the real sensor.

A. REPRESENTATION OF THE WORLD

This section examines the physical limitations of Yamabico's locomotion system and

sensors that cause them to be non-idealized. This explanation is important to bridge the gap

between the real and idealized robot.

The data structure used for the map representation must efficiently store the current 2D

map of the world in a compact data structure. This requirement is based upon the limited

space in Yamabico's on board memory. Additionally, a smaller data structure can be more

quickly searched. The data structure chosen must be a dynamic-type data structure since

the number of features is not known beforehand. Grid-based map storage schemes use a

fixed size storage area that cannot be grown dynamically. The type of structure allows for

146

the inclusion of additional edges as Yamnabico builds a map of the world. Features can be

added to the map until Yamabico runs out of memory. Yamabico- 11 has five megabytes of

main memory with a planned upgrade to 16 megabytes. Therefore, a map with a consider-

able number of features can be stored in Yamabico's main memory since each partial world

edge requires only 32 bytes of storage space. If a grid-based scheme with a 10 cm grid size

is used a byte of memory is used to store each square, 32 bytes could only store a region

0.32 m2 .

Since the map is used for navigation, it must be quickly processed as a part of the ro-

bot's spatial reasoning tasks. A detailed map requiring a small amount of storage space may

be quickly processed using Yamabico's on board computing resources. One example is the

determination of the next scan path for translational scanning. Also a quick search of the

current partial world is frequently required to match newly detected features against exist-

ing features to determine if the new feature is a repeat of a previously detected surface or

the first time this particular object has been detected. This gives the system the capability

to recognize the difference between a new line segment and one that is already part of the

map.

Lastly, the map must be transferred back to the host computer to allow for human in-

spection. This is required for debugging and improving the system. This feature also allows

the map to be saved and used later on a subsequent robot missions.

The partial world data structure is the means of map representation in this dissertation.

The concepts were introduced in Chapter VI. The partial world data structure is implement-

ed as a doubly linked list of typed edges derived from sonar data and refined by repeated

robot scans. Edges are typed as either "real" or "inferred" depending on how they are de-

rived from sonar data. "Real" edges are derived from line segments extracted from sonar

linear fitting data. "Inferred" line segments are constructed based upon the geometry of the

existing "real" line segments in the PW They serve to bound the unexplored area of the

world.

147

1. Real World Issues

A fundamental problem with the Yamabico's locomotion system lies with regard

to its dead reckoning capability. No matter how finely tuned the wheel encoders and dead

reckoning algorithm, the robot odometry estimate drifts as a function of the distance trav-

eled. The mathematical principles behind robot odometry are examined in Chapter V. A

real robot must use sensor input to correct odometry drift. This is necessary since all sensor

input for cartography is recorded with reference to the robot's current odometry configura-

tion. Therefore, the map built by Yamabico is only as accurate as the estimate of its actual

configuration in the world space.

In order to explore its entire world space, Yamabico must move to correctly po-

sition its sonar array for translational scanning. This motion incurs some dead reckoning

error. Yamabico uses a straight line wall assumption with regard to its world space. This

assumption allows some dead reckoning errors to be corrected during translational scan-

ning. Using sonar range values, Yamabico's orientation and distance to a long, straight

world edge can be corrected. The details of odometry correction during translational scan-

ning are discussed in section B of this chapter and the experimental results are described in

Chapter IX.

Given a partial world and sensor input, a robot can match features from the map

to sensor input to correct odometry error. Extensive background research on robot localiza-

tion is examined in Chapter H. In every case previously described, the world map used for

localization was derived from a priori input. The automated cartography algorithm uses

only a sensor derived partial world and indoor building heuristics (orthogonal world as-

sumption) to correct odometry error. Specifically, Yamabico takes advantage of straight

walls to correct some dead reckoning error.

Real sensor limitations also force real robot cartography to deviate from idealized

cartography. The sensor chosen for thi,- work is the ultrasonic range finder. The ultrasonic

range finder is widely used in mobitc robots and is readily available. Additionally, the au-

thor's work builds upon a considerable library of sonar processing functions already in-

148

cluded in the MML system [Sherfey 91]. The dissertation test bed robot, Yamabico-1 1, em-

ploys 12 ultrasonic rage-finders as its primary sensor as described in Chapter MI. The dif-

ferences between the abstract idealized sensor described in Chapter VII and the real sensor

are described here.

Idealized sensor S, and S2 are capable of providing data regardless of target range.

This is not true for the real sensor. All real active sensors have some practical range limi-

tations for a variety of physical reasons. For ultrasonic range finders this range limitation

in air is typically about four meters. The range limit is due primarily to spreading losses and

attenuation by the propagating medium. This range limit suggests that inferred edges be-

come more important for real robot cartography since the robot's sensor cannot scan as

much area as the idealized sensor.

The idealized sensor S1 provides the robot with input data regardless of the sensor

beam incidence angle. This is not true for real ultrasonic range finders as discussed in Chap-

ter III. In Figure 3.3, the real sensor incidence angle for a valid range return varies with tar-

get range. In most cases, the sensor axis must be nearly normal to the target surface in order

to obtain a valid range return. The real sensor is more ideal at closer range because spread-

ing losses and attenuation are smaller. The incidence angle of a = ±10 degrees from the nor-

mal to the surface typically gives a valid return when range is between f = 9.3 to Pmax

= 200.0 centimeters. The real sonar has a minimum as well as a maximum range value. The

minimum range of the sensor was not considered at all for the idealized sensors in Chapter

VII. The minimum range value of Yamabico's sonar system is explained in Chapter HI.

The final limitation of the real sensor is specular reflections. In many cases, sonar

returns the range to the second or third reflecting surface as the range value. This is caused

by the fact that a smooth target surface acts as an acoustic mirror. These specularities are

typically non-orthogonal line segments in the case of Yamabico- 11. Several attempts to ful-

ly model specular reflection of sonar range finders have been made [Leonard 91][Kuc 91],

but a complete model does not yet exist. Specular returns typically form short line segments

149

that are not orthogonal to Yamabico's world space. The automated cartography algorithm

filters out these bad segments as Yamabico builds a map of its world space.

2. Definitions

World - The definitions of vertex, edge, polygon, orthogonal polygon, world and

partial world are unchanged from the definitions given in Chapter VI. A world is a portion

of a single floor of an office building.

Yamabico - The robot is the Yamabico- 11 mobile robot as described in Chapter

Ell. Yamabico is a non-holonomic robot capable of stationary rotation and translational mo-

tion. Robot rotation may be clockwise or counterclockwise. The translational motion is the

means of path tracking of straight line segments, circular arcs, cubic spirals and parabolic

line segments. Only straight line and circular arc path elements are used for Yamabico's

cartography algorithm.

Sensors - The robot's sonar array S is treated as an abstract entity in this chapter.

S is capable of range-finding forward, extracting edges while rotating, and translational

side scanning with edge extraction. The Yamabico has an array 12 ultrasonic range finders

as shown in Figure 3.2. For the purposes of cartography four sensors are used. Two forward

looking sensors (numbers 0 and 3) and one on each side (numbers 4 and 7).

B. THE ALGORITHM

1. Assumptions

Real Robot - The real mobile robot Yamabico- 11 measures 54 centimeters square

and is 95 centimeters high. It is a power-wheel-drive robot capable of translational motion

as well as stationary rotational motion. Yamabico has a nominal velocity of +30.0 centime-

ters per second but is capable of any velocity between -60.0 and +60.0 centimeters per sec-

ond.

Sensors - These sensors are assumed to have an effective range Pmin = 9.3 to Pmax

- 200.0 centimeters and provide a return if the sonar beam incidence angle is oa = ±100 of

150

the normal to the target surface. This assumption is based upon the experimental data plot-

ted in Figure 3.3. The sonar sensors extract data in the form of line segments representing

surfaces of the world W. Line segment data closely orthogonal to Yamabico's current par-

tial world that are derived from greater than 10 sonar returns are used for input to cartogra-

phy. All other line segments data is discarded as specular reflections. The value of oY = 75.0

cm is used since Y = 54.0 + 9.3 + 9.3 =_ 75.0 cm. The value of a represents the minimum

opening through which Yamabico can safely navigate. All sonar returns at a range greater

than 200.0 cm are discarded since S is only effectively finds edges up to this range.

World - The world W = {Po, H) is an orthogonal world as defined in Chapter VI.

The world has a finite number of holes. The boundary polygon Po and all holes HI, ... , Hh

have a finite number of edges. All edges in W have finite length. All world surfaces have a

target strength greater than 50% at 2.3 meters range in accordance with Figure 3.6.

2. Example of Behavior

A right wall following method of cartography with left turns at obstacles is used

by Yamabico to explore its world space. A simple example of the real automated cartogra-

phy is illustrated starting with Figure 8.1 (a). The world W is a six-sided, L-shaped bound-

ary polygon with no hole polygons. Yamabico is first placed in an arbitrary configuration

such that no sensor is less than minimum range oiom any edge of W. In Figure 8.1 (a), Yam-

abico rotates counterclockwise to align itself with the closest edge extracted from the rota-

tional scan. Then Yamabico moves translationally until the forward sensor encounters an

obstacle forward as illustrated in Figure 8.1 (b). The translational scan ends a from the ob-

structing boundary. Yamabico now constructs its first partial world from sonar data. PW1 =

(Po, 0), with Po = (E1 , el, next) where E, = { e1 , e2 , e3 , e4 , e5 , e6). Edges e2 and e6 are

"real" and e1 , e3 , e4 , and e5 are "inferred". Edges el and e3 are constructed perpendicular

to Yamabico translational sc..n at a distance a from the endpoints of the translational scan.

Edge e4 is an "inferred" edge constructed to bound the region beyond sensor range. Edge

151

world edges

- inferred line segment

real line segments

(a) Rotation to Identify Segments

e2
e,

R[D
-A e6

B

PW1 = (PO, 0) e5 e4 e

Po = (El, el, next)
E, = (e], e2 , e3 , e4 , e5, e6)

world edges

-. inferred line segment

real line segments

(b) First Translational Scan

Figure 8.1 Example of Yamabico Automated Cartography

152

czI e2

eel

e 7 e 7

e4
PlY2 = (Po, 0) e6
Po = (E2, el, next) e5
£2 = (e]1. ,,e3, e4, eS, e6, e7)

world edges

inferred line segment

real line segments

(a) Second and Third Translational Scan

el• e3

e25

PW3 = (Po, 0)
PO = (E3, el, next)
E3 = {e1, e2 , e3 , e4, e5 , e6 , e7, e8)

world edges e6

e8
inferred line segment

"real line segments

(b) Scans to Explore Inferred Edges
Figure 8.2 - Example of Automated Cartography

153

e4 is constructed two meters to the right of the translational scan. Edge e5 is an "inferred"

edge constructed to connect the discontinuity between e4 and e6.

In Figure 8.2 (a), Yamabico turns left and scans "inferred" edge e3 and then turns

left and investigates "inferred" edge el. The partial world is now PW2 = (Po, 0), with Po

= (E2 , e1, next) where E2 = (e1, e2, e3, e4, e5 , e6, e7). Edges e2, e3, and e7 are "real" and

edges el, e4, e5, and e6 are "inferred".

In Figure 8.2 (b), Yamabico turns left and performs a translational scan on edge

el, then the nextscan config function p:ans a path to investigate edge e5 in Figure 8.1 (b).

The resulting partial world is PW3 = (Po, 0), with Po = (E3 , el, next) where E3 = { el, e2 ,

e3 , e4 , e5 , e6, e7, e8, eg). Only four "inferred" edges remain; e4 , e5, e6 , and e7 in Figure 8.1

(b), the rest of the edges are "real".

In Figure 8.3 (a), Yamabico turns left and scans "inferred" edge e7 of PW3 . The

new partial world is PW4 = (Po, 0), with P. = (E4 , el, next) where E4 = {el, e2 , e3 , e4 , e5,

e6 , e7, e8 , e9 , elo, ell). The remaining "inferred" edges are e4 , e5 , e6, e7, and e8 .

In Figure 8.3 (b), Yamabico turns left again and scans parallel to "inferred" edge

e8. This scan moves Yamabico through the unexplored region bounded by edges e5 , e6, and

e7 in PW4. The resulting partial world PW6 = W since there are no remaining "inferred"

edges. PW6 =(Po, 0), with Po = (E6 , el, next) where E6 = {el, e2 , e3 , e4 , e5, e6).

3. Algorithm

The global spatial learning algorithm is designed to allow Yamabico to intelli-

gently move about in a given world space and build a model of its environment. The algo-

rithm is shown in Figure 8.4. This is a top down, global overview of the algorithm. The pur-

pose of each subroutine is explained in the remaining parts of this section.

The initialize function initializes Yamabico's sensor system for cartography. The

appropriate sensors are also enabled. Linear fitting and data logging for the enabled sensors

are enabled for the side scanning sonars. Since the nominal robot speed of 30.0 centimeters

154

e 1 e2

f (E~el ,et 5 ell~ 7 ~.e e3

PlY4 = (PO, 0 e5

E4 = (el, e2, e3, 04 5, e6,e 9e, e4jol , ell)

world edges e

inferred line segment

real line, segments e

(a) Left Turn to Examidne an Inferred Edge

e2

PW6 (PO, 0) e3
PO (E6, el, next)

E6 = [e], e2, e3, e4, e5, e6)

..........world edges e5

inferred line segment

real line segments

(b) Last Translational Scan
Figure 8.3 -Example of Yamabico Automated Cartography

155

per second is too high for cartography, the proper robot speed is set. Files for storing sonar

data and the robot's location trace data are set up and initialized.

The findorthogonalorientation function orients the robot with respect to the

nearest flat surface in the world space. Since Yamabico starts with no prior knowledge of

the world, an initial rotational scan is required. This rotational scan extracts visible portions

of the detectable edges of W and provides sufficient information to determine the best path

element for the first translational scan. The same rules that were used for the S3 version of

the algorithm are used in this algorithm. Figure 8.1 (a) shows a robot placed in an arbitrary

configuration in a simple closed workspace. The findorthogonal orientation function

commands Yamabico to slowly rotate 3600. Sonar scans the world during the rotation. The

extracted line segments are examined to determine the proper initial orientation of the robot

and to chose an appropriate path element for the first translational scan. All of the extracted

line segments are evaluated and the orientation of the closest line segment of sufficient

spatiallearnO
(

CONFIGURATION C = (0, 0, 0, 0);
PartialWorld *PW = (0, 0);
Path List *PL = 0;

initialize(PW);
find ortho gonal orientation(& C);
while(not complete(PW))
(

translational-scanning(&PL, &C, &PW);
PL = nextscan config(&PW, &C);

) 1* end while *1
return PW;

) 1* end spatiallearnO *1

Figure 8.4 Yamabico Cartography Algorithm

156

length is adopted as the robot's initial orientation. This function returns a path element suit-

able for the first translational scan.

Next the algorithm enters a "while loop". The complete function evaluates all

edges of the current PW. This function checks the PW for spatial consistency and for the

absence of "inferred" edges. A NULL partial world or one with any "inferred" edge greater

than a in length is considered incomplete. If the boundary polygon Po consists of all "real"

edges and the hole list is NULL, then the world is evaluated as complete. If the Po has all

"real" edges and all of the hole polygons on the hole list Hi e H have all "real" edges, then

the PW is considered complete. The function returns TRUE if the PW is complete or returns

FALSE if more scanning is required.

The translational-scan function moves Yamabico on a straight line path element

parallel to the edge identified by the findorthogonalorientation function or the

nextscanconfig function. Yamabico continues the translational scan until one of the two

forward looking sensors detects an obstacle. Following the translational scan, all sonar ex-

tracted line segments from the side looking sonars are merged into the partial world model

(PW). The PW constitutes a free space model of the area Yamabico has just scanned during

a single straight line translation scan. Figure 8.1 (b) shows a PW derived from sonar data

from Yamabico's scan from point A to point B.

During the automated cartography, dead reckoning errors accrue due to Yamabi-

co's motion. The automated cartography algorithm corrects this error in two ways; (1) wall

following dead reckoning error correction and, (2) automated landmark selection and cor-

rection during DFS backtracking.

The wall following dead rckoning error correction operates under the assump-

tion that the world space contains some long straight edges. When wall following is started,

a path element parallel to the wall and at a distance less than 53 from the wall is calculated.

Yamabico follows this path element and corrects some dead reckoning error using linear

fitting sonar data extracted by scanning the wall. Yamabico's distance to the wall and its

157

orientation with respect to the wall are periodically corrected using the odometry correction

algebra presented in Chapter V.

During world space exploration Yamabico records landmarks suitable for odom-

etry correction. A good landmark is characterized by a detectable discontinuity in a world

space edge. During the DFS backtracking process, these landmarks may be used for full

odometry correction. Unfortunately, an automatically recognized landmark has a configu-

ration error tied to Yamabico's dead reckoning error at the time it is recorded. Therefore, a

dead reckoning error correction using an automatically recorded landmark reduce dead

reckoning error to a value close to the value at the point where the landmark was originally

recorded.

The nextscan configO function evaluates the geometry of the current partial

world to determine the best path for the robot to follow to continue the world space explo-

ration. The nextscan config(function runs at the end of each translational scan. The func-

tion examines all edges in the current partial world and determines which edge is the best

"inferred" edge to investigate next. The function performs a simple path planning function

to plan a path from the robot's current configuration to the next translational scan. This path

is planned using a depth first search strategy in which Yamabico stores it path using the

PaAhList PL as the exploration progresses and backtracks back along PL to the next in-

ferred edge. This behavior is illustrated in Figure 8.5. This backtracking behavior allows

the robot to explore its world using a depth-first-search strategy which is equivalent to an

"in order" traversal of the free space in the world [Manber 89].

In Figure 8.5 Yamabico starts out at point 1 and moves to point 2 for a translation-

al scan. During this scan, three "inferred" edges are identified; ea, eb, and ec. Since ec is the

closest "inferred" edge to point 2, Yamabico backtracks back along its first translational

scan to point 3 and then turns right to investigate edge ec. Yamabico scans from point 3 to

point 4. At point 4 the next closest "inferred" edge is eb. At this point Yamabico turns

around again an scans from point 4 to point 5. At point 5 an open area exists to Yamabico's

158

6.4 5

1I

S......!l
7•

3

4

Figure 8.5 - The nextscan_configO Depth First Search Exploration Behavior

left, so it turns left and scans to point 6. At point 6, open area again exists to the left so Yam-

abico turns left and then scans from point 6 to point 7.
The next_scan config function algorithm is given in Figure 8.6. This function

guides Yamabico to scan "inferred" edges using a depth first search strategy. This function

favors paths that increase the overall mapped area as quickly as possible. If the PW is eval-
uated as incomplete, the robot uses the nextscan config(function to determine where to

next move for translational scanning. This feature underscores the fact that the robot must

move to a new scanning configuration (C) based upon the derived partial world model

(PW). The next scan configuration is selected to optimize the open area mapped by Yam-

abico. The following rules apply:

159

nextscanconfig(PW, PL, C)
Partial World *PW;
Configuration *PL;
Configuration C;

EDGE * closest edge;

CONFIGURATION *pathkelement;

if (obstacle forward and clear left) (
path element = turn lefto;
add.path_tolist(path element, PL);

else (
closestedge = findclosest.edge(PW, PL, C);
DFS_backirack(PW, PL, C);
move(PL);
I

71* end nextscan configO *1

Figure 8.6 - The nextscan-config Algorithm

(1) If an obstruction is forward and the left side sensor reports no obstructions to

the left, then Yamabico turns left 90' for the next translational scan. The path element for

the scan is added to PL.

(2) Otherwise Yamabico turns 1800 and backtracks along DFS to the closest in-

ferred edge suitable for investigation.

C. SUMMARY

An algorithm for Yamabico's automated robot cartography using ultrasonic range find-

ers is developed in this chapter. The algorithm acts in a greedy fashion to continuously in-

crease the planar area mapped by the vehicle. Intelligent vehicle motion is required to reach

all portions of the world space. Robot motion to explore the world space results in odometry

160

error. The algorithm uses heuristic and spatial reasoning to correct some odometlry error in

real time as the cartography is performed.

The real sensor limitations of finite range, limited incidence angle for returns, and

specular reflection tend to complicate the cartography problem. The algorithm presented in

this chapter provides a means to work within these physical limitations. The real cartogra-

phy algorithm is implemented on the autonomous mobile robot Yamabico-I 1 and the ex-

perimental results are explained in Chapter IX.

161

IX. EXPERIMENTAL RESULTS AND CONCLUSIONS

Experimental results from Yamabico motion control, dead reckoning error correction,

and cartography experiments are presented in this chapter. Some experimental results from

the development of the motion control portion of the MML language are presented. Several

representative experiments are included, however, hundreds of additional successful and

not so successful experiments were conducted for this dissertation. Space considerations

prohibit including all of the experiments. A "user.c" robot command file and a plot of the

vehicle's observed trajectory are included with each experiment.

The dead reckoning error correction experimental results are presented in the form of

two representative examples. One is a single landmark experiment with Yamabico moving

in a nine meter long racetrack pattern and the second is a more complex three landmark

experiment with approximately 30 meters of travel per revolution.

The automated cartography experiments demonstrate Yamabico's ability to map a

closed world space using only ultrasonic range finders. Yamabico path tracking capability

and periodic odometry correction using landmarks are required to derive a high quality map

from an indoor world. The conclusions drawn from the experimental results are then

summarized.

A. MOTION CONTROL EXAMPLES

1. Observation Plan

Early experiments were designed to test Yamabico's ability to follow straight and

curved paths. These tests revealed that an extensive redesign of most of the existing MML

kernel was required. The general plan was to evolve the previous configuration-to-config-

uration tracking system into the new path tracking system [Kanayama 91a]. The first goal

was to program Yamabico to track along a straight line or a circular arc path elements. Ob-

servations and measurements of Yamabico's motion were planned using marks made on

162

the floor of the test area. Yamabico's expected and actual position were compared. Path

tracking was thought to provide smoother vehicle motion and improved odometry correc-

tion capability as a result of changing the method of tracking.

The observation plan is a series of representative tests of the robot's ability to

track the path elements described in Chapter IV. The "user.c" specifications for several

simple test programs are given along with plots of the robot's motion. These test programs

are samples from the test battery designed to test Yamabico's locomotion functions. Many

combinations of locomotion functions were not tested, because exhaustive testing is intrac-

table due to the large number of possible combinations of vehicle motion commands. Ad-

equate testing was conducted to eliminate bugs in the most used parts of the motion control

software and to provide a reasonable user confidence level. Troubleshooting and improve-

ment of the motion control software continues in the Yamabico research group.

2. Observation Results

The first locomotion test for MML was simple line tracking. The "user.c" file and

Yamabico's trajectory plot is shown in Figure 9.1 Yamabico is given its starting configu-

ration in the user's global coordinate system using the setrob command. This starting con-

figuration is called start in this program and any valid 'C' variable is an acceptable config-

uration variable in the MML language. The def configuration function is used to define

configurations needed in the course of the "user.c" program. In this program, the start con-

figuration is defined by the parameters x = 0.0, y = 100.0, 0 = 0.0, and KC = 0.0. The set-rob

function is required at the beginning of every "user.c" file to initialize Yamabico's odom-

etry configuration. Yamabico is then commanded to track the first path element using the

bline(&first) function. This function commands Yamabico to track the straight path ele-

ment starting at its current configuration and passing through the configuration x = 100.0,

y = 100.0, and 0 = 0.0. Since K = 0.0 for both first and second and ic = 0.0 means a zero

curvature path element, therefore these path elements are straight line path elements.

Smooth motion from the first configuration onto the second path element is observed as

163

#include "mml.h"

userO
C
CONFIGURATION start;
CONFIGURATION first;
def_configuration(0.0, 100.0, 0.0, 0.0, &start);
deLconfiguration(100.0, 100.0, 0.0,0.0, &first);

def...configuration(0.0, 0.0, 0.0, 0.0, &second);

seLrob(&start);
bline(&first);
line(&second);

200

YAMABICO TRAJECTORY DATA-

1 5 0 -.-.-.-.---------- 4-.- -.................. -.... , ,. •

start first

1 0 0 :. 7

50-•-......... -.02 50

0 ...0............. A..

second

•5 -- ----------.-.-....--i........ . .. "....

-100I

-50 0 50 100 150 200 250 300 350 400 450
x-axis (cm)

Figure 9.1 Simple Line Tracking

shown in Figure 9.1. The vehicle was observed to closely track the commanded line seg-

ments based upon hand measured marking on the floor. In no case did the vehicle's position

deviate from the expected path by more than 2.0 centimeters. In this experiment, vehicle

164

guidance commands were issued at a 100 Hz rate, Yamabico's velocity is 30.0 centimeters

per second, and the size constant is 20.0. The speed and size constant default to nominal

values since they are not specified by the user. Program illustrates simple lane changing be-

havior that could be used for obstacle avoidance.

The second experiment demonstrates circular path element tracking. A circle is

specified in the same manner as a straight line using the line function, except the curvature

of the circular path element is not zero (K * 0). The "user.c" file and the plot of the robot's

trajectory is shown in Figure 9.2. Notice that only six lines of MML code are used to specify

this complex robot behavior. Yamabico is given the initial configuration start such that x =

0, y = 0 and the vehicle initial orientation is 0 = HPI which means 900 with respect to the

x-axis. Yamabico is commanded to track a circular pathfirst with the configuration x = 200,

y = -100, 0 = 0, and K = -0.1. The x and y parameters specify the starting point for the circle,

0 gives the orientation, and Ki = -0. 1 means the circle's radius r = I/K = 1/-0. I = -100.0 cen-

timeters. The negative value of the radius indicates a clockwise direction for thefirst path

element. Further MML implementation details appear in Appendix A. Yamabico leaves its

starting configuration and turns sharply to the right. The sharpness of this turn is deter-

mined by the value of the size constant (so). Once again the nominal speed and size constant

values are used by default. Once started Yamabico immediately begins tracking the circular

path element first. It continues tracking the circle indefinitely since no stopping command

is issued. At no point during this experiment did Yamabico's trajectory deviate by more

than 1.0 centimeter from the expected path element trajectory.

The third example demonstrates circular backward line tracking. Yamabico tracks

the smaller inner circle as illustrated in Figure 9.3. The end of the backward line is located

at the configuration x = 100.0, y = 0.0, and 0 = 0. When Yamabico reaches the end of the

backward line it then switches to tracking the outer circle (second). Iffirst was the last path

in the "user.c" file Yamabico would have stopped at the end of the backward line. The sec-

ond path element is a counterclockwise circular path element with radius r = 1/K = 1/-0.1

= +200.0 centimeters. In this experiment robot velocity is set to 15.0 centimeters per second

165

#include "mmld.h"

user()

COFGRTINsat
CONFIGURATION first;

def~configuration(0.0, 0.0, HPI, 0.0, &start);
deLconfiguration(200.0, -100.0, 0.0, -0.01, &first);

setLrob(&start);
line(&first);

start

YANABIC!) TRAJECTORY.-

0

- 50...........f o

-1 0 0

-1 50

-2 0 0

-2 0

C14

-350 L______I____________I
-100 0 100 200 300 400

X-axis (CM)

Figure 9.2 Circle Tracking

166

#include "mml.h"

userO

C
CONFIGURATION stalt;
CONFIGURATION first;

CONFIGURATION second;

def_configuration(0.0, 100.0, -HPI, 0.0, &start);
defconfiguration(100.0, 0.0, 0.0, 0.0, 0.01, &first);
def_configuration(100.0, -100.0, 0.0, 0.005, &second);

sizesconst(20.0);
speed(15.0);
set_rob(&start);
bline(&first);
line(&second);

YAMABICO 7tRAJECTOkY DATA

3 0 0 "- --

1 0 0 !

- 0

r .. I~~ ~~~~~ ~

'!t!

-100

-300 -200 -100 0 100 200 300 400 500
x-axis (cm)

Figure 9.3 Circular Backward Line Tracking

167

and the size constant is 20.0. Yamabico's deviation from both of the intended path elements

was less than 2.0 centimeters.

In Figure 9.4, Yamabico is commanded to track a path consisting of four sequen-

tial path elements. The first path is a straight line path given by the configuration start. The

second path element is a parabola given by the first specification. The parabola's focus is

at x = 300.0, y = 100.0, and the directrix is given by the configuration x = 0.0, y = 0.0, 0 =

0.0. The parabolic path elementfirst has five component parameters as discussed in Chap-

ter IV and Appendix A. The path elements start and first intersect at the point x = 200.0,

and y = 100.0. Yamabico calculates a leaving point on the start path element to allow for a

smooth transition to the first parabolic path element. Then Yamabico tracks the parabola

first. The first and start path elements intersect and Yamabico calculates the next leaving

point on the parabolic path element first. When this leaving point is reached Yamabico

switches to tracking the straight line path element start. The path elements start and third

also intersect. Yamabico then calculates the next leaving point on the start path element.

When the last leaving point is reached, Yamabico switches to tracking the third path ele-

ment. The entire program represents 30.0 seconds of robot motion at the default nominal

velocity of 30.0 centimeters per second. The distance constant (so) controls the path ele-

ment transition sharpness, the default value is 20.0 centimeters.

The last example is a demonstration of cubic spiral tracking. In Figure 9.5 Yam-

abico is started at the origin and commanded to track a cubic spiral from the start configu-

ration to the first configuration. Two cubic spirals are actually tracked, one before the point

of inflection and another after it. At no point during this experiment did Yamabico's trajec-

tory deviate by more than 2.0 centimeter from the expected path element trajectory. Cubic

spiral path tracking is described in greater detail in another publication [Fish 93].

Yamabico closely tracked the intended paths in all five experiments. The motion

control results indicate that the path tracking technique yields extremely small motion con-

trol errors for vehicle travel over a given distance. Odometry error is experimentally mea-

sured in section B of this chapter.

168

#include "mmul.h"

usero
I

CONFIGURATION start;
PARA first;
CONFIGURATION third;

def~configuration(0.0, 200.0, 0.0, 0.0, &start);
def .parabola(300.0, 100.0, 0.0.,0.0,O0.0, &first);
def..configuration(700.0, 200.0, -BPI, 0.0, &third);

seLrob(&start);
line(&start);
parabola(&first);
line(&start);
Iine(&third);

300 TT
YAMABICQ>TRAJECTORY]DATA

200

-100...........

-200..........--------- --- -----

................. -.

mnx

-4

-200 0 200 400 600 800
X-axis (cm)

Figure 9.4 Parabolic Tracking

169

#include "mmnl.h"

userO

{
CONFIGURATION start;

CONFIGURATION first;

def_configuration(0.0, 0.0, 0.0, 0.0, &start);
def_configuration(200.0, 0.0, HPI, 0.0, &f'rst);

size-const(20.0);
speed(15.0);
set-rob(&start);
config(&first);

6 0Y•AM " , .. .-O , TRAJECTORY--

40 t

2 0-- ---------- -----0 i i i i ii i i ii
S- 2 0 ,-..

U)

S - 4 0 ."...>4

- 6 0

o~- -80C.o

-100_...... --- ----------............--

= -120 II

-50 0 50 100 150 200 250

0 x-axis (cm)

Figure 9.5 Cubic Spiral Tracking

170

B. ODOMETRY EXPERIMENTAL RESULTS

1. Experimental Plan

Two kinds of odometry correction experiments are performed using Yamabico-

11. To verify the fundamental correctness of the algorithm, first a simple racetrack path

with a single landmark is used. Yamabico moves repeatedly around this racetrack path

which is composed of four separate path elements. Yamabico is programmed to make an

odometry correction once per lap using a single landmark. The amount of odometry error

is measured by hand and by examining logged sonar data. These measurements serve to es-

tablish a correlation between type of motion and rate of accumulation of odometry error.

The second experiment is slightly more complex. The multiple landmark experi-

ment is conducted to prove the utility of this algorithm for more sophisticated vehicle nav-

igation. The sparse assignment of landmarks serves as a worse case to prove the utility of

the odometry correction and precise vehicle tracking algorithm in an indoor environment.

The experimental plan is: (1) program the robot to move in a repeating pattern with about

five left and right turns; (2) use several fixed landmarks that are scanned by the side looking

sonars to perform odometry error corrections.

2. Experimental Results

The first MML program executes an oval path for Yamabico. This is a skeleton

of the whole program which is much longer and contains other functions. The motion con-

trol portion of the program and the resulting robot motion are shown in Figure 9.6. The dead

reckoning correction code appears in Appendix D. In each lap of this oval path execution,

the odometry error correction is performed and the error configuration e is recorded. The

total distance traveled is 9.14 meters per lap. In this experiment, only one landmark is used

for the odometry error detecting purpose. Table 9.1 shows the raw experimental data for

Yamabico traveling ten laps at 25 cm/sec. Notice that the results show the error configura-

tion for each lap is small and nearly equal. This proves that Yamabico's motion control and

171

#include "mml.h"

userO

CONFIGURATION start, first, second, third, fourth;
int laps = 10;
imt lap.count = 0;,
def configurazion(1200.0, 65.0, 0.0, 0.0, &start);
de..configuration(1 100.0, 65.0, 0.0,0.0, &first);
defconfiguration(1500.0, 65.0, 0.0, 0.02, &second);
def ccnfiguration(1700.0, 165.0, PI, 0.0, &third);
def_configuration(1200.0, 165.0, Pl, 0.02, &fourth);

seLrob(&start);
while (lap-count < laps)

line(&frs);
line(&second);
line(&Whird):
line(&fourth);
++lap..count;

I

250 ------

Calculated Position -

Hallway Walls --

200

150 -
odom etry correction

100

s5o

0 - -- - - ------ -- - -_-----__-----__------

0>'

k andmark
-50 I I I I I I

1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600
x-axis (cm)

Figure 9.6 Single Landmark Odometry Correction Experiment Code

172

Table 9.1 ODOMETRY ERROR CORRECTION (25 CM/SEC)

Ax Ay AO AO
(cm) (cm) (radians) (degrees)

1 -1.591 -0.620 0.0120 0.6875

2 -1.924 -0.828 0.0120 0.6875

3 -2.191 -0.671 0.0110 0.6303

4 -1.181 -1.143 0.0290 1.6616

5 -2.401 -0.298 0.0100 0.5730

6 -2.152 -0.936 0.0290 1.2032

7 -2.067 -0.905 0.0150 0.8594

8 -2.054 -0.975 0.0170 0.9740

9 -2.409 -0.793 0.0130 0.7448

10 -1.297 -1.153 0.0370 2.1199

odometry functions are precise arl that the odometry error correction algorithm is working

as desired.

This experiment was repeated at various robot speeds. The average error config-

uration over ten laps at speeds of 10, 15, 20, 25, and 30 cm/sec are shown in Table 9.2 be-

low. As in the previous experiment, error correction was made each lap. Notice that the av-

erage dead reckoning error per lap tends to increase with increasing robot velocity. In Fig-

Table 9.2 AVERAGE ODOMETRY ERROR AS A FUNCTION SPEED

Ax Ay A0 A0
(cm) (cm) (radians) (degrees)

10 -0.207 -1.148 0.0020 0.11459

15 -0.775 -0.765 0.0045 0.25783

20 -1.222 -0.696 0.0084 0.48128

25 -1.927 -0.832 0.0177 1.04135

30 -2.289 -1.112 0.0167 0.95684

173

ure 9.7 the odometry corrections for ten laps on the racetrack pattern are plotted. The largest

odometry correction is the first correction since the robot is intentionally displaced from the

proper starting configuration (start = (1200.0, 65.0, 0.0, 0.0)). The odometry error correc-

tion code corrects this initial placement error as if it were a large odometry error. Subse-

quent dead reckoning error corrections are smaller and consistent indicating Yamabico's

odometry parameters could be tuned to improve the results of this experiment. This exper-

iment also shows that odometry error on the robot is small and repeatable. Odometry error

could be reduced by self correction of odometry parameters in software, however this ex-

periment was not conducted.

Yamabico's odometry error for ten laps at 25.0 centimeters per second is plotted

in Figure 9.8. The location of the tail of each arrow is the x, y magnitude of the odometry

error and the orientation of each arrow is the 0 component of the odometry error. Notice

that most odometry errors fall within a small cluster of values. The general trend observed

was that Yamabico tends to turn slightly more than x radians programmed. Overall the er-

74 YAMABICO CALCULATED CONFIGURATION

72

70 First Odometry Correction

68 Odometry Correction

,Reference Path Element
66 --- --.- -.
64

62 -t"62 •--Odometry Corrections 3 through 10

60 1 1 a A - ! -

1320 1340 1360 1380 1400 1420 1440

Figure 9.7 Ten Robot Odometry Corrections at 15 centimeters per second

174

0.5

"• "-0 .5:

S- -"-..."..

-21.

-4 -3 -2 -1 0 1

delta x (centimeters)

Figure 9.8 Robot Odometry Error at 25 cm/second

ror is small, but the author believes that wheel slippage during the turns contributes to the

larger odometry errors at the higher speeds. Mismatch between the left and right wheel

drive motors also causes some error because the same pulse width modulation curve is used

for both motors.

Table 9.3 MULTIPLE LANDMARK ODOMETRY CORRECTION

Ax Ay AG AG
dmark (cm) (cm) (radians) (degrees)

1 +13.843 -4.741 +0.0166 +0.9511

2 -14.498 +7.695 -0.0006 -0.0343

3 +7.326 -21.183 +0.0135 +0.7735

The multiple landmark odometry experiment is conducted in an unmodified in-

door environment. Three landmarks constitute the robot's abstract geometric model of the

world and are used for the purpose of odometry error detection and correction. Multiple

175

landmark correction behavior is closer to the desired goal of autonomous robot navigation.

A section of the hallway on the fifth floor of a building at the Naval Postgraduate School is

used. Average odometry corrections for the multiple landmark experiment are shown in Ta-

ble 9.3. A row in the table stands for a correction result at a numbered landmark. Relatively

small and consistent odometry corrections are also observed in this experiment. One lap of

the multiple landmark correction experiment is shown in Figure 9.9. The landmarks are

.-.-=•wooden~ ~~ wooor door....... •.-=

2W

mea Lanmar
elvtrOootyCorcin

3 woodwodnnddoo

2020

q0 *------- ------

metal * - Landmark
elevator #- Odometry Corrections

-200

-0 O 1000 100 1400 2100

Figure 9.9 Multiple Landmark Odometry Correction

numbered to correspond with the landmark numbering in Table 9.3. This result shows that

only three landmarks provide enough dead reckoning error correction for Yamabico to nav-

igate a 30 meter circuit in an ordinary indoor environment.

176

C. AUTOMATED CARTOGRAPHY EXPERIMENTAL RESULTS

1. Experimental Plan

The following automated cartography experiments are planned to test the algo-

rithm's implementation on a small, orthogonal world using Yamabico-1 1;

(a) Orthogonal world alignment - Place Yamabico in a variety of configurations

in the test world. Run the find orthogonal orientation function alone at each configura-

tion. Quantify the implementation's precision with regard to orthogonal alignment.

(b) Straight hallway following - Program Yamabico to follow a hallway with ob-

stacles and doorways, and record its path. The goal is to have Yamabico travel down the

centerline of the hallway while correcting dead reckoning errors. Line segments extracted

from both the left and right hand walls of the hallway are used to align Yamabico to the

centerline of the hallway. Line segments must have sufficient length (100 cm) and be lo-

cated near their expected configuration to be acceptable for correcting dead reckoning er-

rors.

(c) Partial world building by a single translational scan - In this experiment

Yamabico is commanded to move several meters on a path orthogonal to the world space.

A partial world is built by Yamabico based upon the line segments extracted from this sonar

scan. The partial world built is compared with hand measured maps for accuracy.

(d) Full automated cartography- The full partial world building automated car-

tography experimental plan involves perform cartography experiments on a small orthog-

onal world with holes. The experimental area is an office building hallway, modified with

artificial barriers to keep the size of the world reasonably small. Cardboard boxes serve as

the obstacles holes in this world space. Yamabico is placed at an arbitrary configuration in-

side of this world space and the cartography program is started. The cartography program

runs to completion. The map built by Yamabico is then transferred back to the host com-

puter for analysis. The polygonal world map derived from the robot's world space explo-

177

ration is compared to the actual hand-measured map of the world space. Reasons for dis-

crepancies are analyzed.

2. Experimental Results

The code for the robot automated cartography experiments is listed in Appendix

E due to its length.

(a) Thefind orthogonal orientation function aligns Yamabico's internal coordi-

nate system orthogonal to the world space based upon the line segments extracted from a

360) rotational scan. This function chooses the closest extracted line segment longer than

20 cm for alignment. Since four line of the segments are parallel, the initial scan may prop-

erly take one of two directions. Yamabico is commanded to rotate the shortest angular dis-

tance to align parallel with the closest extracted line segment. In Figure 9.10, Yamabico is

placed in the hallway with no prior knowledge of the world space. Yamabico rotates clock-

wise 2x radians and extracts five line segments from sonar. These line segments are inter-

preted to allow the robot to determine the orientation of the first translational scan. In all

experiments conducted Yamabico's orientation was within ±3* of parallel to the closest or-

thogonal surface. Certain situations were observed to improve the accuracy of this function.

For instance the close proximity of a long flat wall improves accuracy.

(b) In Figure 9.11, a hallway following experiment is shown. In this experiment,

Yamabico used a straight hallway assumption to provide odometry correction as it moved

approximately 20 meters down the hallway. This same hallway following experiment has

been used to map a hallway 70 meters long. The hallway is 246.0 cm wide. Yamabico start-

ed at the configuration x = 0.0, y = 123.0, 0 = 0.0 and tracked a straight line path element

down the center of the hallway. Side mounted sonars were used to scan the right and left

hallway walls. The sonar data from the side scanning sonars is used for periodic odometry

corrections based upon the assumption that the hallway walls on either side of the robot are

straight. The sonar data is extracted and processed as line segment data. Line segments (or

edges) of sufficient length provide distance and orientation information for Yamabico to

178

1'

'4:4

00

. 0

* 0
................... •................... •................. C O

'-4

I "/'"'•- First Translation Scan 3 dockwi
r otaiion -

S............

i ain mabico X

X

* 0 0* 0 0

...... I.. . C

-- - - - - - - -

o I o 0.0 0 0 0

M M cq 04r-I -I

Figure 9.10 The Find Orthogonal Orientation Experiment

179

0

I TFI

C1

Yalkabico

U!
hp S6,

S.. . ,:....... " - L

iOdo etr reset

..
S.... " " " " "............... C00 Lt0

0

I=

.. 1... •'...... ..! ''

180

U,)

a180

fix its position relative to the center line of the hallway. Yamabico then performs an odom-

etry estimate reset to correct its configuration with respect to the center line of the hallway.

Since Yamabico has no prior knowledge of the hallway, the translational error (absolute

distance moved down the hallway) in the odometry estimate cannot be corrected.

The sonar data extracted from the side-scanning sonars is also stored as cartogra-

phy data. Hallway following with odometry correction is an important component of auto-

mated indoor cartography since many office buildings have hallways narrow enough so

Yamabico can travel down the center of the hallway and sense both walls. This program is

robust since Yamabico stays in the center of the hallway despite some sensor noise. Noisy

segment data arises from specular reflections, sensor noise, and people walking in the hall-

way. This noise is filtered out in part by (1) rejecting non-orthogonal sonar segments, (2)

rejection of short segments, and (3) rejection of segments beyond the sonar's effective lin-

ear fitting range. Yamabico configuration did not deviate from the reference path element

by more than 40.0 centimeters during these experiments.

(c) In Figure 9.12 a partial world constructed from a single 14 meter translational

scan down a hallway is shown. All "real" edges are constructed from extracted sonar seg-

ment data. The "inferred" edges are constructed at the beginning and at the end of the trans-

lational scan to bound unexplored area. The elevator foyer area on the right hand side of the

translational scan appears as 60.0 centimeter deep break in the right hand wall. An "in-

ferred" edge parallel to Yamabico's translational scan path and two meters from the robot's

path is constructed to indicate a portion of the world is out of sonar range. The elevator foy-

er is about five meters deep. The partial worlds constructed in this experiment did not de-

viate from hand measured map by more than 10.0 centimeters.

(d) The full partial world experiment derived more complete maps of the world

space. In Figure 9.13, Yamabico builds a more complex map of the hallway portion of an

office building. Yamabico is placed at position 1 with an arbitrary orientation in Figure

9.13. Yamabico rotates 3600 and extracts several line segments representing portions of the

hallway within sonar range. Yamabico aligns itself with the parallel edges extracted from

181

the rotational scan and then performs a translational scan from position 1 to position 2.

Yamabico stops at position 2 because an obstacle is detected forward. This first translation

scan is about 14 meters long and a partial world similar to the one shown in Figure 9.12 is

built in Yamabico's memory.

Yamabico then turns around to the right and moves from position 2 to position 3

to investigate the "inferred" edge bounding the opening to the elevator foyer. The next

translation scan move Yamabico from position 3 to position 4. The doorways for the two

elevators on Yamabico's right hand side are extracted as edges. Yamabico stops at position

4 because an obstacle is detected forward and then turns left 900.

Next Yamabico performs a translational scan from position 4 to position 5. Then

takes another left turns to scan to position 6. The entire elevator foyer region has been

scanned. Next automated cartography algorithm seeks the next "inferred" edge for explo-

ration. This edge is near the starting position (position 1). So Yamabico moves from posi-

tion 6 down the centerline of the hallway to position 7. It stops at position 7 due to the pres-

ence of a barrier. The derived partial world matches a hand measured map of the same

world space within 25 cm for all extracted line segments. With additional experiments and

program tuning this error value could be further reduced.

D. SUMMARY

Reliable path tracking control using path elements has been experimentally tested. In

no case did Yamabico deviate significantly from the expected path. The maximum ob-

served deviation was less than two centimeters. Vehicle dead reckoning error correction

has been experimentally verified. These experiments used Yamabico's side scanning so-

nars to detect static landmarks in the world space. An algebraic comparison between the

expected and actual landmark configuration was used to determine dead reckoning error.

Errors were small and consistent Yamabico's configuration after a each odometry correc-

tion was within one centimeter of the correct configuration which indicates dead reckoning

error correction works well with a precision limited by sensor resolution.

182

| I I I
:0

Ii-4

00

ii

0•.. e

0)

II

.. I

I 0

Figure 9.12 Single Translational Scan Experiment

183

0Io

00 0

CD

2

-
O

I III

I

0

0

0

IIII

CC

14

I

C-

Lx

I
I

g 1 7 1184

The automated cartography experiments demonstrated simultaneous dead reckoning

error correction and world space mapping. Thefind orthogonalorientation function reli-

ably aligns Yamabico's coordinate system orthogonal to the world space. Maps built by

Yamabico using the automated cartography algorithm closely match hand measured maps.

185

X. CONCLUSIONS

In this dissertation, a complete automated cartography system for an autonomous

mobile robot is defined, instantiated, and evaluated. The component parts of this system are

path tracking control, dead reckoning error correction, world space exploration, and map

representation using a polygonal world model. MML provides the mid-level vehicle

control commands necessary for smooth dead reckoning error correction and obstacle

avoidance using geometric path elements. MML also provides the necessary sonar,

odometry correction and input/output functions for mobile robot experiments. The vehicle

odometry correction provides the periodic dead reckoning error correction needed for

precise cartography. The automated cartography algorithm controls robot motion so all

accessible areas of the world space are examined by the robot's sensors. The algorithm

provides the constructs for proper map representation as the world model is built.

A. SUMMARY OF CONCLUSIONS

A series of algorithms for ideal automated cartography are developed. These algo-

rithms are used to study the structures for map representation for cartography as well as the

necessary robot motion rules for world space exploration. The correctness of each algo-

rithm is proved. The complexity of these algorithms was also examined to ensure cartogra-

phy could be accomplished in a reasonable amount of time.

Successful robot cartography experiments using a real autonomous mobile robot are

conducted for this dissertation. Abstract 2D maps of a world space are built by Yamabico-

11. The features of this map closely match maps built from hand measurements. The auto-

mated cartography experiments prove that ultrasonic sonars can be used exclusively to

build useful maps of an indoor orthogonal environment. Despite data scatter and odometry

error, Yamabico builds a fairly good map of its environment from sonar data.

186

A 2D transformation algebra for analyzing mobile robot motion is developed in this

dissertation. This algebra is used to develop an abstract, general-purpose means of mobile

robot localization and odometry correction. This method is a simple application of group

theory that requires very little computational overhead. Dead reckoning error correction in

real-time is experimentally verified using Yamabico- 11. These experiments show that

odometry error can be held to a small, relatively constant value despite repeated vehicle

motion. In the worst case, average odometry error is 2.54 centimeters in distance and 1.04

degrees in orientation over a 914 centimeter course. The multiple landmark experiment

proves that the odometry correction algorithm works well even with sparsely placed land-

marks. The algorithm is robust, as shown by continued odometry correction despite land-

marks occasionally being missed. Periodic, automatic odometry correction allows for sus-

tained autonomous robot operation that is not limited by dead reckoning error buildup. This

automatic, low-overhead dead reckoning error correction task is implemented in the MML

software system as one of the available functions that can be activated by a function call.

This capability is extremely useful when a sustained robot motion is required. Dead reck-

oning error correction using abstract algebra supports automated cartography.

The MML motion subsystem is an effective and abstract method to specify robot mo-

tion. Short, simple command listings provide surprising complex robot motion. Experimen-

tal results from path tracking tests on Yamabico- 11 demonstrated precise mobile robot con-

trol. The smooth robot motion resulting from the path tracking technique reduces wheel

slip, thus improving the overall robot odometry. The path element concept allows higher

level command modules to specify robot motion using a short list of path element com-

mands. Path elements allow a user or an artificial intelligence application to command the

robot to execute a wide range of motion. Path tracking locomotion control using MML sup-

ports automated cartography.

187

B. CONTRIBUTIONS TO MOBILE ROBOTICS

This dissertation describes software and hardware developments that enable an auton-

omous mobile robot to perform automated cartography using ultrasonic range finders. This

capability is limited to orthogonal, indoor regions. There are several important components

required to perform this task. The capability to move in a purposeful manner based upon

sensor input is required. Leonard used a preprogrammed "seed-spreader" pattern to control

robot motion for gathering sensor data [Leonard 92]. This means some a priori knowledge

of the shape of the world space was use6 to command the robot to move about in the ap-

propriate pattern. This author believes that true automated cartography requires the robot's

exploratory path to vary with the size and shape of the area being mapped. Tight coupling

of the sensor input and the vehicle motion is therefore required. The algorithm used for au-

tomated cartography in this dissertation performs automated world space exploration. Us-

ing this algorithm, the robot scans all accessible portions of the world with its sensors in

order to perform the cartography. Since sensor input and robot motion are tightly coupled,

no prior world space knowledge is needed to perform cartography.

Robot motion control using a new path tracking algorithm is developed for controlling

robot motion during the world space exploration phase. This control algorithm is described

in detail in Appendix A. This technique allows Yamabico to perform odometry corrections

in a very smooth and natural fashion. Odometry corrections are performed with respect to

a geometric path instead of a single robot configuration. Periodic odometry estimate cor-

rections using landmarks on the robot's map allow for sustained robot operations with

small, constant positional error.

As a robot moves about exploring its assigned space, dead reckoning errors build up.

The ability to perform localization using naturally occurring landmarks in a typical indoor

area is another important contribution of this dissertation. While other authors have dem-

onstrated localization [Leonard 92][Nehmezow 92][Cox 89][Crowley 85a], this disserta-

tion extends this capability to automated landmark recognition. In other words, not only

does the robot have the ability to self-correct dead-reckoning errors using external land-

188

marks, it also recognizes and catalogs landmarks appropriate for subsequent odometry cor-

rection. Vehicle configuration calculations using the abstract algebra described in Chapter

V greatly simplify robot odometry error correction coding.

Since robot exploration of a world space requires robot motion and since this motion

induces dead reckoning error, mapping and error correction must be accomplished togeth-

er. The challenge of truly autonomous navigation lies in the fact that map building and

odometry correction must be undertaken simultaneously [Leonard 92]. This dissertation

develops both of these capabilities in parallel in order to allow the robot to build precise

maps. All previous work has focused on either one or the other of these two tasks. This au-

thor knows of no instance where map building competence and odometry correction have

been performed simultaneously. Their interdependent nature bears out the fundamental

need to develop these capabilities concurrently.

C. SUGGESTIONS FOR FUTURE RESEARCH

This dissertation research discussed the development of one system to perform auto-

mated cartography in an indoor setting. Limiting this system to one sensor type placed se-

vere, unrealistic restrictions on the robot's cartography ability. Additional sensors added to

Yamabico- 11 such as vision, tactile sensors, and infrared range finders are needed to handle

cartography in a more cluttered indoor environment. Sensor sweeps of a 2D plane during

translational scanning could possibly extent robot cartography to build 3D maps of indoor

spaces.

Improved robot mobility such as the ability to open doors and climb stairs would great-

ly improve robot cartography capability. Research on a special robot morphology is needed

to map ventilation ducts and crawl spaces in buildings. In naval applications, cartography

can be extended to inspections of void spaces and tanks on naval ships. These spaces peri-

odically require hazardous human inspections for corrosion and loose fittings.

A voice interface is currently under development to provide a more intuitive robot/hu-

man. This system will enable Yamabico to receive voice commands. Additionally, voice re-

189

sponses by the robot would make it a more useful platform. Voice commands such as "go

remap region B" could make Yamabico a good assistant to a human making a floor plan of

a building.

The improved utilization of ultrasonic sound is an important extension that hold a great

potential. The existing sonars on Yamabico could be better utilized if the diagonal sonar el-

ements were employed to examine hard-to-reach areas such as concave comers. Vastly su-

perior sonar utilization in the animal kingdom tells us that much of the resolution and ca-

pability of 40 KHZ sound waves in air is significantly under-utilitized [Nachtigall 86]. The

investigation of frequency modulated sonar sensors in air is a useful extension to this dis-

sertation. A software variable range gate and pulse length could significantly enhance the

capability of ultrasonic sonar as a sensor. A shorter range gate is more appropriate in a

close, cluttered part of a building whereas a long range gate and a longer pulse interval work

better in open spaces. An automatic, adaptive sonar range gate and pulse width could sig-

nificantly enhance cartography.

A more powerful on board computer is desired to allow Yamabico- 11 to perform faster

processing. The video image processing is desired for navigation and object recognition in

a cluttered indoor area. This is a computationally demanding task. A SPARC4 single-board

supercomputer is currently being installed to support faster computations [Ironics 91]. A

significant portion of the robot's hardware device drivers are being rewritten to support the

new central processing unit.

A genetic algorithm approach to world space exploration using the Yamabico simula-

tor to evolve a good exploration strategy in different world spaces might be worthwhile.

The evolved cartography algorithm would need to be validated on the robot. This would

require an extremely accurate simulator sonar model to predict sonar returns, the simple ray

tracing model used in the current simulator is insufficient for this task. Lastly, specular re-

flection would have to be modeled more completely.

This dissertation has addressed the problem of automated cartography in autonomous

mobile robots. The experimental results presented here are encouraging and show that the

190

automated cartography is suitable for the intelligent robot exploration of an indoor world

space. Future robots will undoubtedly draw 3D models of existing buildings by exploring

their interiors with sophisticated sensors. This dissertation is one step on the road to this

goal.

191

Yamabico User's Manual Naval Postgraduate School

APPENDIX A. YAMABICO USER'S MANUAL

YAMABICO
USER'S MANUAL

September 2, 1993 Page 192

Yamabico User's Manual Naval Postgraduate School

INTRODUCTION
Yamabico-1 1 is an autonomous mobile robot powered by two 12-volt batteries and is driven

on two wheels by DC motors. These motors drive and steer the wheels while four shock absorbing

caster wheels balance the robot.

The master processor is a MC68020 32-bit microprocessor accompanied by a MC68881 float-

ing point coprocessor. (This is the exact same CPU as a Sun-3 workstation). This processor has one

Mbyte of main memory and runs with a clock speed of 16MHz.

All programs on the robot are developed using a Sun 3/60 workstation and UNIX operating

system. These programs are first compiled and then downloaded to the robot via a RS-232 link at

a baud rate of 9600. The software system consists of a kernel and a user program. The kernel is

currently 65,000 bytes and only needs to be downloaded once during the course of a given exper-

iment. A user program "usero", can be modified and downloaded quickly to support rapid devel-

opment. An on board laptop console is provided to accomplish command level communication to

and from the user.

Twelve 40 kHz ultrasonic sensors are provided to allow the robot to sense its environment.

The sonar subsystem is controlled by an 8748 microcontroller. Each reading cycle takes approxi-

mately 24 msec. Yamabico is used as a testbed for the development of MML, the model-based mo-

bile robot language

EXPLANATION OF FILES
This file is a framemaker document in new mml/mml/macpherson/usersl.doc in the
yamabico account.

A. Files (n/gemini/work2/yamabico/new mml/mmllO)

[Makefile] Unix makefile for the real-time program.

B. Source Code files

control.c - Tracking feedback control system of vehicle position. Each vehicle control cycle this
module reads both optical wheel encoders and determines how to steer the vehicle based upon the
current path element and the vehicle's odometry estimate.

csLh - cubic spiral lookup table (angle [degree] vs. length [cm]).

September 2, 1993 Page 193

Yamabico User's Manual Naval Postgraduate School

geom.c - geometric and temporal functions ("seLrob", timer etc.).

init.s - initialize hardware, exceptions.

interrupt.s - Interrupt handler for sonar, timer. This assembly language module is the MML
scheduler for the multi-tasking system.

intersection.c - Computes the intersection of sequential path elements in real time.

immediate.c - Immediate locomotion functions that change global locomotion variables.

main.c - main program is linked to "user.c" for real-time execution and for simulation.

Makefile - Makes the kernel and user objects in the UNIX environment.

math.s - Assembly code floating point mathematical functions.

mml.h - MML header file for external variables and constants.

motor.s - Assembly code for drive DC motors.

rosyio.asm.s - Assembly code for conversion of internal codes to ASCII etc.

rosyio.c - input and output through console terminal.

sequential.c - Sequential locomotion functions that load the instruction buffer.

sonar.c - Functions on sonars. Described further in section XXX.

track.c - real-time calculation of reference data as posture, velocity etc.

leaving-point.c - Calculates the leaving point between sequential path elements.

user.c - An application program written by a user. This file consists of the user.c commands to the
robot.

C. Object modules

The object modules are the actual executable machine code that is downloaded to Yamabico.

kernel* - system kernel (load address 304000 - 30d000).

user - (load address 330000 -).

D. Application Programs

September 2, 1993 Page 194

Yamabico User's Manual Naval Postgraduate School

sonartest3.out - allows user to test all sixteen sonar transducers in groups of four. To load the

program type lo=dload sonartestout, when the program is loaded type "g 304000" to start it run-

ning, then select 0,1,2, or 3 to indicate which logical sonar group you desire to test. Logical group

0 consists of sonars 0,2,5, and 7; group 1 of sonars 1, 3, 4 and 6; group2 of sonars 8, 9, 10, and 11;

and groups 3 is a "virtual" group which consists of four permanent test values. The program dis-

plays to the screen the detected range to the four transducer in the group, type e to exit or 0,1,2,or

3 to select another group of sonars.

ROBOT OPERATING INSTRUCTIONS

A. Compiling a program

[Compiling procedure for the real-time program]

(1) Establishing the Yamabico environment.
Login the yamabico account.
Execute "dm9" and go to the "mml9" directory.
The prompt "[nmml9]:" will be displayed on the screen.

(2) Create or modify "user.c" by the editor.

(3) Key in "mu" (alias for "make user").
Makefile takes care of all the system files modified.

(4) If the message "kernel relented at 0x00304000" is output on the screen, the kernel should be
downloaded at the later stage.
Otherwise only user file has been edited and needs to be recompiled.
See (2) of [Download the kernel & user].

B. Robot setup procedures

(1) Turn on the power switch in the front panel of Yamabico leftside down.

(2) Confirm the voltage of battery, which should be indicating between 23 to 30 volts. If the voltage
is below 23 volts, recharge the robot's battery. See ROBOT BATTERY AND POWER SUPPLY
PROCEDURES below

(3) Connect the serial port cable (blue connector) from Sun3, the baud rate is 9600 bps.

(4) Press the reset button at the top of Yamabico.

September 2, 1993 Page 195

Yamabico User's Manual Naval Postgraduate School

C. Execution of users program

(1) Download the kernel & user

(a) Via the serial port, the kernel and/or the user program is downloaded. When "7920BUG>" is
displayed on the console of Yamabico, key in "lo=dluk" + <cr> then "dluk" will be echoed back
and the system will start to download the kernel and user.

(b) If other messages are displayed or no response, press the reset
button on the VME board (the reset button on top of the robot does the same function) and try
again, or check the cable. If you want to load only user program, key in "lo=dlu". It is important,
for it takes about 6 minutes to download the kernel, but 30 seconds for user, so if you modified only
user program, it is better to load only user program.

(2) Execution of the user program

Type "g 304000" + <cr>, then the user program will start to execute. The same program stays in
the robot's memory and can be restarted with the same command.

[Cabling Instructions]

(a) Blue 4 pin connector(RS232) is for program load and data upload.
(b) Black many-pin connector is terminal hookup.
(c) An additional program load cable is located in the floor by the door to Sp 511 Lab. This allows
the programmer to download programs while Yamabico is in the hallway.

[Placing the robot up on the blocks]

(a) Place Yamabico in the desired position.
(b) Carefully lift the front of the robot and place the wooden block underneath.
(c) Carefully lift the back of the robot and place the wooden block underneath. Ensure the robot's
two large drive wheels do not touch the ground. Get some assistance if possible.

D. Laptop procedures

(1) The black, many-pin connector is terminal hookup. This can be connected to the vt220 terminal
on the tabletop to the right of Yamabico or can be directly connected to the laptop terminal on top
of Yamabico. The MacIntosh Powerbook145 is the current laptop terminal. Please read the
owner's manual prior to operating this computer. A Voice Navigator voice interface system is also
available for voice recognition experiments.
(2) When "7920BUG>" is displayed on the laptop screen this means that the terminal is
functioning normally.
(3) If "7920BUG>" is not displayed, the user must set up the terminal by starting the
communications software package. Consult the software manual for further guidance.

September 2, 1993 Page 196

Yamabico User's Manual Naval Postgraduate School

E. Battery charging and power supply procedures

ROBOT OFF
(1) The MAIN SW circuit breaker on the Robot power panel is OFF.
(2) The BATTERY circuit breaker on the Robot power panel is OFF.
(3) The External Power Supply is switched OFF.
(4) The Battery Charger is unplugged.
(5) The Battery Charger connector is disconnected from the Robot.

ROBOT OFF, CHARGING BATI'ERIES
(1) Make sure the BATTERY circuit breaker on the Robot power panel is OFF.
(2) Connect the Battery Charger output connector to the robot.
(3) Plug the Battery Charger into the AC outlet.

ROBOT POWERED FROM EXTERNAL POWER
(1) Make sure the BATTERY circuit breaker on the Robot power panel is OFF.
(2) Connect the External Power Supply output connector to the adapter on the Robot power panel.
(3) Turn the External Power supply ON.
(4) Turn the MAIN SW circuit breaker on the Robot control panel ON.
(5) You may leave the Battery Charger connected and operating. The Robot will not load the
batteries.

SWITCHING THE ROBOT FROM EXTERNAL POWER TO BATTERY POWER
(1) Unplug the Battery Charger from the AC outlet.
(2) Disconnect the Battery Charger output connector from the Robot.
(3) Turn the BATTERY circuit breaker on the Robot power panel to ON.
(4) Turn the External Power Supply OFF.
(5) Disconnect the External Power Supply output connector from the adapter on the Robot power

"panel.

SWITCHING THE ROBOT FROM BATTERY POWER TO EXTERNAL POWER

(1) Connect the External Power Supply output connector to the adapter on the Robot power panel.
(2) Turn the External Power supply ON.
(3) Turn the BATTERY circuit breaker on the Robot power panel to OFF.
(4) Connect the - ttery Charger output connector to the robot.
(5) Plug the Battery Charger into the AC outlet.

ROBOT SIMULATION PROGRAM

A. Files in Simulator

yam sim - The graphic simulator menu for selecting simulator top level commands.

September 2, 1993 Page 197

Yamablco User's Manual Naval Potgraduate School

sir - The executable simulator produced by the makefile. The compile menu button updates sim
and the run button runs the smm.

sim.info - Output of reference posture by the simulation program.

axis-data - Data for "gnuplot" program.

B. Operations for the Simulation Program

(1) Compiling procedure for the simulation program.
(a) Login MML working directory.
aquarius login: yamabico (You may also use pegasus for gcc compiler.) Read the file
AAAREADME for any new simulator developments.

(b)If the prompt is displayed on the screen "yamabico@aquarius%", key in "ys".
If logged in MML working directory, the prompt "[mmini:" is displayed on the screen.

(c) Create or modify "user.c" by the using the EDIT button which invokes the "vi" editor. If you
desire to use "emacs" or some other editor, then open a separate window and edit "user.c" using
the editor of your choice.

(d) When you have finished editing the user.c file, save the file and compile it by clicking the left
mouse button on the CMPL button on the command menu. This executes the command make sim
which cause the Makefile to recompile all files in the simulator that have been edited including
user.c.

(2) Execution of the simulation program
(a) Click the left mouse button on the RUN button and the simulation program will start.

(b) At first, the program will fill the instruction buffer and then the graphics portion of the program
will display the robot trajectory on the fifth floor of Spanagel Hall.

(c) When the simulation starts, the program will display the message and the instruction stack.
For example, simulation output:

Instruction Stack:
Class argrl argr2 argr3 argr4 argr5 argr6 model mode2
SET ROB 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0 0
STOP 147.717624 0.000004 69.098301 95.105652 1.884956 0.000000 0 0
SET ROB 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0 0
STOP 125.656116 0.000006 58.778525 80.901699 1.884956 0.000000 0 0

Total Number of Instruction : 4

September 2, 1993 Page 198

Yamabico User's Manual Naval Postgraduate School

(4) When the program has finished, gnuplot is automatically called to plot the robot's whole

trajectory to the screen or to the "ssl" printer. The robot's trajectory information is stored in the

axisdata file that is built as the robot simulator runs.

PROGRAMMER GUIDE AND EXAMPLES

Motivation
The technique of path specification control is a fundamentally new way of specifying Yam-

abico motion commands. Previously, all robot motion commands were specified as configurations

consisting of p = (x, y, q). In other words, the robot was commanded to move from point to point

with the requirement that it attain the orientation q at each specified point. This technique has been

shown to lead to difficulties when an odometry correction was imposed upon the robot while it was

in motion. These difficulties included reverse motion during the setrobO function using the con-

figuration to configuration tracking method and non-smooth motion, resulting in wheel slippage

that increased odometry error since the vehicle was accelerated to a higher speed until the new con-

figuration was obtained.

Early experinmental work on robot odometry correction and wall following revealed that the

set-robO function frequently caused jerky, non-smooth vehicle motion. This problem was particu-

larly prevalent when the new odometry estimate fell behind the robot. An odometry reset to a po-

sition behind the vehicle caused the vehicle to back up to attain the correct configuration on the

Cartesian plane. The vehicle also was programmed to accelerate to a higher speed than the current

operating speed in case the correction required the vehicle to "catch up" to the correction configu-

ration. This acceleration caused increased vehicle wheel slippage that resulted in increased odom-

etry error.

A better way to specify robot motion is by a series of planar path elements that are connected

to obtain the robot's desired path. These planar elements can be straight lines, arcs (constant cur-

vature portions of a circle), or parabolic line segments. In this way, the vehicle odometry reset is

performed with respect to a planar path vice a single odometry configuration. This allows the robot

to smoothly return to the specified path when the odometry estimate is reset using set.robO. No

September 2, 1993 Page 199

Yamabico User's Manual Naval Postgraduate School

change in speed is required so the overall vehicle wheel slippage is reduced. This path specification

control modification has required some significant modifications to the MML language.

PROBLEM STATEMENT AND GOALS
This section describes the problems that the new version of MML path tracking functions in-

tend to solve. The design goals and the system constraints are explicitly stated.

Initial Problem Statement

The purpose of the Yamabico tracking control system is to allow the Yamabico robot to follow

a path specified by configurations, lines, circular arcs and parabolas. The robot must automatically

determine the transition point from one path element to the next. This includes recovery from con-

secutive non-intersecting path elements. Additionally, the robot motion must be smooth. No dis-

continuity in the robot's motion is allowed. Since the absolute value of drJds is always finite, the

robot's path curvature (K) is continuous with respect to the distance travelled (s).

Robot odometry correction is improved by performing moving odometry correction while the

vehicle is in motion following a path. Overall vehicle motion is enhanced by using a function to

command the vehicle to follow a parabolic path for obstacle avoidance.

Goals
The primary goal of the vehicle path tracking technique is to achieve smooth robot motion.

This is accomplished by commanding the robot to follow straight, curved and parabolic line seg-

ments as elements of the path.

Automated path tracking includes automatic path element to path element transitions. Robust

robot path tracking including exception handling and intelligent error recovery are built into MML

to make robot programming easier.

Constraints
Physical limitations on robot motion are a characteristic of the vehicle's size, shape and

weight distribution. We must design to prevent such things as very sharp curvature at high speed.

September 2, 1993 Page 200

Yamabico User's Manual Naval Postgraduate School

Time is a critical factor in the sense that a finite amount of CPU time is required for the robot

to calculate the current path image and determine the best q and ic for each step.This new computer

will perform Yamabico's computations approximately 25 times faster than the Sun3 board.

Robot Main memory size is another limitation, currently the robots main memory is five

megabytes.The Sparc4 single board computer has 16 megabytes.

Path to path transition planning must take a reasonable amount of time. Successive refinement

of the optimum leaving point is used to ensure the best possible transition point is available at any

given time. The first rough approximation is the intersection point, next is the transition point with-

in one so of the optimum leaving point and finally the final refined optimum leaving point, deter-

mined within one eighth of so. An obvious trade-off exists between the time spent planning and

the accuracy of the outcome.

The number of Central Processing Unit (CPU) interrupt levels is limited to eight. This limits

the number of separate tasks that can run at different levels in the single CPU, multitasking system.

VEHICLE KINEMATICS

Linear Vehicle Motion Control
The Yamabico- 11 mobile robot is a power wheeled steering robot [Kanayama 91]. This

means that each drive wheel has its own independent motor. Steering is accomplished by variation

in the relative speeds of these two motors. Vehicle linear velocity control is provided by the trap-

ezoidal speed versus distance profile shown in Figure A. 1. The velocity control algorithm for the

vehicle is based on ramped, linear acceleration to a constant nominal velocity (velg). To move in

a straight line to a given point in the work space, the vehicle accelerates at a constant nominal ac-

celeration rate as in region I in Figure A. 1. MML provides a function for the user to change the

nominal acceleration rate. Once the vehicle reaches the nominal velocity value the vehicle main-

tains a constant velocity as in region BI of Figure A. 1. The vehicle maintains this constant velocity

unless it is commanded to stop at a particular point by a backward line (bline) or stop function. In

this case the vehicle automatically calculates its distance to the stopping point. When Equation

A. 1 holds then the vehicle decelerates at a constant rate where d is the remaining path distance to

September 2, 1993 Page 201

Yamabico User's Manual Naval Potgraduate School

the stopping point, a is the robot's nominal accleration rate, and v is the robot's current velocity.

T'his is region M] in Figure A.I. In region IV of Figure A.1 the vehicle is stopped.

2ad5 v2 A.1

The required velocity of the left (vL) and right (QR) wheels are calculated by Equations A.2

and A.3.

VL = (l-WIc)v A.2

vR = (l+WK) v A.3

Linear Velocity Control Regions

speed i i
(cn/sec)

II II nI III IV
IV

vel...g -_ _ _ _ _ _ _ _ _ _
a j

: I I
S' •

- I diiinceS(cm)

Figure A.1 Vehicle Speed Control

September 2, 1993 Page 202

Yamabico User's Manual Naval Postgraduate School

Once the desired linear velocity is determined, the vehicle image on the intended path element

is calculated. The nature of the image calculation depends on the path element type. The value of

the instantaneous path curvature, IC, is determined using the value of the size constant s0 " Based

upon the Equations A.2 and A.3 the left (vD) and right (vR) wheel velocities are calculated, where

W is the distance between the wheels and K is the vehicle's instantaneous path curvature. The de-

sired left and right wheel velocities are converted into an appropriate pulse width modulation

(pwm) value using an empirically derived approximation function. The pwm values for the left and

right wheels are stored in a 16 bit motor control word (mcw). This mcw is sent as a command to the

left and right wheel motors every vehicle control cycle.

Rotational Velocity Control Regions
(0

(rads/sec) I

VI VIII
VEm

Inom

(I)c

- ____"- I0
(radians)

Figure A.2 Vehicle Rotational Speed Control

Rotational Velocity Control
Vehicle rotational velocity control can be initiated only when the vehicle is in a stopped

state. To begin rotation the vehicle must be in the stopped state in order to prevent possible wear

or damage to the robot's drive train gears. The power wheel steered robot has a translational motion

September 2, 1993 Page 203

Yamabico User's Manual Naval Postgraduate School

state and a rotational motion state. The method of speed control is the same as for linear velocity

control. The speed control is illustrated in Figure A.2. The rotational velocity control description

is provided for completeness. The robot's current rotational velocity wis calculated each vehicle

control cycle by the odometry software. In region V, the robot starts out a with coc = 0 and ac-

celerates to the nominal rotational velocity C0nom. In region VI, the robot rotates at a constant an-

gular velocity until the vehicle's orientation approaches the goal orientation 02. When the robot

orientation satisfies Equation A.4, the vehicle enters region VII and begins a ramped decrease of

the current rotational velocity 0c where amt is the robot's current nominal rotational accleration.

W2 < 2 arot (Og - 0 A.4

In region VIII, the robot's current rotational velocity is reduced to zero when it reaches 06 and

the robot's goes back to the "stopped" state, ready to perform more rotations or translation motion

functions.

VEHICLE CONTROL ALGORITHM
The method of low level vehicle control is described in this section. The MML scheduler is

an assembly language routine that calls the appropriate interrupt handler based upon a serial board

timer or an external interrupt to the main central processing unit (CPU). Figure A.3 illustrates the

MML task scheduler. This section gives a detailed description of the locomotion task which is ex-

ecuted every vehicle control cycle (100 Hertz). The high level locomotion task algorithm is given

in Figure A.4. This algorithm runs every vehicle control cycle. Each step of this algorithm is de-

scribed in the rest of this section.

Vehicle Odometry
The vehicle odometry function determines a new dead reckoning configuration for the

vehicle during each vehicle control cycle. This information is required to determine the proper

steering commands for the vehicle. The distance each wheel has moved during the last vehicle con-

trol cycle is computed by reading the storage register for each of the optical wheel encoders and

September 2, 1993 Page 204

Yamabico User's Manual Naval Postgraduate School

scheduler

locomotion sensor input/output
task task task

Figure A.3 MML Scheduler

locomotion task()

{

perform vehicle odometry

store location trace data

calculate commanded vehicle velocity

calculate commanded vehicle image and kappa

calculate vehicle vL and vR based upon kappa and velocity

calculate pwm and mcw

return pwm, mcw

Figure A.4 Locomotion Task Algorithm

multiplying this value by an encoder-to-distance conversion factor. The wheel encoders record a

full wheel rotation in 512 discrete steps. This value is then filtered using a recursive digital filter

[Hamming 83].

September 2, 1993 Page 205

Yamabico User's Manua[Naval Postgraduate School

The vehicle's instantaneous change in orientation, A0 is computed by the Equation A.5

ASR-AsL

A0 - W A.5

where As is the signed incremental distance each wheel moved as determined by reading each

wheel encoder and W is the vehicle's effective tread width. The vehicle's instantaneous distance

traveled, As is computed by taking the average of the incremental distance traveled by the left and

right wheels. The value of As is determined as shown in Equation A.6.

AsR + As

As= L A.6
2.0

The vehicle's current translational velocity (vc) and rotational velocity (oc) are determined

next by the Equations A.7 and A.8 where At is the time interval between vehicle control cycles.

As
vc = - A.7

=A A.8c At

Finally, the vehicle's current dead reckoning configuration q, = (xi, y1 , ti, k1) is computed by

the next function, using the vehicle's last dead reckoning configuration qo = (xo, yo, to, kO) where

Equations A.9, A.10, A. 11, and A.12 are used to compute the new robot configuration.

x1 x0+As(CosO+ f) A.9

Yl +As(sinO+_) A.10

September 2, 1993 Page 206

Yamabico User's Manual Naval Postgraduate School

01 = 00+AO A.11

c = kappa A.12

Vehicle Location Trace
The vehicle's current DR configuration can be stored in the robot's on board memory

using the location trace feature of MML. This is an user controlled option. If the location trace flag

is switched on by the user, the vehicle's current odometry configuration is written to the robot's

memory every n vehicle control cycles. The n value is user selectable. The location-trace dump

function allows the user to send the stored robot trajectory data back to the host computer at any

point in the program [Sherfey 91].

Vehicle Commanded Velocity
For translation motion, the commanded velocity for the left and right wheels is deter-

mined next. First the vehicle's current DR configuration and current path element are compared.

A vehicle image configuration is calculated by projecting the vehicle configuration onto the current

path element [Alexander 93] [Abresch 92]. Next the commanded instantaneous vehicle path curva-

ture (K) is computed using the image, vehicle configuration, and current path element. Finally, the

vehicle's commanded rotational velocity (oc) is computed by the Equation A. 13.

WCc = ICXvc A.13

The commanded left and right wheel velocities are computed by the Equations A. 14 and

A. 15 respectively.

w
VL = VC A.14

September 2, 1993 Page 207

Yamabico User's Manual Naval Postgraduate School

VR =Vc+- A.15

Determination of Pulse Width Modulation (pwm) Values
The required pulse width modulation (pwm) values for the left and right wheels are de-

termined based upon the commanded wheel velocities according to the Equations A.16 and A.17.

pwmleft = pwmlookup (vL) + kpwb (vL - VCL) A.16

Pwmright = pwmlookup (VR) + kpwb (vR - VCR) A.17

The pwmilookup function returns the empirically derived pwm value for the corresponding com-

manded wheel velocity. The motor control word (mcw) is determined based upon the vehicle's

commanded move direction. Normally, this is forward, but during rotation, sharp turns, and back-

ward motion the mcw may change to a negative value.

PATH ELEMENTS
We first define how paths are geometrically described in this method. A configuration q stands

for a triple

q = (p, q, k), A.18

where p is a point, q an orientation, and Kc a curvature. For an arbitrary configuration q and a

point p, either one of the following is said to be an element.

line(q), parabola(p), forwardjline(q), backwardjline(q), configuration(q)

A path is a sequence (e1 , e2 ,..., en), where each ei is an element. The meaning of each element

e is defined as follows (each element means a directed simple path if e is not a configuration).

1. line(q) means a circle if Ki * 0 or a line if ic = 0 (Figure A.5, Part (a)). This path segment does
not have any endpoints.

2. parabola(p) means a directed parabola determined by the focus p and the directrix q. (The cur-
vature part k of q is ignored.) (Figure A.5, Part (b)).

September 2, 1993 Page 208

Yamabico User's Manual Naval Postgraduate School

(a) IK

iC<O 0 K>O

P) direc 1
(b) x

Sfocsq
(e) (d)

Figure A.5 Directed Path Elements

3. forwardcjine(q) means a part of element line(q). It has a start p (Figure A.5, Part (c)).

4. backwardline(q) means a part of element line(q). It has an end p (Figure A.5, Part (d)).

5. configuration(q) does not mean a directed path segment by itself. It must have elements which
specifies another configuration in the previous and the following position in its path. A pair of
configurations define a cubic spiral path segment. (Figure A.5, Part (e)) (The curvature part K
is ignored.)

Table A. I shows permissible combinations for two consecutive elements in a sequence. Each

combination is depicted in Figure A.5.

September 2, 1993 Page 209

Yamabico User's Manual Naval Postgraduate School

Table A.1 :PERMISSIBLE COMBINATIONS

From / To line parabola backwardline forwardline configuration

line (a) TR (b) TR (d)

parabola TR (c) . TR (e) .

forward_line TR (0 TR (S) TR) (h)

backwardline TRE (i) TRE J) TRE (k) CS Q) CS (m)

configuration - - CS (n) CS (o)

The methods of tracking entries in the table are:

TR: normal transition

TRE: transition at the endpoint

CS: cubic spiral

-: not permissible

The finite state machine diagram in Figure A.6 describes the allowable transitions among

robot tracking states:

PATH ELEMENT TRANSITIONS
Path elements are the component parts of the robot's intended path. A method for defining

how paths are geometrically specified is required. A configuration q as in Equation A. 19 is a three

element vector where p = (x, y) is a point in the Cartesian plane, 0 is the orientation measure coun-

terclockwise with respect to the x-axis, and Kc is the path curvature. A parabola is a data structure

with a point p which represents the parabola's focus and a configuration q which represents the pa-

rabola's directrix as shown in Equation A.20. For an arbitrary configuration q and a parabola r, any

one of the following is said to be a path element: line(q),parabola(r),forward_line(q), backward_-

line(q), cubic(q).

q = (p, 0, K) A.19

September 2, 1993 Page 210

Yamabico User's Manual Naval Postgraduate School

cofig

Figure A.6 - Finite State Machine for Robot Status

r =(p, q) A.20

September 2, 1993 Page 211

Yanmabico User's Manual Naval Polttaduatl S ..e

IC<0 = 0 IC>O

Figure A.7 The Line Function

A path is a sequence of path elements (el, e2,..., en), where each e1 is an element. The speci-

fication for each element e is defined as follows: each element means a directed simple path if e is

not a configuration.

The line(q) function commands the vehicle to track a circular path element if x * 0 or a straight

line path element if ic = 0 as shown in Figure A.7. This path segment does not have any endpoints.

The vehicle tracks the commanded line unless ordered to track some other path element by a sub-

sequent user command. The curvature (ic) of the line path element is constant along the entire path.

The parabola(r) function commands the vehicle to track a directed parabolic path element as

determined by the focus p and the directrix q. The curvature part (K) of q is ignored. This function

is useful for obstacle avoidance, since the world space obstacle can be the focus of the parabola.

ýq qDK>

(a) (b)

Figure A.8 Forward Line Tracking

September 2, 1993 Page 212

Yamabico User's Manual Naval Postgraduate School

The forward-line(q) function is a compound command. This command tells the robot to fol-

low a cubic spiral path to the beginning of the directed half-line formed by q. Once the robot reach-

es the start of the half-line, it tracks this line just as the line(q). Figure A.8 (a) illustrates the vehicle

automatically using a cubic spiral path to move from Its current configuration to the path element

q, then the vehicle switches to tracking the straight forward line. Similarly, in Figure A.8 (b), the

vehicle uses a cubic spiral to reach the configuration q and then switches to tracking the circular

path element specified by q.

The backward-line(q) is similar to the forward line function except the configuration q spec-

ifies the endpoint of the path element The vehicle may transition to other path elements after reach-

ing the configuration q if other path element commands follow. If no command follows then the

vehicle stops at the end configuration of the backward line. Backward lines may be straight or cir-

cular path elements depending on the value of K in q. Figure A.9 illustrates two backward lines.

stopping point or
transition point

(a) K = 0 (b) K*O0

Figure A.9 Backward Line Path Elements

In Figure A.9 (a), the vehicle tracks the straight line specified by q and stops (or transitions to an-

other path element) at the configuration q. in Figure A.9 (b), the robot tracks the circular path q and

also stops at the point (q.x, q.y).

The cubic(q) function commands the vehicle to move through a specific configuration using

a cubic spiral path element. The cubic spiral must have a starting configuration in order to be mean-

ingful. The command uses path elements which specify another configuration in the previous and

the following position on its path to form the cubic spiral. When cubic(q) is the first command, the

robot's current configuration is used as the starting configuration for the spiral. In all cases, a pair

September 2, 1993 Page 213

Yamabico User's Manual Naval Postgraduate School

of configurations define a cubic spiral path segment. Figure A. 10 illustrates the vehicle moving

q

inflection point

Figure A. 10 Cubic Spiral Path Elements

from its current configuration p to q using a cubic spiral path element. The curvature part of the

configuration q is not used. Notice that two cubic spirals are actually used with a point of inflection

between them.

PATH ELEMENTS TRANSITIONS
This section describes the allowed path element transitions in greater detail. The path element

segments are designed to allow an autonomous robotic vehicle to follow a Voronoi path through

an obstacle field. To accomplish this, straight lines, circular arcs, and parabolic line segments are

required.

Thus far, only path elements that share a common intersection point have been considered.

Some applications require vehicle transitions between non-intersecting path elements. One simple

example of this is lane changing for obstacle avoidance. Just as automobiles move from one paral-

lel lane to another to avoid slow traffic or an obstacle in the road, the robot "changes lanes" from

its current path to a parallel path (either left or right) when necessary to avoid an obstacle. Another

application involves motion planning by representing all obstacles as circles as described in [Brutz-

man 92]. Additionally, line-to-circle, circle-to-line, circle-to-circle, parabola-to-line and line-to-

parabola transitions are needed to enhance user program robustness and flexibility. In all of the fol-

lowing transition descriptions, p] is the current vehicle path element and p2 is the next path ele-

ment.

September 2, 1993 Page 214

Yamabico User's Manual Naval Postgraduate School

Straight Line Path Transitions with Intersecting Paths
When two consecutive directed lines, q, and q2 are given, the vehicle leaves the current

path element ql at a point pl upstream of the intersection point P)2" The optimum leaving point P1

must satisfy the condition that the trajectory does not oscillate if it leaves q, at p, and oscillates if

it leaves any point closer to P1 2 than P, ; see Figure A. 11. The distance between P1 and P12 is

called the leaving distance and is proportional to so.

For intersecting straight line paths, the intersection point is first determined. Then leaving

points on P1 are selected based upon the intersection point From the hypothetical leaving points,

the robot's path is projected from path element q, to path element q2. A non-oscillating, smooth

transition from the first path to the second path is sought. A step value ofso is used for this process.

The first leaving point examined is at a distance of one so from the intersection point on q1 . The

algorithm steps in so increments away from the intersection point along p, until the best leaving

point is approximated. The best leaving point then is determined to the nearest one eighth of so. In

Figure A. 11, the optimum leaving point is P1. If the vehicle leaves path q, too early (for instance

at point Pk), there is less control over the robot's motion. If the robot leaves path q, too late, for

instance at point Pm, then the robot overshoots the intended path q2 during the transition. The leav-

ing distance in Figure A. 11 is the distance along the path element q, between point P1 and point

P12. In general, the leaving distance is an increasing function of the difference in the 0 values of

the two paths at the intersection.

Straight Line Path Transitions with Non-Intersecting Paths
Parallel straight line path elements have no intersection point. A method of leaving the

current path and tracking the next path must be specified in this case. When the line command is

issued and the vehicle's current path element does not intersect the next path element, the vehicle

immediately stops following the current straight line path element and tracks the next parallel ele-

ment. In other words, the vehicle's image on the current path element is the leaving point to tran-

sition to the new path element.

September 2, 1993 Page 215

Yamabico User's Manual Naval Postgraduate Schoo

q2

Pk P1 PM /P12

Figure A. 11 Transition Between Intersecting Straight Line Paths

In Figure A.12 (a) parallel paths in the same direction give simple lane changing behav-

ior. In this example, the vehicle immediately stops tracking path element Pi and lane changes to

the left to path element p 2 upon receipt of the command line(&p2).

a) vehicle r-' P

(a) P~e2

P1

(b) veil P2

P1

vehicle
(c))

P2 P1

Figure A.12 Transitions Between Parallel Straight Line Paths

September 2, 1993 Page 216

Yamabico User's Manual Naval Postgraduate School

In Figure A. 12 (b), parallel paths with opposite orientation cause the vehicle to turn

around. Initially the vehicle tracks path element pl. When the command line(&p2) is received, the

vehicle immediately leaves path element p, and tracks path element P2 since there is no intersec-

tion point. Since P, and P2 have opposite orientations, the vehicle turns towards path element P2

and eventually turns all the way around to track P2-

In Figure A. 12 (c), co-linear paths cause the vehicle motion to be unchanged. Since path

elements P, and P2 have the same orientation and are collinear, no net change in vehicle motion

occurs when the command line(&p2) is received. Ifp2 has the opposite orientation of p1 then the

vehicle immediately turns around and follows P2.

Straight Line to Circular Path Transitions
This section describes transitions between line type path elements where one of the two

elements is a circular path. The intersection of the two path elements must be considered. To de-

termine how the path elements intersect comparison of the circular path element's radius r and the

minimum distance d from the line path element to the center of the circular path element must be

made. The value of r is simply r = 1/1C , where Ki is the curvature of the circular path. The value

of d is determined by Equation A.21 [Kanayama 91]. For a directed line L = (a, b, 0) and a point

p = (x, y), where p is the center of the circular path element this distance is given by;

dist(L,p) = (y+b) cosO- (x-a) sine = d A.21

When the line and circle intersect, there are several possibilities. When the circle's radius

r is equal to the minimum distance d from the line to the center of the circle, the single point of

tangency is called the osculating point. This is the simplest case since the osculating point is de-

fined as the intersection point and is also the leaving point. This rule results in a small amount of

vehicle path oscillation during the transition.

When the circular path element's radius r is less than the minimum distance dist from the

line to the center of the circle, there are two intersection points, the upstream point and the down-

stream point. The upstream intersection point [Alexander 93] is returned as the intersection point

September 2, 1993 Page 217

Yamablco User's Manual Naval Postgraduate School

vehicle

(a)

P2

Co) P4

(b)

Figure A. 13 Transitions Between Intersecting Straight Line Paths and Circular Paths

when the first path p1 is a line and the vehicle is outside of the circle. See Figure A.13 (a). The

leaving point is calculated by the path projection method and lies on the current path element

When the vehicle is on path elementp 4 inside of the circular path elementp 5 and the com-

mand is read, in order to calculate a straight line to circular path transition, the downstream point

is returned as the intersection point. The leaving point is calculated by the path projection method

[Alexander 93]. This is shown in Figure A.13 (b). In this case, the leaving point is inside of the

circular path element p5 on path element p4 .

September 2, 1993 Page 218

Yamabico User's Manual Naval Postgraduate School

Straight Line to Circular Path Transitions of Non-Intersecting Paths

If d is greater than r, the line and circle path elements are non-intersecting. The mode of

the circle is an important consideration when the line and circle are non-intersecting. The transition

is only allowed when the circle and the line have the same directionality. Notice in Figure A. 14 (a)

the circle is counterclockwise (mode +) and the line's direction is left to right. This allows the ve-

hicle to move such that it is not forced to rapidly change direction during the transition from path

element p1 to P2. A clockwise (mode -)P2 is not allowed since the vehicle would be forced to make

a sharp turn to the left at the leaving point.

vehicPle

(a) d_

vehicle (Xcp, Ycp)

(b)

10P2

Figure A.14 Transitions Between Straight Line Paths and Circular Paths

Transitions between a straight path element and a non-intersecting circular path element

or vice versa require the determination of the closest point (xcp, YCP) between the two path ele-

ments. This point is used as the leaving point for non-intersecting elements. In Figure A. 14 (a), the

vehicle initially tracks straight line path element p1 . The command line(&p2) specifies a non-in-

September 2, 1993 Page 219

Yamabico User's Manual Naval Postgraduate School

tersecting circular path. Path element P, is specified by P1 = (xI, Y1, Olt 0). Path element

P 2 = (X2 " Y2, 02'' 2) is a circle with the center at the point (Xcenter Ycenter) in accordance with

Equations A.22 and A.23, where r is the radius of the circular path element.

Xcenter x2 -rsin (02) A.22

Ycenter = Y2 + rCoS (02) A.23

To calculate the closest point, the value of d must be determined. Equations A.21 and

A.25 give the closest point (xcp, Ycp) on the straight line path element which is the leaving point

for the non-intersecting line to circle transition case.

Xc = Xcenter + dcos (01 - A.24

Y = Ycener + dsi (0 -) A.25

For a circle to line transition, the closest point on the circle (x, yc) given by Equations

A.26 and A.27 is used as the leaving point. When d > 0

X =Xcenter+ rCos (01 - 7) A.26

Ycp = Ycenter-IrI COS (01 -) A.27

September 2, 1993 Page 220

Yamabico User's Manual Naval Postgraduate School

and when d < 0

XCP = X center-I r Cos (- A.28

Ycp = Ycenter+ Id Cos (0) A.29

In Figure A. 14(b), the vehicle is commanded to move from a circular path element p1 to

a straight line path elementP 2. The closest point is used as the leaving point in the same way.

Circle to Circle Path Transitions
Circle to circle path element transitions are designed to provide maximum flexibility in

vehicle motion commands. A continuum of proximity exists between two circles with regard to the

distance between their centers. The mode of the two circles plays an important part in determining

how the transitions between circles should occur. Basically, their are two classes of circle-to-circle

transition, same mode and opposite mode. Figure A. 15 illustrates four types of transitions between

non-intersecting circles. For circles with the same mode, either ++ or - -, the transitions occurs on

the exterior of the circles. These transitions are called same mode transitions. For circles with op-

*posite mode, either +- or -+, the transition causes the vehicle to move between circles. These tan-

gents are called opposite mode transitions.

Circle to Circle Path Transitions (Circles with the Same Mode)
To determine if two circles intersect, the sum of the two circle's radii rI + r2 is compared

to the distance between the centers of the two circles d. If d is greater than r1 + r2 , the two circles

are non-intersecting. This case is illustrated in Figure A.16 (a) for circles with the same mode. An

external tangent is used as an intermediate vehicle path for this type of transition.

If d = r1 + r2 , then the two circles intersect at an osculating point or point of tangency.

This case is illustrated in Figure A.16 (b) for circles with the same mode. Once again an external

tangent is used as an intermediate vehicle path element.

September 2, 1993 Page 221

Yamabico User's Manual Naval Postgraduate School

leaving pts rr + +

Figure A. 15 Tangential Line Segments Between Circular Path Elements

If 1rI - r21 < d < ri + r2 , the circles intersect at two points as shown in Figure A.16 (c).

For circles with the same mode, this transition is allowed and an external tangent is used as an in-

termediate vehicle path element. This transition is not allowed for circles with opposite modes.

If d = Ir1 - r21, then the two circles intersect at an osculating point with the smaller circle

inside of the larger one. This case is shown in Figure A. 16 (d). The osculating point is the transition

point for circles with the same mode. This type of transition is not allowed for circles with opposite

modes.

If 0 < d < Ir1 - r21, then the two circles are non-intersecting with the smaller circle inside

of the larger one. Since d is greater than zero, the circles are not concentric. This case is shown in

Figure A.16 (e). In this case, for circles with the same mode, the transition point is the CP on the

current circular path element. This type of transition is not allowed for circles with opposite modes

and is handled in section 7.

If 0 = d, then the two circles are concentric and non-intersecting with the smaller circle

inside of the larger one. This case is shown in Figure A. 16 (f). In this case, for circles with the same

mode, the transition point is the current vehicle image on the current circular path element. This

September 2, 1993 Page 222

Yamabico User's Manual Naval Postgraduate School

C 2.

I+++
(a) d > I r, + r21 (b) d = Ir + r21

SIT~r++ I+

(c) Ir 1 -r 21<d< Ir, +r 21 (d) d= Ir1 -r 21

rrT++

(e) 0<d<Ir,-r 21 (f)0=d

Figure A.16 Circle to Circle Transitions, Same Mode

causes the vehicle to transition immediately from the first path element to the second. Once again,

this type of transition is not allowed for circles with opposite modes.

September 2, 1993 Page 223

Yamabico User's Manual Naval Postgraduate School

Circle to Circle Path Transitions (Circles with the Opposite Mode)
In Figure A. 17 (a) non-intersecting circular path elements with opposite modes are shown.

Notice an external tangent is used as an intermediate path element between the two circles.

1

(a) d > I r, r21, Non-intersecting Circles with Opposite Modes

I LP __W 2

rl + -•

(b) d = I r, + r2 l, Circles with an Osculating Point

Figure A. 17 Transitions Between Circles with Opposite Modes

For intersecting circles with opposite modes, the transition is illustrated in Figure A.17 (b).

Notice the vehicle uses the osculating point as the transition point between path elements.

Line to Parabola Path Transitions (Intersecting Paths)
Transitions to and from parabolic path elements are only allowed from straight line path ele-

ments due to the complex nature of circle-parabola intersections. Circle to parabola transitions may

September 2, 1993 Page 224

Yamabico User's Manual Naval Postgraduate School

have up to four intersection points for some geometries. In Figure A.18 (a), the directed parabolic

path element p, is specified by a five element vector in accordance with Equation A.30.

P1 ((Xdypxyod) A.30

Where (xf, yf) is the focus of the parabola and (xd, Yd, Od) is the parabola's directrix. The

straight line path element p1 = (x1, y, ep 01c) is specified as before. The vehicle is commanded

to follow path p, and then P2, sequentially. The intersection point between p, and p2 is first cal-

culated and then the appropriate leaving point on p, is determined [Alexander 93]. In a similiar

P2

(a) Parabola-to-Line Transition

P2

(b) Line-to-Parabola Transition

Figure A.18 Transitions between Intersecting Line and Parabolic Path Elements

September 2, 1993 Page 225

Yamabico User's Manual Naval Postgraduate School

PP2

P2 P

(a) Parabola-to-Line Transition (b) Line-to-Parabola Transition

Figure A. 19 Transitions between Non-Intersecting Line and Parabolic Path Elements

fashion, the vehicle may be commanded to follow a straight line path p, and then transition to a

parabolic path P2 as shown in Figure A. 18 (b). The intersection point and the leaving point are cal-

culated in a similiar manner.

Line to Parabola Path Transitions (Non-Intersecting Paths)
For a straight line-to-parabola transition, refer to Figure A. 19. If the path elements do not in-

tersect, then the closest point on the straight line path element is used as the leaving point. Similar-

ly, for parabola-to-straight line transitions with no intersection among path elements, the CP on the

parabola is used as the leaving point as shown in Figure A.19 (a).

Definitions
Closest Point (CP) - The point on the current path element that has the shortest Euclidean dis-

tance to the next sequential path element. This applies to non-intersecting paths only.

Configuration - a four element data structure used to describe a robot position or a path ele-

ment. The four elements are x, y, 0, and K.

Immediate Function - Functions that are executed immediately upon the command interpreter

reading them. This type of command is not held in a buffer for subsequent execution. Instead, the

affected parameters are changed immediately.

September 2, 1993 Page 226

Yamabico User's Manual Naval Postgraduate School

Intersection Point - The point or points of intersection between two successive path elements.

This is used as a first approximation of the transition point

Leaving Distance - The distance along the current path element from the leaving point to the

intersection point.

Parabola - a five element data structure used to describe a parabolic path element. The five

elements are xf Yp xa, y& and qd" The parabola's focus is represented by the point (xp Y?) and the

directrix of the parabola is the configuration (xd, Yd' qd' 0.0).

Sequential Function - Functions that are executed in a sequential fashion. Each sequential

function awaits the logical completion of the previous sequential function.

Transition Point - (Same as leaving point) - The latest hypothetical leaving point that does not

result in oscillation in the transition to the next path. At this point the vehicle switches from track-

ing the current path to the next path.

The Flow of Control
The initialization of variables occurs first Then control is transferred to user.c. The sequen-

tial-type commands are placed into the command buffer and the immediate type commands are ex-

ecuted immediately. The wait_motion and markmotion commands are used to temporarily halt

reading commands into the command buffer.

VEHICLE MOTION COMMANDS

Set Robot Configuration Sequential (setrob)

Syntax: void set rob(q)

CONFIGURATION q;

Description:

Sets the robot's odometry configuration in a sequential manner. This func-
tion is used normally at the start of the MML program to tell the robot
where it is initially. Subsequent odometry resets are also made using this
function. This function is illustrated in Figure A.20.

September 2, 1993 Page 227

Yamabico User's Manual Naval PoFtgraduate School

Figure A.20 - The setrob Function

Function Call: set rob(&q)

Location: loco.c

Temporal Type: Sequential Function

Set Robot Configuration Immediate (set robO)

Syntax: void setrob(q)

CONFIGURATION q;

Description:

Resets the robot's odometry configuration such that the robot continues
moving in a smooth manner. This resets the xod, yo and qod components

of the robot's configuration only. The kappa of the robot cannot be reset
since this would result in an instantaneous change in the robot's rurvature.
This is not allowed. In Figure A.20, the vehicle is tracking a the desired
path. In this case, set_robO is used to reset the robot's odometry configu-
ration from the current estimate qest to the actual current configuration
qacr-

Function Call: setrobO(&q)

Location: loco.c

Temporal Type: Immediate Function

Get Robot Configuration Immediate (get robO)

September 2, 1993 Page 228

Yamabico User's Manual Naval Postgraduate School

Syntax: void getjrotO(q)

CONFIGURATION q;

Description:

Retrieves the robot's odometry estimate. Returns a pointer to the location
of the robot's current estimate of its configuration.

Function Call: get rob(&iq)

Location: loco.c

Temporal Type: Immediate Function

Move While Tracking a Line (line)

Syntax: void fine(q)

CONFIGURATION q;

Description:

Command that orders the robot to follow the line specified by the config-
uration q. If the path curvature is zero then q.kappa = 0.0. This means that
the path represents a straight line passing through the point (q.x, q.y) with
orientation q.theta. If the path curvature is nonzero, then the robot follows
a circular path. When the value of ic is less than zero then the vehicle's
direction of motion on the circle is clockwise, and when Kc is greater than
zero, then the motion is counterclockwise. These concepts are illustrated
in Figure A.21. Speed is automatically reduced to allow the robot to make

sharp turns. This is reflected by the dependency between Kc and the vehicle
speed. In simple terms, the vehicle speed must be reduced to allow it to
move safely with larger values of K

Function Call: line(&q);

Location: loco.c

Temporal Type: Sequential Function

Move While Tracking a Forward Half Line (forward-line)

September 2, 1993 Page 229

Yamablco User's Manual Naval Posgraduate School

q.kappa > 0.0 (counNclockwise)

S(q.x, q.y) qlkapa = 0.0 (waighi line)

vehicle

q.kappa < 0.0 (clockwise)

Figure A.21 - The line Function

Syntax: void fline(q)

CONFIGURATION q;

Description:

Follow the forwardline specified by a configuration q. If the vehicle im-
age is on the half line specified by q, then the vehicle uses this line as its
path. Otherwise, if the vehicle's image does not fall on the half line (i.e.
behind the point (q.x, q.y)) then the vehicle shifts to configuration-to-con-
figuration tracking using a cubic spiral path specification until the line's
starting point is reached. See Figure A.22. In case 1 the vehicle's image
falls on the half line, in this case the vehicle moves in exactly the same
fashion as for the line function. In case 2, the vehicle's image does not fall
on the half line. Vehicle motion in case 2 uses point tracking with cubic
spirals as the shape of the path. The vehicle tracks to the point (q.x, q.y)
and passes close to this point. The vehicle must pass through the configu-
ration (q.x, q.y, q.t) as it transitions onto the forward half line.

Function Call: fline(&q);

Location: loco.c

September 2, 1993 Page 230

Yamabico User's Manual Naval Postgraduate School

Temporal Type: Sequential Function

Con5irazio.-o-.conhgdc
Tracking until the vehicle
close to the start of the half ile

v~ehicle

(q~x, q.y)

CASE 2 - Track through i CASE 1 - Forward Line Tracking
the fline starting point vehicle

Figure A.22 - Thefline Function

Move While Tracking a Backward Half Line (backwardline)

Syntax: void bline(q)

CONFIGURATION q;

Description:

Follow the backward_line specified by a configuration q. See Figure A.23
for an illustration. In case 1, the vehicle image falls on the half-line and the
robot tracks as in the line function. In case 2, the vehicle's image does not
fall on the half-line, this is an undefined situation that gives an error mes-
sage or an exception handler. The configuration point (q.x, q.y) can be used
as a vehicle stopping point or as a transition for configuration-to-configu-
ration tracking (see the config(q) command).

Function Call: bline(&q);

Location: loco.c

September 2, 1993 Page 231

Yamabico User's Manual Naval Postgraduate School

Temporal Type: Sequential Function

CASE I - Line Tracking I CASE 2 - Stop as Soon as
I Possible

image

vehicle vehicle

Figure A.23 - The bline Function

Define a Robot Configuration Variable (def configuration)

Syntax: CONFIGURATION def configuration(x, y, t, k, &p)

double x;

double y;

double t;

double k;

CONFIGURATION p;

Description:

Assigns the four parameters necessary to specify a configuration. The pa-
rameters x and y define the vehicle's location on the cartesian plane. The
parameter t represents the vehicle's orientation and K represents K, the cur-
vature of the vehicle's current motion.

September 2, 1993 Page 232

Yamabico User's Manual Naval Postgraduate School

Function Call: def conflguration(x, y, t, k, &p);

Location: geom.c

Temporal Type: Immediate Function

Define a Parabolic Path Variable (defjparabola)

Syntax: PARA defparabola(xf, yf, xd, yd, td, &p)

double xf;

double yf;

double xd;

double yd;

double td;

PARA p;

Description:

Assigns the five parameters necessary to specify a parabola. The point (x1

y? is the focus of the parabola and the configuration (xd, Yd' td& 0.0) is the

directrix of the desired parabola as shown in Figure A.24. Notice the di-
rectrix is always a straight line, therefore the directrix has k = 0 by default.

Function Call: def.parabola(xf, yf, xd, yd, td, &p);

Location: geom.c

Temporal Type: Immediate Function

Move While Tracking a Parabola (parabola)

Syntax: void parabola(p)

PARA p;

Description:

Follow the parabola specified by a focus (xp y and a directrix specified

by a configuration (xd, yd' td, 0.0), see Figure A.24. The parabola function

is used primarily as a means of obstacle avoidance. Figure A.24 illustrates
the robot following a straight line path. When an obstacle is encountered

September 2, 1993 Page 233

Yamabico User's Manual Naval Postgraduate School

on the robot's intended path, a shift is made to temporary parabolic path
tracking. This allows the robot to smoothly maneuver around the detected
obstacle and return to the intended straight line path.

Function Call: •arabola(&p);

Location: loco.c

Temporal Type: Sequential Function

(xd, yd, td, 0) dirctix

vehicle fou TP

S~obstacle

IP
EP

Figure A.24 - The para function

Move to a Configuration (config)

Syntax: void config(q)

CONFIGURATION q;

Description:

This function specifies a configuration as a destination and uses the con-
figuration from the previous motion commands to reach the destination us-
ing one or two cubic spirals. The kappa value of the configuration is ig-
nored since cubic spirals start and end with zero curvature. This is the
move command used in previous versions of MML. In Figure A.25 the ve-
hicle is commanded to move through three successive configurations us-
ing a series of config commands, namely config(&ql), config(&q2), and
config(&q3). The robot automatically plans a smooth cubic spiral path be-

September 2, 1993 Page 234

Yamabico User's Manual Naval Postgraduate School

tween successive configurations. Note that not all config-to-config
transitions are allowed due to the nature of cubic spirals. An error message
or an exception handler is required to recover when prohibited pairs of
configurations are specified.

Function Call: config(&q);

Location: loco.c

Temporal Type: Sequential Function

q3

q1

Figure A.25 - The config function

Immediate Stop (stop)

Syntax: void stopO()

Description:

This function make robot stop dynamically near the point this function was
issued. This is not a sequential function, but an immediate one. The se-
quential functions that have been issued are cancelled. The vehicle accel-
erates at negative of the set acceleration until fully stopped. All current in-

September 2, 1993 Page 235

Yamabico User's Manual Naval Postgraduate School

structions are flushed from the instruction buffer. This function is related
to the haltO() and resumeO() functions.

Function Call: stop0O;

Location: loco.c

Temporal Type: Immediate Function

Halt Robot (haltO)

Syntax: void haltO0

Description:

This function make robot stop dynamically near the point this function was
issued. This is not a sequential function, but an immediate one. The vehicle
accelerates at negative of the set acceleration until fully stopped. It does
not modify the instruction buffer. This function is related to the stopO()
function and is cancelled by a subsequent resumeO() function. The robot
motion can continue when the resume0O function is issued.

Function Call: haltO0;

Location: loco.c

Temporal Type: Immediate Function

Location: loco.c

Temporal Type: Immediate Function

Resume Robot Motion (resumeO)

Syntax: void resumeO()

Description:

This function allows the robot to move once again after a haltO() function
has been issued. This function does not modify the instruction buffer in
any way. The robot motion cannot be resumed until the resumeO() function
is issued. This function is related to the haltO0 function.

should be stored so they do not have to be recomputed

September 2, 1993 Page 236

Yamabico User's Manual Naval Postgraduate School

Function Call: size constO(s);

Location: loco.c

Temporal Type: Immediate Function

Set Size Constant Sequential (size const)

Syntax: void size const(s)

double s;

Description:

This function sequentially updates the size constant so for the tracldng al-

gorithm. The new value of so is stored in the instruction buffer and so is

changed when the sequential command is executed.

Function Call: size const(s);

Location: loco.c

Temporal Type: Sequential Function

Set Vehicle Speed Immediate (speedO)

Syntax: void speedO(s)

double s;

Description:

This function immediately resets the vehicle speed. The nominal vehicle
speed is 30 cm/sec. The vehicle moves at the nominal speed until a new
speed is set or reset. The vehicle smoothly accelerates to the new speed us-
ing the value of the current vehicle acceleration value as the rate.

Function Call: speedO(s);

Location: loco.c

Temporal Type: Immediate Function

September 2, 1993 Page 237

Yanmabico User's Manual Naval Postgraduate School

Set Vehide Speed Sequential (speed)

Syntax: void speed(s)

double s;

Description:

This function sequentially resets the vehicle speed. The nominal vehicle
speed is 30 cm/sec. The vehicle moves at the nominal speed until a new
speed is set or reset. The vehicle smoothly accelerates to the new speed us-
ing the current vehicle acceleration value as the rate.

Function Call: speed(s);

Location: loco.c

Temporal Type: Sequential Function

Set Vehicle Acceleration Sequential (acc)

Syntax: void acc(a)
double a;

Description:

This function sequentially resets the vehicle acceleration. The nominal ve-

hicle acceleration is 20 cm/sec2. The vehicle accelerates at the nominal ac-
celeration until a new acceleration is set or reset.

Function Call: acc(a);

Location: loco.c

Temporal Type: Sequential Function

Set Vehicle Acceleration Sequential (accO)

Syntax: void accO(a)

double a;

September 2, 1993 Page 238

Yamabico User's Manual Naval Postgraduate School

Description:

This function immediately resets the vehicle acceleration. The nominal ve-

hicle acceleration is 0.5 cm/sec2 . The vehicle accelerates at the nominal
acceleration until a new acceleration is set or reset.

Function Call: accO(a);

Location: loco.c

Temporal Type: Immediate Function

Set Vehicle Rotational Speed Immediate (r-speedO)

Syntax: void r speedO(s)
double s;

Description:

This function immediately resets the vehicle's rotational speed. The nom-
inal vehicle rotational speed is 0.5 rad/sec. The vehicle moves at the nom-
inal rotational speed until a new speed is set or reset. The vehicle smoothly
accelerates to the new speed using the value of the current vehicle rotation-
al acceleration value as the rate.

Function Call: r-speedO(s);

Location: loco.c

Temporal Type: Immediate Function

Set Vehicle Speed Sequential (r-speed)

Syntax: void r-speed(s)

double s;

Description:

This function sequentially resets the vehicle's rotational speed. The nom-
inal vehicle speed is 0.5 rad/sec. The vehicle moves at the nominal rota-
tional speed until a new rotational speed is set or reset. The vehicle

September 2, 1993 Page 239

Yamablco User's Manual Naval Potgraduate School

smoothly accelerates to the new speed using the current vehicle rotational
acceleration value as the rate.

Function Call: rspeed(s);

Location: loco.c

Temporal Type: Sequential Function

Set Vehicle Rotational Acceleration Sequential (racc)

Syntax: void r-acc(a)

double a;

Description:

This function sequentially resets the vehicle's rotational acceleration. The
nominal vehicle acceleration is 0.5 rad/sec2. The vehicle accelerates at the
nominal acceleration until a new acceleration is set or reset.

Function Call: r acc(a);

Location: loco.c

Temporal Type: Sequential Function

Set Vehicle Rotational Acceleration Immediate (raccO)

Syntax: void raccO(a)

double a;

Description:

This function immediately resets the vehicle's rotational acceleration. The
nominal vehicle acceleration is 20 rad/sec2. The vehicle accelerates at the

ominal rotational acceleration until a new acceleration is set or reset.

Function Call: r accO(a);

Location: loco.c

Temporal Type: Immediate Function

September 2, 1993 Page 240

Yamabico User's Manual Naval Postgraduate School

Get Total Distance Tfraveled (path length)

Syntax: double path length0

Description:

Returns the robot distance traveled since the start of the current program.
This distance is stored as the parameter ss and it is updated every 10 msec
by the odometry function. (This is the control function in the file controLc)
This function is a critical part of the current robot odometry correction.

Function Call: distance = path Iengtho;

Location: loco.c

Temporal Type: Immediate Function

Wait for a Point (waitpoint)

Syntax: void wait_point(p)

POINT p;

Description:

Busy waits in task level 0 until the vehicle's image passes a certain point
This function delays the stepwise reading of the "user.c" file until the dis-
tance from the vehicle's image to a specified point reaches a local mini-
mum.

Function Call: waitpoint(p);

Location: loco.c

Temporal Type: Sequential Function

Leave the Current Path Element (skip)

Syntax: void skip()

September 2, 1993 Page 241

Yamabico User's Manual Naval Postgraduate School

Description:

Causes the robot to immediately leave the current path element The robot
will immediately start tracking the next sequential path element if one ex-
ists, otherwise the robot stops moving near its current position. Cannot be
used with a rotate-to-cubic spiral transition or any transition-at-endpoint
(TRE) command sequence.

Function Call: skipO;

Location: loco.c

Temporal Type: Immediate Function

Get the Current Path Element (getline)

Syntax: PATHELEMENT getflineO

Description:

Returns the path element that the robot is currently tracking. The current
path element is returned in the form of a PATH_ELEMENT record. This
record consists of four fields; pc (type CONFIGURATION), pp (type
POINT), tp (type POINT), and type (type int). In the case of an fline func-
tion, the path element returned is a cubic spiral or an sline depending on
the state of the compound function.

Function Call: element = get_lineG;

Location: loco.c

Temporal Type: Immediate Function

MML IMPLEMENTATION DETAILS

MML System Software Architecture
The path tracking MML system architecture is shown in Figure A.26. This is a partial repre-

sentation of the entire system. This diagram focuses on the vehicle locomotion. When the program

starts to run, initialization occurs first. All global variables are given an initial value and the con-

September 2, 1993 Page 242

Yamabico User's Manual Naval Postgraduate School

stants are defined. After the initialization, control is transferred to the user.c code. This is basically

the user's commands for the robot. Each command calls a specific MML function. Each MML

function is either sequential or immediate.

Table A.2 : MML SYSTEM TASK PRIORITY

Interrupt Interrupt Source Function Interrupt Type Vector Duration
Level(microsec)

7 stop button reset asynchronous

6 not used -

5 - not used - -

4 Serial Board 1 locomotion synchronous 64 2500

3 Serial Board 0 laptop asynchronous 65 variable

2 Sonar Board sonar synchronous 66 240

1 Serial Board 0 debugger 67 -

0 user's instruct none -

In the level 0 task process, sequential MML functions load the necessary path element infor-

mation into the command buffer. For a path element function such as line(&p), the path element

configuration p is loaded into the command buffer arid the path intersection point and leaving point

are calculated when two or more paths are pending. Since the intersection point and leaving point

functions currently run in the foreground, there is some delay in reading sequential user commands.

In a later version, the intersection point and leaving point calculations will be tasks run at an inter-

rupt level above the foreground.

Immediate MML functions change one or more global variables, but do not load information

into the command buffer. Immediate functions change robot parameters immediately. One exam-

ple is the speedO(sp) function. This function sets the vehicle parameter vel_c equal to sp, which

immediately changes the current vehicle speed. Upon receipt of this command, the vehicle smooth-

ly accelerates to the new commanded speed.

Some explanation of the multitasking processes is required. The Motorola 68020 CPU has

eight interrupt levels [Motorola 85]. Some of these interrupts are used to run vehicle tasks at vari-

ous priority levels in the single CPU, multitasking system. Table A.2 illustrates these vehicle tasks.

September 2, 1993 Page 243

Yamabico User's Manual Naval Pogr advmte Schod

path leaving pointh~alzado Imeelemen
s

"'a~aaa]iMine ---

user.c

sequentialime

immediate s

[Z cuIiiii BUII speed controlvI I 'BUFFER
MLii EXECUTOR
MML
FUNCTIONS I

kinematics

ilz

I,1 odometrypw
control

intersection

leaving point
shaft

encoder motors

LEVEL 0 TASK " LEVEL 4 TASK

Figure A.26 - MML System Architecture

September 2, 1993 Page 244

Yamabico User's Manual Naval Postgraduate School

The higher the interrupt level, the higher the priority of the associated task. At the highest level

is the robot's reset button, this tasks overrides all other tasks, stops the robot and resets the CPU.

Levels five and six are currently not used. Interrupt level four is the highest priority task that runs

during robot operations. This important task is responsible for steering the vehicle. Every 10 msec,

the locomotion task interrupts all other lower priority running tasks and runs for about 2500 micro-

seconds. This task first reads the shaft encoders and computes the vehicle's odometry configuration

estimate. This is a dead reckoning technique since only internal devices are read. Next the most

recent odometry configuration is used to calculate the proper k and velocity for the vehicle. These

parameters are used to determine the desired vehicle rotational velocity Co. A kinematic function

calculates the left and right wheel velocities vL and vR. This information is used to determine the

necessary pwm command to be sent to the left and right wheel drive motors.

At interrupt level 3, the vehicle's user interface input/output task runs. This task is responsible

for printing information to the vehicle on board monitor and reading input from the user entered

on the console's keyboard. Also, file transfer from the robot to the host computer is controlled by

this task.

At interrupt level 2, the vehicle sensor functions run. This interrupt is triggered by range in-

formation that is placed in the sonar board register. When one or more vehicle sonars are enabled,

this task runs about every 30 msec. When none of the robot's twelve sonars are enabled, this tasks

*does not run at all [Sherfey 911.

Interrupt level 1 is the msbno task which is currently not used. Eventually, the intersection

point and leaving point tasks will be transferred to this level.

Interrupt level 0 is the user's instruction interpretation task. Initialization of all variables and

interpretation of the user's commands run at this level. All other higher priority tasks can interrupt

the level 0 task. This task fills the command buffer based on the user's sequential commands and

modifies system parameters based upon immediate commands. The sonar sensors are enabled and

disabled at this level. All robot navigation functions run at this level also.

The Command Buffer Data Structure
1. The position of the transition point in the instruction buffer is such that the first path element

is written into the instruction buffer with no transition point. The second path element is written

September 2, 1993 Page 245

Yamabico User's Manual Naval Postgraduate School

into the instruction buffer only after the transition point between the first and second path elements

is determined. All writes to the instruction buffer are atomic. The following is an example:

2. Pointers are maintained to positions in the buffer as follows:

a. current pathelement_ptr - the points to the path element that the robot is currently track-

ing.

b. current instyptr - points to the current instruction in the instruction buffer. This instruction

is not always a path element.

c. nextypath_element_ptr - points to the next path element type instruction. This pointer is

used in conjunction with the current instptr to calculate the transition point. It is also used by the

transition point test routine to determine if the robot has reached the transition point.

d. new inst .point - Points to the next sequential empty portion of the instruction buffer.

CONFIGURATION

POINT

COMMAND TYPE

LEAVING POINT

INTERSECTION (boolean flag)

Figure A.27 - Data Structure for the Command Buffer

3. The control function is reconfigured to remove all functions previous done by steppero.

Level 4 tasks run every 10 msec in the following order:

September 2, 1993 Page 246

Yamabico User's Manual Naval Postgraduate School

a. Odometry (reads wheel encoders)

b. v, omega update;

1. CASE SSTOP: curv = 0; cur..w = 0;

2. CASE SMOVE: currenLimage = update-image(vehicle, path);

test_TP(currenLimage, trans_.pt);

kappa = update_kappa(vehicle, path);

veLc = update._vel();

cur_w = update_.wO; (= kappa * veLc)

3. CASE RMOVE: cur_y = 0; cur_w = update_wO /* Trapezoidal control of rotational ve-
locity */

c. update pwm d. location trace (conditional)

The command interpreter uses an array structure to store path element records. The interpreter

reads the user.c file one instruction at a time. The procedure set-instr reads each path element com-

mand, loads the path element data into a path element record and then places the record into the

command buffer. The overall system structure is illustrated in Figure A.27. Access to this structure

is First-In-First-Out, so commands are stored in the same order as they appear in user.c.

Individual path element records consist of the following fields; configuration, point, com-

mand type, leaving point and a stop flag. Not all fields are used for all types of path elements, for

instance, for a Iine(&p) command, the point field is not used since the line's configuration is stored

in the configuration field and the point portion is not necessary. The leaving point part of the path

element record is the point where the vehicle should stop following the current path element and

start following the next path element. The leaving point is calculated for the first and second ele-

ments in the command buffer only. All other leaving point calculations are held pending until the

vehicle is actually following the first path element.

The parabola type path element .. one command type that uses the point part of this record.

This portion of the record is used as the focus of the parabolic path element. The path the vehicle

is currently following is pointed to by the currentLpath pointer. This is a pointer to a path element

record that represents the vehicle's current path. This path element record is removed from the

September 2, 1993 Page 247

Yamabico User's Manual Naval Postgraduate School

her Priority odometry 1

LLevel 4 Task
Motor Control

'ml -.
I.: I 30msec I. I Level2hTask

I Sonar Functions

I ee 0OTask
I Levelin

Pj a
i

iii S

i

Figure A.28 - System Control Tuming

command buffer when the vehicle starts to follow the new path element. The next planned path

then moves to the head of the buffer. Leaving point calculation is initiated every time an element

is removed from the buffer such that the first and second path elements in the buffer have their leav-

ing points calculated.

b. Sonar Functions - located in the file sonar.c

Procedure: sonar(n)

Description: returns the distance (in centimeters) sensed by the nth ultrasonic sensor. If no echo is
received, then a -I is returned. If the distance is less than 10 cm, then a 0 is returned.

Procedure: enable sonar(n)

September 2, 1993 Page 248

Yamabico User's Manual Naval Postgraduate School

Description: enables the sonar group that contains sonar n, which causes all the sonars in that group
to echo-range and write data to the data registers on the sonar control board. Marks the n'th position
of the enabledsonars array to track which sonars are enabled.

Procedure: disable sonar(n)

Description: removes the sonar n from the enabledsonars list. If sonar n is the only enabled sonar
from its group, then the group is disabled as well and will stop echo ranging. This has benefit of
shortening the ping interval for groups that remain enabled.

Procedure: wait sonar(n)

Description: Busy waits at level 0 until new data is available for sonar n. Then returns the range
value for sonar n.

Procedure: global(n)

Description: returns a structure of type POSIT containing the global x and y coordinates of the
position of the last sonar return.

Procedure: enable.linear-fitting(n)

Description: causes the background system to gather data points from sonar n and form them into
line segments as governed by the linear fitting algorithm. Increments servicejflag.

Procedure: disable linear-fitting(n)

Description: causes background system to cease forming line segments for sonar n. Decrements
the service_flag. Will also disable the calculation of global coordinates for that sonar if data
logging of global data is not enabled.

Procedure: enabledatalogging(n,filetype,filenumber)

Description: causes the background system to log data for sonar (n) to a file (filenumber). The data
to be logged is specified by an integer flag (filetype). A value of 0 for filetype will cause raw sonar
data to be saved, 1 will save global x and y, and 2 will save line segments. The filenumber may
range between 0 and 3 for each of the three types, providing up to 12 data files. Example:

enabledatajlogging(4,1,0);
will cause raw data from sonar #4 to be saved to file 0, while:

enable._datajlogging(7,2,0);
will cause segments for sonar #7 to be saved to file 0.
Function increments the service_flag.

September 2, 1993 Page 249

Yamabico User's Manual Naval Postgraduate School

Procedure: disabledata/logging(n,filetype)

Description: causes the background system to cease logging data of a given filetype for a sonar n.
Decrements the servicejiag.

Procedure:serve sonar(x, y, t, ovfl, datal, data2, data3, data4, group)

Description: this procedure is the "central command" for the control of all sonar related functions.
It is linked with the ih sonar routine and loads sonar data to the sonar-table from there. It then
examines the various control flags in the sonartable to determine which activities the user wishes
to take place, and calls the appropriate functions. This procedure is invoked approximately every
thirty milliseconds by an interrupt from the sonar control board.

Procedure: getsegment(n)

Description: returns a pointer to the oldest segment on the linked list of segments for sonar n; i.e.
the record at the head of the linked list. It is destructive, thus subsequent calls will return
subsequent segments until the list is empty. This is accomplished by first copying the contents of
the head record into a temporary record called segstruct and then freeing the allocated memory for
the head record. The pointer returned is actually a pointer to this temporary storage. If getsegment
is called on an empty list a null pointer is returned.

Procedure: getcurrent segment(n)

Description: returns a pointer to the segment currently under construction if there is one, otherwise
returns null pointer. This is accomplished by calling end-segment, copying the data into segstruct
and then returning a pointer to segstruct. The memory allocated by end-segment is then freed.

Procedure: setparameters(cl,c2,c3)

Description: allows the user to adjust constants which control the linear fitting algorithm. Cl is a
multiplier for standard deviation and C2 is an absolute value; both are used to determine if an
individual data point is usable for the algorithm. C3 is a value for ellipse thinness; it is used to
determine the end of a segment. Default values are set in main.c to 3.0, 5.0, and 0.1 respectively.

Procedure: enableinterrupt operationo

Description: places sonar control board in interrupt driven mode.

Procedure: disable interrupt operationo

Description: stops interrupt generation by the sonar control board. A flag is set in the status register
when data is ready, and it is the user's responsibility to poll the sonar system for the flag.

September 2, 1993 Page 250

Yamabico User's Manual Naval Postgraduate School

Procedure: calculate_global(n)

Description: this procedure calculates the global x and y coordinates for the range value and robot

configuration in the sonar table. The results are stored in the sonar table.

Procedure: linear-fitting(n)

Description: this procedure controls the fitting of range data to straight line segments. First it
collects three data points and establishes a line segment with it's interim data values. After the
segment is established, the procedure tests each subsequent data point to determine if it falls within
acceptable bounds before calling the least squares routine to include the data point in the line
segment. After inclusion of the data point the segment is again tested to ensure the entire set of data
points are sufficiently linear. If any of the tests fail, the line segment is ended and a new one started.
The completed line segment is stored in a data structure called segment, and segments are linked
together in a linked list.

Procedure: startsegment(n)

Description: this procedure establishes a new line segment with the three data points contained in
segment.data[n].init(x and y). It writes the appropriate data to the interim values in
segment.data[n].

Procedure: add to line(n, x, y)

Description: this procedure calculates new interim data for the line segment and stores it in
segment.data[n]. It also changes the end point values to the point being added.

Procedure: end segment(n)

Description: this procedure allocates memory for the segment data structure, loads the correct
values into it and returns a pointer to the structure.

Procedure: reset accumulators(n);

Description: resets the accumulative values in segmentLdata[n] (sgmx, sgmy, sgmx2, sgmy2,
sgmxy) to zero.

Procedure: build list(ptr, n);

Description: this function accepts a pointer to a segment data structure and a sonar number, and
appends the segment structure to the tail of a linked list of structures for that sonar.

Procedure: logdata(n, type, filenumberi)

September 2, 1993 Page 251

Yamabico User's Manual Naval Postgraduate School

Description: this procedure causes data to be written to a file. The filenumber designates which
"column" (0,1,2, or 3) of a two dimensional array for that type of data is used. The data array and
a counter for each column forms the data structure for each type. The value of i is used to index the
seg&list array for storing line segments.

Procedure: setjlogjnterval(n, d)

Description: this procedure allows the user to set how often the sonar system writes data to the raw
data or global data files. The interval d is stored at sonartable[n], and one data point will be
recorded for every d data points sensed by the sonar. Default value for interval d is 13, which for
a speed of 30 cm/sec and sonar sampling time of 25 msec should record a data point every 10 cm.

Procedure: wait until(variable, relation, value)

Description: this procedure will delay it's completion (and thus the continuance of the program it's
embedded in) until the variable achieves the relation with the value specified. For example,
presume the robot is traveling along the x axis. If the user wants the robot to begin recording sonar
data when the x position of the robot exceeds 500 cm., he would insert this command after the
move command:

waituntil(X,GT,500.0);
enablesonar(sonar number);

The variable are predefined as X, Y, A and DO through DI1, and correspond to the robot's current
x position, y position, theta, and range from sonars 0 through 11. Relations are predefimed as GT,
LT and EQ corresponding to greater than, less than and equal to. Value may be any number
expressed as a double or the predefined values PI, HPI, P134, P14, or DPI.

Procedure: xfer raw to host(filenumber, filename)

Description: this function allocates memory for a buffer and then converts a raw data log file to a
string format stored in the buffer. It then calls host_xfer to send the sting to the host. When that
transfer is complete, it frees the memory it allocated for the buffer. Filename must be entered in
double quotes
("dumpraw" for example).

Procedure: xfer global tohost(filenumber, filename)

Description: this function performs the same function as xferraw to host, except it transfers
global data vice raw data.

Procedure: xfer segment to host(filenumber, filename)

September 2, 1993 Page 252

Yamabico User's Manual Naval Postgraduate School

Description: this function performs the same function as xfer rawto_host, except it transfers
segment data vice raw data.

Procedure: finishsegments(n)

Description: this function completes segments at the end of a data run. Necessary because the linear
fitting function only terminates a segment based on the data - it has no way of knowing that the
user has stopped collecting data.

b. Programming Examples

These user.c file is provided as simple examples of robot programs written in MML

Example: The first example is a simple racetrack. The user.c file follows

#include "aml. h"

user()
{

CONFIGURATION petart;
CONFIGURATION firstpath;
CONFIGURATION second_path;
CONFIGURATION thirdpath;
CONFIGURATION fourthpath;
CONFIGURATION fifthpath;
double a = 10.0;
int laps;
int lap-count = 0;

bufferloc=indexloc=malloc(300000);
bufloc=indxloc=(double *)malloc(60000);
loc_tron(2,Ox3f,30);

defconfiguration(1200.0, 65.0, 0.0, 0.0, &pstart);
defconfiguration(1100.0, 65.1, 0.0, 0.0, &firstpath);
defconfiguration(1500.0, 65.0, 0.0, 0.02, &secondpath);
def_configuration(1700.0, 164.9, PI, 0.0, &third-path);
def_configuration(1200.0, 165.0, PI, 0.02, &fourth-path);

set rob (&pstart);
size_const(s);
speed(15.0);
r-printf("\12 Enter desired number of laps. ");
laps=getint (CONSOLE);

September 2, 1993 Page 253

Yamablco User's Manual Naval Postradamte School

while (lap-coumt < lapsa)
(
line (&first_path) ;

line (&secondpath);
line (&third_&path);
line (&fourthpath);
+÷lapcount;
) /* end while loop */

line (&first_path);
wait_until(X, GT, 1400.0);
lec_troff);
halt o;
motor_on = NO;
loc_trdumz("locdu. m.8Dec92");
/* end user.c */

A plot of the robot's motion is shown in Figure A.29. The user first declares five configura-

tions and other variables needed for the program. Next the location trace function is enabled. Then

the configurations necessary to allow the robot to move are assigned. The starting configuration is

250

C --.Wkc92.raid0'

200

150........

50.........

0............ I.......

1100 1150 1200 1250 1300 1350 1400 1450 1500 1o0 1600

Figure A.29 - Yamabico's Trajectory for Example Program

September 2, 1993 Page 254

Yamabico User's Manual Naval Postgraduate School

set to x=65.0, y=1200.0 and theta = 0.0 using the setrob (&pstart) function. The six con-

stant is set to the value of s by the function sizeconst (s) and the speed is setto 30.0 cm/sec

by the command speed (15. 0). The next two lines of code get the number of times the user de-

sires the robot to drive around the racetrack.

The robot first drives a straight line path (f irst_.path), the automatically transitions to the

next path. The robot drives around the racetrack controlled by the while loop.

The function wait_until (X, GT, 1400.0) tells the robot to wait at level 0 until the

robot's odometry value of x exceeds 1400.0. Then the location trace function is turned off by the

function loc_troff () and the robot is stopped using the halt () function. The wheel motors

are turned off so the robot can be pushed by the command motor_on = NO. Then the robot's

location trace date file is transferred back to the host computer using the command loc-trdum-

p (* locdump. 8Dec92'), where "loc_dumD. 8Dec92" is the using file.

Definitions

The following definitions are provided to assist the reader in understanding the terms

used to explain the path tracking method of vehicle control.

Closest Point (CP) - The point on the current path element that has the shortest Euclidean

distance to the next sequential path element or to some point in the Cartesian plane. This applies

to non-intersecting paths for determining the appropriate leaving point.

Image - The projection of the robot's current configuration onto the robot's current path

element. See Figure A.30. The image is represented as a configuration with the x and y components

representing the closest point on the path element from the robot's current odometry estimate. The

values of 0 and ic are the same as those of the path element at the image point. This information is

expressed as a configuration.

Immediate Function - Functions that are executed immediately when the command inter-

preter reads them. This type of command is not held in a buffer for subsequent execution, instead,

the affected parameters are changed immediately.

Instruction Buffer - A first-in-first-out (FIFO) queue for temporary storage of pending ro-

bot sequential commands. MML sequential instructions are interpreted and executed using a sim-

September 2, 1993 Page 255

Yamabico User's Manual Naval Postgraduate School

Figure A.30 Path Tracking Control

ple producer and consumer paradigm. A producer task places the user instructions in the instruction

buffer. A consumer task removes these instructions and executes them sequentially in the order

they are removed from the instruction buffer.

Intersection Point - The point or points of intersection in the Cartesian plane between two

successive path elements. This is used as a first approximation of the transition point. When two

path elements intersect at more than one point, the intersection points are involved; they are labeled

upstream and downstream based on the intended direction of robot motion.

Leaving Distance - The distance along the current path element from the leaving point to

the intersection point.

Leaving Point - (same as transition point) - The image on the current path element closest

to the intersection point that does not result in oscillation in the transition to the next path. At this

point the vehicle switches from tracking the current path to tracking the next path.

Mode - The direction of vehicle motion on a circular path element. Counterclockwise mo-

tion is a positive mode and clockwise is a negative mode.

September 2, 1993 Page 256

Yamabico User's Manual Naval Postgraduate School

directed

parabolic path

focus (XP Yf)

(Xd, Yd, 0dO)

directrix

Figure A.31 The Parabola Specification

Parabola - A five element data structure used to describe a parabolic path element. The

five elements are x. yp, xd, yd' and O. The parabola's focus is represented by the point (xp, yf) and

the directrix of the parabola is the configuration (xd, yd, 0 ' 0). Figure A.31 is an illustration of a

parabolic path element specified by a focus and a directrix.

Sequential Function - Sequential functions are robot control functions that are executed

in the order received. Each sequential command must run to completion before the next one can

start. Sequential functions are placed into the instruction buffer to await execution. Each sequential

function awaits the logical completion of the previous sequential function.

Transition Point - (Same as leaving point) - ThMc image on the current path element closest to

the intersection point that does not result in oscillation in the transition to the next path. At this

point the vehicle switches from tracking the current path to the next path.

Configuration - the physical location and orientation of a robot represented by p = (x, y, theta,

kappa) where (x, y) is a point and the orientation theta is taken clockwise from the x-axis and kappa

is the robot's path curvature.

September 2, 1993 Page 257

Yamabico User's Manual Naval Postgraduate School

Navigator - an intermediate level on the Intelligence Module which receives the milestones of

the future path from the Planner, and performs a more thorough search within the preferable stripe

of this level, the results of this search are done at a higher resolution, and they are submitted to the

Pilot as a guideline for the lowest level of IM.

Pilot - the lowest level of the Intelligence Module which performs the synthesis of actual mo-

tion trajectory. In other words the Pilot translates the output from the Navigator into the trajectory

of the mechanical motion in accordance with the accepted set of elementary maneuvers.

Planner - the upper level of the Intelligence Module which performs the search for an opti-

mum path at a lowest resolution. Planner determines the preferable stripe determined by the mile-

stones, which is submitted to the Navigator for the subsequent stage of the planning.

Sonar Fix - A determination of the robot's current location or previous location using input

from the sonar system and the world model

Sonar Model - An abstract geometical model of a known world. This model is implemented

in software and basically simulates the sonar returns that would be obtained by a robot at a given

posture. The robot may utilize actual sonar returns, its dead reckoned posture and output from the

sonar model, to fix its position in a given world. Additionally, this allows the robot to discriminate

between known and unknown obstacles.

Sonar Model
The sonar model consists of line segments lineO through linel I representing the twelve Yam-

abico sonars. Each line segment has a length of 4 meters, which is the ideal maximum range of the

Yamabico sonar sensors.

The world is modeled as a number of line segments. A function, segment crossing._test(lineA,

lineB) returns true if the line segments lineA and lineB cross at any point. The twelve Yamabico

sonars are modeled mathematically as 4 meter long line segments. Each of the twelve sonar line

segments is tested for crossing with the world line segments. If a sonar line segments crosses a

September 2, 1993 Page 258

Yamabico User's Manual Naval Postgraduate School

world line segment, the intersection r of the two line segments is determined. The distance from r

to the robot's current position is returned as the expected sonar range to the known obstacle.

September 2, 1993 Page 259

Yamabico User's Manual Naval Postgraduate School

Index M
Makefile 191, 192

Numerics MML 190
7920BUG> 193 model-based mobile robot language 190

A N

add 248 Navigator 255

application program 191 P

ASCII 191 Pilot 255

autonomous 190 Planner 255
autonomous mobile robot 190 posture 191

axis 195 processor 190

B Programming Example 250

battery 192 R

Battery Charger 194 reset 248

blocks 193 robot 190

build 248 Robot power panel 194

C S

calculate 248 serve 247

circuit breaker 194 service 246

Compiling 192 set 247,249

Configuration 254 siminfo 196

D simulation 195

disable 246, 247 simulation output 195

Download 192 Sonar 255

drive wheels 193 sonar 245

E sonar subsystem 190

enable 245, 246, 247 sonar transducers 192

end 248 start 248

External Power Supply 194 system kernel 191

F U

finish 250 ultrasonic sensors 190

floating point mathematical 191 UNIX 190

G UNIX operating system 190

get 247 user 191

global 246 user.c 192

I V
instruction stack 195 VME board 193

Interrupt 191 vt220 terminal 193

K W
kernel 190 wait 246, 249

L X
laptop 190 xfer 249

linear 248 Y
log 248 Yamabico environment 192

logical sonar group 192

September 2, 1993 Page 260

APPENDIX B. LOCOMOTION SOURCE CODE

1* **

FILENAME: control.c
PURPOSE: path tracking functions for MML
CONTAINS:
control()
pwm_lookup(vel)
AUTHOR: Dave MacPherson
DATE: 1 Feb 93
COMMENTS: Needs more work.

#include "mml.h"

FUNCTION: control
PARAMETERS: none
PURPOSE: Reads robot encoders to update odometry
every 10 msec (INTVL) and then sends
commands to the motors that drive the
wheels.
RETURNS: pwm commands to drive the left and right drive
wheels.
CALLED BY: motor (assembly language code)
CALLS:
COMMENTS: 26 April 93 - Dave MacPherson

controlo(
register int lpwm, rpwm, bufpwm;
register double v_1, vjr, curzvl, curWvr;
register double distinc;
register double dtheta;
register double curv, cur w;
double deltatheta, delta~distl;

double pwmlookupo;
void store- lc trace-datao;
void nextO;
double readleft_wheelencodero;
double read-right wheeLencoderO;
void getyvelocityo;

#ifndef SIM
/* calculate the required linear and rotational velocities */
get.velocity(&uv, &uw, vehicle);

261

/* get encoder information returns how far the left and right
wheels have moved forward in one step */

if (status != RMOVE)
tread = TREAD/* Narrower trend width for forward motion */
else
tread = TREAD_R;
/* If robot is in the rotate mode use wider trend width */
tread2 = 0.5 * tread;
distinc = (read-righLwheeLencoder0
+ readleftwheel_encoderO) / 2.0;

ss += distLinc;
dtheta = (read_rightwheel_encoder0 - readjeft_wheeLencoder)) / tread;
cur_v =disLinc / INTVL;
cur_w =dtheta / INTVL;
cur_vl = cur_v - tread2 * cur._w;
cur_vr = cur_v + tread2 * cur._w;
/* get left and right wheel velocity */

/* update current configuration */
next(&vehicle, dist._inc, dtheta);
curx = vehicle.x;
cur-y = vehicle.y;
curt = vehicle.t;
vehicle.k = kappa;

/* trace loc */
if (ltrace-f != 0)
storeloc_trace_data(vehicle.t, vehicle.k, uv, uw);

/* if the vehicle's motors are not on the return */

if (!motor._on)
return;

#endif

if (setting-configuration)/* for set_c function temporal exec */
I
setting-configuration = NO;
vehicle.x = setP.x;
vehicle.y = set_P.y;
vehicle.t = norm(setP.t);
)
/* calculate the required linear and rotational velocities */

/* geLvelocity(&uv, &uw); *1

if (emg-stp != 0)

262

uv = uw = 0.0;

/* compute commanded left and right wheel velocities */
v_1 = uv - tread2 * uw;
v_r = uv + tread2 *uw;

#ifdef SIM/*
"* For the simulator compute vehicle's configuration based on left
"• and right commanded wheel speed this is required in lieu of real
* odometry
*/

deltatheta = uw * LNTVL;
deltadistl = uv * INTVL;
vehicle.x += (cos(vehicle.t + deltatheta / 2.0)
* deltajdistl);

vehicle.y += (sin(vehicle.t + deltatheta / 2.0)
* deltajdistl);

vehicle.t = vehicle.t + delta~theta;
vehicie.k = kappa;

#endif

/* adjust pwm's based upon the difference between the
calculated wheel velocity and the odometry wheel
velocity */

/* left wheel */
lpwm = pwmjlookup(vjl) + kpwb * (vl - curývl);

/* right wheel */

rpwm = pwmjlookup(v.r) + kpwib * (vr - cur.vr);

#ifndef SIM

/* set up motor control word (mcw) and threshold pwm values */

if (my_direction < 0.0){
bufpwm = lpwm;
lpwm = -rpwm;
rpwm = -bufpwm;
)
mcw = (mcw & OxfOfO) I ((pwm) > 0 ? 1: 2) 1 ((rpwm) > 0 ? OxO 100 0x0200);
if (lpwm > 127)
lpwm = 127;
else if (lpwm < -127)
lpwm = 127;
if (rpwm > 127)
rpwm = 127;
else if (rpwm < -127)
rpwm = -127;

263

#endif

return (Ipwm << 16 1 rpwm & Oxff);
/* end control */

FUNCTION: get-velocity0
PARAMETERS: uv, uw
PURPOSE: Determines the robot velocity and rotational
velocity based upon vel-c and kappa.
RETURNS: *uv, *uw
CALLED BY: control()
CALLS: update__vel(), update-kappao, transition-pointtesto
COMMENTS: 23 Apr 93 - Dave MacPherson
TASK: Level 4 interrupt

void getLvelocity(uv, uw)
double *uv, *uw;4

PATHELEMENT path;

switch (status)
f
case SSTOP:
length.s = 0.0;
velc = 0.0;
if (wait-cnt == 0)
I(*uv) = vel-c;
(*uw) - 0.0;
read-insto;
} else
wait cnt--;
break;/,
case SPWAY:
(* uv) = vel-c = update-velO;
if (sonar(4) = -1);
kappa = 0.0;
else if (sonar(4) > 50.0)
kappa = -0.01;
else if (sonar(4) <= 50.0)
kappa - 0.01;
(* uw) = kappa * vel-c;
break;*/
case SLINE:

264

(*uv) =vel-c = update-.yelO;/* commanded velocity ~
kappa =update-kappao;

(*uw) =kappa * vel-c;/* commanded omega ~

if (getjinst != putjnst)
I
if (transition-point..jest(current-image, geu~nst->tp))
I
--no_o...paths;
currentsroboLpath.pc = get inst->c;
currentLrobot...path.type = getLinst->class;

readjinsto;
)*end if *

if (skipjflag-control)
I
currenLrobot-path.pc =get-inst->c;
read-insto;
skip-flag-control = 0;

break;

case SBLLNE:
(*uv) = vel-c = update...velO;/* commanded velocity ~
kappa = updatejcappao;
(*uw) = kappa * vel-c;/* commanded omega *

* if (no...o..paths > 1) if
* (transition-poin~test(current image, path,
* get -nst->tp)) I --no-o-..paths;
* current-robot..path.pc = getjnst->c; read-insto;

if (vel-c < 0.5 && EUDIS(currentlimage.x, currentjimage.y,
current-robot-path.pc.x, current~robot-path.pc.y) < 1.0)

status = SSTOP;
read -nsto;

if (skipjflag-control)
I
current-robot~path.pc =get-inst->c;
read.-insto;
skipjflag-control = 0;

break;

case SCONFIG:

(*uv) = vel_c = update-velO);/* commanded velocity *

265

/*
* if (firs~time) I first_time = FALSE;

* } else call update_cubicimage to advance image
*/

current-image = update-cubicimage(vehicle, current_robotLpath);

S/1*
* Now update the global kappa that is used to
* control the robot's actual motion

: */

kappa = update cubic-kappa(vehicle, current-image);

(*uw) = kappa * vel-c;/* commanded omega */

i /*
"* There are many tests to see if the end of the
"* spiral has been reached, easiest is to compare
"* image-s to precimputed length of spiral, stored in
"* pp.xO
*/

if (image-s > currentrobotLpath.pp.xO)
I
readjinsto;
}/* end if
break;

case SPARABOLA:
break;
case RMOVE:
(*uv) = 0.0;
(*uw) = rvel-c = get-rotational-vel();
break;
case SERROR:
velc = update vel0;
if (velc <= VEL l)(
vel_c = 0.0;
motoron = ON;
I
break;
default:
(*uv) = 0.0;
(*uw) = 0.0;
break;
)/* end switch */

266

} 1/* end get.velocityO */

FUNCTION: readleft-wheeLencoder
PARAMETERS: none
PURPOSE: Determines the distance moved by the left
wheel by reading the optical encoder. Filters the
data using a recursive digital filter.
RETURNS: dist_ (The distance moved by the right wheel
in the current vehicle control cycle).
CALLED BY: control()
CALLS: none
COMMENTS: 20 Apr 93 - Dave MacPherson
TASK: Level 4 interrupt

double readleftwheeLencoder)

double a = 0.7;/* filter constant */
double distj;

if (my_direction > 0.0)
dist_ = mv_direction * dlenc * ENC2DIST;
else
dist_1 = my_direction * drenc * ENC2DIST;

/* Recursive Digital Filter */
dist_ = a * dist_1 + (1 - a) * lastdistL;
last_dist_ = dist-l;
return distl;
/* end readleft-wheelencoder */

FUNCTION: read-rightwheelencoder
PARAMETERS: none
PURPOSE: Determines the distance moved by the right
wheel by reading the optical encoder. Filters the
data using a recursive digital filter.
RETURNS: disLr (The distance moved by the right wheel
in the current vehicle control cycle).
CALLED BY: control()
CALLS: none
COMMENTS: 20 Apr 93 - Dave MacPherson
TASK: Level 4 interrupt

double readright.wheeLencodero(
double a = 0.7;/* filter constant *1
double distr,

if (my_direction > 0.0)

267

dist_r = my_direction * drenc * ENC2DIST;
else
dist_r = mydirection * dlenc * ENC2DIST;

/* Recursive Digital Filter */

distr = a * disLr + (1 - a) * last_disLr,
last_dist_r = disLr,
return dist_r;
/* read-rightwheeLencoder */

FUNCTION: next
PARAMETERS: q, deltas, delta_theta
PURPOSE: Updates the robot's current configuration based upon
the input values of delta_s and deltatheta.
RETURNS: *q (a pointer to a configuration).
CALLED BY: control()
CALLS: none
COMMENTS: 19 Apr 93 - Dave MacPherson
TASK: Level 4 interrupt

void next(q, delta~s, delta~theta)
CONFIGURATION *q;
double delta-s, deltatheta;

double sinc;
double dtheta2 = delta.theta / 2.0;

sinc = delta.s;
if (deltatheta)
sinc *= sin(dtheta2) / dtheta2;

/* Update The vehicle's odometry estimate */
q->x += sinc * cos(q->t + dtheta2);
q->y += sinc * sin(q->t + dtheta2);
q->t = q->t + deltatheta;
/* end next */

FUNCTION: pwmnlookup
PARAMETERS: vel (wheel velocity)
PURPOSE: Determines the estimated pwm ratio given
the desired wheel velocity as an input.
RETURNS: pwm value based upon empirically determined velocity

vs pwrn ratio curve.
CALLED BY: control()
CALLS: none
COMMENTS: 12 Jan 93 - Dave MacPherson

268

TASK: Level 4 interrupt

double pwm_lookup(vel)
double vel;I

double v = vel;
double pwm value;

v = fabs(vel);
if (v >= 0.0 && v < 20.0)
pwmffvalue = (0.5 * v + 13.0);
else if (v >= 20.0 && v < 30.0)
pwmrrvalue = (1.256 * (v - 20.0) + 23.0);
else if (v >= 30.0 && v < 40.0)
pwm .value = (2.413 * (v - 30.0) + 35.56);
else if (v >= 40.0 && v < 50.0)
pwmf.value = (1.651 * (v - 40.0) + 59.69);
else if (v >= 50.0 && v < 60.0)
pwm..value = (2.54 * (v - 50.0) + 76.2);
else if (v >= 60.0 && v < 65.0)
pwm.value = (5.08 * (v - 60.0) + 101.6);
else
r printfC'Error in pwm lookup function");

if (vel > 0.0)
return pwmr.value;
else if (vel < 0.0)
return -pwm.value;
else
return 0.0;
/* end pwmjlookup */

FUNCTION: storeloc_tracedata(

PARAMETERS: argl, arg2, arg3, arg4
PURPOSE: Records location trace data if enabled.
RETURNS: void
CALLED BY: control()
CALLS: none
COMMENTS: 22 Jan 93 - Dave MacPherson

void storeloc_trace_data(argl, arg2, arg3, arg4)
double argl, arg2, arg3, arg4;
{

if (lopr = 0)

if (scale_tr = 1)

*(indxloc+-I) = timetr,
} else

269

*(indxloc++) = vehicle.x;

if ((pauternjr & 2) != 0)

*(indxloc++) = vebicle.y;

if ((.pattem-tr & 2) != 0)

*(iiidxloc++) = arehIcl;

if ((~patternjr & 4) != 0)

*(indxloc++) = argi;

if ((~pattem-tr & 82) != 0)

I

*(indxloc.++) = arg4;

trace-cnt++;
lop..jr = smpltr,

Ioptr--;
time-tr +=0.0O1;
/* end store-loc-trace...data *

/* control.c *

270

1,

immediate.c
Rev 0 May 15, 1993 by Dave MacPherson

****** ************ ** * * ************** **** ******** *
,/

/********** INCLUDED FUNCTIONS *

/***** IMMEDIATE FUNCTIONS *stop00)

getrob(p)
geLrobO(p)
speedO(s);
r..speed0(s);
accO(a);
r_acc0(a);
skipO;
getlineo;
halt()
resumeo
sync0
path_lengtho;
flusho;

#include "mml.h"

#include "spatial.h"

/,

IMMEDIATE FUNCTIONS

,/

FUNCTION: path-length (immediate)
PARAMETERS: none
PURPOSE: get the total path length traveled by the robot
RETURNS: double
CALLED BY: user
CALLS: none
COMMENTS: 7 Jan 93 - Dave MacPherson
TASK: Level 0

double path-lengtho

271

double arg;{
racc = arg.; /* set the robot's translational acceleration */

}/* end raccO */

NAME: getline0
ARGUMENTS: none
FUNCTION : return a pointer to the path element the robot
is currently tracking.

CONFIGURATION getline0oI
return get-inst->c;

}/* end get_line0 */

NAME: stopO
ARGUMENTS : none
FUNCTION : stops the robot and flushes the instruction buffer.

void stop00{
vel.g = 0.0; /* set robot goal velocity to zero */

/* flush instruction buffer here */
headinst = put-inst = getinst = &inst_buf[O];
instcnt = 0;
tailinst = &inst buf[INSTMAX- I];
headlen = putilen = getlen = &length-buf[0];
taillen = &length-buf[INST_-MAX- I];

seq_status = SSTOP;
r._printf(" M2 Entered the stop0() function.");

)/* end stopO */

FUNCTION: flush
PARAMETERS: none
PURPOSE: discards all buffer commands after currentrobotpath

RETURNS: void
CALLED BY: user
CALLS: imaskoffo?
COMMENTS: 11 Jun 93 - Bob Fish
TASK: Level 0

272

void flush()
I
int i;

/* First step is to reset put-inst to be the same as getinst.
That way, the next motion command loaded on the buffer will be
stored after the path currently being tracked.
Second step is to reset global last-robot-pathelement to be the
current_robot.path. That way, when a new motion command is issued,
the transition point calculations will be between the current path and
the new path. no.o-paths is set to 1, because now there is only one
path, the current one. */

i imaskoffo;

put..inst - geLinst;
no_o.paths = l;
lastrobot.pathelement = currentuobotpath;

r=.printf ("\nLRP.type=> ");
r..printfi(lasLroboLpath element.type);
r-printf (C•nLRP.x=> ");
rtprintfr(lastrobotLpath element.pc.x, 2);
r._printf (" y=> ");
r..printfr(lastroboLpathelement.pc.y, 2);
r-printf (" th=> ");
r..printfr(last-robot~path element.pc.t, 2);

imaskon(i);

return;
)/* end flush */

size constO(size)
double size;
I
double kk;

DISTCONSTANT = size;
kk = 1.0 / DIST_CONSTANT;
aa = 3.0 *kk;
bb = aa *kk;
cc = bb * kk / 3.0;
}/* end sizeconstO */
/,

NAME: get robO
ARGUMENTS: A pointer to a CONFIGURATION

273

FUNCTION: return current odometry estimate from the controller.

CONFIGURATION *get~robO(p)
CONFIGURATION *p;{

int i;

i = imaskoffO;
p->x = vehicle.x;
p->y = vehicle.y;
p->t = vehicle.t;
imaskon(i);
return (p);

}/* end get-robO */

/*

NAME: setrob
FUNCTION: Set postures of cur.
*/

void setrobO(p)
CONFIGURATION *p;(

int i;
i = imaskoffo;
set._P.x = p->x;
set_P.y = p->y;
set_P.t = p->t;
setting-configuration = YES;
imaskon(i);

}/* end set_rob */

double haltLspeed = NEGATIVESPEED;
/*

NAME: halt
This function brings the robot to a smooth stop and places it
in a dormant state. The robot will not respond to any c, her
commands until resume() is called. All motion parameters are
restored by resume() to their values prior to the call to halto.
*/

void halto4
if (halt-speed > 0.0)
return;
haltspeed = vel-g;

274

velg - 0.0;

}/* end halt */

1,

NAME: resume
This function resets the robot's motion which was suspended
by the call to haltO to the last user values.*************** ******** ************ **** ********* ** ***
*/
resumeG4

if (halLspeed < 0.0)
return;
veLg = halLspeed;
halLspeed = NEGATIVE_SPEED;

}/* resume() */

/* end immediate.c */

275

sequential.c
Rev 0 May 15, 1993 by Dave MacPherson

*/

********* INCLUDED FUNCTIONS *********/

/******** SEQUENTIAL FUNCTIONS *********
speed(argj
acc(arg_)
rotate(thetasp)
r speed(argj
r_acc(arg_)
markmotionO
wait_motionO
config(arg.)
line(arg_)
bline(arg_.)
fline(arg_)
switch dir0
set-rob(pst)
size-const(arg_)

#include " * ***.h"
#include "spatial.h"

void seterror(code)
int code;
{
PATHELEMENT path;

path.type = ERROR;
path.mode = code;

setjinst(path);
}/* end set.-errorO */

FUNCTION: sizeconst sequential
PARAMETERS: size
PURPOSE: Sets the parameter DISTCONSTANT in a sequential
fashion. This determines how sharply Yamabico turns.
RETURNS: void
CALLED BY: user
CALLS: set-insto;

276

COMMENTS: 7 Jan 93 - Dave MacPherson
**** DOES NOT LOAD INST BUFFER AS ADVERTIZED********

TASK: Level 0

sizeconst(size)
double size;
I

PATHELEMENT path;
double kk;

DIST-CONSTANT = size;
kk = 1.0/ DISTCONSTANT;
aa = 3.0 *kk;
bb aa *kk;
cc = bb * kk / 3.0;

path.type = SIZE;
path.pc.x = size;

setinst(path);
}/* end sizeconstO */

FUNCTION: speed (sequential)
PARAMETERS: arg_
PURPOSE: to set robot's speed
RETURNS: void
CALLED BY: user
CALLS: set_inst
COMMENTS: 7 Jan 93 - Dave MacPherson
TASK: Level 0

speed(arg_)
double arg_;

PATHELEMENT path;

path.type = SPEED;
path.pc.x = arg_;

setinst(path);
}/* end speed() *o

FUNCTION: acc (sequential)
PARAMETERS: arg_
PURPOSE: to set robot's acceleration for speed changes
and stopping.
RETURNS: void
CALLED BY: user

277

CALLS: setinst
COMMENTS: 7 Jan 93 - Dave MacPherson
TASK: Level 0

void acc(arg.)
double arg.;{

PATHELEMENT path;

path.type = ACC;
path.pc.x = arg_;

set-inst(path);
]/* end acc(*/

FUNCTION: rotate (sequential)
PARAMETERS: arg_
PURPOSE: Rotate the robot by thetasp radians.
Positive is counterclockwise and negative is
clockwise.
RETURNS: void
CALLED BY: user
CALLS: setinst
COMMENTS: 24 March 93 - Dave MacPherson
TASK: Level 0

void rotate(thetasp)
double thetasp;
I

PATH_ELEMENT path;

if (seq.status != SSTOP && seq-status != SBLINE)
/* robot must be stopped to shift to rotate */I
set-error(ECODE2);
return;
I

/*thetasp = d2r(thetasp); 04/15/92 */
if (fabs(thetasp) < 0.0001)return;
path.type = ROTATE;
path.pc.x = thetasp;

set-inst(path);

last_robot~path.element.pc.t += thetasp;
lastrobot-path-element.type = SETROB;

nomnp->t += thetasp;
seq-status = SSTOP;

278

/* end rotate() */

FUNCTION: rspeed (sequential)
PARAMETERS: arg_
PURPOSE: to set robot's angular speed to be used
when the robot performs a stationary rotation. The parameter
for rotational speed is in radians/second.
RETURNS: void
CALLED BY: user
CALLS: set_inst
COMMENTS: 8 Jan 93 - Dave MacPherson
TASK: Level 0

void r-speed(argj
double arg_;{

PATHELEMENT path;

path.type = RSPEED;
path.pc.x = arg.;

set_inst(path);
}/* end rspeed0 */

FUNCTION: racc (sequential)
PARAMETERS: arg_
PURPOSE: to set robot's angular acceleration to be used
wheel the robot performs a stationary rotation.
RETURNS: void
CALLED BY: user
CALLS: setLinst
COMMENTS: 8 Jan 93 - Dave MacPherson
TASK: Level 0

void r..acc(arg..)
double arg_;{

PAThELEMENT path;

path.type = RACC;
path.pc.x = arg_;

setinst(path);
/* end r_accO*/

/* designate syncronization to yamabico.*/
/* Jan. 23 89*/

279

markmotionO{
msyn.q = 1;}

/* execute syncronization*/
/* Jan. 23 89*/

waitmotionOI
wsynq = 1;
while(wsyn-q!=0);}

FUNCTION: skip()
PARAMETERS: none
PURPOSE: Causes the robot to skip the next sequential motion
command.
RETURNS: void
CALLED BY: usero
CALLS: none
GLOBALS: skip flag
COMMENTS: 26 Feb 93 - Dave MacPherson

void skipO
I
skip flag = TRUE;

FUNCTION : conflg(arg_)
PARAMETERS: configuration arg_
PURPOSE: Implements users command to move to a
specified configuration using
one or two cubic spirals.

RETURNS: void
CALLED BY: user.c
CALLS: solve (located in file cubic.c)
GLOBALS: seq status - set;
COMMENTS: 8 Feb 93 -- Bob Fish
TASK: level 0, foreground job.

config(arg)
CONFIGURATION *arg;

2

280

CONFIGURATION end-spiral;
CONFIGURATION start-spiral;
int res; /* flag to indicate success or failure of function solve */

if (seq-status - SLINE){
set-error(ECODE3);
r-printf("Cn% LINE to CONFIG Configuration Combination not Allowed.\,'n");
/* exit(0); */I
else if (seq-status = SPARABOLA)
I
set_enror(ECODE3);
r-printf("'NnPARABOLA to CONFIG Configuration Combination not Al-

lowed.Nnrn");}
else if (seq-status =- SFLINE){
seLerror(ECODE3);
r-printf('"vn"LINE to CONFIG Configuration Combination not Allowed.\nn");}
else
I

end-spiral = (*arg);

/* Values of start_spiral are obtained from the last motion instruction
in the buffer:
NOTE NOTE NOTE: this requires that the last motion instruction
be a legal precedent for a cubic spiral */

starLspiral.x = lastrobot.path-element.pc.x;
start.spiral.y = lasLroboLpath...element.pc.y;
start-spiral.t = last_roboLpath.element.pc.t;
startspiral.k - 0.0;

/* Call solve with start-spiral and end-spiral as beginning and end of

the cubic spiral(s). */

res = solve(starLspiral, end_spiral);

/* 'res' can be used to see if the cubic spiral was successful. res may not
be useful for anything else that I can see, unless an error develops */

seqstatus = SCONFIG;

/* Update lastroboLpathelement to latest path */
lasLrobot-path element.pc = end_spiral;
lasLroboLpath-element.type = SCONFIG;

281

return;

1/*' end config()*

NAME: line configuration
ARGUMENTS :configuration of path the robot must follow
FUNCTION : to move robot to a specified path

line(arg-)
CONFIGURATION *arg;-

PAINELEMENT path;

path.type = LINE;
path.pc = (* argi);
if (no...o..paths ==0 11 skipjlag)

r...printf("~nFirst path, no transition point");
last-robot-path...element.pc = path.pc;
last~robot..path...elemnent.type = SLINE;
no..o~paths = 1;

else

path.tp=
get-transition.point(lasLrobotLpath-.element, path);

rprintf("~nfransition point to line~n x=
rprintfr(path.tp.xO, 2);
rprintf(" y =")
r...printfr(path.tp.yO, 2);
++nQo.....paths;
lasLrobot-path-.element.pc = (4'arg..J;
last~robot~path~elemlent.tlype = SLINE;

set-inst(path);
seq~status = SLINE;

I/* end lineo *

282

NAME: backward line configuration
ARGUMENTS : configuration of path the robot must follow
FUNCTION : to move robot to a specified path

*/

void bline(arg_)
CONFIGURATION *arg.;4

PATH_ELEMENT path;

path.type = BLINE;
path.pc = (* arg.);
if (no.o.paths =- 0 11 skipflag)4
lastrobot.path-element.pc = path.pc;
lastrobot.path-element.type = SBLINE;
noo_paths = 1;I
else4
path.tp =
gettransition-point(lastrobot.path-element, path);

r-printf('%nTransition point to bline\n x -
r..printfr(path.tp.xO, 2);
r_printf(" y =
r-pnntfr(path.tp.y0, 2);

++no-o-paths;
lastrobot_path-element.pc = (*arg_);
lastrobot.path element.type = SBLINE;i
/* set the robot's desired path to the value of arg_ */

setinst(path);
seq-status = SBLINE;

}/* end blineO */

FUNCTION: fline (arg-)
PARAMETERS: arg_
PURPOSE: To cause the robot to follow a straight line starting at a specific point.
RETURNS: void
CALLED BY: usero
CALLS: config, line
GLOBALS: none
COMMENTS: 24 Feb 93 - Bob Fish. Since this is a compound command, printouts
will indicate a cubic spiral followed by a line.

283

fline(arg_)
CONFIGURATION *arg_;
I

if (seq-status = SLINE)
I
seLerror(ECODE3);
r_prntfC'n•\nLINE to FLINE Configuration Combination not Allowed.\nin');I
else if (seqstatus = SPARABOLA)
I
seterror(ECODE3);
r-printf('%nnPARABOLA to FLINE Configuration Combination not Al-

lowed.\j•n");
}
else if (seqstatus = SFLINE)
I
seLerror(ECODE3);
r printfC'"n\nFLINE to FLINE Configuration Combination not Allowed.\nkn");}
else
I

/* This is implemented as a compound command. First call config to
generate a cubic spiral path to the specified point configuration,
then call line to track the line that goes through that point,
with theta and kappa as specified.
NOTE: This precludes some path reporting capability, since from this
point on, the concept of fine is lost,
it is replaced by config and line. */

config(arg_);
line(arg_);

I
I

/*

NAME : parabola point directrix
ARGUMENTS : configuration of path the robot must follow
FUNCTION: to move robot to a specified path

parabola(focus, directrix)
POINT *focus;
CONFIGURATION *directrix;4

PATHELEMENT path;

if (seqstatus = SPARABOLA)

284

(
seterror(ECODE3);
rprintf("%NanLINE to PARABOLA Configuration Combination not Al-

lowed.Niftn");
)
else if (seq.status = SCONFIG)4
set_error(ECODE3);
rLprintf('Na\nCONFIG to PARABOLA Configuration Combination not Al-

lowed.\nxn");I
else4
path.type = PARABOLA;
path.pc = (* directrix);
path.pp = (* focus);

setinst(path);

/* set the robot's desired path to the value of arg_ */
seq status = SPARABOLA;I

FUNCTION: move-hail_followerO
PARAMETERS: arg_ (distance to walls)
PURPOSE: Causes the robot to follow a hallway by
perform odometry corrections in the background.
RETURNS: void
CALLED BY: usero
CALLS: set_instO;
GLOBALS: none
COMMENTS: 8 May 93 - Dave MacPherson

void movehail_follower(arg)
double arg_;4

PATHELEMENT path;

r-printf("Entered the move_halljfollower function");
set.inst(SPWAY, arg_);
seq.status = SPWAY;

}/* end movehall follower */

285

NAME : switchdir
ARGUMENTS: none
FUNCTION : to reverse the heading direction of the robot

switch_dir(

PATHELEMENT path;

if (seq.status != SSTOP)
I
seterror(ECODE2);
return;

path.type = SWITCH;
setinst(path);
nomr.p->t = norm(nomp->t + PI);

)/* end switch_dirO */
/*

NAME : synco
ARGUMENTS: none
FUNCTION : syncronizing to locomotion data update

sync-loc flag is modified in _Jh.loc routine
* ******** **** * *** ****************** *** **** ** **************** *******
*/
sync0

syncjoc=0;
while (sync-loc==O);
return;

/*

NAME : set_rob
ARGUMENTS : Configuration to set robot's location to.
FUNCTION : to add set robot sequence to queue
,/
set rob(pst)
CONFIGURATION *pst;I

PATHELEMENT path;

if(seq-status!=SSTOP)
I
seLerror(ECODE2);
return;

286

nom..p->x = pst->x;
nom...p->y = pst->y;
nom...p->t = pst->t;
nont..p->k = pst->k;
length~porni = 0.0;

path.type SETROB;
path.pc = (*pst);
set-inst(path);

last~robot-path-element~pc = *pst);
last~robot..path-element.type =SET-..ROB;

/* end sequential.c *

287

1,

track.c
last update April 23, 1993 by Dave MacPherson

,/

#include "mml.h"

extern int transition_pointLtesto;

FUNCTION: readrotate
PARAMETERS: none
PURPOSE: Reads a rotate instruction. Starts the robot
rotating. The vehicle must be in the stop state in order
top start rotating.
RETURNS: void
CALLED BY:
CALLS: initLrotate0
COMMENTS: 27 December 92 - Dave MacPherson

void readrotate0(
drvel = racc * LNTVL;/* rotation control */
th.g = vehicle.t + get~inst->c.x;
goal-pst.t =thg;
goal-pst.x = vehicle.x;
goaLpst.y = vehicle.y;
if (thg = vehicle.t)I
change-status(SSTOP);
return;}
if (thg > vehicle.t)
raccdrc = POSITIVE;
else
raccdrc = NEGATIVE;
change-status(RMOVE);

}/* end readjrotate0 */

FUNCTION: cface20
PARAMETERS: none
PURPOSE: Reverses the current robot direction of travel.
RETURNS: void
CALLED BY:
CALLS: norm
COMMENTS: 27 December 92 - Dave MacPherson

288

void cface20{
int i;

i = imaskoffO;

curt = norm(curj + PI);
vehicle.t = norm(vehicle.t + PI);
my_direction = - mvdirection;

imaskon(i);
return;

FUNCTION: limit
PARAMETERS: double u
PURPOSE: limit functon for delta~d input=(deltaAd)
output=(limited deltad).
RETURNS: void
CALLED BY: update-kappa
CALLS: none
COMMENTS: 27 December 92 - Dave MacPherson

double limit(u)
double u;
I
if(u > 2.0 * DISTCONSTANT) retum(2.0*DISTCONSTANT);
if (u < -2.0*DIST_CONSTANT) return(-2.0*DISTCONSTANT);
return(u);
}/* end limit */

FUNCTION: update-cubic.kappa
PARAMETERS: vehicle, currentimage
PURPOSE: Main steering function for MML when using cubic spirals,
uses a different ystar than other paths.

RETURNS: void
CALLED BY: stepper
CALLS: limito,
COMMENTS: 6 Apr 93 - Bob Fish this is different than update.kappa0
because Dr. K says ystar is different for cubic spirals than
for lines and circles.

double updatecubic_kappa(config, image)
CONFIGURATION config;
CONFIGURATION image;

2

289

register double dkappalI;
double cubic..jstar; /* ystar is different for cubic spiral than for lines&circles *

cubic..ystar = -(config.x-image.x)*sin(image.t) + (config.y-image.y)*cos(image.t);

dkappal = -aa * (config.k - irnage.k)
-bb *(norm(config.t - iniage.t))
-cc * irnit(cubic~ystar);

return config.k + dkappal * INTVL * vel-c;

)/"' end updatespubic~kappa *

FUNCTION: update~kappa
PARAMETERS: none
PURPOSE: Main steering function for MML.
RETURNS: void
CALLED BY: stepper
CALLS: lintito, updatejimage()
COMMENTS: 15 Feb 93 - Dave MacPherson

double update~kappa()

reitrdube4lad
register double delappl;

double update delta_-dO;

current~image = update~image(vehicle, currentLrobotpath.pc);

delta-d = update..Aelta..A(vehicle, current~roboLpath.pc);

dkappalI = ... a * (vehicle.k - currentjmage.k)
-bb *(norm(vehicle.t - currentjmage.t))
-cc * imnit(delta...d);

return vehicle.k + dkappal * delta~dist;
)/* update...kappa *

FUNCTION: update deltaL_dO
PARAMETERS: config, path
PURPOSE: calculates the ystar for update...kappa()
RETURNS: double
CALLED BY: updateýkappa
CALLS: sin, cos
COMMENTS: 15 Feb 93 - Dave MacPherson

double update-.delta.A(config, path)
CONFIGURATION config;

290

CONFIGURATION path;
I

double delta.d;

delta d = (-(config.x - path.x) (path.k *
(config.x - path.x) + 2 * sin(path.t)) -
(config.y - path.y) * (path.k *
(config.y - path.y) - 2 * cos(path.t))) /
(1 + sqrt((path.k *(config.x - path.x)+
sin(path.t))*
(path.k *(config.x - path.x)+

sin(path.t))
+ ((path.k * (config.y - path.y) -

cos(path.t))*
(path.k * (config.y - path.y) -

cos(path.t)))));

return delta.d;
)/* end update-delta_do */

FUNCTION: transitionpoinLtest
PARAMETERS: image, tp
PURPOSE: Tests to determine if the robot's image
is at or passed the transition point

RETURNS: int (1 = at or passed the transition point, 0 = otherwise)
CALLED BY:
CALLS:
COMMENTS: 15 Feb 93 - Dave MacPherson
27 May 93 - Revision 1 Bob Fish, modified to check for already
past the transition point.

int transition pointjest(image, tp)
CONFIGURATION image;
POINT tp;{

/* Note: this needs to be modified, so that distance to the
transition point is calculated using path distance vice
EUDIS. */

double currentLdist;

current_dist = EUDIS(image.x, image.y, tp.xO, tp.yO);

if (fabs(current robot_path.pc.k) < ZERA)

2

291

/* current path is a straight line, check to see if close to or
past the transition pt. *

if (currentdist < 1.0){
Lam_here = 15;
return 1;

else if (currentdist > lastdist+.05)
4
i_am_here = 19;

return 1;)
else4

Lamhere = 13;
lastdist = current_dist;
return 0;

}/* end if */
}

else /* path is a circle, use the transition point as the only test */

{
if (current-dist < 1.0)
return 1;
else
return 0;

) /* end if */

}/* end transition point test */

1,

detect end motion

then check next instruction

,/
endofmotionOI

if ((msyn.m!=O) && (wsynxq!=O)){
msyn_m = 0;
wsyn.q = 0;

292

)i
I!

set length-stop

,/
set_lengthstop(class)
int class;
I
if(put len==geLlen)length~stop=-NFIN'IE;
else
I
length-stop=*getlen;
if(class==STOP)4

ff(++getlen>tailJen)geLlen=head-len;I
I

I

FUNCTION: disp-error
PARAMETERS: code
PURPOSE: Reports locomotion errors.
RETURNS: void
CALLED BY:
CALLS:
COMMENTS: 27 December 92 - Dave MacPherson

void disp.error(code)
int code;{

switch (code)
I
case ECODEO:
r _printf(C'n postures too close ");
break;

s'"e ECODEl:
r.printf('%n bad cubic spiral specification ");
break;
case ECODE2:
ýprintf("\n SSTOP function detected in moving state ");

break;
default:
r-printf('mn undefined error code detected ");

2

293

FUNCTION: change.status
PARAMETERS: new_status
PURPOSE: Reports new locomotion status when the status changes.
RETURNS: void
CALLED BY:
CALLS:
COMMENTS: 27 December 92 - Dave MacPherson

void change-status(new-status)
int new-status;4
status = newstatus;
if (status =- SSTOP) wait-cnt = 100;

/*changed wait_cnt from 400 to 100 31 May 1992*/

#ifdef SIM
switch (status)(
case SSTOP:
r_.printf("\nSSTOP'n");
break;
case SLINE:
r-printf('nSLINEn");
break;
case SBLINE:
r._printf("\nSBLINEn");
break;
case SFLINE:
rprintf("\nSFLINE n");
break;
case SCONFIG:
rj_printf("\nSCONFIGn");
break;
case RMOVE:
r-printf('"•dROVEW');
break;
case SERROR:
rLprintf("\nSERROR\n");
break;
default:
break;I

#endif
) /* end change-status */
/* end track.c */

294

/.

velocity.c
last update May 24, 1993 by Dave MacPherson

#include "mml.h"

/

FUNCTION: updateyelo
PARAMETERS: none
PURPOSE: Determines the current robot translational velocity.
RETURNS: double
CALLED BY: control()
CALLS: resLoLpath0
COMMENTS: 24 May 93 - Dave MacPherson
TASK: Level 4

double update_vel()4
double vel.gg; /* temporary goal velocity */
double rest_ofpathO;

dvel = tacc * INTVL;

if (status =- SBLINE &&
2.0 * tacc * rest-ofpath(current robot-path,current image)

<= veLc * velc)
I
vel_c = max2(vel_c - dvel, 0.0);}
else
f
velgg = min2(velg, WHEEL_MAX / (1 + TREAD /2 * fabs(kappa)));
if (velgg >= veLc)
vel_c = min2(velc + dvel, vel_.gg);
else
vel_c = max2(velc - dvel, velgg);}

deltadist = INTVL * vel_c;
return velc;

}/* end update..el0 */

FUNCTION: restoLfpath0
PARAMETERS: path, image
PURPOSE: Determines the distance remaining on the

295

cunrent_robot path.
RETURNS: double
CALLED BY: update.vel()
CALLS: none
COMMENTS: 24 May 93 - Dave MacPherson
TASK: Level 4

double restof.path(path, image)
PATHELEMENT path;
CONFIGURATION image;(
/,

switch(status)4
case BLINE:,/
return ((path.pc.x - image.x)*cos(image.t) +

(path.pc.y - image.y)*sin(image.t));/,
break;
case CUBIC:
break;I

,/
I /* end resLofipath */

FUNCTION: get-rotationalvel0
PARAMETERS: none
PURPOSE: Determines the required rotational robot
velocity when the robot is rotating.
RETURNS: rvel_c
CALLED BY:
CALLS: min20, max2()
COMMENTS: 22 Apr 93 - Dave MacPherson

double get-rotationalvel()I
if (2.0 * racc * fabs(thdg - vehicle.t) > rvel-c * rveLc)

if (raccdrc == POSITIVE) /* CCW rotation */
rvel_c = min2(rveLc + drvel, rvel);
else /* clockwise rotation */
rvelc = max2(rveLc - drvel, -rvel);I
else /* robot rotational deceleration */
if (raccdrc -- POSITIVE)
I
if (vehicle.t < th..g)
rvelc = max2(rvel-c - drvel, 0.01);

296

else
I
rvel-c = 0.0;
change...status(SSTOP);
read-instO;

else /* CW rotation ~
I
if (vehicle.t > th-g)
rvel_c = rniin2(rvel~c + drvci, -0.01);
else

rvel-c =0.0;
change...status(SSTOP);
read-insto;

return rveLc;
I/* end getjotational vel()*

/* end velocityxc*

297

THIS PAGE INTENTIONALLY LEFT BLANK

298

APPENDIX C. SONAR SOURCE CODE

P* sonar2.c */
/* ultrasonic rangefinder functions */
/* 21 July 92 - Modified to discard sonar returns greater than 4.0 meter

from the robot when building line segments - line 531 */
#include "mml.h"
#include "cartography.h"

#define prinLflex(x,y) y = putstr(" ", putstr(rtoae((double) (x), tmpstr, 4), y))

#define nlflex(x) x = putstr("'S", x)

/*declaration of functions and return values*/

extern double sonaro;
extern void enablesonar0;
extern void disablesonar0;
extern double wait_sonarO;
extern posit global 0;
extern void enable_linear.fitting0;
extern void disable_linear-fittingO;
extern void enable_datajloggingo;
extern void disable_datajoggingo;
extern void serve_sonarO;
extern LINESEG *getsegmento;
extern LINESEG *geLcurrent_segmento;
extern void setparameters0;
extern void enable_interrupLoperationo;
extern void disableinterrupt-operationO;
extern void calculate-globalo;
extern void linearfittingO;
extern void start-segment0;
extern void addto_lineG;
extern LINESEG *endsegment(;
extern void build_list0;
extern void logdatao;
extern void setloginterval0;
extern void waititiln0;
extern void xfer_raw_to-host0;
extern void xferglobal-to.hosto;
extern void xfer._segment to_hostO;
extern void xferworldtojhost0;
extern void host.xfer0;
extern void finish-segmento;

299

/* Procedure: sonar(n)/*
/* Description: returns the distance (in centimeters) sensed by the
/* n_th ultrasonic sensor. If no echo is received, then a -1 is
/* returned. If the distance is less than 10 cm, then a 0 is
/* returned./*

double sonar(n)
int n;{

return sonar_table[n].d;)

/*
/* Procedure: enablesonar(n)/*
/* Description: enables the sonar group that contains sonar n, which
/* causes all the sonars in that group to echo-range and write data
/* to the data registers on the sonar control board. Marks the n'th
/* position of the enabledsonars array to track which sonars are
/* enabled./*

void enablesonar(n)
int n;
{

int i;

i = imaskoffO;
enabledsonars[n] = 1;
switch (n)
I
case 0:
case 2:
case 5:
case 7:
enabled = enabled I OxOI;
break;
case 1:
case 3:
case 4:
case 6:
enabled = enabled I 0x02;
break;
case 8:

300

case 9:
case 10:
case 11:
enabled = enabled I Ox04;
break;
case 12:
case 13:
case 14:
case 15:
enabled = enabled I 0x08;
break;I
*command-ptr = enabled;
imaskon(i);

/*
/* Procedure: disable-sonar(n)/*
/* Description: removes the sonar n from the enabled-sonars list. If
/* sonar n is the only enabled sonar from it's group, then the
/* group is disabled as well and will stop echo ranging. This has
/* benefit of shortening the ping interval for groups that remain
/* enabled./,

void disable-sonar(n)
int n;(

int i, c;
char mask;

i = imaskoffO;
enabledsonars[n] =0;
switch (n){
case 0:
case 2:
case 5:
case 7:
c = enabledsonars[O] + enabledsonars[2] +
enabled-sonars[5] + enabled-sonars[7];
if (c =-0)
enabled = enabled & Oxfe;
break;
case 1:
case 3:
case 4:
case 6:

301

c = enabled_sonars[1] + enabled_sonars[31 +
enabledsonars[4] + enabled_sonars[6];
if (c == 0)
enabled = enabled & Oxfd;
break;
case 8:
case 9:
case 10:
case 11:
c = enabled_sonars[8] + enabled_sonars[9] +
enabled_sonars[lO] + enabledsonars[1 1];
if (c == 0)
enabled = enabled & Oxfb;
break;
case 12:
case 13:
case 14:
case 15:
c = enabled_sonars[12] + enabled_sonars[13] +
enabledsonars[14] + enabled_sonars[15];
if (c == 0)
enabled = enabled & Oxf7;
break;

*commandptr = enabled;
imaskon(i);

/* Procedure: wait_sonar(n)/,
/* Description: waits in a loop until new data is available for
/* sonar n.
/,
/** ************

double waitsonar(n)
int n;{

int a = 0;

return sonar_table[n].d;

/*
/* Procedure: global(n)
/0

302

/* Description: returns a structure of type posit containing the global
/* x and y coordinates of the position of the last sonar return.1,

posit global (n)
int n;{

posit answer,

if (sonarjtable[r].global == 0)
calculateglobal(n);
answer.gx = sonarjtable[n].gx;
answer.gy = sonarjtable[n].gy;
answer.psi = sonar_table[n].t + sonar_table[n].axis;
return answer,

/* Procedure: enablelinear_fitting(n)/*
/* Description: causes the background system to gather data points
/* from sonar n and form them into line segments as governed by
/* the linear fitting algorithm./*

,*****

void enablelinear_fitting(n)
int n;
{

sonarjtable[n].fitting = 1;
sonar-table[n].global = 1;I

/,
/* Procedure: disable_linear_fitting(n)/*
/* Description: causes background system to cease forming line
/* segments for sonar n.
/* Will also disable the calculation of global coordinates for
/* that sonar if data logging of global data is not enabled./*

void disablelinear_fitting(n)
int n;
(

sonar..table[n].fitting = 0;
if (sonar-table[n].filetype[l] =- 0)

303

sonar_table[n].global = 0;

/* Procedure: enabledataIogging(n,filetype~filenumber)/,
/* Description: causes the background system to log data for sonar (n)
/* to a file (filenumber). The data to be logged is specified by an
/* integer flag (filetype). A value of 0 for filetype will cause raw
/* sonar data to be saved, I will save global x and y, and 2 will
/* save line segments. The filenumber may range between 0 and 3 for
/* each of the three types, providing up to 12 data files. Example:
/* enable-dataJogging(4,1,0);
/* will cause raw data from sonar #4 to be saved to file 0, while:
/* enable.datajogging(7,2,0);
/* will cause segments for sonar #7 to be saved to file 0./*

void enabledatalogging(n, fietype, filenumber)
int n, filetype, filenumber,{

if (filetype =- 1)
sonar_table[n].global = 1;

sonar_table[n].filetype[filetype] = 1;
sonar_table[n] .filenumber[filetype] = filenumber,

/*
/* Procedure: disabledatalogging(nfiletype)/*
/* Description: causes the background system to cease logging data of a
/* given filetype for a sonar n./*

void disable_datalogging(n, fietype)
int n, filetype;
{

if ((filetype - 1) && (sonar-table[n].fitting - 0))
sonar_table[n].global = 0;

sonar_table[n].filetype[filetype] = 0;

/* Procedure: serve._sonar(x,y,tovfldataldata2,data3,data4,group)

304

/,
/* Description: this procedure is the "central command" for the
/* control of all sonar related functions. It is linked with
/* the ihsonar routine and loads sonar data to the sonar-table
/* from there. It then examines the various control flags in the
/* sonartable to determine which activities the user wishes to
/* take place, and calls the appropriate functions. This procedure
/* is invoked approximately every thirty milliseconds by an
/* interrupt from the sonar control board./,

void servesonar(x, y, t, ovfl, data4, data3, data2, datal, group)
double x, y, t;
int ovfl, data4, data3, data2, datal, group;{

int i, n;
int data[4];
int ovflmask = 8;

data[O] = datal;
data[1] = data2;
data[2] = data3;
data[3] = data4;

for (i = 0; i < 4; i++, ovfl-mask /= 2)
{
n = group.array[group][i];/* n = sonar number */
if (ovfl_mask & ovfl)
sonar_table[n].d = - 1.0;
else if (data[i] < 100)
sonarjtable[n].d = 0.0;
else
sonarjtable[n].d = (double) data[i] / 10.0;
sonar.table[n].x = x;
sonar_table[n].y = y;
sonarjtable[n].t = t;
if (sonar..table[n].global == 1)
calculate.global(n);
if (sonar_table[hn.fitting - 1)
linearjfitting(n);
if (sonar_table[n].filetype[0] == 1)
log.data(n, 1, sonar_table[n].filenumber[0], 0);
if (sonartable[n].filetype[l] -= 1)
log._data(n, 2, sonartable[n].filenumber[l], 0);)
/* serve-sonarO */

I*
/* Procedure: get-segment(n)

305

/,
/* Description: returns a pointer to the oldest segment on the linked
/* list of segments for sonar n; i.e. the record at the head
/* of the linked list. It is destructive, thus subsequent calls
/* will return subsequent segments until the list is empty. This is
/* accomplished by first copying the contents of the head record
/* into a temporary record called segstruct and then freeing the
/* allocated memory for the head record. The pointer returned is
/* actually a pointer to this temporary storage. If geLsegment is
/* called on an empty list a null pointer is returned./,

LINE_SEG *geLsegment(n)
int n;(

LINE_SEG *ptr;
int index;

index = seg__istjhead[n];
if (index =-- -1)
ptr = NULL;
else{
ptr = &seg_.list[n] [index];
se&_listhead[n] = (index < 4) ? (index + 1): 0;)
return ptr,

/********************************* **************************************
/*
/* Procedure: getcurrent segment(n)/,
/* Description: returns a pointer to the segment currently under
/* construction if there is one, otherwise returns null pointer.
/* This is accomplished by calling end_segment, copying the data
/* into segstruct and then returning a pointer to segstruct. The
/* memory allocated by endcsegment is then freed./*

LINE_SEG *get current_segment(n)
int n;{

LINE_SEG *ptr,

ptr = endsegment(n);

return ptr,

3

, 306

/,
/* Procedure: set-parameters(cl,c2,c3)1*
/* Description: allows the user to adjust constants which control
/* the linear fitting algorithm. CI is a multiplier for standard
/* deviation and C2 is an absolute value; both are used to
/* determine if an individual data point is usable for the
/* algorithm. C3 is a value for ellipse thinness; it is used to
/* determine the end of a segment. Default values are set in main.c
/* to 3.0, 5.0, and 0.1 respectively./,

void set..parameters(cl, c2, c3)
double cl, c2, c3;{

Cl = cl;
C2 = c2;
C3 = c3;}

/* Procedure: enableinterruptoperationO/,
/* Description: places sonar control board in interrupt driven mode.
/,

void enable_interruptLoperationO[
*BIM_ptr = *BIMNptr I OxlO;}

/* Procedure: disableinterrupt.operationO1*
/* Description: stops interrupt generation by the sonar control
/* board. A flag is set in the status register when data is ready,
/* and it is the user's responsibility to poll the sonar system
/* for the flag.1,
/*************,************ •-**#**.**.************li~ i*i***ii*******ii******

void disableinterrupt-operation({
*BIM-ptr = *BIMU ptr & Oxef; 3

307

/,
/* Procedure: calculate_global(n)/,
/* Description: this procedure calculates the global x and y coordinates
/* for the range value and robot configuration in the sonar table.
/* The results are stored in the sonar table./,

void calculate-global(n)
int n;i

double Ix, ly, gt, range, phi, axis, offset;

gt = sonar-table[n].t;
range = sonarMtable[n].d;
phi = sonartable[n].phi;
axis = sonar-table[n].axis;
offset = sonarjtable[n].offset;

if (range - -1)
range = 9999;
Ix = sonar_table[n].x + (cos(gt + phi) * offset);/* global x position of
* sonar */

ly = sonartable[n].y + (sin(gt + phi) * offset);/* global y position of
* sonar */

sonartable[n].gx = Ix + (cos(gt + axis) * range);/* global x position of
* range */

sonar_table[n].gy = ly + (sin(gt + axis) * range);/* global y position of
* range */

/*
/* Procedure: linear fitting(n)/*
/* Revised by Y. Kanayama, 07-07-93/*
/* Description: this procedure controls the fitting of point data to straight
/* line segments. First it tests if the new coming point is not far from
/* the fitted line. If the test is passed, the point is added to test
/* if the thinnes test is passed. If it is passed, the addition is
/* finalized.
/* If any of the tests fail, the line segment is ended and a new one
/* started. The completed line segment is stored in a data structure
/* called segment, and segments are linked together in a linked list.

3*

308

void linear-fitting(n)
mnt n;

double x, y, nm)0, mlO, m~l, m20, ml , m02;
double alpha, r, sigma, delta;
LINE_SEG *fijished_segment,

if (sonarjtable[n].d < 9.3 11 sonarý-table[nJ.d > 409.0)

finish-..segment(n);
start-segment(n);
return;

x = sonar-table~nJ.gx1/* temporary moments ~
y = sonar...table~n].gy;
mOO = segmnenLdataln].mOO;
if (mOO < 1.5)

add-tojine(n, x, y);
return;

r = segmen~data[nJ.r,/* mOO >-- 2 *
alpha = segmenLdata[n].alpha;
delta = fabs(r - x * cos(alpha) - y * sin(alpha));

sigma = sqrt(segment..datafn].ni.major /(mOO - 1.0)); *
if (delta > C2)

* if (moo> 10.0)/
flnish-segment(n);
start~segment(n);
add-ýtojline(n, x, y);
return;
Ielse

add-to...line(n, x, y);
return;

) /* end linearjfitting *

1* Procedure: start-segment(n)

/* Description: this procedure establishes a new line segment with the three'
1* data points contained in segment~data~n].init(x and y). It writes

309

/* the, appropriate data to the interim values in segmenLdata~nJ.

void start..segment(n)
int n;

{ emn~aan.M=00
segment~data[nJ.mOO = 0.0;
segmenLdata[n].mlO I= 0.0;
segment-data[n].m20 = 0.0;
segment-data[nJ.ml 1 = 0.0;
segmenLdata[nJ.m02 = 0.0;

/* Procedure: add-tojine(n, x, y)

1* Description: this procedure calculates new interim data for the line segment
/* and stores it in segment..data[n]. It also changes the end point values to
/* the point being added.

void addtojine(n, x, y)
int n;
double x, y;

double mOO, mlO, mOl, m20, ml 1, m02;
double mx-major, mjriinor, c-major, d-jninor, alpha, r, rho;
double mux, muy, mmn20, niml 1, =mO2;

mOO = segment-data~n].mOO += 1.0;
mlO = segmenLdata~n].mlO += x;
mOl = segment~datalln].mOl += y
ni20 = segment.data~nJ.m20 +-- SQR(x);
ml 1 = segment...data~nJ.ml 1 = x * y
m02 = segmentdata[nJ.mf02 +=SQR(y);

if WOO< 1.5)

segment-data~N.startx = x
segment-data[n].starty = y

mux = m0/ moo;
muy =niOl /mOO;

310

mM2O -m20 - SQR(mlO)/mtOO;
mmI I- mlI ~mlO* m01/MOO;
mmO2-=m02 - SQR(mD I)/mOO;

segment-datatnJ.m00 nfO0;
segment-data[nl.mlO - mlO;
segment-data,[nJ.mOl I= mO I;
segment~data[nJ.m20 = rn2O;
segment..data~N.mllI = ml ;
segment~data(nj.nr02 = m02;

*1

m...major = (mnm20 + mmO2) / 2.0 - sqrt((nmmO2 - mm2O) *(nmmO2 - mm2O) /4.0 +
SQR(mml 1));

fminmor = (mm2O + mmO02) / 2.0 + sqrt((nmmO2 - mm2O) *(mmO2 - mm2O) /4.0
+ SQR(mml 1));

d...major = 4.0 * sqrt(fabs(mjnminor / mOO));
d-minor = 4.0 * sqrt(fabs(mjiiajor / mOO));
rho = djminor / C~major,
alpha = atan2(-2.0 * mini 1, (mmO2 - mm2O)) /2.0;
r =mux * cos(alpha) + muy * sin(alpha);

segmenLdata~n].alpha = alpha;
scgment-data[n].r = r
segment-data~n].m major = m...major,
segmenLdata[nJ.m-rminor = mr~minor;
segmenLdata[n].d major = d-major,
segment...data~nJAcminor = d-minor,
segmenLdata,[nJ.rho = rho;
segment~datalln].endx = x
segmenLdata[nJ.endy = y

/* Procedure: end~segment(n)

1* Description: this procedure allocates memory for the segment data structure,
/* loads the correct values into it and returns a pointer to the structure.

LINESEG *end-segment(n)
int n;

LINESEG *seg-ptr;
double starz, starty, endx, endy, delta, alpha, r, length;

seg..ptr = &segstruct;

311

startx = segment-data,[n].startx;
starty = segmenLdata[n].starty;
endx = segment-data[n].endx;
endy = segmenLdatatnJ.endy;
alpha = segnlenLdata[n].alpha;
r = segmentLdatatnJ.r,
delta =startx * cos(alpha) + starty * sin(alpha) - r,
startx = startx - (delta * cos(alpha));
starty = starty - (delta * sin(alpha));
delta =endx * cos(alpha) + endy * sin(alpha) - r,
endx =endx - (delta *cos(alpha));

endy =endy - (delta *sin(alpha));

length = sqrt(SQR(start - endx) + SQR(starty - endy));

seg...ptr->headx = start;
seg-ptr->heady = starty;
seg.ptr->tailx = endx;
seg-.ptr->taily = endy;
seg-..ptr->alpha = alpha;
seg-ptr->r = r
seg..ptr->length = length;
seg~ptr->dmajor = segnfientdata~n].c~major,
seg-ptr->dminor = segmen~data~n].d minor;
seg~ptr->sonar = n;

return seg...ptr;
I /* end end-segment *

/* Procedure: buildlist(ptr, n);

1* Description: this function accepts a pointer to a segment data structure and
/* a sonar number, and appends the segment structure to the tail of a linked
/* list of structures for that sonar.

void builc-list(ptr, n)
int n;
LINE_-SEG *ptr

int next;

if (seg...lisLtjail[n] == -1)
seg-lisLhead[n] = 0;
next = (seg-list-tail[n] < 4) ? ++seg-list-tail[n] :0;
if (next == seg-list-.head~n])
seg-jist-head[nJ = (seg-lisLhead[n] < 4) ? ++segist...head[n] :0;

312

segjlist~nllncxtJ = *ptr,
if (sonarjtable(n].fllctypc(2] - 1)
log~data(n, 3, sonar...table~n].filenumnber[2], next);

/* Procedure: log-iata(n, type, filenumberýi)

/* Description: this procedure causes data to be written to a file. The filenumber
/* designates which "column" (0,1,2, or 3) of a two dimensional array for
/* that type of data is used. The data array and a counter for each column
/* forms the data structure for each type. The value of i is used to index
/* the seg-jist array for storing line segments.

void log-data(n, filetype, filenumber, i)
int n, filetype, filenumber, 1;

int count, interval, next;

switch (filetype)
I
case 1:
count = raw-datajog[filenumber) count;
interval = sonarý-table[n].interval;
if ((count < MAXRAW) && !(count % interval))
I
next = raw-data~log[fdlenumber].next;
raw_data~jog[filenumber].darray[next] =sonarjable[n].d;
raw_datajlog~filenumber].xarray[next] =sonarjable[n].x;
raw_datajlog[filenumber].yarray[next] =sonarj-able[n].y;
raw-datajlog[fllenumber].tarray[next] = sonartable[n].t,
raw_dataJog[filenumber].next += 1;

raw_datajog[filenumber].count += 1;
break;
case 2:
count = globaLdataj-og[filenumber].count;
interval = sonarý-table[n].interval;
if ((count < MAXGLOBAL) && !(count % interval))
I
next = global ... ataj-og[filenumberJ.next;
global-dataj-og[fllenumber].xarray[next] = sonar....table[n].gx;
global.Aataj~og[filenumber].yarraylnext] = sonarjable~n].gy;
global~datajlog~filenumber].next += 1;

global jiatajoglifilenumber] .count += 1;
break;
case 3:

313

count = segment-datajlog[filenumber].count;
if (count < MAXSEGMENT)
I
segmenLdatajlog0[flenumber].array[count] = segjlist[n][i];
)
segmenLdatajog[filenumber].count +- 1;
break;)

/* Procedure: set.log.interval(n,d)1*
/* Description: this procedure allows the user to set how often the sonar system
/* writes data to the raw data or global data files. The interval d is stored
/* at sonarjtable[n], and one data point will be recorded for every d data
/* points sensed by the sonar. Default value for interval d is 13, which for
/* a speed of 30 cm/sec and sonar sampling time of 25 msec should record a
/* data point every 10 cm./*

void setjoginterval(n, d)
int n, d;{

sonar.table[n].interval = d;}

/,
/* Procedure: wait_until(variablerelation,value)/,
/* Description: this procedure will delay it's completion (and thus the continuance
/* of the program it's embedded in) until the variable achieves the relation with
/* the value specified. For example, presume the robot is traveling along the x
/* axis. If the user wants the robot to begin redording sonar data when the x
/* position of the robot exceeds 500 cm., he would insert this command after the
/* move command:
/* wait.until(X,GT,500.0);
/* enable-sonar(sonar number);
/* The variable are predefined as X, Y, A and DO through D 11, and correspond to
/* the robot's current x position, y position, alpha, and range from sonars 0
/* through 11. Relations are predefined as GT, LT and EQ corresponding to greater
/* than, less than and equal to. Value may be any numlber expressed as a double
/* or the predefined values PI, HPI, PI34, P14, or DPI.

3*

314

void waiLuntil(variable, relation, value)
int variable, relation;
double value;{

double *ptr;
double theta;
int test, item;

if ((variable =- 14) && (relation 17))
test = (int) (1000.0 * value);
else if (relation = 17)
test = (int) (value);

switch (variable)
I
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
case 8:
case 9:
case 10:
case 11:
ptr = &sonarjtable[variable].d;
break;
case 12:
ptr = &vehicle.x;
break;
case 13:
ptr = &vehicle.y;
break;
case 14:
theta = 1000.0 * vehicle.t;
ptr = θ
break;}
switch (relation)
I
case 15:
do{
item = *ptr;}
while (item <= value);
break;
case 16:
do

315

{
item = *ptr;

while (item >= value);
break;
case 17:
do(
item = (int) *ptr,I
while (item != test);
break;I

/*
/* Procedure: xfer_raw_to_host(filenumber,filename)
/,
/* Description: this function allocates memory for a buffer and then converts a raw data
/* log file to a string format stored in the buffer. It then calls hostxfer to send
/* the string to the host. When that transfer is complete, it frees the memory it
/* allocated for the buffer. Filename must be entered in double quotes ("dumpraw"
/* for example)./,

void xfer_raw_to_host(fllenumber, filename)
int filenumber;
char *filename;{

char *rbuffer;
char *start;
int i, c,j;

if rawdatajlog[filenumber].next;
c =20 + (i * 33);
rbuffer = malloc(c);
start = rbuffer;
for (j = 0; j < i; j++)
I
printflex(rawdatalog[filenumber].darray[j], rbuffer);
printflex(raw-data_log[filenumber].xarray[j], rbuffer);
printLflex(raw-data_log[filenumber].yarray[j], rbuffer);
prinLflex(raw-datalog[filenumber].tarray[j], rbuffer);
nLflex(rbuffer);I
putb('N0', rbuffer);
rbuffer = start;
hostjxfer(rbuffer, filename);
free(rbuffer);

316

/* Procedure: xfer-global-to-host(filenumber,filename)

/* Description: this function performs the same function as xfer-raw-to-host, but for
/* global data vice raw data.

void xfer-global-to-host(fllenumber, filename)
mnt filenumber;
char *filename;

char *gbuffer;
char *star;
intic, j;

i =global data-log[tilcnumber].next;
c=20 +(i * 17);
gbuffer = malloc(c);
start = gbuffer,
for j =O;j <i;j++)

prnncflex(global~datajlog[fllenumber] .xarrayU], gbuffer);
print -flex(global-datajlog[fllenumberl.yarrayW], gbuffer);
ni--flex(gbuffer);

putb(Vf', gbuffer);
gbuffer = start;
host~xfer(gbuffer, filename);
free(gbuffer);

/* Procedure: xfer...segment-to-host(filenumber,filename)

/* Description: this function performs the
/* same function as xfer~raw_to_host, but for
/* segment data vice raw data.

void xfer..segment to-host(filenumber, filename)
int filenumber;
char *filename;

char *segbuffer,

317

char *start;
int i, c, j;

i =segmfent dataý_log[fflenumber].count;
c =20 + (i * 77);
segbuffer = malloc(c);
start = segbuffer;
for (j 0; j <i; j++)
I
printjflex(segment-datajlog[filenumber].amrybJ.headx, segbuffer);
printjlex(segmenLdatajIog[filenumberJ.arraybJ.heady, segbuffer);
print-jlex(segmrentLdata-log[filenumber].arayUJ.taiix, segbuffer);
prinLflex(segmfent-datajlog[filenumber].arrayU].taily, segbuffer);
nL-flex(segbuffer);
print-flex(segment-datajlog[filenumber].arrayojJ.alpha, segbuffer);
prinLflex(segmenLdatajlog[filenumber].afrayUJ.r, segbuffer);
printjflex(segmfentLdatajlog[filenurnber].arrayljJ.length, segbuffer);
prmntjlex(segment...datajlog[filenumber].arrayU].dmajor, segbuffer);
printjlex(segmentLdatajlog[filenumber].amfyU].dniinor, segbuffer);
nl-flex(segbuffer);

putb("O', segbuffer);
segbuffer = start;
host-xfer(segbuffer, filename);
fr-ee(segbuffer);

/* Procedure: xfer~worldt_to.host(world)

/* Description: this function transfers the edges of
/* a partial world to the host.

void xferý-world-to-host(PW, filenamne)
Map-..World *PW;
char *fijename;

char *segbuffer;
char *strt;
int i,c, j,k;
int 1= 0;
Map-Polygon *currentpolygon;
EDGE *current-edge;

318

i = PW->boundary->degree;

current-.polygon = PW->holejlist;
for (k = 1; k < PW->degree; k++)
I
i += current..polygon->degree;
currenLpolygon = current-polygon->next;

c = 20 + (i * 43);
segbuffer = malloc(c);
start = segbuffer;

1* Put the boundary polygon edges in the buffer *
currenLedge = W->boundary->edgeilist;
for (=0; j < PW->boundary->degree; j++)

prnt flex(current..edge->vl1.x, segbuffer);
printjlex(current.edge->v l.y, segbuffer);
nl-flex(segbuffer);
print-flex(currenLedge->v2.x, segbuffer);
printjle7(currentLedge->v2.y, segbuffer);
if (currenLedge->type == REAL)
print-flex(1.0, segbuffer);
else
printflex(0.0, segbuffer);
nl flex(segbuffer);
nl-flex(segbuffer);
current..edge = current~edge->next;

/* Put the hole polygon edges in the buffer *

for (j =0; j 1; j4-4)

4.n~lxsget4tglgfeubr.faylhax ebfe)
prnn-flex(segment data~loglfilenumber].arrayW].headx, segbuffer);
print~flex(segmentdata~loglfilenumberll.arrayU].headyx, segbuffer);
prinLflex(segment data~log[filenumber].arrayj] .tailx, segbuffer);

nl_flex(segbuffer);

putb("O', segbuffer);
segbuffer = start;
host-xfer(segbuffer, filenamne);
firee(segbuffer);

1* Procedure: xferý-real~boundary...edges-jo..host(world)

319

P*
P~ Description: this function transfers the real edges of
P* the boundary polygon of a partial world to the host.

void xfer_real_b~oundaryecdgesto~host(PW, filename)
Map-Norld *PW;
char *ffienam;

char *edgebuffer;
char *star
int c, j, k;
mnt count = 0;
Map..olygon *current-polygon;
EDGE *cu~r nt..edge;

current~edge = PW->boundary->edgejlist;
for (k = 1; k < PW->boundary->degree; k++)
I
if (currenLedge->type = REAL)
++count;
current~edge = current..edge->next;

c = 20 + (count * 35);
edgebuffer = malloc(c);
start = edgebuffer;

P~ Put the boundary polygon edges in the buffer *
current-edge = PW->boundary->edge-list;
for (j = 0; j < PW->boundary->degree; j++)
I
if (currencedge->type =REAL)

prn{ lxcre~de-v~,egbfe)
printjflex(current-.edge->vl1.x, edgebuffer);

nl~flex(edgebuffer);
printjLfex(current edge->v2.x, edgebuffer);
printjLfex(currentedge->v2.y, edgebuffer);
nLflex(edgebuffer);
ni-fiex(edgebuffer);
current~edge = current~edge->next;

putb("O', edgebuffer);
edgebuffer = start;
host..xfer(edgebuffer, filename);
free(edgebuffer);

320

/*I end xfc mal-boundary...edges-to-hosto *

/* Procedure: xfer_ effdboundary.edgcs-tojiost(world)

1* Description: this function transfers the inferred edges of
1* the boundary polygon of a partial world to the host.

void xfierý-inferred-boundary-edges -to--host(PW, filename)
MapWorld *PW;
char *ffienazpe;

char *edgebuffer;
char *start;
int c,j, k;
int count = 0;
Map-Polygon *current polygon;
EDGE *current~edge;

current..edge = PW->boundary->edgejlist;
for (k = 1; k < PW->boundary->degree; k++)
I
if (current...edge->type = UNFERRED)
++count;
currentedge = current-edge->next;

c =20 +(count * 35);
edgebuffer = malloc(c);
start = edgebuffer;

1* Put the boundary polygon edges in the buffer *
current-edge = PW->boundary->edgejlist;
for (j = 0; j < PW->boundary->degree; j++)

if (currenLedge->rype == 11FERRED)
I.
prnnLflex(currentedge->vl1.x, edgebuffer);
prinL-flex(current-edge->v 1 y, edgebuffer);
nl-flex(edgebuffer);
prmntflex(current~edge->v2.x, edgebuffer);
prinLflex(current-erdge->v2.y, edgebuffer);
nl flex(edgebuffer);
niiflex(edgebuffer);
current...edge = current-edge->next;

321

putb(N)', edgebuffer);
edgebuffer = start;
host_xfer(edgebuffer, filename);
free(edgebuffer);
/* end xferreal_boundary-edges-tohostO */

/*
/* Procedure: host.xfer(buffer,filename)/,
/* Description: this function transfers a data string from the buffer to the host. Not a
/* user function; is called by data conversion functions such as xferrawtohost.
/* User would call the xfer_rawtohost (or equivalent for global or segment data)
/* to download data from the robot./,

void hostxfer(buffer, filename)
char *buffer;
char *filename;{

Lport(HOST, 9600, 0, 0, 0);
r._printf("12M5 connect cable and keyin\"\"');
while (rgetchar0 !=' ');
putstr("m", HOST);
i-port(HOST, 9600, 0, 0, 1);
r.printf("M2\15 ready for dump ");
while (rgetchar0 != 'g');
putstr("ytof", HOST);
putstr(filename, HOST);
putstr(" w \n", HOST);
while (r-getchar0 !=' ');
r._printf("dumping ");
putstr(buffer, HOST);
putb('\4', HOST);
putb('\4', HOST);
r_printf("\7M7");
return;

/*

/* Procedure: finish.segment(n)/,
/* Description: this function completes segments at the end of a data run. Necessary
/* because the linear fitting function only terminates a segment based on the
/* data - it has no way of knowing that the user has stopped collecting data.
/,

322

void finish-segment(n)
int n;

LINE_,SEG *scg-lr,

if (segmentdata[nJ.mOO > 10.0)

scg...ptr = end-scgment(n);
buildjist(se&.ptr, n);

323

APPENDIX D. ODOMETRY CORRECTION SOURCE CODE

1,
"* file : nav.c
"* purpose : All robot subroutines required for navigation

#include "mml.h"

/* declaration of functions and return values *1

extern void waitjpointo;
extern int waitsegmentl();
extern int waitsegmentO;
exton void getrobotspeedO;
extern void get-s-zeroO;
extern void get.initiaL.positiono;
extern void report-configurationo;
extern CONFIGURATION get sonar_configo;
extern void correct-odometry-erroro;
extern void enable.display-statuso;
extern void displaystatusO;

FUNCTION: wait.point(pt)
PARAMETERS: POINT pt
PURPOSE: Busy wait until the the closest point of approach to
parameter pt, then return.
RETURNS: void
CALLED BY: main
CALLS: get_rob0;
COMMENTS: 16 November 92- Dave MacPherson

#define FLTMAX 3.40282347e+38
void wait._point(pt)
POINT *pt;
{
double dist = FLT_MAX;
CONFIGURATION now;

geLrobO(&now);
while (dist > DIST(now.x, now.y, pt->xO, pt->yO))
{
dist = DIST(now.x, now.y, pt->xO, pt->yO);
get-robO(&now);
}

324

}/* waitpoint(pt) */

/

FUNCTION: wait-segmentlO)
PARAMETERS: none
PURPOSE: busy wait until the currentline segment being built
is completed or the robot travels a distance greater

than the parameter length.
RETURNS: integer value equal to the segment count
CALLED BY: main
CALLS: path lengtho;
COMMENTS: 18 November 92 - Dave MacPherson
*/
int wait_segment ()
I
int seg-count;
double current-pos;
double length = 100.0;

current..pos = path-length(;
seg.count = segment.data_log[0].count;
r..printfC•12 seg..count => ");
r_printfi(seg_count);
while (1)I
if ((path-length0 - current-pos) > length)
I
seg-count = -1;
break;)
if (segment-datalog[0].count > segcount)
break;)
return (seg-count);}

/

FUNCTION: waiLsegment0
PARAMETERS:
PURPOSE:
RETURNS:
CALLED BY:
CALLS: NONE
COMMENTS: 11 September 92 - Dave MacPherson

325

mt waitsegmentO{
int segscount;

seg-count = segment data_log[OJ.count;
rpuintf('M2 segscount => ");
r-printfi(segcount);
while (segmentdatajog[0].count =-- segscount);
return(seg-count);}

FUNCTION: geLroboLspeedo
PARAMETERS: none
PURPOSE: sets the robot's speed for the entire mission
based upon user input

RETURNS: void
CALLED BY: usero
CALLS: NONE
COMMENTS: 12 September 92 - Dave MacPherson

void getLroboLspeed0
I
double sp;

rxprintf("12 Enter desired robot speed. ");
sp = getreal(CONSOLE);
speed(sp);}

FUNCTION: get-sjzeroo
PARAMETERS: none
PURPOSE: sets the robot's s_zero for the entire mission
based upon user input

RETURNS: void
CALLED BY: usero
CALLS: NONE
COMMENTS: 12 September 92 - Dave MacPherson

void get_ss_zeroo
I
double szero;

r..printf('M12 Enter desired szero ");
s_zero = getreal(CONSOLE);
sizeconst(s.zero);
}

326

FUNCTION: geLinitiaLposition0
PARAMETERS: none
PURPOSE: get the initial robot configuration
based upon user input

RETURNS: void
CALLED BY: usero
CALLS: NONE
COMMENTS: 29 Oct 92 - Dave MacPherson

void getinitial-position0
d
double x;
double y;
double t;double k;
CONFIGURATION p;

r..printf('\12 Enter the starting x position: ");
x = getreal(CONSOLE);
r._printfC(\12 Enter the starting y position: ");
y = getreal(CONSOLE);
r._printf('\12 Enter the starting orientation: ");
t = getreal(CONSOLE);
r-printf('\12 Enter the starting kappa: ");
k = getreal(CONSOLE);
setrob(defsconfiguration(x, y, t, k, &p));I

FUNCTION: reportsconfiguration0
PARAMETERS: none
PURPOSE: gets the current robot configuration
and then displays it to the screen

RETURNS: void
CALLED BY: usero
CALLS: NONE
COMMENTS: 29 Oct 92 - Dave MacPherson

void report-configuration0
I
r-printf('M2 Current Robot Config: x
r_.printfr(vehicle.x, 2);
r._printfC' y =>");
r-printfr(vehicle.y, 2);
r-printf(" theta =>");
r..printfr(r2d(vehicle.t), 2);
r_printfC("2");

3

327

FUNCITION: report-.patho
PARAMETERS: none
PURPOSE: gets the current robot path
and then displays it to the screen

RETURNS: void
CALLED BY: usero
CALLS: NONE
COMMENTS: 17 May 93 - Dave MacPherson

void report..jath()
f
r-.printf('\1 2 Robot current path: x=>)
r-printfr(current robot-path.pc.x, 2);
r...printfC' y =>");
r-.printfr(current-robot~path.pc.y, 2);
r-printf(" theta =>");
r...printfr(r2d(current-robot~path.pc.t), 2);
r...printf(" kappa =>");
r-.printfr(cuffent robot...path.pc.k, 2);
r...printfC\1 2");

FUNCTI7ON: get-sonar _config()
PARAMETERS:
PURPOSE:
RETURNS:
CALLED BY:
CALLS: NONE
COMMENTS: 11 September 92 - Dave MacPherson

CONFIGURATION geLsonar-sonfig(seg-.count)
int seg-count;

CONFIGURATION Qsonar;

Qsonar.x = segmenLdatajlog[O].affay~seg-countl.tailx;
Qsonar.y = segmencdata-log[O].array[segscount].taily;
Qsonar-t = atan2(segment,.datajog[O].affay[seg...count].heady -
segmenLdatajlog[O].affay[seg-count].taily,
segment-data-jog[O].array[seg-countj .headx -
segment-datajlog[O].afray[seg-count].tailx);

Qsonar.k = 0.0;
return Qsonar,

FUNCTION: correct~odometry...eror(Qsonar, Qmodel)

328

PARAMETERS:
PURPOSE:
RETURNS:
C-ALLED BY:
CALLS: NONE
COMMENTS: I11 September 92 - Dave MacPherson

void correct-odometry-error(Qsonar, Qmnodel)
CONFIGURATION Qsonar, Qmodel;
I
CONFIGURATION Qodojinv;
CONFIGURATION E, Qact~ Qodo;
CONFIGURATION Qacuinv, X1, Xl-jnv;

getjobO(&Qodo);
inverse(&Qodo, &Qodojn-v);
comp(&Qodoj-nv, &Qsonar, &X1I);
inverse(&XI, &Xl~jnv);
comp(&Qmodel, &Xl-inv, &Qact);
set-rob(&Qact);

inverse(&Qact, &Qacdinv);
comp(&Qodo, &QacLinv, &E),
wait-timer(lOO);
r-printf('\12 E =>")
r...printfr(E.x, 3);
r...pnintf(" ");
rprintfr(E.y, 3);
r...printf(" ");
r-printfr(E.t, 3);

wait-timer(100);
r-printf("\12 Qsonar =>")
r...printfr(Qsonar.x, 3);
r..pnintf(" ");
r...priinfr(Qsonar.y, 3);
r...printf(" ");
r...printfr(Qsonar.t, 3);

wait~timer(100);
:r.-.printf('\12 Qodo =>")
r...printfr(Qodo-x, 3);
r...printf(" ");
r...printfr(Qodo-y, 3);
r...printfC"'");
r...printfr(Qodo-t, 3);

wait-timer(100);
r-.printf('\12 Qact =>)
r~printfr(Qactx, 3);
r...printf(" ");

329

r..prinfr(Qact.y, 3);
r._printf(" ");
r._printfr(Qact.t, 3);

/* Procedure: displaystatus/*
/* Description: called every 10 ms, this routine provides an update of
/* the current status to the lap-top as an aid in debugging
/* level 4 problems./,

void displaystatuso
I

if (status != curJdisplay-status)
I
r,_printf("\nCnCurrent status is ");
switch (status)
I
case SSTOP:rý-printff"SSTOl•n");

break;
case SLINE:
r-printfC'SLIN4En");
break;
case SBLINE:
r _printfC'SBLINEn");
break;
case SFLINE:
r..printf("SFLINEn");
break;
case SCONFIG:
r_printf("SCONFIG\n");
break;
case RMOVE:
r_printf("RMOVEWn");
break;
case SERROR:
r-prinf("SERRORVn");
break;
default:
rprintf("UNKNOWN\n");
break;
V/* end switch */
V/* end if */

330

curjldisplay-status = status;

if ('..am.....ere != last-i-am~here)
4
r-prixMf('*nILam-here =>")
rý_printfi(i...am...ere);
last-i-am-here = i-amjhere;

1* Procedure: enable-display-status()

/* Description: Lowers interrupt mask to allow level 1 interrupts

void enable-display-.status()

i-imaskdisplaystatuso;

331

APPENDIX E. CARTOGRAPHY SOURCE CODE

FILENAME: map_world.c
PURPOSE: test file for simulating automated cartography
CONTAINS:
LAST UPDATE: 10 July 93

#include "mml.h"
#include "cartography.h"
#include "spatial.h"

FUNCTION: addholeto-world0
PURPOSE: Adds a hole polygon to an existing
Map World.
RETURNS: void
CALLED BY: ANYBODY
CALLS:
COMMENTS: The hole polygon can only be added after the
boundary polygon has been added to the Map World.

void add_hole_to_world(H, W)
Map-Polygon *H;
Map-World *W;{

Map-Polygon *current polygon;
int i;

if (W->boundary =- NULL)
I
r..printf("Error: the boundary polygon must be added first.");
/* exit(0); */
I
if (W->hole_list == NULL)

W->hole_list = H;
r.-printf("'\2The first hole was added to the partial map.");}
else

3

332

if((w - (Map-World *)malloc(sizeof(MapWorld))) = NULL) I
/I fatal("create-world: malloc"'n"); *
/* exit(O); */I

/* initialize fields */
w->boundary = NULL;
w->holejist = NULL;
w->degree = 0;

r._printfC(" Created a new partial world.");
return(w);

/* createmap world */

FUNCTION: make..edgeO
PURPOSE: creates a new edge
RETURNS: EDGE
CALLED BY: ANYBODY
CALLS:
COMMENTS: This function builds a new edge.

EDGE *make edge(xl, yl, x2, y2, type)
double xl, yl, x2, y2;
int type;4

EDGE *el;

if ((el = (EDGE *)malloc(sizeof(EDGE))) == NULL)
I
r._printf("Error make._edge: malloc.M");
/* exit(0); */

el->vl.x = xl;
el->vl.y = yl;
el->v2.x = x2;
el->v2.y = y2;
el->type = type;

return el;

) /* end make edge *I

I

FUNCTION: completeo
PURPOSE: Evaluates a partial world to see if it is
complete.
RETURNS: int 0 = FALSE, 1 = TRUE.
CALLED BY: ANYBODY
CALLS: polycomplete
COMMENTS: Uses the polycomplete function to evaluate the

333

completeness of each component polygon in the partial world.

int complete(w)
Map-..World *w;

Map--olygon *clulrent-polygon;
int i;
int count = 0;

if(w->boundary == NULL && w->holejlst =NULL &&
w->degree ==0)
I
r...printf("The world is not complete.\n");
return 0;

else if(w->degree = I && poly-somplete(w->boundary))
I
r...printf("The world is complete.\n");
count 1

I

current-polygon = w->holejlist;
if (poly-pomplete(current-polygon))
I
count = 2;
r...printf("The boundary of the world is complete.\n");
for (i=2"; i < w->degree; i++)

currentpolygon = current...polygon->next;
if (poly-complete(currenLpolygon))

r...printf("Thie hole is complete.\n");
++count;

if (count == w->degree)
return 1;
else
return 0;

) I" completeo *

FUNCTION: ploy-somplete()

PURPOSE: Evaluates a map polygon to see if it is

334

complete.
RETURNS: mnt 0=- FALSE, 1I TRUE.
CALLED BY: ANYBODY
CALLS:
COMMENTS:

else

r-jrintf("Boundary polygon.\n");
print-polygon(W->boundary);
current-..polygon = W->holejist;
r-printfC'Hole Polygon\n");
pirint-.polygon(current-polygon);
for 0=~2; i < W->degree; i-H-)
I
cuffrren.polygon = current...polygon->next;
r-priinf("Hole Polygon~n");
prinLpolygon(current...polygon);

I/'end print world *

FUNCTION: print-polygon()
PURPOSE: Print all edges of a map polygon
RETURNS: void
CALLED BY: ANYBODY
CALLS:
COMMENTS: this function prints a polygon to the screen

void print-polygon(p)
Map~olygon *p;

EDGE *current edge;
int i;

current...edge = p->edgeJxst;
for (i = 0; i < p->degree; i++)

r-printf("\Edge =>");
r....pnntfr(currentedge->v 1 x, 3);
r....pnntfr(current..edge->v l.y, 3);

r-pnintfr(cuffent~edge->v2.x, 3);
r~pnntfr(current-edge->v2.y, 3);
if (currenLedge->type =REAL)
r.,.printf(" REALWn");
else
rprintf(" LNFERRED'mn");
current...edge = current~edge->next;

)/* end print polygon *

335

FUNCTION: plot-woridO
PURPOSE: Plots all edges of a map polygon
RETURNS: void
CALLED BY: ANYBODY
CALLS:
COMMENTS: Plots a partial world to the screen using gnuplot.

void plotLworld(w)
Map-World *w;

EDGE *currenLedge;
Map-..Polygon *cijrrent.Jyolygon;
int i,j;
FILE *realedges, *jnfeffededges;
char command[160];
int count =0;

realedges =fopen("real","w");

inferrededges = fopen("inferred","'w");

for (i=1; i <= w->degree; i++)

if (i = 1)
current.polygon = w->boundary;
else if (i == 2)
current-polygon = w->holejlist;
else if (i == 3)
currentLpolygon = w->hole-list->next;

current-edge = currenLpolygon->edgeJist;
for (j = 0; j < currentpolygon->degree; j++)
I
if (current-edge->type == REAL)

fprintf(realedges, "%7.2f%7.2ftn%7.2f%7.2ftV1n",
current_edge->vl.x, current~edge->vl.y,
current~edge->v2.x, current-edge->v2.y);

else if (currentedge->type == ENFERRED)

fprintf(inferrededges, "%7.2f%7.21\n%7.2f%7.2f\n~n",
current-edge->vl.x, current-edge->vl.y,
current_edge->v2.x, current._edge->v2.y);

336

currentedge - curent-cdge->next;

fprintf(realedges, 'Im");
fprintfimferrededges, "Wn";

fclose(realedges);
fclose(inferredcdges);
spnintf(convnand, "gnuplot %s", "world-plotcnid");
system(comrnand);

1/*' end plot-world *

FUNCTION: plot-polygono
PURPOSE: Plots all edges of a map polygon
RETURNS: void
CALLED BY: ANYBODY
CALLS:
COMMENTS: Plots a polygon to the screen using gnuplot.

void plot-polygon(p)
Map~olygon *p;

EDGE *current~edge;,
int i;
FILE *realedges, *jpnfeffededges;
char commiand[160J;

realedges = fopen("real","w");
inferrededges =fopen("inferred","w");

current.edge =p->edgejlist;

for (i = 0; i < p->degree; i++)

if (currentcedge->type - REAL)

fpzintf(realedges, "%7.2f%7.2fAn%7.2f%7.2fAn",
current..edge->v I.x, cufrent...edge->v l.y,
currenLedge->v2.x, currenLedge->v2.y);

else if (current..edge->type == INFERRED)

337

fprintf~inferrededges, "%7.2f%7.2ft%7.2f%7.2f~n",
current~edge->vI1.x, currentedge->v l.y,
current-edge->v2.x, currentýedge->v2.y);

current-edge = currenLedge->next;

fclose(realcdges);
fclose(inferrededges);
sprintf(command, "gnuplot %s", "polygon-plot~cmnd);
systemn(commzand);

)/* end plot-polygon *

FUNCrION: adC~edge-to..polygono
PURPOSE: Adds a new edge to a nmap polygon
RETURNS: Map Polygon *
CALLED BY: ANYBODY
CALLS:
COMMENTS: this function allocates space for an edge and

adds it to a polygon.

void add-.edgiejo...polygon(new...edge, p)
EDGE *new-edge;
Mapyolygon *p;

EDGE *cljrrent edge;
int i;

if (p->degree ==0)

p->edgeJist, = new-edge;

else

currentLedge = p->edgejlist;
for (i = 1; i < p->degree; i++)
I
current-.edge = current..edge->next;

current~edge->next, = new..edge;
new...edge->previous = currenLedge;
new...edge->next = p->edgejlist; /* circularly linked list *
p->edge...ist->previous =new-edge;

338

++p->degree;
}/* end add-edgejo-,polygon */

FUNCTION: create-map-.polygonO
PURPOSE: create instance of a map polygon
RETURNS: Map Polygon *
CALLED BY: ANYBODY
CALLS: fatalO <utilities.c>
COMMENTS: this function allocates space for a map-polygon and
returns a pointer to it.

Map-Polygon *createmap-polygonO{
Map-Polygon *p;

/* allocate memory for a polygon */
if ((p = (Map-Polygon *) malloc(sizeof(Map_Polygon))) - NULL)
{

/,
* fatal("create-polygon: malloc\n"); exit(FAILURE);
*/

r._printfC'malloc failed for createmappolygonfn");
/* exit(O); */i
/* initialize fields */
p->edge_list = NULL;
p->previous = NULL;
p->next = NULL;
p->degree = 0;

r-printf("\n Created a map polygon.\n");
return (p);
/* end createmap-polygon(*/

FUNCTION: next_scanconfigo
PURPOSE: determines the path to the closest inferred
for the next translational scan.
RETURNS: void
CALLED BY: ANYBODY
CALLS: fatalO <utilities.c>
COMMENTS:

void nextscanSonfig(w, C)
MapWorld *w;
CONFIGURATION *C;{

void analyzesclnsestedgeo;

339

Map-Pyolygon *current..polygon;
EDGE *curen~ edge;
int L. j;
double centerx, centery;
double edgejist;
double closest-edge...dist = 1000.0;
EDGE *closest-edge;

r-.printff(Entered the function next.scansponfig.W");
for (i = 0; i < w-> degree; i++)
I
if (0 ==0)
current-,polygon = w->boundary;
else if (i=-- 1)
current-polygon = w-> holejlist;
else
current-.polygon = current-polygon->next;

current-..edge = cuffentpolygon->edgeijist;
for (=0; j < current-polygon->degree; j++)

if (current-cdge->type == IFERRED)
I
r-,.printfClaEdge=")
r-printfr(current..edge->vl.x, 3);
r-printfr(current..edge->vl.y, 3);
rý-printfr(current-edge->v2.x, 3);
rý-pnntfr(current-edge->v2.y, 3);
centerx = (current-edge->vI.x + current-edge->v2.x)t2.0;
centery = (current-edge->vl.y + current~edge->v2.y)t2.0;

prindC("\Edge Center => %7.2f%7.2f'
centerx, centery);

edge-dist = sqrt((centerx - C->x)*(centerx - C->x)
+ (centery - C->y)*(centery - -y)

rprinff("%nedge-dist =>")
r-.printfr(edge...dist, 3);

if (edge...dist < closest-edge...dist)
I
closest...edge = current edge;
closest-.edge-dist = edgelist;
rý-printf(",nclosest-edgejlst =>");
rý-printfr(closest...edge...dist, 3),

currentedge = current....ege->next;

340

)/* end for loop */
analyze-closest_edge(closestedge, C);

FUNCTION: analyze_closest.edge()
PURPOSE: determines the path to the closest inferred
for the next translational scan.
RETURNS: path list
CALLED BY: next_scan_config
CALLS: fatalo <utilities.c>
COMMENTS:

void analyzesclosest edge(closesLedge, C)
EDGE *closest edge;
CONFIGURATION *C;(

CONFIGURATION path 1, path2;
double centerx, centery;

/*
printf("'nThe closest edge is => %7.2f%7.2f%7.2f%7.2f'n",
closest._edge->v 1.x, closest-edge->v L.y,
closestedge->v2.x, closestedge->v2.y);
*/
centerx = (closest.edge->vl.x + closest-edge->v2.x)/2.0;
centery = (closest...edge->vl.y + closestcedge->v2.y)t2.O;

/* the first backtrack path starts at the
robot current configuration */
pathl.x = C->x;
pathl.y = C->y;
path .k = 0.0;

/* the back track path ends at the center of the
closest inferred segment */
path2.x = centerx;
path2.y = centery;
path2.k = 0.0;

if (centerx < C->x)I
pathl.t = 3.14;
if (centery < C->y)
path2.t = -1.57;
else if (centery > C->y)
path2.t = 1.57;)
elseI
pathl.t = 0.0;

341

if (centery < C->y)
path2.t - -1.57;
else if (centery > C->y)
path2.t = 1.57;

r...printfCnMe first path element is =>")
r...printfr(pathl.x, 3);
r-printfr(.path1.t, 3);
r-.printfi~pathl.k, 3);
r4,rintfC~nlhe second path element is =>")
r...printfr(path2.x, 3);
r-..printfr(path2.y, 3);
r_prinitfr(jpath2.k, 3);

1* end analyze-closest...ege *

342

FILENAME: mapper8.c
PURPOSE: The Global spatial learning algorithm
using the Free-Space-Model.
CONTAINS: Functions for automated cartography
AUTHOR: Dave MacPherson
DATE: 10 July 1993

#include "mml.h"

#include "cartography.h"

extern LINESEG *getcurrentsegmento;

user(){
CONFIGURATION C, first, second, third, fourth, fifth, sixth;
Map_.World *PW;
MapPolygon *B, *HI, *H2;

void initialize(;
void fmd_orthogonal_orientationO;
void followhallway(;
void wallfollowero;
void cleanupo;
void translationalscanningo;
void integrate();
void nextscanconfigO;
void turn_righto;
void bline_turn_rightO;
void turnleftO;
void turnaroundO;
void turnaround 10;
void both.seg-correctionO;
void translationalscanning 1O;

/* Create a partial world */
PW = createjmapworld(;

/* Create a boundary polygon */
B = create-map-polygonO;

/* Add the empty boundary polygon to the world */
addboundaryo..._world(B, PW);

defconfiguration(O.0, 0.0, 0.0, 0.0, &C);
initialize(&C);

343

find-orthogor~.l orientation(&first);
while (! complete(PW))
I
translational_scanningl(C, PW);
next_scan-config(PW, C);

cleanup(PW);
)/* end user/

FUNCTION: tanslational~scanningl()
PARAMETERS: C, PW
PURPOSE: Executes a single translational scan for automated
cartography. Builds a boundary polygon from the segments gathered
by the robot.
RETURNS: void
CALLED BY: user
CALLS: report-configurationO
COMMENTS: 11I July 93 - Dave MacPherson
TASK: Level 0

void tanslational_scanningl(C, PW)
CONFIGURATION C;
Map...World *PW;

EDGE *el, *e2, *e3;
LINE_SEG *right side seg;
LINESEG *left~side...seg;
int i;
int done = 0;
mnt count;

line(&C);
while (sonar(FRONTL) < 9.3 11 sonar(FRONTL) > 100.0)

reportýconfigurationo;
wait timer(100);

for (i -0; i < segment.Aata~jog[0].count; i++)
I
e2 = makeý_edge(segment data-log[O].array[i].headx,
segment~datkajog[01.array[i].heady,
segmentýdatajlog[0].array[i].tailx,
segment-datajlog[0].array[i] .taily,
REAL);
adc-edge-.jo...polygon(e2, PW->boundary);

344

if (getscurrentýsegmnent(7) !=NULL)

el = PW->boundary->edgej-ist->previous;
/* get the last edge added to the boundary polygon *

right-side..seg = get..current-segment(7);
e2 = makeedge(rightside-seg->headx, right-side...seg->heady,
righLside...seg->tailx, right-side-seg->taiy, REAL);
if (el->v2.x != e2->vl.x)

e3 = make...edge(el->v2.x, el->v2.y, e2->vl.x, e2->vl.y, INFERRED);
add-edgeto-polygon(e3, PW->boundary);

add-edge-jcopolygon(e2, PW->boundary);
)/'* end if ~

r..printf("\12 The degree of the boundary polygon is.");
r...printfi(PW->boundary->degree);

)/* end translational-scanning *

FUNCTION: turn -aroundO
PARAMETERS: none
PURPOSE: Rotates 180 degrees to turn the robot
around in a narrow hallway.
RETURNS: void
CALLED BY: user
CALLS: report-configurationO
COMMENTS: 27 June 93 - Dave MacPherson
TASK: Level 0

void turn-aroundO

r-printf("\12 Entered the turn around part.");
stopOG);
wait~timer(30);
rotate(PI);
while(vehicle.t < 3. 1);
wait-timer(100);
reportsconfigurationO;
speed0(l 5.0);

1/* end turn-aroundO *

345

FUNCTION: find_orthogonal_orientation
PARAMETERS: ps
PURPOSE: Rotates 360 degrees to obtain the best
surface for automated cartography
RETURNS: void
CALLED BY: user
CALLS:
COMMENTS: 27 May 93 - Dave MacPherson
TASK: Level 0

void findorthogonal orientation(ps)
CONFIGURATION *ps;{

void circlejorýsegmentsO; /* This itnction command the robot to search
for edges to extract if none are dett,;ted during the rotation */

int i;
int seg-index;
int segcount;
double seg._alpha;
double dist;
double seg-Jength;
double seg._dist = 500.0;
double seg.orientation;
double headx, heady, tailx, taily;

CONFIGURATION first;

report-configurationO;
r__speed(0.3);
rotate(2*DPI);

while (vehicle.t < 2*DPI);
seg_count = segmentdatajog[SEGFILE].count;
r_printf('\12 Got segments, count= ");
r_printfi(segscount);
if (seg-count = 0)
circlefor._segmentso;
1*
"* Loop through segments found, select alpha from segment that is
"* MIN_SEGDIST to MAXSEGDIST cm away, and has the longest length.
*/

for (i = 0; i < seg.count; i++)
{
dist = segment-data_log[SEG.FILE].array[i].r;
seg-length = segmentjdatajlog[SEGYFILE].array[i].length;

3*

346

"* Check the constraints for this segment. If it is better
"* than the last one, then remember it with segjndex.

if (fabs(dist) < MAX_SEGDIST && fabs(dist) > MLN...SEGDIST &&
seg-list < fabs(dist) && seg-length > MDROTý_SEG)

seg~jndex = i
seg-dist = dist;

/*end of for loop *

/* Print out the segment that was chosen *
r-.printfC('12 The closest segment to use is:")
rprintf('\12 hx= ");
r...printfr(segment data~log[SEGFILE].array[seg....ndex].headx, 3);
r...printf(" by =)
r-pnntfr(segment data~log[SEG..YLE].array[seg..index].heady, 3);
r...pnntf(" tx = 4)
r...prmtfr(segment-data~logIISEGYLFLE].array[segjindex].taiix, 3);
rprintf("\12 ty=
r-pnntfr(segment-data~log[SEGYFILE].affay~seg.indexJ.taily, 3);
rý_pnntf(" length =)

r-pdntfr(segment data-log[SEGY-ILEI.array[seg-jndex].length, 3);
r..pnintf(" Phi =")
seg-alpha, = (segment datajlog[SEGYFILE] .array[seg.index].alpha);
r....prntfr(r2d(seg...alpha), 2);

headx = segmenLdatajlog[SEG.FI]LE] .array[seg...ndex].headx;
heady = segmentjtatajog[SEGYLLME].array[seg-.index].heady;
tailx = segment..datajlog[SEG FL]LE].array[seg-index].tailx;
taily = segment -data - og[SEGLFIDLE].array[seg.index].taily;
seg..orientation = atan2(taily - heady, tailx - headx);

r-printf(" Seg orientation =")
r..printfr(r2d(seg..orientation), 2);
if (seg-orientation < -BPI)
seg-orientation = PI + seg-orientation;

r-printf('\12 Rotation Amount =")
rprintfr(r2d(seg~orientation - norm(vehicle.t)), 2);

rotate(seg...orientation - norm(vehicle.t));
wait-timer(1000);
/* rotate to a position parallel to the closest segment *

def~configuration(.0., 0.0, 0.0, 0.0, &frst);
set~rob0(&first);
(*ps) = first;

) /* end find orthogonal orientation *

347

FUNCTION: wall_follower
PARAMETERS: path
PURPOSE: follows the right hand wall in a hallway
for automated cartography
RETURNS: void
CALLED BY: user
CALLS:
COMMENTS: 29 June 93 - Dave MacPherson
TASK: Level 0

void circle_forsegmentsO{
CONFIGURATION circle;

r..printfCM2 No segments detected during rotation.");
rprintf('\12 Need to circle for segments.");
def_configuration(vehicle.x, vehicle.y, vehicle.t, 0.01, &circle);
line(&circle);

)/* end circle_for._segments */

FUNCTION: wall_follower
PARAMETERS: path
PURPOSE: follows the right hand wall in a hallway
for automated cartography
RETURNS: void
CALLED BY: user
CALLS:
COMMENTS: 29 June 93 - Dave MacPherson
TASK: Level 0

void wallfollower(path)
CONFIGURATION path;(

LINE_SEG *rightsideseg;
LINESEG *leftside..seg;
double right.theta;
double leftitheta;
double theta;
CONFIGURATION Qodo, Qact;
CONFIGURATION second, third;
CONFIGURATION current;
double right-seg-range;
double left.seg_range;
double obstaclerange;
double newx, new_y, newt;
int count = 0;

348

start-segraent(RIGHMh;
star-segment(LEFTF);
line(&path);
r-..printfCN12 Entering configuration is x =>")
r..printfr(path.x, 3);
r...pintf(" y => ");
r...printfr(path.y. 3);
r...printfe' theta =>")
r...printfr(jpath.t, 3);
r...printfC' kappa =>")
r...printfr(path.k, 3);

I* correct robot path based the right hand wall/
while(count < 4) /* stop after 4 turns *
I
if (sonar(FRONTL) < 120.0 && sonar(FRONTL) > 9.3)
t
r...printf('\12 Entered the left turn part.");
obstacle-range = sonar(FRONTL);

def_configuration(vehicle.x + (obstaclesrange - 50.0) *cos(vehicle.t),

vehicle.y + (obstacle....ange - 50.0) * smn(vehicle.t),
path t + BPI,
0.0, &Path);
line(&path);
start-segment(RIGHTF);
while (fabs(path.t - vehicle.t) > 0.01);
++Icount;

else if (get-purrent-segment(RIGHTF) != NULL
&& get-current~segment(RIGHTF)->length > INý_WALL.SEG
&& sonar(RLIGHTF) > 9.3)

right-side-seg = get-current.-.segment(RIGHTF);
right-Segjange = sonar(RIGHTF);

right-side-seg = get-purrent..segment(R[GHTF);
r...printf('\12 Right side line segment length =)
r...printfr(rigbtLside-seg->length, 2);
right-Seg-range = sonar(RIGHTF);
r...printf('\12 Right side line segment range =)
r-.printfr(righLseg-range, 2);

right -theta = atan2(righLside...seg->taily -
right...side..seg->heady,
rightLside..seg->tailx - right side-seg->headx);
r...printf('\12 Right side line segment orientation =)
r-.printft(right...theta, 2);

get-robO(&Qodo);
if(fabs(norm(.path.t) - 0.0) < 0. 1)

349

new...x = Qodo~x
newsy = Qodo.y + (righuseg-range - WALLDISTANCE);
new-t = Qodo.t - righ~thfeta;
r-.pdintfCM 2 theta = 0 Correction.");

else if(fabs(norm(path.t) - HPI) < 0.1)

new...x = Qodo.x - (rightsegjrange - WALL_DISTANCE);
new-y = Qodo.y-,
new-t = Qodo.t - normn(righ~theta - Qodo.t);
r-.printfCN12 theta = HPI Correction.");

else if(fabs(norm(path.t) + HPI) < 0. 1)

new...x = Qodo.x + (righLseg-range - WALLDISTANCE);
new-y = Qodo.y;
newjt = path.t - norm(righLtheta -, path.t);
r-printf('M2 theta = minus HPI Correction.");

else if(fabs(norm(path.t) + PI) < 0. 111
fabs(norm(path.t) - P1) < 0.1)
I
new-x = Qodox;
new-y = Qodo.y - (right-segjrange - WALL_-DISTANCE);
if (rightjtheta < 0.0)
new-t = -right...theta;
else
newjt = Qodo.t;
r-p~rintf('\12 theta = PI Correction.");

defsonfiguration(new-x, new..y, new..3, 0.0, &Qact);

set...rob0(&Qact);
r-printf('\12 Right Wall Correction => x=
rprintfr(new..x, 3);
r....printf(" y = 1)
r..printfr(new...y, 3);
r...printf(" t = 4)
r...printfr(new..S, 3);
if(fabs(norm(path.t) - 0.0) -<0. 111
fabs(norm(path.t) + PI) < 0. 111 fabs(norni(path.t) - PI) < 0. 1)
t
while(fabs(path.y - vehicle.y) > 0.5);
wait-ýtimner(100);

else
wait~tmer(WAIT);
reporL~configurationo;
)/* end else if *

350

else if (sonar(RIGHTF) < 0.0)
I
start_segment(RIGHTF);
fmish-segment(RIGHTF);

report-configurationo;
wait_timer(100);
}/* end while */

}/* wall_follower */

FUNCTION: followhallway
PARAMETERS: ps
PURPOSE: follows the Sp fifth floor hallway
for automated cartography
RETURNS: void
CALLED BY: user
CALLS:
COMMENTS: 27 May 93 - Dave MacPherson
TASK: Level 0

void followhallway(ps)
CONFIGURATION *ps;{

LINESEG *right side-seg;
LINESEG *left-side-seg;
double right.theta;
double leftjtheta;
double theta;
CONFIGURATION second, third;
double right-seg.range;
double leftsegrange;

/* void bothseg_correctiono; */

start_segment(RIGHTF);
start_segment(LEFTF);
lie(&ps);
r__printfC'\12 Entering configuration is x => ");
r.printfr(ps->x, 3);
r..printf(" y => ");
r.printfr(ps->y, 3);
rprintf(" theta => ");
rpnntfr(ps->t, 3);
r...printf(" kappa => ");
r..printfr(ps->k, 3);

/* correct robot path once based upon hallway walls *//*
while((sonar(FRONTL) < 9.3 II sonar(FRONTL) > 100.0) &&

351

(sonar(FRONTR) < 9.3 11 sonar(FRONTR) > 100.0))

while(sonar(FRONTL) < 9.3 11 sonar(FRONTL) > 150.0)

if (get-current-segment(RIGHTF) 1=NULL
&& getcturrent-segment(LEFTF ! NULL)

righLside...seg = get-cunrrentsegment(RIGHTF);
right.seg-range = sonar(RIGHTF);
left-side-seg = ge~current-segment(LEFMF;
left-seg-range = sonar(LEFMF;

if (sonar(RIGHTF) > 9.3 && sonar(LEFMF > 9.3 &&
righLside-seg->length > MINWALLSEQ &&
left~side_seg->length > MIN_-WALLSEG)
I
both..seg~sorrection(righLside..seg, right..seg-range,
left~side_seg, left...seg-range);
) /* end if */
else if (get current~segment(R1GHTF) != NULL &&
righLside....sg->length > MNfqWALL_-SEG)
I
righ~side-....g = get currentuegment(RIGHTF);
r...printf('\12 Right side line segment length =)
r...printfr(right..side...seg->length, 2);
right~seg-range = sonar(RLGHTF);
r..printf('\12 Right side line segment range =)
t~printfr(right..seg...range, 2);

if (sonar(RIGHTF) > 9.3)
f
righ~theta = atan2(right -side...seg->taily -
righLside...seg->heady,
right..sideý_seg->tailx - rightside...seg->headx);
r...prntf('\12 Right side line segment orientation =)
r...printfir(right..theta, 2);

get-rob0(&second);
def-configuration(second.x,
rightLseg-range - 100.0,
-righ~theta, 0.0 , &third);

se~rob0(&third);
tý-printf("\12 Right Wall Correction =>")
r...printfr(rightctheta, 3);
wait-timer(WAlT;
report~configurationO;
) /* end inner if *
else
I
starLsegment(RIGHTF;

352

/0 end else if/

else if (gcLcurrenLsegment(LEFTF != NULL &&
left..side...scg->lcngth > MINWALL...SEG)
I
left-side..seg = get currenLsegment(LEFTF;
r...printfCN12 Left side line segment length =)

r...prntfr(lefcside-seg->length, 2);
left-segjrange = sonar(LEFT);
r...printf('\12 Left side line segment range =)

r-printfr(left...seg-range, 2);

if (sonar(LEFTF) > 9.3)

getjob0(&p2);
left-theta = atan2(left-side...seg->taily - left...side...seg->heady,
left_side...seg->taix - left~side...scg->headx);
r..printf('\12 Left side line segment orientation P");
r...printfr(left-theta, 2);

def-configuration(p2.x,
223.0 - lefLseg-range,
-left-ftheta, 0.0, ,p)

set-robo(&p2);
r~printf('M2 Left Wall Correction =>")
r-.printfr(lefLtheta, 3);
wait~timer(WA1T;
report-configurationo;

else
I
start-segment(LEFTF);

reportsonfigurationO;
wait~timer(l00);
) /"' end while */
r-.printfCNM2 Forward Looking Sonar. =)

r-printfr(sonar(FRONTL), 2);
/*P end follow...hallway *

FUNCTION: both-seg-correctiono;
PARAMETERS: rightLside..seg, right~segjsange
leftuide...seg, left..seg...range

353

PURPOSE: corrects robot configuration to align to
the center of the hallway
RETURNS: void
CALLED BY: user
CALLS:
COMMENTS: 27 May 93 - Dave MacPherson
TASK: Level 0

void both-.seg-correction(right side_seg, right-seg-jange,
left-side-seg, lefLseg-..range)

LINESEG *right..side..seg;
double righLseg-range;
LINE-..SEC *lefcside..seg;
double left...seg...range;

double righLtheta;
double left-theta;
double theta;
CONFIGURATION p2;

r-printf('M2 Use both segments for Correction.");
rightLtheta = atan2(righLside...seg->taily -
righLside-..seg->heady,
right-side...seg->tailx - right~side...seg->headx);
rý-printf('M2 Right side line segment orientation =)

rý-printfr(rightjheta, 2);

left~theta = atan2(left..side~seg->taily -

left~side-seg->heady,
left~side-seg->tailx - left~side-seg->headx);
rý-printf('M12 Left side line segment orientation =)
rý-printfr(lefLtheta, 2);

theta = (right~theta + left~theta) / 2.0;
gecrobO(&p2);

def~sonfiguration(p2.x,
rightLseg-range - 100.0,
vehicle.t - theta, 0.0 , p)

seLrobO(&p2);
rý-printf('\12 Both Wall Correction => "6);
rý-printfr(theta,, 3);
while(fabs(vehicle.y) > 1.0);

1* wait~timer(WAIT); */
reporLconfigurationo;

) * both-.segscorrection()*

FUNCTIlON: translational-scanning

354

PARAMETERS: ps
PURPOSE: Scans the straight line wall segment
surface for automated cartography
RETURNS: void
CALLED BY: user
CALLS:
COMMENTS: 27 May 93 - Dave MacPherson
TASK: Level 0

void translational_scanning(ps)
CONFIGURATION ps;4

LINESEG *right-sideseg;
LINESEG *left.side-seg;
CONFIGURATION p2;
intn =7;
int m =4;

line(&ps);
while (sonar(0) > 100.0 11 sonar(0) < MIN_SONAR_RANGE)
I
/* code to steer robot down the hallway */
wait.timer(500);
r._printf('\12 Use right side line segment for steering");
right_.sideseg = get_currentLsegment(7);
r-printf('C12 Right side line segment orientation =");
r__printfr(r2d(right-sideseg->alpha + HPI), 2);
r..printf('\12 Right side line segment range =");
r._printfr(sonar(7), 2);
report_configurationo;
if (hf-bs(right._side.seg->alpha + HPI - ps.t) < 0.2)
1
getrobO(&p2);
def_configuration(p2.x, p2.y, right-side-seg->alpha + HPI, 0.0, &p2);
skip);
line(&p2);
r._printf("\12 Applying a correction using right wall.");
waittimer(500);I

/*
r-printf('"12 Left side line segment orientation =");
left.side-seg = getscurrentsegment(4);
r-printfr(r2d(left side_seg->alpha), 2);
*/

r._printf('\12Detected obstactle less than 100 cm ahead");
report_configurationo;

355

if (sonar(m) < MIN_SONARRANGE && sonar(n) < MINSONAR_RANGE)
I
r_printf('\12 Under range on both side sensors");
turnjright(;
) else if (sonar(m) < MN_SONARRANGE && sonar(n) > MIN_SONAR_-

RANGE)
turnjefto;
else if (sonar(m) > MIN_SONARRANGE && sonar(n) > MIN_SONAR_-

RANGE)
I
if (sonar(m) > sonar(n))
turn-lefto(;
else
turn-jighto;
I
if (sonar(n) < MIN_SONARRANGE && sonar(m) > MINSONARRANGE)
turnrighto;

} /* end scan */

FUNCTION: turn_right(
PARAMETERS: none
PURPOSE: Turns the robot right 50.0 cm from its current
configuration.
RETURNS: void
CALLED BY: user
CALLS:
COMMENTS: 27 June 93 - Dave MacPherson
TASK: Level 0

void turn_righto4
CONFIGURATION second;

r_printf('\12 Entered the turn right function");
get-rob0(&second);
def-configuration(second.x + 50.0 * cos(second.t),
second.y + 50.0 * sin(second.t),
second.t - HPI, 0.0, &second);

line(&second);
while (vehicle.t > second.t);
/* end turnrightO */

FUNCTION: blineturn..ight0
PARAMETERS: none
PURPOSE: Turns the robot right using a bline function.
RETURNS: void
CALLED BY: user

356

CALLS: none
COMMENTS: 27 June 93 - Dave MacPherson
TASK: Level 0

void blineturnright0(
CONFIGURATION second;

r._printf(',12 Entered the bline turn right function");
get-robO(&second);
def_configuration(second.x + 50.0 * cos(second.t),
second.y + 50.0 * sin(second.t) - 75.0,
second.t - HPI, 0.0, &second);

bline(&second);
while (vehicle.t > second.t);
/* end blineturnrighto */

FUNCTION: turnjeft0
PARAMETERS: none
PURPOSE: Turns the robot left 50.0 cm from its current
configuration.
RETURNS: void
CALLED BY: user
CALLS: none
COMMENTS: 27 June 93 - Dave MacPherson
TASK: Level 0

void turn-left0

CONFIGURATION second;

r_printf('l 2 Entered the turn left function");
get-rob0(&second);
defconfiguration(second.x + 50.0 * cos(second.t),
second.y + 50.0 * sin(second.t),
second.t + HPI, 0.0, &second);

line(&second);
while (vehicle.t < second.t);
/* end turnmleft0 */

FUNCTION: initialize()
PARAMETERS: CONFIGURATION ps
PURPOSE: Starts the location trace function,
enables all appropriate sonars,
gets the robot's initail speed from the user
sets up all sonar logging and linear fitting functions.

357

RETURNS: void
CALLED BY: user
CALLS:
COMMENTS: 27 June 93 - Dave MacPherson
TASK: Level 0

void initialize(first)
CONFIGURATION *first;{

double s = 10.0;

bufferloc = indexloc = malloc(300000);
bufloc = indxloc = (double *) malloc(60000);
locjtron(2, Ox3f, 30);
enable_sonar(FRONTL);
enable.sonar(BACKL);
enablesonar(BACKR);
enablesonar(FRONTR);

/* getrobotspeedo; */
speed(15.0);
size-const(s);

/* get_initial-positiono; */
set-rob(&first);
r_printf(•M2 In the initializeo function.");
report-configurationo;
enable_sonar(LEFFF);
set._loginterval(LEFTF, 1);
enablesonar(RIGHTF);
setlog-interval(RIGHTF, 1);
enablelinearjfitting(LEFTF);
enable_linear_fitting(RIGHTF);
enable-data logging(LEFTF, 2, SEGFILE);
enabledata-logging(RIGHTF, 2, 1);

}/* end initializeo */

FUNCTION: cleanupO
PARAMETERS: none
PURPOSE: Disables all sonars
Ends all segments
Disables data logging
Ends the location trace function
Turns off the robot wheel motors
Tranfers line segment data back to the host computer
Transfers robot trajectory data back to the host computer
RETURNS: void
CALLED BY: user
CALLS:

358

COMMENTS: 27 June 93 - Dave MacPherson
TASK: Level 0

void cleanup(PW)
Map,...orld *PW;

r-printf('Nl2 Performiing the cleanup function");
disable~sonar(LEFTF);
disable~sonar(RIGHTF);
finish~segment(LEFTF);
finish-segmfent(RIGHTh);
disablejlinearjfitting(LEFTF);
disablec_linear._fitting(RGHTF);
disable-data-logging(LEFTF, 2);
disablejdatajlogging(RIGHTF, 2);
boc-toffO

motorý-on = NO;,
xferý_world_to_host(PW, "world.l2July93");
xferý_segmnent-tjo.host(1, "segment7. l2uly93");
xferý_segmentto~host(0, "segment4. 12July93");
loc-tdump("loc-dumnp. 1 July9-3");

I/*' cleanupo *

359

LIST OF REFERENCES

[AAAI 92]"AAAI 1992 Fall Symposium Series Reports," AI Magazine, v. 14(1), p. 10,
1993.

[AAAI 92a] "Robot Competition and Exhibition Entries," Al Review, pp. A32-A48, July,
1992.

[Abresch 92]Abresch, R., Path Tracking Using Simple Planar Curves, Master's Thesis,
Naval Postgraduate School, Monterey, California, March 1992.

[Airey 90]Airey, J., Rohlf, J., and Brooks, F., "Towards Image Realism With Interactive
Update Rates in Complex Virtual Building Environments," Computer Graph-
ics, v. 24(2), pp. 68-87, March, 1990.

[Alexander 93]Alexander, J., Motion Control and Obstacle Avoidance for Automobiles Ve-
hicles Using Simple Planar Curves, Master's Thesis, Naval Postgraduate
School, Monterey, California, March, 1993.

[Arkin 891 Arkin, R., "Navigation Path Planning for a Vision-Based Mobile Robot," Ro-
botica, v. 7, pp. 49-63, 1989.

[Arkin 90]Arkin, R., and Murphy, R., "Autonomous Navigation in a Manufacturing Envi-
ronment," IEEE Transaction on Robotics and Automation, v. 6(4), pp. 445-454,
August, 1990.

[Arkin 93]Arkin, R., and Grupen, R., "Behavior-Based Reactive Robotic Systems," IEEE
Tutorial T4, pp. 1-34, May, 1993.

[Asada 90] Asada, M., "Map Building for a Mobile Robot from Sensory Data," Proceed-
ings of the IEEE Conference on Robotics and Automation, pp. 312-322, May,
1990.

[Bares 89] Bares, J., et al., "Ambler: An Autonomous Rover for Planetary Exploration",
Computer, v 22(6), pp. 18-26, June, 1989.

[Barshan 90]Barshan, B., and Kuc, R., "Differentiating Sonar Reflections from Comers
and Planes by Employing Intelligent Sonar," IEEE Transaction on Pattern
Analysis and Machine Intelligence, v. 12(6), pp. 560-569, June, 1990.

[Basye 921 Basye, K., "An Automata-Based Approach to Robotic Map Learning," AAAI
Fall Symposium on the Applications of Artificial Intelligence to Real World Ro-
bots, pp. 1-4, 1992.

[Beckerman 90]Beckerman, M., "Treatment of Systematic Errors in the Processing of
Wide-Angle Sonar Sensor Data for Robotic Navigation," IEEE Transaction on
Robotics and Automation, v. 6(2), pp. 137-145, April, 1990.

360

[Bloch 87] Bloch, N., Abstract Algebra with Applic-'tions, pp. 1-9, Prentice Hall, Inc.,
1987.

[Borenstein 90]Borenstein, J., and Koren, Y., "Real-Time Obstacle Avoidance for Fast
Mobile Robots in Cluttered Environments," Proceedings of the IEEE Confer-
ence on Robotics and Automation, pp. 572-577, 1990.

[Borenstein 91]Borenstein, J., and Koren, Y., "The Vector Field Histogram: Fast Obstacle
Avoidance for Mobile Robots," IEEE Journal of Robotics and Automation, v.
7(3), pp. 278-288, 1991.

[Borenstein 92]Borenstein, J., and Koren, Y., "Noise Rejection for Ultrasonic Sensors in
Mobile Robot Applications," Proceedings of the IEEE Conference on Robotics
and Automation, pp. 1727-1732, May, 1992.

[Bowditch 84]Bowditch, N., American Practical Navigator, pp. 1-58, Defense Mapping
Agency, 1984.

[Brogan 85]Brogan, W. L., Modern Control Theory, pp. 23-25, 2d ed., Prentice-Hall, 1985.

[Brooks 83]Brooks, R., "Solving the Find-Path Problem by Good Representation of Free
Space," IEEE Trans. on Systems, Man, and Cybernetics, v. SMC-13(3), 1983.

[Brooks 86] Brooks, R., "A Layered Intelligent Control System for a Mobile Robot," Ro-
botics Research, pp. 365-372, Edited by Fangeras and Girald, MIT Press, 1986.

[Brooks 86a]Brooks, R., "A Robust Layered Control System for a Mobile Robot," IEEE
Transaction on Robotics and Automation, pp. 14-21, March, 1986.

[Brooks 89]Brooks, R., "A Robot that Walks; Emergent Behavior from Carefully Evolved
Networks," Proceedings of the IEEE Conference on Robotics and Automation,
pp. 692-696, 1989.

[Brooks 89a] Brooks, R., "Robot Beings," Proceedings of the IEEE International Work-
shop on Intelligent Robots and Systems, pp. 2-12, 1989.

[Brooks 90]Brooks, R., "Elephants Don't Play Chess," Robotics and Autonomous Systems,
v. 6, pp. 3-15, 1990.

[Brooks 90a] Brooks, R,, Massachusetts Institute of Technology Artificial Intelligence
Laboratory, A. 1. Memo 1227, "The Behavior Language; User's Guide," pp. 1-
13, April, 1990.

[Brooks 91] Brooks, R., "Intelligence Without Representation," Artificial Intelligence, v.
47(1-3), pp. 139-159, January, 1991.

[Brooks 93]Lecture given by Rodney Brooks at the NATO-ASI Workshop on the Biology
and Technology of Intelligent Autonomous Agents, Levico Terme, Italy, 1-12
March, 1993.

[Brown 85]Brown, R., et al., "Map-Making and Localization for Mobile Robots Using
Shape Metrics," IEEE Journal on Robotics and Automation, v. RA-l(4), pp.

361

191-205, December, 1985.

[Brown 92]Brown, M., "Feature Extraction Techniques for Recognizing Solid Objects
with Ultrasonic Range Sensors," AAA Fall Symposium on the Applications of
Artificial Intelligence to Real World Robots, pp. 10-17, 1992.

[Brutzman 92]Brutzman, D., NPS AUV INTEGRATED SIMULATOR, Master's Thesis,
Naval Postgraduate School, Monterey, California, March, 1992.

[Brutzman 92a] Brutzman, D., Compton, M., and Kanayama, Y., "Autonomous Sonar
Classification using Expert Systems," Proceedings of the IEEE Oceanic Engi-
neering Society Conference, p. 5, October, 1992.

[Busnel 79]Busnel, R., and Fish, J., International Interdisciplinary Symposium on Animal
Sonar Systems, pp. 355-380, 2nd Ed., Plenum Press, 1979.

[Byrnes 93]Byrnes, R., The Rational Behavior Model: A Multi-Paradigm, Tri-Level Soft-
ware Architecture for Control of Autonomous Vehicles, Doctoral Dissertation,
Naval Postgraduate School, Monterey, California, March, 1993.

[Canny 88]Canny, J., and Donald, B., "Simplified Voronoi Diagram," Discrete and Com-
putational Geometry, v. 3(3), pp. 219-236, 1988.

[Carlin 60]Carlin, B., Ultrasonics, 2nd Ed., pp. 1-37, McGraw-Hill, Inc., 1960.

[Chatial 82]Chatial, R., "Path Planning and Environmental Learning in a Mobile Robot
System," Proc. ECAI, pp. 3-5, August, 1982.

[Compton 92]Compton, M., Minefield Search and Object Recognition for Autonomous Un-
derwater Vehicles, Master's Thesis, Naval Postgraduate School, Monterey,
California, March, 1992.

[Congdon 93] Congdon, C., et. al., "CARMEL Versus FLAKEY - A Comparison of Two
Winners," Al Magazine, v. 14(1), pp. 49-56, 1993.

[Connell 92]Connell, J., "SSS: A Hybrid Architecture Applied to Robot Navigation," Pro-
ceedings of the IEEE Conference on Robotics and Automation, pp. 2719-2724,
1992.

[Connell 92a]Connell, J., "Extending the Navigation Metaphor to Other Domains," AAAI
Fall Symposium on the Applications of Artificial Intelligence to Real World Ro-
bots, pp. 29-35, 1992.

[Cox 89] Cox, I., "Blanche: Position Estimation for an Autonomous Mobile Robot," Pro-
ceedings of the IEEE/RSJ International Workshop on Robots and Systems
(IROS '89), pp. 432-439, 1989.

[Cox 90] Cox, I., and Wilfong, G., Autonomous Mobile Robots, Springer-Verlag, pp. 191-
197, 1990.

[Cox 911 Cox, I., "Blanche - An Experiment in Guidance and Navigation of an Autono-
mous Robot Vehicle," IEEE Transaction on Robotics and Automation, v. 7(2),

362

pp. 193-204, April, 1991.

[Cracknell 80]Cracknell, A., Ultrasonics, pp. 11-37, Wykeham, Publications, LTD, 1980.

[Crowley 85]Crowley, J., "Dynamic World Modeling for an Intelligent Mobile Robot Us-
ing a Rotating Ultra-Sonic Ranging Device," Proceedings of the IEEE Confer-
ence on Robotics and Automation, pp. 128-135, March, 1985.

[Crowley 85a] Crowley, J., "Navigation for an Intelligent Mobile Robot," IEEE Journal of
Robotics and Automation, v. RA-1(1), pp. 31-41, March, 1985.

[Crowley 86] Crowley, J., "Representation and Maintenance of a Composite Surface Mod-
el," Proceedings of the IEEE Conference on Robotics and Automation, pp.
1455-1461, 1986.

[Crowley 89]Crowley, J., "World Modeling and Position Estimation using Ultrasonic
Ranging," Proceedings of the IEEE Conference on Robotics and Automation,
pp. 674-680, 14-19 May, 1989.

[Curran 93] Curran, A., and Kyriakopoulos, K., "Sensor-Based Self-Localization for
Wheeled Mobile Robots," Proceedings of the IEEE Conference on Robotics
and Automation, v. 1, pp. 8-13, 1993.

[Daily 88] Daily, M., et al., "Autonomous Cross-Country Navigation With The ALV,"
Proceedings of the IEEE Conference on Robotics and Automation, pp. 718-726,
1988.

[Dario 86] Dario, P., Sensors and Sensory Systems for Advanced Robots, pp. 128-129,
Springer-Verlag, 1986.

[Davis 93] Davis, R, Shrobe, H., and Szolovits, P., "What is Knowledge Representation?,"
Al Magazine, v. 14(1), pp. 17-30, 1993.

[Dean 93] Dean, T., and Bonasso, R., "1992 AAAI Robot Exhibition and Competition,"
Al Magazine, v. 14(1), pp. 35-48, 1993.

[Dolezal 87]Dolezal, M., A Simulation Study of a Speed Control System for Autonomous
On-Road Operation ofAutonomous Vehicles, Master's Thesis, Naval Postgrad-
uate School, Monterey, California, June, 1987.

[Drumheller 87]Drumheller, M., "Mobile Robot Localization Using Sonar," IEEE Trans-
action on Pattern Analysis and Machine Intelligence, v. PAMI-9(2), pp. 325-
332, March, 1987.

[Dudek 91] Dudek, G., Jenkin, M., Milios, E., and Wilkes, D., "Robotic Exploration as
Graph Construction," IEEE Transaction on Robotics and Automation, v. 7(6),
pp. 859-869, December, 1991.

[Dutton 78]Maloney, E., Dutton's Navigation and Piloting, pp. 1-6, Naval Institute Press,
1978.

[Elfes 87] Elfes, A., "Sonar-Based Real-World Mapping and Navigation," IEEE Journal

363

ofRobotics and Automation, v. RA-3, no. 3, pp. 149-165, 1987.

[Elfes 901 Elfes, A., "Occupancy Grids: A Stochastic Spatial Representation for Active
Robot Perception," Proceedings of the Sixth Conf. on Uncertainty in Al, July,
1990.

[Engelson 92]Engelson, S., and McDermott, D., "Error Correction in Mobile Robot Map
Learning," Proceedings of the IEEE Conference on Robotics and Automation,
pp. 2555, May, 1992.

[Engelson 92a]Engelson, S. and McDermott, D., "Maps Considered As Adaptive Planning
Resource," AAAI Fall Symposium on the Applications of Artificial Intelligence
to Real World Robots, pp. 36-44, 1992.

[Engelmore 88]Engelmore, R., and Morgan, T., Blackboard Systems, pp. 159-188, Addi-
son Welsey, 1988.

[Everett 82]Everett, H., A Microprocessor Controlled Autonomous Sentry Robot, Master's
Thesis, Naval Postgraduate School, Monterey, California, October, 1982.

[Everett 89]Naval Ocean Systems Command, Technical Document 1450, Robartll - A Ro-
botic Security Testbed, by H. Everett, and G. Gilbreath, p. 17, January 1989.

[Everett 90]Naval Ocean Systems Command, Technical Document 1835, Modeling the
Environment of a Mobile Security Robot, by H. Everett, G. Gilbreath, and J.
Nieusma, p. 3, June 1990.

[Everett 92]Naval Command, Control and Ocean Surveillance Center, Technical Note
1194, Update 1, Survey of Collision Avoidance and Ranging Sensors for Mobile
Robots, by Everett, H., and Stitz, E., pp. 33-56, December, 1992.

[Everett 93] Naval Ocean Systems Command, Technical Note 1710, Rev. 1, Multiple Ro-
bot Host Architecture, H. Everett, R. Laird, G. Gilbreath, and T. Heath-Pastore,
p. 3, June 1993.

[Fish 93] Fish, R., An Expert System for High Level Motion Control for an Autono-
mous Mobile Robot, Master's Thesis, Naval Postgraduate School, Monterey,
California, June, 1993.

[Fryxell 88]Fryxell, R., "Navigation Planning Using Quadtrees," Mobile Robots II, v. 852,
pp. 256-261, Wolfe, W., Chun, W., Eds., Proc. SPIE, 1988.

[Fu 87] Fu, K., Gonzalez, R., and Lee, C., Robotics Control, Sensing, Vision, and Intel-
ligence, pp. 12-76, McGraw-Hill, 1987.

[Gat 91] Gat, E., Reliable Goal-Directed Reactive Control of Autonomous Mobile Ro-
bots, Doctoral Dissertation, Virginia Polytechnic Institute, Blacksburg, VA.,
pp. 2-23, April, 1991.

[Gat 91a] Gat, E., "Robust Low-Computation Sensor-Driven Control for Task-Directed
Navigation," Proceedings of the IEEE Conference on Robotics and Automa-

364

tion, pp. 2484-2489, April, 1991.

[Gevarter 85]Gevarter, W. B., Intelligent Machines: An Introductory Perspective of Artifi-
cial Intelligence and Robotics, pp. 23-45, Prentice-Hall, 1985.

[Giralt 79]Giralt, G., Sobek, R., and Chatila, R., "A Multi-Level Planning and Navigation
System for a Mobile Robot A First Approach to HILARE," Proc. 6th Int Conf
Artificial Intelligence, pp. 335-337, 1979.

[Gould 88]Gould, R., Graph Theory, p.3 , Benjamin/Cummings Inc., 1988.

[Hamming 83]Hamming, R., Digital Filters, 2nd. Ed., pp. 6-9, Prentice-Hall, 1983.

[Hinkel 88]Hinkel, R., Knierieman, T., and von Puttkamer, E., "Mobot-1Il: an Autonomous
Mobile Robot for Indoor Applications," International Symposium and Exhibi-
tion on Robots, pp. 233-239, 1990.

[Holenstein 92]Holenstein, A., Muller, M., and Badreddin, E., "Mobile Robot Localization
in Structured Environment Cluttered with Obstacles," Proceedings of the IEEE
Conference on Robotics and Automation, pp. 2576, May, 1992.

[Hubert 88] Hubert, M., Kanade, T., and Kweon, I., "3-D Vision Techniques for Autono-
mous Vehicles," NSF Range Image Understanding Workshop, pp. 273-337,
1988.

[Hubert 92] Hubert, M., et al., "PlLn Recognition for Real-World Autonomous Robots:
Work in Progress," AAAJ Fall Symposium on the Applications of Artificial In-
telligence to Real World Robots, pp. 68-73, 1992.

[Hutchinson 90]Hutchinson, S. A. and Kak, A. C., "Spar: A Planner That Satisfies Opera-
tional and Geometric Goals in Uncertain Environments," Al Magazine, v. 11 (1),
pp. 30-61, Spring 1990,

[Hwang 92] Hwang, Y. and Ahuja, N., "Gross Motion Planning - A Survey," ACM Com-
puting Surveys, pp. 219-292, September, 1992.

[Ingold 92]Ingold, B., Key Feature Identification from Image Profile Segments Using a
High Frequency Sonar, Master's Thesis, Naval Postgraduate School, Monterey,
California, December, 1992.

[Ironics 91]Ironics Inc., Sparc User's Manual, Ironics Inc, pp. 24-32, 1991.

[Iyengar 91]Iyengar, S., and Elfes, A., Autonomous Mobile Robots, v. 1, p. 5, IEEE Com-
puter Society Press, 1991.

[Jarvis 93] Jarvis, R., "A Perspective on Range Finding Techniques for Computer Vision,"
Proceedings of the IEEE Conference on Robotics and Automation, pp. 10 17-
1024, May, 1993.

[Johnson 92]Johnson, E. and Reichard, K., X Window Applications Programming, 2nd. ed.,
MIS Press, 1992.

[Kanayama 83]Kanayama,Y., "Concurrent Programming of Intelligent Robots," Proceed-

365

ings of the Eighth Int. Conf on Artificial Intelligence, pp. 834-838, August,
1983.

[Kanayama 86]Kanayama,Y., and Norihisa, M., "Trajectory Generation for Mobile Ro-
bots," Robotics Research, pp. 333-340, MIT Press, 1986.

[Kanayama 88]KanayamaY., and Yuta, B., "Vehicle Path Specification by a Sequence of
Straight Lines," IEEE Journal on Robotics and Automation, v. 4(3), pp. 265-
276, June, 1988.

[Kanayama 89]Technical Report of the University of California, Santa Barbara, TRCS 89-
06, Spatial Learning by an Autonomous Mobile Robot with Ultrasonic Sensors,
by Y. Kanayama and T. Noguchi, pp. 1-13, 1989.

[Kanayama 89a]Kanayama,Y., and Hartman, B., "Smooth Local Path Planning for Auton-
omous Vehicles," Proceedings of the IEEE Conference on Robotics and Auto-
mation, pp. 1265-1270, 1989.

[Kanayama 90]Kanayama, Y., Kimura, Y., Miyazaki, F., and Noguchi, T., "A Stable
Tracking Control Method for an Autonomous Mobile Robot," Proceedings of
the IEEE Conference on Robotics and Automation, pp. 384-389, May, 1990.

[Kanayama 90a]Technical Report of Naval Postgraduate School, Locomotion Functions in
the Mobile Robot Language, MML, Y. Kanayama and M. Onishi, pp. 1-13,
1990.

[Kanayama 91]Kanayama, Y., "Introduction to Spatial Reasoning," Lecture Notes of the
Advanced Robotics, Dept. of Computer Science, Naval Postgraduate School,
Fall Quarter, 1991.

[Kanayama 91a]Kanayama, Y., and Onishi, M., "Locomotion Functions in the Mobile Ro-
bot Language, MML," Proceedings of the IEEE Conference on Robotics and
Automation, pp. 1110-1115, 1991.

[Kanayama 93] Kanayama, Y., MacPherson, D., and Krahn, G., "Vehicle Motion Control
and Analysis Using 2D Transformations," Proceedings of the IEEE Conference
on Robotics and Automation, pp. 3-13 - 3-18, 1993.

[Kinsler 82] Kinsler, L., et. al., Fundamentals of Acoustics, 3rd ed., pp. 98-123, Wiley,
1982.

[Kosaka 93]Kosaka, A., Meng, M., and Kak, A., "Vision Guided Mobile Robot Navigation
Using Retroactive Updating of Position Uncertainty," Proceedings of the IEEE
Conference on Robotics and Automation, v. 2, pp. 1-7, 1993.

[Krotkov 89]Krotkov, E., "Mobile Robot Localization Using a Single Image," Proceedings
of the IEEE Conference on Robotics and Automation, pp. 978-983, 1989.

[Kuan 85] Kuan, D., Zamiska, J., and Brooks, R., "Natural Decomposition of Free Space
for Path Planning," Proceedings of the IEEE Conference on Robotics and Au-
tomation, pp. 168-173, 1985.

366

[Kuc 87] Kuc, R., and Siegel, M., "Physically Based Simulation Model for Acoustic Sen-
sor Robot Navigation," IEEE Transaction on Pattern Analysis and Machine In-
telligence, v. 9(6), pp. 766-778, November, 1987.

[Kuc 90] Kuc, R., "A Spatial Sampling Criterion for Sonar Obstacle Detection," IEEE
Transaction on Pattern Analysis and Machine Intelligence, v. 12(7), pp. 686-
690, July, 1990.

[Kuc 91] Kuc, R., and Viard, V., "A Physically Based Navigation Strategy for Sonar-
Guided Vehicles," The International Journal of Robotics Research, v. 10(2),
pp. 75-87, April, 1991.

[Kuipers 88]Kuipers, B., and Byun, Y., "A Robust, Qualitative Approach to a Spatial
Learning Mobile Robot," SPIE, v. 1003, 1988.

[Laird 91] Naval Ocean Systems Command, Technical Document 2171, Development of a
Modular Robotic Architecture, R. Lair, R. Smurlo, and S. Timmer, p. 3, Sep-
tember, 1991.

[Latombe 91]Latombe, J., Robot Motion Planning, pp. 7-54, Kluwer Academic Publishers,
1991.

[Laumond 83]Laumond, J., "Model Structure and Concept Recognition: Two Aspects of
Learning for a Mobile Robot," Proc. Eight IJCAI-83, pp. 839-841, August,
1983.

[Leary 92]Leary, W., "Robot Named Dante to Explore Inferno of Antarctic Volcano," New
York Times, p. B7, December 8, 1992.

[Leonard 90]Leonard, J., Cox, I. and Connell, J., "Dynamic Map Building for an Autono-
mous Mobile Robot," Proceeding of the IEEE International Workshop on Intel-
ligent Robots and Systems '90 (IROS'90), pp. 89-96, 1990.

[Leonard 91]Leonard, J. and Durrant-Whyte, H., "Mobile Robot Localization by Tracking
Geometric Beacons," Proceedings of the IEEE Conference on Robotics and Au-
tomation, v. 7(3), pp. 376-382, June 1991.

[Leonard 92]Leonard, J., Directed Sonar Sensing for Mobile Robot Navigation, pp. 1-45,
Kluwer Academic Publishers, 1992.

[Leonard 93] Interview between Dr. John Leonard, MIT Sea Grant College, Cambridge
Massachusetts, and the author, 15 March 1993.

[Lim 92] Lim, J., and Cho, D., "Physically Based Sensor Modeling for a Sonar Map in a
Specular Environment," Proceedings of the IEEE Conference on Robotics and
Automation, pp. 1714-1719, May, 1992.

[Lozano-Perez 79]Lozano-Perez, T., and Welsey, M. "An Algorithm for Planning Colli-
sion-Free Paths Among Polyhedral Obstacles," Communications of the ACM, v.
22 (10), pp. 560-570, 1979.

367

[Lozano-Perez 83]Lozano-Perez, T., "Spatial Planning: A Configuration Space Ap-
proach," IEEE Transaction on Computers, v. C-32(2), pp. 108-119, February
1983.

[MacPherson 92]Naval Postgraduate School Monterey Ca., Technical Publication, Draft,
Yamabico User's Manual., D. MacPherson, p. 32, August 1992.

[Manber 89]Manber, U., Introduction to Algorithms A Creative Approach, AddisonWel-
sey, pp. 189-197, 1989.

[Mandel 87]Mandel, K., and Duffle, N., "On-Line Compensation of Mobile Robot Dock-
ing Errors," IEEE Journal of Robotics and Automation, v. RA-3(6), pp. 591-
598, December, 1987.

[Mason 93]Mason, M., "Kicking the S-nsing Habit," Artificial Intelligence Magazine, pp.
58-63, Spring, 1993.

[Mataric 92]Mataric, M., "Integration of Representation Into Goal-Driven Behavior-Based
Robots," IEEE Transactions on Robotics and Automation, v. 8(3), pp. 304-312,
June, 1992.

[McDermott 92]McDermott, D., "Robot Planning," AI Magazine, v, 13(2), pp. 55-79, Sum-
mer, 1992.

[Meystel 91]Meystel, A., Autonomous Mobile Robots Vehicles with Cognitive Control, v.
I, World Scientific Publishing Co., Inc., 1991.

[Modada 93]Mondada, F., Khepera - A Miniature Mobile Robot, unpublished description
of the robot Khepera, Laboratoire de Microinformatique, Lausanne, Switzer-
land, 1993.

[Moravec 81]Moravec, H., "Robot Rover Visual Navigation," UM! Res. Press, 1981.

[Moravec 82]Moravec, H., "The CMU Rover," Proc. Nat. Conf. Artificial Intelligence, pp.
377-380, August, 1982.

[Moravec 87]Moravec, H. "Certainty Grids for Mobile Robots," Proceedings of the Work-
shop on Space Telerobotics, JPL, Pasadena, CA, January, 1987.

[Motorola 85]Motorola, "MC68020 32-Bit Microprocessor User's Manual," 2nd ed., pp.
5-26, Prentice Hall, 1985.

[Myers 92]Myers, K. and Konolige, K., "Semi-Autonomous Map-Making and Naviga-
tion," AAAI Fall Symposium on the Applications of Artificial Intelligence to
Real World Robots, pp. 129-133, 1992.

[Nachtigall 86]Nachtigali, P., Animal Sonar, Plenum Press, pp. 123-137, 1988.

[Nehmezow 92]Nehmezow, U., Experiments in Competence Acquisition for Autonomous
Mobile Robots, Doctoral Dissertation, University of Edinburgh, pp. 231-247,
1992.

[Nehmezow 93]Nehmezow, U., "Animal and Robot Navigation," submitted to NATO-ASI

368

Workshop on the Biology and Technology of Intelligent Autonomous Agents,
March, 1993.

[Nelson 88]Nelson, W. and Cox, I., "Local Path Control for an Autonomous Vehicle," Pro-
ceedings of the IEEE Conference on Robotics and Automation, pp. 1504-1510,
1988.

[Nilsson 69]Nilsson, N. J., "A Mobile Automaton: An Application of Artificial Intelligence
Techniques," Proceedings of the International Joint Conference on Artificial
Intelligence, pp. 509-520, Washington, D. C., May 7-9, 1969.

[Noborio 90]Noborio, H., Kondo, K., and Noda, A., "A Good Extension Method of Free-
Space in an Uncertain 2D Workspace by Using Ultrasonic Sensors," Proceed-
ings of the IEEE Conference on Robotics and Automation, p. 384, 1990.

[Noreils 89]Noreils, F., and Chatila, R., "Control of Mobile Robot Actions," Proceedings
of the IEEE Conference on Robotics and Automation, pp. 701-707, May, 1989.

[Noreils 92]Noreils, F., and Chatila, R., "Control of Mobile Robot," Proceedings of the
IEEE Conference on Robotics and Automation, pp. 1482-1488, May, 1992.

[Olin 91] Olin, K., and Tseng, D., "Autonomous Cross-Country Navigation: An Integrat-
ed Perception and Planning System", IEEE Expert, v. 6(4), pp. 16-30, August,
1991.

[O'Rourke 87]O'Rourke, J., Art Gallery Theorems and Algorithms, pp. 1, 125-126, 141,
Oxford University Press, 1987.

[Paul 84] Paul, R., Robot Manipulators: Mathematics, Programming, and Control, pp. 7-
12, MIT Press, 1984.

[Payton 90]Payton, D., Rosenblatt, J., and Keirsey, D., "Plan Guided Reaction," IEEE
Transactions on Systems, Man, and Cybernetics, v. 20(6), pp. 1370-1382, No-
vember/December, 1990.

[Payton 91] Payton, D., and Bihari, T., "Intelligent Real-Time Control of Robotic Vehi-
cles," Communications of the ACM, v. 34(8), pp. 48-63, August, 1991.

[Ratering 92] Ratering, S. and Gini, M., "Robot Navigation in a Known Environment with
Unknown Moving Obstacles,"AAAI Fall Symposium on the Applications ofAr-
tificial Intelligence to Real World Robots, pp. 154-158, 1992.

[Reister 91] Reister, D., "A New Wheel Control System for the Omnidirectional Hermies-
III Robot," Proceedings of the IEEE Conference on Robotics and Automation,
pp. 2322-2327, April, 1991.

[Reister 91a]Reister, D., Jones, J., Butler, P., Beckerman, M., and Sweeney, F., "Demo 89
- The Initial Experiment with the Hermies-ll Robot," Proceedings of the IEEE
Conference on Robotics and Automation, pp. 2562-2567, April, 1991.

[Roa 91] Roa, N., Stoltzfus, N., and Iyengar, S., "A Retraction Method for Learned Nay-

369

igation in Unknown Terrians for a Circular Robot," IEEE Transaction on Ro-
botics and Automation, v. 7(5), pp. 699-707, October, 1991.

[Rolfe 86] Rolfe, J., and Staples, K., Flight Simulation, pp. 45-5 1, Cambridge University
Press., 1986.

[Sales 741 Sales, G., and Pye, D., Ultrasonic Communications by Animals, pp. 23-68,
Chapman and Hall, Inc., 1974.

[Schwartz 83]Schwartz, J., and Sharir, M., "On the Piano Mover's Problem II: General
Techniques for Computing Topological Properties of Real Algebraic Mani-
folds," Adv. Applied Math., v. 4, pp. 298-351, 1983.

[Schwartz 88]Schwartz, J., and Sharir, M., "A Survey of Motion Planning and Related
Geometric Algorithms," Artificial Intelligence Journal, v. 37, pp. 157-169,
1988.

[Sherfey 91] Sherfey, S., A Mobile Robot Sonar System, Master's Thesis, Naval Postgrad-
uate School, Monterey, California, September, 1991.

[Smurlo 92]Smurlo, R., and Everett, H. "Intelligent Security Assessment for a Mobile Ro-
bot," Proceedings Sensor Expo 1992, pp. 125-132, Helmers Publishing, Inc.,
1992.

[Simmons 91]Simmons, R., "Concurrent Planning and Execution for a Walking Robot,"
Proceedings of the IEEE Conference on Robotics and Automation, pp. 300-305,
1991.

[Simmons 92]Simmons, R., Fedor, C., and Basista, J., "Task Control Architecture: Pro-
grammers Guide to Version 6.17," Carnegie-Mellon Univ, School of Computer
Science / Robotics Institute, November, 1992.

[Skewis 92]Skewis, T., and Lumelsky, V., "Experiments with a Mobile Robot Operating
in a Cluttered Unknown Environment," Proceedings of the IEEE Conference on
Robotics and Automation, pp. 1482-1482, May, 1992.

[Sugihara 87]Sugihara, K., "Location of a Robot Using Sparse Visual Information," Fourth
International Symposium on Robotics Research, pp. 319-326, MIT Press, 1987.

[Sweeney 90]Sweeney, F., "DOE/NE University Program in Robotics for Advanced Reac-
tors - Program Plan: FY1990 - FY 1994," DOR/OR - 884/R2, U.S. Dept. of En-
ergy, Oak Ridge, Tennessee, 1990.

[TAE 90] Transportable Applications Environment (TAE) Plus User's Manual, National
Aeronautics and Space Adminstration, Goddard Space Flight Center, January,
1990.

[Thorpe 84]Thorpe, C., FIDO: Vision and Navigation for a Robot Rover, Doctoral Disser-
tation, Carnegie-Mellon University, Pittsburgh, PA., December, 1984.

[Thorpe 91] Thorpe, C., et al., "Towards Autonomous Driving: The CMU Navlab," IEEE

370

Expert, pp. 31-52, August, 1991.

[Thrun 92] Thrun, S., "Exploration and Model Building in Mobile Robot Domains," IEEE
International Conference on Neural Networks, Van Nostrand, pp. 123-135,
1992.

[Thrun 93] Thrun, S., "The Role of Exploration in Learning Control," Handbook of Intelli-
gent Control: Neural, Fuzzy, Adaptive Approaches, p. 23., March 28 - April 1,
1993.

[Turk 88] Turk, M. A., et al., "VITS-A Vision System for Autonomous Land Veý-cle
Navigation," IEEE Transactions on Pattern Analysis and Machine Intelligence,
v. 10(3), pp. 342-361, May, 1988.

[van Turennout 92]van Turennout, P., Honderd, G., and van Schelvan, L., "Wall-following
Control of a Mobile Robot," Proceedings of the IEEE Conference on Robotics
and Automation, pp. 280-285, May,1992.

[Wallich 91]Wallich, P. "Silicon Babies," Scientific American, pp. 124-134, December,
1991.

[Watanabe 90]Watanabe, Y., and Yuta, S., "Position Estimation of Mobile Robots With In-
ternal and External Sensors Using Uncertainty Evolution Technique," Proceed-
ings of the IEEE Conference on Robotics and Automation, pp. 2011-2016, 1990.

[Williams 92]Williams, T., and Kelley, C., GNUPLOT An Interactive Plotting Program
Manual, Version 3.0, 10 June 1992.

[Webster 87]Webster's New Collegiate Dictionary, Merriam Co., 1987.

[Weisbin 89]Weisbin, C., et al., "Autonomous Mobile Robot Navigation and Learning,"
Computer, pp. 29-35, June 1989.

[Winston 92]Winston, P., Artificial Intelligence, pp. 443-469, Addison-Wesley, 1992.

[Wolfe 88]Robots II, v. 852, pp. 256-261, Wolfe, W., Chun, W., Eds., Proc. SPIE, 1988.

[Yen 92]Yen, J., and Pfluger, N., "A Fuzzy Logic Based Robot Navigation System," AAAI
Fall Symposium on the Applications of Artificial Intelligence to Real World Ro-
bots, pp. 195-199, 1992.

[Zelinsky 88] Zelinsky, A., "Environmental Mapping with a Mobile Robot Using Sonar,"
Proc. of the Australian Joint Artificial Intelligence Conf - AI'88, pp. 373-388,
1988.

[Zhang 92] Zhang, Z., and Faugeras, 0., "A 3D World Model Builder with a Mobile Ro-
bot," The International Journal of Robotics Research, v. 11(4), pp. 269-285,
August, 1992.

371

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey, California 93943-5002

3. Chairman, Department of Computer Science
Code CS
Naval Postgraduate School
Monterey, California 93943

4. Computer Technology Programs
Code 37
Naval Postgraduate School
Monterey, California 93943

5. Professor Yutaka Kanayama, Code CS/Ka
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

6. Professor Michael Zyda, Code CS/Zk
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

7. Professor Craig Rasmussen, Code MA/Sh
Department of Mathematics
Naval Postgraduate School
Monterey, California 93943

8. Professor A. J. Healey, Code ME/Hy
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, California 93943

372

10. Professor Timothy Shimeall, Code CS/Sm
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

11. Mr. David Leonard MacPherson, Sr.
96 Kaydeross Park Road
Saratoga Springs, NY 12866-8702

12. Mr. Edward J. LaVigne
900 Ridge Road
Lansing, NY 14882

13. MAJ R. B. Byrnes, Jr.
Software Technology Branch, ARL
115 O'Keefe Building
Georgia Institute of Technology
Atlanta, GA 30332-0800

14. LCDR Donald Brutzman, Code CSPH
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

15. Jean-Claude Latombe
Robotics Laboratory
Department of Computer Science
Stanford University
Stanford CA 94305

373

