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Real-Time Data Filtering and Compression
in Wide Area Simulation Networks

Contract No. N61339-92-C-0016

I Technical Report

I This report describes the technical basis of the work performed so
far in the area of data filtering and data compression in real-time
simulation networks. The report is divided into two parts. Part I
presents the results of our effort to design and evaluate data filtering
schemes for DIS systems. Detailed algorithms suitable for the
implementation of data filtering in the gateways of DIS networks are given.
Methods to solve the problem of inaccurate state information at high
filtering rates are presented. Part II discusses schemes to enhance the

efficiency of Huffman's decoding and similar tree-based codes. A promising
scheme, called multibit decoding, is based on the concept of k-bit trees which
are used to decode up to k bits at a time. An optimal solution for the mapping of
2-bit trees into memory is presented. The nultibit decoding concept offers an
attractive way to obtain significant improvement in the speed of Huffman's3 decoding and is also applicable to other tree-based codes. A detailed description

for the encoder/decoder design of a real-time compression chip is given in
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PART I

Data Filtering ip Wide Area Simulation Networks

Achieving the real-time linkage among multiple, geographically-distant,
local area networks that support distributed interactive simulation (DIS) is

one of the major technical challenges facing the implementation of future

large-scale training systems. Data filtering is one of the techniques that can
help achieve this real-time linkage [BASS92]. In this report, we present the

results of our effort to design and evaluate data filtering schemes for DIS

systems. Detailed algorithms suitable for the implementation of data

filtering in the gateways of DIS networks are given. Methods to solve the

problem of inaccurate state information at high filtering rates are
presented.

Introduction

Today, there is a strong emphasis being placed on the development of

efficient "distributed interactive simulation" (DIS) systems [POPE89]. Data
filtering and data compression are two complementary techniques that can

help improve the networking efficiency of DIS systems. The design of real-

time compression for DIS packets will be covered in Part II of this report

and in the appendix. In what follows, we concentrate on the technical

aspects of designing data filtering algorithms for DIS systems.

Data Filtering refers to the process of analyzing the semantic contents of

simulator messages and selecting (for transmission or reception) only the

ones that meet certain criterion. For example, if two simulated vehicles, say
V 1 and V2, are separated by a large distance in the simulated

environment, then a state update message from vehicle Vi would be
irrelevant to (and would not therefore have to be delivered to) vehicle V2.

I This example shows the most obvious method of filtering, namely, filtering

based on distances in the simulated environment. Other factors (e.g., type
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of vehicles) can also affect the filtering process. For example, state update
messages from a vehicle submersed in water could normally be ignored by
vehicles on the ground. Filtering is used when the total traffic is large

enough to overwhelm the small bandwidth of a local site or when the slow5 nodes in this site cannot handle the fast rate of message arrival. For

example, if a high-speed FDDI backbone [ANSI88], [ANSI871, [BASS9O] is

used to interconnect several 10 Mbits/second Ethernet [IEEE85], [BASS89]

simulation networks, filtering could then be used to reduce the size of the

traffic flowing from the FDDI backbone to each individual Ethernet LAN. In

large scale training exercises, a simulated vehicle would normally need to
receive information from only a small subset of the total simulated vehicles

at any given time; state update messages from the rest of the vehicles
would not be important and can be discarded. The successful

implementation of efficient data filtering techniques in network gateways

would meet one of the challenges facing the design of long-haul simulation

networks.

An Approach for Data Filtering:

In this section, we shall give the high level details of an approach that can

be used for implementing on-the-fly (i.e, real-time) filtering of state
update messages. For the purpose of illustrating the basic ideas of the
filtering scheme, we shall discuss algorithms relevant to simulators of

ground vehicles and we shall use the distance separating these vehicles as

the main criterion for filtering.

The filtering scheme uses a one-dimensional vector of distances for each

simulated vehicle. The vector is stored in the gateway of the LAN where3 the simulator resides. Assuming that vehicles in the simulated

environment are numbered 1 through n, the vector for the i th simulator5 will be stored in the form

Di-(d, di2 di=-, ... din
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where dij is the distance (in the simulated environment) between vehicle

Vi and vehicle Vj. For each vehicle, say vehicle Vi, we define a "reachability

region" which specifies a neighborhood region such that the vehicles

located within that region are tactically important to vehicle Vi (e.g., they3 are visible to vehicle Vi or can be affected by it). State update messages

from vehicles outside this reachability region need not be delivered to
vehicle Vi. The reachability region can be simply represented by a

reachability radius Ri that gives the maximum distance from vehicle Vi at

which another vehicle is reachable (visible). In addition to the distances

vector Di, a bit vector Bi is maintained for vehicle Vi and is defined by

Bi= (bil bi2,...bii = 1,...,bin)

where

3 bij= 1 if dij _< sRi

= 0 otherwise

and s is a safety scale factor that suppresses the filtering of messages

from vehicles that are outside the reachability region but which are close3 enough to its border. As shown in Figure 1, a safety ring of depth (s-1)Ri

is created to guard against any delay by the filtering mechanism in

3 resuming the delivery of messages sent by a fast vehicle that suddenly

entered the reachability region. Thus for example, if s is equal to 1.2, then
vehicle Vi will start receiving messages from another vehicle even though

that vehicle is at a distance 20% larger than the actual reachability radius.

This scheme can be extended such that a different scale factor is used for

each vehicle depending on its type and the type of its current surrounding

terrain.

I
I
I
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Figure 1. The reachability region

B i is a binary vector and is therefore more suitable than Di for real-time

filtering decisions. Upon receiving a state update message, say Mj , sent by

vehicle Vj, the gateway will perform the following algorithm to update the

vector Bi.

Update position of vehicle Vjbased on Mj

for i= Ilto nand i Aj do
S~if hi j= 0 and dij _< sRi then bij - I

else if bij = I and dij > sRi then bij = 0

I ~ ~endforeni

I ~Because of the safety region, the above procedure does not represent a

time critical computation; it can in fact be performed as a background job.I
IMore details about ou prahfor the real-time distributed

implementation of data filtering will be given shortly. Using the above
scheme, the filtering decision becomes an eaytask. For example, to

determine whether vehicle Vi needs to receive a message M) sent b y

vehicle Vj, the following code is executed
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if bij = I then send Mj to vehicle Vi

else discard Mj

Data filtering is based on the concept of distributed distance computations.

Concurrently, the gateway node in each LAN computes the filtering
environment for each node in its site. For example, consider the

reachability ring and safety region of some static vehicle, say VO, which is

surrounded by six moving vehicles VI, V2, ... , and V6. As a result of the

movements depicted in Figure 2, the filtering status of vehicles V4, V5, and
V6 with respect to VO will be reversed; thus messages from vehicle V5 will

be discarded while those from V4 and V6 will be delivered to VO. On the

other hand, the filtering status of vehicles V2, and V3 will not change
(messages from V3 will be delivered to VO while those from V2 will be

filtered out). Vehicle VI will have its status reversed temporarily then will

continue to have its message discarded.

V2 safety ring

V4 reachability
region

Figure 2. Reachability ring and safety region of vehicle V0
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Implementation of Data Filtering

Filtering should be performed by network gateways at the transmission

and reception of a message as well as during its routing in intermediate

gateways. Filtering at transmission and routing is the main process that

could eliminate the majority of the unneeded messages. Filtering at

reception performs a final check and could eliminate the unneeded

messages that have not been detected during the transmission and routing

phases. For purposes of illustration, we shall discuss the implementation of

filtering using the bit vector approach presented in the previous section.

Notice that the gateway handles simulator messages in two different ways:

1) the gateway receives messages from nonlocal simulators (called external
senders) and distributes them to the simulators on its local site, and 2) the

gateway receives messages sent by the local simulators (called local

senders) and transmits them over long-haul links to the simulators in other

sites. The first case requires filtering at reception (i.e., filtering after

receiving a message via long-haul links) and the second case requires

filtering at transmission (i.e., filtering before transmitting a message onto

long-haul links). We shall start by discussing filtering at reception then
proceed to examine filtering at transmission.

The receiving gateway would need to keep accurate information about the

positions of the vehicles simulated by the local nodes connected to it. This

can be done without much difficulty since the gateway receives every state

update message transmitted by any node in its local site. Without loss of

generality, let us assume that the total number of nodes (simulators) in all

sites is n, and that the local site under our consideration contains the first
m nodes, i.e., its nodes are numbered 1 through m. According to our

proposed scheme, the gateway in this site maintains a collection of binary

vectors equivalent to a binary matrix, called the filtering matrix B. In the

case of filtering at reception, this matrix is defined as

B =- [ bijl I I<i_<m, m+l_<j_<n

where bij is a filtering flag that is set to 0 if messages from the external

simulator j are not relevant (i.e., need not be delivered) to the local
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simulator i. As before, the safety scale factor is denoted by s and the
reachability region of vehicle Vi is represented by a circle of radius Ri. The

entire operation of filtering at reception can now be described by the
following concurrent code (the PAR ponstruct indicates parallel activities).

Algorithm FILTERATRECEPTION;
COBEGIN
loop forever

Wait for a new message Mj
Update position of vehicle Vj
add j to ULIST /* ULIST is the update list */
If j _< m then

/* local sender */
Call FILTER_ATJTRANSMISSION,

else /* external sender */
beginI L := 0 /* empty local list */

for i=1 to m do
if bij =1 then L:=L Q Mi};

endfor;
If L= 0 then discard Mj3 else send Mj to members of L endif;• endif;

endloop;
* PAR

/* background update */
loop forever

wait until U_LIST AO
k := First (ULIST);
if k_< m then

/* k is local */
for j=m+l to n do

if dkj s sRk then bkj :=l

else bkj :=O endif;
endfor;3 else /* k is external */
for i=1 to m do

if dik s sRi then bik :=1
I else bik := 0 endif;

endfor;
endif;

endloop;
COEND
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Algorithm FILTER_AT_TRANSMISSION uses a logic similar to that used in

the above algorithm; therefore its code will not be given. The main idea

can be briefly described as follows. If a local simulator sends a message,

the gateway will perform filtering to transmit the message to only those

external simulators that can be affected by it (or discard the message if it is

not important to any external simulator). There is however a serious

problem with this scheme. If the filtering mechanism becomes very

successful, the gateways will be deprived of receiving messages from some

external simulators. This in turn will make the information (on external

vehicles) maintained by each gateway less accurate and can render the

filtering decisions incorrect. This problem is discussed next.

The Problem of Inaccurate State Information

A simple example will be used to illustrate this problem. Consider two
vehicle simulators V 1 and V2 located in two different DIS sites (LANs). The

two sites communicate over long-haul links using the services of the two

gateways G1 and G2 as shown in Fig. 3.

Long-haul Network with two DIS sites

Fig. 3
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Fig.4 shows the initial positions of the two simulated vehicles in the
simulated battlefield. The two vehicles are quite far from each other; each
vehicle is outside the reachability region of the other vehicle.

' 0I
Exact positions of simulated vehicles

Fig. 4

Now assume that vehicle V1 started moving towards vehicle V2 . Gateway
G 1 will execute the Filtering-at-Transmission algorithm and will find that

the state update messages emitted by V1 need not be delivered to V2 . Giwill therefore refrain from sending these messages to G2. Thus this latter
gateway continues to have the initial position of vehicle V1 (i.e. the position
shown in Fig 4). Now if vehicle V2 moves towards V 1 , gateway G2 will
determine that the state update messages emitted by V2 need not be

delivered to V1 . G2 will therefore refrain from sending these messages to
G1. The result is that G1 will have inaccurate information about the position
of V2 . A situation can subsequently arise where the two vehicles V1 and

V 2 are near each other but each one of them is deprived of receiving the
state update messages of the other. Fig. 5 depicts the steps of this scenario.

I0



Exact Positions View at G1 [View at G2

Initially, all views are identical

Exact Positions View at GI View at G2

Gate G2 does not receive update messages from moving vehicle V1

Exact Positions View at G1 i View at G2

Gate G1 does not receive update messages from moving vehicle V2

Fig. 5
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To solve this problem, we use a dead-reckoning algorithm similar to

that used by the vehicle simulators themselves. This approach is describedI next.

Dead Reckoning in Network Gateways

One of the crucial aspects in DIS local and wide area networks is the ability
of each simulator participating in an exercise to represent, accurately and

in real-time, the state of other simulated vehicles participating in the same

exercise. The concept of dead reckoning is used to reduce the number of

state update messages that need to be transmitted by each simulator for

the purpose of maintaining accurate state representation. Simply, each

simulator has a high fidelity model which maintains accurate information

(position, speed, velocity, etc.) about its own state. Each simulator also

maintains a less accurate model, called the dead reckoning model, for each

simulator (including itself) participating in the exercise. The dead reckoning

model of a vehicle is periodically updated by extrapolating the information* reported in the last state update message of that vehicle. Using first-order

extrapolation, the anticipated position of a simulator is obtained by

extrapolating its last reported position based on its last reported velocity as

3 follows:

X(t + T) = X(t) + Vx(t) 'r

Y(t + T) = Y(t) + Vy(t) T

Z(t + ') = Z(t + Vz(t)

where X(t), Y(t), Z(t) are the World Coordinates of the simulated vehicle at

time t as reported in the last state update message, Vx(t), Vy(t), Vz(t) are

the x, y, z components of the velocity vector of the vehicle at time t, and X(t3 + t), Y(t + t), Z(t + r) are the new coordinates predicted at ' units of time

after the last state update message.I
The prediction of the dead reckoning algorithm can be generally improved

by resorting to higher order extrapolation equations. For example, the dead

reckoning equations for position using second-order extrapolation are as

* follows

12I



I

X(t +,c) = X(t) + Vx(t) -z + 0.5 Ax(t) 2
Y(t + r) = Y(t) + Vy(t) ' + 0.5 Ay(t) C2

Z(t + r) = Z(t) + Vz(t) t + 0.5 Az(t) C2

where Ax(t), Ay(t), Az(t) are the x, y, z components of the acceleration
vector at time t. In a similar way, third-order extrapolation equations or
even higher derivatives can be used in an attempt to improve the accuracy

of predictions in dead-reckoning algorithms.

Whenever a state update message is received from a simulator, the
information of that message is used to correct the extrapolated information3 of the dead reckoning model. Finally, when the state of a simulator actually

changes, the simulator updates its own high fidelity model and compares it

with the extrapolated information of its own dead reckoning model. If

there is a large enough discrepancy between the two models, the simulatoru transmits a new state update message to all other simulators.

The corresponding dead-reckoning approach in network gateways can now

3 be described as follows:

3 1) Each gateway will maintain accurate information (position, speed,

velocity, etc.) about each of the local simulators in its own site. This

information (called the high fidelity model) should be reasonably

accurate since the gateway receives every message transmitted by a

local node.

2) Each gateway also maintains a less accurate model (called the dead3 reckoning model) for external simulators. The dead reckoning model is

obtained by extrapolating the last reported location of each external3 vehicle based on its last reported velocity. Whenever a message is

actually received from an external simulator, the information of that3 message is used to correct the extrapolated information of the dead

reckoning model.

1
13I



3) Finally each gateway also keeps a dead reckoning model for its local

simulators (using the same extrapolation equations used by other
gateways). When the gateway receives a message, from a local3 simulator, it updates its high fidelity model and compares it with the

extrapolated information of the dead reckoning model. If there is a large
enough discrepancy between the positions of the local vehicle in the

two models, the gateway transmits the message over the long-haul

links.

Preliminary Performance Results:

A simulation program has been written and is currently being used to

evaluate the data filtering designs. In this section, we present some
preliminary results for a configuration with four different LANs. As our

tests proceed, we shall submit more results and analysis in future progress

and technical revorts. The results reported below correspond to periods of

peak activities (i.e., majority of the vehicles are moving). The tests were

repeated using different values for the radius of the reachability plus
safety region. We define the safety period, T, to be the amount of time3 needed for a vehicle moving in a straight line with a constant speed (equal

to the average velocity of moving vehicles)to travel a distance equal to sR,3 where R is the radius of the reachability circle and s the safety factor. Fig. 6

plots the relationship between the safety time in hours and the overall

filtering rate. The latter is defined to be the average percentage of

messages that get filtered out (at transmission or at reception).
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Fig. 6. Filtering rate vs. safety time

Tables 1 through 3 give the detailed results for filtering at transmission
(FaT) and filtering at reception (FaR) at selected values of safety time.

U Table 1. Filtering at safety time of 1.5 hours

I LAN No. FaT FaR

1 81.6% 84.6%
2 85.9% 85.2%
3 76.8% 81.4%
4 82.4% 82.9%

Table 2. Filtering at safety time of 2.0 hours

LAN No. FaT FAR
1 36.0% 51.6%
2 29.9% 50.3%
3 37.5% 57.4%
4 38.8% 55.1%
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Table 3. Filtering at safety time of 2.5 hours

ILAN No. FaT FAR
1 21.6% 26.6%
2 9.1% 21.5%
3 16.1% 26.0%
4 9.9% 17.7%
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PART H

Real-time Data Compression

In this part, we discuss two schemes to enhance the efficiency of Huffman's

decoding. The first scheme, called multibit decoding, is based on the concept of

k-bit trees which are used to decode up to k bits at a time. An optimal solution

for the mapping of 2-bit trees into memory is presented. The multibit decoding

concept offers an attractive way to obtain significant improvement in the

speed of Huffman's decoding and is also applicable to other tree-based codes. A

detailed description for the encoder/decoder design of a real-time compression

chip is given in Appendix I. The second scheme, called the multigroup scheme,

is suitable for files that exhibit the property of locality of symbol references.

The scheme improves the Huffmans compression efficiency as well as the

time overhead of the Huffman's decoding process. A multigroup decoding

* algorithm that works for one-level and two-level hierarchies having

arbitrary number of groups is presented. The multigroup technique can be

further enhanced by incorporating the multibit concept into its decoding

logic.

Introduction
One of the popular data compression methods is the Huffman's encoding

technique [HUFF52] which takes advantage of the skewness of the frequency

of input symbols. Accordingly, the most frequent symbols are assigned to the

shortest codes and all larger codes are constructed so that shorter codes do not

appear as prefixes. Simply, the Huffman's method builds a decode tree (i.e.,

binary tree in which leaf nodes represent symbols) having minimal external
path length. If the set of symbols is given by (A 1 , A2 , ... , Av), the probability

of occurrence of symbol Ak is pk, and the distance from the root of the tree to

the leaf node corresponding to symbol Ak is dk, then the Huffman tree

minimizes the quantity A pj * dj. Huffman's compression can be used in

scientific databases [BASS85] and is also used in the JPEG image compression

Sstandard to store the AC values obtained via DCT coding. Huffman's encoding,

arithmetic coding [WITT87] and the LZW scheme [WELC84] are used in
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I conjunction with lossy schemes to improve the fidelity of compressed images

at a given level of compression [BASS91].

Fig. 2.1 gives an example Huffman tree for the twelve symbols A, B, C, D, E, F, G,

H, I, J, K, L whose weights (frequencies of occurrence) are assumed to be 4, 3,

4, 1, 1, 2, 8, 2, 1, 1, 1, and 4, respectively. During decoding, the compressed file is

processed serially (one bit at a time) and the Huffman tree is repeatedly

traversed from its root to the leaf nodes. For example, the bit sequence "001"

causes a movement from the root of the Huffman tree of Fig. 2.1 to the leaf

node of symbol B. In this section, we concentrate on the problem of improving

the efficiency of the decoding (decompression) process of Huffman and other

similar compression schemes. Appendxi I covers details of the integrated

encoder and decoder design for the Multibit approach.

0 1

SA B C 1 L

0 F H

d K

I Fig. 2.1. An example Huffman tree

I Improving the decoding process is important since the decoding phase in tree-

based compression schemes is bit-serial and is therefore inherently slow; bit-
I serial decoding can benefit the most from better implementations. In the

following sections, we shall discuss two schemes for enhancing the efficiency

I of the Huffman's decoding process. The first scheme, called the multibit (or k-

18
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bit) decoding, is used to reduce the time overhead of the bit-serial decoding
operation. The scheme does not require any change "n the encoding operation

and is applicable to other tree-based codes (a discussion of these codes and

their properties is given in [LELE87]). The second scheme, called the

multigroup scheme, is useful for data files that exhibit the property of locality

of symbol references. For such files, the multigroup scheme improves the

Huffman's compression efficiency as well as the time overhead of the

decoding process. We shall begin our presentation by discussing the k-bit

decoding algorithm then proceed to cover multigroup compression. The terms

"k-bit decoding" and "multibit decoding" will be used interchangeably

* throughout this report.

K-Bit Decoding
In Huffman's decoding, the compressed bit stream is processed serially one bit

at a time. Basically, the decoding operation produces data characters (symbols)

by repeatedly traversing the Huffman tree, from the root to the leaf node,

under the control of the input bits; a bit value of I initiates a visit to the right

child while a value of 0 results in a visit to the left child. This process is

inherently slow and, because of its strict sequential nature, is not amenable to

elegant parallel implementations. The availability of a large number of

processors within a parallel machine, for example, may be used to

simultaneously decode several files (or records) that were encoded separately,

but the sequential decoding of each file needs only one processor at a time and

gains no appreciable improvement by the increased scale of parallel

hardware. A viable approach to improve the speed, however, can be based on a

different concept, namely, using k bits at a time in each step of the decoding

process. The problem of "multibit" or "k-bit" decoding has been motivated in

[MUKH91a] which also presented a high-level VLSI design for a basic k-bit

encoder/decoder. In this report, we give a new formulation for the k-bit

decoding problem, present the optimal memory mapping for 2-bit Huffman

trees and discuss the basic algorithmic aspects of the k-bit decoding process.

Consider the Huffman tree shown in Fig. 2.1. The first step is to obtain the

corresponding k-bit tree. Each edge in this tree corresponds to the encoding of

a maximum of k bits of the code. If the length of the code-word is n bits, it is

represented by a sequence of r (n/k) 1 edges in the unique path from the

19
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[I root to the leaf node; only the last edge leading to the leaf node could possibly

have a label with less than k bits. The tree of Fig. 2.1 can be viewed as a 1-bit

tree; the corresponding 2-bit tree is shown in Fig. 2.2 (labels inside nodes

represent the id or node # of each node). The code of a character in a k-bit tree

is obtained by concatenating the labels read from the root to the leaf node of

that character.

U0I

I D E I J K

3 Fig. 2.2. A corresponding 2-bit Huffman tree

The K-Bit Decode Table

The purpose of the k-bit scheme is to achieve faster decoding by processing k

bits at a time. To maximize the benefit obtained by this scheme, the overhead

associated with processing the k-bit sequences should be minimized. In

particular, the k-bit decode table must be carefully designed to allow for fast

lookup and tree traversal. Below, we discuss a design approach that, in addition

to being suitable for efficient software implementation, is quite attractive and

suitable for VLSI and associative memory technology.

Consider a k-bit Huffman tree whose nodes are numbered 0, 1, ..., N (assume 0 is

I the index of the root as shown in Fig. 2.2). A table of size M > N is used to store

20



i appropriate information about the N non-root nodes of the k-bit tree (we call

this table the k-bit decode table). The corresponding information for the root
of the tree will be stored in a separate global record to speed up its access. A

non-root node j in! this tree, I _s j _s N, is mapped to a unique entry r in the

table, 0 s r < M-1. The following are the properties of the desired mapping:

i 1) If a node has the maximum fan-out (i.e., it has 2 k children), all the children

of this node are mapped to contiguous table entries. The children are

1ordered according to the labels of the edges connecting them to their

common parent. Thus the child with label "00.. .0" occupies the lowest

address of the contiguous block and that with label "11... I" occupies the

highest address.

12) If a node has less than 2 k children, the mapping of these children must

preserve the same relative positions that would have been obtained if the

node had maximum fan-out. For example, if k=3 and a node has three

children whose edges have the labels "001", "011" and "110", then the three

children should be mapped to entries r+l, r+3, and r+6, respectively, for

some integer index r.

S3) Only the mapping of nodes having a common parent need to obey the above

rule. There is no restriction imposed on the relative locations of the two

entries to which a node and its child are mapped. Also, there is no

restriction on the position of the contiguous block (assigned to the

j children of some node) within the decode table.

4) To optimize the design (especially for VLSI and associative memory), the size

M of the decode table must be minimized, i.e., M should be as close to N as

possible.

The above special mapping of tree nodes into entries of the decode table will

enable us to construct an efficient decoding operation with simple logic (as

shall be explained shortly). First, we shall formulate the design of the k-bit

decode table as a binary string mapping problem. The formulation is

applicable to any tree-based codes (e.g., Shannon-Fano codes [SHAN49,

FANO49], Fibonacci codes [LELE87], Huffman codes [HUFF52], etc.).
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Descendent Strings

For each non-leaf node in the k-bit tree, we associate a binary string (called

the descendent string) of length 2 k. A bit in this string is set to I only if the

index (position) of this bit is equivalent to the label of the edge leading to a

child of this node. If the edge label for a child has less than k bits, extra zeros

are appended to this label, at the least significant (rightmost) positions, to

obtain a k-bit field that can be used as an index into the descendent string.

For example, if k=3 and a node has four children with edge labels "0" , "100",

"101" and "11", the corresponding 8-bit descendent string is "10001110". Notice

that the short labels "0" and"ll" are first extended to become "000" and "110"

then used to set the two bits at positions 0 and 6 of the string.

Remarks:

Descendent strings constructed as above satisfy the following:

1) Each child node corresponds to a unique I in the descendent string of its

parent. Notice that appending zeros to short labels at the rightmost

position (rather than the leftmost position) preserves this uniqueness.

2) The total number of l's in all descendent strings is equal to N, the number of

non-root nodes in the k-bit Huffman tree.

Since leaf nodes don't have children, they all have identical descendent

strings of the form "00...0". It will be clear shortly that these descendent

strings (all zeros) will not need to be considered in our search for the optimal

mapping.

Mapping of Descendent Strings

Given the descendent strings of the non-leaf nodes of a k-bit Huffman tree, a

binary string W is constructed such that

1) Each descendent string is mapped to 2 k consecutive bits in W.
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2) Overlapping of descendent strings within W is permitted provided that no

two bits having value I are mapped to the same position in W.

3) Each bit in W is covered by at least one descendent string, i.e., for each bit

in W, there is at least one descendent-string bit that is mapped to it.

4) The value of each bit in W is obtained by performing the bitwise OR

operation on the descendent-string bits that are mapped to it (notice that at

most one of these descendent-string bits is allowed to have a value of 1).

If W is constructed as above, then the number of l's in W is also equal to the

number of non-root nodes N, i.e., each non-root node in the k-bit tree is

associated with a unique 1 in W. Assume that after truncating any leading and

trailing zeros from W, the resulting string, say S, is of size M bits. A decoding

table of size M entries is then constructed. A non-root node in the k-bit tree is

mapped to the entry of the decode table whose index is equal to the index of the

unique I associated with this node in S. To optimize the design, the value of M

should be minimum.

The K-Bit Contiguous Binary Superstring (CBS) Problem

We now summarize the mapping problem discussed above. The problem is a

slightly different version of the one posed in [MUKH91a]. The formulation is

applicable to any tree-based codes (e.g., Shannon-Fano codes [SHAN49,

FANO49], Universal codes of Elias [ELIA75], Huffman codes [HUFF52], etc.). In

this report, we shall concentrate on solving the problem for Huffman codes.

Instance: a collection of binary strings (descendent strings) of length 2 k bits

each. Let N be the total number of I-valued bits in all the descendent strings.

Problehm: find a binary string W--O*SO* where S is a minimum-length binary

string, with no leading or trailing zeros, which has exactly N 1-valued bits

such that every descendent string can be positioned (aligned) within W so that

each I-valued bit in any descendent string corresponds (is mapped) to a

unique I in S.

In the above definition, the notation 0* is used to denote an all-zero string of

arbitrary length (possibly empty), and 0*S is used to denote the concatenation

of the two strings 0* and S.
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Definition:

The vacancy ratio of the solution for the CBS problem is defined as the ratio

(M-N)/M and the expansion ratio is defined to be (M-N)/N, where M is the size

of the resulting string S and N is the number of 1-valued bits in all the

descendent strings.

Example 2.1:

For k=3, consider the three descendent strings

DI= "01010000" D2= "01001000" D3= "10000100"

The optimal solution in this case is S= "1111101" and W =OSOO = "0111110100".

The starting positions (which we call the CBS indexes) of the strings Dl, D2,

and D3 within W are 2, 0, and 2, respectively. The 7-bit string S implies that we

need to use a decoding table of M=7 entries. One entry in this table (the one

before the last) is not used to store decoding information, but may be freely

used to store any other data. The fraction of table entries that are not used is

given by the vacancy ratio which, in this case, is equal to 1/7 . The expansion

ratio of 1/6, on the other hand, gives the ratio between the extra (non-used)

space to the original number of nodes N.

Notice that the descendent strings need not be distinct since several nodes

(e.g., nodes I and 8 in Fig. 2.2) may have the same pattern of descendent edges.

In general, solving the CBS problem seems to require exhaustive search, but

sub-optimal solutions can be obtained using a variety of fast heuristic

algorithms. The CBS problem has the flavor of some compute-bound string

matching problems (e.g., the superstring problem [TARH88]) but is quite

distinct from them. We conjecture that the general k-bit CBS problem is NP-

hard. Proving this conjecture is posed as an open problem. Fortunately, the

special case of Huffman's decoding offers some useful properties that help

tackle the CBS problem. For example, descendent strings in 2-bit Huffman trees

have only 4 valid patterns (out of 16 distinct ones) and those in 3-bit Huffman

trees have only 25 valid patterns (out of 256 distinct ones). In addition, we are

particularly interested in the case of k=2 since it represents the most suitable

and viable value for associative memory and hardware implementations. We
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shall therefore concentrate on solving the CBS problem for 2-bit Huffman

trees.

Lemma 1:

For 2-bit Huffman trees, the descendent strings have only four 4-bit patterns:

"1111", "1110", "1011", and "1010".

Proof of this lemma is based on the simple observation that every non-leaf

node in a 1-bit Huffman tree must have two children. Consequently, every

non-leaf node in a 2-bit Huffman tree must have either four children (pattern

"1III"), three children (patterns "1110" and "1011") or two children (pattern

"1010"). Other patterns (e.g., "1000", "0101") are not possible because of the

above property of Huffman tree and the method used to append zeros to short

labels during the construction of descendent strings. Notice that Lemma I

implies that there will be no leading zeros in the string W used in the

definition of the CBS problem.

Based on the above lemma, we can now construct an optimal algorithm for

solving the 2-bit CBS problem for Huffman trees. The idea is to cluster the

descendent strings into four groups. Group GI contains all strings of value

"1111". These strings are simply placed consecutively, one after the other, on

4-bit contiguous fields. The second group, G2, contains strings of the form

"1110". Again, we map these strings onto 4-bit fields such that the first bit of a

field overlaps with the last bit of the previous field. The third group G3 and the

fourth group G4 contain strings of the form "1011" and "1010", respectively.

First, we repeatedly try to pair one string from G4 with one string from G3

(shifted one bit to the right) and map them onto a 5-bit field . Next, we

repeatedly try to pair two G4 strings onto the 4-bit field "1111" (this is done by

shifting one string one bit to the right and then discarding its trailing zero).

Finally, any remaining strings are mapped separately onto 4-bit consecutive

fields. A high-level description of the algorithm is given below.

Algorithm CBS_2H;

Input: a collection of 4-bit descendent strings (not necessarily distinct).
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Output: binary string S and the CBS index (starting position within S) to
which each descendent string is mapped.

Method: Cluster the input strings by pattern into 4 groups
S = Null; i = 0 P initialization */
For each string D in G I do /* D = "lI" L't /

map D to i
append "1111" to S
i = i + 4; endfor,

For each string D in G2 do /* D = "1110" '/
map D to i
append "11" to S
i = i + 3; endfor;

While (both G3 and G4 are not empty) do
remove a string D from G4 /* D ="1010" */
map D to i
remove a string D' from G3 /* D' -="I01 "
map D' to i+I
append "IIIII" to S
i = i + 5; endwhile;

/* now at least one of G3 and 04 is empty '/
While (G4 has at least two members) do

remove two strings D and D' from G4 /i' D=D'="1010" */
map D to i and D' to i+1
append "1111" to S
i = i + 4; endwhile;

If (G4 is not empty) do
remove last string D from 04 /* D = "1010" */
map D to i
append "101" to S
i = i + 3; endif

For each remaining string D in G3 do; /* D = "1011" */
map D to i
append "1011" to S
i = i + 4; endfor

end CBS_2H;
M = i /* M is the size of string S/

I
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Example 2.2:
I For the 2-bit Huffman tree of Fig. 2.2, the number of non-root nodes is N=17

and the descendent strings of the six non-leaf nodes are as follows:
Node 0: Do ="111I"

3 Node 1: DI ="1010"

Node 2: D2 = "1011"

3 Node 4: D4 = "1110"

Node 8: D8= "1010"

Node 11: DII ="1011"

In this case, algorithm CBS_2H produces a string S of 17 consecutive l's and
generates six CBS indexes that map Do to 0, D4 to 4, DI to 7, D2 to 8, D8 to 12,

and Dl1 13. The vacancy ratio of this mapping is zero.

Lemma 2:

For 2-bit Huffman trees, the linear-time algorithm CBS_2H is optimal, i.e., it

produces a string S of minimum length.

Proof of the above lemma can be established by considering the four patterns

of valid descendent strings in 2-bit Huffman trees. Notice that the algorithm

produces compact mapping (without any expansion) for patterns "1111" and

"1110" as well as for "1011"/"l010" and "1010"/"1010" string pairs. The only

expansion introduced by the algorithm is due to either

i) a single (left-over) string of value "1010", or

ii) Strings of value "1011" which are in excess of their "1010" counterparts.

3 Notice that at most one type of expansion (i or ii above) can occur for any

given 2-bit Huffman tree. It is easy to see that such expansion (if it occurs) is
necessary. In other words, any valid mapping will produce a string S with a

number of O's equal to or greater than the number of left-over strings

causing the expansion.

I
I
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Lemma 3:

The worst case vacancy ratio for algorithm CBS_2H is 0.25 (corresponding to a

worst case expansion ratio of 1/3).

It is easy to see that this worst case ratio can only be obtained if all descendent

strings have value "1011". Notice that in this case, there is only one valid

mapping that can be used to solve the CBS problem. This worst case is,

however, highly unlikely. Typical values of the vacancy ratio for the optimal

mapping are usually much smaller (and are often zero) due to the pairing of

strings in G3 and G4.

The 2-Bit Decoding Process

We now turn back to the problem of 2-bit Huffman's decoding. For the tree of

Fig. 2.2, a decode table of 17 entries (numbered 0 through 16) is used to store

the non-root nodes of the tree. The root is stored in a separate block (core-

resident global variable) to allow faster access to it. The mapping of a tree node

into an entry in the decode table is obtained by adding the following two

components: i) the CBS index of the descendent string of the parent of this

node and ii) the label of the edge connecting this node to its parent. As

explained before, labels of length one bit are extended to 2 bits by appending a

rightmost zero. For example, node 6 (symbol B) in Fig. 2.2 is mapped to entry #

9 in the decode table; this is obtained by adding the CBS index of string D1

obtained in Example 2.2 (i.e., decimal value 7) to the extended label "10"

(decimal value 2).

A field in the decode table, called "base", is used to store the CBS index for each

non-leaf node. Recall that for the tree of Fig. 2.2, these CBS indexes are as

3 follows

node # 0 1 1 2 1 4 8 11
1 CBS index 0 1 7 8 4 12 13

In the case of leaf nodes, the "base" field is used to store the output code of the

corresponding symbol. We assume that the value of "base", or a flag bit in it,

can be used to determine whether the corresponding node is a leaf or not

(alternatively, a separate Boolean flag can be used). The basic loop of the

decoding process proceeds as follows:

I
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a) read two bits from the compressed file,

b) add these two bits, treated as a 2-bit integer, to the value of the *base" field

of the current node

c) the result gives the index of the node to be visited next.

There is now one last issue that needs to be solved, namely, handling short3 labels. The last edge leading to a leaf node may have a label of length one bit

(rather than 2). In this case, we should only use the first input bit (appended

with 0) to complete the current decoding process. The other (non-used) input

bit should be attached to a new bit from the compressed file and the resulting

two bits are then used to start a new decoding operation from the root of the 2-

bit tree. To accomplish this, two Boolean flags f0 and fl in the decode table are

used to indicate short labels as follows: if the next input bit has a value j and

flag fj has a value of 1 (True), then an edge with a short label is encountered.

For example, the value of the two flags (f0 ,fl) for nodes 2, 4, and 8 of Fig. 2.2

3 are (1,0), (0,1), and (1,1), respectively. The two flags are not needed for leaf

nodes; their values in this case are immaterial. Table 2.1 shows the decode table

for the tree of Fig. 2.2 based on the optimal mapping obtained in Example 2.2.

The decode table has 17 entries (numbered 0 through 16); each entry contains

the three fields: base, f0 , and fl. For clarity, Table 2.1 also gives the sequential

index of each table entry as well as the index (node #) of the tree node

assigned to that entry. These latter two fields are included for the purpose of

clarification; they are not actually stored in the decode table. The root node is

stored in a separate global entry with values 0 for base, 0 for f0 , and 0 for fl.

Algorithm Decode_2H gives a high-level description of the 2-bit Huffman's

3 decoding algorithm. The algorithm uses a decode table denoted DT and a

separate root entry as explained before. The auxiliary variables Base, F[0], and

F[I] are used to store the base, f0 , and fl fields, respectively, of the current

node while the variables v[0] and v[l] are used to hold the two input bits

I currently being processed.

I
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I

I Table 2.1. Decode table for the tree of Fig. 2.2.

node # entry
(see Fig. index base f0  fl

2.2)
1 0 7 1 1
2 1 8 1 0
3 2 G
4 3 4 0 1
10 4 H____ __ __

11 5 13 1 0
12 6 L____ __ __I __ _ _ __ _ _ _ __ _ _
5 7 A__ _ _

7 8 C
6 9 B__ _ _

8 10 12
9 11 F
13 12 D
15 13 I
14 14 E
16 15 1
17 16 K

Algorithm Decode_2H;
/* 2-bit Huffman's decoding */
while (not end of file) do

initialize Base, F[0], and F[Il] from root entry
Repeat

read enough input data and3 store one input bit into v[1]
if ( F[v[1]] 1)
then v[01 0 /* short label */
else store another input bit into v[01 endif;
offset := integer (v[liv[Ol ) /* form a 2-bit integer */
Next Base + Offset
Base :- DT[NextJ.base
if (Base is not a symbol)
then (FU] := DT[Next].fj for j=0,1)
else (Output the symbol stored in Base) endif;

Until (Base is a symbol)
enJ while;

I
Implementation

I A prototype multibit Huffman's encoder/decoder chip has been fabricated for

k=2. The various simulation experiments that we have conducted as well as the

I time analyses and evaluation tests of this chip indicate that the 2-bit hardware
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approximately doubles the throughput of the decoder (compared to the

original Huffman's hardware [MUKH91b]). The prototype chip, called MARVLE,

uses 2-micron CMOS technology, has a 512x12 static RAM with an access time of

4 nanoseconds and consists of 49,695 transistors. The VLSI hardware is very

suitable for real-time applications and can also be used to implement the JPEG

baseline compression scheme.I
3 Multigroup Compression

The multigroup scheme is tailored to take advantage of the property of symbol

reference locality. By modifying the Huffman's algorithm to take advantage

of this property, both the compression ratio and the decoding time can be

significantly improved (at the expense of some additional encoding overhead).

In this report, we present a multigroup decoding algorithm that works for

one-level and two-level hierarchies having arbitrary number of groups. We

shall first illustrate the basic idea of the multigroup approach by an example,

then proceed to discuss other relevant aspects and variations.

Example 2.3:

Assume that the set of input symbols consists of twelve members as shown in

Fig. 2.1 and consider a relational scheme with three attributes whose values

are obtained from three different types of fixed-length domains. The first

domain, DOMI, is of length 13 and is restricted to the five symbols A, B, C, D, and

E. The second domain, DOM2, is of length 12 and is restricted to the three

symbols F, G, and H. The four remaining symbols I, J, K, and L are used in DOM3

which has a length of 7. Furthermore, assume that the relative counts of the

twelve symbols are 4, 3, 4, 1, 1, 2, 8, 2, 1, 1, 1, 4 (same counts used to construct

the tree of Fig. 2.1). Thus the string

SI = A4 B3 C4 DEF2G8 H2 JKL4

is a valid tuple (record) that satisfies both the above relative counts and the

locality of symbol occurrences within the three attributes (the notation AJ is

used to indicate that symbol A is repeated j times). Using the Huffman tree of
Fig. 2.1, the string Sj can be encoded using 104 bits. However, better results

can be obtained if we split the tree of Fig. 2.1 into three groups and provide a

mechanism to switch among these groups during the encoding and decoding
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I processes. Fig. 2.3 gives a multigroup design corresponding to the Huffman

tree of Fig. 2.1. The scheme uses a two-level hierarchy of Huffman trees. The

first level contains three gL.U.gtrees corresponding to the symbols of the

three domains (labels inside leaf nodes in the group trees represent the

frequency counts of these nodes). In each group tree, we introduce an extra

symbol, denoted by "@", which we call the switch indicator. The code of this

symbol is used (by the encoder) to inform the decoder that the next symbol

belongs to a different group tree. The encoder then indicates the identity of

the new group by emitting the appropriate code from the switch ur= at the

second level of the hierarchy.

I DOM1 DOW DOW

0 1 0 1 0 1

4

,L 0 1

AB 0 1H 0 1 0 1 0 1

1 0 12 1 1 1 1

I
D E

D DOW DOW

DOM2 DOMDO DOMI DOM2

i Switch trees

Fig. 2.3. Multigroup scheme for the set of Fig. 2.1

I For example, when the string "EFG" is encoded, the following sequence of bits

is produced
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I
1111 /0 4-bit code of E

110 /0 3-bit code of 0 in the DOMI group tree */

0 /* code of DOM2 in the DOMI switch tree 0/

110 /* 3-bit code of F

0/* code of G */

Using the multigroup scheme of Fig. 2.3 and assuming the encoder and decoder
are initialized to use DOMI as the starting group, the string S1  is now encoded

in 69 bits. This represents an improvemlent equal to (104 - 69)/104 or 33%

over the Hutffman's scheme of Fig. 2.1. If DOM2 (or DOM3) is used as the starting

group, string S1  is encoded in 73 bits (30% improvement).

Remarks

1) If the multigroup scheme uses m groups, each switch tree in the second

level will have m-I leaf nodes. Statistics about the transition from one

group to the other should be collected to establish the correct weights

needed to build these trees as proper Huffman trees. For the case of m=3, the

switch trees have the fixed two-node topology shown in Fig. 2.3 (regardless

of the values of the transition frequencies). In the special case of m=2, the

switch trees are eliminated; the symbol @ in each group tree simply

indicates that the next symbol belongs to the other group tree. The

original Huffman scheme (Fig. 2.1) can be viewed as the special case of
m=lI.I

2) The relative wight assigned to the symbol @ in each group tree should be3 based on the frequency of switching from that group to others, i.e., should

be based on the average number of consecutive symbols (from that group)

appearing in the input before a switch to another group occurs. Notice that

there is no ambiguity introduced when the symbol @ is assigned different

codes in the different group trees.

3) The set of input symbols does not have to be partitioned into disjoint subsets.3 Rather, some symbol(s) may be included in two or more group trees. As in

the case of the switch indicator Q, such symbols may have different codes3 in the different group trees without causing any ambiguity. In practice, a
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useful application of this strategy is to include the blank character in both

the digit and the alphabet group trees.

4) Although the encoding phase of the multigroup scheme is more complex

than its Huffman counterpart, the decoding logic is essentially the same,

namely, the input bits are used one at a time to traverse a tree structure. If

the multigroup scheme is appropriately applied to files having the

property of symbol reference locality, the improved compression ratio

means that the bit-serial decoder will need to operate on less number of bits

and can therefore be significantly faster. For example. a compression

improvement of 33% (as in the above example) would typically translate to

an improvement in the decoding speed of about 20% compared to the

original Huffman scheme.

The Decoding Algorithm:

Algorithm MGJDECODE, given below in pseudo-code, is a high-level description

of the multigroup decoding operation. The algorithm works for any number of

groups m z I and handles both group and switch trees using the same loop

3 statement.

3 MGJDEOX)D
/* Initialize pointers 1
Currentroot := root of first group tree;
Ptr := Current_root
while (not end of file) do;

If (Ptr points to a non-leaf node)
then

case
:input bit = 0: Ptr leftchild[PtrJ
:input bit = 1: Ptr right-child[Ptr]
endcase;

else {els If (Contents[Ptr] is a symbol)

then (Output this symbol; Ptr := Currentroot)
else Ptr := Current_root := Contents[Ptr]
endif

endif;
endwhile;
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Notice that a leaf node may be used to store cither the code of an output symnbol

or an address to another node (i.e., the address of the root of a new tree).

Specifically, a leaf node in a switch tree should be used to store the address of

the root node of a group tree. Similarly, the leaf node corresponding to the

symbol @ in a group tree should store the address of the root of the

corresponding switch tree. Other leaf nodes in the group trees are used to store

the code of output symbols.

As mentioned earlier, the second-level (switch) trees are eliminated in the

special case of m=2. This concept, however, can be extended to other higher

values of m by introducing additional switch-indicator symbols in each group

tree. We call the resulting scheme the one-level multigroup scheme. For

example, if the leaf node of the switch indicator @ in the first group tree (i.e.,

group DOMI) of Fig. 2.3 is replaced by the corresponding switch tree, we

obtain the modified group tree shown in Fig. 2.4. The switch indicator @ is thus

replaced by two nodes (called the direct switch nodes which store the

addresses of the roots for the second and third group trees. These latter trees

are modified in the same fashion to obtain a single level of group trees.

DW0 1

DOM2 DOMS D E

Fig. 2.4. An example one-level group tree

I
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I It is obvious that the particular modification shown in Fig. 2.4 is exactly

equivalent to the two-level scheme of Fig. 2.3 in the sense that they both

produce the same compressed output for any string. The single-level scheme,

however, has the flexibility of adjusting the position of the direct switch

nodes (based on the transition statistics) in order to further improve the

compression ratio. The following example illustrates this point.U
Example 2. 4:

Consider again the first group, DOMI, of the multigroup scheme of Fig. 2.3 but

with the following modified statistics:

I a) the relative counts (weights) of the symbols A, B, C, D, and E are now 4, 3. 2,

2, and I respectively.

b) the average number of consecutive symbols from group DOMI before a

switch to another group occurs is four.3 c) the frequency of transitions from DOMI to DOM2 is double that from DOMI to

DOM3.

Based on the above statistics, the switch indicator @ in the two-level

multigroup scheme will have a relative count of 3 as shown in Fig. 2.5-a. The

single-level scheme shown in Fig. 2.5-b, however, uses two direct switch

nodes: DOM2 and DOM3 with relative weights 2 and 1, respectively.

Assuming the modified statistics hold, the one-level scheme of Fig. 2.5-b gives

a 2.5% average improvement in the compression of symbols from the first

group than its two-level counterpart. The Huffman trees of Fig. 2.5 are

3 obviously not unique, but all valid Huffman trees constructed for the same

weights would surely give the same compression ratio.
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DOM2 DOMW E DOMW

a) two-level scheme for DOMI b) one-level scheme for DOMW

Fig. 2.5. Multigroup schemes for modified statistics

Lemma 4:

For the same input weights, the one-level multigroup scheme gives equal or

better compression ratio than that obtained by the two-level scheme.

I The single-level scheme, however, requires the availability of accurate

statistics about the transition frequency from a local group to each other local

group. These statistics are needed in order to assign proper weights to the

direct switch nodes (relative to the original symbols). In contrast, group trees

in the two-level scheme only require aggregate information about switching

from a group. Specifically, only the average number of consecutive input

symbols from a group is needed to determine the relative weight of the switch
indicator @ in that group tree. Information about individual transitions

between pairs of groups, however, is used in the switching (second level)

trees; but high accuracy about these transition frequencies may not be at all

needed. For example, the case m=3 gives a unique topology of switching trees3 and no information about individual transition frequencies is needed.

Similarly, the case m=4 would only require information about the ordering of

37



the individual transition frequencie3 and not their relative values (i.e., the

topology of each Huffman switch tree in this case is completely defined if we

know which one of its three leaf nodes has the highest weight).

I It is interesting to mention that both the single-level and two-level

multigroup options can be used simultaneously within the same scheme. In

other words, individual groups can be made single-level or two-level based on

the availability of transition frequencies. Basically, the resulting hybrid

scheme does not change the logic or increase the complexity of the multigroup

method. We conclude this section by the following observations.

Algorithm MGDECODE handles any number of groups m k 1 and operates

correctly for the two-level scheme, the one-level scheme, or any combination

of these two schemes. The algorithm is a generalization of Huffman decoding;

running the algorithm with m=1 would reduce to the original Huffman scheme

(with the same compression result and almost the same time overhead).I
Obser at

The multibit scheme can be incorporated into the multigroup technique to

further enhance the speed of the decoding process. For example, the group

trees of Fig. 2.3 can be changed into corresponding 2-bit decode trees. The

resulting multibit multigroup scheme would improve the compression ratio

and significantly improve the decoding speed over the original Huffman

scheme.

Application to Arithmetic Coding

Our discussion so far has concentrated on tree-based codes (primarily Huffman

codes). Attempting to extend the two techniques discussed in this report to the

case of arithmetic coding [WITT87] would reveal the following:

a) The multigroup technique is straightforwardly applicable to arithmetic

coding. When used with arithmetic coding, the multigroup scheme roughly

gives the same compression benefit as that obtained for the Huffman's
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scheme. Unlike the bit-serial Huffman decoding, however, the speed of

arithmetic decoding is not significantly improved by the application of the

multigroup scheme.

b) Arithmetic coding does not emit a separate code for each input symbol; the

decoding process is not bit-serial. The multibit decoding scheme is

therefore not applicable to arithmetic coding.

In what follows, we briefly discuss the application of the multigroup scheme to

arithmetic coding, using the case of m=2 as an example.

I The idea of arithmetic coding is to map a message into an interval of real
numbers between 0 and 1. Consider the set of symbols r = {A1 , A2 , ..... AV)

where the probability of occurrence of symbol Ak is given by Pk. In

arithmetic coding, each symbol is assigned an interval proportional to its
probability of occurrence. The interval for symbol Ak is denoted by [ak, bk)

and is computed as follows

1 a1 =0

I ak = Pj 2 <k _v
Sj=1

bk = ak + Pk I <k <v

Thus symbols are assigned nonoverlapping intervals whose union is the

interval [0.0,1.0). The idea of arithmetic coding is to start with the initial

interval [0.0,1.0) and then narrow it repeatedly (as symbols are processed)

such that each interval is totally contained in the preceding one. In general,

if In = [sn , fn) is the current interval, and the next symbol is Aj with range

[aj , bj), then the next interval In+1 = [su+1, fn+l) is computed as follows.

sn+1 = sn + aj*(fn-Sn)

fn+l = Sn + bj * (fn- Sn)

This assures that In+1 is a subinterval of (i.e., totally contained in) the interval

I In. Furthermore, the following relationship holds true.
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U length(In+) = (bj - aj) * length (In)

I where length (In) = fn - sn . It is easy to see that symbols with higher

probabilities' of occurrence (and hence with larger intervals) have slower

effect on narrowing the interval than symbols with smaller probabilities
[WITT87]. Assigning larger intervals to the most frequent symbols would

therefore increase the compression efficiency since it enables encoding more

symbols (on the average) in the same fixed-length field. The multigroup

approach can be applied to arithmetic coding using the same principles used

in Huffman's encoding. We shall briefly cover the case of m=2 as an

illustration. Without loss of generality, assume that the set of symbols r is

partitioned into the following two sets:

U rI = (AI, A2, ...,Ag,,@)
i r~12 = [At+l, Agt+2, ----.AV, @)

where @ is the switch indicator as explained before. Assuming that symbols Al
through AA tend to occur consecutively in groups of expected length of L 1 ,

the new (adjusted) probabilities of occurrence for symbols in the set rl are

computed as follows:

Pk Ll
q- Pk * lŽ...<k <J.

k ~Pj
j=l

The probability of the switch indicator @ in r I is given by
1

q@- LI + T

The modified probability of a symbol in the set rI is larger than its original
value (i.e., qk > Pk) if the following condition is satisfied.

I ( pj)*(l+ Ij=l <l

In that case, the length of the interval of symbol Ak in the set rI is larger

than that of its counterpart in the original set r. This means that symbol Ak in

the new scheme will have a slower narrowing effect than in the original
arithmetic coding scheme. If the value of L 1  is not very small, the extra

narrowing effect produced by the symbol @ (at each locality switch from the
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I set r 1  to the set r2) is more than offset by the increase in the ranges of the

individual original symbols in r 1 . The modified probabilities for symbols and

the switch indicator in the set r 2  are given by

I Pk L2 jL+1 <k vqk- Pj *L 2 + 1

! P
qI- L2 +1

where L2 is the expected length of sequences of symbols At+l through AV

appearing consecutively. Similar remarks apply to the symbols in this group

as those discussed for the set rI 1.

In summary, we have discussed two schemes for enhancing the Huffman's

decoding. The multibit scheme reduces the time overhead of the bit-serial

decoding operation. The case of 2-bit decoding is quite attractive for practical

implementation; the report presented an optimal solution for the 2-bit CBS

problem. Further research is needed to investigate the practicality of other k-

bit decoders and to determine the value of k for which a k-bit decoder

represents the best tradeoff between the speed of decoding and logic (or

hardware) complexity. The multigroup scheme is suitable for files that exhibit

the property of locality of symbol references. The scheme improves the

Huffman's compression efficiency as well as the time overhead of the

decoding process. The report presented a multigroup decoding algorithm that

works for one-level and two-level hierarchies with arbitrary number of

groups. The multibit scheme can be incorporated into the multigroup

technique to further enhance the speed of the decoding process.
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Abstract

We present a new memory based CODEC architecture to design a special purpose
hardware for real-time multibit compression/decompression of binary data. The pro-
posed architecture is based on a novel idea of mapping the decoding/encoding tree of
any variable length binary code on to a memory device that corresponds to simultaneous
decoding/encoding of multiple bits. The hardware is programmable, easily adaptable
and yields a high compression rate. A prototype 2-micron VLSI chip based on this ar-
chitectural idea has been designed. This chip occupies a silicon area of 6.9 x 6.8 square
millimeters and it contains 49,695 transistors with estimated compression rate of 88
Mbits/sec and a decompression rate of 53 Mbits/sec with a clock rate of 50 MHz. The
algorithms have been tested with different types of variable-length binary codes including
the JPEG baseline compression scheme.

Associated with the memory map, a new binary string alignment problem, called the
Contiguous Binary SuperString (CBS) problem is formulated and heuristic algo-
rithm is developed to solve it. An efficient algorithm for this problem is posed as an

* open question.

Keywords: CODEC, compression, decompression, JPEG, Multibit Data Compres-

sion/Decompression, tree based code, reverse code, reverse binary tree, memory map, perfect

map, Contiguous Binary Superstring, CBS.

1 Introduction

n The primary objective of data compression algorithms is to reduce the redundancy in data

representation in order to decrease data storage requirement. Reducing the storage require-

1
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3ment is equivalent to increasing the capacity of storage medium. In systems with levels of

storage hierarchy, it may then be possible to store data at a higher (and faster) level thereby3 reducing the load on'the I/O channels. Data compression offers an attractive approach

to reduce the communication cost in transmitting exceptionally high volumes of data over

long-haul links via higher effective utilization of the available bandwidth in the data links.

The number of applications that require storage and transmission of large volumes of data

is steadily increasing. Communication and display technologies allow the use of pictorial3 information and photographic images in various scientific, industrial, medical and consumer

applications. Because of the large amount of data required to represent an image1 , com-

pression techniques that expoloit redundancy in data are required for efficient transmission

and storage. With respect to transmission of data, the NREN (Nastional Research and Edu-

cational Network) has characterized several networking applications (video teleconferencing

, interactive visualization, composite imaging, etc.) to require peak bandwidth rate of 1

Mbits/Sec to 1000 Mbits/sec [BROM91]. Even with the advent of gigabit per second net-

works (to be developed by CNRI, Corporation of National Research Initiatives jointly

with NSF and DARPA support), the development of efficient compression techniques in3 order to achieve high utilization and bandwidth will continue to be a design challenge for

future communication systems. As an example, by 1995 NASA expects to acquire space and

earth science data from spaceborne sensors which will amount to 28,000 gigabytes of data

in its archive [GREE88]. Achieving real-time linkage among geographically-distant LAN

(local area network) sites is one of the major technical challenges facing the implementation

of long-haul data communication networks. In order to handle such staggering amounts of

data, application-specific hardware algorithms and custom VLSI chips for data compression

have to be developed as standard components for communication and storage.

A vast amount of literature is available on data compression techniques [LELE87] 2.

I Data compression techniques could be lossless or lossy. The lossless methods can recover an

exact copy of the original data from the compressed data whereas the lossy techniques allow3 the decompressed data to be an approximation of the original data. The lossy techniques

are usually applicable to image data where transform and other techniques [WALL90,3 NETR88, ARPS88, CLAR85] have been used to produce compression ratios of about

'Still pictures: ISO JPEG standards, 4.97 Mbits per picture frame; Motion pictures; CCIR 601 (4:3:2,
NTSC) standard, 169.92 Mbits/sec with 30 frames/sec; Visual telephony, CCITT px64K standard, 12.165
Mbits/sec with 10 frames per second [NETR88, HANG90.2There are also a number of excellent books [STOR88,NETR88,GW87] that treat compression tech-
niques and image processing technology.

2
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3 100:1. With the advent of VLSI technology, hardware support for lossy methods and special

purpose VLSI chips are fast becoming standard components for image processing systems

[CCUB90, VENB9i, VETT86, SUN89]3 . The lossless methods have been traditionally

used for large scientific and text databases and usually yield a compression ratio between 2:1

to 3:1. The classical lossless encoding methods have used tree-based codes which represent a

large class of variable-length encoding schemes such as Huffman codes [HUFF52], Shannon-

Fano Codes [FANO49, SHAN49], Universal codes of Elias [ELIA75], the Fibonacci codes3 [FRAE85], etc. The code set is represented by a tree in which the leaf nodes represent the

symbols to be coded. The sequence of l's and O's in the unique path from the root of

the tree to each leaf node represents the unique code for the corresponding symbol. The

arithmetic codes [ABRA63, WITT87], the LZ codes [ZIVL78] and its several variants

and the run-length code [GREE88, BASS85] are not tree-based codes and provide good

compression ratios in many applications. In the absence of a suitable model of data to be

compressed, the arithmetic and LZ methods provide better adaptive codes. The lossless

methods in combination with lossy methods have been used in some image applications.

For example, the baseline system proposed by ISO-JPEG [WALL90], an international

still image standard, recommends the use of Huffman coding or arithmetic coding to encode

the compressed image (obtained after transform and quantization steps) to further exploit

its redundancy. Lossless methods are also used in specialized applications such as medical

imaging (for diagnosis of disease) or satellite photography (such as level 0 or level 1A space

image data of NASA [MILL88]) where reliability of reproduction of images is a critical

factor.

In recent years, several special-purpose VLSI chips and architectures have been proposed

to implement lossless compression algorithms. A class of parallel algorithms for compression

by textual substitution is proposed in [STOR82, GONZ85, STOR88] and a hardware sys-

tem consisting of several VLSI chips implementing their algorithm has been built [STOR90].

A hardware scheme implementing a variation of the LZ agorithm called the LZW algorithm3 was described in [WELC84]. Another realization of Ziv and Lempel's LZ2-type compression

in hardware is described in [BUNT90.

3 Zito-Wolf has proposed VLSI architectures for the LZ1-type scheme [WOLF9Oa] using a

binary tree and a linear systolic array that maintains the dictionary. The Hewlett-Packard's

HP798OXC tape drive uses real-time data compression scheme to provide an extended per-
3 These are typical references. There are a large number of other important references not cited here in

order to conserve the size of this paper.
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Sformance to the 6250 GCR format. A HCMOS VLSI chip for data compression based on

a general-purpose adaptive binary arithmetic coding architecture was implemented by Arps

et. al [ARPS88]. A set of VLSI chips have been built implementing the Rice algorithm
[RICEO0] at the NASA Space Engineering Research Centre for compressing satellite im-

ages and the hardware implementation is discussed in [VENB91]. The Rice algorithm is a

lossless compression method which handles different entropy conditions by utilizing multiple

coders, each of which is tuned to compress data a particular entropy range and selects the

output from the coder that gives the best compression efficiency.

In this paper, we present a new memory based architecture for the design of special-

purpose hardware for real-time compression and decompression of data. The architecture is

suitable for any tree based codes and uses memory as its major component which can be
Svery easily implemented in VLSI. The hardware algorithm is designed for parallel decoding

and encoding of k bits of the code in one memory cycle. The details for the design for k=2

are presented. Compared to the case of k=1 (single bit decoding/encoding), increasing the

value of k increases the average throughput by a factor of k with some overhead in control

circuitry. The hardware is programmable in the sense that the same hardware can be used

for any type of tree based codes and it can be easily adapted to implement adaptive codes.

The design of a prototype 2-micron VLSI chip based on the algorithm described in this paper

i for k = 2 is presented in a separate paper [MUKH92]. The chip occupies a silicon area of

6.9 x 6.8 square millimeters and it contains 49,695 transistors. The chip has an estimated3 compression rate of 88 Mbits/sec and a decompression rate of 53 Mbits/sec with a clock rate

of 50 MHz. This paper will describe the underlying algorithm and the architecture for this

chip and will also present the software algorithms recessary for compilation of the memory

map for arbitrary value of k.

The design of the memory architecture for k-bit decode/encode function has lead to

the formulation of an open problem, called the Contiguous Binary Superstring (CBS)

problem. The problem can be informally stated as follows: given a set of m binary strings,

S1, S2,..., Sm, find a superstring S of shortest length such that each Si is contained in S
contiguously and S is the union of Si's such that no more than one Si contributes a '1'3 in any position of S. This problem has the flavor of the multiple string aiignment problem

[LIMI90, SANK85] and the superstring problem [TARH88], but is quite distinct from3 them. We have developed a "greedy" heuristic algorithm to solve the problem. We will

present this algorithm in this paper with an analysis of its complexity. Finding an efficient3 algorithm with provably good bounds is proposed to be an open problem.
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2 The Tree Based Codes and the Reverse Tree

By tree based code, we mean the set of encodings that can be represented by a binary tree,
as shown in Figure 1, as an example. The leaf nodes represent the symbols to be encoded

and the sequence of l's and O's in the unique path from the root of the tree to the leaf

node represent the unique code for that symbol. Tree based codes represent a large class of

instantaneously decodable variable-length encoding schemes. For a discussion of these codes

and their properties, the reader is referred to the review paper by Lelewen and Hirschberg

[LELE87]. For the development of the hardware implementation of the tree based codes,

the concept of reverse binary tree [MUKH89, MUKH91] will be useful. A reverse

binary tree is a labeled binary tree whose leaves and some of the internal nodes represent the

symbols to be encoded in the following sense: the sequence of O's and l's in the unique path

from the node representing the symbol to the root node is the code for the symbol. Given

the binary tree representing the encoding scheme, the reverse binary tree can be obtained

by the following algorithm:

(i) Obtain the reverse code for each symbol by writing its original code backwards.

(ii) Consider the reverse code for the first symbol and construct a right child to the root

node if the first bit is a '1' or a left child if the first bit is a '0'.

(iWi) Assuming this newly built node as the parent node, consider the second bit of the

reverse code and build a new child node as before. Repeat this step until all the bits

of the code for the first symbol are considered.

(iv) Consider now the reverse code for the second symbol. If the first bit is a '0', we need

a left child from the root and if the bit is '1', a right child is to be constructed. If

the particular child node already exists due to the consideration of a previous symbol,

traverse to that node and consider the second bit of the reverse code. The same

3 procedure is applied to all the bits of the code for the second symbol constructing only

the missing nodes during each step.

I (v) Repeat step (iv) until the reverse codes for all the symbols have been considered.

The resulting tree is the reverse binary tree obtained from the original code. The reverse

binary tree for the example tree of Figure 1 is given in Figure 2. The time complexity for theI
!5



construction of the reverse binary tree is linearly proportional to the total length of binary

codes of all the symbols.

For the purpose of developing multi-bit encoding and decoding schemes, we will define

a k-bit tree associated with a code as follows: each edge of the tree corresponds to the

encoding of a maximum of k bits of the code. If the length of the code is n, it is represented

by a sequence of [n/k] labels in the unique path from the root to the leaf of which only the

last edge leading to the leaf node could possibly have a label with less than k bits. The tree

of Figure 1 is a 1-bit tree; the corresponding 2-bit tree for the same code is shown in Figure

3. In an analogous fashion, we define a k-bit reverse tree. In this case, the sequence of

symbols read from the leaf to the root of the tree specify the unique code for the symbol. The

reverse binary tree of Figure 2 represents a 1-bit reverse tree; the corresponding 2-bit reverse

tree is shown in Figure 4. The algorithm to obtain a k-bit reverse tree is obviously very

similar to the algorithm for the reverse binary tree as described above and the complexity of

construction is linearly proportional to the total length of the binary codes of all the symbols.

3 Memory Map of a k-bit Decoding/Encoding Tree

The architecture of encoder/decoder chip is based on a memory in which the code trees

(both the k-bit decoding tree for decoding the symbol table and k-bit reverse tree for encoding
the corresponding symbols) are stored. In this section, we will present a systematic method

of mapping the nodes of the tree onto the memory. We will also describe the software to

compile the k-bit trees and reverse trees starting from the symbol/code table. We will first

discuss the mapping of the decoding tree.

Let there be n nodes in the k-bit decoding tree of which there are p nodes (p < n)

N1, N2, ... , Np which are non-leaf and each having at least two child nodes. The remaining

nodes N+,,..., N, are either leaf nodes or non-leaf nodes with only one child4 . Consider

one of the nodes Ni (1 < i < p) and assume that it has c child nodes; obviously, 1 < c < 2k.

Let the edge leading to the t-th child (1 < t :5 c), has a label Li = X1 Z2 ... X, where s < k

and zi (1 < i < s) is a binary integer 0 or 1. Define an integer BE associated with L' as

j=1

""In the case of Hutffman's k-bit decoding tree, every non-leaf node will have at least two children

6



The set of numbers B1, Bi,..., B, are all distinct since the labels Li obey the prefix property

(that is, no label is a prefix of another label). Associate a positive integer variable Mi with

node Vi and define a set of c numbers, Mem(Ni), associated with Ni as

Mem(N.) = {Mi + B'It = 1,2,...,c}

An assignment of integer values to the sets of numbers Mem(Ni), i=1, ... , p such that

no two integer values are equal, will be called a memory map of the k-bit decoding tree.

Let there be q unassigned nodes constituting a subset of the nodes (Np+ 1,...,Nn). Map

each of these unassigned nodes to a distinct positive integer outside the memory map. Call

this set to be a terminal map for the k-bit tree. The union of the memory map and the

terminal map is called the total memory map.

Example 1: The 2-bit tree corresponding to a Fibonacci code [LH87, p.276] is shown in

Figure 5. The memory map assigns unique positive integers to the children of NI, N 2, N 3,

and N 4 where

Mem(NI) = {M + 0, MI + 1, MI + 2, MI + 3)

Mem(N 2) = {M 2 + 0, M2 + 1, M 2 + 3}

Mem(N 3 ) = {M3 + 0, M3 + 2}

Mem(N 4) = {M 4 + 1, M14 + 3}

Assigning MI = 0, M2 = 4, M3 = 6, M4 = 8 produces a solution as given in Figure 5 by

the numbers adjoining each node. For the four remaining unassigned leaf nodes, we can take

the terminal map to be N5 --+ 10, N6 -- 12, N7 - 13, NS - 14 producing a total map.

One notes that for the above example, it was possible to map all nodes of the tree

(excluding the root node) to a set of consecutive integers. Such a map will be called a

perfect map. A good map will be the one that maximizes the use of consecutive integers.

Assuming the map uses integers 0 through N - 1 with W unassigned integers, the ratio W/N

will be called the gap g of the map. A perfect map has no gap. The ratio (n-1)/N will be

called the efficiency of the map.

Note, for a perfect map, g=0 and efficiency is 100%. A sufficient condition for a perfect

map is known.

Theorem : A 1-bit binary decoding tree has a perfect map.

7



Proof: Each non-leaf node of N1, N 2,. .. , Np has two children corresponding to labels 0

and 1. Assigning the first p even integers (viz. 0, 2, ... , 2(p-l)) to the left child of

N1 , N 2,..., Np respectively will lead to a perfect map.

A greedy algorithm (CBS algorithm) for obtaining a memory map for a k-bit decoding

tree is presented in Section 4. This algorithm does not produce an optimal memory map (i.e.,

a map for which W is minimum), but as we will see W can be utilized to map the encoding

tree which needs n arbitrarily chosen distinct integers for its memory map. Thus, even a

relatively large gap does not lead to any inefficient utilization of the available address space.

The problem of obtaining an optimal memory map for the decoder is an open question and

will be discussed in Section 4.

The encoding map is created by using the reverse tree. Since each node has only one

parent node, the addresses of the nodes can be assigned arbitrarily as long as they are

distinct, as shown in Figure 6. But, to simplify the address decoding hardware, we will take

the fixed length binary word representing the symbol to be the memory location associated

with the symbol.

Memory Word Format

For k=2, the memory word has the format shown in Figure 7. The fields of the word

have different meanings for encoding and decoding operations. For decoding operation,

since our objective is to decode 2 bits per cycle, if possible, we need to distinguish between

a regular node, which is a non-leaf node from which transition to all its children has 2 bits

on the edge label (such as the one shown in Figure 8(a)), a non-leaf node with two single

I bit transitions (Figure 8(b)), non-leaf nodes with a single bit and 2-bit transitions (Figure

8(c) and (d)) and a terminal node (Figure 8(e)). For a regular node, the 2 bit decoding

process will proceed to the child node. For (b), (c) and (d), I bit transitions lead to terminal

symbols and therefore the decoder should output the symbol but backup one bit position to

start decoding the next symbol.

8
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The meaning for the t, b and f bits for decoding operation are assigned as follows:

t b f Type

0 0 0 A regular non-terminal (no backups)

0 0 1 A non-terminal with backup on 1 transition

0 1 0 A non-terminal with backup on 0 transition

0 1 1 A non-terminal with 2 backups on both 1 and 0 transitions

1 0 0 A terminal node

For terminal nodes, the data field (see Fig. 7) corresponds to the value of the decoded

symbol; in all other cases, the data field designate a next memory location address.

As we discussed earlier, the whole encoding scheme depends upon the carresponding

reverse tree of the symbol table. The integer values assigned to each node of the reverse tree

represents address of the memory location where that node is mapped. The content (next

address and the encoded bits) of that memory location is simply the integer value assigned to

its parent node and the label of the edge leading to its parent node represents corresponding

encoded bits.

For 2-bit (k=2) encoding operation, our objective is to encode 2 bits per cycle. The t

and b are the encoded bits in a cycle. The f bit is a controlling bit, which indicates the

number of bits to be encoded at the last memory cycle. If f=1 at the initial address of the

symbol to be encoded, it means that the encoding of the symbol uses odd number of bits

and at the last memory memory cycle it outputs the bit t only and bit b is ignored. If f=0,

both t and b bits are output bits at the last memory cycle. The data field corresponds to

the next address to be fetched from the memory in the next cycle.

As an example, the memory map of the tree (for the Fibonacci code) of Figure 5 and the

memory map of the reverse tree (As shown in Figure 6) are shown in the Tables I and II,

respectively. Notice that in Table I, the content of the next address of the memory location

of a non-terminal node with a single child is the integer value obtained by subtracting the

value of the label leading to the single child node from the address where this child node

was assigned. The content of the memory locations corresponding to the leaf nodes is the

symbol of code at the leaf node itself.

A bruteforce method of implementing the encoder tree on a memory, will be to store the

9
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Memory Location Next Address/Symbol t b f

i -> 0 4 (=Ný) 0 0 0

1 6 (=Nv) 0 0 1
2 8 (=0) 0 0 0

3 8 1 0 0

4 7 (=10-3) 0 0 0

5 10 (=12-2) 0 0 1

6 11 (=13-2) 0 0 1

7 e 1 0 0

8 f 1 0 0

9 12 (=14-2) 0 0 1
10 a 1 0 0

11 d 1 0 0
1I h 1 0 013 b 1 0 0

14 _ 1 0 0

Table I: Memory Map of 2-bit Decode Tree of the Codes below

Symbol Code

a 000011
b 01001
c 10011
d 1011

ie 
0011

f Oil

g 11

mh 00011

1
I
I

10I



I

I PRESENT ADDRES NEXT ADDRESS t b f

a

b 0 4 0 0 0

¢ 1 8 0 1 1
d 2 5 1 0 1

DECODER 3 6 1 0 0

f 4 6 0 0 0

I 5 9 0 1 1

6 10 1 1 0

7 5 0 0 1

8 9 0 0 0

9 10 1 0 0
SYMBOL TO BE ENCODED 10 * 0 00

I encoding of the new symbol

Table IIH Memory Map for the Reverse tree (Encoder Table) of Table I.

entire code and the length of the code in each location corresponding to a symbol. This will3 need a memory size proportional to product of the size of the alphabet and the maximum

code length. The codes of length less than the maximum length will be padded with O's

and additional control circuits to extract the correct number of bits using the code length

information will be necessary. Our proposed encoding scheme uses the same memory format

as the decoding memory with different interpretation of the control bits t, b and f. This

enables the encoder/decoder hardware to blend into a combined CODEC (coder/decoder)

architecture.

Example 2: We illustrate the decoding process with respect to the symbol 'b' which has

a code '01001'. We assume that the memory address register is initialized to 0 (which is the

value of Mo). For k=2, two bits are decoded in each memory cycle. The decimal equivalent

of the first two bits '01' is added to the initial address giving '1' as the first address when3 the decoding process starts. It is a non-terminal node (t=0) and the next address is 6. The

decimal equivalent of the next two bits '00' is added to 6 to give 6 as the next address. The3 next address of 6 is 11, it is a non-terminal(t=0), the control bits bf='01' indicate that there

is a backup on 1 transition. So, only the next single bit (with value 1) is extracted and is3 appended with a zero bit to give "10", i.e., decimal value of 2. The latter value is added to

11I
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decimal 11 to get 13, t=1, indicating it is leaf node and the symbol field 'b' is read out as

the decoded symbol.

Example 3: We show here how the symbol "b" can be encoded as an example. The

initial address for the symbol "b" is 1 as shown in Table I1. Now, the content of the memory

location 1 shows that the "f" bit is 1 which indicates that the length of the code of "b"

is odd. Hence, at the last memory cycle (when next address 10 is reached) only 1 bit will

be output. The next address field is 8 and the encoded bits (t and b) are "01". Now the

memory location 8 shows that next address field is 9 and the encoded bits are "00". The

next address field is 10 and the encoded bits are "10"(t=-, b=0). But since the next address

field of memory location 10 is "*'", a special symbol designating the last cycle, it outputs

t=1 only (ignores b=0) as the encoded bit. Hence, the encoded binary code of the symbol

"b" is found to be 01001, which is verified from Table II.

We give below a high-level description of the algorithm to generate the decoding and

reverse tree.

Decoding Tree Algorithm:

/* Input : the symbol/code table as in Figure l and the parameter k. */

/* Output : the k-bit decode tree. */

create the root node;

parent *- rootnode;

while (symbol/code table is not empty) do

read the binary code of a symbol;

len +- length of the binary code of the symbol;

Iwi_(len > k) do

p +- the decimal value of the next leftmost k-bits of the code;

construct p-th child of the parent if not already constructed;

Associate label of the edge leading to the p-th child with these k-bits;

parent +- p-th child of parent;

3 len - len- k;

endwhile;

p +- the decimal value of the remaining bits of the code;

construct p-th child of the parent if not already constructed;

endwhie;

12I
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Following is the algorithm to generate ihe k-bit reverse tree from a symbol/code table.

Reverse Tree Algorithm:

/* Input : the symbol/code table as in Figure 1 and the parameter k. */

/* Output : the k-bit reverse binary tree. *1

* create the root node;

parent 4- rootnode;

while (symbol to be encoded is not exhausted) do

i +-0;

read the binary code;

len l- length of the binary code of the symbol;

r -- len mod k; /* r is no. of bits to be encoded at the last step */

if( r > 0 ) then

p +- the decimal value of rightmost r bits of the code;

I Construct p-th child of the parent if not already constructed;

Associate label of the edge leading to the p-th child with the rightmost r bits;I
parent +- p-th child of parent;

i -- i+r;

endif;

while (i < len - 1) do
p -- the decimal value of the next rightmost k-bits;

I construct p-th child of the parent if not already constructed;

Associate label of the edge leading to the p-th child with these k-bits;I
parent +- p-th child of parent;

i i-i+k;

endwhile;

endwhile;

13I
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4 Contiguous Binary Superstring Problem and Compilation
of the Memory Map

In the previous section, we described algorithms to construct the k-bit decoding tree and

the k-bit reverse tree starting with the symbol-code table. In this section, we present the

algorithm that produces the actual memory map.

Given a k-bit decoding tree, the problem is to obtain a total memory map with minimum

gap W. A more abstract formulation of the problem can be stated as follows.

For each node Ni (1 < i < p) (see section 3), associate a 2 k bit binary vector V =

(aoal ... a2k- 1) such that ai = 1 if (Mi + i) is a member of Mem(Ni); otherwise ai = 0. We

say that another binary vector U = (uoUl ... u,- 1) contains Vi if: (i) m _> 2 - 1; (ii) there

exist 2 k consecutive elements in U, uj+0,ui+ ....,uj.+2i_ 1 (0 < j; j + 2k - 1 < m) such

that uj+s = a, whenever a. = 1 (0 < s < 2 k - 1). A binary vector C = (co,ci,...,c,- 1) is

said to be a contiguous binary superstring (CBS) of a set of vectors V1, V2,..., V, if C

contains V,(1 < i < p) and C is the bit wise union of Vi's such that if ci = 1 (0 < i < r - 1)

only one of the bits of W's aligned to position i of C is 1. The CBS with a minimum number

of O's will be called an optimal CBS.

I Example 4: If V1 = 1010, V2 = 0101, the string 10100101, 101101, and 1111 all are CBS of

which 1111 is the optimal CBS. If V1 = 1011 and V2 = 1011, the optimal CBS is 10111011

with a gap W=2.

It is obvious that a CBS corresponds to a memory map by naturally assigning Ci to the

I memory location i.

Example 5: For our Example 1 with reference to Figure 5, we can write the vectors cor-

responding to Mem(Ni), 1 < i < 4 as follows V1 = (1111), V2 = (1101), V3 = (1010) and

V4 = (0101). An optimal CBS has the following alignment:

3 V1 -- 11111101 `- V2

1010 -- V3

I0101 - V4

CBS = (111111111101)

14
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The gap W=1 at location 10 which can now be assigned to the leaf node N5 results in a

perfect total map.

The CBS problem has the flavor of the multiple alignment problem [SANK85] and the

problem of determining the shortest superstring; but it is different and may still be NP-hard.

We will present a "greedy" heuristic algorithm below. Note, for the design of combined

decoder/encoder memory map, obtaining the optimal CBS is not that crucial because the

gap locations can be used up by the encoder map which needs approximately 50% unassigned

but freely bound memory addresses.

We need a few definitions. If two vectors Vi and Vi are complimentary, they will be

said to align with 0-slide to form a CBS. In general, if Vi needs a relative shift of s

(0 < s < 2 k) with respect to Vi for obtaining a CBS of Vi and Vi, it will be called an

I alignment of s-slide. In the above example, the pair V1 and V2 can align with 4-slide, and

V3 and V4 align with a 2-slide. The greedy algorithm can be described as follows: given the

set of vectors S = (V,,..., 1'), obtain the pairs of 0-slide vectors. Delete these pairs and add

the corresponding CBS's to S. Choose a pair of vectors in S that have a 1-slide alignment.

Delete the pair and add the corresponding CBS in S. Keep repeating the step until no more

1-slide alignment can be found. Then, successively repeat 2-slide and 3-slide alignments.

When no further alignment is possible, concatenate the vectors in S to obtain the single

CBS for the original set of vectors. Formally, the algorithm for software implementation is

presented below :

Greedy Algor 0im for the CBS problem

Let S = {V1, V2,..., 9,p} be the given set of vectors. The greedy algorithm to find CBS

of S has the folowing steps:

I Begin
I Repeatmaz --- length of the longest vector in S;

for j=0 to max-1 do

Find distinct pair of vectors Vi and Vj in S which

form alignment of j-slide to form a CBS V;

I
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Delete Vi and V from set S and add V into S;
end

j unt no more allignment possible;

CBS *- Concatenation of all the vectors in S;

return with CBS;

End.

Analysis of the time complexity of the CBS algorithm:

To test whether each pair of binary vectors (Vi, 1") form CBS, it needs O(p) comparisons

steps. In each pass there might be maximum p number of such test for CBS. Hence, each pass

3 needs O(p2 ) comparison steps to test for alignment of s-slide to form a CBS (for any value

of s). To compute the final CBS, O(p) such passes are required in our heuristic algorithm.

Hence, time complexity of the above heuristic algorithm is O(p 3 ) with p number of vectors

in the initial set.

One should be noted that the CBS formed over a set of binary vectors is not neces-

sarily unique. The same algorithm may generate different CBS depending upon the order

of comparison of the vectors in S. A C program for the above algorithm has been imple-

mented and used for the memory map of 2-bit compression/decompression with different

types of variable-length codes and the JPEG baseline Huffman table for AC and DC co-

efficients of luminance and chrominance codes. We compared the results with both 1-bit

decoding/encoding and 2-bit decoding/encoding scheme. For 1-bit decoding, the memory

map for the luminance AC coefficient code table has a size of 645 memory words. Applying

the CBS algorithm for memory map, the same 1-bit decoding table needs 480 words. For

2-bit decoding, the memory map obtained by the CBS algorithm for the same table needs

only 226 memory words. To store the code table for chrominance AC coefficients, total

number of memory words required for the 1-bit decoding scheme (without applying the CBS

algorithm) is 643, whereas the same shceme when the CBS algorithm is applied needs only

478 memory words. The code table for 2-bit decoding scheme using the CBS algorithm needs

223 words, i.e. less than half of the number of memory words required for 1-bit decoding

scheme. The memory map for the encoder tree (reverse tree) needs 747 words for the lu-

3 minance AC coefficient code table and 724 words for the chrominance AC coefficient code

table in the 2-bit decoding/encoding scheme. The number of codes in each table (both for

3 AC and DC chrominance and luminance codes of JPEG baseline) is 162 and most of the
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codes are 16 bits long. In most of the 2-bit tree examples that we have experimented, we

observed that W is less than 20%. In the worst case, a trivial algorithm (concatenation of

all the vectors V.,..., Vp each having a single 1, which is a rare case) gives 75% gap which

is the upper bound. If each vector Vi looks like 1011... 11, the optimal CBS will have 1/2k

wastage (for k=2, it is 25%). Thus the greedy algorithm works well from practical point of

view, but still obtaining a provably good heuristic is an open challenge.

I 5 The 2-bit Decoder/Encoder Architecture

Decoding Algorithm:

The essential hardware to execute the decoding algorithm consists of a memory (MM),

where MM[x] denotes the content of memory in memory location x, a memory address

register (MAR) that holds the address for a memory access, a memory data register (MDR)

which contains the accessed memory word and a two bit register A[1,01 where the edge label

for the next edge to be traversed is assembled during the decoding process. It is assumed

that the decoding tree has been compiled ahead of time and initially the MAR contains

address of the beginning of the memory table which is the address of the root node of the

decoding tree. To be specific, assume MDR has 12 bits, denoted MDR[11, ... , 0] and MAR

has 9 bits MARl8, ... , 01.

* Begin

while (bit string to be decoded not exhausted) do

MAR RootNodeAddress;

MDR .- initial value corresponding to the root node;

/* This initial value is supplied by the preprocessor */

/* After every memory fetch MDR[11, ... , 3] contains *1

/* the " NEXT ADDRESS/SYMBOL " field of the memory word */

5 /* and MDR[2,...,0] contains t,b,f bits of the word. */

while (t=0) do

A[1] - next bit on input stream;

17U
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(f=O, b=O) : A[O] .- next bit on input stream;

I (f=1, b=1) : A[O] i- 0;

3 (f=1, b=O) : A[O] i- 0;

(f=0, b=1) : A[0] - next bit on input stream;
I endease

MAR ,- MDR[II1,..3 + A;

3 MDR- MM[MAR];
end

endwhile

3 Output the decoded symbol;

endwhile

Encoding Algorithm:

The least significant bit (f) of the memory word is called the parity bit which actually

indicates whether the code of the symbol is of odd length or it is of even length (if f=1 then3 at the last step only 1 bit will be emitted). The next least significant 2 bits (i.e., t and b bits)

are the encoded bits corresponding to a symbol. The remaining bits of the word designate3 the next address of the memory location to be accessed.

Bi Load the encoder table;

MAR ,- beginning address of the symbol to be encoded;

MDR -- MM[MAR];
/* After every memory fetch MDR[11,...,3] contains the "NEXT ADDRESS" field */

/* of the memory word fetched and MDR[2,... ,0] contains t,b,f bits respectively. */

MAR -- MDR[11 ... 3];
I ~F-f;

while (MAR $ a special address ("*")) do

3begin
is
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output the encoded bits (t,b);

MDR - MM[MAR];

MAR - MDR[11 ... 3];
endwhile;

m j(F = i)
then

output the "t" bit only; /* MDR[2] */

output both "t" and "b" bits; /* MDR[21, MDR[11 */
ed endif;
end.

m The decoder and the encoder can be combined into a single VLSI chip architecture as

shown in Figure 9. The decoder 2-bit tree and its reverse tree are preloaded into the memory.

If there is any gap in the decoder memory map, this memory space can be utilized by the

encoder memory map since many of its non-leaf nodes can be freely placed anywhere in the

Smemory as we discussed earlier. The beginning addresses of these tables are made available

to the global control. When the D/E(decode/encode) signal is set to 1, the machine works3 as a decoder; if it is set to 0, it works as an encoder. The decoder operation proceeds as

follows. The decoder control generates shift signal to read one or two bits from the input bit

string(depending upon the values of t, b, f bits) which is assembled into a number C that is

added to the next address in the Adder circuit. The demultiplexor DMUX2 selects t and

b bits to the control which is able to generate all local control signals. If a terminal symbol

is reached, the demultiplexor DMUX1 puts the content of MDR (excluding the three least

significant bits) to the output buffer SYMBOL. In essence, the hardware performs the

decoding algorithm as presented at the beginning of this Section. For encoding operation,

the input symbols are used to access the memory via Address Decoder, the second and

5 third least significant bits of the memory data register (MDR) are selected for output to

the first-in-first-out register (FIFO). The control flip-flop F, set by the length code detector

reads only one or two bits into the FIFO depending on the length of the label in the reverse

tree (see discussion earlier). Note, during the encoding operation, the adder circuit could be

bypassed since the next address is directly read from MDR. During decoding, the address

3 computation and the memory access could be easily pipelined for successive pairs of bits to

be decoded resulting in higher throughput.

1
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The hardware can easily be reconfigured to do single bit decoding/encoding operation.

In this case, we will use the 1-bit tree and the reverse binary tree. We can avoid the addition

* cycle for next address computation in the diecoder by shifting the next address left one bit

and by simply appending [BHED90] rather than adding, the terminal bit t (the backup bit

is not required). Of course, the 'next address' has to be half of the original address, that

is, the address as derived in the proof of Throrem 1. The control circuitry can be much more

simplified, since both encoding and decoding processes handle one bit in every cycle.

I The hardware described above is programmable in the sense that any tree based code

(Huffman, Shannon-Fano, Elias, etc.) can be implemented on the same hardware. The

preprocessing step consists of preloading the memory with the appropriate memory maps.

In fact, memory map for several codes can simultaneously exist on the memory and switching

from one code to the other simply amounts to making the beginning address of the maps

available to the control. The architecture is therefore easily adaptable to adaptive codes.

This can be done by implementing the memory as a two-port memory. The write port of

the memory can be used to load to a different part in memory an updated memory map

computed by the host processor based on the most recent statistics of the frequency of

distribution of symbols. At appropriate intervals of time, the status of the read and write

ports can be switched, thus adapting to the new codes.

I The architecture described above has been simulated (using C programming language)

and the results obtained from the simulated runs indicate that the 2-bit decode/encode

hardware approximately doubles the throughput of compression/decompression and uses

almost half the amount of memory compared to the 1-bit decode/encode scheme. There is,3 however, some overhead in the form of additional hardware viz. the flip-flops, shift registers,

the adder and the control circuits. A question that naturally arises is: what is the value of k

for which a k-bit decoder/encoder represents the best tradeoff between hardware complexity

and throughput. The following discussion points out some general features.

3 For an arbitrary k, we can say on the average that the height of the decoder tree will

be reduced by a factor of 1/k and the size of the memory map will be decreased by a

factor 1/ 2 k with an increase in word size by 1og2k additional bits. A speedup of k in the

decoding/encoding pr"cess compared to the case when k=1 will occur in most sit,;-tions.

We need however s - 8og2k backup bits bl, b2,... , b, to indicate the possibility of a ,.ocmtial3 backup with 0, 1, 2, ... , k-1 bits in the decoder and same number of control bits to indicate

how many of the encoded bits represent valid output bits. The reading of the input bits to

I
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the input buffer also has to be handled by a shifter which can shift 1, 2, 3, ... , k bits etc.

Thus, even if we assume that the cost of control circuits is linearly proportional to k, we can

achieve a linear speedup in throughput with a factor of 2 k in saving memory space.

5.1 VLSI Chip Implementation

The chip was implemented in 2-micron SCMOS p-well technology using a standard-cell and

micro design approach. The design uses a 2-phase non-overlapping clocking scheme. The chip

has been fabricated by MOSIS. The registers, multiplexers, and logic gates were designed as

standard cells and the 512x12 static RAM was implemented as a full custom macro. The

Cadence design tools running on SUN workstation were used for the entire design. The

design approach was to design the standard cells and the RAM and perform automatic

placement and routing. The chip occupies a silicon area of 6.9 x 6.8 mm 2 and contains

49,695 transistors. There are 55 pins on the chip or I/O and power connections. The chip

has capability of an estimated compression rate of 88 Mbits/sec and a decompression rate

of 53 Mbits/sec with a clock rate of 50 MHz. The detail design of the chip is presented in a

separate paper[MUKH92].

6 Conclusion

We have presented a memory based architecture for the design of special purpose hardware

for real-time compression/decompression of data. A VLSI chip implementing a 2-bit encod-

ing/decoding (CODEC) architecture has been built and tested. The simulation of the JPEG

baseline compression/decompression scheme has produced improvements in both size of the

memory and the speed of compression/decompression algorithm. Since the architecture

is memory based, it is expected that commercial chips based on the basic idea of multi-

bit decoding/encoding will be a viable cost-effective approach for building special-purpose

CODEC systems. A key feature of the architecture is that it is programmable in the sense

that switching from one code to other simply means reloading the memory with new tables.

If the reloading is done from time to time, the chip would be capable of supporting adaptive

codes.
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Figure 6: The reverse tree for the tree of Figure 5
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Figure 8: Possible labels at the lowermost level
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Figure 9: Decoder/Encoder Architecture
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